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ABSTRACT

This work deals with the design of an analogue-to-digital converter for optical detector
applications, which is based on a sigma-delta modulator. To reduce chip area and to
improve linearity, the output current of a position-sensitive photodetector is directly
offered to the sigma-delta modulator. This implementation requires continuous-time
discrete-time mixed-mode circuitry. The designed third-order sigma-delta modulator
converts its analogue input current to a single-bit digital signal. The system achieves a
resolution of 14bit, for a stable input current range of ±90nA, giving a total input
reduced noise current spectral density of 0.16pNJHZ at 1kHz. This is equivalent to
an input reduced noise current spectral density, of a transimpedance amplifier with a
650kn feedback resistor. The output signal of the position-sensitive detector is AM
modulated, in order to limit DC offsets due to environmental light. The carrier
frequency is 1kHz and the modulating signal has a bandwidth of 200Hz, so the signal
band of interest reaches from 0.8 kHz to 1.2 kHz. The sampling frequency is 256 kHz.

Keywords: analogue-to-digital converters, current input, optical receivers,
position-sensitive detectors, sigma-delta modulation
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PREFACE

Design of a sigma-delta modulator for optical detector applications, master thesis
by ing. A.G. Mulders. This thesis is to obtain a degree in electrical engineering, from
the Department of Electrical Engineering of the Eindhoven University of Technology
in The Netherlands. The work was carried out at the Electronics Laboratory of the
University of Oulu in Finland, from October 1996 till June 1997, in the scope of the
ERASMUS exchange programme.

The aim of this work is to design an analogue-to-digital converter for optical detector
applications, which is based on a sigma-delta modulator. The application is shortly
introduced in chapter 1. Besides the design itself, the secondary aim is that the
Electronics Laboratory of the University of Oulu becomes acquainted with sigma-delta
modulation. Therefore the basic sigma-delta modulation theory is extensively
discussed in chapter 2. In chapter 3 the actual design begins by selecting a suitable
topology, which is translated into a simplified circuit. The specific limitations of this
circuit are analysed in chapter 4. Chapter 5 deals with the design of the actual circuit.
In chapter 6 the circuit is evaluated with a combination of calculations, high-level
simulations and circuit simulations. For the specific digital post-processing, a proposal
is given in chapter 7. Finally the design is discussed in chapter 8.

Oulu, June 1997

Addy Mulders
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1. INTRODUCTION

At the Electronics Laboratory of the University of Oulu, high-accuracy CMOS
position-sensitive photodetectors are being developed [1][2][3]. Some possible
applications are displacement measurements and target practice. In Fig. 1 the general
configuration of a (simplified) position-sensitive photodetector in a system is shown.

Driver
Optical ~
channel ~

Receiver

Light source Position-sensitive
photodetector

Figure 1. General configuration of a position-sensitive photodetector.

The driver modulates a carrier signal with the signal of interest, by means of AM
modulation, to limit DC offsets. These are mainly caused by environmental light falling
on the position-sensitive detector, because the optical channel is usually open air. The
receiver converts the output signal of the position-sensitive detector to a signal that can
be processed and recovers the band of interest by AM demodulation. Highly linear
analogue or digital signal processing circuitry, that offers a high resolution is required
for the receiver.

In this work a digital variant for the receiver is presented. The analogue output signal
of the position-sensitive detector is on-chip converted to a digital signal, in order to
avoid signal degradation due to long signal paths and extra processing circuitry. An
analogue-to-digital converter, which can convert a very small current with high
resolution and high linearity is required. Analogue-to-digital converters based on
sigma-delta modulators offer these advantages. Relatively simple systems can be very
accurate and robust [4].

An analogue-to-digital converter based on a sigma-delta-modulator consists of two
parts, the sigma-delta modulator and its digital post-processing, which are shown in
Fig. 2. The system presented in this work is a sigma-delta analogue-to-digital converter,
with a proposal for a digital AM demodulation method.

Analogue Digital

Input Sigma-delta
modulator

Digital
post-processing Output

Figure 2. Sigma-delta analogue-to-digital converter.
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The analogue input signal is the output current of the position-sensitive detector, which
is at a high sampling rate converted to a digital single-bit signal. Digital AM
demodulation of this signal recovers the band of interest, also in a digital single-bit
format. Digital low-pass filtering eliminates undesired high frequencies, which mainly
consist of quantisation noise. The resulting signal is decimated, which results in a
multi-bit signal at a lower sampling rate.

The required resolution of the sigma-delta converter is 12bit to 14bit, for a maximum
amplitude of the input current of about 100 nA. The AM carrier frequency is 1kHz and
the modulating signal has a bandwidth of about 200Hz, so the bandwidth of interest
reaches from 0.8kHz to 1.2kHz. The clock frequency of the system should not exceed
300 kHz, in order to reduce power dissipation for future portable applications. The
capacitance ofthe position-sensitive detector for which the system is designed, is about
50pF. In order to be useful for applications with other types of photodiodes, the
capacitance range is taken from 2pF to 50pF.
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2. THEORY OF SIGMA-DELTA MODULATION

This chapter deals with the basic theory of sigma-delta modulation. After an overview
of sampling and quantisation of analogue signals, resolution enhancement by
oversampling and noise-shaping is discussed. These are the processes on which the
operation of sigma-delta modulators is based. Finally coding and stability of
sigma-delta modulators are analysed. The major differences between theoretical
models and real systems are discussed throughout this chapter.

2.1. Analogue and digital signals

An analogue signal is continuous in both time and amplitude, while a digital signal is
discrete in both time and amplitude. Converting an analogue signal to a digital signal
causes signal degradation. Degradation due to sampling can be avoided, but
degradation due to quantisation can only be reduced.

