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Abstract 

A two-dimensional incompressible flow can be described as a Hamiltonian system, with 
the stream function playing the role of the Hamiltonian function. It is known that two­
dimensional flows with a time-periodic stream function can produce chaotic partiele paths. 
In the flow field associated with a vortex in a linear shear with a time-dependent pertur­
bation the chaotic partiele paths enable complicated mixing and transport of fluid. This 
flow is investigated in several ways. 

The fluid exchange mechanism has been described by use of lobe dynamics. The lobes 
are defined by the stabie and unstable manifolds in a Poincaré section. A contour kinemat­
ics simulation provided these manifolds. The amount of fluid exchange was also calculated 
with the analytica! Melnikov theory, with remarkable agreement. 

The chaotic behaviour of the flow was indicated by monitoring the deformation and 
length stretch of passive contours in a contour kinematics simulation. Exponential stretch 
is an indication of chaotic mixing. 

Another type of numerical simulations involved a large number of passive tracers that 
were advected with the flow. F:rom these simulations the region where mixing takes place 
can be defined, along with information on the residence time of tracers in this mixing 
region. 

In laboratory experiments on a turntable the unstable manifolds were visualised with 
dye. An associated contour kinematics simulation showed a striking resemblance. Parti­
ele tracking experiments were performed to confirm the validity of the linearity and the 
harmonie time dependenee of the shear. Fr om a partiele tracking experiment on a vor­
tex in perturbed shear the vorticity distribution was calculated, showing the adveetion of 
vorticity via the lobes. 
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Chapter 1 

Introduetion 

Geophysical flows are to a good approximation two-dimensional. These flows tend to 
behave as though they were two-dimensional due to one ( or more) of the following three 
ingredients. 

Geometrical confinement of the flow can cause two-dimensional behaviour. A striking 
example is the flow in thin soap films, as stuclied by Couder & Basdevant (1986). A 
similar confinement is present in atmospheric flows, where the typical horizontal dimensions 
(order 1000 km) are much larger than the vertical dimensions (order 1 km). Shallow fluid 
layers also exhibit two-dimensional behaviour. 

If the fluid has a density stratification the motion is also confined to two dimensions. 
Fluid elements of a certain density are confined to a layer of fluid of the same density by 
gravity. The most important example is the flow in oceans, in which salinity gradients 
exist. Many experiments on vertices in salinity stratified fluids have been performed, see 
e.g. Flór & van Heijst (1996). 

A third method of obtaining a two-dimensional flow is by applying a background rota­
tien. Under certain conditions the rotatien causes the flow to behave as a two-dimensional 
flow, by virtue of the Taylor-Proudman theorem. This method is used in the laboratory 
experimentsin this work. Many earlierstudies used this method, see e.g. Hopfinger & van 
Heijst (1993). 

Two-dimensional flows are characterised by the spontaneous emergence of coherent 
vertices, a process generally called 'self-organisation'. Energy initially distributed over 
both larger and smaller length scales is eventually concentrated in larger vortex structures. 
This is opposite to what happens in three-dimensional flows, where energy cascades down 
to smaller and smaller length scales until it is dissipated by viscous diffusion at the smallest 
scales. 

The ordering of two-dimensional turbulence is nicely demonstrated in some numerical 
simulations. An example can be found in Legras et al. (1988). This work shows the 
emergence of several coherent vortex structures: monopoles, dipoles and tripoles. These 
structures are characterised by compact, coherent patches of vorticity, with one, two and 
three separate parts with closed streamlines, respectively. They remain close together sirree 
adjacent parts have vorticity of opposite sign. These vortex structures are also found in 
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2 GRAPTER 1. INTRODUCTION 

laboratory experiments. 
A manopalar vortex is composed of a single set of elosed streamlines. Fluid moves 

along these streamlines around a central point. The flow due to the preserree of vortices 
is thus observed as a position-dependent velocity field. As a first-order approximation the 
flow associated with the neighbouring vortices can be represented by a strain flow. The 
behaviour of a vortex in a strain flow has been stuclied extensively, both numerically and 
experimentally, by Trieling et al. (1997) and Trieling & van Heijst (1998). The combined 
effect of strain and rotation is a linear shear flow. Moore & Saffman (1971) analytically 
considered steady elliptic vortices in a linear shear, later extended by Kida (1981) to inelude 
unsteady solutions. 

The steady flow changes drastically if a time-dependent perturbation is introduced. 
Such a perturbed two-dimensional flow can produce chaotic partiele paths, thereby allowing 
for complicated mixing processes. Although the motion is still fully deterministic, finding 
a description of the flow by monitoring the individual partiele paths is impossible due to 
the complex geometry of these paths. It is more insightful to abserve the global topology 
of the flow rather than the motion of individual partieles. This analysis is clone using lobe 
dynamics, an application of dynamical systems theory. 

Several studies have been performed on perturbed two-dimensional flows. An extensive 
study on a point vortex dipale in an asciilating strain was performed by Rom-Kedar et 
al. (1990) (also described in Leonard et al. (1987), Rom-Kedar & Wiggins (1991) and Wig­
gins (1992)). The fluid exchange in topography-modulated vortices can also bedescribed 
using dynamical systems theory. Such an analysis of the motion of a vortex dipale on a /3-
plane was made by Velasco Fuentes et al. (1995). Another study considered the dynamics 
of a tripale on a ')'-plane (Velasco Fuentes et al. 1996). 

An individual vortex in a two-dimensional turbulent flow experiences an unsteady back­
ground flow due to constant changes in the surrounding vorticity distribution. In order 
to examine the influence of such an unsteady flow on an individual vortex a simple model 
is presented: a point vortex is placed in a harmonically perturbed linear shear flow. Ob­
servation of the behaviour of this model system may lead to a better understanding of 
two-dimensional turbulence. 

In the present study the mixing properties of the suggested model system are investi­
gated, both analytically and numerically. Lobe dynamics is used to describe tracer trans­
port. The analytica! Melnikov theory is also used to predict the magnitude of fluid exchange 
between the interior of the vortex and the ambient flow. Numerical simulations are used to 
seek confirmation of the lobe dynamics analysis and to demonstrate the chaotic behaviour 
of the flow. Finally, with results from laboratory experiments additional proof of the va­
lidity of the lobe dynamics is presented. These results also validate the use of the point 
vortex as model vortex. 

This report is organised as follows. In chapter 2 the relevant definitions of dynamical 
systems are presented, along with application to the Hamiltonian system of a point vortex 
in a perturbed linear shear. Lobe dynamics and Melnikov theory are also discussed. The 
methods used in the numerical simulations and the obtained results are presented in chap­
ter 3. The results from contour kinematics simulations are used to apply lobe dynamics. 
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Fluid exchange is quantified using direct numerical integration and with the Melnikov func­
tion. The adveetion of large numbers of passive tracers is simulated in order to determine 
an escape time distribution. Chapter 4 contains a visualisation of the lobe structure from 
laboratory experiments, illustrating the fluid exchange. The final conclusions are drawn in 
chapter 5. 
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Chapter 2 

Theory 

This chapter is divided into two parts. In the first section relevant terminology from dy­
namica} systems theory is presented, along with applications to fluid transport as explained 
by lobe dynamics. The application of Melnikov theory is also discussed. The second section 
on rotating fluids contains a description of relevant flow phenomena that occur in fluids 
under background rotation. 

2.1 Transport in dynamica! systems 

2.1.1 Hamiltonian systems 

The trajectory (x(t), y(t)) of a passively advected fluid partiele in an incompressible two­
dimensional flow can be described by the following equations: 

dx 
dt 

dy 

dt 
- (2.1) 

Such a system is called a Hamiltonian system, where the stream function W plays the role 
of the Hamiltonian function. If the flow is independent of time, i.e. w = w(x, y), then 
the Hamiltonian system (2.1) is said to have one degree of freedom. Fora time-dependent 
flow (w = W(x, y, t)) the system has two degrees of freedom. For w a periodic nmction of 
timet, the system has 'one and a half' degrees of freedom (Ottino 1989). There are major 
differences in partiele motion between flows of various degrees of freedom. In a system of 
one degree of freedom, i.e. a steady two-dimensional flow, no chaotic partiele paths can 
occur. Time-periodic flows, however, can produce chaotic partiele paths (Aref 1984). The 
occurrence of such paths enables complicated mixing and transport of fluid. 

2.1.2 Point vortex in a linear shear 

Consicier the following Hamiltonian system. A point vortex of strength "' is placed in 
a linear shear flow with shear strength a. The shear contributes to the velocity field 
as u= ay, with u the velocity component in the x-direction. The point vortex contributes 
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6 CHAPTER 2. THEORY 

to the velocity field as v0 = 'Y /27rr, where v0 is the azimuthal velo city, and r is the distance 
to the point vortex. The stream function W for this flow is 

W = !ay2 - .Y_ ln(x2 + y2
) + c, 

2 47r 
(2.2) 

with c an arbitrary constant. 
Two stagnation points P+ and p_ exist in this flow. At P±: (x,y) = (O,±v'Y/27ra) = 
(0, ±rs) the velocity is zero. In polar coordinates, defined as x = r cos 0; y = r sine, the 
stream function is 

w = !ar2 sin2 e - .Y_ ln r + c. 
2 27r 

(2.3) 

The streamline pattern is shown in figure 2.1. The dotted streamlines divide the flow into 
five regions: one region with elosed streamlines inside the streamlines We and Ww, and four 
regions with unbounded streamlines. No fluid transport is possible through these dotted 
streamlines; they are therefore known as separatrices. 

It is convenient to make W zero at the separatrices. Therefore cis chosen to bei; ln(r;). 
To make the stream function dimensionless, introduce Ç = r/rs in equation (2.3) and 
se ale W by a factor 'Y / 47r. The result is 

w = e sin 2 e - ln e - 1. (2.4) 

2.1.3 Dynamica! systems 

The behaviour of this Hamiltonian system changes drastically when a perturbation is 
introduced in the flow. In this work the perturbation is a small harmonie variation in the 
shear strength a 

a(t) = a 0 [1 + E cos(wst)], (2.5) 

in which a 0 is the basic-state shear strength, Eis the amplitude of perturbation, and W 8 is 
the perturbation frequency. Individual partiele paths, as can be derived from the stream 
function W, become highly complex and are no longer suited to find a description of the 
flow. Instead, it is more convenient to observe the global topology of the flow. This 
analysis can be done by using definitions from dynamical systems theory, introduced be­
low. The analysis follows Ottino (1988), and is also presented in Beekers (1993) and van 
Lipzig (1994). 

The equation of motionfora partiele at x= (x, y) in the Eulerian velocity field v(x, t) 
is 

dx 
dt = v(x, t). (2.6) 

Equation (2.6) is an example of a dynamical system. This system of differential equations 
can be solved given an initial condition x = X at t = 0. The solution is denoted by x = 
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Figure 2.1: Streamlines of the point vortex in a linear shear flow. The separatrices are 
depicted by the dotted lines. They interseet at the stagnation points P±. 
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<Pt(X), where <Pt(X) gives the trajectory of a given partiele with initial position X for all 
timet. 

A special case occurs when vis time-periodie. In this case v(x, t) = v(x, t+T), with T 
the period of v. Although the system is fully deterministic the partiele paths in the phase 
space IR2 x IR, with time t as third variabie in addition to x, can be highly complex. It 
is hard to obtain information about the system by monitoring lots of individual partiele 
paths because of their complexity. It is more convenient to record the partiele positions 
only at discrete times t = 0, T, 2T, ... The position Xn of a partiele aft er a time nT is given 
by Xn = <Pnr(x0 ), where x 0 is its initial position. The continuous flow x= <Pt(X) can now 
be converted to a discrete mapping F: 

(2.7) 

This mapping, while far less complicated than the flow, still contains useful information on 
the flow. The subsequent mappingsof the flow at times nT, with n integer, arealso known 
as Poincaré sections. These Poincaré sections are a useful tool to study unsteady time­
periadie flows sirree this technique tends to filter out redundant dynamical phenomena. 
Instead it reveals the underlying structures which govern various properties of the flow, 
such as mixing and transport. 

