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An elastance-based control schemefor a heart valve
tester

L.H.M. van Gerveri, M.C.M. Rutten, M.J.G. van de Molengraft,
P.H.M. Bovendeerd

Department of Biomedical Engineering, Eindhoven University of Taogy, P.O. box
513, 5600 MB Eindhoven, The Netherlands

Abstract

The imitation of human heart behavior is an important issue in the field of hegsigogy.

Arterial pressure and flow result from the interaction between the ejeeéingicle and
arterial circulation. Rutten et al. (2005) developed a bio reactor with a roocllatory

system to test aortic heart valves on their functionality by measuring pesdsops and
flows. Physiological flow rate is controlled by a prescribed motion of a pistdvile the

aortic pressure is matched by tuning the afterload. Drawback of this sethagt igalve flow

does not depend on valve characteristics, but on piston motion. Howeales flow is one
of the criteria in assessment of valve quality. Therefore, in this papercte valve tester
of Rutten et al. (2005) has been extended with a control strategy foligta pnotion, to
better mimic the response of the heart, in terms of flow and pressure, toeshemngalve

properties and afterload.

The control scheme is based on the time-varying elastance model (Sudgzagada
(1974)). The elastance control loop calculates the desired pump voluimg aitime-
varying elastance function and the ventricular pump pressure signakolinae control
loop regulates the pump volume according to this desired pump volume.

A mathematical model of the heart valve tester has been made to show stabiliyapfth
plied control algorithm, using Floquet multipliers (Parker and Chua (198®9)thermore,
the control algorithm has been implemented on the setup. Results show thanttwler
is capable of responding to changes in afterload and valve propertilesstithgenerating
physiological pressures and flows.

Key words: heart valve tester, control, mock circulatory system, periodic stability,
elastance function.

* Corresponding author: L.H.M. van Gerven, Department of Mechagiegineering, Eindhoven
University of Technology
Email addressl . h. m v. gerven@t udent . t ue. nl (L.H.M. van Gerven).



1 Introduction

Mock circulatory systems (MCSs) have been widely used fduew®n of artificial hearts
and ventricular assist devices (Clemente et al. (1997)aFReat al. (1998)). Rutten et al.
(2005) developed a bio reactor with a mock circulatory syste test aortic heart valves
on their functionality by measuring pressure drops and fld&®¥wysiological flow rate is
controlled with a prescribed motion of a piston, while theti@gressure is matched by
tuning the afterload. Drawback of this setup is that the e/dlow does not depend on
valve characteristics, but on piston motion. However, @dlaw is one of the criteria in
assessment of valve quality. In this paper the heart vabtertef Rutten et al. (2005) is
extended with a control strategy for the piston motion tddyetimic the response of the
heart, in terms of flow and pressure, to changes in valve piepend afterload.

There have been several attempts reported in literaturetoporate cardiac pump func-
tion in a mock circulatory system using a time-varying edlase model (Suga and Sagawa
(1974)). They describe the contraction of the ventricledhmpressure-volume plane as an
elastance that varies over the cardiac cycle, the timeinvggiastance model. Elastance
Is the ratio of intraventricular pressure and volume, ieemeasure of cardiac muscle
stiffness. In diastole, the muscle is relaxed and stiffisedsw; in systole, the muscle
contracts and becomes stiffer. The variable elastanceldederibes and analyses artero-
ventricular interaction using the End Systolic Pressuleivie Relationship (ESPVR) and
Effective Arterial Elastance (EAE) curve. Changes in prélaad afterload will normally
result in variations of end systolic volume and pressureabse the maximum value of
the elastance functiof,,,., remains unchanged over a wide range of afterload conditions
(Maughan et al. (1984)).

Ferrari et al. (1994) made a preload-responsive mock wbatoy anticipating stroke vol-
ume, using arterial resistance, end-systolic volume,®siblic elastance and heart rate.
They used a volume control scheme guided by an adaptiveerefersignal. It gives phys-
lological responses to preload changes. A disadvantagefrtodel is that there is no
explicit control of the elastance function, i.e. no pressunslume relationship that guides
the algorithm.

Williams et al. (1994) were able to create a MCS that has thigyato mimic left ven-
tricular pressure-volume relationships based upon a megppime-varying elastance. It
consists of two feedback loops. From pressure and volumeunements on the MCS
the actual elastance is calculated and compared with argreddime-varying elastance
(elastance feedback loop). The second loop provides dasfttbe volume of the mock
left ventricle. This MCS control scheme responds to afteflohanges consistent with
physiological observations. However, the pressure-vellmops of the mock ventricle
show a small increase in volume at the isovolumic relaxgtivase.

Baloa et al. (2001) built a mock circulatory system to mimie tarling response of
the natural heart, using Suga’s elastance model. The eta&stantrol loop calculates the
desired pump pressure using the elastance function andutin@ polume signal. The
pressure control loop regulates the pump pressure acgaalthis reference signal. Sim-
ulations and tests have been carried out to show the respbtise elastance based con-
troller to changes in preload, afterload and contractilitye mock ventricle shows a small



increase in volume at the isovolumic relaxation phase.

Concluding, the time-varying elastance model (Suga andv&a@E974)) provides good
results to incorporate preload and afterload response I8 M spite of the problem at
the isovolumic relaxation phase.

In this paper a combination of the heart valve tester of Rugtead. (2005) and the time-
varying elastance model is used to better mimic the respohtee heart to changes in
valve properties and afterload. Furthermore, the increagelume at the isovolumic re-
laxation phase (Baloa et al. (2001), Williams et al. (1994)ried to be solved. It starts
with a mathematical model of the heart valve tester, thawsllumped-parameter model
suited for the representation of heart-arterial intecagta model of the cardiac valves and
a model of the piston and pump. After that a control concepreisted using the pump
pressure as input for the elastance model that calculatesieed pump volume (refer-
ence). The volume control loop regulates the pump volumerdany to this reference
signal. A controlled linear servo motor drives the pump woduregulation. The controller
is designed using manual loop shaping in the frequency duorAdtier that stability of the
complete system is determined using the Floquet theorkéPand Chua (1989)), applied
to nonlinear non-autonomous time-varying periodic systerurthermore, the control al-
gorithm is implemented on the experimental setup and coedpaith the numerically
obtained control model. After that some applications amaalestrated and results are
discussed.

2 Materialsand concepts

2.1 Outline of the approach

The heart valve tester used in this study is the bioreactit oy Rutten et al. (2005)
(figure 1). It represents the systemic circulation and ciassf a computer controlled
piston pump, representing the left ventricle, that gemsr#te aortic flow rate. A termi-
nal impedance consisting of a flexible tube and a four eleméntkessel (Noordergraaf
et al. (1963)), that regulates the pressure. It represeatsfterload. An aortic valve hous-
ing that is mounted between the pump and the flexible tubesaettminal impedance and
a medium storage container representing the preload, id@nnected to the pump via
a mitral valve. The setup offers the possibility to measumi@aflow ¢,,, aortic pressure
Dao» PUMP pressurg, and pump volumé’, and is mainly used to test aortic heart valves
on their functionality by measuring pressure drops and flows

Because of the differences in viscosity between blood anldcaklre medium in the
heart valve tester, the aortic flow and frequency of the heanle were reduced fourfold
to impose hemodynamic similarity (Ward-Smith (1980), Ruteal. (2005)). This reduc-
tion has been accomplished according to the scaling rutebdéd\Navier-Stokes equations
that describe the momentum and mass balance for a Newtardampressible fluid{r
andRe).

In the current setup, piston motion is independent of veul@ar afterload or valve prop-
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Figure 1:The main parts of the heart valve tester. Top: schematicgdediottom: ac-
tual design.L,,, Cui, Rore and R, represent the arterial inertance, arterial compliance,
arterial resistance and peripheral resistance, respestjiv

erties. We want to improve the response of the heart to clsaimgis environment by

controlling the piston motion with a time-varying elastanoodel that calculates a de-
sired piston position while measuring pump pressyreFirst a mathematical model of
the setup is presented, followed by the design of the comialel. The mathematical
model is used to show stability of the complete system. Aftat the control model is

implemented in the setup.

2.2 Mathematical model of the heart valve tester

The setup shown in figure 1 is modeled in three parts (figurél hemodynamic preload
and afterload are described with a lumped parameter moteladrtic and mitral valve
are described as short tubes in which flow is dominated bytignand the pump with

piston is described as a mass with some friction.

2.2.1 Hemodynamic preload and afterload

The hemodynamic preload and afterload are described witimpéd parameter model
(Sharp et al. (2000)) consisting of seven elements. Thism#eat properties, which in
real life are distributed over the whole system, are in théheraatical model lumped into
a finite number of discrete components. The systemic citiomaonsists of three com-
partments: the arteries, the capillaries and the veins.aftegies and veins are modeled
as constant resistances, inertances and compliancesapifiaries are modeled as a con-
stant resistance only, which relates the pressure dyofo flow ¢. A capacitor represents
the compliance of a blood vessel. It can temporarily storaraaunt of blood. A compli-
ance relates changes in pressure to changes in volume. Aanoe represents the inertia
of the blood in the arterial and venous system. It relatepthesure drop to changes in
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Figure 2:Schematic representation of the heart valve tester. PHessgmts the pump
house;mv and av the mitral and aortic valve, respectiveli,,., R, and R,.,, the sys-
temic arterial, peripheral and venous resistance, respett. C,,; andC,., the systemic
arterial and venous compliance, respectivély,; and L,.,, the systemic arterial and ve-
nous inertance, respectively,, andp,., the pressure proximal to the arteries and veins,
respectivelyp,,; andp,. the pressure distal to the arteries and veins, respectiyelsnd

p2 the pressure proximal to the RC parallel connection to theras and veins, respec-
tively. ¢..,, ¢, and ¢,,, are the aortic valve flow, peripheral flow and mitral valve flow
respectivelyp, is the pressure in the pump house.

flow. The constitutive relations are shown in (1).