2.1.1. Sampling ofan analogue signal

When sampling an analogue signal, samples are taken at equidistant time intervals. The
number of samples taken per second determines the sampling rate or sampling
frequency fs' According to the Nyquist criterion, there is no signal degradation if the
sampling frequency is at least two times the signal bandwidth [4]. In case the sampling
frequency is exactly two times the signal bandwidth, it is called the Nyquist frequency
fnyq· The base band (IfI~ f b) and the side bands, due to the sampling process, will then
be separated as shown in Fig. 3. In this case signal recovery is possible.

Analogue signal Spectrull,l

I
Base band -_.~,

~ide bands
,

Side bands

_____---L../-----l._'1..-'----- f
DC fb

Spectrun:

'-------- t

Sampled signal

Figure 3. Sampling at the Nyquist frequency.
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If the sampling frequency is less than the Nyquist frequency, there is undersampling.
In this case the side bands will disturb the base band, so signal recovery is no longer
possible. This disturbance is called aliasing [4] and is shown in Fig.4. If on the other
hand the sampling frequency exceeds the Nyquist frequency, the sampled signal will
contain more samples than necessary for signal recovery. The information contents is
the same as in case the signal is sampled at the Nyquist frequency, but the side bands
are better separated from the base band. This oversampling is also shown in Fig.4.

Undersampled signal Spectru~
Aliasing

is <inyq

Oversampled signal

is> inyq

DC ib inyq
Spectru~

DC ib inyq is

Figure 4. Undersampling and oversampling.

Oversampling is applied in sigma-delta modulators, in order to increase the resolution.
The oversampling ratio D is the number of times the sampling frequency is higher than
the Nyquist frequency

is
D=

i nyq
= (1)

2.1.2. Quantisation ofan analogue signal

If an analogue signal is quantised, its continuous-amplitude value is truncated to a
certain discrete-amplitude value. In this way it can be represented by a finite word
length. The discrete truncation values are the quantisation levels of the quantiser, which
determine its transfer characteristic shown in Fig.5. The input signal of the quantiser
Qin is truncated to its nearest quantiser output value Qout. Because of this a quantisation
error eQ is introduced, which varies between plus and minus half the quantisation step
q. Therefore the quantiser can be modelled as a unity-gain factor and an additive error
source, which is also shown in Fig.5. The error source represents the effect of the
quantiser non-linearity. Further on will be discussed that this model is incorrect for
calculating stability properties of sigma-delta modulators.
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------,1''----- Qin

-- Qout =Qin + eQ

-- Qout= Qin

Figure 5. Quantiser transfer characteristic and linear model.

The quantisation error is correlated with the input signal, but if the input signal varies
sufficiently fast the quantisation error can be treated as white [4]. The quantisation error
is in that case referred to as quantisation noise, which is assumed to be uniformly
distributed over the bandwidth a5,f< 00. If it is assumed that the probability distribution
of its magnitude is uniform, the quantisation noise power can be calculated as

'1
2

e2 = ! f e2 de =
q2

(2)
q Q Q 12

_'1
2

2.1.3. Sampling and quantisation ofan analogue signal

If an analogue signal is both sampled and quantised, the quantisation noise power folds
into a bandwidth from DC to half the sampling frequency [4]. In case the sampling
frequency equals the Nyquist frequency, the quantisation noise is uniformly distributed
over the base band. The quantisation noise power spectral density is in this case

(3)

If the maximum output value of the quantiser can be represented by a word of B bits,
the maximum analogue sinusoidal input signal has a peak-to-peak value of 2Bq and a
power of (2B- 1q)212. The signal-to-noise ratio at the output of the quantiser is in this
case given by

(4)
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2.2. Resolution enhancement by oversampling

If the quantisation noise power is unifonnly distributed over a bandwidth from DC to
half the sampling frequency, it is obvious that increasing the sampling frequency will
lower the noise power spectral density and thus the quantisation noise power in the base
band. The signal-to-noise ratio is in this case detennined by the amount of noise power
e; ,which is left in the base band. This process is illustrated in Fig. 6.

IL....L...<<....L-<<....L..l--------f
fnyq

LL.L.L...L..I.~.L...L..I.!...L.L. f
fnyq

Figure 6. Reduction of quantisation noise power in the base band by oversampling.

The quantisation noise power spectral density is in this case

E;(f) =

The noise power in the base band is thus determined by the oversampling ratio

fh 2f
e; = fE;(f)df = f be2 =

o s

(5)

(6)

If the input signal has a peak-to-peak value of 2Bq, the signal-to noise-ratio becomes

(7)

Compared to equation (4) is the oversampling ratio present in the equation. By
increasing the oversampling ratio, the resolution of the sigma-delta modulator
increases.
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2.3. Resolution enhancement by noise-shaping

A sigma-delta modulator shapes the quantisation noise in such a way, that it is
suppressed for low frequencies and amplified for higher frequencies. In Fig.7 the
general topology of a sigma-delta modulator is shown [4].

+
xU) -~

fs---t

f-----r-~y[n]

Figure 7. General topology of a sigma-delta modulator.

The analogue input signal x(t) is compared to the encoded binary output signal y[n] and
their difference is accumulated by an integrator h/[n]. Note that the binary coded output
signal of the integrator, is the output signal of the sigma-delta modulator. If the order
of the integrator is increased, the quantisation noise in the base band will be further
suppressed. The order of the integrator is also the order of the sigma-delta modulator.

