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Abstract 

Solutions of stiff polymers and other types of rod-like partiele typically exhibit a first-order 

transition from the isotropie to the uniaxial nematic state. In a quench experiment, the nematic 

phase is formed either by nucleation and growth or by spinoclal decomposition, depending on 

the quench depth. The nucleation of the nematic is unusual in that the nucleating draplets have 

shapes ranging from spherical to elongated and a directar-field pattem ranging from homogeneaus 

to bipolar. Experimental observations have shown a pronounced maximum in the nucleation rate 

in the biphasic region, leading to a near-zero rate of phase ordering. 

In order to explain these observations, we set up a classica! nucleation theory for the nematic, 

paying special attention to the contribution of the Laplace pressure to the nucleation barrier, 

which is a non-trivial function of the anisotropic interfacial and bulk elastic properties of the 

nucleating droplets. To investigate the free energy barrier, we evaluate the equilibrium shape 

and the directar-field contiguration of the droplets, taking into account elastic deformation of the 

director field and an anisotropic surface tension.In our description, we allow for a director field 

to transfarm continuously from a uniform to a bipolar configuration. We apply a recent kinetic 

theory for the linearised spinoclal kinetics of hard rods to calculate the nucleation rates. 

We calculate the barrier height for both rod-like particles and semi-flexible worms. We 

find that for deep quenches, leading to small critica! nuclei, the Laplace pressure contribution 

cannot be ignored for rod-like particles. This effect is much less imminent for the semi-flexible 

worms. The height of the nucleation barrier and the nucleation rate with it, depends on the 

concentration quench, on the elastic properties of the dropiets and on the Laplace pressure. We 

find that the pronounced maximum of the nucleation rate is caused by the critica! slowing down 

of the nucleation dynamics near the spinoclaL Finally, intended for future work, we look into 

an alternative route for calculating the free energy barrier of a nematic droplet using density 

functional theory for the case when classica! nucleation theory fails. 



Chapter 1 

Introduetion 

1.1 Intrad uction 

Nucleation occurs duringa first order phase transition when a metastable state transfarms into a 

stabie state. In the case of a salution of, for example, rod-like particles, the first order transition 

occurs when a phase of randomly oriented rods, called an isotropie phase, begin to align in 

a particular direction and begin to form what is called a nematic liquid crystal. This is an 

activated process, a free energy harrier must be overcome in order to form nematic dropiets or 

nuclei of critical size, beyond which the new phase grows spontaneously into a bulk nematic. 

The drive for this nucleation process for what is called a lyotropic liquid crystal is the increase 

of the concentratien of particles, a concentratien quench, beyond which the isotropie phase is 

stable. In contrast with a lyotropic liquid crystal, the thermotropie liquid crystal phase depends 

::m temperature. 

Whereas a metastable state relaxes by nucleation, an unstable state does so by spinoclal 

::lecomposition. This second fundamental mechanism of phase separation occurs spontaneously, 

no free energy harriers need to be overcome. Spinoclal decomposition can occur by applying a 

:::oncentration quench deep into the region of coexisting isotropie and nematic phases. Spinoclal 

::lecomposition involves the growth of density fluctuations of small amplitude that exceed a crit-
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Figure 1.1: Nucleation rate of rodlike boehmite particles in cyclohexane, van Bruggen, Dhont, 

Lekkerkerker [2] 

ical wavelength. Thus metastable systems relax by the activated growth of localised density 

fluctuations of large amplitude, whereas unstable systems do so by the spontaneous growth of 

long wavelength fluctuations of small amplitude. [1 J 

Experiments have shown that with increasing quench depth, nucleation rate shows a pro­

nounced maximum, which has yet notbeen explained theoretically, see figure 1.1 [2]. Nucleation 

kinetics have been much investigated in the past. Russels adapted classical nucleation theory to 

describe crystal nucleation in hard sphere colloidal suspensions, assuming self-diffusivity mech­

anisms. [3] Dixit and Zukoski developed a pure kinetic approach based on partiele gradient 

diffusivity as argued by Ackerson and Schätzel [4], calculating aggregation and dissociation rates 

for hard sphere suspensions. In these works a possible contribution to the Laplace pressure is 

neglected, despite the fact that the crystal nuclei in their calculations are small. Winters, Odijk 

en Van der Schoot have recently developed a theory for spinoclal decomposition in a suspension 

of hard rods (hard meaning solely repulsive interaction between the rods) , where an unstable ori-

2 



entation translation hybrid mode drives the nematic instability. Near the spinodal, the observed 

maximum can be explained by the critica! slowing down of the hybrid mode [5]. 

In this thesis we investigate the nucleation of nematic liquid crystal dropiets in the isotropie 

phase. Previous research has yielded the shape and structure of these dropiets by minimising the 

free energy of these dropiets at fixed volume [6], making it possible to now focus the attention 

on the dynamics of first order transition of liquid crystals. 

The height of the energy harrier and nucleation rate depend on the free energy of the critica! 

nucleus (the nucleus with the critica! size at which the harrier appears). We have extended the 

expression for the free energy of nematic droplet formation which normally contains two terms, 

a negative contribution from a volume term and a positive contribution from a surface term. 

The total expression of the barrier consists of the surface anisotropy, depth of the concentration 

quench, elastic properties of the dropiets and the Laplace pressure. We have found that when 

dropiets are small, at large quench depth, the Laplace pressure cannot be neglected. The Laplace 

pressure inside a nematic droplet is significantly different than for a liquid droplet surrounded by 

vapour. Fora liquid droplet with radiusRand isotropie surface tension "(, the Laplace pressure 

can be written as p = 2"( / R. A nematic droplet has anisotropic surface tension and an internal 

structure subject to elastic deformation, making the Laplace pressure contribution a function 

of the anisotropic surface tension, the elastic constants for splay and bend deformation and the 

droplet volume. 

We have applied a recent kinetic theory in order to calculate the lifetime of the nucleus. For 

small dropiets approaching the partiele size, the orientation and position of the individual rods 

need to be taken into account and the classica! theory described above is no longer valid. We 

have investigated a density functional approach for nematic dropiets in an isotropie phase for 

future research. 

In the next section, a brief introduetion of liquid crystals and the theoretica! model of nematic 

dropiets as described by [6], will be given. We describe the basic concepts of the so-called 

Classical Nucleation Theory, consiclering the nucleation harriers, the Laplace pressure and the 
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nucleation rate. For the conditions where the classical theory fails, we use a density functional 

approach which seems a useful alternative [7], and a brief outline will be given. In the final 

section of this chapter, we will regard possible applications. 

1.2 Droplets of nematic liquid crystals 

A liquid crystal consists of anisotropic colloidal particles, such as rods, semi-flexible worms or 

disc-shaped particles. There are two types of liquid crystal, thermotropie and lyotropic. In a 

thermotropie liquid crystal the phase is determined by the temperature, interaction between 

particles is mostly attractive and depending on the angle between the particles. Examples of 

thermotropie liquid crystals are elongated organic molecules such as MBBA and PAA. In a 

lyotropic liquid crystal, the type of liquid crystal we consider in this thesis, interaction between 

particles is repulsive as a result of excluded-volume interaction. The phase of a lyotropic liquid 

crystal depends on the concentration of anisotropic particles. As an example we will discuss a 

solution containing slender, monodisperse rods (rods with the same length) with only excluded­

volume interaction (therefore called hard rods). Examples of hard rod particles are Tobacco 

Mosaic Virus (TMV), fd-virus and vanadium pentoxide. When the concentration of the rods 

is small, the rods are dispersed in random positions and orientations, this phase is called the 

isotropie phase. When the concentration is increased, the rods align in parallel with a common 

direction ( called director) but their centers of mass have no long range posi tional order. Th is first 

order isotropic-nematic transition is entropically driven. Although the alignment of the particles 

reduces rotational entropy, translational entropy is increased because of an increased free volume 

per particle. 

When the partiele concentration is between the isotropie and the nematic, phase separation 

will occur by nucleation of nematic droplets, which will, because of the slightly higher density 

inside the nematic, grow and eventually sink to the bottom. These dropiets can be regarcled 

as floating in the solute, as sedimentation occurs very slowly, and therefore, the system can be 

considered as in quasi-equilibrium. It possible to capture these dropiets on film using crossed 
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polarisers because of the birefringence caused by the aforementioned symmetry breaking. [6] 

Tactaids are spindle-shaped nematic dropiets and have been observed in dispersions of for 

example Tobacco Mosaic Virus (TMV), fd-virus, vanadium pentoxide, aluminium oxyhydroxide. 

Micrographs taken of these dropiets using crossed polarisers suggest a bipolar director field ( the 

local average orientation of the particles). In the bipolar configuration, the director field smoothly 

follows the contour of the droplet surface connecting two point defects at the poles of the droplet 

called boojums. [8] 

Shape and director field contiguration of tactaids were theoretically investigated by Prinsen 

and Van der Schoot [6] [9]. Optimal droplet shape was found by minimising the free energy of 

the dropiets at fixed volume. The volume of the droplet is taken to be macroscopie on the scale 

of the particles, therefore neglecting finite-size effects on the stability of the nematic and on the 

degree of nematic order in the droplet. The free energy contains two contributions: an elastic 

free energy and a surface free energy. Competition between these two leads to the droplet shape 

and structure. The surface free energy consists of an isotropie surface tension and a contribution 

depending on the orientation of the director field at the surface. The angle between the director 

n and the normal to the surface q can be written as (n · q). Assuming this angle to be small 

and the free energy invariant to the substitution n---+ n it can be expanded in termsof (n · q) 2 . 

The constant term is the isotropie surface tension and in the surface free energy expression only 

the subsequent term is included. This leads to a Rapini-Papoular-like expression for the surface 

free energy Fs [6] 

Fs = T j dA(1 + w(q · n)2
), (1.1) 

where T and w depend on the material properties of the liquid crystal. Integration is over the 

entire interfacial area A of the droplet. Eq. 4.17 gives an accurate representation of theoretica! 

predictions for the surface energy as function of the angle between the director and the normal 

on the surface. For lyotropic liquid crystals the particles have a preferenee to align parallel to the 

surface leading to w > 0. The surface tension T is the interfacial tension between nematic droplet 

and the isotropie bulk phase, with typical values for lyotropic liquid crystals of T ~ 10-5Nm-1 . 
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The surface anchoring strength w is small if the interfacial tension is isotropie and large if it is 

strongly anisotropic, causing parallel alignment of the director field to the droplet surface to be 

favoured. 

The elastic deformation energy depends on deviations of the homogeneaus director field and 

is therefore a function of the director n and its derivatives V'n, V'2n etc. Assuming LIV'nl « 1, 

L2 IV'2nl « 1, etc., and that Lki'Vknl « Lk-1 IV'k-1nl « 1, with L the droplet length, the 

elastic free energy can be expanded in a Taylor series in terms of V'n. The elastic free energy 

has to be invariant with regard to the substitution n ~ n, and is scalar invariant with respect 

to an orthogonal transformation of the basis. The Frank-Leslie elastic free energy FE (after 

considerable simplification) can then be written as [6] 

FE=~ J dV[K11 (\i' · n) + K33(n x (V' x n))], (1.2) 

where Frank elastic constauts K11 and K 33 represent splay and bend deformation of a bulk 

nematic, and n represents the director. Other elastic constauts such as the twist constant K22 

and saddle splay K 24 , have been neglected as we ignore the twisted bipolar configuration, and we 

absorb the influence of K24 , which represents the so-called saddle-divergence and can be written 

as a surface integral using Gauss'theorem, into K 11 . The integration is over the entire volume of 

the droplet. 