In Hamiltonian systems the volume in phase space is a conserved quantity. Therefore 
the area is a conserved quantity in Poincaré maps. Thus a labelled patch can change 
shape after some iterations of the Poincaré map, yet its area does not change. A sec­
ond property of the Poincaré map is orientation preservation. A line element l(O), with 
points p 1 (0), p 2 (0), ... , Pm(O) on it in that order, will be mapped onto line element l(n) 
aft er n iterations. The points p 1 ( n), p 2 ( n), ... , Pm ( n) lie on l ( n) in the same order. 

U sually, periodie points can be found on Poincaré sections. A point P is called a 
periodie point of period n of the mapping F if it returns to its original position after n 
iterations of the Poincaré map, i.e. 

(2.8) 

Only periodic points of period 1 will be described. These points occur as fixed points on the 
Poincaré sections. There are three different types of periodic points: hyperbolic, elliptie, 
and parabolic. A cirele of particles placed around a hyperbalie point will be stretched 
in one direction and contracted in another. A partiele placed near an elliptic point will 
translate along a elosed regular trajectory. See figure 2.2 for an example view of streamlines 
near such points. The parabalie point is untypieal for the flows under study. 

In the flow stuclied in this work the stagnation points P± are hyperbalie points, while 
the centre of the vortex is an elliptie point. The streamline pattern in figure 2.1 also 
illustrates the hyperbalie or elliptie behaviour of the fixed points. 

Each hyperbalie point p has two associated manifolds, the stable manifold W 5 (p) and 
the unstable manifold wu(p). These manifolds are defined as 

W 5 (p) = {VX E IRNIF(X) ---7 past ---7 oo}, 

wu(p) = {V x E IRNIF(X) ---7 p ast ---7 -00 }. 
(2.9) 
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(a) } \ 

__/h ~ 
(b) 

Figure 2.2: Illustration of the flow near (a) a hyperbalie point h and (b) an elliptic pointe. 

Particles near a hyperbalie point will be mapped onto the stabie manifold as t ---+ -oo. 
Similarly, they will be mapped onto the unstable manifold as t ---+ oo. For the hyperbalie 
point as depicted in figure 2.2a, the y-axis is the unstable manifold and the x-axis is 
the stabie manifold. In physical terms this implies that fluid is transported towards the 
hyperbalie point along the x-axis (stable manifold). The fluid is then transported away 
from the hyperbalie point along the y-axis (unstable manifold). 

This provides a method for constructing the manifolds numerically (Ottino 1989). A 
large number of particles is placed in a circle around a hyperbalie point. Then the associ­
ated adveetion equations are integrated, and the positions of the particles are monitored at 
times nT. For n positive and increasing the unstable manifold is obtained; for n negative 
and decreasing the stabie manifold is obtained. 

It is possible to apply the terminology of dynamica! systems to the flow due toa point 
vortex in a linear shear, depicted in figure 2.1. The stagnation points P± are hyperbalie 
points. The location of the point vortex is an elliptic point. With the manifold definitions 
in equation (2.9) it can be concluded that the streamline We is the stabie manifold of P+ 
and the unstable manifold of P-· Consequently, the streamline 'lfw is the stabie manifold 
of p_ and the unstable manifold of P+· 

Due to symmetry, mirroring the unstable manifold of P+ in the vertical axis yields the 
stabie manifold of P+· Mirroring both the stabie and unstable manifolds of P+ in the 
horizontal axis gives the unstable and stabie manifolds of p_, respectively. 

2.1.4 Lobe dynamics 

Fortime-periadie perturbations the hyperbalie points P± remain fixed points of the Poincaré 
map. However, the introduetion of this perturbation has a profound effect on the shapes 
of the manifolds. The stabie and unstable manifolds of the different hyperbalie points no 
longer coincide. Instead they interseet in a countable number of discrete points. These 
points are called heteroclinic points, since they are intersections of the stabie and unsta­
ble manifolds of two different hyperbalie points. Intersections of the stabie and unstable 
manifolds of the samehyperbalie point are known as homoclinic points. 

The structure which results from the intersection of the manifolds of two different 
hyperbalie points is called a heteroclinic tangle. Part of the heteroclinic tangle of the flow 
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Figure 2. 3: Part of the heteroclinic tangle of the flow under study. The solid line represents 
the unstable manifold of P+. The dash-dotted line represents the stable manifold of p_. 
The other manifolds are left out for clarity. 

under study is shown in figure 2.3. For clarity, only the stabie manifold of p_ and the 
unstable manifold of P+ are depicted. For the full heteroclinic tangle, mirror both in the 
vertical axis to obtain the other manifolds for the hyperbalie points. 

For a discussion of lobe dynamics we follow the approach of Rom-Kedar et al. (1990). 
Consicier a heteroclinic point q E W~nW.+. Let S[p_, q] denote the segment of W~ from P­
to q, and let U[p+, q] denote the segment of W+ from P+ to q. Then q is called a primary 
intersection point (PIP) if the segment of the stabie manifold from p_ to q and the segment 
of the unstable manifold from P+ to q interseet only in q, i.e. S[p_, q] n U[p+, q] = { q}. 
Let q 1 and q 2 be two adjacent PIPs, i.e. there arenoother PIPs on S[q1 , q 2] and U[q1 , q2]. 

The region enclosed by these segments of W~ and W+ is called a lobe. See figure 2.4 for 
an example. 

Points that are on a manifold must stay on that manifold for all iterations of the 
Poincaré map. This implies that a heteroclinic point q can only be mapped onto another 
heteroclinic point, because q must remain on both manifolds. Suppose that q 1 is mapped 
onto q 2 , and q 2 is mapped onto q 3 after one iteration of the mapping. Choose a point a E 

S[q1 , q2] as shown in figure 2.4. This point then would be mapped onto a point b E 

S[q2, q 3]. Going around the region enclosed by S[q1 , q2] and U[q1 , q 2] in a clockwise way, 
one encounters q 1 , q2 , and a in that order. Going around the mapped region, the order 
is q2 , b and q 3 . This mapping cannot hold since it violates orientation preservation. 

When q1 is mapped onto q3 and q2 is mapped onto q4 , the orientation preservation 
holds. This implies that lobe L 1 is mapped onto L 3 , and L2 is mapped onto L 4 , and so 
forth. In figure 2.4, the region bounded by (i) the segment of the unstable manifold (solid 
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Figure 2.4: An example view of the manifolds. The solid line is the unstable manifold 
ofp+, the dash-dotted line is the stable manifold ofp_. q 1 through q 7 are PIPs, q 8 is not. 
L1 through L6 are lobes. Point a is on S[q1, q2], point b is on S[q2, q 3). 

line) from P+ to q 4 , (ii) the segment of the stabie manifold (dash-dotted line) from p_ 
to q 4 , and (iii) these segments mirrored in the vertical dotted line, will be called the vortex 
interior. As can be concluded from figure 2.4, a lobe initially in the vortex interior, like 
lobe L 2 , is transported to the vortex exterior after one iteration, lobe L 4 • Thus L 2 is a 
detrainment lobe. Lobe L 3 is initially in the vortex exterior, but is transported to the vortex 
interior, lobe L 5 . L 3 is called an entrainment lobe. The entrainment and detrainment lobes 
combined are known as a turnstile. Mappings of the turnstile backward and forward in 
time are also called turnstil es. N ote that in this geometry there are two en trainment and 
detrainment lobes due to the symmetry mentioned before. 

The entrainment and detrainment of lobes provides a mechanism for transport of fluid. 
The amount of fluid entrained and detrained is equal to the lobe area. Due to area preser­
vation of the Poincaré map, the area is the same for alllobes. The lobe area is computed 
in two different ways. 

The first method is to obtain the stabie and unstable manifolds by direct integration of 
the adveetion equations. The resulting data for the manifolds can then be used to calculate 
the area enclosed by the manifolds. This method is valid for all values of E, the amplitude 
of perturbation. 

For small values of E, there is another methad for determining the lobe area, which 
gives an order E approximation of the area. This so-called Melnikov theory is discussed in 
section 2.1.5. 

It is also possible to expand the motions of manifolds and lobes to three-dimensional 
flows. Beigie et al. (1994) showed how to apply these concepts to the three-dimensional 
case. 
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p_ 

Figure 2.5: Definitions for the parametrisation of We, and the moving coordinate sys­
tem fl.( Qu( -to)). 

2.1.5 Melnikov theory 

Consicier the expression for the unperturbed stream function, equation (2.2), and introduce 
the perturbation (2.5). For small values of the amplitude of perturbation t the stream 
function can be expanded in a Taylor expansion in powers of t. The adveetion equations 
resulting from the expansion are 

~~ = !I(x, y) + tg1(x, y, t) + O(t2
), 

dy ) 2 
dt = h(x, y) + tg2(x, y, t + O(t ). 

(2.10) 

Melnikov (1963) developed an analytica! technique that prediets the (signed) distance 
between W~ and W.f- along the unperturbed manifold for small t. Using this technique it 
is possible to calculate this distance to the fi.rst order of t without solving (2.10) explicitly. 
This first-order term is known as the Melnikov function. 

To determine the Melnikov function for the observed geometry, the approach given by 
Wiggins (1992) is followed. 

The first step in constructing the Melnikov function is to develop a parametrisation 
of the unperturbed manifolds We,w, the separatrices. In the following discussion, we only 
consider We. The result is also valid for Ww by the symmetry with respect to the vortex 
position. Let Qu ( t) denote a heteroclinic trajectory (i.e. a trajectory that includes both 
hyperbolk points) of the unperturbed velocity field that coincides with We. Note that t 
is now a parameter. See also figure 2.5. The point Qu(O) denotes a unique point on We· 
Then, by uniqueness of solutions, the point Qu( -t0 ) denotes the unique point on We that 
takes a time t0 to flow to Qu(O). As t0 varies from -oo to oo, all points on We are included. 
Thus Qu( -t0 ) provides a valid parametrisation. 

The next step is to define a moving coordinate system along the unperturbed mani­
fold We· The vector fl.(qu(-to)) = (-f2(qu(-to)),JI(qu(-to)) is perpendicular to We at 
each point Qu( -to) (figure 2.5). Thus fl.(qu( -to)) is moved along We by varying to, and the 
distance between the perturbed manifolds W~ and W.f- will be measured along fl.( Qu( -t0 )). 
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w_u 

P. 

Figure 2.6: Geometry of the distance between W~ and W_.t. 

Under perturbation, for small amplitude of perturbation E, W~ and W_.t interseet 
f..l(qu( -t0 )) transversely in the points q~ and q:, see figure 2.6. Melnikov (1963) defined 
the following 'signed' distance measurement: 

d(t ) = f..l(qu(-to)) · (q~- q:) 
0

' E llf(qu(to))ll ' 
(2.11) 

where · denotes the usual vector dot product, and 11···11 is the Euclidean length. This length 
is given by 

llf( qu( -to)) 11 = JUt ( qu( -to)) )2 + (/2( qu( -to)) )2 · 

Next, Taylor-expand (2.11) with respect toE: 

f..l( qu( -to)) · ( ~ IE=O - ~ IE=O) 
2 

d(to,E)=E llf(qu(-to))ll +Ü(E). 

(2.12) 

(2.13) 

Melnikov (1963) showed that the numerator of the O(E) term of (2.13) can be expressed 
as (see also Guckenheimer & Holmes (1983)) 

f..l( qu( -to)) · ( 
88~~ IE=O-

88~: IE=O) 

= 1: [f(qu(t)) · g(qu(t), t + to)] dt (2.14) 

= 1: [ft(qu(t))g2(qu(t), t + to)- f2(qu(t))gt(qu(t), t + to)] dt. 