The analogue-to-digital converter and the digital-to-analogue converter together, form
the previously discussed quantiser. This combination truncates a continuous-amplitude
signal to a discrete-amplitude signal. The analogue-to-digital converter also samples
the signal, but this can also be done elsewhere in the system. From this point on a digital
signal is defined as a binary coded discrete-time and discrete-amplitude signal, instead
of its uncoded version. Note that the digital-to-analogue converter introduces no error,
so its analogue output signal contains the same information as its digital input signal.
Therefore the digital-to-analogue converter can be left out in sigma-delta modulator
models.

Because of the quantiser, a sigma-delta modulator is a non-linear system. In order to
make quantisation noise calculations, the linear model of Fig. 8 is introduced [4].

e[n]

+
x[n]-~ }--..,..--? y[n]

Figure 8. Linear sigma-delta modulator model.
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The combination of analogue-to-digital converter and digital-to-analogue converter is
replaced by the linear quantiser of Fig.5. Note that the input signal is now
discrete-time. The transfer function of this system in the z-domain is

Y(z) (8)

If H/'z) is an integrator transfer function, the input signal is almost fully transferred and
the quantisation noise in the base band is suppressed in a certain degree. The
noise-shaping process will be illustrated by analysing the basic Lth-order sigma-delta
modulator shown in Fig. 9 [4].

E(z)

y(z).L-- ~. •

X(z)

Figure 9. Linear Lth-order sigma-delta modulator model.

Integrators 1 to L, together with the feedback paths, make up the Lth-order integrator.
Each integrator has a gain factor, in order to optimise the noise-shaping properties.
These gain factors are also for optimising the stability properties of the system, but this
will be discussed further on. The transfer function of this system in the z-domain is

(9)

With the gain factors of the integrators the transfer function can be optimised towards

(10)

With z=ei9 and 8=2nf/fs' the modules of the transfer function in the f-domain is

(11)

The power spectral density of the quantisation noise becomes thus

(12)
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If f s » f b then sin(rcf/fs)zrcflfs, so the quantisation noise power in the base band is
approximated by

(13)

If the input signal has a peak-to-peak value of 2Bq, the signal-to noise-ratio becomes

[
3 2L + 1 ]SNR = 10xlog -x2 2B x D2L+l

Q 10 2 rc2L dB (14)

Compared to equation (7) the oversampling ratio is present in a higher degree,
depending on the system order. By increasing the system order, the resolution of the
sigma-delta modulator increases.

All these equations are valid for L'?O, but for L=O the system consists of only the
quantiser. Both first-order and second-order quantisation noise spectral densities are
shown in Fig. 10, together with the spectral density when no noise-shaping is applied.

f/fs
1/2

First-order (L = 1)

Second-order (L =2)

No noise-shaping (L = 0)
1

2

0-1"-=-----------------1
o

Figure 10. Quantisation noise spectral densities due to and without noise-shaping.

It is obvious that the quantisation noise is suppressed for low frequencies and amplified
for higher frequencies. The degree of suppression increases with increasing order of the
sigma-delta modulator. From equation (12) it can be derived, that the total quantisation
noise power increases with increasing order of the system. After noise-shaping the
quantisation noise is often referred to as modulation noise.
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According to equation (4), a signal-to-noise ratio increment of 6dB is equivalent to a
resolution increment of 1bit. According to equation (14), the signal-to-noise ratio
increases with 3(2L+ 1) dB for every doubling of the sampling frequency. This implies
that the resolution of the sigma-delta modulator increases with L+ 1/2bit. Every extra
quantiser bit adds 6dB, which is equivalent to 1bit resolution enhancement. In Fig.ll
this relationship is shown for different orders of a sigma-delta modulator, with a
single-bit quantiser (B= 1). Every extra quantiser bit lifts the characteristics 6dB, but
the noise-shaping process itself is unaffected.

SNRQ [dB]

160 B=1 L=2
140

120
D = 1tA

100

80

60

40 L=O

20

0

-20 D
1 10 100 1000

Figure 11. Signal-to-noise ratio as function of oversampling ratio and order.

This figure also shows that the oversampling ratio has to be of a certain value if the
order of the system is increased, otherwise the resolution will decrease instead of
increase. For a higher order the oversampling ratio has to be (compared to L- 1)

D> J2L-l1t 2L + 1
,L~ 1 (15)

2.4. Coding mechanism and validity of the white noise assumption

The way a sigma-delta modulator converts an analogue to a digital signal, will be
illustrated by the first-order single-bit system shown in Fig. 12. A first-order single-bit
system gives a clear view on the operation of sigma-delta modulators. Again the
quantiser is considered to be the combination of the analogue-to-digital converter and
the digital-to-analogue converter, but they are separately shown. Because it is a
single-bit system, the quantiser has two output or quantisation levels ±q/2.
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q/2

-ql2

Figure 12. First-order single-bit sigma-delta modulator.

The output signals of the integrator w[n] and the sigma-delta modulator y[n] are

w[n] = w[n-1]+x[n-1]-y[n-1]

{
q/2 ,w[n] ~ 0

y[n] ==
-q/2 ,w[n] < 0

(16)

Note that not the format of the output signal y[n] is relevant, but the values of the
quantisation levels represented by it. The ranges of the sigma-delta modulator
input-signal x[n] and the integrator output signal w[n] are

-q/2 ~ x[n] ~ q/2

-q ~ w[n] ~ q
(17)

The range ofx[n] equals the output range of the quantiser. If x[n] exceeds this range the
system overloads, because it can not correct itself any more. The range of w[n] is only
relevant in practice, because the integrator may not overload. This causes loss of
information and thus signal degradation.

Equation (16) shows that the difference between the input signal and the output signal
of the sigma-delta modulator, the error, is accumulated by the integrator. The system
tries to keep the average error zero, so the average increment of the integrator output
signal is also zero. Therefore its sign has to change in time and because of that the sign
of the sigma-delta modulator output signal also changes. The system tries to minimise
the error between its input and output, which gives such a variation in y[n] that the
average value of this signal approximates the value of the input signal. This will be
illustrated by a numerical example.