R:%, C:aa—v, L:%—f (1)
q p ot

The differential equations representing the systemiai@ton are derived from applica-
tion of Kirchoff’s laws, expressing conservation of masg] emomentum. They are shown

in (2)-(5)
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The algebraic relations for the aorjig, and vena cava,. pressure are:

av
ao — Lar 6
p P1+ Lart ot (6)
O
ve — Lven— 7
p D2 + ot (7)

2.2.2 Cardiac valves

In van den Berg et al. (2003) an equation for the flow throughleevis derived from
basic fluid dynamics. The valve is modeled as a short tubeleipth/, in which flow is
dominated by inertia. Opening and closing of the valve isusated by changing the tube
cross-sectional ared. The relation for the flowy and pressure drofAp is shown in (8).
p represents the medium density.

dg 1 pq’
ot pl (ApA 2A) ®)
The property of the valve to allow blood flow in one directiennhodeled by assuming
the valve aread to depend on the pressure difference and flow direction. dhenfing
equation is used for the valve arda

A=c- Aopen + (1 - C) : Aleak (9)

(10)

0g<0orAp <0
CcC =
lg>00rAp >0

The lengthl of the flow channel in a valve is chosen to be equal to the squarteof
Agpen. The parameter values are listed in table 1.

2.2.3 Pump and piston

The pump house of the heart valve tester can be modeled asedclolume with two
valves that generates pressupgsdepending on the position of the piston and the flows
Jaw @Ndgq,,,, (figure 3). Furthermore, it is assumed that the pump housa kasall com-
plianceC,. The pressurg, in the closed volume with two valves and a compliance can
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Figure 3:Simplified model of the pump house regarded as a piston dbyethe input
u(t). qav, ¢mo ¢ @Nnd g, represent the aortic, mitral, pump and piston flow, respedtyi
x1, A, and L, represent the piston position, the piston area and init@hdition for the
length of the piston, respectively, represents the pump complianee.andd represent
the piston mass and damping coefficient, respectively.

be described by analyzing the flows in the closed volume. fighéion is shown in (11).

0 1 1 .
ﬁ - (Ale + Gmv — Qav) (11)

a o, "¢
The piston is modeled with a second-order differential #ignaconsisting of a mass
in combination with a friction force, modeled as a dampingfticientd and depending
on the velocityz, of the piston.

8271

F )

d 1
Or, 4. .1, (13)
ot m m

2.2.4 The time-varying elastance model

Arterial pressure and flow result from the interaction betwéhe ventricle and the sys-
temic circulation. Although the ventricle is neither a m@® nor a flow source, the math-
ematical description of its pumping function can be simplé straightforward. The con-

traction of the ventricle in the pressure-volume plane iscdbed in Suga and Sagawa
(1974) as an elastance that varies over the cardiac cycle.

The time-varying elastance model can be considered toidesziglobal cardiac muscle

property. A constitutive equation for the ventricle thatelarly relates ventricle volume

V., to pressurey, is (figure 4, paneh):

10



P = E(t)(Vie = Vo) (14)

The parameteY| represents the interception with the volume axis. Senzadi ¢1996)
demonstrated that after normalizing the time varying alast curver(t) with respect to
amplitude and timing of the peak, the shape is essentialigtemt within one species and
in a large range of cardiac disease. The time-varying elasteurveZ(t) (15) is retrieved
from this normalized curvé,,(¢,,)

E(t) = Emin + En(tn)(Emaw - Emm) (15)

when the following four parameters are known: heart éatminimal E,.;, and maximal
E,.q: €lastance and the time to reach maximal elastapge , while ¢t = t;"—T The

shape ofE,,(t,) is shown in paneB of figure 4 and easily described as a finite fourier
series.

20

=
(%3]

0.8

=
(=)

0.6f
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0.4r

o
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0 20 40 60 80 100 0 0.5 1 15 2 25
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Figure 4:A: Pressure-volume relationship for the left ventricle, ..., F,.., andV; rep-
resent the maximum elastance, minimum elastance andetgoa with the volume axis,
respectivelyB: Normalized elastance function.

2.2.5 Settings of the model parameters

In this study the lumped parameter model with fhg; L., component in series is used
for modeling the afterload. In the frequency domain, therédad model can be described
by its impedance which is given as:

LartRpCarts2 + (L(zrt + RartRpCart)S + Rart + Rp

7 =
1 + RpcartS

(16)

At 0Hz, Z equals total resistancéf,, + R,). Its behavior at intermediate frequencies
depends on the values of its system components. To asse&suthgarametersd,,,,
R.i, Loy and R,) of the afterload model (16), fourier analysis on both meadwaortic

11



pressure,, and flowgq,, is performed. Calculation of the ratio of flow and pressure har
monics, yields the measured input impedance. The parawvedtegs (table 1) are found

by using a simple least squares estimation technique.
The preload parameter&{.,, C.., and L,.,,) (table 1) are estimated by means of trial
and error because of the measurement restriction on thp. getaast squares estimation
method cannot be used because the venous pressuw@inot be measured.
The pump house of the heart valve tester has a compli@pcéhis compliance is deter-
mined by filling the pump house completely with water andisgat. Changes in volume
V,, and pressurg, are measured while the piston is actuated with a randomrbestee.

From frequency response measuremeénts %—‘;, the pump compliance’, has been de-
termined and supposed to be constant (appendix B).
The elastance function that has been designed is partlyedefiom recently published
elastance functions (Segers et al. (2003), Suga and Sada&w4)( Chung et al. (1997)),
and partly adopted from measurements on the heart vaher.t@$tis has been done to
create physiological flow patterns in the aortic valve. Theameter values are listed in

table 1.

Table 1:Parameter values for the mathematical model.

Lart (Pa-s?-m™3) 1.81-10°
Cart (M3 - Pa™1) 1.26-1078
wrt (Pa-s-m™3)  1.84-107

» (Pa-s-m™3) 4-10%
Lyen (Pa-s*-m=3) 7-10!

Cren (m? - Pa™1) 3-107°
Ryen (Pa-s-m=3)  6-107

Cp (m?- Pa™t) 2.45-10710

p (kg-m™)
Ly (M)

law (M)
Agpen,av (M?)
Aopen,mv (m?)
Alcak,av (M?)
Ajeakmv (m?)

A, (m?)

1.05- 103
2.7-1072
2.1-1072
4.5-1074
7.2-1074
4.5-1078
7.2-1078
2.21-1073

Lo (m)

m (kg)

d

Eraz (kKPa-ml™1)
Epin (kPa -ml™")
T (s)

s (5)

Vo (m?)

0.045
0.045

0.5

2.54
4.79-1072
3.2

1.16

19.6 - 106

2.3 Control concept

The control concept (figure 5) is based on feedback of the puhpmeV, ', which is
related to the position of the pistan. The elastance control loop calculates the desired
piston positionz,.; using the time-varying elastance function and the pumpsprep,,.

The volume control loop regulates the piston positigraccording to this desired refer-

ence position: 4.

1" Another possible control concept, which uses pump pregsufer feedback, is treated in ap-

pendix C.

12



The desired reference signa).; (17) is derived from the pump pressuyrethrough the
time-varying elastance model (14) and the geometricatiperties of the pump (figure 3).

1 Vo

EMA T A an

Ldes = LO -

xr
des elastance
model
. H
e wl U 2 L |Pp
) 4 P 2 s b
b ] e N H
- } 77777777777 sl

Figure 5:Block diagram where position of the pisten is used for feedback:, ande
represent the piston velocity and errey.; — x1, respectivelyz,., p, andu represent the
desired piston position, the pump pressure and the inputhfersystem, respectively. C
represents the controller, H the total open loop systemihe heart valve tester with the
piston and pump P, valves and hemodynamic preload and adie$.

2.3.1 Servo controller

In the linear control theory the most common method for ancettbn of the system
behavior is the frequency response design method (FRF).heodesign of the servo
controller marked with 'C’ (figure 5), manual loop shaping bé&topen loop FRF in the
frequency domain is used (Franklin et al. (1996), Bosgra .e28103)). The designed
controller consists of a lead compensator with an integgba. The lead compensator
takes care of the required phase advance in the resonamgef®y region, preserving
stability and robustness. The integral action takes catbelisturbance rejection, i.e.
suppression of the low frequency disturbances. For meamunenoise reduction and high
frequency robustness a second order high frequency radleofipensator has been used.
The open loop transfer function has a bandwidtt8@Hz with a phase advance df°
at 0 dB cross-over frequency (figure 6, pafel. The Nyquist plot of the open loop gain
shows stability and robustness (figure 6, pajelThis controller design generates typical
piston trajectories with error margins smaller thta® mm (figure 6, panelC andD). A
detailed explanation of the servo controller design is dieed in appendix E.

