
 Eindhoven University of Technology

MASTER

From supersaturated water vapour to supercooled liquid water
analysis and experiments

Holten, V.

Award date:
2004

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/40c7ff07-8f8e-4a1f-a940-b9e05967804e


T u /e technische universiteit eindhaven 

From supersaturated water vapour 
to supercaoled liquid water; 
analysis and experiments 

Vincent Holten 

R-1634-A 

April 2004 

Supervisors: 
prof. dr. ir. M.E.H. van Dongen 
D.G. Labetski 

Eindhoven University of Technology 
Gas Dynamics Group 

I department of applied physics 



Abstract 

Homogeneaus nucleation rates of water between 1014 and 1017 m-3s- 1 have been 
measured in an expansion wave tube, at temperatures of 200-240 K, using helium 
as a carrier gas at atmospheric pressure. At low temperature, a large discrepancy 
between the experimental data and the predictions of the classical nucleation theory 
(CNT) is found. To describe the measurements better, the temperature dependenee 
of the CNT is adjusted, the supersaturation dependenee being corrected as well. The 
corrected theory is found to agree both with our data and with the measurements of 
Wölk et al. [J. Wölk and R. Strey, J. Phys. Chem. B 105, 11683 (2001)]. 
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1. Introduetion 

The condensation of water is an everyday phenomenon. When water boils, a cloud of 
tiny dropiets is formed in the cold air above it. Clouds in the sky also contain liquid 
water drops, even though their temperature can be far below 0 °C. 

Condensation, the formation of dropiets from a supersaturated vapour, consists of 
two steps: first, a few dozen molecules have to form a cluster that is stabie - small 
clusters have a large probability of falling apart again. This is a statistica! process, 
called nucleation. If the cluster consists only of vapour molecules, then we call the 
process homogeneaus nucleation; if other substances - such as dust particles - induce 
the nucleation, we have heterogeneaus nucleation. 

The second process is droplet growth: the growth of the molecular clusters to mac­
roscopie droplets. It is this process that allows us to see the condensation; nucleation 
itself is an invisible process. 

In this research we focus on the homogeneaus nucleation rate: the speed of nucle­
ation, that is, the number of stabie clusters that are formed per unit of space and time. 
In this report we will present our experimental nucleation rate measurements as well 
as various theoretica! descriptions of this process. 
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2. Nucleation Theory 

2.1 General 

2.1.1 Capillarity approximation 

Before quantities such as the nucleation rate can be derived, a model for the cluster 
bas to be adopted. Most theories are based on a very simplified model called the 
'capillarity approximation'. In this model, it is assumed that he cluster is spherical 
and that it has a uniform density equal to that of the bulk liquid. The interface between 
the liquid and the vapour is taken infinitely thin and the surface tension there is equal 
to that of the interface between the bulk phases at equilibrium. 

We expect a real cluster to have very different properties, and it seems likely that 
nota single assumption of the capillarity approximation is satisfied. Nevertheless, it 
is frequently used, at least in all theories we will encounter in this chapter. 

We can simply take the volume of the cluster Vn proportional to the number of 
molecules n that are in it: 

Vn = n V1, (2.1) 

where v1 is the average volume available for one molecule in the bulk liquid, i.e., 
v1 = Mj(peNA) with Pe the bulk liquid density (units mass per volume), Mis the 
molar mass and NA is the Avogadro constant. 

The surface energy of the cluster is represented by the product aan; a is the surface 
energy per unit areaandan is the surface area of the drop. Using the geometry of a 
sphere, the surface area is related to the volume: 

(2.2) 

Inthelast step Eq. 2.1 was used, and a 1 = (36rr) 1 13 v~13 was introduced. 

2.1.2 Cluster distri bution 

The Helmholtz free energy of a cluster is, by definition, 1 

(2.3) 

where fLL is the chemical potential (the Gibbs energy per molecule) of the liquid, and 
p is the pressure of the surrounding vapour. The canonical partition function for a 
cluster at rest is then, also by definition, 1 

qn = exp(-Fn/kT), (2.4) 

where k is the Boltzmann constant. The partition function of the total system (which 
has a volume V) must include the molecular configurations of the surrounding vapour. 

8 



2.1 General 

Assuming that the molecules in the vapour do not interact with those in the drop, the 
total partition function can be written as a product 

(2.5) 

where Q N -n is the partition function of the vapour and the '1' in Q 1 denotes that the 
cluster is at rest at a single position. Next, we have to account for the translational 
freedom of the cluster, which means that we allow it to be anywhere in the volume 
V. Simply multiplying Q1 by V gives a dirneusion problem; instead, we have to 
introduce a volume scale, which we will call 7J. The partition function of the total 
system Q v, allowing cluster translation, is then 

Qv = Ql x V. 
7J 

(2.6) 

It is not at all straightforward what value the volume scale should have. Since it has 
to do with the translation of the cluster, we expect it to be related to, and dependent 
on, cluster parameters such as it size. We could, for example, take the volume scale 
equal to the average volume in which the centre of mass of the cluster fluctuates due 
to collisions of vapour molecules. Regardless of the volume scale, it can be shown 1 

that (under the assumption that the vapour is anideal gas) Eq. 2.6leads to 

1 
Pn = ~exp(-WnfkT), (2.7) 

where Wn is the work of cluster formation, which will be derived in the next section. 
The cluster distribution Pn has the units of number per volume; it tells how many 
clusters of a certain size n are present. The exponential factor exp(-Wn/ kT) can 
be seen as the familiar Boltzmann factor, goveming the accupation of states with 
different energies. 

2.1.3 Work of formation 

The work of formation of a cluster is the difference in the Helmholtz free energy 
between a system with and without the cluster. It is: 2 

(2.8) 

The quantity b..JL is the difference in chemica! potential between a drop and a vapour 
molecule (Figure 2.1): 

(2.9) 

The pressure in the drop p1 is higher than the pressure of the surrounding vapour p, 

and b..p is defined as 

PI= p +D.p. (2.10) 

The pressure difference, sametimes called the Laplace pressure, is caused by the 
curved surface and the surface tension of the drop. If the drop is in mechanica! 
equilibrium, 3 

2a 
b..p = -, 

r 
(2.11) 

9 



10 2. Nucleation Theory 

Figure 2.1: Chemica! potential of 
the vapour and liquid phases as a 
function of pressure. 

where r is the drop radius. Eq. 2.11 is called the Laplace equation. 

Using a thermadynamie relation called the Gibbs-Duhem equation, 4 the chemical 
potential of the drop at pressure p1 can be related to the chemical potential at pressure 

p: 

(2.12) 

We define the supersaturation of the vapour S as: 

kT ln S = /Lv(P) - !Lv(Ps). (2.13) 

The pressure Ps is the saturated vapour pressure, the pressure that exists over a liquid 
when it is in equilibrium with its vapour. At this pressure, the chemical potentials of 
liquid and vapour are equal. Fora perfect gas, Eq. 2.13 simplifies to: 

S(p, T) = PIPs(T). (2.14) 

Using the previous definitions, we are now ready to derive an expression for b.JL. 

b.JL = !LL (Pt) - !Lv (p) 

= /Lt(Pt)- /Lt(Ps) + !Lv(Ps)- !Lv(P) 

~ JLL(Pt)- JLt(P) + Jlv(Ps)- !Lv(P) 

= v1b.p- kT ln S. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The three stepshereneed explanation: (2.15)-+(2.16) Here we used that JLt = Jlv 

at p = Ps· (2.16)-+(2.17) Because b.p » p- Ps• we can make the approximation 
JLt(Pt)- JLt(Ps) ~ JLt(Pt) - JLt(p).* (2.17)-+(2.18) Here, (2.12) and (2.13) were 
used. 

Finally, substituting the expression for b.JL in the one for the work of formation, 
Eq. 2.8, yields 

Wn = Vnb.P- nkTlnS- Vnb.P +aan 

= aa1n213
- n kT ln S. 

(2.19) 

*This is correct for pure vapours. If a carrier gas is present, no significant errors are introduced for 
atmospheric conditions. For higher carrier gas pressures, corrections are needed. 2 



2.1 General 
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Figure 2.2: Work of formation of a cluster 
of water molecules as a function of 
the number of molecules, according to 
Eq. 2.20, at 220 K. The workis shown for 
two saturations: 1 and 20. 

Por the purpose of shortening the notation, a dimensionless surface energy e -
a ad kT is introduced, so that Eq. 2.19 simplifies to: 

W11 / kT= E> n213
- n ln S. (2.20) 

The work of formation can thus be described by two terms: one is proportional to 
the surface area and represents the energy needed to form a new phase interface; the 
other one is proportional to the volume and represents the energy gained by forming 
an amount of the new phase (if S > 1); see Fig. 2.2. 

The cluster size at which the workof formation is maximal is called the 'critica! 
size', or n*. Clusters smaller than this size have a high probability to shrink; clusters 
that are larger tend to grow. We can determine n* by solving aw jonl 11 • = 0; this 
gives 

( 
28 )

3 

n*-
- 3lnS 

(2.21) 

If the 11JL in Eq. 2.18 is evaluated fora critica! cluster, using the Laplace equation, 
Eq. 2.21 and the relation nv1 = ~nr3 , it can be shown that 

for a cri ti cal cluster, (2.22) 

so that a critica! cluster has the same chemica! potential as the vapour. 
Now that we know the work of formation, the only unknown on the right-hand 

si de of Eq. 2. 7 is the volume scale, 7J. 

2.1.4 Volume scales 

As already mentioned, it is not clear which value should be chosen for the volume 
scale. In early theories the notion of such a scale never occurred. It was during the 
"replacement free energy" controversy 5- 8 in the 1960s and 70s that the confusion 
started about the way the translational freedom of the cluster should be accounted 
for. The issue was never really solved, until in 1997 Reiss, Kegeland Katz 1•9 claimed 
to have found a solution. Since the theories now called 'classica!' are still the most 
widely used, we will show their volume scales. 

Standard theory 

What is called 'standard theory' in this text is the classica! theory by Becker and 
Döring 10 of 1935 with an additional 1/ S factor in the formula for the nucleation rate; 

11 



12 2. Nucleation Theory 

a correction which is generally agreed to be required. 1 In the standard theory, the 

volume scale is independent of the cluster size; it is the volume per vapour molecule, 

at saturation: 

(2.23) 

Girshick-Chiu theory 

In 1990, Girshick and Chiu 11 argued that at saturation (S = 1), the workof formation 
of a monomer (n = 1) should be zero. In the standard theory, this is not the case since 

Wn 1 kT = en 213, at saturation. Girshick and Chiu corrected this as follows: 

w;;c = e (n 213 - 1) at S = 1, 

so that at general supersaturations 

w;;c = e (n 213 - 1) - n InS 

=Wil/kT- e. 

To obtain the volume scale, we rewrite the cluster distribution: 

P~c = P~at exp(- w;;c I kT) 

= p~at exp(6) exp(- Wil/ kT). 

so that 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

An important property of this correction is that the cluster distribution now yields 
the correct result for rnanamers (n = 1), namely pfc = p~at S. Since it is this 
consistency which distinguishes the Girshick-Chiu theory from the classica! theory, 

it is sametimes called the internally consistent classica! theory (ICCT). 

Reiss-Kegei-Katz theory 

The volume scale of the RKK theory will be derived later in this chapter; bere we 

will already show the result: 

lJRKK = (kTKnV )1/2 
n I ' 

(2.28) 

where K is the compressibility of the liquid; K = (8 pe/Bp )r I Pt· Note that unlike the 
previous volume scales, this volume scale does depend on the cluster size n. 

2.1 .5 Nucleation rate 

We want to keep the denvation of the nucleation rate as general as possible. That 
is why we do not choose a specific volume scale at this point, but assume that it is 
proportional to a power of n, i.e., 

!Jn=anY, (2.29) 



2.1 General 

where a and y are arbitrary constauts independent of n. We further assume that the 
volume scale does not depend on the supersaturation. 

The denvation itself is basedon the so-called 'kinetic method', concisely recapit­
ulated by Girshick and Chiu. 11 We start with an expression for the nucleation rate J 
that follows from kinetic considerations 

(2.30) 

where H(n) = ln(,Banp~atsn). Here ,8 is the impingement rate of monomers, which 
is taken from ideal gas kinetic theory; an expression for ,8 appears in Table 2.1. The 
integral is written in this form because we expect the integrand to be a sharply peaked 
function of n, witb the peak around tbe critica! size. Tbis peak is approximated by a 
Gaussian curve, similar to exp[ -(n- n*) 2], so that tbe integration becomes standard. 
To write tbe integral in tbe desired form, H is expanded in a Taylor series around n*, 

tbe cri ti cal size, wbere the derivative of H (n) is zero: 

H(n) ~ H(n*) + !Cn- n*)2 H"(n*), (2.31) 

wbere the double prime denotes the second derivative. Note that tbe critica! size is 
redefined bere as tbe n for wbicb H (n) bas a minimum; this value may be different 
from tbe n* of Eq. 2.21. When tbe expansion of Hof Eq. 2.31 is substituted back 
in Eq. 2.30 and the lower integration limit is sbifted to -oo, the result is indeed a 
standard integral, with solution 

[
H"(n*)]1/2 

J = 
2

.rr exp [ H (n*)]. (2.32) 

We write H using tbe definition of an (Eq. 2.2) and the cluster distribution ofEq. 2.7: 

To find tbe critica} size, we use that H'(n*) = 0, whicb gives 

which leads to 

8n*213 +~y-1 3 
-----=-- = -InS. 

n* 2 

(2.33) 

(2.34) 

(2.35) 

Similar to tbe approximation of Girshick and Chiu, we now assume that for most 
cases 8n*213 » I~Y- 11. For our experiments 8n*213 = 0(100), so tbat tbe 
approximation is justified. Tbe cri ti cal size is then 

(
2 e )

3 

n* = 3In S ' (2.36) 

whicb is the same result as obtained before (Eq. 2.21). Apparently, tbe dependenee 
of tbe volume scale on tbe cluster size is too weak to infiuence the critica! size, wbich 
remains completely determined by the maximum of tbe work of formation. 

13 



14 2. Nucleation Theory 

Table 2.1: Substitutions 

e ---+ a1ajkT PI ---+ pjkT 

GJ ---+ (36.rr) 1/3v~/3 m! ---+ MINA 

VJ ---+ M/peNA p~at ---+ PsfkT 

f3 ---+ (kT /2.rrm1) 112p 1 p ---+ S Ps 

To obtain J with Eq. 2.32 we also need the second derivative of H at the critica! 

size: 

(2.37) 

In the second step the approximation e n*2/3 » J ~ y - 3J was made. For this approx­
imation to be allowed, IY I cannot be too large; if for example y = -2, the right-hand 
side is already 12. 

Substituting the results, Eqs. 2.36 and 2.37, in the expression for the nucleation 
rate, Eq. 2.32, and using Eqs 2.7 and 2.20, finally gives 

1 a1 f3 ( e) 
1
1
2 

[ 4 e3 J 
J = ~3 ; exp -270n5)2 . (2.38) 

Since the standard theory bas 7J = 1/ p~at, we have 

stan sata1f3 (e) 112 
[ 4 e3 

] J =p - - exp ---- . 1 3 .rr 27 (ln S)2 (2.39) 

and generally 

1 J = __ X Jstan . 
Psat.~ 

1 Vn* 

(2.40) 

To express the nucleation rate as a function of the physically measurable parameters 
surface tension, density, vapour pressure and supersaturation, we employ the substi­
tutions summarized in Table 2.1. 

stan ( Ps )
2 

(2a M) 
112 

S [ 16.rr ( M )
2 

( a )
3
] 1 = kT .rr NA Pc exp --3- NAPe ln S kT · (2.41) 

For the RKK theory, the nucleation rate is 

}RKK= (3Pe)
112 

NASPs (lnS)3/2exp[ ... ], 
K 4.rra M 

(2.42) 

where the exponential factor is the sameasin Eq. 2.41. Note that the JRKK given bere 
differs from the one shown by Wölk and Strey. 12 



2.2 Reiss-Kegei-Katz theory 

2.2 Reiss-Kegei-Katz theory 

The RKK theory 1.9 is based on: (1) the correct counting of molecular cluster config­
urations; (2) finding the average volume of a fluctuating drop. Combining these leads 
to the volume scale. 

2.2.1 Volume scale 

What is called 'the drop' in the original paper is a rigid, spherical container of volume 
vn in which there are n molecules. Inside the container, the cluster of molecules can 
have any shape and size, and it does not have to be in the centre of the container. The 
only constraint is that the molecules must be in a single cluster, i.e., evaporation is 
not allowed; see Fig. 2.3. 

Allowed Notallowed 

Figure 2.3: Molecular configurations that are allowed. The large circle is the spherical con­
tainer volume; the smaller ones are the molecules. 

The partition function qn ( Vn) includes all configurations that are allowed as specified 
above. The total system has a volume V and contains the drop and N - n vapour 
molecules in the remaining volume V - vn. In the analysis to follow we will take 
vn equal to the average liquid volume of n molecules v~; that is, v~ = n/ Pc where 
Pc [m-3] is the density of the bulk liquid. For the moment, we will fix the drop (the 
container) at a certain position in the system. 

Having set the conditions, we will now look at the partition function (PF) of the 
total system, Q,~. Here, the 1 denotes that this PF is fixed at a single position. Since 
the molecules in the vapour do not interact with those in the drop, the total PF function 
can be decoupled and written as 

(2.43) 

where QN-n (V- v~) is the PF of the vapour molecules. The last equality in Eq. 2.43 
is the result of a simplifying notation, summarized in Table 2.2. Generally, a star next 
toa symbol means 'evaluated atv~'. 

Table 2.2: Definition of simplifying notation. 

Notation Meaning 

qn(v~) 

QN-n(V- v~) 

~, 
avn v,~ 

BQN-n I 
8(V -v11 ) v1~ 

15 
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2. Nucleation Theory 

• 
• 

• • 
Figure 2.4: Left: System of volume V with the container of volume Vn. Open circles are the 
n drop molecules; tilled ones are the N - n molecules in the vapour. Right: Second position 
of the container, overlapping the original one (dashed). Non-overlapped volume is dv. 

In the next important step we allow the drop to be in one other location. Again, 
we wish to know the total partition function Q~ (where the 2 now indicates that this 

PF includes two drop locations). In the simplest case 

(2.44) 

In our case, however, the second position is very close to the first one, so that the new 
and the original drop volume partially overlap. Now, a redundancy problem occurs: 

eertaio configurations are 'counted' twice. Figure 2.4 shows such a configuration, in 

which all drop molecules are in the overlapped volume. An additional condition for a 
contiguration to be redundant is that there are no vapour molecules inside the volume 

created by the two spherical drop volumes. 
We will now calculate the partition function of the redundant configurations. The 

non-overlapped volume is called dv, so the overlapped volume is v;- dv. The PF for 

which all drop molecules are in the overlapped volume is 

(2.45) 

using a first order approximation. Sirnilarly, the PF for which all vapour molecules 

are outside the two drop volumes is 

The total PF of the redundant configurations is then equal to the product 

Qredun = qn(V~- dv) X QN-n(V- V~- dv) 

*Q* *Q'* d Q* '* d = qn N-n - qn N-n V- N-nqn V, 
(2.47) 

where (2.45) and (2.46) have been used and the term proportional to (dv) 2 was neg­
lected. The notation was again simplified according to Table 2.2. 