Suppose that the quantiser levels in Fig. 12 are ±ql2=±land the input signal has a value
of x[n] =0.1. The quantiser output signal will then oscillate between -1 and 1, in such a
way that the average value over a certain number of output samples equals 0.1. This is
shown in Fig. 13. The output signal of the quantiser has a period of twenty samples, of
which nine equal-l and eleven equal 1. Its average value is 0.1, equal to the input value
of the sigma-delta modulator. For converting the value 0.1 the period is relatively small.
For converting a more complicated value, for example 0.1234, the period will be larger.
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Figure 13. Output signals of the integrator and the quantiser.

When the input signal of the single-bit first-order sigma-delta modulator is zero, its
output oscillates between one and minus one, keeping its average value zero. This will
be discussed in more detail further on. When a small sinusoidal input signal is applied
to the system, its amplitude has to be larger than a certain threshold value A th , in order
to appear at the output. This threshold can be determined with [4]

A th = v(1t)L"'"D ,1(~1
q/2

(18)

For a first-order system 1(= I and 1( decreases for an increasing order of the system. As
the worst-case condition 1( will be assumed equal to one for every order. If the
sigma-delta modulator has to achieve a resolution of N bit, the condition for the
oversampling ratio is determined by the threshold value as

(19)

Equation (18) implies that every doubling of the sampling frequency gives an increase
in signal-to-noise ratio of 6LdB, instead of the in section 2.3 calculated 3(2L+ 1) dB.
This means a resolution improvement of Lbit, instead of L+ l/2bit, which shows that
not only the quantisation noise determines the resolution of the sigma-delta modulator.

To illustrate the noise-shaping process, the quantisation error signal of a single-bit
quantiser is in Fig. 14 compared to that of the first-order sigma-delta modulator.

The quantiser truncates the input value of 0.1 to I, so the quantisation error is always
0.9 and all the quantisation noise power is thus located at DC. Previously has been
assumed that when the input signal varies sufficiently fast, the quantisation error can
be modelled as an additive white noise source. The quantisation noise has in that case
a random character. A DC input signal does not vary, so the white noise assumption is
not valid.
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Figure 14. Quantisation error of a single-bit quantiser and of a first-order single-bit
sigma-delta modulator, both for an input signal of 0.1.

The output signal of the sigma-delta modulator changes between -1 and 1, so the
quantisation error changes between -1.1 and 0.9. Because it is a varying signal the
quantisation noise power is located at higher (discrete) frequencies. In this case the
input signal of the single-bit quantiser in the system is not a DC signal, even though the
input signal of the sigma-delta modulator is. The quantisation error is less correlated
with the input signal and thus the quantisation noise spectral density is more white. The
higher the order of the sigma-delta modulator is, the more random the quantisation
error is and the more valid the white noise assumption [4].

The quantisation noise spectral density depends in case of a DC input signal thus on
the order of the sigma-delta modulator and on the value of the input signal. If the
frequency components of the error signal are located within the signal band they appear
as so called pattern noise [4]. This degrades the signal-to-noise ratio and thus the
resolution of the system. If the input signal of a sigma-delta modulator is an AC signal,
a relatively fast varying signal, the assumption of a random quantisation error is more
valid than in case of a DC input signal. In this case the quantisation noise spectral
density looks more like the ones previously determined. However, the quantisation
error is always correlated in a certain degree with the input signal of the sigma-delta
modulator. Therefore the previous quantisation noise calculations are always an
approximation. The real performance has to be verified by computer simulations.

2.5. Stability of sigma-delta modulators

The z-plane poles of a sigma-delta modulator can be derived from its linear transfer
function, in order to determine the stability of the system. Only if the poles lay within
the z-plane unity-gain circle, the system is stable [4]. Stability is in this case regarded
in the context of linear systems, but a sigma-delta modulator is a non-linear system and
therefore it is more complicated to determine its stability.



22

A sigma-delta modulator is stable, if for a bounded input signal its state variables are
also bounded. Even if the system is stable during normal operation, its stability can not
always be guaranteed in other circumstances [4]. The system must also be able to go to
normal operation after non-zero initial state conditions and return to normal operation
after an overload. Because there are different factors that can make a sigma-delta
modulator unstable, stability can not accurately be determined by calculation.
Extensive computer simulations have to determine if stability can be guaranteed under
all conditions mentioned. However, for approximating the positions of the poles linear
stability calculation techniques are useful.

The quantiser error can not be seen as a random signal any more, because stability
analysis require a more deterministic approach. Therefore the quantiser is modelled as
a non-linear gain factor A, which represents its non-linearity. The non-linear quantiser
model is shown in Fig. 15.

A =

Figure 15. Non-linear model of the quantiser.

By replacing the linear quantiser in the sigma-delta modulator of Fig.8 for the
non-linear one, the transfer function of the sigma-delta modulator becomes

Y(z) (20)

The poles of the system can be determined by solving the characteristic equation

(21)

To gain insight in the stability behaviour, the basic Lth-order sigma-delta modulator
shown in Fig. 16 is analysed.

azz-1
.------.

X(z) Y(z)
1- z-l ... _---_.

Figure 16. Basic Lth-order sigma-delta modulator.
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The transfer-function of this system in the z-domain is

(22)

The poles of the system can be derived from this equation. The position of the poles is
in this case not only determined by the gain factors of the integrators, but also by the
non-linear gain of the quantiser. Because of the last one the poles can move outside the
unity-gain circle during operation, so the system becomes unstable. Further on it will
be discussed, that for the operation of the sigma-delta modulator a certain kind of
instability is required.