13
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Figure 6:A: Open loop frequency respond&. Nyquist plot of the open loop response.
Reference piston positiory. trajectory.D: Error signal between reference and tracked
position signal.

2.3.2  Stability

For analyzing the stability of the complete control modetrategy applied to nonlinear
non-autonomous time-varying systems with a periodic smius used. The Floquet the-
ory gives information on the stability of the periodic sadut of this system (Parker and
Chua (1989)). The stability of the complete system is deteeohby its characteristic mul-
tipliers, also called Floquet multipliers, i.e. eigenvadiof the monodromy matrik. In
this matrix the fundamental solutions of the periodic systee stored. The Floquet mul-
tipliers determine the exponential growth or decay of péstions in the eigendirections
of the monodromy matrixb; and hence the stability of the periodic solution. If a Flague
multiplier has a magnitude larger (smaller) than one, aupleation of the initial condition
in the corresponding eigendirection will grow (decay) atiee period of oscillation.

The monodromy matrix for the complete control model has baetermined by the
Newton-Raphson shooting method (Leine and van de Wouw (2008¢ Floquet mul-
tipliers, belonging to this monodromy matrix, show that flystem is marginally stable.
Three Floquet multipliers have a valuie This means that if a disturbance is applied to
the system in the direction of the eigenvector belongingte af these Floquet multipli-

14



ers, the applied disturbance is not vanishing nor incrgalsut remains on the periodic
solution. A detailed explanation of this method is desdilreappendix D.

2.4 Implementation of the control concept

2.4.1 Data acquisition

The concept described above is implemented in the heare tabter setup. The data
acquisition is performed by BUeDACS/LTU/e, The Netherlands) system which is con-
nected to 8BLH30 Brushless servo drive in combination witivL2340DC servo mo-

tor (Parker, The Netherlands). The piston position is messwith quadrature encoders.
These encoders have an accurac309f pulses/cycleFor measuring the aortic and pump
pressureBecton Dickinson P10EZ-firessure sensors are used. The aortic flow is mea-
sured by aMC 28AXflow probe connected to a flow met€s5420(both Transonic, The
Netherlands).

2.4.2 Initialization

—\,2& elastance | [FPrit
model
1 Data
Prescribed .
position presentation
waveform
§ Ppuns Signal
€ u Heart Valve A
>—’ C toster Conditioning
_ .

Figure 7:Schematic block diagram for implementation of the contigbathm in the
heart valve tester:; ande represent the piston position and errey., — x;, respectively.
Tdesr Pp.,,; @Ndu represent the desired piston position, the unfiltered purepgure and
the input for the system, respectively,,, represents the filtered pump pressure.

To facilitate the initialization of the algorithm, it is nessary to divide the startup pro-
cess into two stages (figure 7). In stagehe heart valve tester operates under the control
of the volume loop only. The reference position is presatibsing a prescribed posi-
tion waveform to have physiological pressures and flowsredfee elastance control loop
Is activated (stage). This occurs at the moment the prescribed position wanefand
desired positionx ., are matching. The elastance control loop thereafter dycediyical-
culates the piston position using the time-varying elastaiunction and instantaneous
pump pressurg,.,.

15



2.4.3 Signal conditioning

To produce a smooth desired piston positign,, signal conditioning is applied to the
measured pump pressysg, . because it contains too much undesired noise (figure 8,
panelA). Investigation of the power spectrum of this signal (paBglshows for fre-
guencies larger thahHz uncorrelated noise. Furthermore, a small increase in th2 PS
spectrum can be seenitHz, the system’s bandwidth. Therefore, second order filtering
has been applied to smooth the pump pressure. This filtertiras dependent cut-off fre-
guency that fluctuates betweghiz during ejection phase arnds Hz during filling phase

of the pump. The cut-off frequency of this filter is decreaed 5 Hzto 1.5 Hz because

of the relative low pump pressure during filling phase whickams that uncorrelated noise
becomes more relevant. The filtered pump presgyre and PSD spectrum, belonging to
this filtered pump pressure, are shown in padandD of figure 8.

Furthermore, the measured flows and pressures plottedipdper are zero phase filtered
(ZPF) to be able to analyze the obtained results better.

The control algorithm has been tested numerically as wedkagrimentally for one af-
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Figure 8:A: Unfiltered pump pressurg,,, . for one cardiac cycleB: Power spectrum
density (PSD) belonging to the unfiltered pump pressré&iltered pump pressurg, .,
for one cardiac cycleD: Power spectrum density belonging to the filtered pump pressu

terload setting to validate experimental data with simafatiata. For this experiment a

16



bioprosthetic aortic valveMedtronic Freestyle 995with a nominal diameter o1 mm
was used. To test the functionality of the controlled ciatigin model pressure-volume
relations ¢ — V loops) were measured for four different peripheral resistdevels of
the afterload. Subsequently, the aortic valve was replageshother (bioprosthetic) aortic
valve to check the effect of different heart valves on the plmehavior. Both valves were
taken from the same batch of stentless bioprosthetic habrés, one having a low flow
resistance, the other one having a higher resistance.

3 Results

The comparison of numerical and experimental data for otezlafd setting is depicted
in figure 9. The afterload impedangeof experimental data, simulated data and estimated
impedance (16) is shown in panflof figure 9. At0 Hz its values are consistent with the
total resistancel{,,: + R,).

For both the experimental and simulated data the maximalppprassure is approxi-
mately 16 kPa while the maximal aortic pressure is somewhat lower (figuneanelB).

A significant difference between simulation and experimgishown in the early filling
phase marked with. A second difference is the fact that the experimental @y, .,
and pump,,,, pressures show oscillations during the ejection phasekedarith2. The
experimental and simulated aortig, and mitralg,,,, flows are shown in panél of this
figure. The mitral flow cannot be measured directly from thegdut is calculated by
means of the relation in (11). In both cases (simulation xpéement) the maximal flow
across the aortic valve is higher than the maximal flow adtessnitral valve. However,
there is a difference in maximum mitral flow during diastefgrked with3. Furthermore,
the experimental mitral flow,,,,, becomes negative at the beginning of the contraction
phase, marked with. The cardiac volume is minimal at end systole and maximahdt e
diastole (figure 9, pan®). A difference between experimental and simulated datdbean
seen in end diastole cardiac volume, marked With

The experimental (pané{) and simulated (pand@) P — V' loops generated with vary-
ing afterloads are depicted in figure 10. The estimatedlafidrparameters belonging to
these responses are shown in table 2. Both in simulation gretiexent maximum pump
pressure and minimum pump volume rise with increasinglatéidr The isovolumic con-
traction phase and the isovolumic relaxation phase candimgiished at the maximal
and minimal values of the cavity volumes. The value€/gf,.. in both experimental and
simulated results are estimated by the slope of the poirtkstié highest pressure-volume
ratio and were found to b&.34 kPa - ml~! and1.58 kPa - mi~!, respectively. In both
figuresk,, .. is maintained constant. This demonstrates the fact thatdhol algorithm

is able to maintain a constant contractility state in thespnee of changing afterloads.
The remaining results for the different afterload levels presented in figures 1.1-1.3 in
appendix I.

Finally responses to changes in aortic valves have beenrgmted to show the effect
of the control algorithm (figure 10, pan€). The valve with higher resistance clearly in-
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Figure 9:A: Frequency response function of the afterload impeda#dcd3: Numeri-
cally(sim) and experimentally(exp) obtained pump presgyrand aortic pressure,,
for one cardiac cycleC: Aortic ¢,, and mitralg,,, flow. D: Volume as a function of time
calculated by the integration of volume change in aortic amttal flow.

creases the work load of the heart valve tester.

Table 2:Parameter values for the systemic circulation for fourefiint afterload levels.

Lart Cart Rart Rp
expl|3.17-10° 1.36-10~% 2.15-107 2.63-108

exp2| 1.81-10° 1.26-107% 1.84-107 1.00-108
exp3|3.13-10° 1.34-107% 1.77-107 5.30-108

exp4|1.25-10° 1.22-10~% 1.90-107 7.43-108
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for two different aortic valves.

4 Discussion

In this article a control strategy for the heart valve tesi@s been developed, that mim-
ics the physiological response of the heart in terms of pressand flows to changes in
hemodynamic load.

A ninth order system of ordinary differential equations bagn used as a mathematical
model for the mock circulatory system to evaluate the comtigorithm. A limitation of
this description is that it simplifies the fluid dynamic beloa\by using a lumped param-
eter model to describe what is actually a continuous systEwever, the model is found
to describe the hemodynamics of the system adequately tineleonditions studied.

The designed servo controller preserves stability andstoless. Furthermore, marginal
stability for the complete system has been guaranteed astapilization method applied
to nonlinear time-varying systems with a periodic solution

The incorporation of an initialization sequence has be&ttfe to have physiological
pressures and flows at the moment the elastance controldaaivated.