2.2 Reiss-Kegei-Katz theory 

Now the size of the redundancy has been found, we return to our taskof evaluating 
Q~. We can now correct Eq. 2.44 by subtracting the PF of all redundant configura­
tions: 

Q~ = Q~ + Q~ - Qredun 

* Q* + * Q'* d + Q* '* d = qn N-n qn N-n V N-nqn V, 
(2.48) 

where we used (2.43) and (2.47). We now continue the drop displacement process 
and allow it to be in a third position. We keep the displacement distance the same, so 
that the PF of redundant configurations is the same: 

Q~ = Q~ + Q! - Qredun 

= q~Q~-n + 2 [dv(q~Q~-n + Q~_nq~*)]. 
(2.49) 

By now it will be clear what happens: every displacement adds an amount Q~- Qredun 

to the PF; this amount is equal to the terms in square brackets in Eq. 2.49. Every 
displacement also increases the covered volume of the PF by an amount dv, so that 
when the entire volume V is covered the PF is given by 

(2.50) 

In the last step it was assumed that v: « V. 
Por the purpose of rewriting Eq. 2.50, a quantity Pn (which has the dimeosion of 

pressure) is introduced: 

( oln%) kT (oqn) p -kT -- -- --
n - OVn n,T - qn OVn n,T. 

(2.51) 

According to Kikuchi, 8 this Pn may be seen as the outside pressure with which the 
drop is in equilibrium or the pressure exerted on the container from inside, although 
Koper and Reiss 13 said that for small systems Pn may not have the meaning of a 
pressure. 

The pressure of the surrounding vapour may be written in a similar form: 

kT ( oQN-n ) p=-- . 
QN-n o(V- Vn) n T 

(2.52) 

Using the last two equations, the PF in Eq. 2.50 can be rewritten as 

Q v _ * Q* V ( P: !!.._) _ * Q* ( V ) 
n - qn N-n kT +kT - qn N-n kT /(p~ + p) · (2.53) 

If we campare this with Q~ = Q~ V !lJn (Eq. 2.6), we see that we have obtained the 
volume scale 

lJ* = kT 
n p~ + p 

(2.54) 

We still need to find p:. This will be done in the next section. 

17 



18 2. Nucleation Theory 

2.2.2 Fluctuation 

Our aim is now to relate p~ to the volume fluctuations of a drop. We will therefore 
abandon the idea of a fixed V 11 and look at the PF which includes all possible drop 
volumes. To make the analysis simpler we will fix the drop at a position (that means 

we will study Q~). 
To obtain a drop PF that includes configurations in all possible volumes, it might 

seem suftkient to integrate: 

(2.55) 

However, this result is meaningless. Apart from dimension problems, the qn 's can't 
simply be summed because every q11 ('Û11 ) also includes all configurations present in 

a volume smaller than v11 • Instead, we will construct a PF which can be summed 

because it only contains configurations that have a volume between Vn and V11 + dvn: 

dq11 (V11 ) = q11 (Vn + dvn)- q11 (V 11 ) 

= q11 (V 11 ) + aqnfavnlv"dVn- q11 (V 11 ) = aqnfavnlv"dVn. 
(2.56) 

For every dq 11 ( Vn), the PF of vapour molecules is Q N -n (V - Vn). The total PF of all 
possible V 11 is t 

Q~ = J dqn(Vn) QN-n(V- Vn) = J p:~,z) q11 (V11 )QN-11 (V- V11 )dV11 • (2.57) 

Inthelast step, (2.56) and (2.51) were used. Appendix E showshow QN-n<V- Vn) 
can be moved out of the integral, giving 

Q' - Q (V) f Pn (vn) C ) -pv"fkT d A n - N-n kT qn Vn e V11 • (2.58) 

At this point RKK point out that the integral in (2.58) is the PF for a constant pressure 

ensemble, in the form as Koper and Reiss 13 derived. The consequence of this is that 

the integrand can be seen as a probability density of observing a certain V11 • Our 
goal is todetermine p~, that is, p11 (v~). The volume v~ is the average volume of the 
fluctuating droplet, which we will approximate by the most probable volume. By 
definition, the probability density has a maximum at the most probable volume, so 

the derivative of the integrand with respect to Vn is zero there. This eventually gives 

(2.59) 

The authors now eliminate a Pn I a Vn I v; by defining the isothermal compressibility to 

be 

* 1 ( av11
) I 

K = - V~ a Pn V.' 
11 

(2.60) 

tThis can be derived more rigorously, with the overlapping method used in the previous section. 
lnstead of covering the volume V by translating the container, the volume is covered by expanding it. 
If the sum of a PF with a cluster volume Î!n and a PF with a slightly larger one Î!11 + dvn is calculated, 
the number of additional, non-redundant configurations proves to be QN-n (V - Î!11 ) ()q11 /8v 11 lv" dv11 , 

the first integrand in Eq. 2.57. 
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which leads to the quadratic equation 

*2 * kT/ * * 0 Pn - p Pn - K vn = ' (2.61) 

with salution 

* p 
Pn = 2 + 

p 2 kT -+-. 
4 K*V~ 

(2.62) 

For drops which are not too large, the second term under the square root is much 
larger than the fi.rst, so that 

* v%T Pn ::: -- » P· 
K*V~ 

(2.63) 

The aim of this section (finding an expression for p~) has now been achieved, so we 
substitute the result Eq. 2.63 into the expression for the volume scale Eq. 2.54: 

kT kT 
IJ*= :::- = jkTK*v*. 

n p~ + p p~ n 
(2.64) 

2.2.3 Problems of the RKK theory 

There are some difficulties in the RKK theory, which are related to the drop PF, 

qn ( vn). and its constraints. By definition 

q(n, V, T) = L e-Ev(n,v)jkT, (2.65) 
V 

where the sum is over all microstates v and the energy of a state with n molecules 
in a volume v is Ev(n, v). Which microstates are allowed, and which ones are not, 
makes a great difference in the behaviour of the PF, as we will see. 

Free cluster To begin with, we will adopt the constraint that was used in the previous 
section, namely that the drop molecules must be in a single cluster, but this cluster 
may be anywhere inside the container. Now consider the PF of a compressible drop, 
whose volume fiuctuates around an average volume called iin. If we choose a volume 
v~ such that v~ « iin then the energiesof the statesin this volume, Ev(n, v~). will be 
very high and therefore q(n, v~, T) will be almast zero. Simply put, the drop cannot 
be compressed to such a small volume. Conversely, if a volume v~ » iin is chosen, 
the cluster of molecules can be in many positions inside the large container volume, 
since we did nat fix the position of the cluster inside the container. Because the 
number of possible positions increases as the container volume grows, qn ( Vn) shows 
a steep increase around iin; see Fig. 2.5a, dasbed line. 

Fixed cluster We will now look at a second case in which there is an additional 
constraint: the cluster of drop molecules must be fixed inside the container. One way 
to implement this is to fix the centre of mass of the cluster at the geometrical centre 
of the container. Regardless of how it is done, this additional constraint has a great 
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' 
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Figure 2.5: Properties of the drop as a function of the container volume v11 , at constant T and n. Dashed line: free 
cluster; solid line: cluster fixed at the container centre. a: drop partition function q11 ; b: derivative with respect to size; 
c: probability density. 

effect on q11 for volumes larger than the average volume: the number of additional 
configurations available as the volume grows is now much less. Moreover, when v11 

is much larger than the average volume, the few additional configurations have a very 
high energy. The reason can again be stated simply: the drop cannot be 'stretched' 
to such a large volume. Returning to the overall shape of q11 , it remains constant for 
larger volumes (recall that q11 is cumulative, i.e., configurations smaller than V11 will 
still be included); see Fig. 2.5a, solid line. 

Fluctuation and most probable volume 

What we try to do in the ftuctuation analysis of section 2.2.2 is to find out how prob­
abie a certain v 11 is. To do so, we construct a partition function dqn of all contigura­
tions having a certain V11 and not including smaller ones. The dqn is proportional to 
3q11 j3v11 (see Eq. 2.56). In the case of a free cluster, it is simply a steep function of Vn 

at v11 ;::: v11 ; see Fig. 2.5b, dasbed line. The second case is much more physical, show­
ing a Gaussian-like curve centred on V11 (Fig. 2.5b, solid line). This function already 
looks like the probability of a certain v11 , but we did not consicter the inftuence of the 
surrounding vapour, which is what we will do now. 

In section 2.2.2 the constant pressure ensemble (CPE) was already mentioned and 
we will now study it in more detail. In the form as derived by Koper and Reiss, the 
normalized probability density Fn of observing a certain V 11 is 

F(v11 , n, p, T) 
(2.66) 

where the denominator is the partition function of the constant pressure ensemble, 
and F is the 'non-normalized' probability density: 

F( ~ T)- Pn('Ûn) (~ ) -pv.fkT - aqn I -pv.fkT 
V11 , n, p, - qn V 11 e - e 

kT a~ ~ 
(2.67) 

Ine last step we used the definition of Pn (Eq. 2.51). 

Fixed cluster When p = 0, the probability density is simply equal to the derivative of 
q11 discussed before. For nonzero pressures, the probability density is this derivative 
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multiplied by an exponential factor. The effect of this factor on the PF is that the most 
probable volume is slightly less than the value in vacuum, i.e., the drop becomes 
smaller. This is easily understandable if we realize that the drop is being hit by 
vapour molecules from all sides, campressing it. Figure 2.5c shows the probability 
density for this case (solid line). 

Free cluster In the case of a free cluster the exponential factor creates a maximum 
at some (probably large) volume (Figure 2.5c, dashed line). This happens because 
3q11 /3v11 rises typically with some power of V 11 , so the exponential term dominates in 
the limit of v11 -+ oo. The maximum, however, has no real physical meaning, and 
may be far from the natural volume of the cluster. 

The objective of the fiuctuation analysis was to find the most probable volume of the 
cluster of molecules, and then find the value of Pn at that volume. It is clear that if 
we allow the cluster to be anywhere, the Pn evaluated at the maximum of F(v11 ) has 
nothing to do with p11 (v~) which we need. In contrast, when we fix the cluster, the 
maximum of F(v11 ) does seem to beat the natura! volume of the cluster. 

Another way to visualize the problem is to look at the configurations that are 
allo wed. Reeall that dq11 ( v11 ) should be a measure of configurations that have a volume 
V 11 • But, if the cluster is not centred, configurations such as the second one from the 
left in Fig. 2.3 are counted as having the container volume V11 , although the cluster 
itself is much smaller. 

Compressibility 

Even if we consicter a partition function of centred configurations in the fiuctuation 
analysis, there is an additional problem in finding p11 (v~). At the most probable 
volume, Eq. 2.59 is valid. This equation, however, contains a derivative of Pn (evalu­
ated atv~) which is unknown. RKK introduce a somewhat questionable interpretation 
of the isothermal compressibility K, as shown in Eq. 2.60. Basically there is nothing 
wrong with defining a new quantity as RKK do; the problem is that K is considered 
constant and equal to the compressibility of the bulk liquid (even though this is never 
explicitly stated). 

Summary 

In order to determine p 11 ( v~) where v~ is the average volume of the bulk liquid, the PF 

must be constrained to configurations that are centred in the container. In the case of 
centred configurations, double counting does not occur, and it is therefore impossible 
to determine the volume scale in the way presented here. Another way to put the 
problem is that the first part gives the volume scale 7J11 in termsof the 'non-centred' 
Pn (v~), whereas the second part can only provide us with the 'centred' Pn (v~). One 
can of course proceed and just use the Pn of the second part in the results of the first 
part, hoping that the difference between the two Pn 'sis small. In that case it is unclear 
what the error is that we make. 

21 



22 2. Nucleation Theory 

2.3 Kashchiev's thermodynamically consistent theory 

The recent theory of Kashchiev 14 does not result in a new volume scale or cluster 
distribution, but is centred on the work of formation. Specifically, only the work of 
formation of a critica/ cluster is considered. Kashchiev tried to find a better expres­
sion for this quantity by solving two problems of the classica! approach. 

The first problem is that the capillarity approximation uses the equilibrium surface 
tension, even for very small clusters. The new theory is constructed in such a way that 
for all cluster sizes, the surface energy is equal to its equilibrium value by definition. 
A second problem that is solved is that the classica! theory doesnottake into account 
the inftuence of the spinodal, the stability limit of a phase. 

We start the denvation with the general expression for the work of formation, 
Eq. 2.8. Since a critical cluster has a chemica! potential equal to that of the vapour, 
that equation becomes 

Wn = -v!:!.p + cra, (2.68) 

or, as a function of the radius r 

(2.69) 

The real cluster is a density ftuctuation which doesnothave a sharp interface. The loc­
ation of the thought cluster interface is therefore arbitrary, and we are free to choose 
it. Gibbs, who was the first to study models like this, called the hypothetical surface 
the dividing surface (DS). 

Besides the choice of the DS, there are two other parameters that need to be 
defined: the density and pressure of the cluster. In the capillarity approximation, 
both are uniform throughout the spherical cluster volume. One could question which 
values we should take for those quantities. According to Gibbs, the density and pres­
sure must be chosen such that the bulk new phase has the same chemical potential 
and temperature as the old phase. Retuming to Eq. 2.69, we see that the previous 
condition determines !:!.p. The work of formation itself, W, is a physical quantity and 
does notdepend on the choice of a DS. Therefore, the only free parameters arerand 
cr, and the relationship between them depends on the DS that we choose. 

Surface of tension 

This DS, indicated by subscript t, is chosen in such a way that the Laplace equation 
(Eq. 2.11) is satisfied, which relates r1 to cr1 and !:!.p. The problem is that the exact 
dependenee of cr1 and r1 on p and T cannot be directly derived, so that we have to 
approximate one or both of these parameters. Classically, cr1 is approximated by cr0 , 

the equilibrium surface tension. 

Conservative dividing surface 

The insight of Kashchiev is that if we choose a value for cr, then Eq. 2.69 defines r. 
Kashchiev chooses the most convenient definition: 

(2.70) 
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so that ae is independent of re. We are free to choose the value of ae, and take ae = a0. 

However, since nucleation often takes place at conditions far from equilibrium, where 

a0 is known experimentally, the surface tension has to be extrapolated. Kashchiev 

lists two possibilities: 

ae(p, T) = ao[Ps(T), T] : 

ae(p, T) = ao[p, Teq(p)] : 

isothermal extrapolation, and 

isobaric extrapolation. 

(2.71) 

(2.72) 

Here, Ps (T) is again the equilibrium vapour pressure, and Teq (p) is the inverse func­

tion of Ps(T). 
The next taskis to findan expression for re. Like the case with the surface of ten­

sion, the exact dependenee of r c on p and T is unknown. However, we can construct 

an expression for re that is consistent with the known behaviour in two limiting cases. 

Kashchiev proves that in the limit of a large drop, when !lp goes to zero, the Laplace 

equation is valid: 

2ao 
rco = -. 

' !lp 
(2. 73) 

At the spinoctal (p = Psp), thermodynamics requires that W vanishes. Setting W = 0 

in Eq. 2.69 gives 

3ao 
rc,sp = --, 

f:lpsp 
(2.74) 

in which f:lpsp is !lp evaluated at the spinodal. 

lnterpolation 

A formula for re that interpolates between the lirnits !lp ---+ 0 (Eq. 2.73) and !lp ---+ 

f:lpsp (Eq. 2.74) is 

2ao ao 
re=-+--. 

!lp f:lpsp 
(2.75) 

Substituting the interpolated re in Eq. 2.69 gives 

16rr a
3 

( 31:lp
2 

f:lp3 ) 
w = -3- f:l;2 1 - 4/:lp;p - 4/:lp;p (2.76) 

~ 16rr aJ (1 _ !:lp
2

) . 

3 f:lp2 !:lp;p 
(2.77) 

Both formulas for the energy to form a nucleus are thermodynamically consistent 

because their behaviour is correct in the entire !lp range from 0 to f:lpsp• so for a 
nucleus of any size. 

Nucleation rate 

Using the workof formation W from Eq. 2.77, Kashchiev shows that the nucleation 
rate J = Aexp(-WjkT) is 

(2.78) 
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where A is a kinetic factor. In the case of nucleation of a liquid in a vapour, Kashchiev 
derives that 

[ 
16rr ( M )

2 

( o-0 
)

3

] [ 16rr ( M )
2 

( o-0 
)

3

] J- Aexp --- -- exp -- --
- 3 NAPeinS kT 3 NAPelnSs kT ' 

(2.79) 

where Ss(T) = Psp(T)fps(T). The first exponential factor is the sameasin classica! 
theory; the other exponential factor is a temperature-dependent correction. 

Comments on Kashchiev's theory 

One of the important parameters in the thermodynamically consistent theory is the 
spinoctal pressure of the old phase; in our case the vapour spinoctal pressure. A 
spinoctal line separates metastable regions [ (a p ja V)r < 0] and unstable regions 
[(ap;av)r > 0]. In a p-V diagram, the points at which an isotherm has zero slope 
form the spinodalline; the spinoctal pressure is defined by (apjaV)r = 0. 

It is not entirely certain if we can speak about a spinoctal in the case of nucleating 
vapours. Since, as Kusaka 15 puts it, 'sharply defined spinoctal is an artifact of mean­
field theory', e.g., van der Waals-like equations of state, it is uncertain if the notion of 
a spinoctal can be used in the description of non-ideal vapours. We could try to exper­
imentally define the spinoctal by isothermally campressing a vapour and measuring 
at which pressure and density apjap = 0. Unfortunately, nucleation sets in long 
before we would arrive at the hypothetical spinodal, so it seems to be experimentally 

unreachable. 
Should the workat formation vanish at the spinodal? In model systems that can 

reach spinoctal (nucleation is impossible in such models) it is seen that relatively 
large-scale fluctuations occur, with a diffuse boundary. This so-called 'spinodal de­
composition' appears to be very different from nucleation. Although the fluctuations 
leading to spinoctal decomposition probably have zero work of forma ti on, it is unclear 
whether this is also true for the formation of a critica! cluster. 

On a molecular level, the ultimate limit of stability could be better defined by the 
conditions at which a single molecule becomes a critica! cluster, so that the work 
of formation as a function of the cluster size monotonically decreases and there is 
no energy harrier towards the formation of the new phase. Since according to the 
Nucleation Theorem 3 

(
alnJ) "'. * -- "'n, 
älnS r 

(2.80) 

where n* is the number of molecules in the critica! cluster, this stability limit would 
be characterized by a very low slope of isotherms in the ln J versus S plot. 



3. Properties of water 

In the previous chapter, we derived expressions for the nucleation rate as a function 
of substance properties such as liquid density, surface tension and vapour pressure. 
In this chapter we review the experimental data that is available for those properties 
of water. We will also look at several models, including a recent one developed by 
J. Hruby and the current author, which is described insection 3.5. 

