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An elastance-based control scheme for a heart valve
tester
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P.H.M. Bovendeerd

Department of Biomedical Engineering, Eindhoven University of Technology, P.O. box
513, 5600 MB Eindhoven, The Netherlands

Abstract

The imitation of human heart behavior is an important issue in the field of heart physiology.
Arterial pressure and flow result from the interaction between the ejectingventricle and
arterial circulation. Rutten et al. (2005) developed a bio reactor with a mockcirculatory
system to test aortic heart valves on their functionality by measuring pressure drops and
flows. Physiological flow rate is controlled by a prescribed motion of a piston, while the
aortic pressure is matched by tuning the afterload. Drawback of this setup isthat valve flow
does not depend on valve characteristics, but on piston motion. However, valve flow is one
of the criteria in assessment of valve quality. Therefore, in this paper the heart valve tester
of Rutten et al. (2005) has been extended with a control strategy for the piston motion, to
better mimic the response of the heart, in terms of flow and pressure, to changes in valve
properties and afterload.

The control scheme is based on the time-varying elastance model (Suga andSagawa
(1974)). The elastance control loop calculates the desired pump volume using a time-
varying elastance function and the ventricular pump pressure signal. Thevolume control
loop regulates the pump volume according to this desired pump volume.

A mathematical model of the heart valve tester has been made to show stability of the ap-
plied control algorithm, using Floquet multipliers (Parker and Chua (1989)). Furthermore,
the control algorithm has been implemented on the setup. Results show that the controller
is capable of responding to changes in afterload and valve properties while still generating
physiological pressures and flows.

Key words: heart valve tester, control, mock circulatory system, periodic stability,
elastance function.
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1 Introduction

Mock circulatory systems (MCSs) have been widely used for evaluation of artificial hearts
and ventricular assist devices (Clemente et al. (1997), Ferrari et al. (1998)). Rutten et al.
(2005) developed a bio reactor with a mock circulatory system to test aortic heart valves
on their functionality by measuring pressure drops and flows. Physiological flow rate is
controlled with a prescribed motion of a piston, while the aortic pressure is matched by
tuning the afterload. Drawback of this setup is that the valve flow does not depend on
valve characteristics, but on piston motion. However, valve flow is one of the criteria in
assessment of valve quality. In this paper the heart valve tester of Rutten et al. (2005) is
extended with a control strategy for the piston motion to better mimic the response of the
heart, in terms of flow and pressure, to changes in valve properties and afterload.
There have been several attempts reported in literature to incorporate cardiac pump func-
tion in a mock circulatory system using a time-varying elastance model (Suga and Sagawa
(1974)). They describe the contraction of the ventricle in the pressure-volume plane as an
elastance that varies over the cardiac cycle, the time-varying elastance model. Elastance
is the ratio of intraventricular pressure and volume, i.e.,a measure of cardiac muscle
stiffness. In diastole, the muscle is relaxed and stiffnessis low; in systole, the muscle
contracts and becomes stiffer. The variable elastance model describes and analyses artero-
ventricular interaction using the End Systolic Pressure Volume Relationship (ESPVR) and
Effective Arterial Elastance (EAE) curve. Changes in preload and afterload will normally
result in variations of end systolic volume and pressure because the maximum value of
the elastance functionEmax remains unchanged over a wide range of afterload conditions
(Maughan et al. (1984)).
Ferrari et al. (1994) made a preload-responsive mock ventricle by anticipating stroke vol-
ume, using arterial resistance, end-systolic volume, end-systolic elastance and heart rate.
They used a volume control scheme guided by an adaptive reference signal. It gives phys-
iological responses to preload changes. A disadvantage of this model is that there is no
explicit control of the elastance function, i.e. no pressure-volume relationship that guides
the algorithm.
Williams et al. (1994) were able to create a MCS that has the ability to mimic left ven-
tricular pressure-volume relationships based upon a supplied time-varying elastance. It
consists of two feedback loops. From pressure and volume measurements on the MCS
the actual elastance is calculated and compared with a prescribed time-varying elastance
(elastance feedback loop). The second loop provides control of the volume of the mock
left ventricle. This MCS control scheme responds to afterload changes consistent with
physiological observations. However, the pressure-volume loops of the mock ventricle
show a small increase in volume at the isovolumic relaxationphase.
Baloa et al. (2001) built a mock circulatory system to mimic the Starling response of
the natural heart, using Suga’s elastance model. The elastance control loop calculates the
desired pump pressure using the elastance function and the pump volume signal. The
pressure control loop regulates the pump pressure according to this reference signal. Sim-
ulations and tests have been carried out to show the responseof the elastance based con-
troller to changes in preload, afterload and contractility. The mock ventricle shows a small
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increase in volume at the isovolumic relaxation phase.
Concluding, the time-varying elastance model (Suga and Sagawa (1974)) provides good
results to incorporate preload and afterload response in a MCS in spite of the problem at
the isovolumic relaxation phase.
In this paper a combination of the heart valve tester of Ruttenet al. (2005) and the time-
varying elastance model is used to better mimic the responseof the heart to changes in
valve properties and afterload. Furthermore, the increasein volume at the isovolumic re-
laxation phase (Baloa et al. (2001), Williams et al. (1994)) is tried to be solved. It starts
with a mathematical model of the heart valve tester, that shows a lumped-parameter model
suited for the representation of heart-arterial interaction, a model of the cardiac valves and
a model of the piston and pump. After that a control concept istreated using the pump
pressure as input for the elastance model that calculates a desired pump volume (refer-
ence). The volume control loop regulates the pump volume according to this reference
signal. A controlled linear servo motor drives the pump volume regulation. The controller
is designed using manual loop shaping in the frequency domain. After that stability of the
complete system is determined using the Floquet theory (Parker and Chua (1989)), applied
to nonlinear non-autonomous time-varying periodic systems. Furthermore, the control al-
gorithm is implemented on the experimental setup and compared with the numerically
obtained control model. After that some applications are demonstrated and results are
discussed.

2 Materials and concepts

2.1 Outline of the approach

The heart valve tester used in this study is the bioreactor built by Rutten et al. (2005)
(figure 1). It represents the systemic circulation and consists of a computer controlled
piston pump, representing the left ventricle, that generates the aortic flow rate. A termi-
nal impedance consisting of a flexible tube and a four elementwindkessel (Noordergraaf
et al. (1963)), that regulates the pressure. It represents the afterload. An aortic valve hous-
ing that is mounted between the pump and the flexible tube of the terminal impedance and
a medium storage container representing the preload, whichis connected to the pump via
a mitral valve. The setup offers the possibility to measure aortic flow qav, aortic pressure
pao, pump pressurepp and pump volumeVp and is mainly used to test aortic heart valves
on their functionality by measuring pressure drops and flows.
Because of the differences in viscosity between blood and cell culture medium in the

heart valve tester, the aortic flow and frequency of the heartcycle were reduced fourfold
to impose hemodynamic similarity (Ward-Smith (1980), Rutten et al. (2005)). This reduc-
tion has been accomplished according to the scaling rules for the Navier-Stokes equations
that describe the momentum and mass balance for a Newtonian incompressible fluid (Sr
andRe).
In the current setup, piston motion is independent of ventricular afterload or valve prop-
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m e d i u m  s t o r a g e

Figure 1:The main parts of the heart valve tester. Top: schematic design, bottom: ac-
tual design.Lart, Cart, Rart andRp represent the arterial inertance, arterial compliance,
arterial resistance and peripheral resistance, respectively.

erties. We want to improve the response of the heart to changes in its environment by
controlling the piston motion with a time-varying elastance model that calculates a de-
sired piston position while measuring pump pressurepp. First a mathematical model of
the setup is presented, followed by the design of the controlmodel. The mathematical
model is used to show stability of the complete system. Afterthat the control model is
implemented in the setup.

2.2 Mathematical model of the heart valve tester

The setup shown in figure 1 is modeled in three parts (figure 2).The hemodynamic preload
and afterload are described with a lumped parameter model. The aortic and mitral valve
are described as short tubes in which flow is dominated by inertia and the pump with
piston is described as a mass with some friction.

2.2.1 Hemodynamic preload and afterload

The hemodynamic preload and afterload are described with a lumped parameter model
(Sharp et al. (2000)) consisting of seven elements. This means that properties, which in
real life are distributed over the whole system, are in the mathematical model lumped into
a finite number of discrete components. The systemic circulation consists of three com-
partments: the arteries, the capillaries and the veins. Thearteries and veins are modeled
as constant resistances, inertances and compliances. The capillaries are modeled as a con-
stant resistance only, which relates the pressure drop∆p to flow q. A capacitor represents
the compliance of a blood vessel. It can temporarily store anamount of blood. A compli-
ance relates changes in pressure to changes in volume. An inertance represents the inertia
of the blood in the arterial and venous system. It relates thepressure drop to changes in
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Figure 2:Schematic representation of the heart valve tester. PH represents the pump
house;mv and av the mitral and aortic valve, respectively.Rart, Rp and Rven the sys-
temic arterial, peripheral and venous resistance, respectively.Cart andCven the systemic
arterial and venous compliance, respectively.Lart andLven the systemic arterial and ve-
nous inertance, respectively.pao andpven the pressure proximal to the arteries and veins,
respectively.part andpvc the pressure distal to the arteries and veins, respectively. p1 and
p2 the pressure proximal to the RC parallel connection to the arteries and veins, respec-
tively. qav, qp and qmv are the aortic valve flow, peripheral flow and mitral valve flow,
respectively,pp is the pressure in the pump house.

flow. The constitutive relations are shown in (1).