The value of the elastic constauts depend on the type of liquid crystal, the temperature, the 

concentration of the anisotropic particles and the solvent. For a lyotropic liquid crystal solution 

of monodisperse, rigid rod-like particles of Tobacco Mosaic Virus, K 11 ~ 10-12 - 10-10 N, the 

ratio of theelastic constauts for splay and bend -y33 = K 33 / K11 ~ 9-17. Theoretica! predictions 

indicate that 5 ;S -y33 ;S 10 for hard rods (found to agree with data for TMV), in this study this 

is taken to be 10. For semi-flexible worms, like the lyotropic liquid crystal PEG (poly--y-benzyl­

glutamate), -y33 ~ 1 and in this study this value is chosen for worm-like particles, although it 

does depend on a intricate combination of persistenee length, density and partiele length. [6] 

Applying geometrie arguments, an estimate of the shape and structure of the droplets can 

be made. The elastic free energy is proportional to V 113 whereas the surface free energy is 
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Figure 1.2: sealing regimes with different droplet types 

proportional to V 213 , with V the droplet volume. So for large dropiets the surface free energy 

wins out leading to the elongated particles to be aligned parallel to the surface resulting in a 

bipolar director field, where the director field goes from one point of the droplet to the other. For 

small dropiets the elastic free energy wins out, so there the director field is uniform. For large 

w, the dropiets are elongated and for small w the dropiets are spherical. This is clarified in the 

phase diagram, see figure 1.2, also containing schematic representation of extreme droplet types: 

elongated bipolar ( tactoid), spherical bipolar, elongated homogeneous, spherical homogeneous. 

In reality, the transition between the various droplet types is continuous. With increasing droplet 

size the director field crosses over smoothly from a homogeneaus to a bipolar configuration. 

Virtual boojums [10], points where the director field comes together, move in from infinity 

towards the poles on the surface of the droplet. 
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1.3 Classica! nucleation theory 

Classica! N ucleation Theory ( C NT) is based on the assumption that dropiets originating from 

the nucleation of a bulk nematic from the isotropie phase can be described with a macroscopie 

theory even if they are very small. Droplets have a well defined volume, with the nematic phase 

inside and the isotropie phase outside. The free energy of nematic droplet formation can in 

generalbe described as the sum of two terms: a negative contri bution from the bulk free energy, 

proportional to the droplet volume and a positive contribution from the surface free energy, 

proportional to the droplet surface area. Hence, 

6.G = p6.pY + TV213 + ... , (1.3) 

where 6.G is the Gibbs free energy, p is the density of the phase inside the droplet, 6.f-l is 

the chemica! potential difference between the nematie and isotropie phase, T is the isotropie 

surface tension and V is the droplet volume. For a metastable state, 6./-l is negative, therefore 

an increase in volume eventually results in an energy barrier that can be crossed so that the 

isotropie nematic transition can take place. The droplet size and the free energy that forms the 

barrier to nucleation can then be calculated as a function of the concentration increase known 

as concentration quench depth. 

In order to maintain mechanica! equilibrium during droplet formation, the droplet pressure 

increases according to a generalised Laplace equation: [11] 

aF 
Pn = p+ BVn' 

(1.4) 

where Vn is the droplet volume and Pn represents the osmotic pressure within the droplet and p 

outside . We use the Laplace pressure to take the droplet curvature into account when calculating 

the work for droplet formation. Free energy depends on the elastic and the surface energies, the 

surface anisotropy and the volume. We will proceed in the chapter two by inserting the Laplace 

equation into the expression for the work needed to form a droplet and then expand to first order 

so that we obtain an expression for the nucleation barrier for nematie dropiets in an isotropie 

phase. 
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The nucleation rate is proportional to the thermadynamie probability of having a fluctuation 

leading to a critical cluster and a dynamica! factor A descrihing the rate at which the cluster 

grows [12] 

Is= Aexp[-,B~Gn.J, (1.5) 

where ,B~Gn. is the dimensionless height of the nucleation barrier, which is the minimum re­

versible work for cluster formation. We calculate the barrier height by minimising the droplet 

free energy with respect to the droplet volume. A contains the partiele number, the so-called 

Zeldovich factor, which signifies the fact that not all particles at the top of the nucleation barrier 

end up in the nematic phase but can recross and end up in the isotropie phase, and the rate at 

which a critical nucleus grows. This attachment rate consistsof the number of particles available 

at the surface of the critica! nucleus, "' n:13 , and a transition rate of these particles to become 

part of the nucleus. This transition ra te is proportional to D / e where D is a diffusion coefficient 

and e a typical distance over which the diffusion takes place. [13] We praeeed in chapter four by 

applying a recent kinetic theory in order to identify this diffusion coefficient and to explain the 

sharp maximum observed in nucleation rate with increasing quench depth of figure 1.1. 

1.4 Density functional approach 

Classica! Nucleation Theory fails as the spinoclal is approached. CNT prediets a finite barrier to 

nucleation while the main property of the spinoclal is the vanishing of this barrier as fluid passes 

from a thermodynamically metastable state to an unstable one. [14]. As a macroscopie theory 

CNT also fails when the droplet size begins to approach the partiele size. This occurs after deep 

quenches because the droplet size is inversely proportional to the quench depth. Macroscopie 

theory must therefore be replaced with a microscopie theory such as density functional theory. 

This theory makes no assumptions about the homogeneity of the nucleus and therefore, no 

division of the free energy in a volume and surface term is needed. 

Density-functional theory considers thermadynamie potentials of an inhamogeneaus system 
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as functionals of the inhomogeneous density p(x), of which x can denote both position and 

orientation and we later replace with (r, u). The Helmholtz free energy can be written as [7] 

F[p(x)] = pid[p(x)] + pex[p(x)] (1.6) 

This expression contains an ideal entropy part 

pid[p(x)] =kT J p(x)[ln(p(x)- l)]dx (1.7) 

The second term in eq. 1.6 represents an excess free energy as a result of interaction between 

particles. 

Doi and Kuzuu calculated the free energy of coexisting isotropie and nematic phases, separ­

ated by a plane interface in the x-y plane. 

(1.8) 

where 8 accounts for the excluded volume interaction (particles cannot interpenetrate each other). 

In their excess free energy term they identify an excluded volume term and a spatial inhomo­

geneity term. [15] In order to calculate the free energy they use Onsager's trial function for the 

orientational profile [16] 

Q 

f(u) = 
4 

. h( ) cosh(u · n), 1rsm a 
(1.9) 

where a is a variational parameter and e the angle between the unit vector parallel to the partiele 

and the director. They extend the trial function for the continuous transition from the isotropie 

to the nematic by constructing a density profile p that is both dependent on orientation and 

position. We investigate the possibility of applying the density profile of a spherical droplet in 

chapter five. 

1. 5 Technology assessment 

Nematic dropietscan be found in everyday life, for example in technology like PDLCs (Polymer 

Dispersed Liquid Crystals) but also in biology and in medicine. 
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PDLCs operate on the principle of electrically controlled light scattering. They consist of 

liquid crystal dropiets surrounded by a polymer mixture sandwiched between two pieced of 

conducting glass. When no electric field is applied the liquid crystal dropiets are randomly 

oriented creating an opaque state, but when applied, the liquid crystals align parallel to the 

electric field and light passes through, creating a transparent state. The droplet size is important, 

because the electric field needed to align the dropiets is inversely proportional to the droplet 

size. A useful application for this principle is a window, which with the flip of a switch changes 

from opaque to clear. Nucleation theory is of great use to the production and development of 

PDLC materials. During the production process, nematic dropiets nucleate inside a polymerie 

matrix. [17] Material properties are determined by droplet type and size, so it is of great interest 

to the industry to have insight in these processes. 

Another example of nematic dropietscan be found in biology. The protein actin is present in 

may different cell types and plays a variety of roles in the cytoskeleton. The elementary building 

block is the protein g-actin (Globular actin), a single chain of approximately 375 amino acids. 

g-actin units can assembie into a long string called f-actin (filamentous actin), which consists 

of two strands forming a coil, which is approximately 8 nm wide. [18] Actin filaments have a 

relatively simple structure and it is possible to make images of single filaments in a solution. 

It is therefore an ideal system for biophysical research of for example semi-flexible polymer 

dynamics. [19] Tactoids have been observed in the concentrated gels of actin filaments (f-actin). 

Microscopy shows these stabie tactoids of densely packed f-actin to be of various size of order 

10JLm. It is assumed that the formation is driven primarily by the excluded-volume effects. [20] 

One example of tactoids in medicine is a pathological anomaly of the human red blood cell. 

Human red blood cells are flat round disks without nuclei, indented in the middle on both sides. 

Their greatest thickness at the edge is 2JLm. The main function of the red blood cells is the 

transport of oxygen and is facilitated by its charaderistic shape, for the ditfusion area is large 

and the ditfusion distance small. Because of the shape of the cells it is easier to be reversibly 

deformed in order to pass through narrow curved capillaries. The elasticity of the cell reduced 

in pathological form of red blood cells, such as sickle cells. The loss of elasticity causes the cells 
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to be retained in the meshwork of the spleen where they are destoyed, causing what is known as 

sickle cell anemia. [21] 

In case of sickle cell anemia, a point mutation arises in the amino acid sequence of the 

cell, resulting in the synthesis of unusual proteins at the surface of the molecule of hemoglobin. 

The hemoglobin polymerises into long 210 À diameter fibres that result in the nucleation of 

tactoids. [22] The higher the concentration of tactoids, the quicker the crystallisation when 

exposed to a low oxygen environment. Tactaids tend to: 1) decrease hemoglobin solubility, 

2) change the shape of the red blood cell, 3) decrease deformability of the red cell. These 

factors act tagether to change the red cell shape from a biconcave disc to a sickle-shape. With 

recurrent exposure to low oxygen in the blood, the red blood cells tend to acquire a sickle shape 

permanently causing serious pathological effects in the patient. 

1. 6 Thesis overview 

In the next chapter we give a review of the free energy of nematic draplets with the boojums 

residing outside of the droplet. We describe the free energy of the droplet using sealing theory as 

calculated by [8] and distinguish droplet types belonging to five different regimes [6]. For each 

of these regimes we calculate the nucleation barrier. We adapt the expression for the nucleation 

barrier by adding a contribution of the Laplace pressure. 

We then praeeed by calculating these barriers for both rigid rod-like particles and worms. 

We distinguish between both particles by finding sealing relations descrihing the parameters for 

both rods and worms and then examine the different outcomes. Finally we calculate the limit of 

classical nucleation, so that we know when the classical theory needs to be replaced with DFT. 