3.1 Density 

It is well known that the density of water has a maximum value near 4 oe, and de­
creases from this maximum down to the freezing point. In fact, befare 1964 this 
maximum was used to define the millilitre as the volume of 1 gram of water at the 
maximum density. 16 What is not so well known is that the density of supercaoled 
water keeps decreasing as temperature goes down and that it becomes a very steep 
function of temperature. 

It is easy to imagine that it is quite difficult to perfarm experiments on liquid 
water below the freezing point. Still, as early as the nineteenth century, experimenters 
succeeded in measuring the density downtoabout -10 oe. In the following century, 
the techniques to keep water liquid below 0 oe were improved; even so, not until in 
the 1960s real progress was made. 

In most modem experiments, water was hoiled and distilled, then thoroughly 
cleared capillaries were tilled and ftame sealed. After sealing, the tube contained 
liquid water and a volume of water vapour. Then, the position of the meniscus was 
measured at different temperatures. Usually, the tube was calibrated by making a 
measurement at two or more temperatures above 0 oe for which the density was ac­
curately known. 

It was found that the water could remain Iiquid at lower temperatures if the capil­
lary diameter was smaller, and it is not surprising that three of the early experiments 
reaching -34 oe or lower were done using capillaries with an inside diameter of 
4 J.Lm. In the 1980s it became clear that the capillary diameter also inftuenced the 
properties of water itself, including the density. Specifically, a small capillary resul­
ted in an excess density, when compared to the bulk value. e. M. Sorensen 17 began 
using larger capillaries, but was unable to reach temperatures under -25 oe. Finally, 
Hare and Sorensen 18 succeeded in cooling samples with an inside diameter of 300 J.Lm 
down to -33 oe by using a special methad to make very clean samples. They were 
also able to estimate the magnitude of the excess density effect and showed that it 
was within the experimental error, in their experiments. 

At this time the Hare and Sorensen data seems to be the best available, representing 
the bulk liquid water density down to the lowest possible temperature that can be 
reached experimentally. ForT < -33 oe we have to extrapolate the density, which 
is not as easy as it seems. The problem is that when the temperature decreases, the 
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Figure 3.1: Left: density of water as a function of temperature. Right: differences of the models relative to the to the 
Hruby model. 

density versus temperature curve becomes very steep. In fact, when the expansivity 
a = -p- 1 (3pj3T) Pis extrapolated, it seems to become infinite at some temperature 
near -45 oe. At this singular temperature (Ts), the density would then of course be 
an infinitely steep function of T, and extra po lation below Ts becomes impossible. 
According to some workers, notably Speedy and Angell, 19 Ts is a limit of stability, 
or spinodal, below which the normal form of liquid water simply does not exist. This 
hypothesis is supported by the fact that many other properties of water also seem to 
diverge at the same Ts. 

The IAPWS95 formulation 20 is an extensive equation of state for water, that re­
produces many properties to within the experimental error, in the entire temperat­
ure range where measurements have been made. It even reproduces the Hare and 
Sorensen data, although the equation of state is then used far below its lower limit of 
validity, which is the freezing point. The lowest temperature at which it can be evalu­
ated is 233.56 K, several degrees below the lowest temperature of experimental data. 
An investigation by this author showed that this limit is caused by a spinodal; the 
slope of the density versus temperature curve is infinitely high. Another way to put 
this is that according to the IAPWS model, the spinoctal pressure of water increases 
as temperature goes down, reaching atmospheric pressure at 233.56 K. Therefore, the 
IAPWS equation seems to support Speedy and Angell's stability limit conjecture. 

However, there is some doubt whether this limit of stability really exists. There 
are nucleation experiments in which liquid water is believed to be formed, at temper­
atures far below Ts. 12•21 There aretheoriesin which it is assumed that liquid water is 
connected to an amorphous form of ice, also called 'glassy water', that exists below 
130 K. 22 

A physically reasonable assumption is then that as water is cooled, it becomes 
more and more ice-like, and approaches a state similar to amorphous ice. Among the 
models based on this assumption are the 'mixture models', in which it is assumed 
that water is a mixture of two components with different partial volumes (by mass) 
v1 (T) and v2 (T). In the mixture model by Vedamuthu et al., 23 the specific volume 
is then v(T) = f(T)v1 (T) + [1 - j(T)]v2(T). Here j(T) is the mass fraction of 



3.2 Surface tension 

one component, whose value was determined by fitting the model to accurate density 
measurements by Kell 24

. U nfortunatel y, the model was not meant to be used below 
225 K, where the mass fraction f becomes larger than unity. 

Another model that has been used frequently 2•25- 28 is the fit given by Pruppacher 
and Klett 29 at temperatures as low as 200 K. Pruppacher and Klett mention that they 
fitted their function, which is a parabola, 'to the experimental data of Dorsch and 
Boyd (1951)', and give a validity range of -50 oe to 0 oe. An investigation by the 
current author revealed that Dorsch and Boyd30 did not measure density, but included 
a graphof Mohler's data 31 of 1912; second, Mohler's data only go down to -13 oe. 
Furthermore, Kell 16 mentions that Mohler's results are high relative to values found 
by others and that they have therefore 'been eliminated from further consideration'. 
Figure 3.1 shows that the Pruppacher and Klett fit is indeed higher than the IAPWS 
data for temperatures lower than 255 K. Apparently, the fit by Pruppacher and Klett 
is of limited value. 

Like the two-state models, the density fit employed by Wölk et al. 12 tries to ac­
count for the ice-like behaviour of supercaoled water at low temperatures. Their 
fit includes a term which scales the density depending on how far the temperature is 
from the critica! temperature, and a tanh term which accounts for the step-like change 
from liquid water to amorphous ice. In Figure 3.1, the W ölk model is seen to decrease 
strongly - although not as steeply as the IAPWS model - and then reaches a constant 
value at about 165 K. 

Finally, we note that the differences between the models are quite large in the range 
where we will need them, 200-240 K. Por the evaluation of nucleation theories, we 
choose the Hruby model. 

3.2 Surface tension 

The surface tension of supercaoled water is about as difficult to measure as its density. 
Despite the importance of accurate surface tension data for the validation of oude­
ation theories, only two measurements series have been published: one in 1951 by 
Hacker32 and the second in 1990 by Floriano and Angell. 33 

In his report, Hacker mentions two problems which complicate surface tension 
measurements: First, most methods require a knowledge of the liquid density (which, 
at that time, was not known for highly supercaoled water) and second, some methods 
need a large value of liquid to be supercooled, which increases the probability of 
freezing. The methad Hacker used circumvents bath problems. He placed water at 
the end of an open capillary (diameter 364 J.tm) and measured the pressure that was 
needed to fiatten the meniscus at that end. The applied pressure is proportional to the 
surface tension. Because of the amount of data collected (702 measurements in the 
temperature range 27 oe to -22.2 oq, the uncertainty in Hackers final (averaged) 
results is quite low: 0.08%. 

Nearly forty years later, Floriano and Angell 33 measured the surface tension of 
supercaoled water, mainly because they were unaware of Hacker's results and wanted 
to 'remove a deficiency' in the knowledge of water. These authors used a methad 
that was totally different from Hacker's, namely the capillary rise effect. This well­
known effect (the rise of water inside a small vertically placed capillary) is caused by 
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Figure 3.2: Surface tension of water; experimental data and models. 

the pressure difference that exists across a curved meniscus. The amount the water 
rises is proportional to the surface tension and also depends on the density. The 
latter parameter was known with sufficient accuracy by 1990, solving Hacker's first 
problem. The second problem was solved by only cooling the uppermost 1 cm of 
the water column (this can be done because the force producing the capillary rise is 
located at the water surface). 

Floriano and Angell made much fewer measurements than Hacker (63 in the tem­
perature range 60 oe to -27.2 oq and used capillaries with an inside diameter ran­
ging from 73 Jlm to 299 Jlm. The results of Hacker and of Floriano and Angell are 
shown in Figure 3.2. 

In Hacker's data there seems to be a point near -5 oe where the slope abruptly 
changes. Floriano and Angell's results do notseem to support this 'kink' although 
the scatter is too large to draw a definitive conclusion. 

The IAPWS release on Surface Tension of Ordinary Water Substance 34 reeom­
mencts an equation for the temperature range of 0.01 oe to the critical temperature. It 
can beseen that down to -5 oe there is agreement with both experimental data sets. 
Below -5 oe, Hacker's data clearly deviates from the IAPWS equation. Luijten 2 

assumed that the surface tension would continue to increase with decreasing tem­
perature, with the same slope as the part of Hacker's results below -5 oe. Luijten's 
linear fit is also shown in Figure 3.2. It appears that Luijten's fit leads to unlikely 
large surface tension values at low temperature. Furthermore, it does not satisfy the 
thermadynamie constraint of a vanishing temperature derivative at 0 K, which was 
proposed by Lamanna. 27 In contrast, the fit used by Wölk et al. 12 does satisfy the 
constraint and agrees well with the IAPWS data above 240 K (Fig. 3.2), but like the 
IAPWS equation it does notreproduce the change of slope of Hacker's data. 

In our experimental temperature range, 200-240 K, there is not much difference 
between Luijten's fit and the values from the Hruby model. To be consistent, we 
choose the latter for the evaluation of nucleation theories. 
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Figure 3.3: Vapour pressure as a function of temperature. Left: vapour pressure according to all models (differences 
are not visible on this scale). Right: differences of the models, relative to the Hruby model. 

3.3 Vapour pressure 

The vapour pressure is the pressure that exists over a liquid when it is in equilibrium 
withits vapour; the vapour pressure is a function only of temperature; see Fig. 3.3. 
Although it can be measured directly, some expressions are based on the elausius­
elapeyron equation, which reads 

dpv(T) = (T) L(T). 
dT Pv RT2 

(3.1) 

when ideal gas behaviour is assumed. Here Pv is the vapour pressure, L [J mol- 1] is 
the latent heat of phase change and R is the gas constant. Muitjens and Looijmans, 35 

who used this equation to obtain the vapour pressure, further assumed that dLidT is 
constant and equal to cp,v- c1. Eq. 3.1 canthen be integrated, yielding 

Pv(T) = p~ef exp{[(cp,v- Ct) ln(T I Tref) -LoOIT- 11 Trer)JI R}. (3.2) 

Many authors 25- 28 have used Eq. 3.2 with the constants that were determined by 
Muitjens and Looijmans, but citing Vargaftik 36 as the source. In reality, Vargaftik's 
book was only used to obtain pr;f = Pv(Tref). Wölk et al. 12 used an equation origin­
ally given by Wagner37 , which is similar to Eq. 3.2, but additionally includes a term 
proportional to the temperature in the exponent. 

Intheir book, Pruppacher and Klett 29 show the expression of Lowe and Ficke 38 

of 1974, which is a sixth degree polynomial fit of an inlegration of the elausius­
elapeyron equation in which the virial equation of state for water vapour was used. 
The validity range is -50 oe to 50 oe; because of the nature of polynomial fits the 
expression cannot be extrapolated (it diverges already slightly below -50 oq. 

The vapour pressure values that we will use are based on an extended version of 
the Hruby model; an extension which is not shown insection 3.5. Therefore, a table 
of vapour pressure values is given in appendix e. Figure 3.3 shows that in the range 
where IAPWS vapour pressure data is available, all roodels agree to within 0.3% with 
the IAPWS data. Below 234 K, the differences become larger; at 200 K, the deviation 
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of the Hruby model from the Wölk fit is 1.3%; the difference with the Muitjens and 
Looijmans fit is 1% higher. Such differences might seem small, but if the error in the 
vapour pressure (and therefore also in the supersaturation) is 2.3%, the error in the 
theoretica! nucleation rate can be as high as 70%. 

3.4 Index of retraction 

Knowledge of the index of refraction is required to calculate theoreticallight scatter­
ing and extinction by water droplets, quantities that we will need later. Since these 
processes take place at temperatures at which the refractive index has never been 
measured, this quantity must be extrapolated. 

Although the index of refraction depends on temperature (and also on pressure) 
most authors 2•25•26•28 simply took a constant value of 1.334. We will now see if this 
approach is justified. 

The IAPWS publisbed a release39 in 1997 that gives the refractive index as a func­
tion of temperature and density, valid for temperatures between -12 oe and 500 oe. 
To include the dependenee of density on temperature and pressure, it must be used in 
combination with the density values of the IAPWS 95 formulation. 20 

In Figure 3.4 the refractive index of water is shown, at atmospheric pressure 
(101325 Pa), for a wavelength of 514.2 nm, and using the IAPWS density (solid 
curve). The IAPWS relation for obtaining the refractive index was used partially 
outside its validity range. The behaviour looks similar to the IAPWS density curve 
(Figure 3.1), including the steep decrease at low temperatures. 

If the Hruby model for density is used, the decrease is more gradual ( dasbed 
curve), and the refractive index reaches a value of about 1.324 at 200 K, only about 
1% lower than the maximum value near 273 K. The influence of pressure is also de-
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picted in Figure 3.4; the refractive index has been calculated using IAPWS density 
values at a pressure of 10 MPa (dotted curve). The difference with the values at atmo­
spheric pressure is only 0.1% to 0.3%, so that the pressure dependenee can be safely 
ignored. 

In section 5.4 we will further investigate the effect of the recreative index on the 
scattering. 

3.5 A model for density and surface tension of supercocled 

water* 

A thermadynamie model was developed to predict the density and surface tension of 
supercaoled water (down to the glass transition at 130 K) and amorphous ice (down 
to 0 K), based on the hypothesis that water is a mixture of a low-density structure and 
a high-density structure. Below 224 K density and surface tension are predicted for 
a second liquid/amorphous phase. At 77 K, the computed densities agree with meas­
urements for low- and high-density amorphous ices. A first theoretica! interpretation 
of the surface tension anomaly is given. The observed dependencies of the apparent 
density and surface tension on the capillary radius are explained qualitatively. 

Recent experimental studies 12·21 .4° indicate that water nucleates from the vapor phase 
in the form of liquid nanodroplets at least down to 205 K. The observed dependenee 
of the nucleation rate on temperature is very smooth t, thus excluding a transition 
from vapor-+liquid to vapor-+crystal nucleation. To analyze results by applying 
nucleation theory, density and surface tension have to be estimated deep in the su­
percooled regime. Density measurements 18 exist only down to 240 K at atmospheric 
pressure. Ex perimental values of the surface tension exist down to 246 K. 33 

The existing accurate analytica! representation of thermadynamie properties of 
water20·41 (further referred to as IAPWS-95) cannot be used at low temperatures, 
because it prediets an ultimate lower limit of stability of the liquid phase: the liquid­
vapor spinoctal retraces the region of positive pressures. At normal pressure (Pn = 
101325 Pa), the lower (anomalous) spinoctal point is located at 233.6 K and 0.9588 
g cm-3 (see Fig. 3.5). For the surface tension, the IAPWS also developed an equa­
tion34.42 which is valid only above the triple point (T; = 273.16 K) and does not agree 
with some ex perimental data 32 below that temperature. 

One of the explanations 22 of the anomalous behavior of supercaoled water is that 
it can exist in two phases: a low-density liquid (LDL), existing at low pressures, and a 
high-density liquid (HDL), stabie at high pressures. Both liquid phases are metastable 
with respect to hexagonal ice Ih. The phase separation can occur below the hypothes­
ized liquid-liquid critica} point (estimated coordinates 220 K and 100 MPa22). It is 
further assumed that LDL is a liquid form of the low-density amorphous ice (LDA); 
the glass transition occurs at Tg ~ 130 K:f. Analogously, HDL is a hypotheticalliquid 

*This sectien contains the text of an article, written by J. Hruby and the present author, and has been 
submitted for publication in Physical Review Letters. 

tThe opposite condusion of Peeters et al. 21 was due to an error in data processing; see Labetski et 
al. 40 

:fRecent simulations 45 lead to a suspicion that LDA and LDL are different phases, rather than a 
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Figure 3.5: Specific volume of liquid and amorph­
ous water at normal pressure. Solid lines: present 
model (LDL/LDA and HDL/HDA); star: spinoctal point 
(HDL-+ LDL); dasbed lines: pure low- and high­
density structures. Dash-dotted line: IAPWS-95 formu­
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Cross and open circle: experimental volume of LDA 
and HDA, respectively. 43·44 In the 'no rnan's land' ex­
periments on the liquid phase are impossible. T8 is the 
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form of the high-density amorphous ice (HDA). 
The present model is related to the family of two-state models. 23•46-48 We assume 

that liquid and amorphous water consist of two incompatible structures: a low-density 
structure (LDS) and a high-density structure (HDS). The LDAILDL phase is rich in 
LDS, and the HDAIHDL phase is rich in HDS. At any instant of time, a molecule 
is a memher of either the low-density structure or the high-density structure. The 
composition can be given by the structural fraction x, defined as 

number of HDS memhers 
(3.3) x = = --------------------

Nws + NHos total number of molecules 

We adopt the simplest model for the specific volume, namely, a rnalar average of 
the "components": 

V = ( 1 - X) VLDS + X VHDS · (3.4) 

We assume that the structures resembie some crystalline farms of ice on the local 
scale. In particular, we expect that LDS is related to hexagonal ice Ih and cubic ice 
Ie (0.9313 g cm-3 and 0.9343 g cm-3, respectively, 49•50 at 143.15 K). The proximity 
of LDA and Ie is supported by the fact that LDA relaxes spontaneously into the cubic 
ice, which relaxes further into the stabie Ih ice. 50 However, only for Ih sufficiently 
accurate data exist. Therefore, we approximate the specific volume of the LDS as the 
volume of ice Ih: vws ~ v1h. Wedevelopeda new equation for the volume of ice Ih 
based on the lattice constants by Röttger et al.: 49 

VJh,n = a1 + a2t(l - y- ty) + a3t2(1- y) 

(3.5) 

where t = T/a6 and y = exp(-t); the values of a 1 to a6 are given in Table 3.1. 
Eq. (3.5) is plotted in Fig. 3.5 (labeled LDS). It satisfies the theoretica! requirement 

glassy and liquid form of a single phase. 
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of vanishing first and second derivatives with respect to T at 0 K. Furthermore, at 71 K 
it reproduces the experimentally observed weak minimum of the specific volume of 
ice Ih (in Röttger et al. 49 located at 73 K). At high temperatures Eq. (3.5) reduces 
into a parabola, enabling a plausible extrapolation. 