Signal conditioning of the pump pressure . has been carried out to produce a smooth

19



desired piston positiom,.,. The power spectrum shows uncorrelated noise for frequen-
cies larger thard Hz. This noise can be attributed to measurement noise in thesyme
sensor and uncorrelated high frequent noise in the serve gystem. The small increase
in PSD spectrum &0 Hz cannot be declared. If this small increase was related tetasy
property, it would be visible in the open loop transfer fuoctat frequency0 Hz (panelA

of figure 6). Due to a stiff construction of the heart valvaeessmall external deviations
in the servo drive lead to large variations in pressure. fowgewith measurement noise
in the pressure sensor, signal conditioning was neededténod smooth desired piston
positionz 4.

The numerical and experimental results (figure 9) matchivels well, although there
are some differences visible. The estimation of the aféetionpedance’ (16) has been
performed and is matching well for both simulation and ekpent (paneh). First of all,
there is a difference in pressure dip at the end of the cdrdgrephase (pand (1)). This
may be attributed to the low (and unadjustable) preloadehtart valve tester. Secondly,
the pressure oscillations of the measured data during ¢céi@j phase (pané& (2)). This
can be related to the stiff construction of the heart valgéetesetup and the measurement
noise in the pressure sensors. The difference in mitral fhotve diastolic phase (panél
(3)) can be contributed to the chosen preload parametehg inumerical control model.
They cannot be estimated due to restrictions in the cortgiruof the heart valve tester.
For this reason they are estimated by trial and error. Thedegd parameters have large
influence on the mitral flow,,,,,, and thus the diastolic phase, i.e. filling of the ventricle
and determination of the end-diastolic volume (padd€gpb)). Furthermore, the negative
mitral flow g, (panelC (4)) means a small leakage of the mitral valve at the moment
the contraction phase starts.

PanelA andB of figure 10 show that thé&’,,,,, in simulation and experiment are linearly
dependent on end-systolic volume, i.e. insensitive talatid changes. These results show
that a reduction of cardiac output occurs when contractlitthe ventricle remains con-
stant and afterload is increased. This is similantaivo obtained results (Maughan et al.
(1984)). The values ok, in both experimental and simulated results were found to be
1.34 kPa -ml~* and1.58 kPa - ml~!, respectively. These values differ significantly with
the E,,,.. = 2.54 kPa - ml~" of the elastance function. An explanation for this fact is no
known.

From the obtained results in par@lof figure 10, the control algorithm provides not only
realistic responses with respect to changes in hemodyreftertoad but can also provide
good information for testing the functionality of aorticdrevalves. It shows a difference
in cardiac volume and pressure to a change in aortic valvepi@ethe imperfections
shown above, the effect of changes in valve properties aedl@d on pump pressure
and volume is clearly demonstrated.

Baloa et al. (2001) and Williams et al. (1994) managed to desantrol schemes that
were able to respond to afterload changes as well. HowéwseP — V' loops showed
an increase in volume at the isovolumic relaxation phas#itpaper this problem has
been solved (figure 10) using the piston positigrfor feedback instead of the pressure
pp OF elastances(t).
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5 Conclusion

The heart valve tester of Rutten et al. (2005) has been exdenidle a control strategy
to better mimic the response of the heart in terms of pressamd flows to changes in
afterload and valve properties. It has been accomplishied tise time-varying elastance
model to calculate a desired pump volume from measuremariteeqoump pressure. The
volume control loop regulates the pump volume accordingitoreference signal.
Future development of the mathematical and mock circuyfatgstem would benefit from
the addition of more complex heart behavior, such as a beftagiresponse to regulate
heart rate (Lu et al. (2001)).
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A Anatomy and physiology of the heart

The heart is a hollow muscular organ that pumps blood thrdhglvascular system for
transport of oxygen and nutrients. It consists of two purtipsright and left heart which
are shown in figure A.1. Both sides contain an atrium and a ,datiThe atria collect
blood that returns to the heart and facilitate rapid fillifghe ventricles. The ventricle
supplies the main force that pumps the blood through eitfesptiimonary or the systemic
circulation. The wall of the right ventricle is less powdrfiman that of the left ventricle.
The mitral valve prevents back flow of blood into the left atni when the left ventricle
contracts and blood is ejected through the aortic valve abinc valve prevents back flow
of blood from the aorta into the left ventricle. The tricuspalve prevents back flow of
blood into the right atrium when the right ventricle contsaand blood is ejected through
the pulmonary valve. The pulmonary valve prevents back floamfthe pulmonary artery
to the right ventricle. The cardiac event that occurs froenlibginning of one heartbeat to
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[ Mo )
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Left atrium
Aortic valve
Mitral valve

Pulmonary _ |
valve
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atrium
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Inferior
venacava &y /
Right

'[ ventricle

Figure A.1:The structure of the heart and course of blood flow throughhtbeert cham-
bers, adopted from Guyton and Hall (1996)

the beginning of the next is called the cardiac cycle. Eackedg initiated by spontaneous
generation of an action potential from the sinus node, wigdocated in the superior
lateral wall of the right atrium near the opening of the sigrevena cava. This action
potential travels rapidly through both atria and thence ihe ventricles. The cardiac cycle
can be divided into four individual phases. In the first ph#sefilling phase, relaxation of
the heart muscle enables the ventricle to be filled with bfoah the atria. During the next
isovolumic contraction phase the ventricles start to @attwithout volume changes. The
pressure into the ventricles starts to rise until the velasihave built up sufficient pressure
to push the valve open against the pressure in the aortamiopaly artery. This moment
marks the beginning of the ejection phase during which bjmmas out of the ventricles.
As soon as the flow tends to become negative, the aortic ofgndny valve closes and
the isovolumic relaxation phase begins. The period of eglar is called diastole, during
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which the heart fills with blood. The period of contractiorcéled systole.

B Determination of pump compliance C,

The pump house of the heart valve tester setup has a certaplianceC,,. This compli-
ance relates changes in pressure to changes in volume. ditaspter has to be known
for use in the mathematical model of the heart valve tester @urthermore, because this
parameter is supposed to be known for calculation of theairfitow ¢,,,.,, by measuring
the aortic flowg,, and pump pressuts,.

This compliance is determined by filling the pump house cetay with water and seal-
ing it. Changes in volumé&, and pressure, are measured while the piston is actuated
with a random disturbance. The frequency response funofigh = g—g can now be de-
termined.

The experiment is carried out by measuring frequency respdunctions at three dif-
ferent piston positions in the pump housing; at almost marmvolumeV/,,, at half the
maximum volume and almost minimum volume. In figure B.1 thedency responses
and their coherence functions are shown. In all three cageshown that in the low fre-
guency area (working area of the valve tester), the inve‘rﬁeccomplianceg’% is almost
constant. Concluding, the pump complianCgis supposed to have a constant value of
2.45-1071 m3 . Pa~1.

C Concept with feedback of pump pressurep,

This concept is based on feedback of pump presgyrehich is related to the position
of the pistonz;.. The piston positiom, is put into the time-varying elastance model and
calculates a desired pressuyrg The pressure control loop regulates the pump pregsure
according to this desired reference pressuyreThe basic block diagram for this control
strategy is shown in figure C.1. From the nonlinear feedbaekrththere is a known
method called input-output linearization for SISO systersisg Lie-derivatives (Sastry
(1999)). Given the single-input single-output system

#(t) = f(x) + g(x)u

y = h(z) (C.1)

with f, ¢ smooth vector fields and a smooth nonlinear output function, then the Lie-
derivative L h(z) or L,h(x) gives the rate of change @f along the flow of the vector
field f or g. This method transforms a nonlinear system into a simpéalimormal form
by means of a change of coordinates. Writing the system imgonttrmal form is much

24



N
[N
=3
[

B 200}
@ 0.8r
2180
©
[0} L
160 - _ 806
10 10 o
frequency [Hz] 2
200 ‘ S04
D 100f
(0]
k=]
o OF 0.2
o
&-100
_200 L L 0 L L
10! 10° 10! 10°
frequency [Hz] A frequency [Hz] B
220 1
B 200
g 0.81
2180
[
160 _ - gos6f
10 10 o
frequency [Hz] 2
200 : Soat
= 100F
Q
k=)
o O 0.2
2
-100F
-200 - 0
10* 10°
frequency [Hz] C frequency [Hz] D
220 1
B 200}
i 0.8r
Z180}
©
160 _ - 8ot
10 10 o
frequency [Hz] 2
200 : Soat
= 100F
Q
=
o O 0.2r
2
©-100F ‘m J
200 - . 0 _ L il
10 10 10 10
frequency [Hz] E frequency [Hz] F

Figure B.1:A: Bode diagram of pressurg, and volumé/, for determine the compliance
C, for the piston positioned at almost maximum closed volBn&€oherence function
belonging to bode diagram in pan&l C: Bode diagram of pressurg, and volumé/,, for
the piston positioned at half of maximum closed volum&oherence function belonging
to bode diagram in pandl. E: Bode diagram of pressurg, and volumé/,, for the piston
positioned at almost minimum closed voluReCoherence function belonging to bode
diagram in paneE.

easier in designing controllers and understand the dyrsamiaonlinear systems. It is
now possible to use standard linear feedback theory fogdesg an input..

25



P elastance
model
€
+ L P
i bo—md T !
CL- C Uy p L L
. L L2 I | Pp

Figure C.1:Block diagram where pump pressuysg is used for feedback:;, z, ande
represent the piston position, piston velocity and erespectivelyp;,, p, andu represent
the desired pump pressure, the pump pressure and the inptitefeystem, respectively.
C,H,P and S represent the controller, the total open loopesysthe piston with pump and
the systemic circulation, respectively.