As mentioned in section 2.3, the gain factors of the integrators are not only for
optimising the noise-shaping properties of the system, but also for optimising the
stability properties. In most cases a compromise between resolution and stability has
to be made. Because an unstable sigma-delta modulator is useless, resolution has then
to be sacrificed, in order to obtain a stable system.

2.5.1. Stability ofsingle-bit sigma-delta modulators

The gain of a single-bit quantiser is strongly non-linear, so its linearised transfer
characteristic is arbitrary. There are infinite possible linear transfer characteristics to
choose from. The pole movement of the system can not be calculated exactly, because
the gain factor aL of the integrator preceding the quantiser does not change the
behaviour of the system. Only the sign and not the magnitude of the output signal of
that integrator, determines the output of the quantiser and thus the behaviour of the
system. Although exact modelling is not possible, basic root locus calculation
techniques can in some cases give a good approximation about the stability of
single-bit sigma-delta modulators. This is shown in Fig. 17.

Re
.,,,

1m1m

,..

.
Izl=I':

A=O A=O
•... / Izl=l ... • / Izl=l.:

---:--E---!------:-- -----=--+--+-+---t-_=_
: Re. Re. '.

First-order Second-order Third-order

Figure 17. Root locus as a function of the quantiser gain in the z-plane.
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A first-order system is always stable for every value of the integrator gain factor. The
stable input range is ±ql2, in order not to overload the system. A second-order system
is only stable for values of gain factor a1 of the first integrator, that are smaller than
unity. Although computer simulations show that a1 has to be smaller than 0.8, the
approximation is good. The stable input range of the second-order sigma-delta
modulator is smaller than ±q/2. This is because the output of the integrator preceding
the quantiser increases without limit, when the input signal comes close to ±ql2. The
integrator will overload and the sigma-delta modulator does not operate properly, so
signal degradation is the consequence.

In both cases rather accurate conditions for the integrator gain factors and the input
range can be determined, in order to keep the poles within the unity-gain circle. In the
first-order case nothing has to be done to acquire a stable system and in the
second-order case only an integrator gain factor has to be properly set and the input
range is bounded. This is however not possible for higher-order systems (L ~3),

because for them extra measures have to be taken in order to keep the system stable.
One possible method will be given [5]. For higher-order systems, the intersection point
of the root locus and the unity-gain circle can be calculated. For the third-order system
in Fig. 17 these are marked Amino This is the minimum value of the quantiser gain, for
which the poles stay within the unity-gain circle and thus the system is stable. In order
to keep the quantiser gain above this value, measures have to be taken in the form of
suitable output limits for the integrator preceding the quantiser.

For a certain value of the quantiser gain, one pole crosses the unity-gain circle at z=-I.
In this case the input signal of the sigma-delta modulator is zero, so an idle pattern at
half the sampling frequency occurs. The in this case between the two reference levels
oscillating quantiser output, also has an average value of zero. Applying an input signal
to the system disturbs the idle pattern generating another pattern, so the average output
value changes. These patterns are limit cycles, which are stable oscillations [5]. In the
context of linear systems this is instability, because the system has no stable operating
point. However, this kind of instability is needed for the operation of sigma-delta
modulators. The previously given stability condition is very suitable for designing
purposes, but stability of sigma-delta modulators has to be defined more exactly. This
will give a better view on the operation of the system. Limit cycles that are located at
higher frequencies are a part of the quantisation error. They do not disturb the signal
band, so they can be regarded as quantisation noise. If there are limit cycles present that
are not affected by the input signal of the system, the system is unstable. These limit
cycles can disturb the signal band and remain present when the value of the input signal
is returned to zero.

If for a stable system a pole leaves the unity-gain circle at z=-I, the quantiser gain and
the limit cycle increase. Because of that the input signal of the quantiser increases, so
the gain and the limit cycle decrease. This will bring the pole back within the unity-gain
circle. If however a pole leaves the unity-gain circle for z>O, the quantiser gain
decreases (A~Amin) and the limit cycle increases. Because of that the input signal of the
quantiser increases, decreasing the quantiser gain even further. Therefore the pole will
not return within the unity-gain circle, resulting in an unstable system.
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The shape of the idle pattern depends on the order of the sigma-delta modulator. This
means that its spectral components differ for every order. For a first-order system the
idle pattern frequency is atl/2. For a second-order system the idle pattern frequency is
at1/4, which is not according to the root locus of Fig. 17. The quantiser model with
only a varying gain is not sufficient to explain the behaviour of sigma-delta modulators
accurately, because its phase-uncertainty is not taken into account [6].

2.5.2. Stability ofmulti-bit sigma-delta modulators

A multi-bit sigma-delta modulator has a multi-bit quantiser, so it has more than two
output values. The gain of a single-bit quantiser can vary between zero and infinity, but
the gain of a multi-bit quantiser can only vary between one and infinity. A condition is
that the multi-bit quantiser is not overloaded. If the value of the input signal is zero the
gain is infinity. If an input signal is applied to the system the gain will be close to unity.
For stability the range between zero and one is relevant, because for higher-order
systems Amin is usually within this range. If this range can be avoided the system is
always stable. The root locus of a multi-bit system is comparable to the root locus of a
single-bit system. Note that if the input of a multi-bit sigma-delta modulator is zero, its
quantiser output oscillates between the two smallest output levels ±q/2, generating an
idle-pattern.