This expression is commonly known as the Melnikov function and is denoted by M(t0 ). 

Thus the distance between W~ and W_.t is given by 

M(to) 2 
d(to,E) =EIIf(qu(-to))ll +0(E ). (2.15) 
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Melnikov (1963) also showed that simple zerosof M(to) (i.e. M(t0 ) = 0, öMföt0 =J 0) 
imply simple zeros of d(t0 , E), for E sufficiently small. Zeros of M(t0 ) thus correspond 
to intersection points of stable and unstable manifolds in the Poincaré map. Also note 
that llf(qu(-to)ll---+ 0 exponentially fast as to---+ ±oo which implies that ld(t0 ,E)I---+ oo 
as t0 ---+ ±oo. This is a refiection of the unbounded oscillation of W~ and W-t near P+ 
and p_, respectively. 

The next step is to calculate the area of a lobe. This area can also be calculated from 
the Melnikov function. The area f.l is given by 

(2.16) 

where t0,1 and t0,2 are the values of t 0 corresponding to the PIPs defining the lobe. For a 
detailed derivation of this formula, see Rom-Kedar et al. (1990). 

Thus the integral of the Melnikov function between two adjacent PIPs gives an O(E) 
approximation to the area of the lobe defined by the PIPs. Equation (2.16) is only valid for 
lobes defined by PIPs that are outside of sufficiently small neighbourhoods of P+ and p_, 
again due to the unbounded oscillation of one of the manifolds near those points. Sirree all 
lobes have the same area one is free to choose a lobe that is not near P+ and P-. 

2.2 Rotating fiuids 

2.2.1 Taylor-Proudman theorem 

The preserree of background rotation has a profound effect on fiuid motion. In a co-rotating 
reference frame the flow can be described by (see e.g. Pedlosky 1979) 

(2.17) 

where v is the velocity vector relative to the rotating reference frame, n the background 
rotation, p the density, p the pressure, r the radius measured from the rotation axis, <I>gr 
the gravitational potential, and v the kinematic viscosity. It is customary to rewrite 
equation (2.17) using the reduced pressure P, defined as P = p- ~p02r2 + p<I>9r: 

öv 1 
-;) + (v · V')v + 2n x v = --\7 P + v\7 2v. 
ut p 

(2.18) 

It is useful to write (2.18) as a dimensionless equation todetermine the relative importance 
of each termor to campare fiows of different scales. This can be dorre by introducing the 
following dimensionless variables 

- V 
V= U' 

- p 
p = pOUL' i= Ot 

' 
- x 
X= L' 
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in which U is a typical velocity scale and L a typicallength scale. Here it is tacitly assumed 
that characteristic horizontal and vertic al length scales are of the same order. U sing these 
variables, equation (2.18) takes the following form 

a-v - -- -2 ---:::- + Ro(v · V)v + 2k x v = -\7 P + E\7 v, at (2.19) 

with k = 0/lfll the unit vector in axial direction, Ro = U /OL the Rossby number, 
and E = v /f2L2 the Ekman number. The Rossby and Ekman numbers represent the 
importance of inertial and viseaus farces relative to the Coriolis force, respectively. 

If the flow is quasi-stationary with Ro << 1 and E << 1, then equation (2.19) can be 
simplified considerably. In this case the motion is governed by 

2k x V= -\lP, (2.20) 

omitting the tildes for convenience. The flow is now governed by a balance of the Coriolis 
force and the pressure gradient force. Both farces act perpendicular to the local velocity. An 
important dynamica! property of these so-called geostrophically balanced flows is obtained 
by taking the curl of equation (2.20) with the assumption that the flow is incompressible. 
This result is known as the Taylor-Proudman theorem: 

av 
az = o. (2.21) 

The Taylor-Proudman theorem expresses that a geostrophically balanced flow is indepen­
dent of the axial coordinate, i.e. it is a two-dimensional flow. 

2.2.2 Spin-up 

In the laboratory experiments the shear flow is generated by a change in rotation velocity. 
Consicier a rotating tank filled with water that is in a solicl-body rotation. A change in 
the rotation speed from n to n + .6.0 causes the water to adapt to the new rotation speed, 
to again end up in solicl-body rotation eventually. The characteristic timescale for the 
adaptation processis the so-called Ekman timescale TE: 

H 
TE = (vfl)l/2. (2.22) 

Because of the change in rotation speed there is a change in vorticity w in the co-rotating 
frame of reference. The absolute vorticity Wa is the vorticity relative to the laboratory 
frame of reference, and is thus defined as Wa = w + 20. In two-dimensional, inviscid, 
barotropic, incompressible flows the absolute vorticity is a conserved quantity. So wa does 
not change in the initial stage of the adaptation process. Then Wa is given by 

Wa = (20, + 2.6.0,) - 2.6.0. (2.23) 
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Figure 2. 7: Schematic top view of the initial flow after spin-up. In the centre of the tank 
to good approximation a linear velocity profile u = ay is present. 

Thus it fellows with the definition of the absolute vorticity that the vorticity relative to 
the co-rotating frame of reference is 

w = -2.6.0. (2.24) 

The relative vorticity appears as the souree term for the Poisson equation \72w = -w, 
which can be used to calculate the stream function W in the co-rotating reference frame 

(2.25) 

For .6.0 a single step, equation (2.25) was solved in a rectangular domain by van Heijst et 
al. (1990). The salution consists of a single cell of concentric closed streamlines, spanning 
the domain. This salution is schematically depicted in figure 2. 7. For a domain of much 
greater length than width, there is to good approximation a linear shear flow u = ay at the 
centre of the domain. The value of the shear strength a is found using w = (\7 x v)z = -a: 

0'. = 2.6.0. (2.26) 

So an increase in rotatien speed causes an anticyclonic motion in the tank, and vice versa. 
In this work a constant shear with a small perturbation is generated. This is achieved 

by a stepwise increase in rotatien speed, followed by a small harmonie oscillation of the 
rotatien speed. The applied rotatien speed is given by 

O(t) = Oo + .6.0[1 + Ecos(w5 t)]8(t), (2.27) 

with 0 0 the initial rotatien speed, .6.0 the stepwise increase of the rotatien speed, and 8(t) 
the unit step function. The evolution of the shear a in time fellows from equation (2.26) 

a(t) = 2.6.0[1 + E cos(wst)]8(t). (2.28) 

N ote that these approximations are not valid near the walls of the tank. Viseaus effects 
near the walls cause the formation of a boundary layer to match with zero velocity at the 
wall. It is also only valid for times small compared to the Ekman timescale. Effectively 
this results in a window of time of about 1-2 minutesin which the approximations hold. 
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Figure 2. 8: Secondary circulation driven by the Ekman layers during spin-up. The bound­
ary layers are confined by the lines with short dashes. The line with the long dashes indicates 
the plane of symmetry. 

2.2.3 Ekman boundary layers 

The change of rotation velocity mentioned in section 2.2.2 has another important conse­
quence. This change causes a secondary circulation, which is largely responsible for the 
decay of vortices as wellas the background shear flow. 

Consider a fluid between two parallel disks, rotating about a common vertical axis. 
Initially, both disks rotate at angular velocity n. The fluid between the disks is in solicl­
body rotation. Then, at t = 0, the angular velocity of both disks is increased by a 
factor (1 + E), with 0 < E « 1. This is to insure that the Rossby number Ra remains 
small. Immediately after t = 0, Ekman layers will be formed at both disks. The reader is 
referred to Pedlosky (1979) or Kundu (1990) for more information on the formation process 
of Ekman layers. The formation is essentially established by diffusion of vorticity, so an 
associated formation time can be estimated: 

a a2 v 
- rv v- rv-at az2 61 (2.29) 

with ÓE = H E 112 = (v /0) 112 the Ekman layer thickness. Since the disks rotate faster than 
the fluid in the interior of the flow region, the Ekman layers will produce a radial outflow. 
This outflow is compensated by an axial flow towards each disk. This secondary circulation 
is known as Ekman suction. See figure 2.8 for an illustration of the circulation. 

The Ekman suction brings interior fluid closer to the axis of rotation, and increases 
thereby its azimuthal velocity in order to conserve angular momentum. In the Ekman 
layers an outward flow is generated by acceleration due to viscous forces. Note that this 
circulation is present in infinite and finite domains; on a finite domain the circulation 
is closed by flow through a boundary layer at the side wall. In case of the top disk 
being absent, the fluid surface coincides with the plane of symmetry in figure 2.8. Here 
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the infl.uence of the water-air interface is neglected, sirree it accounts for a much smaller 
boundary layer and thus far less circulation. 

The Ekman mechanism causes horizontal veloeities in the fl.uid interior to decay expo­
nentially until a new solicl-body rotation is achieved. The characteristic timescale is again 
the Ekman timescale TE (equation (2.22)). Ekman decay is far more effi.cient than viscous 
decay. Viscous decay has an associated timescale Tv 

8 82 
l/ 

_,.....,l/_,.....,_ 

at 8z2 H 2 
(2.30) 

Inserting realistic values in equations (2.22) and (2.30) shows that the viscous timescale 
is a factor 100 larger than the Ekman timescale. Therefore viscous decay is neglected 
henceforth. 



Chapter 3 

Numerical simulations 

In this chapter the methods and results of numerical simulations using two different tech­
niques are presented. The two techniques used are contour kinematics and adveetion of 
passive markers. 

Three parameters determine the flow field associated with a point vortex in a har­
monically time-perturbed linear shear: (i) the distance from the vortex position to the 
stagnation points rs = V'Y/27ra0 , (ii) the perturbation frequency W 8 , and (iii) the per­
turbatien amplitude E. Distauces can be made dimensionless by using the characteristic 
distance rs as the sealing factor. Times can conveniently be multiplied by fs = w 8 /21f in 
order to make them dimensionless. 

Throughout this report the parameters for the numerical simulations are in meter­
kilogram-secend (MKS) units. 

3.1 Contour kinematics 

Numerical simulations using the contour kinematics method have been performed to con­
struct the manifolds. The contour kinematics method is used to monitor in time a contour, 
defined by passive markers connected by smalllinear segments. If enough markers are used, 
the line appears smooth. Initially the markers form a circle. 

Integrating the adveetion equations (2.1) for each marker results in the evolution of 
the contour in time. The contour will get stretched and folded by the flow. When at a 
timet= t* the distance between two markers becomes larger than a preset value, or when 
the angle between neighbouring linear segments is less than 120° an extra marker is added 
to retain a smooth line. This marker is placed on the initial circle, and then the calculations 
up to t = t* are repeated for this marker. When the distance between two neighbouring 
markers becomes very small a marker is removed to save computational time. All time 
integrations are performed using a variabie-order Runge-Kutta scheme. For a thorough 
description of the contour kinematics method, see Meleshko & van Heijst (1994). 

The area J.-t of a surface S enclosed by any deformed curve C was calculated using 

19 
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Figure 3.1: Evaluiion in time of a contour initially located around P+. The contour is 
shown from t = 0 (lejtmost picture), to t = 5T (rightmost picture). There is a time 
step T between each picture. The cross depiets the varlex location. The flow parameters 
are '"Y = 207f, a 0 = 1, W 8 = 1.67f, E = 0.1. At t = 0 the contour is defined by 10 markers. 
The number of markers increases to 200 at t = T, 871 at t = 2T, 2218 at t = 3T, 4502 
at t = 4T, and finally 8218 at t = 5T. 

Stokes' theorem 

(3.1) 

with a summatien over the M markers of contour C. 