R =
∆p

q
, C =

∂V

∂p
, L =

∆p
∂q

∂t

(1)

The differential equations representing the systemic circulation are derived from applica-
tion of Kirchoff’s laws, expressing conservation of mass, and momentum. They are shown
in (2)-(5)

∂p2

∂t
= −Rven

∂qmv

∂t
+

∂pven

∂t
(2)

∂p1

∂t
= Rart

∂qav

∂t
+

∂part

∂t
(3)

∂part

∂t
=

1

Cart

qav −
1

CartRp

part +
1

CartRp

pven (4)
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∂pven

∂t
= −

1

Cven

qmv −
1

CvenRp

pven +
1

CvenRp

part (5)

The algebraic relations for the aorticpao and vena cavapvc pressure are:

pao = p1 + Lart

∂qav

∂t
(6)

pvc = p2 + Lven

∂qmv

∂t
(7)

2.2.2 Cardiac valves

In van den Berg et al. (2003) an equation for the flow through a valve is derived from
basic fluid dynamics. The valve is modeled as a short tube withlengthl, in which flow is
dominated by inertia. Opening and closing of the valve is simulated by changing the tube
cross-sectional areaA. The relation for the flowq and pressure drop∆p is shown in (8).
ρ represents the medium density.

∂q

∂t
=

1

ρl

(

∆pA −
ρq2

2A

)

(8)

The property of the valve to allow blood flow in one direction is modeled by assuming
the valve areaA to depend on the pressure difference and flow direction. The following
equation is used for the valve areaA:

A = c · Aopen + (1 − c) · Aleak (9)

c =











0 q < 0 or ∆p < 0

1 q > 0 or ∆p > 0
(10)

The lengthl of the flow channel in a valve is chosen to be equal to the squareroot of
Aopen. The parameter values are listed in table 1.

2.2.3 Pump and piston

The pump house of the heart valve tester can be modeled as a closed volume with two
valves that generates pressurespp, depending on the position of the piston and the flows
qav andqmv (figure 3). Furthermore, it is assumed that the pump house hasa small com-
plianceCp. The pressurepp in the closed volume with two valves and a compliance can
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d

Az m

u(t)

Cp

qp

qzx1

qmv qav L0

Figure 3:Simplified model of the pump house regarded as a piston drivenby the input
u(t). qav, qmv qp and qz represent the aortic, mitral, pump and piston flow, respectively.
x1, Az andL0 represent the piston position, the piston area and initial condition for the
length of the piston, respectively.Cp represents the pump compliance.m andd represent
the piston mass and damping coefficient, respectively.

be described by analyzing the flows in the closed volume. Thisrelation is shown in (11).

∂pp

∂t
=

1

Cp

qp =
1

Cp

(Azẋ1 + qmv − qav) (11)

The piston is modeled with a second-order differential equation, consisting of a massm
in combination with a friction force, modeled as a damping coefficientd and depending
on the velocityx2 of the piston.

∂x1

∂t
= x2 (12)

∂x2

∂t
= −

d

m
x2 +

1

m
u (13)

2.2.4 The time-varying elastance model

Arterial pressure and flow result from the interaction between the ventricle and the sys-
temic circulation. Although the ventricle is neither a pressure nor a flow source, the math-
ematical description of its pumping function can be simple and straightforward. The con-
traction of the ventricle in the pressure-volume plane is described in Suga and Sagawa
(1974) as an elastance that varies over the cardiac cycle.
The time-varying elastance model can be considered to describe a global cardiac muscle
property. A constitutive equation for the ventricle that linearly relates ventricle volume
Vlv to pressureplv is (figure 4, panelA):
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plv = E(t)(Vlv − V0) (14)

The parameterV0 represents the interception with the volume axis. Senzaki et al. (1996)
demonstrated that after normalizing the time varying elastance curveE(t) with respect to
amplitude and timing of the peak, the shape is essentially constant within one species and
in a large range of cardiac disease. The time-varying elastance curveE(t) (15) is retrieved
from this normalized curveEn(tn)

E(t) = Emin + En(tn)(Emax − Emin) (15)

when the following four parameters are known: heart rate1
T

, minimalEmin and maximal
Emax elastance and the time to reach maximal elastancetEmax

, while t = tnT
tEmax

. The
shape ofEn(tn) is shown in panelB of figure 4 and easily described as a finite fourier
series.
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Figure 4:A: Pressure-volume relationship for the left ventricle.Emax, Emin andV0 rep-
resent the maximum elastance, minimum elastance and interception with the volume axis,
respectively.B: Normalized elastance function.

2.2.5 Settings of the model parameters

In this study the lumped parameter model with theRartLart component in series is used
for modeling the afterload. In the frequency domain, the afterload model can be described
by its impedance which is given as:

Z =
LartRpCarts

2 + (Lart + RartRpCart)s + Rart + Rp

1 + RpCarts
(16)

At 0 Hz, Z equals total resistance (Rart + Rp). Its behavior at intermediate frequencies
depends on the values of its system components. To assess thefour parameters (Cart,
Rart, Lart andRp) of the afterload model (16), fourier analysis on both measured aortic
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pressurepao and flowqav is performed. Calculation of the ratio of flow and pressure har-
monics, yields the measured input impedance. The parametervalues (table 1) are found
by using a simple least squares estimation technique.
The preload parameters (Rven, Cven andLven) (table 1) are estimated by means of trial
and error because of the measurement restriction on the setup. A least squares estimation
method cannot be used because the venous pressurepvc cannot be measured.
The pump house of the heart valve tester has a complianceCp. This compliance is deter-
mined by filling the pump house completely with water and sealing it. Changes in volume
Vp and pressurepp are measured while the piston is actuated with a random disturbance.
From frequency response measurementsH = ∂V

∂p
, the pump complianceCp has been de-

termined and supposed to be constant (appendix B).
The elastance function that has been designed is partly derived from recently published
elastance functions (Segers et al. (2003), Suga and Sagawa (1974), Chung et al. (1997)),
and partly adopted from measurements on the heart valve tester. This has been done to
create physiological flow patterns in the aortic valve. The parameter values are listed in
table 1.

Table 1:Parameter values for the mathematical model.

Lart (Pa · s2 · m−3) 1.81 · 105 ρ (kg · m−3) 1.05 · 103 L0 (m) 0.045

Cart (m3 · Pa−1) 1.26 · 10−8 lmv (m) 2.7 · 10−2 m (kg) 0.045

Rart (Pa · s · m−3) 1.84 · 107 lav (m) 2.1 · 10−2 d 0.5

Rp (Pa · s · m−3) 4 · 108 Aopen,av (m2) 4.5 · 10−4 Emax (kPa · ml−1) 2.54

Lven (Pa · s2 · m−3) 7 · 101 Aopen,mv (m2) 7.2 · 10−4 Emin (kPa · ml−1) 4.79 · 10−2

Cven (m3 · Pa−1) 3 · 10−5 Aleak,av (m2) 4.5 · 10−8 T (s) 3.2

Rven (Pa · s · m−3) 6 · 107 Aleak,mv (m2) 7.2 · 10−8 tEmax (s) 1.16

Cp (m3 · Pa−1) 2.45 · 10−10 Az (m2) 2.21 · 10−3 V0 (m3) 19.6 · 10−6

2.3 Control concept

The control concept (figure 5) is based on feedback of the pumpvolumeVp
1 , which is

related to the position of the pistonx1. The elastance control loop calculates the desired
piston positionxdes using the time-varying elastance function and the pump pressurepp.
The volume control loop regulates the piston positionx1 according to this desired refer-
ence positionxdes.

1 Another possible control concept, which uses pump pressurepp for feedback, is treated in ap-
pendix C.
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The desired reference signalxdes (17) is derived from the pump pressurepp through the
time-varying elastance model (14) and the geometrically properties of the pump (figure 3).

xdes = L0 −
1

E(t)Az

pp −
V0

Az

(17)

  e l a s t a n c e
    m o d e l

_
+

P S
H

C
x1

x2
pp

xdes

ue

Figure 5:Block diagram where position of the pistonx1 is used for feedback.x2 and e
represent the piston velocity and errorxdes −x1, respectively.xdes, pp andu represent the
desired piston position, the pump pressure and the input forthe system, respectively. C
represents the controller, H the total open loop system, i.e. the heart valve tester with the
piston and pump P, valves and hemodynamic preload and afterload S.

2.3.1 Servo controller

In the linear control theory the most common method for an indication of the system
behavior is the frequency response design method (FRF). For the design of the servo
controller marked with ’C’ (figure 5), manual loop shaping of the open loop FRF in the
frequency domain is used (Franklin et al. (1996), Bosgra et al. (2003)). The designed
controller consists of a lead compensator with an integral action. The lead compensator
takes care of the required phase advance in the resonance frequency region, preserving
stability and robustness. The integral action takes care ofthe disturbance rejection, i.e.
suppression of the low frequency disturbances. For measurement noise reduction and high
frequency robustness a second order high frequency roll-off compensator has been used.
The open loop transfer function has a bandwidth of30 Hz with a phase advance of45◦

at 0 dB cross-over frequency (figure 6, panelA). The Nyquist plot of the open loop gain
shows stability and robustness (figure 6, panelB). This controller design generates typical
piston trajectories with error margins smaller than0.3 mm(figure 6, panelC andD). A
detailed explanation of the servo controller design is described in appendix E.
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Figure 6:A: Open loop frequency response.B: Nyquist plot of the open loop response.C:
Reference piston positionxdes trajectory.D: Error signal between reference and tracked
position signal.