If an input signal is applied to the multi-bit sigma-delta modulator, its quantiser can be
approximated by the linear model (A= 1) of Fig. 5 and the poles of the system can be
derived from equation (22). The approximation of A= 1 is only valid if the quantiser
does not overload, so that the quantisation error is always between -q/2 and q/2. The
output signal of the integrator preceding the quantiser, denoted as w[n], has then the
following range [4]

(23)

In order to meet this condition, the input range of the sigma-delta modulator is [4]

(24)

This implies that the stable input range of the sigma-delta modulator is smaller than the
input range of its quantiser. By determining the appropriate integrator gain factors the
poles can be placed within the unity-gain circle. Because the quantiser is not perfectly
linear, there is still a little variation in quantiser gain that shifts the poles during
operation. The exact variation depends on the number of output bits and on the value
of the input signal. This will cause low-level limit cycles [4], but will not lead to an
unstable system. Nevertheless, the stability of the system under all circumstances has
to be verified by extensive computer simulations.
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2.6. Summary

The operation of a sigma-delta modulator is based on oversampling and noise-shaping.
Oversampling is required for the correct operation of the system and distributes the
quantisation noise over a wide frequency range. Noise-shaping suppresses the
quantisation noise for low frequencies. In both cases the quantisation noise in the base
band decreases, so the resolution of the system increases.

In modelling the noise-shaping and stability behaviour of the system, certain
assumptions have to be made, that make the analysis an approximation. How accurate
this approximation is depends on different properties of the system. Because exact
modelling is not possible, quantisation noise and stability behaviour have to be verified
and optimised by computer simulations. The methods of simulation will be discussed
further on. There will be a compromise between stability and resolution.
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3. THE TOPOLOGY AND ITS IMPLEMENTATION

In this chapter the topology of the sigma-delta modulator is determined. Hand
calculations give a point to start the design from, but extensive computer simulations
have to verify and optimise it. The resulting topology is translated into a circuit. It is
relevant that the circuit realises exactly the same transfer function as the topology,
otherwise the behaviour of the circuit is not in compliance with that of the topology.

3.1. Determining the topology of the sigma-delta modulator

For sigma-delta modulators already exist several topologies, which all have their
distinctive features. Because the aim of this work is to design a sigma-delta modulator
for a specific application, its topology is selected out of these existing ones rather than
developing a new one. Main selection criteria for the topology are the noise-shaping
and stability properties, but also the complexity and the sensitivity to circuit limitations
are relevant. These criteria depend on the application for which the sigma-delta
modulator is designed and therefore the system requirements discussed in chapter 1 are
decisive. First the output format of the sigma-delta modulator is determined, so
single-bit or multi-bit, and after that the topology and its required parameters. Because
calculations only give an approximation of the noise-shaping and stability properties of
the system, computer simulations will be used for verification and optimisation.

3.1.1. Single-bit and multi-bit sigma delta modulators

As already implied in chapter 2, there are differences between single-bit and multi-bit
sigma-delta modulators in noise-shaping and stability behaviour. Depending on the
application an appropriate choice has to be made. Because the single-bit output format
has decisive advantages for the application, it is chosen for the design.

For an equal oversampling ratio, a multi-bit sigma-delta modulator achieves a higher
resolution than a single-bit one. If there is a sufficient number of output bits even the
system order can be decreased. This can be directly concluded from equation (14).
Another advantage is that it is less complicated to design a stable multi-bit sigma-delta
modulator, because its poles can be calculated more accurately.

The major drawbacks of a multi-bit output format are the more complex circuitry and
the higher sensitivity to circuit limitations. A multi-bit analogue-to-digital converter
and digital-to-analogue converter are non-linear. The non-linearity of the
analogue-to-digital converter is reduced by the feedback action of the system, but the
non-linearity of the digital-to-analogue converter is not. Therefore its linearity has to
be the same as the linearity of the sigma-delta modulator, even though its number of
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output bits may be far less [4]. It is possible to digitally correct the non-linearity of the
digital-to-analogue converter [7], but this requires extra circuitry.

A single-bit analogue-to-digital converter and digital-to-analogue converter are always
linear, have a relatively high insensitivity to circuit limitations and can be realised with
relatively simple circuitry. These are important reasons for preferring a single-bit
output format over a multi-bit one. Another advantage of a single-bit sigma-delta
modulator is its pulse-density modulated output format. It makes the use of less
complicated and less power dissipating digital post-processing circuitry possible,
because all required operations can be realised with simple logical operations [4].

3.1.2. The topology

Besides the basic sigma-delta modulator topology discussed in chapter 2, there are
several alternatives. The ones most frequently used can be found in [4] and [5]. The
major differences are in the noise-shaping and stability properties, but therefore also in
the complexity of the circuity required to implement them. Optimising a topology
towards resolution or stability, without affecting the other one too much, means usually
the use of extra circuitry. Especially if it is for the digital post-processing, the area and
power dissipation become decisive.

For this application the basic sigma-delta modulator topology is chosen, because it is
relatively uncomplicated to implement. This is mainly because its relatively high
insensitivity to circuit limitations and its possibility to accommodate a single-bit output
format. The basic Lth-order single-bit sigma-delta modulator topology is shown again
in Fig. 18. The structure of integrators I to L is separately displayed, together with their
transfer function in the z-domain.

y[n]

ql2

'-----'-ql2

x[n]

Figure 18. Basic Lth-order single-bit sigma-delta modulator topology.
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The system parameters that have to be determined are the oversampling ratio, the
system order, the quantisation levels and the integrator gain factors. After high-level
computer simulations, the stable input range can be determined as

Ix[nJI ~ cr~ ,cr ~ 1

3.2. Approximation of the required parameters

(25)

For now the oversampling ratio, the system order and the integrator gain factors are
relevant. In a later stage, when the circuit properties have to be taken into account, also
the quantiser levels are relevant. First the parameters for achieving the required
resolution are determined by hand calculations and after that verified by computer
simulations.