3.1.1 Manifolds and lobe area 

The following methad is used to construct the manifolds. A small contour is placed around 
a hyperbalie fixed point at t = 0. Due to the hyperbalie nature of this point the contour 
in time will be compressed exponentially in one direction and elongated exponentially in 
another direction. Soon after the simulation has started the contour resembles a line. The 
contour is monitored in time, as depicted in figure 3.1. It will get stretched right along 
the unstable manifold of the hyperbalie point. Thus the unstable manifold is constructed. 
Because of symmetry, the stable manifold can be obtained by mirrering the unstable man­
ifold in the y-axis. The unstable and stable manifolds of the other hyperbalie point result 
from mirrering both manifolds in the point where the vortex is located, halfway between P+ 
and p_. Two example results are shown in figure 3.2, for amplitude of perturbation E = 0.1 
and E = 0.5. This is only part of the real heteroclinic tangle. Sirreethere are infinitely many 
intersectien points of the stable and unstable manifolds there is also an infinite number of 
lobes. These lobes get more and more elongated and intertwined when approaching P±, 
and are as such not suitable for visualisation. 

The next task is to find the coordinates of the intersectien points of the stable and 
unstable manifolds. To obtain these coordinates, the subsequent points in the contours 
are connected with straight line segments. The cross of these line segments is considered 
the intersectien point. Now it is possible to define a closed contour around a lobe. It 
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Figure 3. 2: The heteroclinic tangle of a point vortex in a perturbed linear shear. The 
unstable manifold W~ of P+ and the stable manifold W~ of p_ are shown. The other two 
manifolds are omitted for clarity. The flow parameters are 'Y = 207r, a0 = 1, Ws = l.61r. 
For (a) the amplitude of perturbation E = 0.1, for (b) E = 0.5. 

consists of segments of the manifolds between two intersectien points, complemented with 
the coordinates of the intersectien points. Applying equation (3.1) to this contour gives 
the lobe area fl-· 

For small perturbation amplitudes E the Melnikov method is also a valid technique for 
calculating the lobe area fl-· A parametrie expression for the unperturbed manifold is needed 
to derive the Melnikov function M(t0 ). This parametrisation is derived in appendix A. The 
Melnikov function itself is derived in appendix B. The result is 

M(to) = :!._p ( Ws ) sin(wsto), 
21r 2ao 

(3.2) 

where the function P(p) was evaluated numerically; it is depicted in figure 3.3. 
The lobe area p, according to Melnikov theory is found using equation (2.16) 

1-t = .!:!_ p (2) 
7rW8 2ao · 

(3.3) 

The lobe area is proportional to the amplitude of perturbation E. To compare the results 
for the lobe area from the numerical simulations with the results from Melnikov theory, 
they are both depicted in figure 3.4, scaled by E. Sirree the term in equation (3.3) outside 
of the function P has an inverse proportionality to W 5 , the graph is shown with the inverse 
of this parameter on the x-axis. There is a remarkably good agreement between the 
predietien from Melnikov theory and the results from direct numerical integration. Clearly, 
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Figure 3.3: The function P(p) from the Melnikov function M(t0 ) in equation (3.2). 

the Melnikov function provides a very good approximation of the lobe area for values of E at 
least up to 0.2. Near 1/ws = 0 the lobe area rapidly approaches zero. For large perturbation 
frequencies there is little fluid exchange per cycle between the vortex interior and exterior. 

The full dependenee of the lobe area on shear strength ao and perturbation frequency W8 

is more complicated. This dependenee is depicted in f:igure 3.5. For this graph "( = 1 is 
chosen. Since the lobe area J.-L is directly proportional to "( this is a convenient choice. On 
the axes J.-t/E = 0, and J.-t/E is still very small near the axes. This behaviour is evident from 
the graphof the function P, as shown in figure 3.3. In the limit of a 0 -t 0 or 1/ws -t 0 the 
function P rapidly approaches zero. For 1/ws -t 0 this trend is further aided by the 1/ws 
term outside of the function P. 

The shape of figure 3.4 can be obtained from figure 3.5. In figure 3.5, monitor J.-t/ E while 
travelling over a horizontal line at a 0 = 1 and multiply by 2071" to account for the vortex 
strength "(. 

3.1. 2 Stretching and folding 

Thansport between the vortex core and the exterior can be understood by studying the 
intersection between the stabie and unstable manifolds of the hyperbalie points P± in the 
Poincaré map. This intersection gives rise to another important dynamica! effect, chaotic 
fluid partiele motion. 

Chaotic fluid partiele motion may result when regions of fluid in the flow are strongly 
stretched and folded. In the flow under study the heteroclinic tangle provides the folding 
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Figure 3.4: Lobe area J-l, divided byE, as funetion of 1/w8 • The solid line represents the 
value calculated with the Melnikov function, while the individual data points are direct 
results from the numerical simulations for different values of E: 0 E = 0.01, D. E = 

0.05, oE= 0.1, * E = 0.2. The other parameters are 'Y = 207r and a 0 = 1. 
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Figure 3.5: Lobe area f.-l, divided byE, as funetion of 1/ws and a 0 . For this graph 'Y = 1. 
On the axes f.-l/ E = 0. 
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mechanism, while the fixed points P± provide the stretching mechanism. To visualise these 
mechanisms four contours were placed at different locations in the heteroclinic tangle. The 
resulting evolution is shown in figure 3.6. The adveetion of the contours in the heteroclinic 
tangle is shown for five subsequent times t = 0, T, ... , 4T. Initially the contours have a 
circular shape. They are stretched and contracted by the influence of the fixed points, and 
folded along the unstable manifolds. The initial position of the contours relative to the 
stable manifold determines the eventual direction in which they are transported. The two 
contours at the interior si de of the stable manifold ( the dash-dotted and solid thick lines) 
remain in the vort ex interior, at least for the observed time. The other two contours ( the 
dashed and dotted thick lines) are transported away from the vortex interior from t = 2T 
and on. 

The deformation due to the unstable manifold is also apparent. The solid and dash­
dotted contours are folded along the unstable manifold near p_, and subsequently stretched 
on the way up. Then (fort= 4T) the onset of the next folding along the unstable manifold 
is visible. This mechanism of stretching and folding is known astheSmale harseshoe map, 
and is further illustrated by Rom-Kedar et al. (1990) and Wiggins (1992) for a related 
perturbed flow. There are chaotic fluid partiele trajectoriesin the sense of Smale harseshoes 
( Wiggins 1998). 

The mechanisms of stretching and folding have a profound effect on the contour length. 
This effect has been investigated by monitoring the contour length stretch of a con­
tour, initially around the fixed point P+, in time, for different values of perturbation 
frequency fs = w8 /27r. First define the length stretch À as 

l(t) 
>.(t) = l(O)' (3.4) 

where l(t) is the contour length at time t, and l(O) is thus the initiallength at t = 0. The 
results are shown in figure 3. 7. 

At first, the stretch evolves the same for all cases. This is due to the exponential stretch 
near P+, as is shown in appendix C. The slope of the length stretch graph for t < 2.5 
is about the same for all cases shown. A calculation of the slope on this region for the 
unperturbed case gives a result of 0.60, while from the crude analysis in appendix C a 
slope of log[exp( J2)] ~ 0.61 is expected. So it is plausible that the initial stretch is due 
to the vicinity of the hyperbolk fixed point P+· 

Next is the increase in contour length after the initial stretch near the hyperbolk 
fixed point, from t = 2.5 and on. The dashed line indicates the stretch for the case of no 
perturbation. There is linear expansion, as is expected from a fully integrable velocity field. 
In the preserree of perturbation, however, fluid particles may separate at an exponential 
rate. On a logarithmic scale an exponential increase results in a linear graph. All of the 
solid lines are approximately linear. However, there is an oscillation present on these lines. 
This oscillation is caused by the perturbation. The period of this oscillation is exactly the 
same as the period of the perturbation. The amplitude of the oscillation is smaller for the 
higher perturbation frequencies since then the sign of the perturbation changes rapidly. 
The perturbation changing sign causes the contour to fold. The higher the perturbation 
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Figure 3. 6: Adveetion of contours in the heteroclinic tangle. The stable manifolds are 
depicted by the thin dash-dotted lines, while the unstable manifolds are shown as thin solid 
lines. The contours are deformed by stretching and jolding mechanisms in the flow. 
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Figure 3. 7: Length stretch À of a contour, initially around the fixed point P+. The dashed 
line gives the length stretch for zero perturbation amplitude. The solid lines are for simula­
tions with perturbation, with corresponding values of fs. The other parameters are '"'( = 81r, 
a0 = 1 and E = 0.1. 
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frequency, the more folds take place. More folds causes the length stretch to increase faster. 
Therefore the line of length stretch at the highest frequency is the steepest. 

3.1.3 Vortex decay 

As was mentioned in section 2.2.3, there is a secondary vertical circulation known as Ek­
man suction in rotating fluids. The Ekman suction causes vortices to decay exponentially. 
As was confirmed experimentally by Kloosterziel & van Heijst (1992), the associated char­
acteristic e-folding time is the Ekman timescale TE. The same exponential decay can be 
observed in the (unperturbed) shear flow, with the same timescale. However, the vortex 
circulation in experiments also decays by stripping of vorticity. The stripping is assumed to 
cause an exponential decay of the vortex circulation. To determine the influence of vortex 
decay, the vortex strength "( is made time dependent according to 

"!(t) = "(o exp (-~) , (3.5) 

with "(o the initial vortex strength and T the timescale of the exponential decay. Real­
istic laboratory values were used for the other flow parameters. The results for contour 
kinematics simulations with decaying vortex strength are depicted in figure 3.8, a picture 
of the evolution at t = 70. The decaying vortex causes the vortex region to decrease in 
area. This is evident from the lines approaching the centre. The contour does not circle 
around the vortex as far. In the case of T = 100, it does not even reach the other side 
of the vortex. Th ere is however no great difference between the dashed line ( no decay) 
and the dash-dotted line. So as long as the vortex decay timescale is not too small, the 
expected behaviour in experimentsis not fundamentally different from the (non-decaying) 
simulations. 

3.1.4 Perturbation of vortex strength 

Another interesting case is the flow due to a perturbed point vortex in a constant linear 
shear. In this case the shear strength a is constant in time, while the vortex strength "! is 
dependent on time as 

"((t) = "(o[1 + E cos(wst)], (3.6) 

in which "/o is the basic-state vortex strength, while E and W 8 are again amplitude and 
frequency of perturbation, respectively. 

The resulting flow has been stuclied in the same way as in section 3.1.1. An example 
result is shown in figure 3.9. This figure closely resembles figure 3.2a. The difference 
between the two figures is the relative orientation of the stabie and unstable manifold. The 
perturbation in the vortex reaching its maximum corresponds in the previous configuration 
to the perturbation of the shear reaching its minimum. There is a half-period phase shift 
between these two configurations. This is also evident from the Melnikov function changing 
sign, as is derived in appendix B. The Melnikov function essentially gives a signed distance 
between the stabie and unstable manifolds (equation (2.15)), therefore the change of sign. 
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Figure 3. 8: Shape at t = 70 of a contour initially around the hyperbalie point P+. The 
vortex strength 'Y decayed exponentially. The dashed line shows the shape in absence of 
vortex decay. The dash-dotted line shows the shape for a decaying timescale T = 239, 
a realistic laboratory value for Ekman decay. The solid line is the shape for a decaying 
timescale T = 100. The other flow parameters were a 0 = 0.1, E = 0.4, W 5 = 0.27f, 
'Yo = 0.0064. 

Figure 3. 9: Heteroclinic tangle of the flow due to a perturbed point vortex in a linear shear. 
Again, only the unstable manifold W~ of P+ and the stable manifold W~ of p_ are shown. 
The other two manifolds are omitted for clarity. The flow parameters are 'Yo = 207f, a = 1, 
W 5 = 1.67f, and E = 0.1. 
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Figure 3.10: Example view of the heteroclinic tangle, to illustmte the inters eetion of Zo bes: 
(a) e3 = J.-t(F2 EnD), (b) e3 = J.-t(E n F-2 D). 

3.2 Partiele transport 

In this section another method to investigate fiuid transport is presented. This method 
consists of advecting a large amount of passive particles (order 103 ) in time as prescribed by 
the adveetion equations (2.1). The adveetion equations are integrated using a fourth-order 
Runge-Kutta scheme with constant time step. 