2.3.2 Stability

For analyzing the stability of the complete control model a strategy applied to nonlinear
non-autonomous time-varying systems with a periodic solution is used. The Floquet the-
ory gives information on the stability of the periodic solution of this system (Parker and
Chua (1989)). The stability of the complete system is determined by its characteristic mul-
tipliers, also called Floquet multipliers, i.e. eigenvalues of the monodromy matrixΦT . In
this matrix the fundamental solutions of the periodic system are stored. The Floquet mul-
tipliers determine the exponential growth or decay of perturbations in the eigendirections
of the monodromy matrixΦT and hence the stability of the periodic solution. If a Floquet
multiplier has a magnitude larger (smaller) than one, a perturbation of the initial condition
in the corresponding eigendirection will grow (decay) after one period of oscillation.
The monodromy matrix for the complete control model has beendetermined by the
Newton-Raphson shooting method (Leine and van de Wouw (2002)). The Floquet mul-
tipliers, belonging to this monodromy matrix, show that thesystem is marginally stable.
Three Floquet multipliers have a value1. This means that if a disturbance is applied to
the system in the direction of the eigenvector belonging to one of these Floquet multipli-
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ers, the applied disturbance is not vanishing nor increasing but remains on the periodic
solution. A detailed explanation of this method is described in appendix D.

2.4 Implementation of the control concept

2.4.1 Data acquisition

The concept described above is implemented in the heart valve tester setup. The data
acquisition is performed by aTUeDACS/1(TU/e, The Netherlands) system which is con-
nected to aBLH30 Brushless servo drive in combination with aML2340DC servo mo-
tor (Parker, The Netherlands). The piston position is measured with quadrature encoders.
These encoders have an accuracy of2000 pulses/cycle. For measuring the aortic and pump
pressureBecton Dickinson P10EZ-1pressure sensors are used. The aortic flow is mea-
sured by aMC 28AXflow probe connected to a flow meterTS420(both Transonic, The
Netherlands).

2.4.2 Initialization

  e l a s t a n c e
    m o d e l

_
+

P r e s c r i b e d
  p o s i t i o n  
 w a v e f o r m

     S i g n a l
C o n d i t i o n i n gC H e a r t  V a l v e

    t e s t e r

2
1      D a t a

p r e s e n t a t i o n

x1

ppfilt

ppunf

xdes

ue

Figure 7:Schematic block diagram for implementation of the control algorithm in the
heart valve tester.x1 ande represent the piston position and errorxdes − x1, respectively.
xdes, ppunf

andu represent the desired piston position, the unfiltered pump pressure and
the input for the system, respectively.ppfilt

represents the filtered pump pressure.

To facilitate the initialization of the algorithm, it is necessary to divide the startup pro-
cess into two stages (figure 7). In stage1 the heart valve tester operates under the control
of the volume loop only. The reference position is prescribed using a prescribed posi-
tion waveform to have physiological pressures and flows before the elastance control loop
is activated (stage2). This occurs at the moment the prescribed position waveform and
desired positionxdes are matching. The elastance control loop thereafter dynamically cal-
culates the piston position using the time-varying elastance function and instantaneous
pump pressureppfilt

.
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2.4.3 Signal conditioning

To produce a smooth desired piston positionxdes, signal conditioning is applied to the
measured pump pressureppunf

because it contains too much undesired noise (figure 8,
panelA). Investigation of the power spectrum of this signal (panelB) shows for fre-
quencies larger than5 Hz uncorrelated noise. Furthermore, a small increase in the PSD
spectrum can be seen at30 Hz, the system’s bandwidth. Therefore, second order filtering
has been applied to smooth the pump pressure. This filter has atime dependent cut-off fre-
quency that fluctuates between5 Hz during ejection phase and1.5 Hz during filling phase
of the pump. The cut-off frequency of this filter is decreasedfrom 5 Hz to 1.5 Hz because
of the relative low pump pressure during filling phase which means that uncorrelated noise
becomes more relevant. The filtered pump pressureppfilt

and PSD spectrum, belonging to
this filtered pump pressure, are shown in panelC andD of figure 8.
Furthermore, the measured flows and pressures plotted in this paper are zero phase filtered
(ZPF) to be able to analyze the obtained results better.
The control algorithm has been tested numerically as well asexperimentally for one af-
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Figure 8:A: Unfiltered pump pressureppunf
for one cardiac cycle.B: Power spectrum

density (PSD) belonging to the unfiltered pump pressure.C: Filtered pump pressureppfilt

for one cardiac cycle.D: Power spectrum density belonging to the filtered pump pressure.

terload setting to validate experimental data with simulation data. For this experiment a
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bioprosthetic aortic valve (Medtronic Freestyle 995) with a nominal diameter of21 mm
was used. To test the functionality of the controlled circulation model pressure-volume
relations (P − V loops) were measured for four different peripheral resistance levels of
the afterload. Subsequently, the aortic valve was replacedby another (bioprosthetic) aortic
valve to check the effect of different heart valves on the pump behavior. Both valves were
taken from the same batch of stentless bioprosthetic heart valves, one having a low flow
resistance, the other one having a higher resistance.

3 Results

The comparison of numerical and experimental data for one afterload setting is depicted
in figure 9. The afterload impedanceZ of experimental data, simulated data and estimated
impedance (16) is shown in panelA of figure 9. At0 Hz its values are consistent with the
total resistance (Rart + Rp).
For both the experimental and simulated data the maximal pump pressure is approxi-
mately16 kPa, while the maximal aortic pressure is somewhat lower (figure9, panelB).
A significant difference between simulation and experimentis shown in the early filling
phase marked with1. A second difference is the fact that the experimental aortic paoexp

and pumpppexp
pressures show oscillations during the ejection phase, marked with2. The

experimental and simulated aorticqav and mitralqmv flows are shown in panelC of this
figure. The mitral flow cannot be measured directly from the setup but is calculated by
means of the relation in (11). In both cases (simulation and experiment) the maximal flow
across the aortic valve is higher than the maximal flow acrossthe mitral valve. However,
there is a difference in maximum mitral flow during diastole,marked with3. Furthermore,
the experimental mitral flowqavexp

becomes negative at the beginning of the contraction
phase, marked with4. The cardiac volume is minimal at end systole and maximal at end
diastole (figure 9, panelD). A difference between experimental and simulated data canbe
seen in end diastole cardiac volume, marked with5.
The experimental (panelA) and simulated (panelB) P − V loops generated with vary-

ing afterloads are depicted in figure 10. The estimated afterload parameters belonging to
these responses are shown in table 2. Both in simulation and experiment maximum pump
pressure and minimum pump volume rise with increasing afterload. The isovolumic con-
traction phase and the isovolumic relaxation phase can be distinguished at the maximal
and minimal values of the cavity volumes. The values ofEmax in both experimental and
simulated results are estimated by the slope of the points with the highest pressure-volume
ratio and were found to be1.34 kPa · ml−1 and1.58 kPa · ml−1, respectively. In both
figuresEmax is maintained constant. This demonstrates the fact that thecontrol algorithm
is able to maintain a constant contractility state in the presence of changing afterloads.
The remaining results for the different afterload levels are presented in figures I.1-I.3 in
appendix I.
Finally responses to changes in aortic valves have been demonstrated to show the effect
of the control algorithm (figure 10, panelC). The valve with higher resistance clearly in-
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Figure 9:A: Frequency response function of the afterload impedanceZ. B: Numeri-
cally(sim) and experimentally(exp) obtained pump pressure pp and aortic pressurepao

for one cardiac cycle.C: Aortic qao and mitralqmv flow.D: Volume as a function of time
calculated by the integration of volume change in aortic andmitral flow.

creases the work load of the heart valve tester.

Table 2:Parameter values for the systemic circulation for four different afterload levels.

Lart Cart Rart Rp

exp 1 3.17 · 105 1.36 · 10−8 2.15 · 107 2.63 · 108

exp 2 1.81 · 105 1.26 · 10−8 1.84 · 107 1.00 · 108

exp 3 3.13 · 105 1.34 · 10−8 1.77 · 107 5.30 · 108

exp 4 1.25 · 105 1.22 · 10−8 1.90 · 107 7.43 · 108
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Figure 10:Experimentally (A) and numerically (B) obtained pressure-volume curves for
the four different afterload settings.C:Experimentally obtained pressure-volume curves
for two different aortic valves.