We then study the nucleation kinetics of rigid rods by first calculating the prefactor of the 

nucleation rate. For this we combine a general theory for liquids with a recent kinetic theory for 

hard rods. [5] Finally we calculate the nucleation rate, for which we also use the barrier heights 

calculated in the previous chapter. 
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We then investigate an alternative route for the use of density-functional theory for the 

calculation of the free energy of nematic droplets, intended for future work. 
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Chapter 2 

The nucleation harrier of a nematic 

droplet 

2.1 Introduetion 

We begin our study of the nucleation of nematic droplets with a review of the free energy of 

nematic droplets with the boojums, residing on the outside of the droplets, as described in the 

first chapter the boojums are then called virtual boojums. As described in the previous chapter, 

the free energy can be described by two functionals, an elastic free energy functional, which is 

associated with the deformation of the director field, and an anisotropic interfacial free energy 

functional. We analyse these free energy functionals using a sealing analysis in order to obtain 

a qualitative picture of the equilibrium droplet shapes and structures based on the asymptotic 

limitsof the free energy. The free energy has been calculated in detail by Prinsen [6] and we use 

these to calculate the energy harrier that must be overcome in order for nucleation to occur. In 

the case of nematic droplets the calculation of the nucleation harrier is complicated as it depends 

on the anchoring strength, on the Frank elasticity of the critical nuclei and on the Laplace 

pressure. The Laplace pressure, though generally ignored when the nucleation of crystalline or 

incompressible fluid phases is investigated [3], plays an important part in the calculation of the 
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barriers of small dropiets and has as far as we are aware never been applied to nematic liquid 

crystals before. We point out the significanee of this Laplace pressure in the following chapter. 

2.2 Free energy of a nematic droplet with a transitional 

director field 

We consider a nematic droplet of volume V, nucleated in the isotropie phase. If the volume of the 

droplet is macroscopie on the scale of the particles, we need not take into account the internal 

(grainy) structure of the droplet. As explained in the previous chapter, the free energy F of a 

nematic tactoid can then be described as the sum of the free energy cost of the deformation of 

the director field FE and that of the presence of the interface which separates the nematic from 

the isotropie phase F s, 

F = T J dA(1 + w(q · n) 2
) + ~ J dV[K1(\7 · n) + K3 (n x (\7 x n))], (2.1) 

where nis the director, q is the unit vector perpendicular to the interface of the droplet, K11 and 

K33 are the Frank elastic constants for the splay and bend deformation modes, w is the ancharing 

strength and T is the isotropie surface tension. Other elastic constants have been omitted for 

reasons already explained. There are three dimensionless parameters that determine the optimal 

shape and structure, namely the ancharing strength w, the ratio of the elastic constants ')'33 = 
K 33 / K11 and the dimensionless volume v = V/C, with the so-called extrapolation length Ç = 
K 11 /Tw [23]. The extrapolation length Ç measures the scale below which the director field resists 

deformation by the coupling to the interface. The equilibrium shape and director field can be 

found by optimising the free energy functional in eq. 2.1. The shapes, chosen to resembie droplet 

shapes found in experiments, are circle sections rotated about their chord, producing both droplet 

shapes ranging from elongated to spherical depending on the position of the chord. The director 

field is determined by a collection of circle sections intersecting at two points that are at R > R 

distance to the center of the droplet on the rotation axis of the droplet. R is the distance from 

the center of the droplet to either of the point defects. 
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The point defects where the field lines interseet are outside the droplet and are therefore 

called (as was clone so by Rudnick and Bruinsma [10]) virtual defects or virtual boojums. The 

director field of these dropiets are therefore so-called quasi bipolar, as the director field can be 

truly homogeneaus for very small dropiets or truly bipolar for very large ones for these limits 

only. The free energy depends on the ratio R/ R, ""' and the inverse aspect ratio of the droplet, 

c, which are used next for the sealing estimates. 

2.3 Sealing theory 

In order to find out the different regimes for the different droplet types, a sealing estimate, based 

on the workof Prinsen and Van der Schoot, [8] is made of the dimensionless free energy F. The 

free energy is made dimensionless by dividing it by the surface tension T and by dividing it by 

V 213
, so the dimensionless free energy can be written as F = F /V 213

T. Let R be the major axis 

and r be the minor axis of the droplet. The inverse aspect ratio c can now be expressed as r / R. 

For elongated dropiets c « 1, and for spherical dropiets c ~ 1. The ratio R/ R can be seen as 

the measure for the radius of curvature of the director field, as for R/ R « 1 the directar-field is 

homogeneaus and for R/ R ~ 1 the directar-field is bipolar. 

The volume V of the droplet scales as r2 Rand the surface area as r R. The surface con tribution 

is equal to the surface tension T times the area A ~ Rr, times a correction that penalises the 

non-tangential alignment of the director field. This correction involves a surface average of 

w(q · n)2 that can be shown to scale as wr2 R2 (R-2
- k- 2

)
2 [6]. The limitsof the director field 

( truly bipolar and truly homogeneaus) can be deduced from these sealing estimates as for a 

truly homogeneaus director field R/ R ---> 0, and for a truly bipolar director field R/ R ---> 1. By 

geometry, the radius of curvature of a bend deformation scales as R2 /r so that the contribution 

of the bend deformation becomes K33 (R2)(R2 /r)-2 = K33r4 R/ R4 . The radius of curvature of 

splay deformation is R2 /R so that the deformation becomes K 11 (r2R)(R2 /R)- 2 = Kur2R3 jR4 . 

Gomparing the contribution of the bend deformation with that of the splay deformation shows 

the latter to be larger or of the same order of magnitude as the bend contribution, making it 
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Figure 2.1: sealing estimates of extreme droplettypes and their corresponding regimes. [6] 

therefore possible to ignore the bend contribution [6]. After insertion of the surface free energy 

and the elastic bend deformation energy into expression 2.1, the scaled dimensionless free energy 

can be written as 

(2.2) 

where v is the scaled droplet volume, "" = R/ R is a measure for the radius of curvature of the 

directar-field of the droplet and c = r / R the inverse aspect ratio of the droplet. Optima! values 

for c and ""for the different droplet types are found by minimising eq. 2.2 with respect to c and"" 

and solving the obtained equations. For elongated droplets, c « 1, the following sealing relations 

have been found, c ~ ""6v- 1(1- ""2t 3 and wv-2 ~ ""-
12 (1- ""2

)
5

. Fora homogeneaus director 

field, "" « 1, and therefore v « w112 leading to "" ~ w- 1112v 116 and c ~ w- 112
. For a bipolar 

director field, "" ~ 1, and therefore v » w112 leading to 1 - "" ~ w115v-215 and c ~ w-315v 115 . 

As c « 1 the latter can be written as wv- 113 » 1. For spherical droplets, c = 1, the following 

relations have been found by minimising 2.2, with respect to "" to give ""-2 (1 - ""2
) = v-113

, 

leading to "" ~ v116 for v « 1 and 1 - "" ~ v-113 for v » 1. [6] An overview of the different 

sealing estimates and their corresponding regimes can be found in Figure 2.1 [6]. 

As can be seen from figure 2.1, there are two sealing regimes for w « 1, namely v « 1 
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and v » 1, and three for w » 1, namely v « w112
, w112 « v « w3 and v » w3

. The 

asymptotic limits of the dimensionless free energies of the various droplet types belonging to 

these regimes are listed in table 2.1 For each regime conesponding to a particular droplet type 

droplet type asymptotic limit sealing regime droplet free energy 

homogeneaus spherical c~1,K«1 v«1,w«1 fv2/3 

bipolar spherical é~1,K::::::1 v » 1 , w « v 113 fv2/3 + 7-vl/3 

homogeneaus elongated c«1,K«1 v « w112 
, w » 1 fv2/3 

bipolar elongated c«1,K::::::1 vl/3 « w « v2 fv3/5 

Table 2.1: asymptotic limits conesponding to the droplet type, the sealing regimes and di­

mensionless free energy without numerical prefactor, as calculated by [6]. For more detailed 

expressions for the free energy, see appendix A. 

(in the asymptotic limit) the dimensionless free energy has also been calculated exactly, i.e. 

inclusive of the numerical prefactors. [6] The dimensionless free energy F, depending on w and 

the ratio of elastic constants ')'33 , we inserted into the expression for the nucleation barrier which 

we derive in the next section. 

2.4 The Laplace pressure 

We begin with analysing the Gibbs free energy of the formation of a critica! nucleus (the nucleus 

for which the Gibbs free energy passes through a maximum). The theory applied is described by 

Kaschiev, who investigated the excess energy of a nucleus, which, combined with the difference 

between chemical potentials, makes up the work for a homogeneaus formation of a nucleus. [11] 

A droplet can be described as a nucleus consisting of n particles. The Gibbs free energy 

of an n-sized nucleus takes into account the energy changes in the system that accompany the 

formation of a nucleus and can be described as 

(2.3) 
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where nl-lnem is the Gibbs free energy the nucleus would have had were it a a part of the bulk 

nematic phase and G ex is the nucleus excess energy. The nucleus excess energy accounts for three 

effects: the existence of an interface between the nematic nucleus and the isotropie bulk phase, 

the changed pressure in the volume of the nucleus and the differences in chemica! potential of 

the nucleus and bulk phase. The Gibbs free energy representing the work for the formation of a 

nucleus can be written as [11] 

(2.4) 

where the chemica! potential difference between isotropie and nematic bulk phases is written as 

!:li-l = (1-liso - 1-lnem), Vn is the droplet volume and p the density of the phase inside the drop. 

After applying thermodynamic relations, this can be expressed as [11] 

1
Pn 

Gex = F(Vn)- (Pn- p)Vn + P Vn(P)dP (2.5) 

where Fis the totalfree energy of the nucleus as described by eq. 2.1, Pn is the osmotic pressure 

inside the nucleus, p is the osmotic pressure of the bulk isotropie phase. The advantage of this 

expression for the excess energy is that it is not necessary to know the value of 1-ln,nem of the 

nucleus. For an incompressible fluid, only the first term survives as the third term of 2.5 then 

cancels out the second term. The nematic droplet however is osmotically compressible, therefore 

giving rise to a change in pressure in the volume after droplet formation. In order to maintain 

mechanica! equilibrium the droplet pressure increases 

äF 
Pn = p+ ÖVn (2.6) 

Invoking the equation of state for bulk hard-rod nematics (valid only in the Gaussian limit) [24] 

as described by Onsager [16] 

(2.7) 

Now the cluster excess energy Gex can be calculated by combining both eq. 2.6 and eq. 2.5 and 

by applying a Taylor expansion with respect to Pn/P to the first order 

1 F' 
Gex = F + 2PVn( p )2 + ... , (2.8) 
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where F' = fJF / 8Vn. Inserting this into the expression for the total free energy of droplet 

formation 2.3, the dimensionless expression for the Gibbs free energy becomes 

(2.9) 

where the second term on the right hand side is the Laplace pressure contribution. It is this 

contri bution that accounts for the effect of a curved surface ( the droplet), as the first term 

!:lp, represents the difference in chemical potential between the bulk phase of the nematic and 

isotropie phase and therefore accounts for a flat interface between the nematic and isotropic. 

By minimising eq. 2.9 with respect to the dimensionless volume v, we find the dimensionless 

volume of the critical nucleus v*, and by inserting this back into eq. 2.9 we find the nucleation 

barrier height of the droplet approximated to the first order. We now present the five barrier 

heights and conesponding critical droplet volume for the asymptotic limits of the free energy of 

eq. 2.1 as calculated by Prinsen [6]. 