3.2.1 Escape time and area 

The time for a partiele to stay in the vortex interior depends on the partiele's initial 
conditions. Rom-Kedar et al. (1990) define this time as the residence time. A volume of 
fiuid therefore has an associated residence time distribution. The residence time varies for 
particles inside the volume. The notion of a residence time distribution is an important 
concept in mixing systems. For example, the amount of product from a reaction in a 
catalytic reactor will be primarily dependent on the time spent in the reactor. Heat and 
mass transfer are similarly infiuenced by the residence time distributions. In the present 
case, the residence time distribution provides information on the origin of fiuid being mixed, 
and the direction and distribution of fiuid transport. 

Consicier the heteroclinic tangle in figure 3.10. The entrainment lobe (section 2.1.4) 
is labelled as E, and D is the detrainment lobe. In one cycle of the perturbation, E is 
entrained into and D is detrained from the vortex interior (see section 2.1.4). E and D 
have equal area due to incompressibility of the flow. This area has already been denoted 
by f.-l· Some mappings pk E and F 1 D are also shown. 

The question to be answered is: How long does it take fiuid to escape from the vortex 
interior given that it started there? Rom-Kedar et al. (1990) argue that this question 



30 CHAPTER 3. NUMERICAL SIMULATIONS 

is equivalent to: How long does it take fiuid to escape the vortex interior given that is 
initially in the entrainment lobe E? To answer this question, consider fiuid that is in 
lobe E initially. It is clear that this fiuid enters the vortex interior in the next cycle. After 
some more cycles, say k -1 cycles, part of the original fiuid may be found in a detrainment 
lobe D. This part of fiuid is given by the intersection of lobe E after k- 1 cycles with 
lobe D, pk-1 EnD. This portion of fiuid will then escape the vortex interior during the 
next cycle. Define ek to be that portion of fiuid, i.e. the volume of fiuid in lobe E at 
cycle 0 that escapes on the kth cycle: 

ek = ~-t(Fk- 1 EnD), k = 1, 2, ... (3.7) 

For k ~ 0 it is clear that ek = 0. The escape time distribution is now given by ekf ~-t(E). 
Note that, by incompressibility, (3.7) can alternatively be written as 

ek = ~-t(E n p-k+l D), k = 1, 2, ... (3.8) 

This is illustrated in figure 3.10. 
A related quantity is the escape area ak. This factor gives the volume of fiuid in the 

vortex interior on cycle 0 that escapes on cycle k. Effectively ak gives the area of fiuid 
entrained in cycle 0 that is still present in the vortex interior at cycle k. Thus as ak -+ 0 
all of the fiuid entrained in cycle 0 has been transported out of the vortex interior. Fluid 
leaving the interior on the kth cycle must be in D at cycle k- 1, and thus in p-k+l D at 
cycle 0. However, not all of this fiuid was in the interior at cycle 0. There may be other 
'earlier' intersections of p-k+l D and p-l E, 0 ~ l ~ k, and these should not be counted. 
So it follows that 

k 

ak = ~-t(F-k+l D)- L ~-t(F-k+ 1 D np-zE). 
l=O 

This equation can be simplified. By incompressibility ~-t(F-k+ 1 D) - ~-t(D) 
From (3.8) it follows that 

ek-l = ~-t(F-k+l D np-zE). 

With these simplifications, equation (3.9) can be written as 

k k 

ak = ~-t(E) - L ek-l = ~-t(E) - L ez. 
l=O 1=1 

Thus, to compute ak, only the factors ek must be known (with the lobe area ~-t(E)). 

(3.9) 

~-t(E). 

(3.10) 

(3.11) 

In order to calculate the escape time and escape area distribution the entrainment 
lobe E dosest to P+ was filled with tracer particles on a regular grid. Five calculations were 
performed, each with the following settings: "Y = 20n, a = 1, E = 0.2. The perturbation 
frequencies W8 used are 0.4n, 0.8n, 1.6n, 2n and 3.27!". The lobe area decreases with 
increasing perturbation frequency (see figure 3.5). In the first case the lobe was filled 
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with N = 1631 particles on a grid with mesh 0.01. In the secoud case N = 7808 with again a 
mesh 0.01. For the third case N = 4741 with a mesh 0.02. In the fourth case N = 3202 with 
a mesh 0.005. For the fifth case N = 2752 with mesh 0.002. The number of particles e(k) 
that escapes in cycle k is a measure for ek· e(k) IN is used as approximation of ekl p,. 
A similar argument applies to a( k) IN as approximation of aki p,. The approximations 
get more reliable with decreasing mesh. Results for e(k)IN and a(k)IN are presented in 
figures 3.11 and 3.12. For all five cases 50 cycles were elapsed. 

In the observed geometry there are two detrainment lobes. One detrainment lobe can 
be found near P+, accounting for fluid transport from the vortex interior along the unstable 
manifold of p_ away from the vortex. On the opposite side there is another detrainment 
lobe, transporting fluid from the vortex interior along the unstable manifold of P+ away 
from the vortex. Therefore the escape times and escape areas can be divided in escape to 
the +x-direction ('right') andescape tothe-x-direction ('left'). Therefore, in figures 3.11 
and 3.12 the diamonds in the graphs of e(k)IN depiet the transport to the left, and the 
circles denote transport to the right. The total transport per cycle is shown by the squares. 
In the graphs of a( k) IN, the fraction between the plusses and the dots has escaped to the 
right while the fraction above the dots has escaped to the left. 

From figure 3.11 it can be concluded that fluid from the entrainment lobe is detrained 
earlier for lower perturbation frequencies W 8 • This is evident as the graphs of a(k)IN 
approach zero. For W 8 = l.61r the graphof a(k)IN (plusses) goes below 0.1 in the 47th 
cycle, at t ~ 59. For W 8 = 0.81r this happens during the 6th cycle, at t ~ 15. In the 
last case, W 8 = 0.47r, a(k)IN goes below 0.1 halfway through the 3rd cycle, at t ~ 13. 
In figure 3.11a,b (ws = 0.47r) there even is evidence of an immediate (cycle 0) overlap 
of entrainment and detrainment lobes, resulting in a rv ~ detrainment during the first 
cycle: e(l)IN ~ 0.75. 

There is an asymmetrical distribution of the transport to the left and to the right. 
Fluid entrained from the top left is in larger part transported towards the top right. In the 
extreme case (ws = 0.47r) more than 80% of this fluid is transported to the top right. This 
paradoxical behaviour is due to the lobe dynamics. For entrained fluid to be transported 
from the top left to the bottorn left it first has to circle around the vortex to reach the 
correct detrainment lobe, while the other detrainment lobe (responsible for transport to 
the right) is encountered first. 

In order to determine the asymptotic behaviour of a(k)IN for large k, two further 
plots are shown in figure 3.13. Figure 3.13a contains a log-linear plot of a(k)IN, while 
figure 3.13b contains a log-log plot. In case of exponential behaviour for large k the graph 
appears as a straight line in the log-linear plot. For power-law behaviour the graph is a 
straight line in the log-log plot. Exponential behaviour indicates a probability of escape 
that is constant for all k, while power-law behaviour implies a probability of escape that 
decreases with increasing k (Rom-Kedar et al. 1990). The graph for W 8 = 0.47r is omitted. 
This graph rapidly approaches zero, and due to the finite resolution (finite number of 
particles) causes large stepwise changes on a logarithmic scale. Many more particles need 
to be used in order todetermine the asymptotic behaviour for this frequency. These steps, 
albeit smaller, arealso visible in the graph for W 8 = 0.81r (x). 
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Figure 3.11: N ormalised escape times e( k) IN and normalised escape areas a( k) IN for three 
different perturbation frequencies W 8 : (a,b) 0.4n, (c,d) 0.8n, (e,j) 1.6n. For symbols see 
text. 
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Figure 3.12: Normalised escape times e(k)/N and normalised escape areas a(k)/N for two 
different perturbation frequencies w 8 : (a,b) 21r, (c,d) 3.27r. For symbols see text. 

Fr om figure 3 .13a an exponential behaviour is apparent for w s = 3. 21r ( o). For w s = 
l.61r ( +) there is also probable exponential behaviour. Figure 3.13b indicates possible 
power-law dependenee for W 8 = 21r ( * ). Both graphs give no clear indication of the be­
haviour for W 8 = 0.81r (x). 

The area of fiuid initially in the entrainment lobe that escapes the vortex interior during 
the kth cycle is given by ek = t-t(Enp-k+lD). There are two ways to obtain the geometry 
of the intersection En p-k+l D. The first method is to compute the boundaries of the 
lobes E and p-k+l D and find the area of their intersection. The other method is to track 
area elements ( or tracer particles) of the interior of lobe E to determine the area ( or number 
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Figure 3.13: Normalised escape areas a(k)/N: (a) log-linear plot, (b} log-log plot. Pertur­
bation frequencies W 8 : 0.8?T (x), l.61r ( +), 2?T ( *), 3.2?T ( o). 

of particles) that escapes at each cycle. Although the fi.rst method is theoretically more 
satisfying, it also presents a substantial diffi.culty. Due to exponential stretch the lobe 
boundary is elongated considerably. For contour kinematics this means that each time 
step takes a longer computation time. After only a few periods this method is practically 
unusable. Therefore the second method is used. The parameters are the same as for the 
calculations of the escape times and escape areas. 

An example result, for W 8 = 0.81r, is shown in figure 3.14. Two other results, for W 8 = 
0.4?T, l.61r, are shown in appendix D. The other two cases were omitted, since the entrain­
ment lobes are very narrow here and thus not suitable for visualisation. For large k, it 
appears as if the structures are composed of a number of isolated area elements. However, 
this is a result of using a finite number of non-deforming area elements. This also causes 
the fl.uctuations in the e( k) / N graph for large k. Wh en using a larger number of tracers 
these fl.uctuations will be smaller. Thus here is another manifestation of the complicated 
nature of the heteroclinic tangle. It also demonstrates the diffi.culties one would encounter 
when using a scheme that tracks the lobe boundaries, with the lobe interior becoming 
increasingly narrow. 

3.2.2 Poincaré section 

The obtained data can also be used to make a Poincaré section. All the actual positions of 
the particles after each cycle are drawn in a single plot. They are all also mirrored in the 
origin to account for the other entrainment lobe. For the case of W 8 = l.61r the result is 
presented in figure 3.15. The other four Poincaré sections are given in appendix E. Three 
clearly distinct regions are visible where no partiele has penetrated. The largest region is 
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the vortex core, where no particles can penetrate due to the elliptic nature of the vortex 
centre. To the left and to the right of the vortex core there are two additional regions. 
These regions are absent or much smaller in the other Poincaré sections in appendix E. 
In order to study these regions in more detail, another simulation has been performed. 
One passive tracer was placed inside the left region. Then the Poincaré map was recorded 
for 500 cycles. The obtained Poincaré map is depicted in figure 3.16. The tracer alternates 
between the two regions left and right from the vortex core. If the tracer is situated in the 
left region on a time nT, it will be in the right region one period T later, and vice versa. 

Figure 3.14: Geometry of Enp-k+I D for several values of k. 'L' stands for the intersection 
of E with the detrainment lobe transporting fiuid to the left, 'R' is the intersection of E 
with the detrainment lobe transporting fiuid to the right. Perturbation frequency W 5 = 0.81r. 
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Figure 3.15: Poincaré section after 50 cycles of 2 x 1631 particles initially in the entmin­
ment lobes on a grid of mesh 0.01. The unstable manifolds are depicted withsolid lines. 
The stable manifolds are shown with dash-dotted lines. Perturbation frequency W 5 = 1.6n. 
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+ 

Figure 3.16: Poincaré map after 500 cycles of one tracer, initially placed in the region to 
the lejt of the vortex core (see figure 3.15}. The cross indicates the vortex position. 