4 Discussion

In this article a control strategy for the heart valve testerhas been developed, that mim-
ics the physiological response of the heart in terms of pressures and flows to changes in
hemodynamic load.
A ninth order system of ordinary differential equations hasbeen used as a mathematical
model for the mock circulatory system to evaluate the control algorithm. A limitation of
this description is that it simplifies the fluid dynamic behavior by using a lumped param-
eter model to describe what is actually a continuous system.However, the model is found
to describe the hemodynamics of the system adequately underthe conditions studied.
The designed servo controller preserves stability and robustness. Furthermore, marginal
stability for the complete system has been guaranteed usinga stabilization method applied
to nonlinear time-varying systems with a periodic solution.
The incorporation of an initialization sequence has been effective to have physiological
pressures and flows at the moment the elastance control loop is activated.
Signal conditioning of the pump pressureppunf

has been carried out to produce a smooth
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desired piston positionxdes. The power spectrum shows uncorrelated noise for frequen-
cies larger than5 Hz. This noise can be attributed to measurement noise in the pressure
sensor and uncorrelated high frequent noise in the servo drive system. The small increase
in PSD spectrum at30 Hzcannot be declared. If this small increase was related to a system
property, it would be visible in the open loop transfer function at frequency30 Hz(panelA
of figure 6). Due to a stiff construction of the heart valve tester, small external deviations
in the servo drive lead to large variations in pressure. Together with measurement noise
in the pressure sensor, signal conditioning was needed to obtain a smooth desired piston
positionxdes.
The numerical and experimental results (figure 9) match relatively well, although there
are some differences visible. The estimation of the afterload impedanceZ (16) has been
performed and is matching well for both simulation and experiment (panelA). First of all,
there is a difference in pressure dip at the end of the contraction phase (panelB (1)). This
may be attributed to the low (and unadjustable) preload of the heart valve tester. Secondly,
the pressure oscillations of the measured data during the ejection phase (panelB (2)). This
can be related to the stiff construction of the heart valve tester setup and the measurement
noise in the pressure sensors. The difference in mitral flow in the diastolic phase (panelC
(3)) can be contributed to the chosen preload parameters in the numerical control model.
They cannot be estimated due to restrictions in the construction of the heart valve tester.
For this reason they are estimated by trial and error. These preload parameters have large
influence on the mitral flowqmv, and thus the diastolic phase, i.e. filling of the ventricle
and determination of the end-diastolic volume (panelD (5)). Furthermore, the negative
mitral flow qmvexp

(panelC (4)) means a small leakage of the mitral valve at the moment
the contraction phase starts.
PanelA andB of figure 10 show that theEmax in simulation and experiment are linearly
dependent on end-systolic volume, i.e. insensitive to afterload changes. These results show
that a reduction of cardiac output occurs when contractility of the ventricle remains con-
stant and afterload is increased. This is similar toin vivoobtained results (Maughan et al.
(1984)). The values ofEmax in both experimental and simulated results were found to be
1.34 kPa ·ml−1 and1.58 kPa ·ml−1, respectively. These values differ significantly with
theEmax = 2.54 kPa · ml−1 of the elastance function. An explanation for this fact is not
known.
From the obtained results in panelC of figure 10, the control algorithm provides not only
realistic responses with respect to changes in hemodynamicafterload but can also provide
good information for testing the functionality of aortic heart valves. It shows a difference
in cardiac volume and pressure to a change in aortic valve. Despite the imperfections
shown above, the effect of changes in valve properties and afterload on pump pressure
and volume is clearly demonstrated.
Baloa et al. (2001) and Williams et al. (1994) managed to design control schemes that
were able to respond to afterload changes as well. However, theseP − V loops showed
an increase in volume at the isovolumic relaxation phase. Inthis paper this problem has
been solved (figure 10) using the piston positionx1 for feedback instead of the pressure
pp or elastanceE(t).
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5 Conclusion

The heart valve tester of Rutten et al. (2005) has been extended with a control strategy
to better mimic the response of the heart in terms of pressures and flows to changes in
afterload and valve properties. It has been accomplished using the time-varying elastance
model to calculate a desired pump volume from measurements on the pump pressure. The
volume control loop regulates the pump volume according to this reference signal.
Future development of the mathematical and mock circulatory system would benefit from
the addition of more complex heart behavior, such as a baraoreflex response to regulate
heart rate (Lu et al. (2001)).
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A Anatomy and physiology of the heart

The heart is a hollow muscular organ that pumps blood throughthe vascular system for
transport of oxygen and nutrients. It consists of two pumps,the right and left heart which
are shown in figure A.1. Both sides contain an atrium and a ventricle. The atria collect
blood that returns to the heart and facilitate rapid filling of the ventricles. The ventricle
supplies the main force that pumps the blood through either the pulmonary or the systemic
circulation. The wall of the right ventricle is less powerful than that of the left ventricle.
The mitral valve prevents back flow of blood into the left atrium when the left ventricle
contracts and blood is ejected through the aortic valve. Theaortic valve prevents back flow
of blood from the aorta into the left ventricle. The tricuspid valve prevents back flow of
blood into the right atrium when the right ventricle contracts and blood is ejected through
the pulmonary valve. The pulmonary valve prevents back flow from the pulmonary artery
to the right ventricle. The cardiac event that occurs from the beginning of one heartbeat to

Figure A.1:The structure of the heart and course of blood flow through theheart cham-
bers, adopted from Guyton and Hall (1996)

the beginning of the next is called the cardiac cycle. Each cycle is initiated by spontaneous
generation of an action potential from the sinus node, whichis located in the superior
lateral wall of the right atrium near the opening of the superior vena cava. This action
potential travels rapidly through both atria and thence into the ventricles. The cardiac cycle
can be divided into four individual phases. In the first phase, the filling phase, relaxation of
the heart muscle enables the ventricle to be filled with bloodfrom the atria. During the next
isovolumic contraction phase the ventricles start to contract without volume changes. The
pressure into the ventricles starts to rise until the ventricles have built up sufficient pressure
to push the valve open against the pressure in the aorta or pulmonary artery. This moment
marks the beginning of the ejection phase during which bloodpours out of the ventricles.
As soon as the flow tends to become negative, the aortic of pulmonary valve closes and
the isovolumic relaxation phase begins. The period of relaxation is called diastole, during
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which the heart fills with blood. The period of contraction iscalled systole.

B Determination of pump compliance Cp

The pump house of the heart valve tester setup has a certain complianceCp. This compli-
ance relates changes in pressure to changes in volume. This parameter has to be known
for use in the mathematical model of the heart valve tester (11). Furthermore, because this
parameter is supposed to be known for calculation of the mitral flow qmv, by measuring
the aortic flowqav and pump pressurepp.
This compliance is determined by filling the pump house completely with water and seal-
ing it. Changes in volumeVp and pressurepp are measured while the piston is actuated
with a random disturbance. The frequency response functionof H = ∂p

∂V
can now be de-

termined.
The experiment is carried out by measuring frequency response functions at three dif-
ferent piston positions in the pump housing; at almost maximum volumeVp, at half the
maximum volume and almost minimum volume. In figure B.1 the frequency responses
and their coherence functions are shown. In all three cases it is shown that in the low fre-
quency area (working area of the valve tester), the inverse of the compliance∂p

∂V
is almost

constant. Concluding, the pump complianceCp is supposed to have a constant value of
2.45 · 10−10 m3 · Pa−1.

C Concept with feedback of pump pressure pp

This concept is based on feedback of pump pressurepp, which is related to the position
of the pistonx1.. The piston positionx1, is put into the time-varying elastance model and
calculates a desired pressureplv. The pressure control loop regulates the pump pressurepp

according to this desired reference pressureplv. The basic block diagram for this control
strategy is shown in figure C.1. From the nonlinear feedback theory there is a known
method called input-output linearization for SISO systemsusing Lie-derivatives (Sastry
(1999)). Given the single-input single-output system

ẋ(t) = f(x) + g(x)u

y = h(x) (C.1)

with f , g smooth vector fields andh a smooth nonlinear output function, then the Lie-
derivativeLfh(x) or Lgh(x) gives the rate of change ofh along the flow of the vector
field f or g. This method transforms a nonlinear system into a simple linear normal form
by means of a change of coordinates. Writing the system into this normal form is much
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Figure B.1:A: Bode diagram of pressurepp and volumeVp for determine the compliance
Cp for the piston positioned at almost maximum closed volume.B: Coherence function
belonging to bode diagram in panelA. C: Bode diagram of pressurepp and volumeVp for
the piston positioned at half of maximum closed volume.D: Coherence function belonging
to bode diagram in panelC. E: Bode diagram of pressurepp and volumeVp for the piston
positioned at almost minimum closed volume.F: Coherence function belonging to bode
diagram in panelE.

easier in designing controllers and understand the dynamics in nonlinear systems. It is
now possible to use standard linear feedback theory for designing an inputu.

25



C

e l a s t a n c e   
  m o d e l

_
+

P S
H

x1

x2 pp

plv

ue

Figure C.1:Block diagram where pump pressurepp is used for feedback.x1, x2 and e
represent the piston position, piston velocity and error, respectively.plv, pp andu represent
the desired pump pressure, the pump pressure and the input for the system, respectively.
C,H,P and S represent the controller, the total open loop system, the piston with pump and
the systemic circulation, respectively.

The output function is assumed to be given byy = h(p) = pp. Then, the strict relative
degree of the system is2, consisting of:

y = h(p) = pp

ẏ = Lfh(p) + Lgh(p) = 1
Cp

(

Azx2 + qmv − qav

)

ÿ = L2
fh(p) + L2

gh(p) = 1
Cp

(

Az

(

− d
m

x2 + 1
m

u
)

+ ∂qmv

∂t
− ∂qav

∂t

)

The system has a relative degreer which is smaller than the degree of the systemn.
n − r state variables are rendered unobservable by state feedback. This is called the zero
dynamics of the system, also called internal dynamics. It isthat part of the dynamics of
the system that cannot be affected by the designed controller. A stability condition for this
system lies in the fact that this zero dynamics must have asymptotically minimum phase,
i.e, the state variables are automatically converging to anattractor or solution.
In order to design a controller the system can be transformedinto the normal form using
the coordinate transformation(z1, z2, v1, . . . , vn−r) = (h(p), Lfh(p), ηr+1, . . . , ηn). The
functionsηr+1 . . . ηn are arbitrary chosen functions of the states such that:
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is invertible to establishn linearly independent vector fields. The following system inthe
canonical form appears:
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ż1 = z2 (C.2)

ż2 =
( 1

(ρlmv + LvenAmv)Cp

)(

(v4 − z1)Amv −
ρv2

2

2Amv

)

−
( 1

(ρlav + LartAav)Cp

)(

(z1 − v5)Aav −
ρv2

3

2Aav

)

−
d

mCp

(

Cpz2 − v2 + v3

)