1. Homogeneaus elongated droplets, w » 1, v « w112 

2. Homogeneaus spherical droplets, w « 1, v « 1 

(3 /:lG rv 32 (47r) 3-3--2 1 (47r) 3-2--1 1 
* = 15 w1 T p lf3llp,l2 + 32 15 w1 T p lf3llp,I.C 

3. Bipolar elongated droplets, w » 1, v113 « w « v2 

(3 /:lG c::: §. (_.§._) 3/2 5/2 -5/2 --3/2 1 + 
* - 3 7r 15 w2 T p I!36.J.LI3/2 

4 /()2 (_.§._)3/2 5/2-3/2--1/2 1 I' 
V .c.7r 15 W2 T p 1!36-J.Lil/2 ~.., 

4. Bi po lar spherical droplets, w » 1, w « v113 

(3/:lG* ~ 4 (~n) 73/2p-1/21!3t.~ll/2 (14w)3/2 + 9 (4;) 72p-11!3lJ.LI (14w)1/2+ 

4 ( 4;) 73/2 p-1/21!36.~11/2 (14w )1/2 .C+ 

6 (47r) 72p--1_l_.C+ 
3 l!3t.J.LI 

2 ( 4;) r(14w ).C, 
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(2.10) 

(2.11) 

(2.12) 

(2.13) 



5. Bipolar spherical droplets, w « 1, w « v 113 

(3~G rv (47r) -3--2 1 ( ) (41f) -2--1 1 (41f) -2--1 1 ( ) 
* = 4 3 T p lf3~f-ll 2 +6 ')'4W 3 T p lf3~f-ll +4 3 T p lf3~f-ll L 2.14 

As can be seen from 2.17 till 2.14 the first term of the nucleation barrier corresponds to the 

classica! vapour nucleation where (3~G "' T3(3~J-l- 2 and the second (following) term with the 

Laplace correction for the droplet curvature. 

droplet type critical droplet volume v* 

homogeneaus spherical (47r) w3i3p-3_1_(1 + \h + ~[,.öl~~ttl)3 
3 3 ~~~ttl 3 3 f 

bipolar spherical (47r) i3p-3_1_(1 + }1 + ~.C.öl~~ttl)3 
3 ~~~ttl 3 3 T 

homogeneaus elongated 8 (47r) w3i3rJw-3_1_(1 + vh + ~c.öl~~ttl)3 3 1 ~~~ttl3 3 f 

bipolar elongated x (15)3/2 w5/2i5/2rÏw - 5/2_1_(1 + J1 + ~c.öl~~ttl)5/2 
8 2 ~~~ttl3 3 f 

Table 2.2: critica! droplet volumes for a salution containing rod-like particles 

where the Laplace pressure correction [, = T(pÇ)-I, .C = 2/3C+')'4w, i= (3t"2T, p = çJp, ')'4 = 

(1+(12-x2)/16')'33 ), w1 = w116(1+(21w)-1), w2 = w115 and w3 = (1+(1/3)w-(x2/36(x2-8))w2) 

and f3~J-l represents the concentration quench depth as it is related to the number of particles 

added to the system [24]. Again, the the first term of the droplet volume in 2.3 corresponds to 

the classica! vapour nucleation where v* "' T3(3~J-l-3 and the second (following) term with the 

Laplace correction for the droplet curvature. 

For worms, the equation of state as used for eq. 2.8 is incorrect, a different expression is 

needed for the equation of state and subsequently the work of the formation of a nucleus, the 

droplet volume and the nucleation barrier. The equation of state for semi-fiexible wormscan be 

written as [7] 

(2.15) 

where L is the contour length, P is the persistenee length, D is the diameter and Vn is the 

volume of the nucleus. This leads to the following expression for the total free energy of droplet 
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formation 

3 F' 
(3~G = (3F + -(3pV(-) 2 + p(3~pY, 

10 p 
(2.16) 

The Laplace correction is smaller for worms than for rods. This could be explained by the fact 

that the semi-flexible worms are less resistant to the droplet curvature. Next we give the results 

for the calculations of the critica! droplet volume and the barrier height. 

1. Homogeneaus elongated droplets, w » 1, v « w112 

I"V ( 411") 3-3 --2 1 96 ( 411") 3-2 --1 1 
(3~G* = 32 15 w1 T p lf3~1LI2 + 5 15 w1 T p if3~1Li.C (2.17) 

2. Homogeneaus spherical droplets, w « 1, v « 1 

rv ( 411") 3-3 --2 1 12 ( 47f) 3 -2 --1 1 (3~G* = 32 15 w1 T p lf3~1LI2 + 5 15 w1 T p if3~1Li.C (2.18) 

3. Bipolar elongated droplets, w » 1, v 113 « w « v2 

(3~G c:"; .ê. ( ...ê...) 3/2 5/2 -5/2 --3/2 1 + 
* - 3 7r 15 w2 T p l~t.lli3/2 (2.19) 

12 y'2 ( ...ê...) 3/2 5/2 -3/2 --112 1 I-
5 7r 15 w2 T p l~t.llil/2 

4. Bipolar spherical droplets, w » 1, w « v 113 

(3~G c:"; 4 (471") f3/2p-1/2 1 b w)3/2 + 9 (471") f2,ö-1_1_b w)1/2+ 
* - 3 l~t.lll 1 / 2 4 3 l~t.Jll 4 

12 (471") 73/2p-1/2 1 b w)1/2I_+ 
5 3 l~t.J.Lil/2 4 (2.20) 
1s (471") f2,ö-1_1_I-+ 
5 3 l~t.J.LI 

~ (4;) f(14w).C, 

5. bipolar spherical droplets, w « 1, w « v113 

(3~G "'4(471")-3--2 1 +6( )(47r)-2--1 1 * = 3 7 p l~t.J.LI 2 5 1'4W 3 7 p l~t.J.LI + (2.21) 
12 (471") f2,ö-1_1_t_ 
25 3 l~t.J.LI 

In the next chapter, we plot these barriers for rod-like particles and semi-flexible worms.We 

investigate the importance for the Laplace-pressure contribution versus quench depth. The 

critical droplet volume scales as T 3 /if3~1LI 3 so for large quench depth, the droplet volume will 

diminish. We expect to see an increase in Laplace pressure contribution as Laplace pressure 

becomes increasingly important for draplets with diminishing size. 
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droplet type critica! droplet volume v* 

homogeneous spherical (4n) w37'3p-3_1_(l + J1 + g,e.Oii3t.ttl)3 
3 3 li3L1ttl3 5 f 

bipolar spherical (4n) i3p-3_1_(1 + J1 + g,C.Oii3~ttl)3 
3 I/3L1ttl3 5 T 

homogeneous elongated 8 ( 471") W3T3 p-3 _1 - ( 1 + V 1 + ..2_ ..c .Oii3L1ttl )3 
3 1 li3L1ttl 3 25 f 

bipolar elongated 7r (15)3/2 w5/2i5/2p-5/2_1_(l + J1 + g,e.Oii3t.ttl)5/2 
8 2 li3L1ttl3 3 f 

Table 2.3: critica! droplet volumes for a solution containing semi-flexible worms 

2.5 Conclusions 

The barrier height depends on the volume V, the anchoring strength w, the surface tension T, 

the elastic constants K11 and K33 and the Laplace pressure. As the quench depth is increased, 

we expect the Laplace pressure to become more important as the droplet volume decreases. This 

we can deduce from the fact that the droplet volume is inversely proportional to the quench 

depth and the fact that this increases the droplet curvature ( and thus Laplace pressure). This 

we investigate in the next chapter. 
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Chapter 3 

N ucleation harriers for hard rods and 

semi-flexible warms 

3.1 Introduetion 

In this chapter we calculate the nucleation barriers for the formation of a nematic phase in 

dispersions of both hard rods and of semi-flexible worms. In the previous chapter we found 

the qualitative barriers for the various droplet regimes in terms of the scaled, dimensionless 

parameters for the density, the surface tension, the extrapolation lengthand the Laplace pressure. 

Different free energies and sealing arguments describe these parameters depending on whether the 

particles are rigid, rod-like molecules or semi-flexible worms. We investigate both free energies 

and the sealing relations of these parameters and subsequently explicitly calculate the barriers 

for both partiele types. We find that the Laplace pressure contribution cannot be neglected for 

small critical nuclei, which form following a deep quench. With increasing quench depth we see 

after reaching a certain concentration, that the limit of validity of classical nucleation theory will 

be reached as the droplet size approaches the size of the constituent particles. We explore this 

limit and in a following chapter, we use a different approach to calculate the free energies of the 

critical nuclei. 

24 



3.2 Free energy and sealing theory of rod-like particles 

We begin this section with a brief introduetion to the virial theory of the isotropic-nematic 

transition for hard rods (hard interactions between two rods are those that exhibit excluded 

volume interaction, meaning that the rods cannot interpenetrate each other) as described by 

Onsager [16]. In the 1940s Onsager treated the isotropic-nematic transition with a virial ex­

pansion of the free energy. For slender hard particles, the transition occurs at very low volume 

fraction and the virial expansion may be truncated after the second virial term leading to an 

exact theory for infinitely slender particles. From the expression for the free energy we derive 

a measure for the quench depth, f3b.f.-l. The harriers depend on a number of parameters, such 

as anisotropic surface tension, density, extrapolation length and Laplace pressure, in order to 

calculate the harriers explicitly we investigate their sealing relations. 

The virial expansion of the Helmholtz free energy of the solute b.F is given by [7] 

N~:T = ln(p)- 1 + J f(u) ln[411'j(u)]d2u- ~ J J (31 (u, u')f(u)f(u')d2ud2 u', (3.1) 

where A is the thermal wavelength, (31 equals the excluded volume between two particles in­

clined at u and u' and f(u) is a non-uniform orientation distribution function, which gives the 

probability of finding a partiele with an orientation characterised by the solid angle d2 u. This 

distribution function is normalised 

j f(u)d2u = 1 (3.2) 

In the isotropie phase, all orientations are equally probable which implies fisa(u) = 1/471'. In the 

nematic phase, the orientation is governed by the first integral in eq. (3.1 ). The second integral 

in this equation equals the second virial coefficient and corresponds to interactions between the 

two particles. 

For long hard rods of diameter D and length L, the parameter -(31 equals the volume excluded 

to a second rod due to the presence of the first rod and is dependent on the angle 1 between 

them and is for end-capped cylinders given by [7] 

(3.3) 
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The last two terros are end corrections which are at least of order D / L smaller than the leading 

term. The end corrections depend on the exact form of the rods near the ends and are, for 

example, different for simple, non end-capped cylinders. For thin rods these end effects are of 

minor importance, thus giving [24] 

(3.4) 

An expression for the free energy of hard rods which describes the isotropic-nematic trans­

ition is found when eq. (3.4) is combined with eq. (3.1) and by introducing a dimensionless 

concentration c [7] 

1f 
c:= -L2Dp, 

4 
(3.5) 

where pis the density N /V, with N the number of particles and V the volume, and b = ( 1f /4) L2 D 

is half the excluded volume between two rods if they are randomly oriented [24]. The free energy 

can now be expressed as [7] 

tlF 
N kT ::::::; constant + ln c + CJ(j) + cr2(J), (3.6) 

where CJ(j) is related to the orientational entropy as given by the first integral in eq. (3.1). For 

the isotropie phase, CJ = 0. f2 can be seen as the packing entropy [7] 

(3.7) 

For the isotropie phase, f2 = 1. For low partiele concentrations the orientational entropy dom­

inates and an isotropie phase is favoured, whereas for high concentration the packing entropy 

dominates and a nematic phase is favoured. It is the competition between these two which drives 

the isotropic-nematic transition. 