We expect the high-density structure to be related to some high-pressure crystal­
line ices. Because it is not clear which particular crystalline structure (if any) cor­
responds to HDS, no a priori choice was made for the specific volume of HDS. We 
assumed it in the form 

(3.6) 

where b1, b2 , b3 are unknown parameters. 
The water molecules are free to join LDS or HDS. Fora given temperature Tand 

pressure p, the structural fraction xq, corresponding to a thermadynamie phase <P can 
be found as a local minimum of a Gibbs function: 

(3.7) 

where <P = LDA/LDL or HDA/HDL. We developed an approximate Gibbs function 
g(T, p, x) basedon the following arguments: (i.) The moleculescan be considered as 
N = Nws + NHns sites of a lattice, occupied by either LDS or HDS members. The 
number of different configurations is N!/(Nws!NHns!). (ii.) The probability that a 
molecule is a HDS member does not depend on the memberships of the neighbors. 
(This is a crude approximation, because we expect that especially at low temperatures 
clusters or networks of the dislike structures exist.) Then the mean potential energy 
of the system is 4Nc[(l - x)2u 11 + 2(1 - x)xu12 + x 2u22l. where cis the number of 
neighbors and u 11 , u12 , u22 are mean energies ofthe LDS-LDS, LDS-HDS, and HDS­
HDS interactions, respectively. At normal pressure, the resulting Gibbs function can 
be written as 

8n(T, x) = 8LDS,n(T) + R (hJnX + hzx
2
) 

+ R T [ (1 - x) ln (1 - x) + x ln x] . (3.8) 

The function 8ws.n(T) (Gibbs free energy of pure LDS at normal pressure) has no 
significanee for this study. For a general pressure the Gibbs function is obtained as 

g(p, T, x)- 8n(T, x) = 1P V dp' ~ Vn(T, x) (p- Pn). 
Pn 

(3.9) 

The last approximation neglects the compressibility of the structures. 
A comprehensive study based on a Gibbs function similar to Eq. (3.8) has been 

elaborated by Ponyatovsky et al. 48 Their model is more complex by consirlering a 
finite entropy difference between the HDS and LDS (in their terminology excited and 
ground states; entropy is given as -ag(p, T, x) jaT). In our denvation we do not find 
a justification for a considerable entropy difference. In future work, rather a nonideal 
entropy of mixing should be considered due to a temperature-dependent correlation 
(weakening with increasing T) of the memberships of neigboring molecules in LDS 
orHDS. 

33 
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Figure 3.6: Composition of the high-density and low­
density phases of water at normal pressure, described 
by the structural fraction (the fraction of molecules tak­
ing part in the high-density structure). Tg, Tr and Tb: 
temperatures of glass transition, fusion and boiling, re­
spectively. 

Condition (3.7) was applied to equation (3.8) to find the structural fraction X<f> of 
the metastable phases. The solution, shown in Fig. 3.6, can be found by iterating 
equation 

xq, = { 1 + exp[(hin + 2x<t>hz)/T]r
1 

, (3.10) 

starting from x = 0 for LDAILDL and x = 1 for HDAIHDL. Fora general pressure, 
the samemethad can be used with h1 ::::::: h1n + (vHDS,n- vws,n)(p- Pn). 

The values of the five unknown parameters b1, b2 , b3, h1n, and h2 were obtained 
by fitting to densities (p = 1/v) computed from the IAPWS-95 equation of state20 by 
Wagner and PruB41 in the range 240 to 500 K; see Table 3.1. The fit is within 0.05% 
except at 240 K where the volume is by 0.1% below IAPWS-95 (Fig. 3.5). The 
model provides an unexpectedly good approximation of densities at 77 K of the LDA 
(experiment43 0.94±0.02 g cm-3/ model 0.934) and HDA 44 (1.17±0.02 I 1.172). 

The above given thermadynamie model is able to represent the main physical 
features: (a.) The high-density structure has a higher potential energy than the low­
density structure. Therefore, LDS is more frequent at low pressures. (b.) Because 
vHns < vws. increasing the pressure leadstoa higher population of the high-density 
structure. (c.) The states for which the structures are mixed have a high potential 
energy, forming a barrier separating basins (in the contiguration space) rich in LDS 
and rich in HDS. This represents the hypothesis that the two competing structures 
cannot be combined in some "elegant" manner and that the interface between the 
microscopie domains, occupied by LDS or HDS, contains unsaturated H-bonds and 
other defects increasing the potential energy. (d.) At high temperatures, the mixed 
states are probable because of the combinatorial effect. (The negative of the term 
in the second line of Eq. (3.8) is T x entropy of mixing.) At low temperatures, the 
potential energy prevails, leading to a phase separation. 

Above the triple point, the surface tension a of water is accurately described by 
the IAPWS correlation. 34 •42 Early measurements 51 down to 265 K indicated, that the 
a vs. T curve has a second inflection close to the triple point (the first is at 530 K34 ). 

In 1951, Hacker32 performed detailed measurements of the surface tension of su­
percooled water down to 250.95 K. The average values of individual measurements 
(in total 702) for 1 K intervals as given in Hacker32 are shown in Fig. 3.7. These 
measurements indicate an almast sudden change of slope, a "kink", at about 267 K. 
More recently, Floriano and Angell 33 measured down to 254.35 K using a capillary 
of intemal diameter 0.298 mm (comparable with 0.364 mm of Hacker) and down to 
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Figure 3.7: Surface tension of water. Solid line: present 
model. Pilled circles: data by Hacker. 32 Squares and 
triangles: data by Floriano and Ange11 33 ( capillary dia­
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245.95 K with a 0.077 mm capillary. The scatter of the individual 0.298 mm meas­
urements is about the same as the scatter in Hacker's data. However, Hacker averaged 
the very high number of individual measurements. His averaged data is in excellent 
agreement with earlier measurements 51 and with the IAPWS correlation above Tt. 

Consictering water as a mixture of two structures, "components" LDS and HDS, 
the surface tension can be described with the Macleod-Sugden correlation. 52 Because 
the density of saturated vapor is much smaller than the density of liquid in the tem­
perature range considered, this relation can be written in the farm: 

a(T, x) fel = [P(x) I C2v(T, x) r . (3.11) 

Here, x and vare computed fora given temperature using Eqs. (3.4) and (3.10). The 
normalizing factors c1, c2 ensure dimensional consistency of the equation and enable 
comparison with engineering literature. P is a parameter called parachor. Por simple 
mixtures, we can assume 

P(x) = (1- x)Pws + xPHos. (3.12) 

The values of n, Pws, and PHos as shown in Table 3.1 were obtained by fitting 
the model to data by Hacker (251 to 273 K) and IAPWS (273 K to 373 K). It is 
remarkable that just three parameters fit the relatively complex curve well within the 
experimental accuracy. 

The model gives the second infiection point at 287.7 K. In addition, there is a 
third infiection at 248 K. The tangents at the infiection points interseet at 263 K, 
which can be considered as the location of the kink. The interpretation of the kink is 
that (i.) the hypothetical pure HDS has a significantly lower surface tension than the 
hypothetical pure LDS, (ii.) the structural fraction rapidly changes in favor of LDS 
upon cooling. Fig. 3.8 shows the extrapolation of the surface tension down to 0 K, 
where it becomes fiat. Also shown is the prediction of the surface tension for the 
dense phase HDLIHDA. 

As shown in Fig. 3.7, the 0.077 mm data by Floriano and Angell follow the smooth 
extrapolation of the IAPWS correlation. Although this data is nat quite conclusive, 
it seems that this observation is related to the so far unexplained dependenee of the 
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Table 3.1: Model parameters. 
a1 (m3kg- 1) 1.21779 X 10-3 b1 (m3kg- 1) 8.5266 X 10-4 

a2 (m3kg- 1) -4.33629 x w-s b2 (K) 607.66 
a3 (m3kg- 1) 4.38031 x w-6 b3 4.1571 
a4 (m3kg- 1) -1.46258 x 10-4 Pws 52.9316 
as (m3kg- 1) -9.88480 x w-6 PHos 39.4034 
a6 (K) 55.83 n 4.511 
h1n (K) 493.99 c1 (N m-1) w-3 

h2 (K) -486.47 c2 (kg m-3) 18015.268 
No te: c2 is numerically equal to 103 M, M = 18.015268 kglkmol 41 

apparent density on the capillary diameter. Hare and Sorensen 18 indicated that this 
dependenee could be explained by a surface layer of higher density, whose thickness 
increases as temperature is decreased. 

Using Gibbsian surface thermodynamics 53 we found that (according to the present 
model) the surface layer is indeed enriched with the dense structure (HDS). Although 
this was computed for the liquid-vapor interface, we assume that the results arealso 
applicable to the liquid-glass interface, because the thickness of the surface layer 
would be much larger than the reach of intermolecular forces. The surface enrichment 
explains qualitatively the apparent dependencies of both density and surface tension 
on the capillary diameter. A quantitative explanation was not achieved; the computed 
effects are too small. The "watery" (x ~ 0.5) surface layer of the "icy" (x ---+ 0) 
supercaoled water might be related to the phenomenon of liquid-like surface of ice 
Ih. 54 



4. Experimental methods 

Our experiments were based on the nucleation pulse method, which lirnits the forma­
tion of dropietstoa short period of time (10-4 s) with known thermadynamie condi­
tions, called the pulse. After the pulse, the dropiets grow to a detectable size (d ~ 0.5 
)lm); during this growth period the conditions are such that no new dropiets are 
formed. 

The separation of nucleation and growth ensures that a monodispersed droplet 
cloud is formed; that is, a collection of dropiets which all have the same size. Por 
such a droplet cloud, the number density n can be determined; the nucleation rate 
during the pulse is then found by 

n 
]=-, 

!:1t 

where !:1t is the pulse duration. 

4.1 Expansion wave tube 

(4.1) 

One of the ways to realize the nucleation pulse metbod experimentally is in a shock 
tube, that consists in its most basic form of a high-pressure section (HPS) and a low­
pressure section (LPS), initially separated by a diaphragm; see Figure 4.1. The test 
gas mixture, which consists of one or more vapours in a carrier gas, is placed in the 
HPS; the LPS contains gas without any vapour. When the diaphragm is broken, an 
expansion wave (indicated by 1 in Fig. 4.1) travels into the HPS and a compression 
wave or shock wave (2) travels into the LPS. Our shock tube bas a locally widened 
LPS; the interaction ofthe shock wave with this geometry results in a weak expansion 
wave (3) and an equally weak compression wave (4) which are sent in the direction 
of the HPS. When the shock wave reaches the end of the LPS, it reflects back (not 
shown). 

Near the end wall of the HPS, a pressure history shown in the centre of Fig. 4.1 
is realized. When the expansion wave arrives, the pressure decreases rapidly (a-*b). 
A short time after the pressure drop ends, the weak expansion and compression wave 
cause a small dip in the pressure (c--+d--+e); this is the pulse. After that, the pressure 
remains approximately constant, until the reflection of the shock wave arrives. 

Schematically, the temperature profile looks the same as the pressure profile. The 
changes in temperature cause the supersaturation to increase from its initia! value to 
a larger value (shown at the left si de of Fig. 4.1 ), which is however still too small 
to result in the formation a large amount of droplets. The small temperature dip 
during the pulse is enough to increase the supersaturation by a substantial factor; the 
nucleation rate then becomes several orders of magnitude higher. After the pulse, the 
nucleation process is quenched; the dropiets that have been formed will be able to 
grow since the supersaturation remains larger than unity. 
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Figure 4.1: Right: schematic x-t plot of the waves in the expansion tube. Centre: pressure at 
the end wall of the HPS. Left: supersaturation at the end wall. 

4.1.1 Setup 

The RPS was made of stainless steel, had a length of 1.25 m and an inner diameter of 
36 mm. The LPS, which was made of aluminium, was much langer; it had a length 
of 9.23 m. The pressure at the end wall of the RPS was recorded by a piezo-electric 
pressure transducer attached to a charge amplifier. The initial wall temperature of the 
RPS was measured with a thermocouple. 

The test gas mixture consisted of the carrier gas helium, and a small but accurately 
known amount of water vapour (molar fraction 0.02%-0.5%). The helium gas had a 
purity of 99.999%. 

Our aim was to obtain nucleation pulse pressures of about 1 bar (105 Pa), and 
pulse temperatures in the range 200-240 K. The initial temperature of the setup was 
laboratory temperature, ranging from 22.6 oe to 24.1 oe. For these conditions, the 
initial RPS pressure needed to be between 1.8 bar and 2.7 bar, while the initial LPS 
pressure was about 1.1 bar. 

4.1.2 Thermodynamic state 

It is impossible to measure the temperature directly because it changes too rapidly. 
Therefore, the temperature was calculated from the pressure, assuming an isentropic 
expansion: 

T ( p )a 
To = Po 

(4.2) 

The gas mixture is assumed to behave ideally. In that case the exponent a is given 
by a = (y - 1)/y, with y the ratio of the isobaric and isochoric heat capacities: 
y =cp/cv. The y of the gas mixture deviates somewhat from the y of the carrier gas 
because of the vapour in the mixture. 



4.2 Mixture preparatien 

To find the size of this deviation, we first consicter the general case: a gas mixture 
with any number of components. We assume that one of the heat capacities of the 
mixture can be calculated by weighted averaging, where the weight factor is the rnalar 
fraction, if we use rnalar heat capacities: 

or (4.3) 

Here the subscripts m and i indicate properties of the mixture and of component i, 
respectively, and Yi is the rnalar fraction. When we further assume that the relation 
cp = Cv + R is valid, bath for the mixture and for the individual components, it can 
be easily derived that 

(4.4) 

where Ym is the y of the mixture. In the case of a single vapour in a carrier gas, this 
relation simplifies to 

Ym=1+ ~+~ , [ 
1 J-1 

Yv- 1 Yg- 1 
(4.5) 

where Yv belongs to the vapour and y8 belongs to the carrier gas. Similar formulas 
were used by several authors. 2•12•25•55 For helium, the ideal value YHe = 5/3 was 
taken. The YH2o value of water depends on the temperature and therefore changes 
during the expansion. However, the effect of the water vapour on the Ym value of the 
mixture is quite small (in our experiment with the highest amount of water vapour, 
the y changed only by 0.2% ), so that an average value of YH2o = 1.33 could be used. 
The final temperature correction due to the Ym correction was only 0.15 Kat most. 

4.2 Mixture preparation 

Because the nucleation rate strongly depends on the supersaturation, it is essential to 
know the vapour fraction of the test gas mixture with the highest accuracy. Therefore, 
a large part of the setup, called the mixture preparation device (MPD), was dedicated 
to producing the mixture. 

The MPD consisted of three parts: a mass flow control part, a saturation part, 
and a heated part. We will first discuss the saturation section. Here, the carrier gas 
was saturated with water vapour by bubbling it through liquid water in a vessel at a 

constant temperature Tsat and pressure Psat· The vessel, which we will call saturat_or, 
was fully tilled with glass beads and partially with high-purity water. We used two 
of these saturators, connected in series. The vessels themselves were immersed in a 
water bath which was kept at a constant temperature (Fig. 4.4). 

In the saturators, the saturated vapour fraction Ys is given by 

Ps (Tsat) J. 
Ys = e(Psat. Tsat), (4.6) 

Psat 

Here the subscript 'sat' denotes a condition (pressure or temperature) inside the sat­
urator, while subscript 's' indicates saturation: Ps is the saturated vapour pressure 

39 



40 4. Experimental methods 

·I 
Qv 

Qg s Q~ : Figure 4.2: Gas ftows ( Q 8 ) and vapour flow 
(Qv) entering and leaving a saturator. 

Qg 
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s Q~+Qv 

y, Q~+Qv+Qo 
1 Figure 4.3: Mixing of the gas/vapour mix-

Oo 
y 

ture and a dry gas stream. 

of water without the presence of a carrier gas. The quantity fe, called enhancement 
factor, is a factor that accounts for the influence of the carrier gas on the vapour-liquid 
equilibrium, and is usually slightly larger than unity. It is taken from Luijten 2 : 

{ 
M[p- Ps(T)]} 

fe(p, T) = exp . 
PeRT 

(4.7) 

Consicter the saturator unit S which is shown schematically in Fig. 4.2. Carrier gas 
enters the saturator at a rnalar flow rate Q8 . If there is no accumulation, the carrier 
gas leaves the saturator at the same rate Q8 , tagether with the vapour at a rate of Qv. 

Since the vapour fraction of the mixture Ys is by definition equal to Qv/(Q8 + Qv). 

the flow rate of the vapour is 

(4.8) 

where Ys = Ys!O- Ys) is introduced to simplify the notation. To increase the range 
of achievable vapour fractions, the vapour/gas mixture can be diluted with a second 
pure carrier gas stream which bas a flow rate Q0 (see Fig. 4.3). After mixing, the 
final vapour fraction y is given by 

(4.9) 

where Eq. 4.8 was used in the second step. Using the definition of Ys, the result can 
be simplified to: 

y= ' 1 + (1- Ys)Qo/Qg 

Ys (4.10) 

which shows that it is the ratio of the two carrier gas flow rates that determines the 
final vapour fraction. This ratio is deterrnined befare the start of the mixing process 
and it is kept constant during it. If y is the desired vapour fraction, Eq. 4.10 can be 
rewritten to find the flow rate ratio: 

Qg _ y(l- Ys) 

Qo 
(4.11) 

Ys- Y 

Befare the experiment, the saturated fraction Ys is known from the saturator pressure 
and temperature in combination with Eq. 4.6. 

In the MPD, the mass flow controllers (MFCs, see Fig. 4.4) were used to control 
both the vapour fraction and the pressure. If, for exarnple, the pressure Psat decreased, 
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He 
supply 

r······-····· 
!M 

Figure 4.4: Schematic view of the mixture preparation device and the flushing section. MFC: 
mass flow controller; UPC: upstream pressure controller; RH: relative humidity sensor. The 
numbering of MFCs and valves follows Hruby. 56 

the MFCs increased the gas flow rates slightly, while the ratio of the rates was kept 
constant. 

In the heated part of the MPD ('heated box' in Fig. 4.4) the pressure was reduced 
from the saturator pressure to the desired HPS pressure. This was done by means 
of metering valve M, with which the flow rate could be accurately adjusted. The 
heated box also contained a static mixer, a cylindrical vessel in which fluctuations 
in the mixture composition were smoothed out. This vessel was heated to 80 oe to 
minimize wall adsorption. 

4.3 Optical detection 

To measure the droplet density at the endwallof the HPS, we used optical methods. 
If a light beam passes through a droplet cl oud, part of the light is scattered, so that the 
main beam is attenuated. The amount of attenuation depends on the droplet density, 
so it might seem suftleient to measure the intensity change of the transmitted light 
to find the droplet density. However, the attenuation also depends on the size of the 
droplets, which is not known. The intensity of the scattered light does provide this 
information; if the wavelength of the light is of the same order as the droplet size, the 
scattered light intensity shows peaks and valleys as a function of the droplet size. For 
any droplet density, these extrema occur at the same droplet size. 

Summarizing, the droplet density is found as follows: While the dropiets grow, 
the scattered intensity shows extrema at certain times, which are used to determine 
the droplet size at those times. The size and the extinction tagether are suftleient to 
obtain the density. 