The output function is assumed to be givenipy= h(p) = p,. Then, the strict relative
degree of the system 5 consisting of:

y=h(p) =pp
y = Lyh(p) + Lyh(p) =

§j = L}h(p) + L2h(p) =

» (Az$2 + Qmv — Qav>

1
C
1 _4d 1 9qmv __ 9qav
Cy (AZ< m¥2t m“) + i ot )

The system has a relative degreavhich is smaller than the degree of the system
n — r state variables are rendered unobservable by state fdedias is called the zero
dynamics of the system, also called internal dynamics. thas part of the dynamics of
the system that cannot be affected by the designed comtilability condition for this
system lies in the fact that this zero dynamics must have psytioally minimum phase,
I.e, the state variables are automatically converging tataactor or solution.

In order to design a controller the system can be transfoimtedhe normal form using
the coordinate transformation,, 2, v1, ..., vn—r) = (R(p), Lyh(p), Nrs1,- .-, Mn). The
functionsn,.,, . .. n, are arbitrary chosen functions of the states such that:

[ h(p) ]
L¢h(p)
2 nr—i-l
dp
T |

Is invertible to establish linearly independent vector fields. The following systenthie
canonical form appears:
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A stabilizing controller for this system with the assumptithat the zero dynamics is
asymptotically minimum phase, has the form:

C 1 2
o= "0 (o) (= 204 = )

1 2
ot T oy (21— )= ﬁj))

mC, d
-+ Azp (m—C’p (CpZQ — VU2 + ’U3> + Kl (plv - Zl) — KQZQ) (C5)

where K, and K, are chosen such that the polynomidl+ K>\ + K, = 0 is Hurwitz,

i.e. has all its poles in the left half complex plane.

The connection between the piston positigrand the desired pressupg is formed by

the time-varying elastance modé(t). The relation between desired pressure and position
of the piston becomes:

P = E(t)(A.(Lo — 1) — Vo) (C.6)

The stability of the complete system, i.e., the stabilityle remaining zero dynamics is
shown making use of a stabilization method applied to nealirsystems with a periodic
solution. It shows a marginally stable closed loop systemagdpendix D this method is
explained in detalil.

Unfortunately, the strategy described above has a stalgjlcontroller (C.5) that is rather
difficult to implement. A lot of uncertain parameters are goged to be known. Further-
more, the measured pressure signal used in the feedbackémsopeen superimposed
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with noise due to measurement noise in the pressure sengarmaorrelated high fre-
quent noise in the servo drive system. The effect of measemenoise on the closed loop
output is shown in appendix G.5. It shows the need for goadrioise sensors.

D Stability analysis

In this section the stability of the complete system is dssedl. The closed loop system
is nonlinear due to the terms that describe the valve behavithe system. It is time
periodically i.e., in the stationary situation each heaath identical pressures and flows
will appear. Furthermore, this system depends explicitijtime by means of the elas-
tance function®(¢). Concluding, the closed loop system is a nonlinear non-aumous
time-varying periodic system.

Suppose in this system that(¢) = x?(¢t + T') is the periodic solution with period time
T. The nonlinear system, called here= f(t,z(t)), can be linearized around the peri-
odic solution of this system?(¢), which leads to a linear time-varying system (LTV). The
monodromy matrixP, can, for a periodic LTV system, give information on the siiapi
of the equilibrium point of this system (Leine and van de Wd@@02), Parker and Chua
(1989)). In this matrix the fundamental solutions of theipeic system are stored.

The stability of the closed loop system is determined byhtsracteristic multipliers, also
called Floquet multipliers i.e., eigenvalues of the mowody matrix ®,. The Floquet
multipliers determine the exponential growth or decay afyrbations in the eigendirec-
tions of the monodromy matri$ and hence the stability of the periodic solution. If a
Floquet multiplier has a magnitude larger (smaller) thae, @perturbation of the initial
condition in the corresponding eigendirection will grove¢dy) after one period of oscil-
lation.

The monodromy matrixb; = &(T + tg,ty) maps an initial conditioMz(t,) to the
responsé\z (T +t,) attimeT + t,, one period later. The matrik(¢) is called the funda-
mental solution matrix. In this matrix a set of the nine indegent, fundamental solutions
1(t,), ..., oo(t) of the system are stored. The linearized LTV system has time: fo

x(t) = A(t)x(t) (D.1)
with A(t) time-dependent. The perturbation equation excluding thken order terms
becomes then:

Az(t) = A(t)Ax(t) (D.2)

ConsideringAz(¢) in (D.2) to be a perturbation around a trajectory of the medr non
autonomous time-varying periodic system. The fundamesatiaition matrix relates how
an infinitely small perturbation evolves to an infinitely dhypgerturbation after a period
time 7' (figure D.1). A solution of the initial value problem stadirat z”(t,) evolves
during atimety, = T + to to zP(T + t,). If the initial condition is perturbed with a small
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x(to) (T + 1)

Ax(tg) O(T + to, to, 27(tg)) Ax(ty) + H.O.T.

7 (1) (T + 1)

Figure D.1:Definition of the fundamental solution matrix.

perturbationAz(ty) = x(to) — 2P (to), the perturbed solution will evolve during a time
tq to x(T + ty). The perturbation on the initial conditiofxz(t,) yields a perturbation
Ax(T + ty) = x(T + ty) — 2P(T + t,) after a period timé’. The monodromy matrix
relatesAz(ty) to Az (T + ty) as:

AZL‘(T + t[)) = @(T + to, to, {L‘p(to))AfL’(to) + H.O.T. (D3)

It should be noted that the higher-order terms vanish whianitely small perturbations
are considered. The fundamental solution matrix can nowMdtaireed by solving the
following initial value problem:

. Of (x,t)
ox

O(T + to, to, 2P (to)) = vty ©(T + to, o, 2 (t0)), (D.4)

(I)(to,to, pr(to)) = 1.

Unfortunately, in general it is not possible to give an atiea} solution for (D.4) because
itis a LTV system. For LTV systems the fundamental soluticatnix cannot be written
as an exponential function of the system maff$- | .., as can be done for linear
time invariant systems. Therefore, solutions of (D.4) d$tian general be calculated by
numerical integration, taking the appropriate initial ddions into account. The single
shooting method finds periodic solutions of a system by aghd two-point boundary
value problem, in which solutions are soughtféfzy, 7)) = x1 — 2o = 0. H represents
the nonlinear systenf(z,t). T is the period time of the periodic solution ang is a
state on the periodic solution. The zero of this functioroisiid by the Newton-Raphson
method (D.5).

H H
0 Al‘o+a

- —ATH = 10 — D.
d7q T 0= o — T ( 5)

After evaluation of the partial derivatives of this functiand addition of an anchor equa-
tion to create a solution for the system, the following set@fiations appear that have to
be solved (Leine and van de Wouw (2002)):.
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br(a) =1 1] [Aal] [ — o 00
faEihT o AT® 0

The anchor equation is used because (D.5) is a systerm\eijuations im + 1 unknowns
(then components ot and periodl’). The shooting method solves in each iteration step
the set of equations D.6 and then updates

(i+1) (@) ()
x x Ax

0 | _ | %o e 0 | (D.7)
T(+1) 7@ AT®

with initial guesses;éo) and7'(®), The subscripts have been added to indicate the iteration
count. This scheme is reiterated until some convergention is met.

D.1 Stability of concept with feedback of piston positign

The stability of the complete system has been determinedlwng the monodromy
matrix ® and determine the eigenvalues of this matrix. The chaiattemultipliers, or
Floquet multipliers belonging to this monodromy matrix:are

A1 = 0.50

A2 = —0.29

A3 = —0.38-107!
Ay =0.81-1072

A5 = —0.43 - 1072
A = —0.31-107°

Ar=1
g =1
Ag =1

The Floquet multipliers are all within the unit circle, eptdor three. Those Floquet
multipliers are on the unit circle. From Parker and Chua ()988 said that, then the
periodic solution is on the verge of instability (margiyaditable). This means that if a
disturbance is applied to the system in the direction of igereector belonging to the
Floquet multiplier with valud, then the applied disturbance will not vanish nor explode
but stays on the periodic solution. To show this effect, audmmncer is applied to the
system in the direction of one of the eigenvectors with Fegeuultiplier 1. The numerical
results of a disturbance with a normally distributed randwmber around zero and a
variance 0f).01 applied to the system, are shown in figure D.2. From thesedggitrcan

be concluded that all nine states are not diverging from #@regic solution.
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Figure D.2:A: Pump pressure, pressure proximal to the RC parallel connection and
arterial pressure simulated with a disturbance in the eigeeadion of A\ = 1. B: Aortic
flow ¢,,, and mitral flowg,,,, as a function of time after application of the disturbanCe.
Venous and pressure proximal to the RC parallel connectio: The positionz; and
velocityz, of the piston.

D.2 Stability of concept with feedback of pump presgyre

The stability of the closed loop system for this concept (QIs® determined by solving
the monodromy matrixp; and calculate the eigenvalues of this matrix. It becomearcle
whether or not the zero dynamics of the closed loop systemasnally stable. The char-
acteristic multipliers, or Floquet multipliers belongitggthis monodromy matrix are:

A1 = 0.54

Ay = —0.19-1072

A3 = —0.17-1072

A =0.12-1073

As = —0.45-107°

¢ = —0.12-107°

)\7 =1

Ag =1
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Ao =1
Also here the system is on the verge of instability due to thguiet multipliers with value
1.