The free energy has a minimum for a given concentration c. By choosing a trial function 

with one or more variational parameters, then calculating the free energy as a function of these 

parameters and next minimising it with respect to these parameters this minimimum can be 
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foundo In chapter five we investigate the possibility of doing so, choosing the normalised Onsager 

trial functiono 

From the expression of the free energy the chemical potential f-L of hard rods can be calculated 

using the thermadynamie relation f-L = ( 86.F I fJN)v,T leading to [24] 

(Jp = eonsto + ln p + CJ + 2eg (308) 

In the isotropie phase, the expression for f-L becomes 

(Jp = eonst + ln p + 2e (309) 

For each concentratien e the system of hard rods must be at the minimum of the free energyo 

Above a certain concentratien this minimum is obtained by a state in which part of the system 

is isotropie and the other part is nematic with different concentrations for the isotropie c" = 3029 

and the nematic enem = 40190 [24] 0 We can now calculate the quench depth 6..e = e- <;o The 

concentratien quench is therefore the increase of the concentratien of particles in the coexisting 

phaseo We find this expression by calculating the chemical potential difference of the critical 

nucleus and the isotropie bulk phase (of which the chemical potential equals the new phase were 

it a bulk nematic) 

e· c" + 6.e 
(36.p = ln(;) + 2ei -ln( b ) - 2(ei + 6..e) (3010) 

In this expression we used ei = bp where b = ( rr I 4) L 2 D 0 After some algebraic manipulation and 

a Taylor expansion to the first order with respect to 6.el ei we find 

1 
(36.p = (- + 2)6..e + 0 0 0 

ei 
(3011) 

Now we can deduce the following relation between chemical potential difference and quench 

depth, (36.p ~ 2o306..eo 

The osmotic pressure is calculated rom the expression for the free energy 306, the thermady­

namie relation p = - ( 86.F I fJV) and the Gaussian distri bution function [24] 

p = 3pkT (3012) 
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In order to calculate the barriers for rigid rods, we use sealing relations found in literature for 

the surface tension r, the droplet density p, the pressure p and elastic constant K 11 and make 

them dimensionless by sealing them to the extrapolation length Ç see table 3.1. 

quantity ç .c T p 

definition Kn/rw r(pÇ)-1 (3ÇZr ÇSp 

hard rod result (7 /S)(c/n)Lw-1 2/21(7r/c)2w 7 /8(c/7r) 2w-2 L/ D 4(7 j8)3 (cj1r) 4w-3 Lj D 

Table 3.1: The dimensionless parameters are given in the first row, the second row contains 

their definition and in the third row these are given in terms of the nematic concentration, the 

ancharing strength w and the aspect ration of the, presumedly hard rod, particles L/ D 

Here we have used T = kBT/LD [25], p = 4cjJrL2 D [7], K 22 D/kBT = (7/96)L2 Dp [26] [27], 

Kn = 3K22 , p = 3pkT [27] and c is taken to be Cnem = 4.19 [24] as the given relations are for 

the nematic phase. 

3.3 Free energy and sealing theory of semi-flexible worms 

In Onsager's theory, the system described consisted of long thin hard rods such as TMV. For 

particles which exhibit some degree of flexibility, such as PBG, the theory has to be modified. 

PBG can be described as what is called a semi-flexible worm, which is locally very stiff but 

is long enough to form coils in a dilute solution. This can be expressed as contourlength L » 
persistenee length P » diameter D. The contourlength is the actuallength of the coils stretched 

out. The persistenee length is the characteristic length scale on which the direction vector u of 

the chain changes direction due tothermal agitation, see figure (3.1). It is the flexibility of the 

worms with which is associated a configurational entropy. In the nematic phase, all particles 

more or less align in parallel with the director, which leads to a loss in configurational entropy. 

This entropy replaces the orientational entropy for rods in eq. (3.1). [7] 
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L 

u' 
u" 

s u(s+ds) 

p 

Figure 3.1: a typical contiguration of a semi-flexible worm of length Land persistenee length P; 

s measures the distance along the contour of the chain and u( s) is the tangent to the chain at 

this point. 

We consider a salution of volume V containing N rods and length Land diameter D. When 

we now divide each rod in to L/l (sub)rods of length l, the number of rods increases but their 

length decreases by the same factor, keeping the combination N L constant. Therefore, this 

system has approximately the same second virial term as the system for hard rods as described 

by Onsager. The second virial term is build up from independent, local, rod-like two-particle 

interactions. Because on a length scale l (P >> l >> D) a semi-flexible worm is rod-like, two 

semi-flexible worms locally interact like rods. [7] This means that it is possible to describe half 

the excluded volume bp when P > > D between two worms as [24] 

(3.13) 

where half the excluded volume bp is rescaled to bm, a quantity related to the persistenee segments 

L/ P. This approximation treats each worm-like chain as if it were a collection of rigid L/ P 

persistenee length fragments. This means that eq.3.6 can be used as the expression for the free 

energy of worm-like particles, and can now be written as [24] 

!J.F 
-- ~ constant+ ln pp + CJp(j) + C{}p(j) 
NkBT 

(3.14) 

Rescaling the polymer chain variables Pp and bp to quantities related to persistenee segments 

Pp = (P/ L)Pm and bp = (L/ P) 2bm and since the orientational free energy is also extensive, 
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O" = (LI P)O"m, eq. (3.14) can then be written as [24] 

~F P L L 
NkT ~constant+ ln L Pm + PO"m(f) + Pcem(f) (3.15) 

As L >> P, we can ignore the logarithmic termand as for the isotropie phase O" = 0 and e = 1, 

we can write the free energy as 

(3.16) 

We proceed as for hard worms, using the thermodynamic relation p, = (o~FioN)v,r and the 

free energy of 3.1 the difference in chemical potential {3~p, can be expressedas the quench depth 

L 
{3~p, ~ 2~c­p (3.17) 

The concentration where the isotropie phase is at equilibrium is at ei = 5.41 and the concen­

tration where the nematic phase is at equilibrium is at Cnem = 6.20, see [24]. We now continue 

our sealing analysis by examining the sealing relations of other dimensionless parameters determ­

ining the free energy of the droplet, see table 3.2. Here we have used T = 0.442k3 T I P D [28], 

p = 4cl7rP2D [7], the osmotic pressure is as in eq. 2.15, K22 Dik3 T = (7I96)P2Dp [26] [29], 

K11 = 3K22 [27] and c is taken to be the nematic concentration as the relations apply to the 

nematic so Cnem = 6.197. [24] 

quantity ç C T p 

definition KuiTw T(pç)-1 f3eT ç-Jp 

hard worm result 0.7(cl7r)Pw-1 0.182c813w 0.216(cl7r) 2w-2 PI D 1.372(c17r)4w-3 PI D 

Table 3.2: The dimensionless parameters are given in the first row, the second row contains their 

sealing relations and in the third row these sealing relations are given in terms of the nematic 

concentration, the ancboring strenght w and the aspect ration of the particles PI D 

With sealing relations for both hard rods and semi-flexible worms we can now calculate 

nucleation barriers for solutions containing these particles. 
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3.4 N ucleation harriers 

The barrier height for a solution containing rigid rods is shown as a function of the quench 

depth in figures (302) and (303)0 As the barrier height is proportional to Ll D(!:::..c)-2 for droplets 

for both small and large w this factor is trivial and is therefore removed by multiplying the 

barrier height with DI L(!:::..c) 2 
0 By doing so we can focus on the changes of the behaviour of the 

barrier for increased quench deptho The most striking feature is the increasing importance of the 

Laplace pressure for increasing quench depth, this is consistent with the fact that for an increase 

in quench depth the droplets decreasein sizeo In figure (302), where w = 001 the transition from a 

bipolar spherical droplettoa homogeneaus spherical droplet without Laplace contribution occurs 

at !:::..c = 0037, the transition from a bipolar spherical to a homogeneaus spherical droplet with 

Laplace pressure at !:::..c = 00530 From this we can see that the Laplace pressure shifts the quench 

depth towards the spinoclal for which the transition occurso The transition with and without 

Laplace pressure occurs before the spinoclal at !:::..c = 0070 is reachedo In figure (303), where 

w = 10, we see a different picture, the first transition without Laplace pressure contribution is 

a bipolar elongated droplet transforming into a homogeneaus elongated droplet and occurs at 

!:::..c = 00050 The next transition is a bipolar spherical transforming into a homogeneaus elongated 

droplet and occurs at !:::..c = 1.070 When the Laplace pressure is included, the only transition 

occurs at !:::..c = 0008 and is from a bipolar spherical droplettoa homogeneaus elongated dropleto 

Again, we see a shift of the droplet transition toward the spinodal. The latter two transitions 

described are not likely to occuro 

The barrier height fora solution containing semi-fiexible worms, is shown as a function of the 

quench depth is in figures (3.4), (305)0 Similar to the barrier height of the rod-like particles the 

barrier height is proportional toPI D(!:::..c)-2 for droplets for both smalland large w, this factor 

is trivial and is therefore removed by multiplying the barrier height with DI P(!:::..c) 2 
0 In these 

cases, the quench depth is found to scale as PIL (see eqo 3017) and is therefore removed from 

the curves by multiplying the quench depth with Ll Po A significant difference from the rods is 

the fact that the Laplace pressure contribution has far less impact on wormso In figure (3.4), 
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where w = 0.1, the transition without Laplace pressure contribution from a bipolar droplettoa 

homogeneaus one is at .0.c = 0.66 and with Laplace pressure this is at .0.c = 0.46. We see that 

the Laplace pressure causes a shift away from the spinoclal at .0.c = 0.6. In figure (3.5), where 

w = 10, we see that the first transition from a bipolar elongated to a homogeneaus elongated 

droplet occurs at .0.c = 0.004, a second transition from a bipolar spherical to a homogeneaus 

elongated droplet occurs at .0.c = 0.01, a third transition from a bipolar spherical droplet to 

a bipolar elongated droplet occurs at .0.c = 0.02. In this figure it becomes evident that the 

infl.uence of the Laplace pressure contribution to the quench depth is minimal, as the distinction 

between the curves with and without Laplace pressure contribution can no langer be discerned 

at the transitions. 

We see in the figures (3.2), (3.3), (3.4) and (3.5) for both rods and warms and w = 0.1 and 

w = 10 that both the bipolar draplets are lower in energy than the the homogeneaus draplets 

for shallow quenches, this is explained by the fact that the energy costs for bipolar dropiets is 

lower, as it go es like T 3 / ( .0.c )2
, than for homogeneaus dropiets for which the banier height scales 

as (T + O(w))3 /(.0.c) 2
. 

he homogeneaus elongated 

be bipolar elongated 

hs homogeneaus spherical 

bs bipolar spherical 

Table 3.3: abbreviations used in figures (3.2), (3.3), (3.5), (3.4), (3.6) and (3.7). 