The resulting structure is known as a resonance band or stochastic layer (see Arnol'd & 
Avez (1968) for more details). It has two associated coefficients pand q, originally defined 
for the unperturbed case. Consicier an unperturbed elosed invariant orbit with a periodic 
point. A tracer put there returns to its original position after p cyeles of the Poincaré 
map. In the process it makes q complete revolutions around the vortex core. Define m 
as the number of cyeles the tracer takes to complete one revolution, i.e. m = pjq. In the 
perturbed case these invariant orbits are destroyed. A resonance band remains. However, 
it is still possible to determine p and q, in the same vein as before. In this case there is 
a p: q = 2: 1 resonance band. 

In the Poincaré sections of the partiele transport simulations at higher perturbation 
frequencies (ws = 2-rr, 3.21!", see appendix E) higher-order resonance bands are visible, 
with p : q = 4 : 1 and p : q = 10 : 1. This behaviour is verified by additional simu­
lations of the transport of one partiele, placed in one of the blank subregions. For the 
duration of the 500 elapsed cyeles the partiele moves in a counterelockwise sense from one 
subregion to the next in one cyele. As the frequency increases more blank subregions will 
occur. Due to point symmetry in the vortex position only even values of pare allowed. It 
is plausible that frequencies between 27r and 3.21!" can be found that give resonance bands 
with p = 6, 8. 

Consicier Rom-Kedar & Wiggins (1991) for another example of resonance bands in 
two-dimensional fiows. 

A further characteristic of the mixing efficiency is the area of the interior region that 
is involved in mixing, the so-called mixing area (Rom-Kedar et al. 1990). This can be 
considered a possible quantification of the mixing efficiency. The mixing area is apparent 
from the Poincaré sections as all the areas reached by partieles, i.e. regions with black 
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dots. The mixing area gets better defined as more cycles have elapsed, and by using more 
particles as initial condition. Consiclering the five Poincaré sections it can be concluded 
that the mixing region is largest for the simulation with w5 = l.61r. Both for larger and 
smaller frequencies the mixing area is smaller. So a maximum in mixing area is expected 
for a frequency close to W 5 = l.61r. Note, however, that the residence time of particles 
inside the interior region increases with increasing perturbation frequency. The residence 
time is an important property in reactive systems, as an indication of the time that the 
reactive components are in contact. 



Chapter 4 
I 

Labaratory experiments 

4.1 Experimental set-up 

The laboratory experiments were performed in a rectangular plexiglass tank of dimensions 
length x width x height = 200 x 40 x 30 cm. This tank was mounted on a turntable, centred 
on the axis of rotation. It was filled with water to a depth of H = 20 cm. A perforated 
tube with 32 holes, distributed uniformly over a length of 15 cm, was placed vertically 
along the axis of rotation. A camera was mounted around 1 m above the water surface. 
Before each experiment, this system was allowed tospin up for at least halfan hourat an 
angular velocity of n = 0. 7 rad s-1, so that the water was in a solid-body rotation. Th en 
a vortex was created by syphoning water through the perforated tube. The inward flow 
towards the tube is deflected by the Coriolis force, resulting in a cyclonic vortex. After a 
certain time the tube was removed manually. Next the shear was generated by a change in 
rotation velocity (see section 2.2.2). Two methods were used to study the flow. By adding 
dye the flow was visualised. Quantitative information was gained from partiele tracking 
experiments. The experiments are discussed in sections 4.2 and 4.3, respectively. 

4.1.1 Vortex characteristics 

The vortex is created by syphoning fluid through the perforated tube. Due to the Coriolis 
force the inward flow towards the tube results in an increase of the circulation r. Consider, 
in two dimensions, a material contour C enclosing the sink tube. For a barotropic and 
inviscid fluid, the change in the circulation around this contour can be written as 

nr 1 
Dt = -2 Je (fl x v) · ds, ( 4.1) 

with ds an infinitesimal segment of contour C. The contour C is chosen to be a circle of 
radius r. It is assumed that the velocityvis of equal magnitude over this circle and that v 
points radially inward. N ow the change in circulation is: 

nr 
Dt = -20v · 2nr = -20q2n, (4.2) 

39 
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Figure 4.1: Time evolution of a dye experiment. The images are shown at time intervals 
of 2 s. The flow parameters are ~n = 0.05 rad s-1 , r = 6.3 x 10-3 m2 s-1 , c = 0.4, 
and fs = 0.1 s-1 . Between (a) and (f) one full period of the perturbation has elapsed. 
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Figure 4.2: Time evolution of a numerical contour kinematics simulation. The images 
are shown at time intervals of 2 s. The flow parameters are "(o = 6.3 x 10-3 , a 0 = 0.1, 
fs = 0.1, and E = 0.4. Between (a} and (!) one full period of the perturbation has elapsed. 
Each image (a)-(!) corresponds in phase of the perturbation to the same image (a)-(!) m 
figure 4.1. 
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with q2v a two-dimensional area flux. To account for the depth of the fluid H, q2v is 
equivalent to q3v / H in three dimensions. Sirree the three-dimensional flow rate q3D is 
negative (fluid is being extracted), the change in circulation is positive. Fora fluid volume V 
removed in this way at a constant flow ra te q3v, the resultant circulation is 

r = 20V 
H. (4.3) 

The circulation is not constant in time. As was found experimentally by Kloosterziel & 
van Heijst (1992), the decay of vortex velocities, and thus the circulation, is close to 
exponential for small Rossby numbers. This exponential decay is expected from linear 
Ekman dynamics, and has an associated timescale Te= Hf(v0) 112 , known astheEkman 
timescale. In the experiments presented in this chapter, sirree for water at room tempera­
ture v = 1.0 x 10-6 m2 s-1 the Ekman timescaleis Te = 239 s. The time evolution of the 
vortex circulation r can thus be described by 

r( t) = r o exp (-; e) , (4.4) 

with f 0 the initial circulation. The same exponential time dependenee is true for the 
constant part of the shear strength, denoted by a0 . This constant shear also decays in 
time with an associated timescale Te. The shear perturbation, however, is continuously 
forced. The amplitude of the perturbation remains the same throughout each experiment. 

4.2 Dye experiments 

Dye experiments were used to gain qualitative information about the flow. Fluorescent dye, 
fluorescein, was added near the top stagnation point. The dye is advected along the unsta­
ble manifold of this stagnation point. As such the unstable manifold was visualised, and 
recorded with the camera. A collection of snapshots from the recording of an experiment 
is given in figure 4.1. 

In this experiment a volume V= 905±5 ml was syphoned through the tube, resulting in 
a vortex with initial circulation f 0 = (6.3±0.2) x 10-3 m2 s-1 (equation (4.3)). The basic­
state shear strength a0 = 0.1 s-1 due to the increase in angular velocity ó.O = 0.05 rad s-1 . 

The perturbation amplitude E = 0.4 and frequency fs = 0.1 s-1. 

From the images in figure 4.1 the structure of the unstable manifolds is clearly visi­
ble. During one period of the perturbation the change in shape shows the fluid exchange 
mechanism of the turnstile. The shape of the manifold is again the same after one period, 
as expected. The lobes are elongated towards the top right and bottorn left, along the 
unstable manifolds of the hyperbalie points. This was also evident from the numerical 
simulations. 

The images are symmetrical with respect to the vortex centre. The axis through the 
vortex centre and both hyperbalie points is tilted in clockwise direction. According to 
theory, this axis should be perpendicular to the shear flow. This observation will be 
further addressed insection 4.3. 
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A numerical simulation was performed with exactly the parameters as prescribed in 
this laboratory experiment. The parameters were 'Yo = 6.3 x 10-3 m2 s-1, a 0 = 0.1 s-1 , 

is= 0.1 s- 1, and E = 0.4. The contour was placed around the top stagnation point. Part 
of the evolution of this contour in time is shown in figure 4.2. The shapes of the contours 
resembie the dye lines from figure 4.1. However, the axis through the vortex centre and 
the stagnation points is now exactly vertical. No tilt of this axis occurs here due to the 
vorticity of the point vortex being concentrated in one point. 

Given the overall similarities between figures 4.1 and 4.2, it can be concluded that the 
point-vortex model used in the numerical simulations is iudeed a good approximation to 
these laboratory experiments with a sink vortex. 

4.3 Partiele tracking experiments 

Partiele tracking experiments are performed to gain quantitative information about the 
flow. The analysis involves the following steps. 

A large amount of passive tracer particles (Optimage, diameter 250 J..tm) float at the 
water surface. They are transported along with the flow. The flow is monitored with an 
SMD 1M15 digital camera of resolution 1024 x 1024 pixels and frame rate 7.5 Hz. The 
acquired images are processed with a high-resalution partiele velocimetry method (HPV). 
HPV combines two techniques: partiele tracking velocimetry (PTV) and partiele image 
velocimetry (PIV). In PTV, individual particles in one frame are matched with candidate 
particles in the next frame. PIV consists of determining the averaged displacement of 
particles in corresponding image segments of subsequent frames. HPV combines both 
methods in that the PIV estimate is used as input for the PTV processing. A more 
detailed description of the used HPV method can be found in Bastiaans et al. (2002) and 
references therein. 

~~ ~~-~~~~~~-.w-~~~~~~~~ 
~~--==~~-- ;;:_::-.;:,.~~-~=---:;;:;:~~ ~~~-= ... ~~~ ;; ~-:..-..::.....~ ~ ~~~~~~~~-~~~----<:' ~-
--:.~-=---r_ -..:i!::~ .:_...._ ~-~ ---------~----:-.::.u---~ -