Figure 4.5 shows how the extinction and scattering signals look during an exper­
iment; the pressure at the end wall is also shown. We see that after the end of the 
pressure pulse (t ~ 7 ms) dropiets are detected: the extinction I I !0 curve decreases, 
while the scattered light shows peaks and valleys as the dropiets grow. 
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Figure 4.5: Example of pressure 
and optica! signals during an ex­
periment. 
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4.3.1 Mie theory 
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The theory that describes the scattering of light by small particles was first derived by 
G. Mie in 1908. 57 Here we will only show the basic part of the theory. 58 

We will first look at the scattering by a single partiele illuminated by a light source. 
The intensity of the incident light is called I0 (energy per unit time and area), the 
intensity of the scattered light at a distance r forrn the partiele is called I. The incident 
light is a plane wave travelling in the positive z direction. Since I is proportional to 
I 0 and inversely proportional to r 2 , it can be written as 

(4.12) 

where k is the wave number k = 2rr j À with À the wavelength of the incident light, 
and F(B, qy) a dimensionless function that describes the dependenee of the intensity 
on the angle. 

Generally, the scattering by an object can be described by 

(E1) = (s2 s3) e-i~r+ikz (E10 ) . 

E, s4 SI zkr E,o 
(4.13) 

E1 is the amplitude parallel with the scattering plane and E, is the amplitude perpen­
dicular to it; see Fig. 4.6. The amplitude functions SI to s4 generally depend on e 
and ify. For a spherical particle, however, S3 and S4 are zero, so that 

e-ikr+ikz e-ikr+ikz 

E, = S1(B) E,o and E1 = S1(B) Ew. (4.14) 
ikr ikr 

S1 and S2 are independent of ifJ because the geometry is now axially symmetrie around 
the z axis. The intensity of the scattered light is found by the square of the absolute 
value of the amplitude: 

I= JE,J2 + IE11 2 

= IS! (B)J21E 12 + IS2(B)J21E 12 
k2r2 rO k2r2 10 . 

(4.15) 

We now define the incident light to be linearly polarized in the x direction, so at 
an angle of ifJ with the plane of scattering. Then E10 = E0 cos ifJ and E,0 = E0 sin ify, 
so that 

(4.16) 
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Figure 4.6: Scattering of light by a particle. 
Light travels in the positive z direction and 
is scattered by a partiele in the origin. The 
angle of the scattering plane with the x-z 
plane is fjJ; the angle of the scattered light 
with the z-axis is e. 

wherei1(B) = IS1(B)I 2 andi2 (B) = IS2(B)I 2 . BycomparingthisresultwithEq.4.12, 
we see that 

(4.17) 

The total energy flux in asolid angle given by 81 < e < 82 and cp1 < cp < cp2 is found 
by integrating the intensity: 

(4.18) 

Inthelast step, Eq. 4.12 was used. We see that Pis independent of r, as it should be. 
For the spherical particle, the integration can be simplified using Eq. 4.16: 

(4.19) 

Extinction 

If light travels through a cloud of identical particles, the attenuated light intensity is 
given by the law of Lambert-Beer: 

I = / 0 exp( -f3d), (4.20) 

where d is the extinction length and f3 is the extinction coefficient, which is in the 
case of spherical particles equal to 

(4.21) 

Here, r d is the radius of a partiele and n is the droplet density (number per unit of 
volume). The parameter Qext. called the extinction efficiency, is 

4 
Qext = 2Re{S(O)}. 

a 
(4.22) 

where S(O) = S1 (0) = Sz(O) and a is defined in the next section. 
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Figure 4.7: Schematic top view of the op­
tica! setup located at the end wal! of the 
HPS. 

The functions that depend on the size of the partiele can be expressed as a function 
of the dimensionless quantity a, the so-called size parameter, defined as 

2rrrd 
a=-- =krd. 

À 
(4.23) 

Insection 5.4, where we will show scattering graphs, the scattering intensity [orrather 
the function F(a)] is shown as a function of the size parameter. 

4.3.2 Setup 

See Figure 4.7 for illustration. An Ar-ion laser produced a vertically polarized light 
beam with a total power of 200 m W at several wavelengths; the two lines with the 
highest amount of power were at 488.0 and 514.5 nm. The filter F was used to remove 
all wavelengtbs except the 514.5 nm line. To be certain of the polarization, the beam 
passed through a polarizer P with a vertical plane of polarization. 

A small part of the light was defiected and recorded by photodiode D1; this signal 
is called the reference signal, because it showed the intensity fluctuations of the beam, 
which were about 3.5%. The beam crossed the tube through windows in the side wall, 
which were slightly inclined to prevent intemal refiections. The distance from the 
beam to the end wall of the HPS was 5 mm. The end wall contained a larger window, 
which allowed the scattered light to be measured by photomultiplier PM. The lens L1 

and the diaphragm d1 ensured that only light scatteredat 90° was recorded. 
The main beam which left the tube passed through pinhole d2 to remove the for­

ward scattered light. Lenses L2 and L3 focused the beam on photodiode D2. Before 
the light reached this photodiode, it was attenuated by recording only the second in­
tema! reflèction of a glass plate, which was required because of the high intensity of 
the main beam. 

4.4 Experimental procedure 

All devices were switched on, including the laser and its cooling fan. The ventila­
tion of the laser created an air circulation which had a considerable influence on the 
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temperature of the test section. Apart from that, it was found that the vibrations of 
the ventilation system could cause a 50 Hz fluctuation in the laser beam position; 
therefore, the ventilation tube was tightly fastened. 

A new diaphragm was placed in the tube, and the tube was closed. Then bath the 
LPS and HPS were evacuated; the HPS down to about 10 Pa. After the flow rate 
ratio of the mass flow controllers had been chosen, metering valve M was opened 
(Fig. 4.4). As the pressure in the MPD started decreasing, the MFCs slowly opened 
to supply gas. Valves 19 and 22 were initially closed; 23, B 1 and B2 were open, so 
that the gas mixture flowed through the HPS, then trough the humidity sensor RH and 
finally reached the pressure controller (UPC). This device could control the gas flow 
to maintain a constant pressure in the HPS, and was initially closed. 

While the pressure in the HPS increased, we slowly tilled the LPS with helium 
to minimize the force on the diaphragm. In the HPS, when the pressure reached 
the preset value, the UPC opened to let gas out, which started the flushing process. 
Flushing means that the gas mixture flows through the HPS for some time at constant 
pressure, which was required to establish adsorption equilibrium with the tube walls 
and to remove foreign particles. As gas flowed through the RH sensor, the humidity 
could be monitored. Usually, its value was observed to strongly oscillate while the 
system of pressure and flow controllers equilibrated. We flushed the HPS at a rate of 
roughly 3.5 normallitre per minute, forabout one hour, so that about 200 normallitre 
of gas was used. 

After the entire system had stabilized, the gas flow was determined by the pressure 
difference over the metering valve (Psat- PHPs) and the amount this valve had been 
opened. Valve 19 was opened and 23 was closed, so that the gas flow bypassed the 
HPS and flowed directly to waste. Then the valves B 1 and B2 were closed, isolating 
the HPS. The laser was set to a power of 200 m W and the amplifier of the dynamic 
pressure transducer was set in the 'operate' mode. Finally, the trigger was armed and 
the diaphragm was broken. 

The data acquisition system that we used (LeCroy, type 6810) recorded the signals 
from the pressure transducer, the photomultiplier and the two photodiodes. All sig­
nals were sampled at a frequency of 100 kHz. The data acquisition system was used 
with a so-called pre-trigger operation of 5 ms, which means that after the experiment, 
the initia! values of the signals (as they were during the 5 ms before the trigger oc­
curred) were available. This was required to obtain the initia! output voltages of the 
pressure transducer and photodiodes. 

After the experiment, the offsets of the photodiodes were recorded by measuring 
their output voltage in the dark. 

4.5 Accuracy 

In this section, we will calculate the accuracy of the measurements, and the accuracy 
of quantities that are based on the measurements, such as temperature and vapour 
fraction. First, we introducesome notation, which is taken from Hruby. 56 

E (y) means the uncertainty in the quantity y. Hereafter, we will frequently use 
the word error for the uncertainty, although these terms are not exactly the same. The 
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notation E (y I x) means the error in y caused by the error in x, and cao be found by: 

E(ylx) = lay;axiE(x). (4.24) 

We will also use the relative error, defined by e(y) = E(y)/lyl. A relative error 
caused by the (relative) error in another quantity cao be found by 

I 
x ay I I a ln y I e(ylx) = -- e(x) = -- e(x). 
y ax a lnx 

(4.25) 

4.5.1 Thermadynamie state 

Accuracy of temperature and pressure measurements 

The initial pressure of the HPS, p0 , was measured by the Druck PMP4070, range 
0-10 bar. This pressure transducer was compared with a more accurate one of the 
same type (range 0-3.5 bar); it was found that the maximum error was 0.3%. 

The initial temperature of the HPS, T0 , was determined by a thermocouple (NiCr­
NiAl) in good thermal contact with the wall, connected to a Keithley 871A digital 
thermometer. We assume that the maximum error is 0.1 K. 

The pressure changes in the HPS, tlp(t), were recorded by a Kistier 603B piezo­
electric pressure transducer, connected toa Kistier 5001 charge amplifier. The accur­
acy is 0.5% 2

. 

Accuracy ofthe pulse temperature 

To find the error in the temperature, we rewrite Eq. 4.2 as a function of the three 
measured quantities specified above: 

(
Po- t:lp)a 

T = T0 , 
Po 

(4.26) 

where tlp is defined such that p = p0 - t:lp. Applying the formula for relative error 
propagation, Eq. 4.25, we find: 

e(TITo) = s(To); 

t:lp 
s(Tipo) = a-s(po); 

p 
tlp 

s(Titlp) = a-s(t:lp). 
p 

(4.27) 

(4.28) 

(4.29) 

The initial temperature T0 was approximately the same for all experiments, so the 
error in T caused by T0 is always the same. The last two equations show that the 
errors in p0 and t:lp propagate by the same factor a t:lp I p. Both a and p had nearly 
the same values in all experiments; in contrast, t:lp differed much. The experiments 
in which t:lp was large, so the ones with a low nucleation temperature, will have the 
largest error in the temperature. The total relative error in the temperature is 

(4.30) 
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Accuracy of the pul se pressure 

Because p = p0 - b.p, the error in the pressure can be written immediately as: 

(4.31) 

For low temperatures, p0 , b.p and their errors are all higher, and so is therefore the 
error in p. 

4.5.2 Vapour fraction 

For error analysis, we can use the approximation y « 1, so that Eq. 4.10 simplifies 
to: 

(4.32) 

which shows that a relative error in Ys causes the same relative error in y, that is, 
e(ylys) = e(ys). 

Saturator pressure 

We measured the pressure after the saturators Psat with a Druck PMP1400, range 0-
100 bar. After calibration, the accuracy is assumed to be equal toa difference of ±1 
inthelast digit of the display, which corresponds to 0.02 bar. Using Eq. 4.6, we find: 

I 
a ln fe(p, Tsat) I I 

e(yiPsat) = e(ysiPsat) = -1 + Psat a e(Psat). 
P Psat 

(4.33) 

Using Eq. 4.7, it was found that a fe/op ~ w-8 Pa- 1, so that we can safely make the 
approximation 

(4.34) 

Saturator temperature 

The temperature inside the saturators Tsat was measured by a platina resistor thermo­
meter with an accuracy of 0.02 K. Eq. 4.6 gives 

The derivative of ln Je with respect to temperature was found to be much smaller than 
the other term between the modulus lines, so that 

(4.36) 

In the range of saturator temperatures that we used, we could make the approximation 
P~(Tsat)/Ps(Tsat) ~ 0.06 K- 1

• 
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Mass flow controllers 

After calibration of an MFC, the accuracy is given by 56 

é(Q) = 0.002Qfun/Q + 0.007, (4.37) 

where Qfull is the flow rate of the MFC at full scale (the flow rate at the maximum 

output voltage). Applying Eq. 4.25 to Eq. 4.32, the error in the fraction due to the 

error in the flow rates is eventually found to be 

(4.38) 

s(yl Qo) = Qg + Qo s(Qo). (4.39) 

The error propagation is determined by the fraction Q0 j(Q8 + Q0), which is a meas­
ure of the amount of dilution. It appears that a large amount of dilution will increase 

the error in the vapour fraction. 

Total error 

The total error in the vapour fraction is 

[ 
2 2 2 2 ] 1/2 

s(y) = S (YIPsat) + S (yiTsat) + s (yl Q8 ) + S (yl Qo) · (4.40) 

A complete numerical evaluation of the error in the vapour fraction of all experiments 

is shown in appendix B .1. 

4.5.3 Nucleation rate 

Theoretica! nucleation rate 

We already know the uncertainties of p, Tand y, and since the theoretica! nucleation 
rate J can be written as a function of those quantities, we could use the error propaga­

tion formulas to calculate the error in J. However, it is nat correct to do sa, because 
the errors in pand T are nat independent; bathpandT depend on p0 and f).p. 

The correct way to praeeed is to write J as a function of the independent, measured 
quantities p 0 , f).p, T0 and y. We could then use the error propagation formulas, but 

this resulted in complicated expressions which did nat give new insights. lnstead, we 
used a simpler way to find the error: 

E(ln JIX) = lln{ J[x1} -In{ J[x + E(x)1} I· (4.41) 

The error in ln J caused by a quantity X was calculated by substituting the expected 
value of X and the value of X with the maximum error, and then subtracting the two 

results. We chose to express the error as an error in ln J, nat in J, because J and its 
error were quite large numerically. As a result, the error in J could be described by 
an error factor ferr• in the following way: 

lnJ- E(lnJ) < lnf < lnJ + E(lnJ), (4.42) 
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where J is the real nucleation rate and J is the measured value. Exponentiating yields 

I ~ 

J fe-:r < J < J ferr• (4.43) 

with ferr = exp [ E(ln J)]. A complete numerical evaluation of the error in the theor­
etica! nucleation rate ptan of all experiments is shown in appendix B.2. 

Experimental nucleation rate 

Because J = n I l:!,.t, the error in the ex perimental nucleation rate is caused by the 
errors in the density n and pulse duration l:!,.t. In the next chapter we will see that 
n can be determined quite accurately, but l:!,.t cannot. The error in J is therefore 
completely determined by the error in l:!,.t, which is about 30%. 
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5. Data analysis 

5.1 General 

First the voltage recorded by the charge amplifier V (t) is converted toa pressure p(t): 

p(t) = K[V(t)- Vo] +po, (5.1) 

where p0 is the known pressure in the HPS before the start of the experiment, and 
V0 is the voltage at that time. The constant K, with units of pressure per voltage, 
is determined by the settings of the charge amplifier; its value must be found by 

calibration. 
The offsets of the extinction and reference signals are taken into account, and the 

extinction signal I (t) is normalized with respect to the reference signal R(t). 

R(O)- Roff 
Icorr(t) = [I (t) - Ioff] . 

R(t)- Roff 
(5.2) 

Note that the time-independent value in the numerator R(O) - Roff is notimportant 
since only the relative changes from the initial value are important. To obtain this 
initial value, the signal that has been recorded right before the start of the experiment 
(about 5 ms) is averaged. Next, the extinction and scattering signals are filtered, by 
means of a running average over 11 points. 

To assign a single thermadynamie state to the nucleation pulse, the pressure signal 
during the pulse must be averaged. The beginning and ending time of the pulse are 
determined by the experimenter. There is some ambiguity in the choice of these 
times, especially the beginning time. Luijten 2 has shown that the final results are 
'quite insensitive' to this choice. Still, the uncertainty in the total pulse duration can 
be as much as 30%. 

In the next step, the temperature is calculated using the isentropic expansion rela­
tions as described in section 4.1.2. 

Finally, the positions of the extrema in the scattering signal must be identified. 
This procedure is currently not automated; the experimenter can best distinguish the 
peaks from the noise. To obtain the droplet density, two methods are available. The 
one that has been used in the past2

•
25

•
28 will be called the 'old method'. 

5.2 Old method 

Denoting the scattering extremum number with i, the time at which it is observed 
with ti, and the corresponding size with ai, we derive from the extinction formulas 
Eqs. 4.20 and 4.21 that 

4n ln[Io/ I (ti)] 
ni = 2 2 . 

ai QextCai)À d 
(5.3) 
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Figure 5.1: Scattered light intensity of experiment 35. Left: theoretica!, right: ex perimentaL 

The extinction length d is approximated by the intemal diameter of the high pressure 
section, which is 36 mm. 

The measured droplet densities during the droplet growth period differ from the 
density at the end of the nucleation pulse, because the gas mixture is compressed after 
the end of the pulse, and so is the droplet cloud. Assuming isentropic behaviour, we 
can relate a density change of a gas to a pressure change: 

.!!_ = (.!!_) 1/y 

Po Po 
(5.4) 

We assume that the droplet density changes in the same way as the gas density, so 
that the droplet density at the end of the pulse can be found by 

n; 
npu1sei =-, C; 

with [ 
p(t;)] 1/y 

C; = -- > 1. 
Ppulse 

(5.5) 

The nucleation rate is then J; = npulse,i I l::.t, where l::.t is the pulse duration. Con­
cluding: with this methad we obtain a value for the nucleation rate for every Mie 
extremum that we can identify. 

5.3 New method 

Although the methad described above looks perfect theoretically- and provides ex­
cellent results in some cases - it has a practical drawback. Generally, because of 
the very small amount of light extinction, there is much noise on the intensity sig­
nal. Since the old methad only takes one sample of the extinction signal per Mie 
extremum, the resulting droplet density might be far from the real value. The present 
author looked for a way in which the entire extinction signal could be used, instead of 
selecting just several data points. Specifically, applying Eq. 5.3 on the whole signal 
would be an impravement This is impossible in principle because the size parameter 
a is only known at times when scattering extrema are observed, not in between. How­
ever, if we assume the droplet growth to be well-behaved - which is the case in all 
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5. Data analysis 

Figure 5.2: Droplet growth of experiment 
35: square of the size parameter a versus 
time. Circles: values obtained from the ex­
trema in the scattered light; line: fourth­
order polynomial fit. 

experiments - we can interpolate the droplet size between the known values. Even 

better, we can fit the points inthea-t diagram with some appropriate curve. 
Fitting the data points requires knowledge ofthe underlying physical relations. We 

know from droplet growth theory that in the diffusion-controlled regime, the square 

of the droplet radius grows proportional to time, so that a 2 is also proportional to the 
time. It seems therefore appropriate to fit the points in an a 2-t diagram with a line, 

as a first approximation. Por most experiments the points were observed to deviate 
somewhat from this ideal behaviour and finally it was found that a fourth-order poly­

nomial was necessary to reproduce the a 2-t curve accurately. As an example, Fig. 5.1 
shows the theoretica! scattered intensity as a function of a, and the ex perimental in­

tensity as a function of time. By matching the extrema, the a 2-t plot of Fig. 5.2 is 
obtained (circles). The polynomial fit is shown as a line. 