We must remark that the transitions between the droplet types are continuous in contrast 

to what is depicted here. The free energies used to calculate the barriers are asymptotic limits, 

meaning that they represent extreme droplet types. This is why the transitions from a homo­

geneaus droplet to a bipolar droplet as shown in figures (3.2), (3.3), (3.5) and (3.4) are not 

continuous. In order to depiet the actual continuous transition, interpolation functions for the 

crossover between the homogeneaus and the bipolar droplet types need to be calculated for both 
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Figure 3.2: Dimensionless nucleation barrier of a salution containing hard rods for small w, L 

denotes that the Laplace pressure is included. Points in this graph are used to show which 

droplet type belongs to which line. 
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Figure 3.3: Dimensionless nucleation barrier of a salution containing hard rods for w = 10, L 

denotes that the Laplace pressure is included. 
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Figure 3.4: Dimensionless nucleation barrier of a salution containing semi-flexible warms for 

w = 0.1, L denotes that the Laplace pressure is included. 

w « 1 and w » 1. 

3.5 CNT limit 

As the quench depth is increased, the critical critica! droplet size decreases, approaching the limit 

where droplet size equals partiele size. For all droplet types, except the bipolar spherical droplet 

( where V*/ L = 1 for .6.c = 0. 77), we see from figures (3.6) and (3. 7) this limit is reached befare 

the spinodal. At this point the internal structure of the droplet will have to be considered when 

calculating the free energy of the droplet. For future work we explore the possibility in chapter 

5 regarding density functional theory for the nematic droplets. 
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Figure 3. 7: Droplet containing semi-fiexible worms. When V*/ P 3 equals 1, the critical droplet 

has become of the same size of the particle. 

3.6 Conclusions and discussion 

We have seen for a solution containing hard rods that for deep quenches, which results in small 

droplets, the Laplace pressure becomes important. The transitions between the droplet types 

are shifted toward the spinodal. 

A solution containing worms exhibit a different behaviour. The Laplace pressure contribution 

is of much less importance, this is could be caused by the fact that the semi-fiexible worms have 

less resistance to the curvature of the droplet than the rigid rod-like particles. The transitions 

are shifted away from the spinodal. 

The transitions between the droplet types at w = 10 are expected to start with bipolar 

spherical, then bipolar elongated and then finally, homogeneous elongated [6]. This is not in 

agreement with figures (3.3) and (3.5). This is is most likely a computational error. 

The limit of Classical Nucleation Theory (CNT) is reached before the spinodal, so the neces-
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sity arises to find an expression for the free energy of the droplet by describing the Helmholtz free 

energy as a functional of the nonuniform generalized density distribution. Another important 

matter is the CNT breakdown at quench depths near the spinodal, although Laplace pressure 

is found to be significant at high quench depth, it is no langer relevant after CNT is no langer 

valid. 

Now that we have calculated the nucleation barriers for hard rod-like particles, it is possible 

to calculate the nucleation ra te discussed in the following chapter. 
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Chapter 4 

N ucleation Kinetics 

4.1 Introduetion 

In this chapter we present results of the calculation of the nucleation rates of the hard rod nematic 

of the five sealing regimes we have described earlier. We investigated the nucleation rate of hard 

rods only, because the theory for semi-flexible warms is not as well developed. [5] Experiments 

have shown a pronounced maximum of the nucleation rate, [2] which has not been explained 

theoretically to date. 

As mentioned in Chapter 1, the nucleation rateis given by as the thermadynamie probability 

of having a fluctuation leading to a critical nucleus times a dynamica! factor A descrihing the 

rate at which the nucleus grows [12] 

(4.1) 

where (3!:l.G* is the height of the nucleation barrier, which is the minimum amount of reversible 

work expended for the formation of a nucleus. Which we calculated in the previous chapter. Near 

the spinoclal the nucleation barrier becomes small (in fact, the barrier should disapear altogether 

at the spinodal), and therefore, the dynamica! prefactor begins to dominate. 

We first examine the general theoretica! ingredients of the kinetic prefactor as previously 
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described for the crystallisation of liquids [12] [30] [11] [14]. We then apply a recent kinetic 

theory [5] descrihing the kinetics of hard rods at the initial phase of spinoclal decomposition, to 

calculate the prefactor of the nucleation rate. This theory assumes the process that drives the 

mass transport to be collective diffusion, as opposed to self diffusion. It enables us to explain 

the maximum found in the experiments as the critical slowing down of the nucleation dynamics 

of the nematic phase near the spinoclaL 

4.2 The kinetic prefactor 

Let us first consider the kinetic theory that describes the rate and mechanism by which nematic 

draplets grow or shrink by gaining or losing particles. The equilibrium number of nuclei can be 

described as [31] 

(4.2) 

where Ni the number of particles in the isotropie phase. As mentioned in the previous chapter, 

the free energy goes through a maximum, the nucleus size corresponding to this maximum is 

called the critical nucleus size n*. Nuclei smaller than the critical nucleus size tend to shrink 

by losing particles, whilst nuclei larger than the critical nucleus size tend to grow by gaining 

particles. 

In order to describe nucleation dynamics with rate equations a number of assumptions need 

to be made: 1) The whole process is in local thermal equilibrium; 2) There is no correlation 

between successive events that change the partiele number in a nucleus, i.e., the nucleus has no 

memory; 3) It is indeed possible to assign a partiele number to the nucleus; 4) Nuclei grow or 

shrink by gaining or losing single particles. [30] This last assumption can be described as [11] 

(4.3) 

(4.4) 
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Figure 4.1: forward and backward rates, the flux goes though the dotted line 

where En represents a nucleus of n particles and E 1 a single particle, k;t" is the rate of partiele 

addition ( the forward ra te constant), which depends on the concentration of single particles in 

the surrounding medium, and k;; is the rate of partiele loss ( the backward ra te constant) to a 

nucleus of size n. This equation expresses the actual kinetic mechanism of nucleus formation. 

This leads to the time-dependent nucleus density Nn,t, consisting of coupled rate equations for 

the nucleus densities Nn,t of nuclei of size n at time t [12] 

(4.5) 

The nucleation rate at a nucleus size n is the time-dependent flux of nuclei past that size, in 

other words, the net ra te at which nuclei of size n become nuclei of size n + 1, see figure 4.1. 

(4.6) 

In a steady state, the nucleus density of nucleus with n particles, N~,does not depend on time . 

[12] 

(4.7) 

The nucleation ra te is zero when the initial phase is in thermal equilibrium so eq. ( 4. 7) with 

nucleus density of nucleus with n particles in equilibrium N~, then gives 

N ek+- Ne k-
n n - n+l n+l (4.8) 
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Using this expression to determine k;;+1 , the steady-state nucleation rate can be written as [12] 

(4.9) 

It can be assumed that as n ---t 0, N~ ---t N~ and that as n ---t oo, N~ ---t 0. These boundary 

conditions are more conveniently written as 

n :::; u, N
8 

=Ne } n n 

' 
N~ = 0 

( 4.10) 
n :2: v, 

where u < n* < v. Fortunately, the final result is not strongly dependent on the values chosen 

for u and v, provided they are outside the critical region. Summing eq. 4.9 for all values of n 

between u and v and using the stated boundary conditions leads to [31] 

(4.11) 

So, the expression for the steady state nucleation rate in terms of forward rate constants becomes 

[ 

V 1 ] -1 

Is= L Nek+ 
u n n 

( 4.12) 

Is is obtained by evaluating the sum for n near n*, making several assumptions. 1) The terms 

for the sum for values n near n* dominate sirree 6.0n has a maximum at n*; 2) k1; ---t k~.; 3) Ni 

is taken to be equal to the total number of particles in the system; 4) Replace 6.0n by the first 

two nonzero termsin a Taylor expansion about n*, so that exp[-,66.0] can be written as [30] 

exp[-,66.0] = exp[-,66.0(n*)] exp[~,6I6.G"(n*)l(n- n*)], ( 4.13) 

where 6.0"(n*) = f)26.0jfJn2 ; 5) If the critical nucleus n* is large enough, then many terms near 

n* contribute to the sum and it can be replaced by an integral from n- n* = -oo ton- n* = oo, 

taking N~ to be a continuous function of n. 

The expression for the nucleation rate Is becomes 

(4.14) 

42 



Which after evaluation of the integral, gives 

,BI~~:(n*) I exp[ -,B~G(n*)], (4.15) 

with J ,BI~G"( n*) l/27r the so-called Zeldovich factor. This factor signifies the fact that not all 

particles at the top of the nucleation barrier end up in the nematic phase, but can also recross 

and end up in the isotropie phase [13]. 

The next problem in formulating the nucleation kinetics is to derive expressions for the rate 

constants k1;. In a condensed system it is possible to define an average, unbiased partiele jump 

frequency "( at the nucleus surface. lf a partiele jumps from one phase to the other there will 

be a free energy change. Suppose that the free energy of a nucleus En+l exceeds that of En by 

~9n· According to reaction rate theory, [32] the probability of the activated state to occur and 

the jump frequency at the droplet interface ( taking the partiele from one local configuration to 

a new one) 

(4.16) 

where "(1; is the average jump rate of particles in the forward and backward reactions of eq. 4.4. 

The rate constant k1; is proportional to On, the number of sites where the transformation from 

one phase to the other is possible. lt is assumed that On is the number of particles that could 

be placed with their centers on a sphere that just encloses all the particles in the nucleus. It is 

possible to use a sphere-approximation when the relevant length scale is taken as the length of 

the tactoid. In that case it does not matter whether the nucleus is spherical or elongated. The 

number of sites is the surface area of the sphere bounding the nucleus divided by an area per 

partiele (taken to be 1rr2
, where ris the radius of a sphere of the partiele volume). Wethen 

obtain [12] 

( 4.17) 

We write the forward rate constant k1; as k1; = On'Y1;, resulting in 

(4.18) 
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with 1 being the jump frequency for ditfusion 

6D 
/ = 7:2' (4.19) 

with € the partiele jump distance and D the relevant diffusivity. For k::; ---+ k::;., 6.gn can be 

ignored so the final expression for the forward rate constant becomes 

6D 
k+ ,...., 4n2/3_ 

n. ,...., €_2 . ( 4.20) 

The question is what the distance € represents in an isotropie fluid containing nematic droplets. 

We assume this to be the linear scale of the tactoid itself. Because many particles are at a 

large distance from the nucleus, the only length scale the system available is the tactoid length. 

Inserting eq. (4.19) into eq. (4.18) and neglecting the exponential function (as the exponential 

term in eq. (4.15) is much larger) and inserting the result into eq. (4.15) leads to the nucleation 

rate per partiele 

24Dn213 Ni lf36.G"I 
Is= €2 2

7r * exp[-f36.G*] (4.21) 

What is left is to determine the expression for the ditfusion coefficient D. We do this by 

analysing the prevalent ditfusion mechanism in the next section. 