+
Az

mCp

u (C.3)

v̇ = ζ(z, v, t) (C.4)

A stabilizing controller for this system with the assumption that the zero dynamics is
asymptotically minimum phase, has the form:

u =
mCp

Az

(

−
( 1

(ρlmv + LvenAmv)Cp

)(

(v4 − z1)Amv −
ρv2

2

2Amv

)

+
( 1

(ρlav + LartAav)Cp

)(

(z1 − v5)Aav −
ρv2

3

2Aav

)

)

+
mCp

Az

(

d

mCp

(

Cpz2 − v2 + v3

)

+ K1(plv − z1) − K2z2

)

(C.5)

whereK1 andK2 are chosen such that the polynomialλ2 + K2λ + K1 = 0 is Hurwitz,
i.e. has all its poles in the left half complex plane.
The connection between the piston positionx1 and the desired pressureplv is formed by
the time-varying elastance modelE(t). The relation between desired pressure and position
of the piston becomes:

plv = E(t)(Az(L0 − x1) − V0) (C.6)

The stability of the complete system, i.e., the stability ofthe remaining zero dynamics is
shown making use of a stabilization method applied to nonlinear systems with a periodic
solution. It shows a marginally stable closed loop system. In appendix D this method is
explained in detail.
Unfortunately, the strategy described above has a stabilizing controller (C.5) that is rather
difficult to implement. A lot of uncertain parameters are supposed to be known. Further-
more, the measured pressure signal used in the feedback loophas been superimposed
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with noise due to measurement noise in the pressure sensor and uncorrelated high fre-
quent noise in the servo drive system. The effect of measurement noise on the closed loop
output is shown in appendix G.5. It shows the need for good, low-noise sensors.

D Stability analysis

In this section the stability of the complete system is discussed. The closed loop system
is nonlinear due to the terms that describe the valve behavior in the system. It is time
periodically i.e., in the stationary situation each heartbeat, identical pressures and flows
will appear. Furthermore, this system depends explicitly on time by means of the elas-
tance functionE(t). Concluding, the closed loop system is a nonlinear non-autonomous
time-varying periodic system.
Suppose in this system thatxp(t) = xp(t + T ) is the periodic solution with period time
T . The nonlinear system, called hereẋ = f(t, x(t)), can be linearized around the peri-
odic solution of this systemxp(t), which leads to a linear time-varying system (LTV). The
monodromy matrixΦT can, for a periodic LTV system, give information on the stability
of the equilibrium point of this system (Leine and van de Wouw(2002), Parker and Chua
(1989)). In this matrix the fundamental solutions of the periodic system are stored.
The stability of the closed loop system is determined by its characteristic multipliers, also
called Floquet multipliers i.e., eigenvalues of the monodromy matrixΦT . The Floquet
multipliers determine the exponential growth or decay of perturbations in the eigendirec-
tions of the monodromy matrixΦT and hence the stability of the periodic solution. If a
Floquet multiplier has a magnitude larger (smaller) than one, a perturbation of the initial
condition in the corresponding eigendirection will grow (decay) after one period of oscil-
lation.
The monodromy matrixΦT = Φ(T + t0, t0) maps an initial condition∆x(t0) to the
response∆x(T + t0) at timeT + t0, one period later. The matrixΦ(t) is called the funda-
mental solution matrix. In this matrix a set of the nine independent, fundamental solutions
φ1(t, ), ..., φ9(t) of the system are stored. The linearized LTV system has the form:

ẋ(t) = A(t)x(t) (D.1)

with A(t) time-dependent. The perturbation equation excluding the higher order terms
becomes then:

∆ẋ(t) = A(t)∆x(t) (D.2)

Considering∆x(t) in (D.2) to be a perturbation around a trajectory of the nonlinear non
autonomous time-varying periodic system. The fundamentalsolution matrix relates how
an infinitely small perturbation evolves to an infinitely small perturbation after a period
time T (figure D.1). A solution of the initial value problem starting at xp(t0) evolves
during a timetd = T + t0 to xp(T + t0). If the initial condition is perturbed with a small
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xp(t0)
xp(T + t0)

x(t0)
x(T + t0)

∆x(t0) Φ(T + t0, t0, x
p(t0))∆x(t0) + H.O.T.

Figure D.1:Definition of the fundamental solution matrix.

perturbation∆x(t0) = x(t0) − xp(t0), the perturbed solution will evolve during a time
td to x(T + t0). The perturbation on the initial condition∆x(t0) yields a perturbation
∆x(T + t0) = x(T + t0) − xp(T + t0) after a period timeT . The monodromy matrix
relates∆x(t0) to ∆x(T + t0) as:

∆x(T + t0) = Φ(T + t0, t0, x
p(t0))∆x(t0) + H.O.T. (D.3)

It should be noted that the higher-order terms vanish when infinitely small perturbations
are considered. The fundamental solution matrix can now be obtained by solving the
following initial value problem:

Φ̇(T + t0, t0, x
p(t0)) =

∂f(x, t)

∂x
|xp(t) Φ(T + t0, t0, x

p(t0)), (D.4)

Φ(t0, t0, x
p(t0)) = I.

Unfortunately, in general it is not possible to give an analytical solution for (D.4) because
it is a LTV system. For LTV systems the fundamental solution matrix cannot be written
as an exponential function of the system matrix∂f(x,t)

∂x
|xp(t) as can be done for linear

time invariant systems. Therefore, solutions of (D.4) should in general be calculated by
numerical integration, taking the appropriate initial conditions into account. The single
shooting method finds periodic solutions of a system by solving a two-point boundary
value problem, in which solutions are sought ofH(x0, T ) ≡ xT − x0 = 0. H represents
the nonlinear systemf(x, t). T is the period time of the periodic solution andx0 is a
state on the periodic solution. The zero of this function is found by the Newton-Raphson
method (D.5).

∂H

∂x0

∆x0 +
∂H

∂T
∆T0 = x0 − xT (D.5)

After evaluation of the partial derivatives of this function and addition of an anchor equa-
tion to create a solution for the system, the following set ofequations appear that have to
be solved (Leine and van de Wouw (2002)):.
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The anchor equation is used because (D.5) is a system withn equations inn+1 unknowns
(then components ofx0 and periodT ). The shooting method solves in each iteration step
the set of equations D.6 and then updates
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(D.7)

with initial guessesx(0)
0 andT (0). The subscripts have been added to indicate the iteration

count. This scheme is reiterated until some convergence criterion is met.

D.1 Stability of concept with feedback of piston positionx1

The stability of the complete system has been determined by solving the monodromy
matrixΦT and determine the eigenvalues of this matrix. The characteristic multipliers, or
Floquet multipliers belonging to this monodromy matrix are:
λ1 = 0.50
λ2 = −0.29
λ3 = −0.38 · 10−1

λ4 = 0.81 · 10−2

λ5 = −0.43 · 10−2

λ6 = −0.31 · 10−5

λ7 = 1
λ8 = 1
λ9 = 1
The Floquet multipliers are all within the unit circle, except for three. Those Floquet
multipliers are on the unit circle. From Parker and Chua (1989) it is said that, then the
periodic solution is on the verge of instability (marginally stable). This means that if a
disturbance is applied to the system in the direction of the eigenvector belonging to the
Floquet multiplier with value1, then the applied disturbance will not vanish nor explode
but stays on the periodic solution. To show this effect, a disturbanceǫ is applied to the
system in the direction of one of the eigenvectors with Floquet multiplier 1. The numerical
results of a disturbance with a normally distributed randomnumber around zero and a
variance of0.01 applied to the system, are shown in figure D.2. From these figures, it can
be concluded that all nine states are not diverging from the periodic solution.
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Figure D.2:A: Pump pressure, pressure proximalp1 to the RC parallel connection and
arterial pressure simulated with a disturbance in the eigendirection ofλ = 1. B: Aortic
flow qav and mitral flowqmv as a function of time after application of the disturbance.C:
Venous and pressure proximalp2 to the RC parallel connection.D: The positionx1 and
velocityx2 of the piston.

D.2 Stability of concept with feedback of pump pressurepp

The stability of the closed loop system for this concept (C) isalso determined by solving
the monodromy matrixΦT and calculate the eigenvalues of this matrix. It becomes clear
whether or not the zero dynamics of the closed loop system is internally stable. The char-
acteristic multipliers, or Floquet multipliers belongingto this monodromy matrix are:
λ1 = 0.54
λ2 = −0.19 · 10−2

λ3 = −0.17 · 10−2

λ4 = 0.12 · 10−3

λ5 = −0.45 · 10−5

λ6 = −0.12 · 10−5

λ7 = 1
λ8 = 1
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λ9 = 1
Also here the system is on the verge of instability due to the Floquet multipliers with value
1.