Now that the droplet size can be approximated at any instant of time by means of 
the a 2(t) fit, it is in principle possible to apply Eq. 5.3 at every data point and get a 

value for n at all those points. The final value of n could then be obtained by simply 
taking the average. There is, however, a better way to find n. We first rewrite Eq. 5.3, 
including the density correction: 

4:rr ln[/0 / I (t)] 
n= . 

a (t) 2 Qext[a (t) ]C (t)À 2d 
(5.6) 

We make a graph, in which we plot a point for each time t, with the vertical co­

ordinate equal to the numerator in Eq. 5.6, and the horizontal coordinate equal to the 

denominator. We then obtain n as the slope of the best fitting line, going through 
the origin.* In practice, the time-independent quantities can be left out, and what is 

plottedis 

on the vertical axis: Y(t) = ln[I0 jl(t)], 

on the horizontal axis: X(t) = a 2(t)Qext[a(t)]C(t); 

(5.7) 

(5.8) 

*The result obtained by fitting a line is different from taking the average. If a quantity a is found by 
a = y I x, the simp Ie average is ä = L Yn I Xn. The slope of the line of best fit is a fit = L Xn Yn I L x;. 
lf this is written as afit = [ L x; (Yn I Xn)] I L x;, we see that the slope is a weighted average with 
weight factor x;. 
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Figure 5.3: Plot of the quantities of Eqs. 5.7 and 5.8. Circles: experimental values; line: best 
fitting line through the origin. a: experiment 35; b: experiment 25. 

1.002 

1.000 

0.998 

_o 0.996 

:::: 
0.994 

0.992 

0.990 

0 10 15 

Time (ms) 
20 

Figure 5.4: Light extinction of experiment 
35. Thin line: experimentallight intensity, 
scaled with the initia! intensity. Thick line: 
expected intensity from Eq. 5.10. Dotted 
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nucleation pulse. 

see Fig. 5.3a. To illustrate the advantages of the new method, an experiment with a 
particularly noisy extinction signal was selected. In other cases the deviations from 
the line are much smaller (Fig. 5.3b). 

If the slope of the best fitting line is called s, the droplet density nfi1 is found by 

4n 
nfit = À2d s. (5.9) 

Basedon the value of n that has been obtained and the droplet growth a(t) fit that 
was found earlier, it is possible to calculate the intensity signal from Eq. 5.6 that we 
would expect when n is assumed to be constant: 

lexpected(t) = loexp (-~~ nfita2 QextC) = loexp[-s X(t)]. (5.10) 

This expected signal can be visually compared with the observed one; for the example 
this is shown in Fig. 5.4. We will see that this feature can be an aid to the identification 
of extrema in the scattering signal, which we will illustrate in the next section. 

5.3.1 Example ofthe new method 

In experiment 25 the scattering signal shown in Fig. 5.5 was observed; for comparison 
the theoretica! scattering versus size diagram is shown next to it. In Fig. 5.5 we can 
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Figure 5.5: Scattered light intensity of experiment 25. Left: theoretica!, right: experimental. 

clearly see several Mie extrema, which have been marked by letters. A problem of 
this experiment was that it was unclear to which theoretica! extrema - and to which 
droplet sizes - they corresponded. Three identifications that were considered are 
shown in Table 5.1. 

Table 5.1: Identification of extrema in the scattered light of Fig. 5.5. 

a b c d e f g h 
I 3 4 5 6 7 8 9 11 13 
II 5 6 7 8 9 10 11 13 15 
UI 7 8 9 10 11 12 13 15 17 

Using the old data analysis method, it was not easy to choose an identification. In 
this case, III was chosen, based on the shapes of the observed peaks. 

When this experiment was later reanalyzed with the new data analysis method, it 
was clear which identification was the correct one. Figure 5.6 shows the expected 
intensity superimposed on the experimental signal, for the three options. It is clear 
that option II gives the best match, and is very likely the correct one. 

In some cases the fit was not that good, and the amount of light extinction gradu­
ally decreased below the expected value. One way to explain this is that the droplet 
density decreases during the measurement period. A second explanation is that the 
extinction length (d in Eq. 5.10) decreases, which would occur if the cloudof dropiets 
shrunk. A decrease like this is possible if the thermal boundary layers at both win­
dows grow during the experiment and cause dropiets at the boundaries of the cloud 
to evaporate. 

5.4 Scattering 

In this section we will investigate the infiuence of several parameters on the scattered 
intensity as a function of the droplet size. We will use the formulas from section 4.3.1 
to calculate the theoretica! scattering, and we will try to match the experimental scat-
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from Eq. 5.10. The three figures show the expected intensity for identifications I, 11 and lil ofTable 5.1. Dotted vertical 
lines: begin and end time of the nucleation pulse. 

tering signals as well as possible. Obtaining the correct theoretica! scattering diagram 
is important for the data analysis, since it is the only way to identify the experi­
mental extrema and to obtain the right droplet size, corresponding to an extremum. 
Figure 5.7 shows two experimental scattering signals in which many extrema were 
observed, and which are therefore suitable for comparison with the theory. 

5.4.1 Angle 

The setup bas been designed such that the light that is scattered at an angle of 90° is 
recorded. In practice, the optica! alignment is never perfect, and the horizontal scat­
tering angle will always deviate slightly from 90°. It was found that differences as 
small as 0.5° will make a difference in the observed pattem of peaks, so that know­
ledge of the exact angle is required for an accurate analysis. 

A convenient way to determine the scattering angle is to adjust the angle that is 
used to make a theoretica! plot, until it matches the result obtained experimentally. 
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Figure 5.7: Experimental scattered intensity signa! of experiments 29 (left) and 39 (right). The extrema have been 
numbered. 
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Figure 5.8: Scattering as a function of the size parameter for three scattering angles: 89.3°, 
90.0° and 90.7°. Width of size distribution: 0.25; refractive index: 1.33. 

Figure 5.8 shows the scattering intensity for three angles: 89.3°, 90.0° and 90.7°. We 
see that the change of angle modifles the valleys, notably near a = 14 and a = 15. 
The region between a = 17 and a = 21 is most sensitive to changes in the angle, and 
it is this region which was compared with the experimental signal to find the angle. 

Based on a comparison with the experimental scattering (Fig. 5.7) an angle of 
89.3° was chosen, except for experiment 25, which was analyzed using the 90.0° 
scattering. (After experiment 25, changes were made to the optical setup, resulting in 
a different angle.) The advantage of a slight deviation from 90° is that smaller peaks 
appear insome valleys (e.g., those indicated by numbers 15 and 19 in Fig. 5.7), which 
makes it easier to identify the extrema in the experimental signals. 

The influence of the other scattering angle, the angle of the scattering plane with 
the horizontal plane, is much smaller. In fact, even for a deviation of 10° from the 
horizontal plane, there is almost no difference with the case of horizontal scattering. 
Eq. 4.17 shows why the effects are so small: for cp close to 90°, the factor cos2 cp 
is very small (e.g., cos2 80° ~ 0.03), so that F(e, c/J) is very insensitive to cp in this 
region. 

5.4.2 Refractive index 

The analysis insection 3.4 showed that we can safely assume that the refractive index 
is always between 1.32 and 1.34. Figure 5.9 shows the theoretica! scattering pattems 
for refractive indices of 1.32, 1.33 and 1.34. The differences between them are most 
apparent at high a values; above a = 17, the shapes of the peaks and valleys clearly 
change. At lower a values the heights of the peaks change; the a positions of the 
peaks are also slightly different. 

The only significant changes are at high a values. But at low temperatures, where 
we expect the refractive index to be lower, this region of the scattering curve is never 
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Figure 5.9: Scattering as a function of the size parameter for three values of the refractive 
index: 1.32, 1.33 and 1.34. Scattering angle: 89.3°; width of size distribution: 0.25. 

observed - below 220 K, the highest a value seen was only a ~ 7. Therefore, a 
refractive index of 1.33 was used for all experiments. 

5.4.3 Size distribution 

We generally assume that the droplet cloud is monodispersed, that is, that all draplets 
have the same size. In reality, there is at any time in the experiment a distribution of 
droplet sizes, because of the fini te duration of the nucleation pulse. The result of this 
is that the diagram of scattering versus time looks smoother, due to the contribution 
of the different droplet sizes at each time. The size distri bution can be described by a 
function n(r), which has a unit of m- 1 and is normalized such that f0

00 n(r) dr = 1. 
The observed scattered light intensity is then 

F = 100 

n(r)Fo(r) dr. (5.11) 

Here F0 (r) is the F of a partiele with a certain radius r. Looijmans 25 already investig­
ated the effect of a size distribution on F; he used a so-called lognormal distribution. 
We will take a much simpler distribution 

if r0 - b..r < r < r0 + b..r, 

otherwise, 
(5.12) 

which is a constant distribution centred about r0 and with a width of 2b..r. The 
scattered intensity is then 

1 1'o+ll.r 
F(ro) = - Fo(r) dr, 

2b..r ro-ll.r 
(5.13) 

which is simply a rnaving average over a width of 2b..r. 
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Figure 5.10: Scattering as a function of the si ze parameter for three values of the size distri­
bution: 0, 0.25 and 0.50. Scattering angle: 89.3°; refractive index: 1.33. 

Figure 5.10 shows the smoothed scattered intensity F (r0 ) for size distributions 
with widths of 0, 0.25 and 0.50, in a units. Por the analysis of all experiments, a 
width of 0.25 was chosen since it matches the experimental signal best, although 
the the monodispersity varies slightly from one experiment to another, and generally 
decreases during the droplet growth. 



6. Results 

In this chapter we present the results of our nucleation experiments, and we compare 
them to measurements by Peeters and by Wölk et al. Peeters's data was obtained 
in 2001 using the same setup as we used. This data was corrected by the current 
author, see appendix A.I. Wölk et al. measured nucleation rates of water in argon 
between 1011 and 1015 m - 3s- 1 in a nucleation pulse chamber, in which the nucleation 
pulse metbod was realized by means of valves which connected pressure-controlled 
volumes to themainchamber volume. 12 With this method well-reproducible pressure 
pulses could be obtained. For more information about the data by Wölk et al., see 
appendix A.2. 

Figure 6.1 shows the experimental conditions as a function of the temperature. 
Note that to obtain a constant nucleation rate at low temperature, the vapour pressure 
must be decreased, while the supersaturation must be increased. The new experiments 
are at somewhat higher supersaturations than those of Peeters, and are also higher 
than Wölk's. Each of the three measurement sets has a temperature range of 40 K, 
but the temperature interval of Wölk's data is located 20 K higher. A feature of 
Wölk's data is that it consists of five isothermal sets; a deliberate division, which was 
made possible by the reproducibility of the experimental nucleation temperatures. 

In Figure 6.2, the experimental nucleation rates are shown as a function of tem­
perature, scaled with the theoretica! predictions of the standard theory. The lower the 
temperature, the higher the deviation from the theoretica! predictions. At 200 K, the 
experimental nucleation rate is about six orders of magnitude higher than predicted. 
Although all three data sets show this trend, there are some differences between them. 
The new data is about one to two orders below Peeters's results, while the data of 
Wölk lie exactly in between them. The scatter in the new data and those of Peeters is 
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Figure 6.1: Vapour pressure (left) and supersaturation (right) of the nucleation pulse in the experiments, as a function 
of the temperature. In the vapour pressure graph, the lines are lines of constant supersaturation. 
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Figure 6.2: Ratio of ex perimental and theor­
etica! nucleation rates. The error bars give 
the uncertainty due to the theoretica! nuc­
leation rate only. The dotted line is a fit 
through the data of Wölk et al. of the form 
exp(AI +BilT); see Eq. 6.5. 

about the same and seems to increase at low temperatures. 

6.1 Empirical correction 

At this time, there is no theory which correctly prediets nucleation rates for an ex­
tended range of conditions. An equation capable of doing so would be valuable for 
the analysis of all kinds of industrial and natural processes, and - until better theor­
ies are found - such expressions can be obtained by modification of the theoretica! 
expressions we do have. Commonly, the nucleation rate prediction is corrected by an 
additional factor: 

lcorr(T, S) = f(T, S) ltheo(T, S). (6.1) 

Here and everywhere else we express J as a function of T and S (another option is 
to write it as a function of Tand Pv). We will assume that the correction can always 
be written as a product: 

lcorr(T, S) = /T(T)fs(S) ltheo(T, S). (6.2) 

6.1.1 Temperature correction 

The most obvious problem of all nucleation theories is their failure to predict the 
temperature dependenee of the rates: they may be correct at some temperature, but 
several orders off at another. Wölk et al. 59 suggested, on the basis of theoretica! and 
experimental grounds, that the discrepancy could be described by 

ln ( lexp ) = A + B , 
lclass T 

(6.3) 

where lc1ass is the classical nucleation theory, without the 1/ S correction; it is lc1ass = 
S x lstan• where lstan is given by Eq. 2.41. An appropriate correction is then 

1!orr(T, S) = exp(A + B / T)lc!ass(T, S). (6.4) 



6.1 Empirica! correction 

Wölk et al. determined the constants A and B based on their experimental data of the 
nucleation of water. By camparing the corrected predictions with a large amount of 
measurements by others, they found that their new expression worked well in a large 
temperature range. 

We chose to use lstan instead of lc1ass• so that our corrected nucleation rateis 

(6.5) 

We used different expressions for the properties of water, which is another reason that 
we found different values for the constants A 1 and B1• To obtain them, we fitted the 
data by Wölk with a line A1 + BJ!T in a diagram of lnUexp/ lstan) versus T. The 
resulting values are given in Table 6.2, and Fig. 6.2 shows the fit graphically. The 
fitted function appears to represent the temperature dependenee of Wölk's data well. 
There is still some scatter in the vertical direction; one of its causes will be explained 
in the next section. 

6.1.2 Supersaturation correction 

In the diagrams by Wölk et al. that are similar to Fig. 6.2, the deviation of the data 
from the fit is shown as an error bar, leading to the assumption that the deviation 
is caused by random experimental scatter. This is, however, not the case. At each 
nucleation temperature, experiments were performed in a range of supersaturations. 
We found that data points which were higher than the fitted line in Fig. 6.2 were 
experiments with a lower supersaturation, and vice versa. 

That there is a dependenee on supersaturation can be seen clearly in a graph of 
the ratio of experimental and theoretica! nucleation rates versus the supersaturation: 
Figure 6.3. In the top graph, we see two effects at the same time; first, the well­
established effect of temperature, which causes jumps from one isothermal data set 
to the next (which is why the five sets can be distinguished easily) and second, the 
proposed supersaturation dependence, which causes each isothermal set to have a 
downward slope. This negative slope is the reason that experiments with a high su­
persaturation are lower in Fig. 6.2. The 'scatter' in this figure can be seen as a 'side 
view' of each set in Fig. 6.3. 

A nice property of Wölk's data is that the entire supersaturation range is covered; 
some supersaturation values are even included in two isothermal sets. It is precisely 
this property that allowed us to find the exact form of the supersaturation dependence. 
Namely, we shifted each isothermal set vertically until it touched - or overlapped -
an adjacent set; see the bottorn graph of Fig. 6.3. One way to view this process is that 
we 'normalize' the different isothermal sets to one, arbitrary temperature, so that the 
only effect that remains is the pure supersaturation effect. It is however only allowed 
to do this when the supersaturation effect itself does not depend on the temperature, 
and we assumed that this is the case. 

It appeared from Fig. 6.3 that the supersaturation dependenee was linear (when 
plotted on this logarithrnic scale); in a plot of lnUexp/ lstan) versus S, the slope that 
was found was -0.38 ± 0.08. The uncertainty is caused by the shifting of the iso­
therms 'by hand' which is rather inaccurate. When it was found that the effect was 
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Figure 6.3: Ratio of experimental 
and theoretica] nucleation rates as 
a function of supersaturation; data 
of Wölk et al. In the bottorn graph 
the isotherms have been shifted 
vertically- normalizing them to a 
single temperature - to show the 
pure supersaturation dependence. 

Table 6.1: Slope of the supersaturation dependenee of InUexp/ lstan) of each isotherm of the 
data by Wölk et al. The slopes were obtained by linear regression; the uncertainty shown is 
thè standard deviation. 

T slope of S dependenee 
220 K -0.380 ± 0.022 
230 K -0.368 ± 0.022 
240 K -0.358 ± 0.028 
250 K -0.366 ± 0.038 
weighted average -0.37 ± 0.01 

linear, the accuracy of the slope was improved by fitting a line to each individual iso­
thermal set. Table 6.1 shows the resulting slopes and their uncertainties, obtained by 
linear regression. Remarkably, the slope values are consistent; the weighted average 
and final result is -0.37 ± 0.01. The T = 260 K set was oot included because of its 
limited supersaturation range and large scatter. 

Since the dependenee on supersaturation of the data was known, the theory could 
be corrected for it: 

(6.6) 

This expression is introduced to include the supersaturation dependence; it is oot 
meant to produce exact nucleation rates. lts use becomes clear in Fig. 6.4, where we 
plotted the ratio of the experimental rates and the supersaturation-corrected values 
of Eq. 6.6. By sealing the data in this way, we compensate for the supersaturation 
dependence; what remains is the 'pure' temperature dependence, which is stronger 
than before. This is because in the original data, the supersaturation and temperature 
dependenee compensated each other: at low temperatures, where the nucleation rate 
is much higher than the theoretica! value, the supersaturation is high as well, so that 
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Table 6.2: Constants in the temperature and supersaturation corrections, with standard devi-
ation. 

parameter value standard deviation 

A1 -47.4 ± 0.5 
BI (K-1) 1.25 x 104 ± 0.01 x 104 

Az -69.4 ± 0.3 
Bz (K- 1) 1.889 x 104 ± 0.008 x 104 

c -0.37 ± 0.01 

A3 -12.7 ± 0.6 
B3 (K-4) 7.1 x 1010 ± 0.1 x 1010 

A4 -62 ± 2 
B4 (K- 1) 1.93 x 104 ± 0.04 x 104 

D -5.55 

the ratio of experimental and theoretica! rates moves down. 

We recalculated the temperature correction; the new expression, including the su­
persaturation correction, is: 

(6.7) 

where we have chosen the same form for the temperature correction as before. 

Again, the constants are shown in Table 6.2 and the fit in Fig. 6.4. To show once 
more the differences between the temperature-only correction (Eq. 6.5) and the cor­
rection that includes the supersaturation (Eq. 6.7), Fig. 6.5 displays the ratio of the 
ex perimental nucleation rates and the predictions, for each of the two corrections. We 
see again that the supersaturation dependenee has been successfully eliminated and 
that the maximum deviations have become smaller - the scatter that remains is truly 
due to experimental noise. 
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Figure 6.5: Deviations of ex perimental nucleation rates of Wö!ket al. from the corrected the­
ories. Left: temperature-corrected theory; right: temperature- and supersaturation-corrected 
theory. 

6.1.3 Application to other data 

When the supersaturation correction of Wölk's data had been obtained, a logical next 
step was to apply it to Peeters's data and our new data as well. Figure 6.6b shows 
the result: the ratio of lexp and Jc~rr versus the temperature. A comparison with the 
original results (Fig. 6.6a) shows two differences. First, the three data sets move 
closer together. The new data and Wölk's nearly overlap; Peeters's results are also 
closer, but still somewhat higher. Second, the scatter in all data sets decreases. For 
Wölk's data this is no surprise; but that we abserve it for the other data sets as well 
means that they have a similar supersaturation dependence. 