~~'r:.~~ ~-=-:~-.:.:~-;..~~::;::~ ~~~__....:~~~­
~~:. :=-~ ~!-?...:-==.. :---~-~-::~~-----~~~~~ 
~~~-~~~F=-~~== =~~~.:~~ ..:z-~~-=_.o::e-:_ ___, __ ~ -- --~- --- ~- .. ........,." 
.:-:;.:-~-----~~~~ --~--~~...: ~~~~~~ ---- - ~~ -- - -- .....,.__ ~ 

Figure 4.3: Example result from the HPV processing: an unstructured velocity field. 
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Figure 4.4: Profiles along x = 0 for the velocity component u in the x-direction. Graphs (a) 
at t = 10 s, (b) at t = 40 s, and (c) at t = 70 s are taken at times corresponding with a 
maximum in shear strength a. Graphs (dj at t = 25 s, (e) at t = 55 s, and (!) at t = 85 s 
are at a minimum of a. 

Resulting from the HPV methad is a collection of individual velocity veetors for selected 
times. An example result is shown in figure 4.3. These veetors are then interpolated on a 
regular grid using a Gaussian interpolation scheme. From this velocity distribution other 
quantities of interest (e.g. stream function, vorticity, etc.) can be computed. 

Two different partiele tracking experiments have been performed. In one experiment 
the shear flow has been investigated. In the other experiment the influence of the shear 
flow on a vortex has been monitored. 

4.3.1 Shear flow 

Important properties of the shear flow for the presented experiments are the linearity and 
the time dependence. These properties have been investigated with a partiele tracking 
experiment. After an half-hour spin-up at 0.7 rad s-1 (at t = 0 s) the rotation velocity S1 
was modulated as in equation (2.27), with b.S1 = 0.05 rad s-1, E = 0.4, and fs = w5 j21f = 
0.1 s-1. The recordings were processed with the HPV software. 

Velocity profiles through the centre of the tank at different times are shown in figure 4.4. 
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Figure 4.5: Time dependenee of the shear strength a. The dots are the data points from 
the experiment. The dashed line depiets the theoretica[ prediction from equation (2.28) 
fort« TE. 

It is apparent that the shear flow is not linear across the tank. However, in the centre there 
is a region where an approximately linear shear is present. This region extends roughly 
from y = -80 to 80 mm. The velocity v in the y-direction is considerably smaller than u 
in this centre region (less than 0.5 mm s-1 ). The rather violent forcing to generate the 
shear causes surface waves, and other effects near the tank walls. These influences distort 
the flow and cause the flow near the walls to deviate from a linear shear flow. The region 
of interest for the other experiments is the centre region, as the vortex is generated in the 
centre of the tank. Hence, the vortex will most likely not be influenced by these disturbing 
effects near the walls. 

It is furthermore observable that the shear strength a gradually decreases with time. 
The decreasing slope indicates the decay of the shear flow. This is a manifestation of the 
Ekman decay. 

The time dependenee of the shear strength a is also further investigated. For one 
period of the perturbation (from t = 10 to 20 s) several velocity profiles were constructed, 
and the slope of the profile from y = -80 to 80 mm was determined using a least-squares 
method. The results are presented in figure 4.5. The large spread of the experimental 
data is an indication of a rather large experiment al error. This is again caused by the 
vehement forcing and the accompanying surface waves. There is however still a trend 
visible. The harmonie variation is apparent. There is a lag in a of about 1 s with respect 
to the theoretica! prediction. The extrema are also greater than is expected from theory. 

The shear flow can be assumed linear in the centre region of the tank. There is an 
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Figure 4. 6: Vorticity contour plot at t = 50 s of the flow due to a vortex in a perturbed 
shear. The solid lines correspond to positive values of vorticity and the dotted lines to 
negative values of vorticity. The increment between contours is 0.2 s-1 . Values on the 
axes are in millimetres. The flow parameters are f 0 = (6.3 ± 0.2) x 10-3 m2 s-I, ~n = 
0.05 rad s-1, E = 0.4, and fs = W 8 j27r = 0.1 s-1 . 

approximately harmonie time dependenee of the shear strength. The actual shear strength 
may vary considerably because of infiuences caused by the forcing. 

4.3.2 Vortex in shear 

In this partiele tracking experiment a vortex was generated, which wasthen subjected toa 
perturbed shear. In this experiment the camera frame rate was 15Hz. Water was syphoned 
through the perforated tube for 15 s. The volume of water withdrawn was V = 900 ± 5 ml, 
resulting in a vortex with initial circulation f 0 = (6.3 ± 0.2) x 10-3 m2 ç 1 . The syphoning 
ended 25 s before t = 0 s. Then, at t = 0 s, the rotatien velocity n was modulated as 
in equation (2.27), with ~n = 0.05 rad s- 1, E = 0.4, and fs = W 8 j27r = 0.1 s-1. The 
recordings were again processed with the HPV software. From the obtained interpolated 
velocity veetors a vorticity distribution was calculated by finite-difference approximations. 

An example vorticity distribution (for t = 50 s, corresponding to a maximum of the 
rotatien velocity 0) is depicted in figure 4.6. The vortex is visible as a slightly elliptic 
patch of positive vorticity. The long axis of the ellipse is not aligned with the y-axis, 
as was also noticed in the dye experiment in figure 4.1. This contrasts with the contour 
kinematics simulations with a point vortex. One cause of this difference is the vorticity 
having a continuous distribution instead of concentrated in a single point. The shape of 
the vorticity distribution can change due to the ambient flow, while the vorticity of a point 
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vortex always remains in the same point. The vorticity being spread out gives another 
cause for the different behaviour. Stripping of vorticity takes place at the extremeendsof 
the vortex. Vorticity is advected away from the vortex along the unstable manifolds, also 
decreasing its circulation in addition to Ekman decay and horizontal ditfusion of vorticity. 
Vortex stripping of continuous vorticity patches in strain or shear is extensively investi­
gated with numerical simulations by Dritschel (1989), Legras & Dritschel (1993), Legras & 
Dritschel (1994), and Mariotti .-el al. (1994). 

The shear flow is apparent from the negative background vorticity present over the 
domain, as mentioned insection 2.2.2. The shear flow is manifested by a constant negative 
vorticity equal to the shear strength a: over the entire tank. 

In order to further investigate the stripping of vorticity, vorticity plots from one period 
of the perturbation are depicted in figure 4. 7. The vorticity scale ranges from -0.2 s-1 

(black) to 0.2 s-1 (white). Using this scale it is possible to discern the adveetion ofvorticity 
in the lobes away from the vortex. The shapes of the gray areas at the extreme ends of 
the vortex match the shapes of the dye lines in figure 4.1. It can be observed that the lobe 
dynamics provide a mechanism for the adveetion of vorticity. The variation of the shear 
strength a: is apparent from the greyscale level of the background. The dark background 
colour in figures 4. 7 a,f is a manifestation of the shear strength reaching its maximum value. 
A lighter background colour as in figures 4. 7c,d indicates a smaller shear strength at those 
times. 
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Figure 4. 7: Vorticity plots of the flow due to a vortex in a perturbed shear. Plots (a) 
at t = 50 s and (f) at t = 60 s are at a maximum of the rotation velocity n. The 
images are shown at time intervals of 2 s. The vorticity range is limited to emphasise 
the vorticity filaments at the extreme ends of the vortex. The flow parameters are f 0 = 
(6 .3 ± 0.2) X 10-3 m2 s-1, .6.0 = 0.05 rad s-1, E = 0.4, and fs = w8 /27r = 0.1 s-1 . 



Chapter 5 

Conclusions 

The mixing properties of a point vortex in a harmonically perturbed linear shear flow have 
been investigated by numerical simulation. The unperturbed Hamiltonian system is fully 
integrable for all time. However, due to the preserree of the perturbation chaotic partiele 
paths are inevitable. The occurrence of chaotic partiele paths results in complicated fluid 
mixing and transport properties of the system. Because of the chaotic behaviour it is not 
convenient to describe the flow by monitoring individual partiele paths. Instead, concepts 
from dynamica! systems theory are used. 

There are two hyperbolic points present in the flow. Their associated stable and unsta­
ble manifolds organise the flow. In the Poincaré map these manifolds retain their shape, 
since each iteration of the Poincaré map occurs at the same phase of the perturbation. The 
intersections of the stable manifold of one hyperbolic point and the unstable manifold of 
the other hyperbolic point in the Poincaré map define enclosed areas, the so-called lobes. 
Fluid exchange between the region around the vortex and the exterior can bedescribed in 
terms of these lobes. There are two entrainment lobes. Fluid inside one of the entrainment 
lobes at a certain time will be entrained in the vortex region in de following period of the 
perturbation. In the meantime, two detrainment lobes account in the same vein for the 
detrainment of fluid. The areas of the entrainment and detrainment lobes indicate the 
amount fluid exchange per cycle. 

The manifolds are constructed with numerical simulations using the contour kinematics 
method. As the manifolds are known the lobes can be defined. Two methods todetermine 
the lobe area have been used. The fust method consists of direct numerical integration 
around the parts of the manifolds enclosing a lobe. The second method is to calculate the 
Melnikov function. The Melnikov function is an analytica! expression that can be used 
to give an approximation of the lobe area for small perturbation amplitudes. A great 
advantage of the Melnikov function is that it only needs to be calculated once for a given 
geometry, while using the first method a new simulation has to be performed for each new 
set of parameters. The Melnikov approximation of the lobe area has a remarkably good 
correspondence to the result from the first method. 

The notion of chaotic dynamics has been illustrated by further contour kinematics 
simulations. The contour exhibits stretching and folding while being advected by the flow. 

49 
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In the Poincaré map Smale harseshoes are present, causing the stretching and folding. The 
existence of Smale harseshoes is evidence of chaotic dynamics. Another argument in favour 
of the chaotic dynamics is the length stretch of material elements. The length stretch is 
exponential for the flow under study. Exponential stretch is expected in chaotic dynamics, 
as opposed to linear stretch in the unperturbed flow. The length stretch increases faster 
for higher perturbation frequencies, sirree the contour is folded more often in that case. 

A further variation on the contour kinematics simulations includes perturbation of the 
vortex strength instead of the shear strength in a simulation. The lobe area does not 
change in this case. There is only a half-period phase shift with respect to the former case. 

Also the influence of exponential vortex decay has been investigated. The vortex de­
cays due to Ekman suction, diffusion of vorticity, and vortex stripping. To simulate the 
decay, the point vortex strength was decreased exponentially in some contour kinematics 
simulations. No fundamentally different behaviour from the non-decaying simulations was 
found as long as the e-folding timescale was not too small. 

An alternative method to investigate the fluid transport is to monitor the adveetion 
of a large amount of passive markers. The entrainment lobes are filled with markers on a 
regular grid. The particles will be transported to the interior region during the next cycle 
of the perturbation. Then the position of each marker after each iteration of the Poincaré 
map is recorded. The escape time of each marker can now be defined as the cycle during 
which the marker is transported to the exterior flow. As such an escape time distribution 
is obtained. The escape time distribution gives the number of particles that escapes during 
each cycle. A related quantity is the escape area distribution, which can be interpreted 
as the number of particles that has escaped the interior region up to a given cycle. Both 
distributions can be split into two parts. Sirree the system contains two detrainment lobes 
transport takes place in two directions. The escape time and escape area distributions that 
have been determined show that the time of residence in the interior region for markers 
is larger for higher perturbation frequency. There is also a paradoxkal behaviour with 
respect to the direction of the transport. Fluid entrained from one side of the vortex is 
more likely to be detrained after almost a full revolution around the vortex. This is due to 
the lobe dynamics. The detrainment lobe transporting fluid to the far side is encountered 
first during the revolution around the vortex. 

The data from these simulations can also be visualised in another way to gain additional 
insights. Sirree the times at which the data were recorded all correspond to the same phase 
of the perturbation they form a Poincaré section. From the Poincaré section regions can 
be recognised that do not participate in the mixing. These regions are never penetrated 
by particles emanating from the entrainment lobe. The section around the vortex is an 
example. There are closed elliptic partiele trajectories around the vortex position that 
are largely unaffected by the perturbation. In some cases other blank regions appeared 
as well. To further investigate those subregions, markers were placed inside these regions. 
Simulation of the adveetion of these markers showed that the markers move from subregion 