4.3 The diffusion coefficient 

Ackerson and Schätzel [4] argue that crystal formation and growth are not governed by the 

partiele self-diffusivity but the partiele gradient diffusivity also known as collective diffusion. In 

their study of the crystallisation of hard sphere colloidal particles, they suggest that because of 

the crystal in the coexistence region is more dense than the metastable fluid or final fluid density, 

the crystal growth will produce a depletion region in the immediate vicinity of the crystal-liquid 

interface. As a result of this reduced partiele density, particles will diffuse into this region from 

the metastable fluid. If the addition to the crystal results in a nonuniform crystal density, then 

the crystal will also relax to uniform density via diffusion. This ditfusion should be governed by 

collective ditfusion [4]. 
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Winters, Odijk and Van der Schoot [5] described the collective diffusion mechanisms in a 

suspension of hard rods at the initial stage of spinoclal decomposition with the and concluded that 

there are three modes, the self diffusivity mode, the pure orientation fluctuation mode and the 

pure density fluctuation mode. The density and orientation fluctuation modes can intermingle 

giving rise to hybrid modes with relaxation rates À+ or À_. The former is always stable so the 

driving force for phase transition needs to be found with the latter mode, which can become 

unstable at sufficiently high densities. The À_ mode is a coherent orientation translation mode. 

Particles with the same orientation remain unchanged, coherent, during transport. This results 

in a phase separation of groups containing particles with the same orientation that move by way 

of translational diffusion. The expression for this À_ mode is [5]: 

2 c 11 2 L2 
À_ = Dq ( 1 - 4 + 252 cq 4 + · · ·)' (4.22) 

where c is the partiele concentration, L defined earlier is the length of the partiele and q is the 

wavenumber. We set q = (27r)/f with e the lengthof the tactoid (see above). Because (L/f) 2 is 

negligible as L « e only the first two terms of the right hand side of eq. ( 4.22) are considered 

relevant. The expression for the unstable mode À_ can be approximated as 

27f 2 c 
À_= D():) (1- 4 + ... ) (4.23) 

This mode becomes unstable for c > 4, which is the concentration at which spinoclal decomposi­

tion occurs. We use the diffusion coefficient of this expression to replace the diffusion coefficient 

D in eq. (4.21), and exchanging Ni with the density p = N/V = c[(7r/4)L2DJ-1 by multiplying 

4.21 with volume (7r/4)PD, we can write the final dimensionless expression for the nucleation 

rateIs as: 

Ï = :::_ L4 DI = 24( L )2/3(~)2/3c5/3 (1- ~) 
s 4 DL s D 7f nem 4 

s 

(4.24) 

where D~ is the long-time self diffusion coefficient, Cnem = 4.2 is the concentration at which a 

stable nematic phase is formed, and L is the length and D is the diameter of the rods. The 

concentration c = 3.3 + L\c, where 6-c represents the quench depth. 
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4.4 Results 

We praeeed by calculating the nucleation rates for the nematic draplets in five different sealing 

regimes. We find that the nucleation rates depend on the height of the nucleation barriers, 

the aspect ratio of the particles LID, and the quench depth. The nucleation rates are given 

in table 4.1 and depicted in figure 4.4. The transitions between droplet types are not visible. 

All nucleation rates show a strang maximum, although this is not visible fram 4.4, because the 

differences between the different droplet nucleation rates are very large as the differences between 

draplets are emphasized by the exponential function in the nucleation rate. In order to show the 

strong LID dependenee of the nucleation rates we show the nucleation rates for homogeneaus 

elongated draplets. The choice for this droplet type is arbitrary. From figures 4.3 and 4.2 we can 

see that for increasing LID the nucleation rates strongly decrease. This is caused by the fact 

that the nucleation barrier, sealing as LID, is the argument of the exponential function in eq. 

4.24. Another important point we can see is the pronounced maximum observed in experiments 

and that at the spinodal, the nucleation rate rapidly decreases to zero. This slowing down is a 

phenomenon known as 'critical slowing down', which entails the slowing down of the dynamics 

of the fluctuations represented by the hybrid mode À_ in eq. 4.23. 

droplet types dimensionless nucleation rate Ïs 

homogeneaus elongated 191(LI D) 116 (6.c)2(1- cl4)(1 + 0.396.c) exp( -(36.G~e) 

bipolar elongated 1090(LI D) 116 (6.c)114(1- cl4)(1 + 0.656.c) exp( -(36.G~e) 

homogeneaus spherical 318(LI D) 116 (6.c) 2(1- cl4)(1 + 0.136.c) exp( -(36.G~8 ) 

bipolar spherical (w = 0.1) 139(LI D) 116(1- cl4)( 46.2(~c)4 + 1590(6.c)5 ) exp( -(J6.G~8 ) 

bipolar spherical (w = 10) 50.4(LI D) 116 (1 -cl 4)( 46.2(~c) 4 + 796(~c) 5 - 66. 7(~c) 7 ) exp( -(3~G~8 ) 

Table 4.1: dimensionless nucleation rates for droplet types in five different regimes, where c = 

3.3 + 6.c 
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Figure 4.3: Homogeneaus elongated droplet with L/ D = 15, w = 10. 
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Figure 4.4: Bipolar elongated, homogeneaus elongated, homogeneaus spherical, bipolar spherical, 

for bipolar spherical with w = 10, the dimensionless nucleation rate was found to be below 10-200 

and for the sake of clarity omitted from the graph. Lj D = 10. 

4.5 Conclusions 

The nucleation rates of all droplet types show a pronounced maximum, as was observed in 

experiments clone with rod-like boehmite particles [2]. The differences between the different 

droplet types are emphasized by the exponential function of the nucleation rate. One would 

expect to see the transitions between the different droplet types, as we found for the barriers. 

From figure 4.4 it can be said that one droplet type (bipolar spherical for w = 0.1) has a much 

higher nucleation rate than the others and would therefore always win out. This is inconsistent 

with what we have seen earlier. Unlike suggested by [2], the decline of the nucleation rate is a 

result of the slowing down of the orientation fl.uctuations causing the nucleation rate goes to zero 

at the spinoclaL 
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Chapter 5 

Density functional theory 

5.1 Intrad uction 

In this chapter we discuss an alternative route for calculating the free energy barrier to the form­

ation of a nematic droplet using density functional theory for the case where classical nucleation 

theory fails (actual calculations are left for future work). This happens for deep quenches close 

to the spinodal, when the droplet size approaches the partiele size. It is then no longer possible 

to ignore the internal droplet structure. Also, and perhaps more importantly, the capillarity 

approximation breaks down near the spinodal. 

Density functional theory prediets the nucleation barrier to vanish at the spinodal, while 

classica! nucleation theory contains a fundamental inconsistency by predicting a finite barrier 

despite the fact that the very nature of the spinoclal demands the disappearance of this barrier. 

Another aspect of classica! nucleation theory that is questionable for small dropiets is the dividing 

surface that separates the nematic nucleus from the isotropie phase, the physically objective 

criterion of the actual positioning of this interface remains unclear. [11] Indeed, on approach of 

the spinoclal one expects the interfacial thickness to diverge as the correlation length associated 

with the orientational fluctuations go to infinity, causing the internal droplet structure to become 

ramified. [33] [34] 
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Even away from the spinodal, there is a continuous change of the partiele number density p 

and orientational parameter through a finite region between the nematic and isotropie phase. In 

the density functional approach, the free energy is not taken as a function of droplet size but 

as a functional of the density profile across the interface separating the isotropie phase from the 

nematic, see figure 5.1. [11] Functional differentiation of the free energy then yields the density 

profile, and hence the free energy barrier to nucleation. Our aim is to calculate the free energy 

of a nematic droplet. 

Let p (r, u) be the density ofthe rods with position vector r ofthe center ofmass and u the unit 

vector along the main axis of the rod-like particle. The existence of the spatial inhomogeneity of 

the molecular density p causes the Helmholtz free energy f to be locally different and a function 

of (r, u), pandits derivatives, which we shall denote as f(r, u). The Helmholtz free energy F of 

a system with volume V with can be written as [34] [11] 

F[p] = l J(r, u)p(r, u)drdu (5.1) 

since p(r, u)drdu is the number of particles in the volume dr around point r , pointing in the 

direction of u (the integration is over the entire volume V of the system). In this way the 
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Helmholtz free energy F becomes a functional of the partiele density p(r, u). 

As mentioned earlier, the DFT expression for the Helmholtz free energy contains both an 

ideal part and an excess part. The excess part is a result of the interaction between a partiele 

with position r and orientation u and a partiele with position r' and orientation u'. Accounting 

for these partiele interactions causes great mathematica! difficulties and therefore various ap-

proximations have been developed. We explore the gradient approximation by similar to that of 

Cahn and Hilliard [14] [34], which accounts for the dependenee of f on pandits first derivatives. 

We apply this theory fora salution of hard rods and account for the non-local interaction between 

hard rods of finite length. Doi and Kuzuu [15] have calculated the free energy of coexisting, 

semi-infinite isotropie and nematic bulk phases, separated by a planar interface. Our aim is to 

calculate the free energy of a finite-sized nematic droplet surrounded by the isotropie bulk phase. 

Two approaches are considered here, a numerical and an analytica! variational approach. 

5.2 The gradient approximation 

The gradient approximation is the pioneering one in the density functional theory of nueleation. 

It was introduced by Cahn and Hilliard for determining the interfacial energy of a system with 

non-uniform density [14] and then for analysing nueleation in a two-component incompressible 

fluids [34]. The assumption is that f is only a function of pandits first derivatives and can be 

approximated as 

1 1 1 
f(r, u)= 

4
1T'J(r) = 

4
7rfu[p(r)] + 

4
7rK[\7p(rW, (5.2) 

Eq. 5.2 is only valid for spherical partiel es, here !u is the Helmholtz free energy (per partiele) 

which the system would have had if it were not only locally (at point r), but everywhere with 

the same density p, K ~ 0 is a p-dependent coefficient, and (\7 p )2 is the square gradient of p. 

Equation 5.2 is a truncated expansion of f in gradients of p, and the gradient term describes the 

departure of the actual energy f at point r from the energy !u of a uniformly dense system with 

density p. Physically, this term accounts for the interaction of the molecules at point r with the 
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other molecules in the system and thus makes f(r) a non-loca.l function of r. The contribution 

of the gradient term vanishes when ('V p) 2 --+ 0 and since K is positive, this term favours the 

levelling-off of the density inhomogeneity in the system. [11] 

Our aim is to apply Cahn and Hilliard's theory of the square gradient approximation to a 

salution of rigid rod-like particles in the coexisting isotropie and nematic phase as described by 

Onsager. Doi and Kuzuu [15] calculated the interfacial tension between an isotropie phase and 

a nematic phase separated by a planar interface of a lyotropic liquid crystal consisting of rigid 

rod-like particles. A possible way to calculate the free energy of the nematic droplet is to adapt 

their methad for a droplet. The total free energy of the system is written as [15] 

f3F = J p(r, u) lnp(r, u)d2ud3r- ~ J p(r, u)p(r', u')JM(r- r'; uu')d2u'd3r'd2ud3r, (5.3) 

where fM(r-r'; u, u') is the Mayer function which equals minus one iftwo rods with configuration 

(r, u) and (r', u') interseet with each other and zero otherwise. Equation 5.3 includes only the 

interaction between two partiel es, which is accurate for slender rods with L / D > > 1. Assuming 

that the spatial variation of pis weak, p(r, u) can be expanded as 

p(r', u') = p(r, u') + (r- r') · \l p(r, u') + [(r- r') · \1] 2 p(r, u') (5.4) 

Substituting eq. 5.4 into eq. 5.3 and doing the integral over r - r', results in 

f3F = J p(r, u) ln p(r, u)d2ud3r + DL2 J p(r, u)p(r, u') i u x u'ld2u'd2ud3r-
(5.5) 

214DL4 f[\l p(r, u)]['V p(r, u')] : (uu + u'u')lu x u'ld2u'd2ud3r, 

where the second term represents the local excluded volume interaction [16] and the third term 

represents the spatial inhomogeneity. 