E FRF and servo controller design for the heart valve tester

In the linear control theory the most common method for aicettbn of the system be-
havior is the frequency response design method. Frequespponse design is popular
primarily because it provides good designs in the face oértamty in the plant model.
For example, for systems with poorly known or changing Higlituency resonances,
their feedback compensation can be tempered to alleviateftacts of those uncertain-
ties. Another advantage of using frequency response desgimod is the ease with which
experimental information can be used for design purposes.miasurements of the out-
put amplitude and phase of a plant undergoing an excitatianincludes all frequencies
in a certain specified area are sufficient to design a suitabtiback control. However, it
is still important to analyze this method critically. In aglix F is shown how to handle
and work with frequency response functions.

The FRF measurement of the heart valve tester has been deterosing the sensitiv-
ity method (figure E.1, panél). The coherence of the sensitivity is plotted for a good
measurement quality indication (figure E.1, paBglFor low frequencies the coherence
Is bad. This is due to the uncertain nonlinearities such agoa and viscous friction.
For higher frequencies the coherence has the tendency toaeet which means a good
measurement. The bode diagram in the left panel of this figluwevs for high frequencies
noise. This can be contributed to the fact that the magnitflectuating between its en-
coder accuracy due to analog to digital conversion. Anatkason for this high frequency
noise is the fact that the sensitivity approaches one fdr figguencies (F.12). Thus, the
transfer function estimation approaches zero in this adittle disturbance in the sensi-
tivity measurement, causes relative large fluctuationkerttansfer function estimation.
In appendix G a brief introduction about the dynamics useddatroller design is given
(Franklin et al. (1996) and Bosgra et al. (2003)). For thethedve tester a controller has
to be designed such that a third order reference trajecsofgilowed with a final max-
imum overshoot ofil0% of the setpoint and a final value accuracyl6f,m preserving
stability and robustness quantities. The maxima of the jckeleration and velocity of
the trajectory are respectivelp0000 rad/s*, 800 rad/s?> and90 rad/s

For the controller a lead and lag filter in combination withiategral action is used. The
integral action (E.1) takes care of the disturbance rejaaind thus lowering the sensitiv-
ity function in the low frequency area.

Cint(s) = s¥2n); (E.1)

S
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Figure E.1A: Frequency response measurement of the valve t&st€oherence function
for the FRF measurement.

Making the loop gain large at low frequencies may result inyaNst plot that shows
unstable behavior. Even if the closed loop system is stéidegain and phase margins
may be unacceptably small, resulting in nearly unstabletieh To obtain the required
phase advance in the resonance frequency region, a leadsfilteplemented (E.2). The
lead filter takes care of the specified frequency domain dfiesto guarantee stability
and robustness.

o K 2Trlf1 s+ 1
lead(S) = lm
Tf2

(E.2)

with f; < f,. Phase lead compensation increases the bandwidth and, meakes the
closed loop system faster. Keeping the Nyquist plot awamftiee critical point—1 has
the effect of improving the transient response.

For measurement noise reduction and high frequency rofsstmgh frequency roll-off
compensation is introduced. This is included by additidaglcompensation (E.3).

1
Crolloff(s) = — (E.3)

1
St t oy 1

Discretization of these filters making them applicable falrtime application is done
using Tustin’s Method in combination with prewarping (Siaaand Hassul (1993)). This
method converts analog filters to equivalent digital filtérslescription of this method is
shown in appendix H.

The controller transfer function of the feedback part issgi@n panelA of figure E.2. In
panelB is the open loop system plotted with a bandwidtl8oHz and a phase advance
of 45°. In panelC the sensitivity function is shown. Panelshows the Nyquist plot of
the open loop gain. Stability and robustness are preseniththvthe frequency domain
specifications (section G.8).

The tracked and reference trajectory is presented in gaoéfigure E.2. PandF shows
the error belonging to this trajectory. The output is witepecifications. Application of

33



a typical reference trajectory for the control scheme (BgEr3, panelA) shows error
margins smaller thaf.3 mm(panelB).
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Figure E.2:A: Frequency response of the controller for the valve te®eiOpen loop
frequency respons€: Frequency response of the sensitivity functibnNyquist plot of
the open loop responsg.: Tracked trajectory and reference sign&: Error signal of
tracked trajectory.
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Figure E.3:A: Reference position signal after activation of the conatgorithm.B: Er-
ror signal between reference and tracked position signadradictivation of the control
algorithm.

F Measuring frequency response functions

The most common way to perform a frequency response fun(fBiF) measurement is
to make use of cross- and autopowerspectra. In the open ésadloe measured crosspow-
erspectrum is divided by the measured autopowerspectrumeste an estimator for the
frequency response function. The use of these spectrac¢akeshat uncorrelated extra-
neous noise does not disturb the estimated frequency responction. In a closed-loop
environment, it is no longer usual to look at the input anddbgut. Then the use of
spectra to determine a FRF measurement, gives a biasedirethdtcase of extraneous
noise (Boot et al. (2003)).

In figure F.1 a linear system in closed loop is shown. The impytdescribes a reference

Figure F.1Block diagram of a closed loop system.The ingdu} is a reference trajectory.
e(t) is the error. Bothn(t) and m(¢) are random uncorrelated noises.(t) is an extra
input used for system excitatiom(t) andy(t) are the system in- and output, respectively.

trajectory. Bothn(t) andm(t) are random uncorrelated noises which can be influenced
by any input. For the analysis the system needs to be extitateerefore an extra input
w(t) is used. From the analysis in Boot et al. (2003) the direct otetind the sensitivity
method are chosen to compare with each other. What followsle# overview of that
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analysis. A handy tool used in this analysis is the fact thatgpectral density function
can be found via fourier transforms. In (F.1) the cross dati@n is shown.

Suy(f) = lim ZU*(F)Y (f) (F.1)

whereU* is the complex conjugated @f and T is the total sample time. From now
on large time samples are assumed and the limit sign is |&ihde Furthermore, it is
assumed that the inputs are independent, so the corredammhspectra between them are
zero,S,, = Syn = Srm = Swn = ... = 0. Writing the system equations for the different
points in the loop:

U(f) = SUNHCWNRS) +SNHW) = SUHCHHFIN) = SHC)MS)
Y(f) = SUNCHHRS) + SUHHLW) + SHHSIN) +SIMS)

(F.2)

STy C(HA) (F3)

F1 Direct method

The direct method is the direct measurement of the systemouitputy(¢) of the system
will be divided by the input:(¢). An estimation of the transfer function will be:

Sy

H=
Suu

(F.4)

The spectral density functions and the transfer functidimesion are, respectively

1

1
== ((S . SC - CH)Syr + (S - SH)Suw — (S SC - H - H)Sp — (S - S(J)Smm>
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(F.5)

1
Spa = =U-U
T

1
= T<(S -SC-C)Spr + (S S)Syw + (S-SC-CH - H)S,,,, + (S-SC - C’)Smm>

(F.6)

i (C-CH)S, + H -8y = (C-H - H)Sy = C - Sy

_ F.7
(C-C)Spy + Suns + (C - CH - H) S + (C - C)Spam (F.7)

From this equation it is concluded that at the moment theasi§p,, is only present, the
frequency response functidii( /) is measured. However, when there is extraneous noise
this takes care for a biased estimate of the FRF. In the exts@nmegion with only noise

—& will be measured.

Furthermore, the coherence function is a good indicatioatixdr a measured frequency
response function is reliable or not. A good FRF is measurgteitoherence tends to go
to 1 in the whole frequency range. It is defined as follows:

2 _ |Suy(f)|2
"wlf) = 5 8,0 (F8)

Writing out the whole coherence function for this case beuaey large and inconve-
nient. For the illustration only the terms(t) andn(t) are taken along.

2 oy o [HPISS G, = 2|ClHHP S| SuwwSnn + |CPH[YS[1ST,

N F.9
Yy (f) |H2|S|%52, + 2|C 2| H[*[S %S + |C2HS[5S2, (F.9)

Using the direct method it can be concluded that undesiresstroauses a distortion in the
estimated FRF. The coherence function does not give muchapipecause in the case
of only extraneous noise it will also go to one.

F.2 Sensitivity method

The sensitivity method is the most common technique for FRRsmements in closed
loop. This method measures the input to the sysiéthand the excited extra input(t)
to determine an estimation of the sensitivity functi$rand thus the transfer functidi.
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1

Swu =W -U=5"Su (F.10)
A Swu

_ _ F11
S 5 S (F.11)

The advantage can directly be seen. When measuring theigéndhere will be no bias.
The transfer functior (f) will be now:

1-5(f)
H = — F.12
VI=ctmsy (F12
With this method the coherence function will be:
Yo (f) S (F.13)

" CPSe + Suw + |CPHSmn + [C2S

The advantage of measuring the sensitivity is that undésineorrelated noise averages
itself out ( F.11). Also the coherence function will becoroér with more uncorrelated
noise from outside, which makes it a good measurement guadiicator.