E FRF and servo controller design for the heart valve tester

In the linear control theory the most common method for an indication of the system be-
havior is the frequency response design method. Frequency response design is popular
primarily because it provides good designs in the face of uncertainty in the plant model.
For example, for systems with poorly known or changing high-frequency resonances,
their feedback compensation can be tempered to alleviate the effects of those uncertain-
ties. Another advantage of using frequency response designmethod is the ease with which
experimental information can be used for design purposes. Raw measurements of the out-
put amplitude and phase of a plant undergoing an excitation that includes all frequencies
in a certain specified area are sufficient to design a suitablefeedback control. However, it
is still important to analyze this method critically. In appendix F is shown how to handle
and work with frequency response functions.
The FRF measurement of the heart valve tester has been determined using the sensitiv-
ity method (figure E.1, panelA). The coherence of the sensitivity is plotted for a good
measurement quality indication (figure E.1, panelB). For low frequencies the coherence
is bad. This is due to the uncertain nonlinearities such as coulomb and viscous friction.
For higher frequencies the coherence has the tendency to go to one, which means a good
measurement. The bode diagram in the left panel of this figureshows for high frequencies
noise. This can be contributed to the fact that the magnitudeis fluctuating between its en-
coder accuracy due to analog to digital conversion. Anotherreason for this high frequency
noise is the fact that the sensitivity approaches one for high frequencies (F.12). Thus, the
transfer function estimation approaches zero in this area.A little disturbance in the sensi-
tivity measurement, causes relative large fluctuations in the transfer function estimation.
In appendix G a brief introduction about the dynamics used for controller design is given
(Franklin et al. (1996) and Bosgra et al. (2003)). For the heart valve tester a controller has
to be designed such that a third order reference trajectory is followed with a final max-
imum overshoot of10% of the setpoint and a final value accuracy of10 µm preserving
stability and robustness quantities. The maxima of the jerk, acceleration and velocity of
the trajectory are respectively100000 rad/s3, 800 rad/s2 and90 rad/s.
For the controller a lead and lag filter in combination with anintegral action is used. The
integral action (E.1) takes care of the disturbance rejection and thus lowering the sensitiv-
ity function in the low frequency area.

Cint(s) =
s + 2πfi

s
(E.1)
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Figure E.1:A: Frequency response measurement of the valve tester.B: Coherence function
for the FRF measurement.

Making the loop gain large at low frequencies may result in a Nyquist plot that shows
unstable behavior. Even if the closed loop system is stable,the gain and phase margins
may be unacceptably small, resulting in nearly unstable behavior. To obtain the required
phase advance in the resonance frequency region, a lead filter is implemented (E.2). The
lead filter takes care of the specified frequency domain quantities to guarantee stability
and robustness.

Clead(s) = Kl

1
2πf1

s + 1
1

2πf2

s + 1
(E.2)

with f1 < f2. Phase lead compensation increases the bandwidth and, hence, makes the
closed loop system faster. Keeping the Nyquist plot away from the critical point−1 has
the effect of improving the transient response.
For measurement noise reduction and high frequency robustness high frequency roll-off
compensation is introduced. This is included by additionallag compensation (E.3).

Crolloff(s) =
1

1
(2πfr)2

s2 + 1
2πfr

+ 1
(E.3)

Discretization of these filters making them applicable for real time application is done
using Tustin’s Method in combination with prewarping (Shahian and Hassul (1993)). This
method converts analog filters to equivalent digital filters. A description of this method is
shown in appendix H.
The controller transfer function of the feedback part is shown in panelA of figure E.2. In
panelB is the open loop system plotted with a bandwidth of30 Hz and a phase advance
of 45◦. In panelC the sensitivity function is shown. PanelD shows the Nyquist plot of
the open loop gain. Stability and robustness are preserved within the frequency domain
specifications (section G.8).
The tracked and reference trajectory is presented in panelE of figure E.2. PanelF shows
the error belonging to this trajectory. The output is withinspecifications. Application of
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a typical reference trajectory for the control scheme (figure E.3, panelA) shows error
margins smaller than0.3 mm(panelB).
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Figure E.2:A: Frequency response of the controller for the valve tester.B: Open loop
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Figure E.3:A: Reference position signal after activation of the controlalgorithm.B: Er-
ror signal between reference and tracked position signal after activation of the control
algorithm.

F Measuring frequency response functions

The most common way to perform a frequency response function(FRF) measurement is
to make use of cross- and autopowerspectra. In the open loop case the measured crosspow-
erspectrum is divided by the measured autopowerspectrum tocreate an estimator for the
frequency response function. The use of these spectra takescare that uncorrelated extra-
neous noise does not disturb the estimated frequency response function. In a closed-loop
environment, it is no longer usual to look at the input and theoutput. Then the use of
spectra to determine a FRF measurement, gives a biased resultin the case of extraneous
noise (Boot et al. (2003)).
In figure F.1 a linear system in closed loop is shown. The inputr(t) describes a reference

C_+
+ + +++ +H

s y s t e m

+

w(t)

r(t) e(t) y(t)

m(t)

v(t) u(t)

n(t)

Figure F.1:Block diagram of a closed loop system.The inputr(t) is a reference trajectory.
e(t) is the error. Bothn(t) and m(t) are random uncorrelated noises.w(t) is an extra
input used for system excitation.u(t) andy(t) are the system in- and output, respectively.

trajectory. Bothn(t) andm(t) are random uncorrelated noises which can be influenced
by any input. For the analysis the system needs to be excitated. Therefore an extra input
w(t) is used. From the analysis in Boot et al. (2003) the direct method and the sensitivity
method are chosen to compare with each other. What follows is ashort overview of that
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analysis. A handy tool used in this analysis is the fact that the spectral density function
can be found via fourier transforms. In (F.1) the cross correlation is shown.

Suy(f) = lim
T→∞

1

T
U∗(f)Y (f) (F.1)

whereU∗ is the complex conjugated ofU and T is the total sample time. From now
on large time samples are assumed and the limit sign is left behind. Furthermore, it is
assumed that the inputs are independent, so the correlations and spectra between them are
zero,Srw = Srn = Srm = Swn = . . . = 0. Writing the system equations for the different
points in the loop:

U(f) = S(f)C(f)R(f) + S(f)W (f) − S(f)C(f)H(f)N(f) − S(f)C(f)M(f)

Y (f) = S(f)C(f)H(f)R(f) + S(f)H(f)W (f) + S(f)H(f)N(f) + S(f)M(f)

V (f) = S(f)C(f)R(f) − S(f)C(f)H(f)W (f) − S(f)C(f)H(f)N(f) − S(f)C(f)M(f)

E(f) = S(f)R(f) − S(f)H(f)W (f) − S(f)H(f)N(f) − S(f)M(f)

(F.2)

where

S(f) =
1

1 + C(f)H(f)
(F.3)

F.1 Direct method

The direct method is the direct measurement of the system. The outputy(t) of the system
will be divided by the inputu(t). An estimation of the transfer function will be:

Ĥ =
Suy

Suu

(F.4)

The spectral density functions and the transfer function estimation are, respectively

Suy =
1

T
U · Y

=
1

T

(

(S · SC · CH)Srr + (S · SH)Sww − (S · SC · H · H)Snn − (S · SC)Smm

)

36



(F.5)

Suu =
1

T
U · U

=
1

T

(

(S · SC · C)Srr + (S · S)Sww + (S · SC · CH · H)Snn + (S · SC · C)Smm

)

(F.6)

Ĥ =
(C · CH)Srr + H · Sww − (C · H · H)Snn − C · Smm

(C · C)Srr + Sww + (C · CH · H)Snn + (C · C)Smm

(F.7)

From this equation it is concluded that at the moment the signal Sww is only present, the
frequency response functionH(f) is measured. However, when there is extraneous noise
this takes care for a biased estimate of the FRF. In the extremesituation with only noise
− 1

C
will be measured.

Furthermore, the coherence function is a good indication whether a measured frequency
response function is reliable or not. A good FRF is measured ifthe coherence tends to go
to 1 in the whole frequency range. It is defined as follows:

γ2
uy(f) =

|Suy(f)|2

Suu(f)Syy(f)
(F.8)

Writing out the whole coherence function for this case becomes very large and inconve-
nient. For the illustration only the termsw(t) andn(t) are taken along.

γ2
uy(f) ≈

|H|2|S|4S2
ww − 2|C||H|3|S|4SwwSnn + |C|2|H|4|S|4S2

nn

|H|2|S|4S2
ww + 2|C|2|H|4|S|4SwwSnn + |C|2|H|4|S|4S2

nn

(F.9)

Using the direct method it can be concluded that undesired noise causes a distortion in the
estimated FRF. The coherence function does not give much griptoo because in the case
of only extraneous noise it will also go to one.

F.2 Sensitivity method

The sensitivity method is the most common technique for FRF measurements in closed
loop. This method measures the input to the systemu(t) and the excited extra inputw(t)
to determine an estimation of the sensitivity functionŜ, and thus the transfer function̂H.
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Swu =
1

T
W · U = S · Sww (F.10)

Ŝ =
Swu

Sww

= S (F.11)

The advantage can directly be seen. When measuring the sensitivity, there will be no bias.
The transfer functionH(f) will be now:

H(f) =
1 − S(f)

C(f)S(f)
(F.12)

With this method the coherence function will be:

γ2
wu(f) =

Sww

|C|2Srr + Sww + |C|2|H|2Snn + |C|2Smm

(F.13)

The advantage of measuring the sensitivity is that undesired uncorrelated noise averages
itself out ( F.11). Also the coherence function will become lower with more uncorrelated
noise from outside, which makes it a good measurement quality indicator.