3.2.1. Calculation ofthe required parameters

To approximate the system parameters, calculations have to be made first. Even though
they will not give a final set of parameters, they provide a point to start the design from.
In this stage only the required resolution will be taken into account. Stability
calculations will be omitted, because for a single-bit system it is difficult to give a
stability approximation. This is especially the case for instability due to non-zero initial
state conditions and due to overload. For a single-bit system B= 1 in equation (14). The
relationship between the signal-to-noise-ratio and the oversampling ratio for the
single-bit case has already been shown in Fig.ll, for several system orders. By taking
the specifications from chapter 1 into account, the parameters of the system can be
calculated. Note that the bandwidth of interest is 0.8 kHz to 102kHz, but the topology
of the sigma-delta modulator will be optimised for a bandwidth from DC to 1.2kHz.

With equation (4) it can be calculated, that for the required 14bit resolution the
signal-noise-ratio has to be SNRQ2:86dB. The maximum clock frequency and thus
sampling frequency is 300kHz, sofs =256kHz is a good choice. This is the AM carrier
frequency of f c=1kHz multiplied by 28, which might be useful for digital
post-processing. For a maximum signal frequency of fb= 102kHz, the oversampling
ratio is calculated with equation (1) at about D= 100. According to equation (14) a
second-order system (L=2) achieves in this case a signal-to-noise ratio of95dB, which
is according to equation (4) equivalent to 15.5bit resolution. Compared to the
specification there is a 1.5 bit margin to compensate for circuit limitations. The required
integrator gain factors are derived from equation (9). Inserting L=2, al =0.5 and a2=2
in this equation, reduces it to the optimal form of equation (10)

Y(z) = Z-2X(z) + (1 - Z-l )2E(z) (26)
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Without any need for calculating stability properties, a prediction for stability can be
made. According to section 2.5.1 a second-order system is always stable for al <0.8, so
this condition is met. The value of a2 is arbitrary, because it is the gain factor of the
integrator preceding the single-bit quantiser.

3.2.2. Verification by computer simulation

The possibility of using a second-order system is advantageous, because it is easy to
stabilise. However, it has to be kept in mind that the quantisation noise predictions are
an approximation. This is especially the case for single-bit systems, because the linear
single-bit quantiser model is inaccurate and the value of the integrator gain factor
preceding the quantiser does not change the behaviour of the system. Therefore the
selected topology has to be simulated by computer, in order to determine its achievable
resolution. High-level computer simulations are performed with the numerical
calculation package MATLAB. The method of simulation is discussed in the appendix.
In Fig. 19 the simulation model of the second-order sigma-delta modulator is shown.

x[n] y[n]

ql2

-q/2

Figure 19. Second-order sigma-delta modulator simulation model.

The exact value of the quantiser levels ±ql2 is in this stage not relevant. They only
determine the stable input range, of which the exact value is not relevant either for now.
Only the circuit properties, especially the supply voltages, are decisive for the value of
the quantiser levels. This will be discussed further on. Note that the quantiser is the
combination of analogue-to-digital converter and digital-to-analogue converter.

The simulation results for the signal-to-noise ratio as function of the input signal
amplitude, are shown in Fig. 20. The system achieves a maximum signal-to-noise ratio
of 79dB, which is equivalent to a resolution of 12.9bit. The stable input range is
Ix[n]1 ~0.8ql2, which gives 0'=0.8. This is 2.6bit below the calculated resolution and
1.1 bit below specification. Simulating the system with other values of al does not give
any improvement, so this system is not able to achieve the required resolution. It
demonstrates that the quantisation noise calculations of section 2.3 are too optimistic.
This is not only due to the white noise assumption, but also because of the maximum
input range. The peak-to-peak value of the maximum input signal is 1.6q/2, which is
smaller than the in equation (14) assumed value of 2Bq=2q. Recalculating equation
(14) for a peak-to-peak value of 1.6q gives for the resolution 14bit, which is still too
optimistic.
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Figure 20. Signal-to-noise ratio characteristic of the second-order system.

Also the condition set by the threshold of section 2.4 is not met. With equation (19) it
can be calculated that the oversampling ratio of a second-order system has to be
D~400, in order to achieve a 14bit resolution. Therefore a new set of parameters has
to be determined and again verified by computer simulations.

3.3. Determining the required parameters by computer simulation

The maximum sampling frequency is limited to 300 kHz. Raising it from 256kHz to
its maximum value, would according to equation (14) give a gain in resolution of about
1bit. Because the true gain in resolution is less than the calculated one, raising the
sampling frequency is not an option. It seems that the order of the sigma-delta
modulator has to be raised to three, because a second-order system stays just below the
specified resolution of 14bit.

Instead of estimating the parameters by calculation, only computer simulations will be
used to optimise the system towards its required resolution. This for two reasons. The
first one is the relatively large deviation between calculation and simulation results,
especially for a single-bit system. The second one is the stability of the system. If it is
optimised towards resolution, there is a possibility that stability can not always be
guaranteed. Therefore first the resolution has to be optimised and after that the stability
verified. High-level simulations for the verification of stability, are discussed in the
appendix. If the system is not stable under the conditions mentioned in section 2.5, its
parameters have to be altered and the complete behaviour should be verified again. The
aim is to keep the poles within the unity-gain circle, under all conditions. Usually
resolution has to be sacrificed, in order to obtain a stable and thus useful system. In
Fig.21 the simulation model of the third-order sigma-delta modulator is shown.
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Figure 21. Third-order sigma-delta modulator simulation model.