It appears that the remaining temperature dependenee of our new data set and that 
of Peeters is slightly larger than that of Wölk's data; an attempt to describe it by the 
1/ T function we used befare was unsatisfactory, because the curvature of the fitted 
function was too small. In fact, a fourth power of T was required to reproduce the 
dependency, and the full correction is 

(6.8) 

where the constants can be found in the table and the fit is displayed in Fig. 6.6b. 

6.1.4 Alternative supersaturation correction 

Although the supersaturation correction seems to be an improvement, it has one prob­
lem: it is too strong. This is shown in Fig. 6.7, which displays the nucleation rate (not 
a ratio, but the pure rate this time) as a function of the supersaturation. The data 
of Wölk is shown, tagether with the predictions of the T-corrected and the T, S­
corrected theories. The slope of the T, S-corrected theory clearly matches the data 
better, but at high supersaturations this theory prediets a decreasing nucleation rate 
with increasing supersaturation. This behaviour is of course unphysical. According 
to the Nucleation Theorem 3 

a ln lexp * 
a ln s = nexp + 1, (6.9) 

where lexp is the experimental nucleation rate and n;xp is the actual amount of mo­
lecules in the critica! cluster.so that a slope of approximately zero in the J versus S 
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Figure 6.6: Ratio of experimental and theoretica! nucleation rates; comparison of different 
corrections. a: standard theory; b: strong supersaturation correction; c: weak supersaturation 
correction. 
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Figure 6.7: Nucleation rates as a func­
tion of supersaturation. The the­
ory corrected for temperature and su­
persaturation 1[;,~2 (solid lines) fits 
the Wölk data (dots) better than the 
temperature-corrected theory I:C,rr,l 
(dashed lines), but at high supersat­
urations it prediets the unrealistic de­
crease of the nucleation rate. 

plot means that each molecule in the vapour is a critica! cluster; a limit of stability, 

which could be seen as the spinodal. A negative slope has no physical meaning. 

In the standard theory, the critica! cluster size is (Eq. 2.21) 

( 
28 )

3 

n;tan = 3ln S (6.10) 

Taking the logarithm of the expression for the standard theory (Eq. 2.41), and then 
differentiating with respect to ln S yields 

a ln lstan * 
--- =n +1 a ln s stan ' 

(6.11) 

so that we obtain for the T, S-corrected expression, using either Eq. 6.7 or Eq. 6.8, 

a ln JT,S 
__ .:...:co.:...:rr.::..,3 = n* + 1 +CS. a ln s stan 

(6.12) 

Since the T, S-corrected theory agrees with the experimental nucleation rates, the 

Nucleation Theorem of Eq. 6.9 can be used to obtain the critical cluster size: 

a ln JT,S 
* corr,3_1=n* +CS. 

nexp - a ln s stan (6.13) 

This equation shows that the classica! cri ti cal size is corrected by an amount CS. 
Since C < 0, at high enough S values the corrected critica! size will eventually be 
zero. We do not expect that this is the case in reality; after all, experiments have been 

perforrned at much higher supersaturations. 
Whatever the theoretica! interpretations may be, it is clear that the supersaturation 

correction in the previous forrn is too strong, at least when extrapolated to higher su­

persaturation values. Therefore, a weaker supersaturation correction was considered: 

Jc~rr,4 = exp(D ln S) lstan = sD lstan• (6.14) 



6.1 Empirica! correction 

where D < 0. We wanted the new expression to agree as wellas possible with Wölk's 
data in a lnUexp/ lstan) plot similar to Fig. 6.3. In this plot, the previous correction has 
a constant slope of C, while the new correction has the form D ln S with a varying 
slope of DIS. A full agreement is therefore never possible. We chose to match the 
two slopes at a single supersaturation value that we call S', so that 

D=CS'. (6.15) 

Wetook S' = 15, which is close to the centre of Wölk's experimental supersaturation 
range; this yielded D = -5.55. 

For this weaker correction, the critical size is 

a ln J 5 
* corr,4 _ l = n * + D 

nexp = a ln s stan ' 
(6.16) 

so that a constant amount of about 6 molecules is subtracted from the classica! critica! 
cluster size. This means that we will have the same problem of a vanishing slope 
when the classica! critica! size is about 6, but this only happens at extremely high 
supersaturations. 

The result of the new correction is shown in Fig. 6.6c. At low temperatures, the 
new data and those of Peeters do not overlap like they did in the case of the previous 
supersaturation correction (Fig. 6.6b). Still, the scatter is considerably lower than in 
the uncorrected case of Fig. 6.6a. Another change is that the Wölk data better follows 
our results; Wölk's three data sets at 220, 230 and 240 K completely agree with our 
data. 

The temperature dependenee of the results in Fig. 6.6c is less curved than in 
Fig. 6.6b, so that we could use a 1/ T correction again: 

1:0-;4 = exp(A4 + B4jT)SD lstan· (6.17) 

The constants A4 and B4 were obtained by fitting to the new data only. The result is 
also shown in Fig. 6.6c tagether with a similar fit through Peeters's data. 

To campare the two types of corrections, Eqs. 6.8 and 6.17, Figure 6.8 shows the 
remaining deviations. It can be seen that the second correction succeeds even better 
in reducing the scatter at low temperatures than the first one. The three data sets of 
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Figure 6.8: Deviations of experimental nucleation rates from the corrected theories. Left: 
strong supersaturation correction; right: weak supersaturation correction. 
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68 6. Results 

Wölk at 200, 230 and 240 K are well described by the second correction; the two 
data sets at high temperature deviate somewhat fram the prediction. An explanation 
is that we chose S' = 15, the centre of the experimental range. The sets at 250 and 
260 K are at S < S' and therefore our new supersaturation correction is too strong in 
this case; the two sets are shifted down too much. 

6.2 Nucleation theories 

Figure 6.9 shows our experimental data tagether with those by Peeters and by Wölk 
et al., scaled with the predictions of four theories: the standard theory, the one by 
Girshick and Chiu (GC), the Reiss-Kegel-Katz theory (RKK), and a recent theory 
by HrubY. 60 Although the differences between the theories are large, no theory gives 
the correct nucleation rate for an extended temperature range. Still, we can express 
the quality of a theory by two parameters: first, the average absolute deviation of 
the rates, and second, the slope of the temperature dependenee of the scaled rates. 
There is no significant difference in the supersaturation dependence; if there were, 
we would see a difference in the amount of scatter. 

The theory by Kashchiev could not be evaluated because the spinoctal pressure of 
water was not known. A literature search yielded no results. The author then tried 
to find the spinoctal pressure from an equation of state, but since water is such an 
unusual substance, it is hard to find a suitable equation of state. The 'cubic plus 
association' (CPA) equation of state 61 was chosen because it takes into account the 
hydragen bonding between water molecules. Complicated equations of state like this 
have several adjustable parameters; the CPA has five. The values of these parameters 
must be determined by fitting the model to known equilibrium praperties; in this case 
the vapour pressure and the liquid density. The problem that the author encountered 
was that water's properties could be well represented with a braad range of parameter 
values. The spinoctal pressure, however, varied much in this range of parameter space, 
so it could not be determined. 

The GC theory is ciosest to the experimental nucleation rates. The Hruby theory 
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Figure 6.9: Experimental data of this work (circles), Peeters (squares) and Wölk et al.(triangles), scaled with the 
standard theory, the Girshick and Chiu theory (GC), the Reiss-Kegel-Katz theory (RKK), and the theory by Hruby. 60 



6.2 Nucleation theories 

has the largest absolute deviation, averaged over the entire temperature range. 
Looking at the temperature dependence, tbe standard theory clearly has tbe largest 

slope. The GC and RKK theories botb show a smaller slope, and tbe Hruby tbeory 
bas the best temperature dependence. 

The supersaturation dependenee of all theories is nearly the same, so tbat tbe su­
persaturation correction is also the same for all theories, and equal to tbe form derived 
in the previous section. After this correction is applied, the temperature dependenee 
of all theories changes strongly; it becomes considerably less accurate. If we return 
to Fig. 6.6a (not corrected); the difference between the ratio of nucleation rates at low 
and high temperature is about six orders of magnitude, when we only include the new 
data and Wölk's data. In Fig. 6.6c (weak S correction) this difference bas increased 
to ten orders of magnitude. 

For all tbeories in Fig. 6.9, tbe supersaturation correction infiuences tbe temperat­
ure dependenee in tbe same way. For example, for the Hruby theory, tbe difference 
between tbe ratios at low and high temperature is about three orders of magnitude 
(again only consictering the new data and Wölk's). Wben the weak S correction is 
applied, this difference increases to seven orders. We will come back to this issue in 
the discussion. 
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7. Conclusions & Discussion 

The objective of this research was to obtain a reliable measurement set of homo­
geneaus nucleation rates of water, at temperatures between 200-240 K, and at near­
atmospheric pressure. One of the reasons was that earlier data by Peeters 21 showed 
interesting behaviour at a temperature of 207 K; below this temperature vapour-to­
solid nucleation seemed to occur instead of vapour-to-liquid nucleation. At higher 
temperatures there was a substantial difference with the measurements of Wölk et 
al., 12 which led to doubts concerning the reliability of Peeters's data in the entire 
temperature range. For example, it was suspected that thermal boundary layers could 
have influenced the results. 

An investigation by the current author revealed a mistake in Peeters's data pro­
cessing method. It was possible to correct the measurements for this error, and the 
corrected results did not show a transition in nucleation behaviour. They were also 
much closer to the measurements by Wölk et al. than the original results had been. 

The measurement set of the present work deviated somewhat from Peeters's data, 
although the temperature trends of both data sets were the same. The new data also 
did not entirely agree with the data by Wölk et al. 

The search for an expression that could accurately reproduce the measurements 
by Wölk et al. led to a correction of the supersaturation dependenee of the classica! 
nucleation theory. When this corrected theory was used to analyze the new data, it 
was then found to agree with the results of Wölk et al., and the apparent original 
difference could be fully attributed to a difference in the experimental supersatura­
tions. The validity of the supersaturation correction was further supported by the fact 
that it reduced the scatter of both Peeters's data and the new data. There remained 
a difference between the new data and Peeters's, which is believed to be caused by 
inaccuracies of the calibration of the dynamic pressure transducer. 

We have shown that the correction of the theoretica! supersaturation dependenee 
can be seen as a correction of the theoretica! critical cluster size. The fact that such 
a correction is required is not surprising, because in most theories small clusters are 
viewed as drops with macroscopie properties (the capillarity approximation); a ques­
tionable assumption, certainly in the case of clusters of a few dozen molecules. 

Despite the plausibility of a supersaturation correction, almost all empirica! and 
theoretica! expressions use the classica! dependenee on supersaturation. Even the 
recent theory of Kashchiev, which takes into account the influence of a spinodal, 
results in a correction factor which only depends on the temperature. 

An effect of the supersaturation correction is that the temperature dependenee of 
all theories more strongly deviates from experimental observation. For example, if a 
theory is correct at some temperature, then the deviation at a second temperature, 60 
degrees lower, can be as much as a factor 1010

• This serious discrepancy may have 
one of the following causes: 

First, the error in the supersaturation and temperature dependendes might repres-
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ent the failure of the capillarity approximation. As the temperature goes down and 
the supersaturation increases, the critica! cluster becomes smaller, and its properties 
differ more from the bulk values. This would then explain the rapid increase of the 
deviation of nucleation theories with decreasing temperature. 

Second, the effects could be a property of water, in the sense that at low temper­
atures a special form of water nucleates from the vapour; a substance with properties 
that are very different from those of liquid water. It is even possible that ice is dir­
ectly formed from the vapour, insteadof supercaoled liquid water. However, we do 
not believe that this is the case, because at temperatures as low as 233 K the observed 
scattering indicates a refractive index of at least 1.325. At this temperature, ice is 
believed to have a refractive index of about 1.31, so it seems unlikely that ice was 
formed in our experiments. 

To obtain a reliable and more accurate supersaturation correction, the analysis 
of more experimental data is required. From the data set that was observed using 
our experimental setup, it was not possible to directly determine the supersaturation 
correction, because we did notperfarm isothermal measurements (experiments at the 
same temperature but with different supersaturations). Only from such data sets, the 
true supersaturation dependenee of the nucleation rate can be found, so it would be 
preferabie to perferm such experiments, especially at low temperatures near 200 K. 
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A. Data by others 

A.1 Peeters 

One of the objectives of this research was to confirm the measurements by Peeters et al. 21 When it was found 
that the findings of Peeters could not be reproduced, the current author started to investigate possible causes of 
the inconsistency. Finally, the souree of the problem was traeed to a single line of code in the computer program 
which was used by Peeters to calculate the vapour fraction from the mass flow controller settings. The mistake 
caused the vapour fraction to be nearly a factor of two lower than the real value, for some experiments. Since 
the supersaturation S is proportional to the vapour fraction, and the theoretica! nucleation rate strongly depends 
on S, the ratio of experimental and theoretica! nucleation rates was about five orders of magnitude too low for 
some experiments. 

Fortunately, the experimental data of Peeters were still available and the correct vapour fraction could be 
calculated. Other changes that were made: 

• The temperatures were recalculated using the corrected cp/cv which is influenced by the amount of 
water vapour in the mixture. Peeters used a Cp/Cv of 1.66592 for all experiments, which corresponds, 
coincidentally, to that of a mixture with an average vapour fraction. The maximum difference between 
the original temperatures and the new ones is therefore small: 0.09 K. 

• Three errors in the nucleation pressure were found and corrected. Two of them were minor rounding 
errors, the other one (experiment 484) was a larger error (0.4% deviation). 

• One rounding error in the nucleation rate was corrected. 

The corrected data is shown in Table A.I. 

A.2 Wölk 

The data by J.Wölk et al. was taken as it appears in the published work, 12 with one modification: In the section 
labelled 'H20, Argon 230K, To = 10 oe, wv = 0.003433', the molar vapour fraction should be 0.003343 instead 
of 0.003433. This apparent typing error was discovered when it was found that the values of the supersaturation 
in this particular section of the table did not agree with the published vapour fraction. A comparison with the 
original graphs by J.Wölk revealed that the vapour fraction was erroneous, not the supersaturation. 
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76 A. Data by others 

exp Po (bar) To (K) p (bar) T (K) y x 104 J (m-3s-1) 

425 1.678 295.75 0.9692 237.58 40.20 3.9x1015 

429 1.719 296.65 0.9721 236.31 33.68 3.1 x 1014 

430 1.738 296.65 0.9644 234.49 33.82 7.6x 1015 

432 1.758 296.55 0.9485 231.76 26.87 3.2x 1015 

433 1.778 296.45 0.9556 231.34 23.65 4.0x 1014 

434 1.799 296.55 0.9554 230.30 21.12 1.9x1014 

435 1.819 296.45 0.9507 228.79 21.25 4.5x 1015 

436 1.838 296.55 0.9371 226.57 20.17 7.4x 1016 

437 1.859 296.55 0.9413 225.98 18.20 2.4x 1016 

438 1.878 296.55 0.9482 225.67 15.91 3.8x 1015 

439 1.938 296.45 0.9358 221.60 13.66 8.0x 1016 

440 1.978 296.35 0.9326 219.42 12.40 4.0x 1017 

442 1.978 296.65 0.9204 218.48 10.38 9.1 x 1016 

444 1.999 296.65 0.9359 219.04 9.058 4.3x 1015 

448 2.099 296.45 0.9316 214.22 6.468 3.2x 1016 

450 2.099 296.15 0.9741 217.89 6.726 8.2x 1014 

451 2.099 296.15 0.9386 214.68 6.825 4.1 x 1016 

452 2.099 296.15 0.9553 216.20 6.719 3.9x 1015 

455 2.113 295.95 0.9213 212.35 5.803 l.lx1017 

469 2.303 295.25 0.9725 209.15 3.335 2.0x 1015 

470 2.303 295.35 0.9605 208.19 3.460 1.7x1016 

471 2.303 295.45 0.9583 208.07 3.381 2.2x 1016 

477 2.503 294.85 1.0052 204.70 2.175 9.1x1015 

480 2.503 295.15 0.9855 203.30 1.975 1.6x 1016 

482 2.518 295.45 0.9685 201.62 1.805 3.0x 1016 

484 2.343 295.65 0.9588 206.82 3.531 9.1x1016 

486 2.343 295.45 0.9580 206.62 3.133 4.4x 1016 

487 2.383 295.55 0.9629 205.71 2.615 1.4x 1016 

491 2.108 295.65 0.9851 218.13 8.670 1.2x1016 

493 2.048 295.75 0.9817 220.42 10.93 1.6x 1016 

494 1.999 295.85 0.9809 222.61 13.22 1.2x 1016 

496 2.192 294.45 0.9721 212.71 5.377 5.0x 1016 

498 1.737 295.45 1.0080 237.76 40.19 2.2x 1015 

499 1.798 294.85 0.9994 233.19 24.84 1.7x 1014 

500 1.838 295.05 0.9968 231.11 24.79 3.3x 1015 

505 5.054 295.25 2.1136 208.33 1.484 1.5 x 1016 

Table A. 1: Corrected ex perimental data of the water-helium experiments of Peeters. 