G Introduction to controller design

A closed loop model scheme is shown in figure G.1. By solving thesignal balance

C_+
+ + +++ +H

s y s t e m

+

  F e e d
f o r w a r d

+ +

+
+

w(t)

r(t) e(t) y(t)

m(t)

v(t) u(t)

n(t)

k(t)

Figure G.1:Block diagram of a closed loop system.The inputr(t) is a reference trajectory.
e(t) is the error. Bothn(t) and m(t) are random uncorrelated noises.w(t) is an extra
input used for system excitation.u(t) andy(t) are the system in- and output, respectively.
k(t) is the input for measurement noise.

y(s) = m(s) + H(s)

(

w(s) + C(s)r(s) − C(s)y(s) − C(s)k(s) + n(s)

)

for the output
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y(s), it can be shown that:

y(s) =
1

1 + C(s)H(s)
m(s) +

C(s)H(s)

1 + C(s)H(s)
(r(s) − k(s)) +

H(s)

1 + C(s)H(s)
(n(s) + w(s))

(G.1)

G.1 Closed loop stability

The open loop transfer functionCH plotted in the complex plane is called a Nyquist
plot. This plot is useful in determine stability, passing side of the point -1, and robustness,
distance to the point -1. The Nyquist stability criterium relates the open loop frequency
response to the number of closed loop poles of the system in the right half plane. Looking
at the closed loop transfer function (G.2),

Hcl =
y(s)

r(s)
=

C(s)H(s)

1 + C(s)H(s)
(G.2)

The closed loop roots are the solutions of1 + C(s)H(s) = 0. For stability, no closed
loop poles are allowed in the right half plane. From Franklinet al. (1996), the argument
principle has the following essence:

’A contour map of a complex function will only encircle the origin if the contour con-
tains a singularity, pole or zero, of the function.’

The principle can be extended by allowing multiple singularities within the contour. The
number and direction of origin encirclements then change. To apply this principle to con-
trol design, it is supposed the contour in the s-plane encircles the entire right half plane.
If the evaluation contour ofs enclosing the right half plane contains a pole or zero of
1 + C(s)H(s) = 0, then the evaluated contour of1 + C(s)H(s) will encircle the origin.
Notice that1 + C(s)H(s) is simplyC(s)H(s) shifted to the right 1 unit andC(s)H(s)
can be plotted. That is the reason why -1 is the critical pointin a Nyquist plot.

G.2 Disturbance rejection and bandwidth

To study disturbance rejection, consider the block diagramof figure G.1, wherem(t)
represents the equivalent disturbance at the output of the plant. This transfer function is
called the sensitivity function of the closed loop system (G.3).
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S(s) =
y(s)

m(s)
=

1

1 + C(s)H(s)
(G.3)

The smaller|S(jω)| is, the more the disturbances are rejected at the angular frequency
ω. |S| is small if the magnitude of the loop gainCH is large. Hence, for disturbance
attenuation it is necessary to shape the loop gain such that it is large over those frequencies
where disturbance attenuation is needed.
Making the loop gainCH large over a large frequency band easily results in error signals
and resulting plant inputsu that are larger than the plant can absorb. Therefore,CH can
only be made large over a limited frequency band. This is usually a low pass band or
integral action, that is, a band that ranges from frequency zero up to the bandwidth of
the feedback loop. The larger the ’capacity’ of the plant is,the larger the inputs are the
plant can handle before it saturates or otherwise fails, thelarger the maximally achievable
bandwidth usually is.

G.3 Command response

The responsey(s) to the command signalr(s) is shown in (G.1) and (G.2). This is called
the complementary sensitivity functionT . Adequate loop shaping ideally results in a com-
plementary sensitivity functionT that is close to1 up to the bandwidth, and transits
smoothly to zero above this frequency. The closed loop transfer function ideally is low
pass with the same bandwidth as the frequency band for disturbance rejection.

G.4 Plant capacity

Any physical plant that has limited ’capacity’, can absorb inputs of limited magnitude
only. Looking at the block diagram of figure G.1, the signal balanceu(s) = w(s) +

C(s)
(

r(s) − k(s) − m(s) − H(s)n(s) − H(s)u(s)
)

. This may be solved foru (G.4).

u =
1

1 + C(s)H(s)
w(s) +

C(s)

1 + C(s)H(s)

(

r(s) − k(s) − m(s) − H(s)n(s)
)

(G.4)

This function determines the sensitivity of the plant inputto disturbances and the com-
mand signal. It is known as the input sensitivity functionM = C(s)

1+C(s)H(s)
. If the loop

gain CH is large then the input sensitivityM approximately equals the inverse of the
plant transfer function. If the open loop plant has zeros in the right half plane then1

H
is

unstable. Because of this the right half plane open loop plantzeros limit the closed loop
bandwidth. To prevent overly large inputs, generallyM should not be too large.
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G.5 Measurement noise

To study the effect of measurement noise on the closed loop output, the responsey(s)
to the measurement noisek(s) is considered (G.1). This shows that the influence of the
measurement noisek(s) on the control system output is determined by the complementary
sensitivity functionT . For low frequencies, where by the other design requirements T is
close to1, the measurement noise fully affects the output. This emphasizes the need for
good, low-noise sensors.

G.6 Stability robustness

For stability robustness it is necessary to keep the Nyquistplot away from the point−1.
The target is to achieve satisfactory gain, phase and modulus margins. It is consistent with
the other design targets to have the sensitivityS small in the low frequency range, andT
small in the complementary high frequency range.
The fasterT decreases with frequency, called roll-off, the more protection the closed
loop system has against high-frequency loop perturbations. This is important because
owing to neglected dynamics, high frequency uncertainty isever present. Small values of
the sensitivity function for low frequencies, which are required for adequate disturbance
rejection, ensure protection against perturbations at lowfrequencies. Such perturbations
are often caused by load variations, friction and cogging effects. In the crossover region
neitherS norT can be small. This is the region where the loop gainCH crosses the value
1, the zerodB line. It is the region that is most critical for robustness. Peaking ofS and
T in this frequency region is to be avoided. Good gain, phase and modulus margins are
needed to ensure this.

G.7 Performance robustness

Feedback system performance is determined by the sensitivity function S, the comple-
mentary sensitivity functionT and the input sensitivity functionM (G.5).

S =
1

1 + C(s)H(s)
, T =

C(s)H(s)

1 + C(s)H(s)
M =

C(s)

1 + C(s)H(s)
(G.5)

Considering the extent to which each of these functions is affected by plant variations, it is
supposed, for simplicity, that the system environment is sufficiently controlled so that the
controllerC is not subject to perturbation. Under this assumption it is sufficient to study
only the effect of perturbations onS andT because variations inM are proportional to
those inS. In Bosgra et al. (2003) this effect is shown as denoted below.
Denote byCH0 the nominal loop gain, that is, the loop gain that is believedto be rep-
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resentative and is used in the design calculations. Correspondingly, S0 and T0 are the
nominal sensitivity function and complementary sensitivity function. It is not difficult to
establish that when the loop gain changes from its nominal valueCH0 to its actual value
CH the corresponding relative change of the reciprocal of the sensitivity functionS may
be expressed as in (G.6).

1
S
− 1

S0

1
S0

=
S0 − S

S
= T0

CH − CH0

CH0

(G.6)

Similarly, the relative change of the reciprocal of the complementary sensitivity function
may be written as in (G.7).

1
T
− 1

T0

1
T0

=
T0 − T

T
= S0

CH − CH0

CH0

= S0

1
CH

− 1
CH0

1
CH0

(G.7)

These relations show that for the sensitivity functionS to be robust with respect to changes
in the loop gain, it is desired that the nominal complementary sensitivity functionT0 to
be small. On the other hand, for the complementary sensitivity functionT to be robust,
it is desired that the nominal sensitivity functionS0 to be small. These requirements are
conflicting, becauseS0 andT0 add up to1 and therefore cannot simultaneously be small.
The solution is to have each small in a different frequency range. As seen before, normal
control system design specifications requireS0 to be small at low frequencies. This causes
T to be robust at low frequencies, which is precisely the region where its values are sig-
nificant. Complementary,T0 is required to be small at high frequencies, causingS to be
robust in the high frequency range.

G.8 Design goals and criteria

The basic requirements in Franklin et al. (1996) and Bosgra etal. (2003) for a well-
designed control system are:

• The transient response is sufficiently fast.
• The transient response shows satisfactory damping.
• The transient response satisfies accuracy requirements, often expressed in terms of error

constants.
• The system is sufficiently insensitive to external disturbances and variations of internal

parameters.

These basic requirements can be further specified in terms ofboth a number of frequency-
domain specifications and certain time-domain specifications.
Several important frequency domain quantities are:
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Figure G.2:Gain and phase margins from the Bode plot of the loop gainCH. GM and
PM represents the gain and phase margins, respectively.ω1 andω2 are the frequencies
at 0 dB and180◦, respectively.B represents the bandwidth of the system
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Figure G.3:Sensitivity plot showing the resonance peakM

Gain margin. The gain margin measures relative stability. It is defined asthe reciprocal
of the magnitude of the loop frequency responseCH, evaluated at the frequency at
which the phase angle is−180◦. The magnitude of the gain margin must be at least
6 dB at this frequency.

Phase margin. The phase margin also measures relative stability. It is defined as180◦

plus the phase angle of the loop frequency responseCH at the frequency where the
gain is unity. The phase margin must be at least45◦ at the0 dB crossover frequency.

Bandwidth. The bandwidth measuresB measures the speed of response in frequency
domain terms. It is defined as the range of frequencies over which the open loop fre-
quency response has a magnitude bigger than0 dB.

Resonance peak. Relative stability may also be measured in terms of the peak value
of the magnitude of the closed loop frequency response or sensitivity function, occur-
ring at the resonance frequency. This criterion is includedas limiting this resonance
frequency to6 dB.
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These definitions are illustrated in figures G.2 and G.3. The reference signal in this article
is supposed to have a reference trajectory that consists of several different third order set-
point trajectories every period. For the controller designa third order reference trajectory
r(t) is chosen (figure G.4). This figure shows four important time domain quantities that
may be used for performance specifications for the response of the control system output
to a third order reference trajectory.

po
sit
ion

 [m
]

t i m e [ s ]

tp

Mp

tr

ts

Figure G.4:Interpretation of a third order reference trajectory. It shows the definition of
rise timetr, settling timets, peak timetp and overshootMp.