A methad of finding the equilibrium density profile p(r, u) is by functionally minimising eq. 

5.3 with respect to the density, which yields the dimensionless chemical potential 

6f3F 
8P =IJ, (5.6) 

withIJ the dimensionless chemical potential that conserves mass in the minimisation (it acts like 

a Lagrangian multiplier). Performing the minimisation gives 

p(r,u)+2L2 D J p(r,u')luxu'ld2u'+
2
1
4

L4 D J \1\lp(r,u): iuxu'i(uu+u'u')d2U=IJ (5.7) 
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Equation 5.7 can be solved iteratively. The iteration methad used by Oxtoby and Evans [35] 

for the nucleation of the gas to a liquid phase transition can be applied here. A density profile 

is guessed and substituted into the left-hand side. The chemical potential is then solved for the 

density at each point, which yields a new density profile. Because the critica! nucleus is unstable, 

it is a saddlepoint [33] [14], not a minimum, of the grand potential causing the iteration to be 

unstable. If the initial guess is chosen appropriately, the densities will begin to converge upon 

iteration, but then will eventually diverge away from the stabie fixed point. Oxtoby and Evans 

[35] modified the iteration process to allow for this instability and still permit the determination 

of the properties of the critica} nucleus. 

An initial guess is made for the radial droplet profile to have a range parameter, the initial 

droplet radius R. For a step profile, for example, R is the radius separating the nematic from 

the isotropie phase. This radius is found by applying classica! nucleation theory to calculate the 

radius of a critica} droplet. Starting from this initial guess, eq. 5. 7 is iterated. The droplet radius 

needs to be well chosen, for if R is too small the nucleus will shrink, while if Ri is too large the 

nucleus will grow indefinitely. There is some intermediate value R; which upon iteration will 

give rise to the critica! nucleus, neither growing or shrinking. After a number of calculations, an 

approximate value for R; is found. 

The above methad is numerically very demanding because of the extra degrees of freedom, 

especially for droplets. A relatively quick methad is a variational theory, in which the density 

profile is guessed. This has proven to be quite accurate in practice. The methad is analogue to 

the numerical method, except that the guess is an approximating one. 

The variational theory uses a trial function to find (3F for p(r, u) = v(r)'l,l;(r, u) where v is 

the density profile and 'Ij; is the orientational profile. We insert this profile into eq. 5.5 and 

minimise with respect to the variational parameters. Doi and Kuzuu [15] studied the free 

energy of coexisting isotropie and nematic phases separated by a planar interface with thickness 

5, by extending Onsager's trial function with a density profile as a function of the distance to 

the interface. Our aim is to use the same trial function, but instead of a planar interface, we 

53 



calculate the density profile of the interface separating the nematic droplet from the isotropic. 

Because of the complexity, we assume the droplet to be spherical with a homogeneaus director 

field. The trial function for the density profile is chosen to be [15] 

p(r, u) = g(r I 6)'lj;[o:(r I 6)u · n], (5.8) 

where 6 is the interfacial thickness for which we assume to be independent of the angle, o; is a 

variational parameter which is chosen to minimise f]F, and f(u) is the orientational distribution 

function and chosen by Onsager to be [16] 

a 
'Ij;( u) = 

4 
. h( ) cosh(o:u · n), 

1f Slll 0: 
(5.9) 

where n is the director. The orientational profile can be written to make Onsager's variational 

parameter a a function of the radius scaled to the interfacial thickness with the interface posi-

tioned at r = R* [15] 

(5.10) 

and the density profile g(r"/6) [15] 

g((r- R*)l6) = PN- PI tanh((r- R*)l6) + PN +PI 
2 2 

(5.11) 

By substituting eq. 5.10 and eq. 5.11 into eq. 5.8 we can calculate the free energy and minimise 

it with respect to the parameters 6, PN and the droplet radius R*. Eqs. 5.10 and 5.11 are inspired 

by profiles that accurately describe flat interfaces, so they are suitable for large dropiets as for 

R* ~ oo the correct flat profile is obtained. Onsager already calculated the first two integrals of 

eq. 5.5 for the orientational part. The first term ( the i deal term) is described as [16] 

O'('lj;) = j 'Ij;( u) ln 'lj;(u)du, (5.12) 

where 'Ij; is the trial function of eq. 5.9. The result in terms of variational parameter o; is given 

as O'(o:) is [16] 

O'(o:) = ln(acotho:)- 1 + (sinh(a)t1 tan-1(sinho:) (5.13) 
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The second term (the excluded volume term) is described as [16] 

p('!j;) = DL2 J '!j;(u)'!j;(u')[u x u'[dudu' (5.14) 

The result of integrating eq. 5.14 over all possible orientations for a monodisperse salution is 

[16] 

(5.15) 

where !2 is a Bessel function of the second order. By calculating the derivatives of eq. 5.15 fora 

biclisperse solution, which for each different rodlength contains a different a, with respect to o:1 

and o:2 (for a monodisperse solution, o:1 = o:2 ) it is possible to calculate the orientational part of 

the third term of 5.5. 

5.3 Discussion 

Near the spinoclal classica! nucleation theory can be replaced with density functional theory 

where the minimisation of the free energy leads to a non-linear integral equation which can 

in principle be solved numerically. However, since this poses great difficulty for droplets, a 

variational approach where the Onsager theory for slender rigid rods is expanded seems most 

promising. In order to simplify the calculations, we have assumed a spherical homogeneaus 

droplet. An expansion for elongated dropiets could be made by adding a Legendre polynomial 

to the profile. In the variational method, the orientational profile of eq. 5.10 is considered to 

have equal profile as the density profile eq. 5.11. Intuitively this seems incorrect as only the 

orientational parameter is critica! at the spinoclaL [5] This may cause a what can be called a 

para-nernatic halo around the nematic droplet, where a region of lower density is part of the 

critica! nucleus. This makes the nematic droplet to be of a completely different structure than 

described by classica! theory. 
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Chapter 6 

Conclusions and recommendations 

The Laplace pressure contribution to the nucleation harrier is important for deep concentration 

quenches in a salution cantairring rod-like particles as long as classical nucleation theory is valid. 

The Laplace pressure contribution causes the transition between droplet types to shift toward 

the spinoclaL Semi-flexible worms exhibit different behaviour with regard to the Laplace pressure 

contribution. For theses the Laplace pressure has less impact on the nucleation harrier and the 

transitions between droplet types are shifted away from the spinoclaL 

The barrier to nucleation is inversely proportional to the square of the quench depth, causing 

a deep quench to yield small droplets. For rods the harrier scales as L/ D and for worms it scales 

as P / D. The height of the nucleation barrier, and herree the nucleation rate, depends on the 

surface tension anisotropy, the depth of the concentration quench, and on the elastic properties 

of the droplets. 

The nucleation rate for a salution containing rigid rods has a pronounced maximum and 

exhibits a slowing down near the suspected spinoclaL We suggest that near the spinoclal the 

kinetic prefactor begins to dominate through a hybrid relaxation rate that becomes unstable 

near the spinodal, causing the critical slowing down of the nucleation dynamics. 

The use of interpolation functions between the homogeneaus and bipolar draplets should 

replace the use of the different droplet types found in the asymptotic limit for five regimes. 
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A variational approach in which the Onsager theory for slender rods is extended for the 

calculation of the density profile and free energy functional of a critical nucleus seems a promising 

method for future work. 
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Appendix A 

Droplet free energy 

A.l Laplace pressure contribution 

Laplace pressure: Pn = p + ~~ = p + F' 

Next: calculate 6.G = Gex + p6.pY for 4 droplet types in both regimes. 

U sed parameters: 

F = F f = TC 2(3 .C = !.t-1 ïï = p-(36,,, p- = pC3 and v = v. 
Tv2/3> <,.' p'> >r r> <,. ~3 

A.2 Droplet free energies 

• Homogeneaus elongated droplets, w » 1 

F = 6 (i~)1/3 w1/6(1 + 2\ w-1 + ... ) 
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F = 6 (i~) 113 
w1Tt;,2v

213 

{3b.G = 6 (i~) 113 
w1 7-v213 + 8 (i~) 213 

wiT .Cv113 + fw 

• Bipolar elongated droplets, w » 1 

p = 25 (87r)2/5 w1/5v-1/15 
4 15 

F = 245 ( ~~) 2/5 w1/5Tt;,2v3/5 

{3b.G = 15 (87r)2/5 w täuv3/5225 (87r)4/5 w27-.Cv1/5 + iiv 4 15 2 32 15 2 r' 

• Bipolar spherical droplets, w » 1 and w « 1 

F = 3 (~)1/3 + 3 (4;)2/3 (1 + 12~t'/'33)wv-1/3 + 0 0 0 

F = 3 (~'Ir) 1/3 Tt;,2v2/3 + 3 ( 437r) 2/3 (1 + 12~67r2 Î'33)wTÇ2vl/3 

{3b.G = 3 (4;)1/3 7-v2/3 + 3 (~7r)2/3 Î'4w7-v1/3 + 2 (4;)2/3 7-.Cv1/3 + 

~ (4;)
413 

')'Jw27-.Cv-113 + 2 (~'Ir) W')'nTL + jjv 

= 2 (437r)1/3 v-1/3 + (4;)2/3 b 4w + ~.C)v-2/3 +~_i (4;)4/3 'YJw2.cv-4/3 = 0 

-w»1 

v » w3 so v-4/ 3 will go to zero fastesto Ignore this term at first and investigate its 

influence using perturbation theoryo 

-w«1 

2 (4;)1/3 v-1/3 + (4;) Î'nwv-2/3 + ~ (4;) .cv-2/3 _i (4;)4/3 ')'~w2.Cv-2/3 + ~ = 0 

Choose w = 001, 'Yn = ( 1 + 12;:;t2 
'/'33) 

.C rv w, so for w « 1, .C is small. 

1. Neglect 'YnWL 

20 Neglect ( 'YnW )2 

30 Neglect .C2 

• Homogeneaus spherical droplets, w « 1 

F- 3(47r)1/3(1 1 7r2 2 ) = 3 + 3w- 36 (1r2_8)w + 0 0 0 
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F = 3 ( ~7r) 113 
w3Tt,2v

213 

f3!1G = 3 (4;)1/3 w3iv2/3 + 2 (4;)2/3 w~i,Cv1/3 + jw 
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