B. New data 

exp po (bar) To (K) y x 104 p (bar) T (K) n (m-3) ~t (ms) J (m-3s-l) 

025 1.775 296.75 34.2 ±0.2 0.990 ± 0.007 235.1 ±0.4 1.38 x 1011 0.13 1.1 x 101:> 

027 1.775 296.45 35.2 0.2 0.970 0.007 232.9 0.5 4.67x 1012 0.16 2.9x 1016 

028 1.775 296.55 34.8 0.2 0.958 0.007 231.8 0.5 1.70x 1013 0.16 1.1 x 1017 

029 1.775 296.95 34.8 0.2 0.994 0.007 235.6 0.4 3.56x 1010 0.12 3.0x 1014 

030 1.775 296.75 33.2 0.2 0.956 0.007 231.8 0.5 2.96x 1012 0.13 2.3x 1016 

031 1.775 297.25 27.9 0.2 0.966 0.007 233.1 0.5 l.lüx 1010 0.15 7.4x 1013 

032 1.775 297.25 30.2 0.2 0.964 0.007 232.9 0.5 7.06x 1010 0.14 5.1 x 1014 

035 1.663 296.75 36.7 0.2 0.942 0.006 236.5 0.4 9.30xl09 0.16 5.8 x 1013 

039 1.613 296.35 46.2 0.2 0.943 0.006 239.2 0.4 1.76xl010 0.14 1.3 x 1014 

042 1.713 296.95 45.2 0.3 1.017 0.006 241.2 0.4 6.21 x 109 0.16 3.9x 1013 

043 1.853 296.65 45.2 0.3 1.088 0.007 239.9 0.4 1.14x 1011 0.13 8.8x 1014 

044 1.853 296.75 48.1 0.3 1.093 0.007 240.4 0.4 2.62x 1011 0.13 2.0x 1015 

045 1.893 296.75 32.1 0.3 1.049 0.007 234.5 0.4 2.20x 1011 0.14 1.6x 1015 

046 1.913 296.85 35.5 0.3 1.095 0.007 237.6 0.4 5.90x 1010 0.15 3.9x 1014 

047 1.903 296.85 38.9 0.3 1.052 0.007 234.3 0.4 3.42xlü13 0.13 2.6x 1017 

048 1.955 296.85 24.8 0.2 1.016 0.008 228.6 0.5 8.20x 1012 0.12 6.8x 1016 

049 1.955 296.95 22.5 0.2 1.009 0.008 228.0 0.5 2.43 x 1012 0.13 1.9x 1016 

050 1.955 296.95 19.0 0.2 1.013 0.008 228.4 0.5 4.36x 1010 0.12 3.6x 1014 

051 2.015 296.75 18.1 0.2 0.999 0.008 224.2 0.5 6.16x 1012 0.08 7.7x 1016 

052 2.013 296.85 17.6 0.2 0.978 0.008 222.5 0.6 3.56x 1013 0.09 4.0x 1017 

053 2.015 297.05 13.9 0.2 0.971 0.008 221.9 0.6 1.12x 1012 0.10 1.1 x 1016 

054 2.095 296.65 12.0 0.2 0.968 0.008 217.8 0.6 3.33 x 1013 0.09 3.7x 1017 

055 2.095 296.85 9.0 0.1 0.943 0.009 215.7 0.6 2.46x 1012 0.12 2.1 x 1016 

058 2.095 296.75 12.0 0.2 0.969 0.008 218.0 0.6 3.18x 1013 0.11 2.9x 1017 

059 2.095 296.25 10.0 0.1 0.972 0.008 218.0 0.6 9.14x 1011 0.10 9.lxlü15 

060 2.095 296.05 8.5 0.1 0.944 0.009 215.3 0.6 2.60x 1012 0.13 2.0x 1016 

062 2.407 296.25 4.00 0.09 1.00 0.01 208.8 0.7 4.97xl011 0.09 5.5 x 1015 

066 2.407 295.85 4.50 0.06 1.01 0.01 209.3 0.7 1.52x 1012 0.10 1.5 x 1016 

067 2.407 295.75 3.51 0.06 1.00 0.01 208.2 0.7 1.96x 1011 0.10 2.0x 1015 

068 2.639 295.85 2.91 0.06 1.05 0.01 204.9 0.7 3.74x 1012 0.09 4.2xl016 

069 2.639 296.35 2.74 0.07 1.07 0.01 206.9 0.7 9.19x 1011 0.10 9.2x 1015 

070 2.639 296.25 2.74 0.07 1.07 0.01 206.2 0.7 3.93xl011 0.15 2.6x 1015 

073 2.659 296.45 2.04 0.07 1.01 0.01 201.7 0.8 1.6lxl012 0.10 1.6x 1016 

074 2.659 296.35 1.72 0.06 1.01 0.01 201.5 0.8 5.93x 1011 0.14 4.2x 1015 

075 2.659 296.20 1.87 0.06 1.01 0.01 201.0 0.8 1.05 x 1012 0.13 8.1 x 1015 

077 2.106 297.25 8.6 0.2 0.924 0.009 213.9 0.6 6.34x 1012 0.10 6.3x 1016 

082 2.617 296.65 2.75 0.06 1.02 0.01 203.1 0.8 8.62x 1012 0.10 8.6x 1016 

083 2.403 296.85 4.52 0.07 1.00 0.01 208.7 0.7 2.47 x 1012 0.09 2.7xl016 

084 2.400 296.85 5.02 0.07 1.00 0.01 208.8 0.7 1.94x 1012 0.09 2.2x 1016 

087 1.939 296.05 17.9 0.2 0.987 0.008 226.1 0.5 5.41 x 1010 0.13 4.2x 1014 

Table 8.1: Ex perimental data of this work. 
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78 B. New data 

8.1 Vapour fraction 

exp Psat Tsat Qg c(Qg) Qo c(Qo) y x 104 c(y) caused by (in%) c(y) 
bar K Llmin % Llmin % Psat Tsat Qg Qo % 

025 5.20 290.53 3.91 1.0 0.48 2.6 34.2 0.4 0.1 0.1 0.3 0.5 
027 5.20 295.82 3.80 1.0 1.95 1.2 35.2 0.4 0.1 0.3 0.4 0.7 
028 5.20 295.83 4.20 0.9 2.23 1.1 34.8 0.4 0.1 0.3 0.4 0.7 
029 5.20 295.82 3.37 1.0 1.79 1.2 34.8 0.4 0.1 0.3 0.4 0.7 
030 5.20 295.36 3.20 1.0 1.80 1.2 33.2 0.4 0.1 0.4 0.4 0.7 
031 5.20 295.82 2.59 1.1 2.35 1.1 27.9 0.4 0.1 0.5 0.5 0.8 
032 5.20 295.82 2.83 1.1 2.16 1.2 30.2 0.4 0.1 0.5 0.5 0.8 
035 5.20 292.15 4.31 0.9 0.67 2.1 36.7 0.4 0.1 0.1 0.3 0.5 
039 4.35 290.68 2.79 1.1 0.00 - 46.2 0.5 0.1 0.0 0.0 0.5 
042 3.98 290.68 3.42 1.0 0.40 3.0 45.2 0.5 0.1 0.1 0.3 0.6 
043 3.98 290.67 3.05 1.0 0.36 3.3 45.2 0.5 0.1 0.1 0.3 0.6 
044 3.98 290.67 3.60 1.0 0.17 6.0 48.1 0.5 0.1 0.0 0.3 0.6 
045 3.98 290.68 2.18 1.1 1.26 1.5 32.1 0.5 0.1 0.4 0.5 0.9 
046 3.98 290.68 2.40 1.1 1.02 1.6 35.5 0.5 0.1 0.3 0.5 0.8 
047 4.00 290.68 2.65 1.1 0.77 1.9 38.9 0.5 0.1 0.2 0.4 0.7 
048 5.04 290.69 2.39 1.1 1.46 1.4 24.8 0.4 0.1 0.4 0.5 0.8 
049 5.00 290.68 1.92 1.2 1.52 1.3 22.5 0.4 0.1 0.5 0.6 0.9 
050 6.00 290.69 1.72 1.3 1.32 1.4 19.0 0.3 0.1 0.5 0.6 0.9 
051 6.00 290.68 1.80 1.2 1.55 1.3 18.1 0.3 0.1 0.6 0.6 0.9 
052 6.00 290.68 1.77 1.2 1.60 1.3 17.6 0.3 0.1 0.6 0.6 0.9 
053 6.00 290.69 1.40 1.4 1.99 1.2 13.9 0.3 0.1 0.8 0.7 1.1 
054 6.00 290.68 1.20 1.5 2.17 1.2 12.0 0.3 0.1 1.0 0.7 1.3 
055 6.00 290.69 0.86 1.8 2.33 1.1 9.0 0.3 0.1 1.3 0.8 1.6 
058 6.00 290.67 1.19 1.5 2.13 1.2 12.0 0.3 0.1 1.0 0.7 1.3 
059 6.00 290.67 1.02 1.6 2.39 1.1 10.0 0.3 0.1 1.1 0.8 1.4 
060 6.00 290.67 0.88 1.8 2.58 1.1 8.5 0.3 0.1 1.3 0.8 1.6 
062 8.00 290.68 0.54 2.4 2.85 1.1 4.00 0.3 0.1 2.1 0.9 2.3 
066 14.09 290.68 1.19 1.5 2.61 1.1 4.50 0.1 0.1 1.0 0.7 1.3 
067 14.09 290.68 0.77 1.9 2.40 1.1 3.51 0.1 0.1 1.4 0.8 1.7 
068 14.09 290.69 0.63 2.2 2.47 1.1 2.91 0.1 0.1 1.7 0.9 2.0 
069 14.09 290.68 0.46 2.7 1.94 1.2 2.74 0.1 0.1 2.2 1.0 2.4 
070 14.09 290.68 0.44 2.8 1.86 1.2 2.74 0.1 0.1 2.3 1.0 2.5 
073 14.09 290.68 0.33 3.5 1.98 1.2 2.04 0.1 0.1 3.0 1.0 3.2 
074 14.09 290.68 0.28 4.0 2.04 1.2 1.72 0.1 0.1 3.6 1.0 3.7 
075 14.09 290.67 0.30 3.8 2.01 1.2 1.87 0.1 0.1 3.3 1.0 3.4 
077 6.00 290.68 0.69 2.1 2.01 1.2 8.6 0.3 0.1 1.5 0.9 1.8 
082 14.19 290.67 0.53 2.5 2.20 1.1 2.75 0.1 0.1 2.0 0.9 2.2 
083 14.19 290.67 0.78 1.9 1.69 1.3 4.52 0.1 0.1 1.3 0.9 1.6 
084 14.17 290.67 0.88 1.8 1.62 1.3 5.02 0.1 0.1 1.1 0.8 1.4 
087 6.02 290.68 1.00 1.6 0.87 1.8 17.9 0.3 0.1 0.8 0.8 1.2 

Table 8.2: Error analysis of the vapeur fraction of the experiments of the current work. 



8.2 Theoretica! nucleation rate 

8.2 Theoretica! nucleation rate 

exp PO y x 104 T E(101og J) caused by Ect0Iog J) /err 
bar K PO ~p To y 

025 1.775 34.2 ±0.2 235.1 0.12 0.25 0.07 0.06 0.29 2.0 
027 1.775 35.2 0.2 232.9 0.10 0.21 0.05 0.07 0.25 1.8 
028 1.775 34.8 0.2 231.8 0.09 0.20 0.05 0.06 0.24 1.7 
029 1.775 34.8 0.2 235.6 0.12 0.26 0.07 0.08 0.30 2.0 
030 1.775 33.2 0.2 231.8 0.10 0.21 0.05 0.07 0.25 1.8 
031 1.775 27.9 0.2 233.1 0.14 0.30 0.07 0.11 0.35 2.3 
032 1.775 30.2 0.2 232.9 0.13 0.26 0.06 0.09 0.31 2.1 
035 1.663 36.7 0.2 236.5 0.13 0.28 0.07 0.07 0.32 2.1 
039 1.613 46.2 0.2 239.2 0.11 0.25 0.07 0.06 0.29 1.9 
042 1.713 45.2 0.3 241.2 0.12 0.27 0.08 0.09 0.32 2.1 
043 1.853 45.2 0.3 239.9 0.10 0.22 0.06 0.08 0.26 1.8 
044 1.853 48.1 0.3 240.4 0.09 0.21 0.06 0.07 0.25 1.8 
045 1.893 32.1 0.3 234.5 0.11 0.24 0.06 0.10 0.29 2.0 
046 1.913 35.5 0.3 237.6 0.12 0.26 0.07 0.10 0.31 2.0 
047 1.903 38.9 0.3 234.3 0.09 0.19 0.05 0.07 0.22 1.7 
048 1.955 24.8 0.2 228.6 0.11 0.22 0.05 0.07 0.26 1.8 
049 1.955 22.5 0.2 228.0 0.12 0.25 0.05 0.09 0.29 2.0 
050 1.955 19.0 0.2 228.4 0.15 0.31 0.07 0.11 0.37 2.3 
051 2.015 18.1 0.2 224.2 0.12 0.24 0.05 0.08 0.29 1.9 
052 2.013 17.6 0.2 222.5 0.11 0.22 0.04 0.07 0.27 1.8 
053 2.015 13.9 0.2 221.9 0.15 0.29 0.05 0.11 0.34 2.2 
054 2.095 12.0 0.2 217.8 0.13 0.25 0.04 0.10 0.30 2.0 
055 2.095 9.0 0.1 215.7 0.16 0.29 0.05 0.13 0.36 2.3 
058 2.095 12.0 0.2 218.0 0.13 0.25 0.04 0.10 0.30 2.0 
059 2.095 10.0 0.1 218.0 0.16 0.30 0.05 0.13 0.36 2.3 
060 2.095 8.5 0.1 215.3 0.16 0.30 0.05 0.14 0.37 2.3 
062 2.407 4.00 0.09 208.8 0.20 0.37 0.05 0.19 0.47 2.9 
066 2.407 4.50 0.06 209.3 0.18 0.34 0.05 0.10 0.40 2.5 
067 2.407 3.51 0.06 208.2 0.22 0.40 0.06 0.15 0.48 3.0 
068 2.639 2.91 0.06 204.9 0.19 0.35 0.05 0.15 0.43 2.7 
069 2.639 2.74 0.07 206.9 0.24 0.43 0.06 0.22 0.54 3.5 
070 2.639 2.74 0.07 206.2 0.23 0.41 0.06 0.22 0.52 3.3 
073 2.659 2.04 0.07 201.7 0.22 0.39 0.05 0.24 0.51 3.3 
074 2.659 1.72 0.06 201.5 0.26 0.46 0.06 0.31 0.61 4.1 
075 2.659 1.87 0.06 201.0 0.23 0.41 0.05 0.27 0.54 3.5 
077 2.106 8.6 0.2 213.9 0.15 0.28 0.04 0.14 0.34 2.2 
082 2.617 2.75 0.06 203.1 0.19 0.33 0.04 0.15 0.41 2.6 
083 2.403 4.52 0.07 208.7 0.18 0.33 0.05 0.12 0.40 2.5 
084 2.400 5.02 0.07 208.8 0.16 0.30 0.04 0.10 0.36 2.3 
087 1.939 17.9 0.2 226.1 0.14 0.28 0.06 0.12 0.34 2.2 

Table 8.3: Error analysis of the theoretica! nucleation rate lstan of the standard theory for the experimental conditions of 
the current work. 
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C. Vapour pressure from the Hruby model 

This table contains the saturated vapour pressure Ps (T) calculated from an extended version of the Hruby 
model. 

T (K) Ps (Pa) T (K) Ps (Pa) T (K) Ps (Pa) 
190 6.751 x 10 227 9.790 x 10 264 3.063 x 10 
191 7.944 x 10-2 228 1.093 x 101 265 3.312 x 102 

192 9.329 x 10-2 229 1.218 x 101 266 3.579 x 102 

193 1.094 x 10-1 230 1.356 x 101 267 3.865 x 102 

194 1.280 x 10-1 231 1.509 x 101 268 4.171 x 102 

195 1.495 x 10-1 232 1.677 x 101 269 4.498 x 102 

196 1.743 x 10-1 233 1.861 x 101 270 4.847 x 102 

197 2.o3o x 10-1 234 2.064 x 101 271 5.221 x 102 

198 2.359 x 10-1 235 2.287 x 101 272 5.620 x 102 

199 2.736 x 10-1 236 2.531 x 101 273 6.046 x 102 

200 3.170 x 10- 1 237 2.799 x 101 274 6.500 x 102 

201 3.666 x 10-1 238 3.092 x 101 275 6.984 x 102 

202 4.232 x 10-1 239 3.413 x 101 276 7.500 x 102 

203 4.879 x 10-1 240 3.763 x 101 277 8.049 x 102 

204 5.616 x 10-1 241 4.146 x 101 278 8.634 x 102 

205 6.454 x 10-1 242 4.563 x 101 279 9.255 x 102 

206 7.407 x 10-1 243 5.018 x 101 280 9.916 x 102 

207 8.488 x 10-1 244 5.514 x 101 281 1.062 x 103 

208 9.712 x 10-1 245 6.053 x 101 282 1.136 x 103 

209 1.110 x 10° 246 6.639 x 101 283 1.216 x 103 

210 1.266 x 10° 247 7.275 x 101 284 1.300 x 103 

211 1.443 x 10° 248 7.966 x 101 285 1.389 x 103 

212 1.642 x 10° 249 8.716 x 101 286 1.483 x 103 

213 1.865 x 10° 250 9.528 x 101 287 1.583 x 103 

214 2.117 x 10° 251 1.041 x 102 288 1.689 x 103 

215 2.399 x 10° 252 1.136 x 102 289 1.800 x 103 

216 2.715 x 10° 253 1.239 x 102 290 1.919 x 103 

217 3.069 x 10° 254 1.350 x 102 291 2.044 x 103 

218 3.465 x 10° 255 1.470 x 102 292 2.176x103 

219 3.908 x 10° 256 1.600 x 102 293 2.316 x 103 

220 4.401 x 10° 257 1.739 x 102 294 2.463 x 103 

221 4.951 x 10° 258 1.890 x 102 295 2.619 x 103 

222 5.562 x 10° 259 2.052 x 102 296 2.783 x 103 

223 6.242 x 10° 260 2.226 x 102 297 2.956 x 103 

224 6.997 x 10° 261 2.414 x 102 298 3.138 x 103 

225 7.835 x 10° 262 2.615 x 102 299 3.330 x 103 

226 8.763 x 10° 263 2.831 x 102 300 3.533 x 103 

Table C. 1: Saturated vapour pressure from the Hruby model of section 3.5. 

80 



D. Scattering and extinction graphs 

This appendix contains the experimental scattering and extinction signals. The graphs on the left side show 
the scattering intensity as a function of the time in ms. Extrema that were used in the data analysis have been 
numbered. Note that the scale of the time axis is different for each experiment. 

The graphs on the right side show the ratio of the transmitted light intensity and the initial intensity, I (t)/ Io, 
as a function of the time in ms. The thin line is the experimental signal; the thick line is the expected intensity as 
described in section 5.3. The fiTst two verticallines indicate the position of the nucleation pulse. If a third line is 
present, then the data range that was used to determine n was limited; the third line then indicates the end of the 
fitting range. This was usually done to limit the fit to an extinction of less than 10%, since multiple scattering 
begins to play a role at higher extinction values. To illustrate this better, the extinction level I I 10 = 0.9 is 
indicated by a horizontal line. 
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82 D. Scattering and extinction graphs 
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E. Rewriting Eq. 2.57 

Using a f1rst-order approximation, 

According to Eq. 2.52, the pressure pis defined as 

a ln QN-n (V- Vn) 
p =kT . 

aV- Vn 

If Vn «V, then the quantity kT a ln QN-n(V)jaV is also equal top, so that 

and 
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F. Technology assessment 

The formation of a new phase through the process of homogeneaus nucleation plays 
an important role in many technologkal applications. Por example, in steam turbines, 
homogeneaus nucleation can lead to a loss of efficiency. The natural gas industry 
needs accurate descriptions of the nucleation of vapours such as water to remave them 
from the gas. Natural gas consists mainly of methane, but also contains undesired 
components such as water vapour and hydracarbon vapours. One way to remave 
them is to cool the gas so that the vapours condense to droplets, which cao be swirled 
out of the gas by a strong rotation. 

In meteorology, knowledge of the nucleation of water is also essential; nat only 
for short-term weather prediction but also for the rnadelling of long-term elimate 
changes. In clouds, the tiny water draplets are aften supercooled; liquid draplets 
have been observed at temperatures as low as -40 oe. The way in which clouds 
reflect and absorb solar radiation is different for cl ouds consisting of liquid water and 
for clouds that contain ice particles, so the fact that supercaoled liquid can be formed 
from the vapour cao have an inttuenee on the climate. 
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