Rise time tr. It is the time it takes the system to reach its new set point.
Settling time ts. The settling time is defined as the time required for the response to
reach and remain within a specified error band of its final value.

Peak time tp. The peak time is the time it takes the system to reach the maximum over-
shoot point.

Maximum overshoot Mp. The maximum overshoot is the maximum difference between
the transient and the steady-state response.

H Tustin’s discretization and prewarping method

Tustin’s discretization technique makes use of trapezoidal integration, that is, to approxi-
matee(t) by a straight line between two samples (Shahian and Hassul (1993)).

uk = uk−1 +
Ts

2
(ek−1 + ek) (H.1)

or taking the z-transform,
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D(z) =
U(z)

E(z)
=

Ts

2
(z + 1)

z − 1
(H.2)

Because this is a numerical integration technique, it can be said that,

s ≡
2
Ts

(z − 1)

z + 1
⇒ z ≡

1 + Ts

2
s

1 − Ts

2
s

(H.3)

The mapping between the s-plane and z-plane is determined bythe relationshipz = esTs .
It is supposed to be known that the stability region in the s-plane is the entire left half of
the plane. Suppose further that a stable pole has the form−α + jω, then the mapping is:

z = e(−α+jω)Ts = e−αTsejωTs (H.4)

Becausee−αTs is the magnitude ofz and always smaller than1 and becauseω varies from
zero to infinity, a circle with radius1 or smaller is swept out in the z-plane. This means
that the left half of the s-plane maps into the inside of the unit circle in the z-plane.
Let s = jω in the Tustin approximation (H.3),

z =
1 + Ts

2
jω

1 − Ts

2
jω

(H.5)

From this equation the magnitude and phase are:

|z| =

√

12 + (ω Ts

2
)2

√

12 + (−ω Ts

2
)2

= 1 φz =
arctan(ωTs

2
)

− arctan(ωTs

2
)

= 2 arctan(
ωTs

2
) (H.6)

As ω increases, the phase increases while the magnitude stays constant at1. Thus, a unit
circle is swept out. The trapezoidal technique maps the lefthalf plane in the s-plane, into
the unit circle in the z-plane (figure H.1). Thus, a stableD(s) results in a stableD(z)
using Tustin’s approximation.
To prevent frequency distortion, critical frequency prewarping is applied. First, examine
the following term in (H.3) fors = jω:

z − 1

z + 1
→

ejωTs − 1

ejωTs + 1
(H.7)

The following relation appears when dividing the numeratorand denominator in this equa-
tion by e

jωTs
2 .

z − 1

z + 1
→

2j sin(ωTs

2
)

2 cos(ωTs

2
)

= j tan(
ωTs

2
) (H.8)
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Figure H.1:Unit circle in the z-domain

Consider a simple continuous filter with bandwidtha and use Tustin’s transformation of
this filter.

H(s) =
1

s/a + 1
⇒ H(z) =

1
2
Ts

z−1
z+1

1
a

+ 1
(H.9)

Using (H.8) and lets = jω, the discrete filter becomes

Hz(ω) =
1

j
(

2
Ts

tan(ω Ts

2
)
)

1
a

+ 1
(H.10)

The bandwidth of this discrete filter then becomes

ωBW =
2

Ts

arctan(
aTs

2
) (H.11)

This equation gives the relationship between the continuous and discrete equivalent band-
widths. It shows how the frequency scale is distorted by the Tustin transformation. Revisit
Tustin approximation by:

s ≈ K
z − 1

z + 1
(H.12)

whereK = 2
Ts

in the standard approximation. Try in the following situation to find aK
such that at a specific critical frequencyω = ωc, the above approximation becomes exact.
If

K =
ωc

tan(ωcTs

2
)

(H.13)
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is chosen,H(s) andH(z) will be identical atω = ωc. The critical frequency prewarping
technique, therefore, becomes:

s =
ωc

tan(ωc
Ts

2
)

z − 1

z + 1
(H.14)

This equation preserves stability transforming from a stable D(s) to aD(z) and matches
the frequency response for breakpoints and for zero frequency. Application of (H.14) to
the lead compensator, integral action and frequency roll-off compensator results in the
following discrete compensators. For the lead compensator:

Clead(z) =
(f2α + 2πf1f2)z − f2α + 2πf1f2

(f1α + 2πf1f2)z − f1α + 2πf1f2

(H.15)

with α = f2

tan(f2
Ts
2

)
.

For the integral action:

Cint(z) =
(α + 2πfi)z − α + 2πfi

αz − α
(H.16)

with α = fi

tan(fi
Ts
2

)
.

For the frequency roll off compensator:

Crolloff(z) =
(2πfr)

2z2 + (2πfr)
2z + (2πfr)

2

(α2 + 4βπfrα + (2πfr)2)z2 + (−2α2 + 2(2πfr)2)z + (α2 + 4βπfrα + (2πfr)2)

(H.17)

with α = fr

tan(fr
Ts
2

)
.
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I Experimental and numerical results for three different afterload situations.
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Figure I.1:A: Frequency response function of the afterload impedanceZ for the afterload
setting marked with exp1. B: Numerically(sim) and experimentally(exp) obtained pump
pressurepp and aortic pressurepao for one cardiac cycle.C: Aortic qao and mitral qmv

flow. D: Volume as a function of time calculated by the integration of volume change in
aortic and mitral flow.
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Figure I.2:A: Frequency response function of the afterload impedanceZ for the afterload
setting marked with exp3. B: Numerically(sim) and experimentally(exp) obtained pump
pressurepp and aortic pressurepao for one cardiac cycle.C: Aortic qao and mitral qmv

flow. D: Volume as a function of time calculated by the integration of volume change in
aortic and mitral flow.
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Figure I.3:A: Frequency response function of the afterload impedanceZ for the afterload
setting marked with exp4. B: Numerically(sim) and experimentally(exp) obtained pump
pressurepp and aortic pressurepao for one cardiac cycle.C: Aortic qao and mitral qmv

flow. D: Volume as a function of time calculated by the integration of volume change in
aortic and mitral flow.
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J List of symbols and subscripts

Symbols

Ts s 0.001 sample time

fi Hz 7 cut off frequency of integrator compensator

fr Hz 300 cut off frequency of roll off compensator

f1 Hz 13.33 cut off frequency 1 of lead compensator

f2 Hz 120 cut off frequency 2 of lead compensator

Kl − 3.5 gain of lead compensator

K1 − 1500 control coefficient

K2 − 29.5 control coefficient

q m3 · s−1 - flow

x m - state variable

p Pa - pressure

V m3 - volume

R Pa · s · m−3 - resistance

Z Pa · s · m−3 - resistance

C m3 · Pa−1 - compliance

L Pa · s2 · m−3 - inertance

ΦT - - monodromy matrix

t s - time

tn s - normalized time

td s - perturbation time

t0 s - initial time

tc s - time since onset of activation

E(t) Pa · m−3 - elastance function

En - - normalized elastance function

l m - length of the flow channel

A m2 - valve area

51



Symbols (continued)

ω rad · s−1 - continuous frequency

ωc rad · s−1 - critical frequency

ωBW rad · s−1 - bandwidth

α - - real part of a pole

λ - - eigenvalue of monodromy matrix

e(t) m - error

u(t) V - input

w(t) V - external input

n(t) V - random uncorrelated noise

m(t) m - random uncorrelated noise

y(t) m - output

r(t) m - reference

k(t) m - random uncorrelated measurement noise

Subscripts

art arterial

ven venous

lv left ventricle

ao aortic

mv mitral valve

av aortic valve

vc distal to the veins

p pump

z piston

des desired

filt filtered

unf unfiltered
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K Samenvatting

Het nabootsen van het gedrag van het menselijk hart is een belangrijk onderwerp op het
gebied van hart fysiologie. Arteriële druk en stroming is een gevolg van de interactie
tussen de ventrikel en de arteriële circulatie. Rutten et al. (2005) hebben een bioreac-
tor met een imitatie-circulatie-systeem ontwikkeld om onder andere het functioneren van
aortakleppen te testen door het meten van drukken en debieten. Een fysiologische stro-
mingsflux wordt gegenereerd door een voorgeschreven beweging van de zuiger, waarbij
de gewenste aortadruk bepaald wordt door tuning van de afsluitimpedantie (afterload).
Echter, een nadeel van deze opstelling is dat de stroming door de aortaklep niet wordt
bepaald door de klepkarakteristiek. En dit is juistéén van de criteria om de kwaliteit van
aortakleppen te bepalen. In dit artikel wordt daarom de hartkleppentester van Rutten et al.
(2005) uitgebreid met een regelstrategie voor de beweging van de zuiger, om zo de re-
sponsie van het hart op veranderingen in klepeigenschappenen afterload, in termen van
drukken en debieten, beter na te bootsen.
De regelstrategie is gebaseerd op het tijds-variant elastantie model (Suga and Sagawa
(1974)). De elastantieregellus berekent een gewenst pomp volume door het gebruik van
de elastantiefunctie en de pompdruk. De volumeregellus regelt het pompvolume om daad-
werkelijk een gewenst pomp volume te verkrijgen.
Een mathematisch model van de hartkleppentester is gemaaktom stabiliteit van het toegepaste
regelalgoritme te bepalen. Deze wordt bepaald aan de hand van Floquet multipliers (Parker
and Chua (1989)). Vervolgens is de regelstrategie geı̈mplementeerd in de opstelling. Re-
sultaten laten zien dat de regelaar in staat is om te reagerenop veranderingen in afterload
en klepeigenschappen, waarbij fysiologische drukken en stromingen worden gegenereerd.
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