G Introduction to controller design

A closed loop model scheme is shown in figure G.1. By solvingstgeal balance

Feed
forward

Figure G.1Block diagram of a closed loop system.The ingut is a reference trajectory.
e(t) is the error. Bothn(t) and m(t) are random uncorrelated noises.t) is an extra
input used for system excitatiom(t) andy(t) are the system in- and output, respectively.
k(t) is the input for measurement noise.

y(s) = m(s) + H(s) <w(8) + C(s)r(s) — C(s)y(s) — C(s)k(s) + n(s)> for the output
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y(s), it can be shown that:

1 C(s)H(s)

v = T emaEe ™

(G.1)

G.1 Closed loop stability

The open loop transfer functiof’H plotted in the complex plane is called a Nyquist
plot. This plot is useful in determine stability, passingesof the point -1, and robustness,
distance to the point -1. The Nyquist stability criteriuntates the open loop frequency
response to the number of closed loop poles of the systene inght half plane. Looking
at the closed loop transfer function (G.2),

y(s) _ C(s)H(s)
r(s) 1+ C(s)H(s)

Hy = (GZ)

The closed loop roots are the solutionslof C(s)H(s) = 0. For stability, no closed
loop poles are allowed in the right half plane. From Frankliral. (1996), the argument
principle has the following essence:

'A contour map of a complex function will only encircle theigin if the contour con-
tains a singularity, pole or zero, of the function.’

The principle can be extended by allowing multiple singtikes within the contour. The
number and direction of origin encirclements then changepply this principle to con-
trol design, it is supposed the contour in the s-plane elesirthe entire right half plane.

If the evaluation contour of enclosing the right half plane contains a pole or zero of
1+ C(s)H(s) = 0, then the evaluated contour bft+ C'(s)H (s) will encircle the origin.
Notice thatl + C(s)H (s) is simply C(s)H (s) shifted to the right 1 unit and’(s) H (s)

can be plotted. That is the reason why -1 is the critical poiat Nyquist plot.

G.2 Disturbance rejection and bandwidth

To study disturbance rejection, consider the block diagadrfigure G.1, wheren(t)
represents the equivalent disturbance at the output oflgre. 0rhis transfer function is
called the sensitivity function of the closed loop systenB3{jG
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y(s) 1

S) = ) T 1T CH)HG) ©3)
The smaller|S(jw)| is, the more the disturbances are rejected at the angutzueney
w. |S] is small if the magnitude of the loop gaitiX is large. Hence, for disturbance
attenuation it is necessary to shape the loop gain such tedaige over those frequencies
where disturbance attenuation is needed.
Making the loop gairC H large over a large frequency band easily results in erroradsg
and resulting plant inputs that are larger than the plant can absorb. Therefdré,can
only be made large over a limited frequency band. This is liysaalow pass band or
integral action, that is, a band that ranges from frequermcy mp to the bandwidth of
the feedback loop. The larger the 'capacity’ of the planths, larger the inputs are the
plant can handle before it saturates or otherwise faildattger the maximally achievable
bandwidth usually is.

G.3 Command response

The responsg(s) to the command signals) is shown in (G.1) and (G.2). This is called
the complementary sensitivity functidh Adequate loop shaping ideally results in a com-
plementary sensitivity functiofi’ that is close tol up to the bandwidth, and transits
smoothly to zero above this frequency. The closed loop tearianction ideally is low
pass with the same bandwidth as the frequency band for biastae rejection.

G.4 Plant capacity

Any physical plant that has limited 'capacity’, can absanputs of limited magnitude
only. Looking at the block diagram of figure G.1, the signalabaeu(s) = w(s) +
C(s)(r(s) — k(s) — m(s) — H(s)n(s) — H(s)u(s)). This may be solved fou (G.4).

- 1 C(s)
= a@aE ) T T o ) R = mls) — Hsn(s)

(G.4)

This function determines the sensitivity of the plant inrmtjisturbances and the com-
mand signal. It is known as the input sensitivity functibh = 1+C . If the loop
gain C'H is large then the input sensitivity/ approximately equas the inverse of the
plant transfer function. If the open loop plant has zeroheright half plane therj; is
unstable. Because of this the right half plane open loop @eards limit the closed loop
bandwidth. To prevent overly large inputs, generallyshould not be too large.
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G.5 Measurement noise

To study the effect of measurement noise on the closed logpptthe responsg(s)

to the measurement noié€s) is considered (G.1). This shows that the influence of the
measurement noige s) on the control system output is determined by the compleangnt
sensitivity function?’. For low frequencies, where by the other design requiresiErs
close tol, the measurement noise fully affects the output. This esipha the need for
good, low-noise sensors.

G.6 Stability robustness

For stability robustness it is necessary to keep the Nyglagtaway from the point-1.
The target is to achieve satisfactory gain, phase and medadugins. It is consistent with
the other design targets to have the sensitigitgmall in the low frequency range, afid
small in the complementary high frequency range.

The fasterT’ decreases with frequency, called roll-off, the more prodecthe closed
loop system has against high-frequency loop perturbati®hs is important because
owing to neglected dynamics, high frequency uncertaingves present. Small values of
the sensitivity function for low frequencies, which areugqd for adequate disturbance
rejection, ensure protection against perturbations atffequencies. Such perturbations
are often caused by load variations, friction and coggirigees. In the crossover region
neitherS norT" can be small. This is the region where the loop gafi crosses the value
1, the zerodB line. It is the region that is most critical for robustnessaking ofS and

T in this frequency region is to be avoided. Good gain, phasenamdulus margins are
needed to ensure this.

G.7 Performance robustness

Feedback system performance is determined by the setysitiviction S, the comple-
mentary sensitivity functiofi’ and the input sensitivity functiof/ (G.5).

1 Cls)H(s) . _ C(s)

S:1+a@m@’ T 1+ C(s)H(s) T 1+ C(s)H(s)

(G.5)

Considering the extent to which each of these functions ectdtl by plant variations, it is
supposed, for simplicity, that the system environment iBently controlled so that the
controllerC' is not subject to perturbation. Under this assumption iuffigent to study

only the effect of perturbations o$i and7" because variations if/ are proportional to
those inS. In Bosgra et al. (2003) this effect is shown as denoted below.

Denote byC H, the nominal loop gain, that is, the loop gain that is beliei@te rep-
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resentative and is used in the design calculations. Comelspgly, S, and 7, are the
nominal sensitivity function and complementary sengiiviinction. It is not difficult to

establish that when the loop gain changes from its nomidakvaH, to its actual value
C'H the corresponding relative change of the reciprocal of @msisivity functionS may

be expressed as in (G.6).

g—siO:SO—SZTCH—CHO
& S * CH,

(G.6)

Similarly, the relative change of the reciprocal of the ctengentary sensitivity function
may be written as in (G.7).

11 - ;
T_TOZTO_T:SOMZSow (G.7)

1
T T CH, o

These relations show that for the sensitivity functtoto be robust with respect to changes
in the loop gain, it is desired that the nominal complemegnsansitivity function, to

be small. On the other hand, for the complementary sertgifivnction 7" to be robust,

it is desired that the nominal sensitivity functiéh to be small. These requirements are
conflicting, becausé&, and7, add up tol and therefore cannot simultaneously be small.
The solution is to have each small in a different frequenogea As seen before, normal
control system design specifications requigeo be small at low frequencies. This causes
T to be robust at low frequencies, which is precisely the regibere its values are sig-
nificant. Complementaryl is required to be small at high frequencies, causirig be
robust in the high frequency range.

G.8 Design goals and criteria

The basic requirements in Franklin et al. (1996) and Bosgral.&2003) for a well-
designed control system are:

The transient response is sufficiently fast.

The transient response shows satisfactory damping.

The transient response satisfies accuracy requiremetas,exfpressed in terms of error
constants.

The system is sufficiently insensitive to external distad®s and variations of internal
parameters.

These basic requirements can be further specified in tertstiofa number of frequency-
domain specifications and certain time-domain specifinatio
Several important frequency domain quantities are:
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Figure G.2:Gain and phase margins from the Bode plot of the loop gah. GM and
PM represents the gain and phase margins, respectivghandw, are the frequencies
at0dB and180°, respectivelyB represents the bandwidth of the system
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Figure G.3:Sensitivity plot showing the resonance pédk

Gain margin. The gain margin measures relative stability. It is definethaseciprocal
of the magnitude of the loop frequency responsk, evaluated at the frequency at
which the phase angle is180°. The magnitude of the gain margin must be at least
6 dB at this frequency.

Phase margin. The phase margin also measures relative stability. It is\ddfasi80°
plus the phase angle of the loop frequency respdn&geat the frequency where the
gain is unity. The phase margin must be at léastat the0 d B crossover frequency.

Bandwidth. The bandwidth measurds measures the speed of response in frequency
domain terms. It is defined as the range of frequencies oveatwvthe open loop fre-
guency response has a magnitude bigger thahb.

Resonance peak. Relative stability may also be measured in terms of the pehleva
of the magnitude of the closed loop frequency response @itsety function, occur-
ring at the resonance frequency. This criterion is includedimiting this resonance
frequency td® dB.
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These definitions are illustrated in figures G.2 and G.3. Eference signal in this article
Is supposed to have a reference trajectory that consisevefa different third order set-
point trajectories every period. For the controller desighird order reference trajectory
r(t) is chosen (figure G.4). This figure shows four important tiramdin quantities that

may be used for performance specifications for the respdrtbe control system output
to a third order reference trajectory.

position [m]
>
=

,,,,,,,,,,,,,,,,,,,,

! ! time[s]

f

»

ls
Figure G.4:nterpretation of a third order reference trajectory. It@hs the definition of
rise timet,, settling timet,, peak time,, and overshoof\Z,,.