to subregion while rotating around the vortex section. These subregions are known as 
resonance bands or stochastic layers. The number of subregions found increased with 
increasing perturbation frequency. The remairring area of the interior region, i.e. the parts 
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that have been reached by markers, is known as the mixing region. There appears to be 
a maximum size of the mixing region, and an associated perturbation frequency. The size 
of the mixing region decreases if the perturbation frequency is increased. The same is true 
for lower perturbation frequencies than this value. 

Labaratory experiments have been performed in an attempt to visualise the manifolds 
in a real flow. These experiments were carried out in a tank mounted on a rotating 
table, to obtain a quasi-two-dimensional flow. A linear shear flow with a time-periodic 
perturbation was generated by a variation of the rotation velocity. By syphoning water 
through a perforated tube a vortex was generated. The unstable manifolds were visualised 
by inserting dye into the flow near one of the two stagnation points. The manifold geometry 
observed here matched the geometry from a contour kinematics simulation remarkably well. 
It is striking that the results from experiment and simulation are so alike since a point 
vortex is only a very crude approximation of a laboratory vortex with a spatial vorticity 
distribution. 

Another way of monitoring the flow in a laboratory experiment is with high-resolution 
partiele velocimetry. Subsequent images of a large number of passive tracer particles float­
ing at the water surface are analysed digitally to determine the partiele paths, and hence 
the velocity vectors. The velocity veetors can then be interpolated on a rectangular grid, to 
calculate other quantities such as vorticity. Two partiele tracking experiments have been 
performed. In one experiment the linearity and time dependenee of the shear flow was in­
vestigated. In the centre region of the the tank the shear flow was found to be reasonably 
linear. Closer to the edges there was no linear shear flow. The vehement forcing caused 
rather large disturbances near the tank walls. The time dependenee was also found to be 
approximately harmonie, be it with a large spread in the data points. This is again due to 
the forcing and associated disturbances. In the other experiment the vorticity distribution 
of a vortex was monitored while being subjected to the perturbed shear flow. It was ob­
served that the lobe dynamics provide a mechanism for adveetion of vorticity away from 
the vortex. The shapes of the lobes as found in the images of the dye experiment matched 
the shapes as found in the vorticity plots. 

Emanating from this work there are some suggestions for further research on this sub­
ject, both numerically and experimentally. In some numerical simulations an interesting 
subdivision of the vortex region was observed. Resonance bands were present, with related 
harriers to transport. A more detailed study of the structure of this region is possible 
with adveetion simulations at higher resolution and with more markers. In the labora­
tory experiments the upper limits of the current set-up were reached with regard to the 
perturbation frequency. A turntable with a more powerful forcing may allow for higher 
perturbation frequencies. A larger-seale set-up can be used to perform partiele tracking 
experiments at a higher resolution, to investigate the vorticity distribution in more detail. 
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Appendix A 

Parametrisation of the unperturbed 
manifold 

The stream function for the unperturbed flow due to a point vortex in a linear shear flow 
is (2.2) 

w = ~ay2 - :!._ ln(x2 + y2
) + c. 

2 47f 
(A.1) 

The two stagnation points of the flow are given by 

(x, y) = (0, ±rs) = ( 0, ±v;;f) . (A.2) 

By evaluating the stream function in one of the stagnation points the equation for the 
separatrix is obtained 

x = ± r; exp ( ~; - 1) -y2, (A.3) 

where the plus sign is for We and the minus sign for Ww (figure 2.1). The adveetion 
equations are 

dx aw "i y 
-=-=ay--
dt oy 27f x2 + y2 ' 
dy aw 1 x 
dt - ox 21r x2 + y2 · 

Then use (A.3) in (A.4) to obtain for dyjdt: 

dy = ±:!._ 
dt 27f 

r; exp ( ~ - 1) - y2 

r; exp ( ~- 1) 
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(A.4) 

(A.5) 
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The parametrisation of the separatrix is given by 

l
t _ 27r ly(t) r; exp (~- 1) 
dt = ±- s dy, 

0 I 0 I ( -2 ) -V r; exp ~ - 1 - y 2 

(A.6) 

which can be used to calculate y(t) for all t. y(O) is defined to be 0. If y(t) is known, x(t) 
can be computed from (A.3). Thus the full parametrisation (x(t), y(t)) is obtained. 



Appendix B 

Derivation of the Melnikov function 

The stream function for the flow due to a point vortex in a perturbed linear shear flow is 

(B.1) 

where E is the amplitude of perturbation, and Ws the frequency of perturbation. The 
following adveetion equations result from this stream function 

dx ~ y 
-d = ao[1 + E cos(wst)]y- -

2 2 2 , 
t 7rX +y 

dy ~ x 
-

dt 27r x 2 + y 2 · 

From (2.10), the functions fi and 9i are 

~ y 
h = aoy - -2 2 + 2' 

7r x y 
~ x 

h=-2 2+ 2' 7rX y 

91 = aoy cos(wst), 

92 = 0. 

The Melnikov function (2.15) is then 

~ao 100 

xy M(to) = --
2

-
2 2 

cos[ws(t + t0 )]dt 
7r -00 x + y 

~ao 100 

xy . . = --
2

- 2 2 [cos(wst) cos(wsto) - sm(wst) sm(wsto)]dt 
7r -00 x + y 

~ao . 100 

xy . = - sm(wsto) 
2 2 

sm(wst)dt. 
7r 0 x +y 

(B.2) 

(B.3) 

(B.4) 

The last step comes from the fact that x is an odd function of time, while y is even in 
time. So only the sine part contributes to the integral. Now use the equation for the 
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separatrix (A.3). The equation for We is used. By symmety the result is also valid for Ww· 
Now equation (B.4) can be written as 

00 y J r'; exp (~ - 1) - y2 

')'O:o 1 V r. M(to) = - sin(wst) ( 
2 

) sin(wst)dt. 
7f o r'; exp ~ - 1 

s 

(B.5) 

Now rewrite the integral over t to an integral over y with the parametrisation (A.6) of the 
separatrix 

1
oo 1r• 27f r;exp (~ -1) _ 

dt -7 - dy, 
0 0 ')' J ( -2 ) -r; exp ~ - 1 - y2 

and define the function f ( Ç) as 

r~ 2 r; exp (~.2 - 1) 
f ( Ç) = } o _n ---;:::========diJ. 

0 
')' r'; exp ( ~ - 1) - i? 

This leaves for M ( t 0 ) 

M(to) = 2ao sin(wsto) 1r. y sin[wsf(y)]dy. 

Finally, substituting ( = y2 /r; and p = W8 /2a0 gives 

M(to) = _I_P(p) sin(wsto), 
27f 

with 

P(p) = 11 

sin(pj(()]d(. 

The function P(p) can be evaluated numerically, and is shown in figure 3.3. 

(B.6) 

(B.7) 

(B.S) 

(B.9) 

(B.10) 

Another interesting case is to perturb the vortex strength ')' instead of the shear 
strength a 

')'(t) = ')'o[1 + E cos(wst)]. (B.ll) 

N ow the adveetion equations are 

dx ')'o y ')'o Y 
-d = ay- -

2 2 2 - E-
2 2 2 cos(wst), 

t 7fX +y 7fX +y 
dy ')'o x ')'o x 
dt 

- 2 2 
+ E-

2 2 
cos(wst). 

27f x + y 27f x + y 

(B.12) 



In this case the functions /i and 9i are 

1'o y 
h=ay--2 2+ 2' 

1fX y 
)'o x 

12=-2 2+ 2' 1fX y 
)'o y ( ) 91 = -- 2 2 COS W 8 t , 
27r x + y 

)'o x 
92 = - 2 2 cos(wst). 

27r x + y 
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(B.13) 

Inserting these functions into equation (2.15) gives the same result as in the case of per­
tmbed shear, except for a change of sign 

M(to) =- )'o P(p) sin(wsto). 
27r 

(B.l4) 

The change of sign corresponds to a half-period phase shift between the two cases. Both 
lead to the same rate of fiuid exchange, and they differ only by a phase factor. 
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Appendix C 

Exponential stretch near P+ 

Consicier the unperturbed flow near the hyperbalie point P+· A passive contour placed 
around P+ will be exponentially stretched in one direction, and exponentially contracted in 
another. The stretch can be understood as follows. Near P+, define alocal y-coordinate fj = 

y- r 8 • The adveetion equations are 

dx - 'Y rs + fj 
dt = a(rs + y)- 27r x2 + (rs + iJ) 2 ' 

dfj 'Y x 

dt 27r x 2 + (rs + fj)2 · 

In alocal first-order Taylor expansion in x and fj this reduces to 

dx _ 'Y ( 1 1 -) _ - = a(rs + y) - - -- 2,Y = 2ay, 
dt 27r rs T 8 

diJ 'Y 1 
-=--x =ax. 
dt 27r r; 

Scale fj by v'2: y* = v'2fJ 
dx rn * 
dt = v2ay, 

dy* 
dt = J2ax. 

The solution to this system of coupled differential equations is given by 

x(t) =A exp( J2at) + B exp( -J2at), 

y*(t) = Aexp(J2at)- Bexp(-J2at). 

To interpret the solution, introduce new coordinates Ç =x+ y*, TJ = y*- x: 

Ç = 2Aexp(J2at), 

TJ = -2B exp( J2at). 
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(C.1) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 
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From equation (C.5) it is clear that there is exponential stretch in the direction of Ç, and 
exponential contraction in the direction of TJ. By incompressibility the area enclosed by a 
contour must be preserved. Therefore A and B must be of equal magnitude. 

Going back to the local coordinates x and y, the result is an exponentially expanding 
term ,....., exp( J2at) along the line y = ~J2x and an exponentially diminishing term rv 

exp( -.J2at) along the line y = -~J2x. There is exponential stretching or exponential 
contraction along the directions y = ±~J2x, the tangent lines of the separatrix in P+· 



Appendix D 

Geometry of lobe intersections 

The geometries of the lobe intersections En p-k+l D for the partiele transport simulations 
are shown in figures D.l and D.2, for selected values of k. In figure D.l the intersections 
for the simulation with perturbation frequency W 5 = 0.47r are depicted, while figure D.2 
contains the intersections for the simulation with perturbation frequency w5 = l.61r. The 
results for the other simulation, with W 5 = 0.81r, are shown in figure 3.14. 
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Figure D.l: Geometry of Enp-k+l D for several values of k. 'L' stands for the intersection 
of E with the detrainment lobe transporting fiuid to the lejt, 'R' is the intersection of E 
with the detrainment lobe transporting fiuid to the right. Perturbation frequency Ws = 0.47f. 
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Figure D.2: Geometry of Enp-k+l D for several values of k. 'L' stands for the intersection 
of E with the detrainment lobe transporting fiuid to the left, 'R' is the intersection of E 
with the detrainment lobe transporting fiuid to the right. Perturbation frequency w5 = l.61r. 
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Appendix E 

Poincaré sections 

The Poincaré section for the partiele transport simulation with perturbation frequency Ws = 

0.81f is given in figure E.l. N = 7808 particles were initially placed in entrainment lobe E 
on a grid with mesh 0.01. Another Poincaré section is depicted in figure E.2, for Ws = 

0.41f. N = 4741 particles were initially place in lobe E on a grid with mesh 0.02. 
In figures E.3 and E.4, two more Poincaré sections are shown to further illustrate the 

emerging resonance bands. Figure E.3 shows the evolution of N = 3202 particles, initially 
placed in E on a grid with mesh 0.005 for Ws = 21f. In figure E.4 N = 2752 particles are 
placed in Eon a grid with mesh 0.002 for W 8 = 3.21f. 

In all figures in this appendix all points are also mirrored in the origin to account for 
the other entrainment lobe. 
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Figure E.l: Poincaré section aft er 50 cycles of 2 x 7808 particles initially in the entminment 
lobes on a grid of mesh 0.01. The unstable manifolds are depicted with solid lines. The 
stable manifolds are shown with dash-dotted lines. Perturbation frequency W 5 = 0.81r. 
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Figure E.2: Poincaré section after 50 cycles of2x4741 particles initially in the entminment 
Zo bes on a grid of mesh 0. 02. The unstable manifolds are depicted with solid lines. The 
stable manifolds are shown with dash-dotted lines. Perturbation frequency W 8 = 0.4n. 
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Figure E.3: Poincaré section after 50 cycles o/2 x 3202 particles initially in the entminment 
lobes on a grid of mesh 0. 005. The manifolds are left out. The p : q = 4 : 1 resonance 
band is visible as the Jour blank regions around the blank vortex region. Perturbation 
frequency W 8 = 27!' . 
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Figure E.4: Poincaré section after 50 cycles of2 x 2752 particles initially in the entminment 
lobes on a grid of mesh 0. 002. The manifolds are left out. The p : q = 10 : 1 resonance 
band is visible as the ten small blank regions around the blank vortex region. Perturbation 
frequency Ws = 3.27!". 
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Appendix F 

Technology assessment 

The relevanee of the study of the time-perturbed shear-vortex flow is twofold. It has 
applications in the research of two-dimensional turbulence, as well as in the study of 
stirring and mixing. 

Two-dimensional fiows are common in the fiuid layers covering the Earth: both atmo­
spheric and oceanic fl.ows are to good approximation two-dimensional. The study of two­
dimensional turbulence aids in understanding these fiows. The oceans play an important 
role in large-scale heat and biomass transport. The knowledge of oceanic and atmospheric 
dynamics (geophysical fl.uid dynamics) provides tools to construct elimate models. A bet­
ter understanding of geophysical fl.uid dynamics is useful for predicting tomarrow's weather 
and even the long-term evolution of our climate. 

Stirring and mixing are complex phenomena that are of paramount importance to 
industry. Improving the mixing of reactantscan greatly increase the efficiency of chemical 
reactions, by increasing the contact surface. Effective stirring also enhances processes in 
which substances need to be dissolved. The production efficiency can be increased by 
application of efficient stirring and mixing. 
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