Risetimet,. It is the time it takes the system to reach its new set point.

Settling time t,. The settling time is defined as the time required for the respdo
reach and remain within a specified error band of its finalealu

Peak timet,. The peak time is the time it takes the system to reach the mawiover-
shoot point.

Maximum over shoot 1/,. The maximum overshoot is the maximum difference between
the transient and the steady-state response.

H Tustin’sdiscretization and prewar ping method

Tustin’s discretization technique makes use of trapezantiegration, that is, to approxi-
matee(t) by a straight line between two samples (Shahian and Has388]L

T
Up = Ug—1 + 5(61@—1 + ex) (H.1)

or taking the z-transform,
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U(z) %(24—1)

D(z) = = H.2
) =Fm = 21 (H-2)
Because this is a numerical integration technique, it caraloktlat,
2 T
== == H.3
s z+1 : 1-L (H-3)

The mapping between the s-plane and z-plane is determinttebglationship = 7.
It is supposed to be known that the stability region in théesi@ is the entire left half of
the plane. Suppose further that a stable pole has thefarm jw, then the mapping is:

z = elmoti)ls — pmals pjuTs (H.4)

Because —“’: is the magnitude of and always smaller thanand because varies from
zero to infinity, a circle with radius or smaller is swept out in the z-plane. This means
that the left half of the s-plane maps into the inside of th circle in the z-plane.

Let s = jw in the Tustin approximation (H.3),

1+ %
PR i (H.5)
=S jw
From this equation the magnitude and phase are:
12 + (wie)2 arctan (<L T
2| = 3) =1 . = L(iT) = Zarctan(w %) (H.6)
12+ (—wh)2 — arctan(“5*) 2

As w increases, the phase increases while the magnitude stagsgobatl. Thus, a unit
circle is swept out. The trapezoidal technique maps thénldftplane in the s-plane, into
the unit circle in the z-plane (figure H.1). Thus, a stables) results in a stablé(z)
using Tustin’s approximation.

To prevent frequency distortion, critical frequency prepwag is applied. First, examine
the following term in (H.3) fors = jw:

z—1 edwTs 1

c+ 1 el 1 (H.7)

The following relation appears when dividing the numeratat denominator in this equa-
JjwTs

tion bye™=2".

z—1  2jsin(<f) wT
= jtan(—2 H.8
z+1 - 2005(“55) jtan( 2 ) (H.8)
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A \ 2arctan(wl)

1 Re2)

Figure H.1:Unit circle in the z-domain

Consider a simple continuous filter with bandwidtland use Tustin’s transformation of
this filter.

1 1
H(s) = H(z) = 51— H.
(s) 5/a+1:> (2) %%%_’_1 (H.9)
Using (H.8) and let = jw, the discrete filter becomes
H. () ! (H.10)
Sw) = .
j( 2 tan(w )) +1
The bandwidth of this discrete filter then becomes
Wpw = Tzarctan(aTs) (H.11)

S

This equation gives the relationship between the contisamal discrete equivalent band-
widths. It shows how the frequency scale is distorted by tniil transformation. Revisit
Tustin approximation by:

—1
s~ K> (H.12)
z+1
where K = = in the standard approximation. Try in the following sitwatito find ai

such that at a specmc critical frequency= w., the above approximation becomes exact.
If

(H.13)
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is chosenH (s) and H(z) will be identical atv = w... The critical frequency prewarping
technique, therefore, becomes:

w z—1
c H.14
N tan(wc—%) z+1 ( )

This equation preserves stability transforming from alstély(s) to a D(z) and matches
the frequency response for breakpoints and for zero frexyuéypplication of (H.14) to
the lead compensator, integral action and frequency folk@mpensator results in the
following discrete compensators. For the lead compensator

(fo + 27 f1f2)2 — fac + 27 f1 fo

Clead(2) = H.15
tead(7) (fia +2mfifo)z — fra+ 27 fifo ( )
Wlth o = f2T .
. tan(fo 5*) )
For the integral action:
2 fi)z — 27 f;
Co(2) = (o +2mf)z —a+2nf (H.16)
az — o
i _ fi

with o = )

For the frequency roll off compensator:

(2 f,)?2% + (27 f,)%2 + (27 f,)?

Crottos(2) = (a2 + 487 fra + (27 f,)2)2% + (=202 + 2(27f,)2)z + (a2 + 437 foa + (27 f,)2)
(H.17)
with o = tan(]}:&).
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| Experimental and numerical resultsfor three different afterload situations.
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Figure I.1:A: Frequency response function of the afterload impeddnéer the afterload
setting marked with exp. B: Numerically(sim) and experimentally(exp) obtained pump
pressurep, and aortic pressurg,, for one cardiac cycleC: Aortic ¢,, and mitral ¢,,,
flow. D: Volume as a function of time calculated by the integratibv@ume change in
aortic and mitral flow.
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Figure I.2:A: Frequency response function of the afterload impedanbar the afterload
setting marked with exp. B: Numerically(sim) and experimentally(exp) obtained pump
pressurep, and aortic pressurg,, for one cardiac cycleC: Aortic ¢,, and mitral ¢,,,
flow. D: Volume as a function of time calculated by the integratiovalume change in
aortic and mitral flow.
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Figure 1.3:A: Frequency response function of the afterload impedanbar the afterload
setting marked with exp. B: Numerically(sim) and experimentally(exp) obtained pump
pressurep, and aortic pressurg,, for one cardiac cycleC: Aortic ¢,, and mitral ¢,,,
flow. D: Volume as a function of time calculated by the integratiovalume change in
aortic and mitral flow.
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J List of symbolsand subscripts

Symbols

T 5 0.001 sample time

fi Hz 7 cut off frequency of integrator compensator
fr Hz 300  cut off frequency of roll off compensator
fi Hz 13.33 cut off frequency 1 of lead compensator
f2 Hz 120 cut off frequency 2 of lead compensator
K — 3.5 gain of lead compensator

K — 1500 control coefficient

K, — 29.5  control coefficient

q m3 . st - flow

x m - state variable

P Pa - pressure

1% m? - volume

R Pa-s-m™3 - resistance

Z Pa-s-m™3 - resistance

C m? - Pa™! - compliance

L Pa-s*-m™ - inertance

OV - monodromy matrix

t S - time

tn s - normalized time

tq s - perturbation time

to s - initial time

t. S - time since onset of activation

E(t) Pa-m™ - elastance function

E, - - normalized elastance function

[ m - length of the flow channel

A m? - valve area

51



Symbols (continued)

w rad - s - continuous frequency
We rad - s~ - critical frequency
wpw rad- s - bandwidth
« - - real part of a pole
A - - eigenvalue of monodromy matrix
e(t) m - error
u(t) V - input
w(t) V - external input
n(t) V - random uncorrelated noise
m(t) m - random uncorrelated noise
y(t m - output
m - reference
m

- random uncorrelated measurement noise

Subscripts

art  arterial

ven  Venous

v left ventricle
ao  aortic

mv  mitral valve
av  aortic valve
ve  distal to the veins
P pump

z piston

des desired

filt filtered

unf unfiltered
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K Samenvatting

Het nabootsen van het gedrag van het menselijk hart is eandygk onderwerp op het
gebied van hart fysiologie. Artédie druk en stroming is een gevolg van de interactie
tussen de ventrikel en de ar@e circulatie. Rutten et al. (2005) hebben een bioreac-
tor met een imitatie-circulatie-systeem ontwikkeld om enandere het functioneren van
aortakleppen te testen door het meten van drukken en debteta fysiologische stro-
mingsflux wordt gegenereerd door een voorgeschreven begegn de zuiger, waarbij
de gewenste aortadruk bepaald wordt door tuning van deitafghedantie (afterload).
Echter, een nadeel van deze opstelling is dat de stroming dkaortaklep niet wordt
bepaald door de klepkarakteristiek. En dit is ju#sh van de criteria om de kwaliteit van
aortakleppen te bepalen. In dit artikel wordt daarom deklegppentester van Rutten et al.
(2005) uitgebreid met een regelstrategie voor de bewegangde zuiger, om zo de re-
sponsie van het hart op veranderingen in klepeigenschagpafterload, in termen van
drukken en debieten, beter na te bootsen.

De regelstrategie is gebaseerd op het tijds-variant elastenodel (Suga and Sagawa
(1974)). De elastantieregellus berekent een gewenst patape door het gebruik van
de elastantiefunctie en de pompdruk. De volumeregellwstrbgt pompvolume om daad-
werkelijk een gewenst pomp volume te verkrijgen.

Een mathematisch model van de hartkleppentester is gemmaitabiliteit van het toegepaste
regelalgoritme te bepalen. Deze wordt bepaald aan de harfelequet multipliers (Parker
and Chua (1989)). Vervolgens is de regelstrategiempkementeerd in de opstelling. Re-
sultaten laten zien dat de regelaar in staat is om te reagerearanderingen in afterload
en klepeigenschappen, waarbij fysiologische drukkenremshgen worden gegenereerd.
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