The oversampling ratio is again D= 100. The parameters to be determined are the
integrator gain factors and the reference levels of the quantiser. At this point the actual
circuit properties have to be taken into account, because the power supply sets the hard
limit for the integrator output swing. The supply voltages are assumed to be ±VDvl2
and the integrator output range is thus the same. The dimensions of the signals are not
relevant yet, so they will be regarded without them.

An incorrect set of parameters can overload the integrators, which means signal
degradation and thus loss of resolution. Even if the integrators do not overload and the
system is stable during normal operation, certain combinations of parameters can still
cause instability. This because the system might not be able to go to normal operation
after non-zero initial state conditions or to return to normal operation after an overload.
To obtain a stable system under all conditions, the method of design is important. As a
starting point the quantiser levels are determined. Their values are decisive for the
values of the integrator gain factors obtained later. Instability under normal operation
can be prevented by correct scaling of the integrator output signals in proportion to the
quantiser levels [5]. Instability because of non-zero initial states and overload can be
prevented by using the supply voltages as clipping levels [4]. If correctly scaled the
combination of all these parameters will keep the system stable under all conditions.
Another possibility is monitoring the integrator outputs and resetting them when
necessary [4], but this takes extra circuitry. Note that the oversampling ratio does not
affect the stability of the system, but only the resolution. This ratio is limited by the
sampling frequency.

The quantiser levels are chosen at ±qI2=±VDd5. The gain factor of the integrator
preceding the quantiser does not change the behaviour of the system, so it can be
chosen as well. It is set on a3=0.1, in order to keep the integrator output range small
and thus reduce the change on integrator overload. The only degrees of freedom left are
gain factors al and aZ, which will be determined by computer simulation. There are
infinite possible combinations, so in order to limit the number of simulations a
selection has to be made. Therefore all combinations of both al and a2 varying between
0.1 and 1 in steps of 0.1 will be simulated, thus one hundred possibilities. The
possibility is high that this step size will provide a usable system, because sigma-delta
modulators are relatively insensitive to deviations in the gain factors [4]. If these
combinations of gain factors do not give an adequate result, a wider range will be
simulated. Out of all the simulation results the most suitable ones are selected and
tested on stability under all conditions.
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Figure 22. Signal-to-noise ratio characteristic of the third-order system.

The simulation results for the signal-to-noise ratio as function of the input signal
amplitude, are shown in Fig.22. The integrator gain factors are determined to be
a}=0.8 and a2=0.1, so [a} a2 a3]=[0.8 0.1 0.1]. The system achieves a maximum
signal-to-noise-ratio of 93dB, equivalent to a resolution of l5.2bit, for a stable input
range of Ix[n]1 ~0.7q/2 (cr=0.7). This leaves a 1.2 bit margin to compensate for circuit
limitations. The determined parameters offer the best possible compromise between
signal-to-noise ratio and stability for all the parameter combinations simulated. This
does not imply that there is not a better design possible, but determining this takes
extensive computer simulations and at some point a choice has to be made. The
simulations also show, that the sigma-delta modulator is relatively insensitive to
relatively large variations in the integrator gain factors.

The determined set of parameters has one disadvantage, the output range of the
integrators varies per integrator. It stays however always between the clipping levels,
so in theory this is not relevant. In order not to overload the integrators in the real
system their output range should be small, but for staying well above the circuit noise
level it should be large. Scaling the integrator gain factors, in order to adjust their output
range, changes the behaviour of the system. Therefore compensation gain factors are
inserted in the feedback loops [4]. This is shown in Fig.23.

y[n]

Figure 23. Third-order sigma-delta modulator with compensation gain factors.
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Adjustments in aland a2 are compensated by b2 and b3, so the desired integrator output
range can be set without changing the resolution of the system. Gain factor a3 can be
changed anyway, as long as the third integrator does not overload. This gives for the
gain factors [al a2 a3 b2 b3]=[0.6 0.2 0.50.75 1.5]. All integrator output ranges are in
this case about ±1.5ql2=±0.3VDD. Computer simulations show that the signal-to-noise
characteristic is unaffected by the changes. The resolution of the system has not
changed, but this does not imply that the exact behaviour of the system and thus the
stability under all conditions has not either. Stability due to non-zero initial state
conditions and due to overload has to be verified again. Computer simulations show
that the system is still stable under all conditions.

3.4. Translating the topology into a circuit implementation

Because the circuit design starts at this point, the specifications of chapter 1 become
relevant. The implementation of the circuit depends for the application mainly on the
character of the signal offered to the sigma-delta modulator. This is the output signal
of the position-sensitive detector, which is a very small current. Converting this current
to a voltage by means of a transimpedance amplifier, is a possibility to offer the signal
to a switched-capacitor sigma-delta modulator. Switched-capacitor techniques are
preferred for the implementation of sigma-delta modulators [4]. However, first
converting takes extra circuitry and causes thus signal degradation. It is more
advantageous to offer the current directly to the sigma-delta modulator. One possibility
is the use of switched-current techniques [8], but regarding their state of development
and the problems encountered in designs, this option is rejected. A better option is to
offer the source current directly to a continuous-time sigma-delta modulator.
Implementing the system with continuous-time circuitry has disadvantages, like
degradation due to clock-jitter and high deviations in the fabricated time constants [9].
An advantage of continuous-time implementations is that some anti-alias filtering is
achieved, without extra circuitry [9]. To combine the advantages of both, the system is
chosen to be mixed continuous-time and switched-capacitor. Only the input is
continuous-time and the remaining part of the circuit is in switched-capacitor form.
Therefore the only mixed-mode element is the first integrator of the sigma-delta
modulator. For now the implementation will be discussed for a single-ended circuit, but
this can be extended to a differential implementation.

3.4.1. The first mixed-mode integrator

The first integrator of the sigma-delta modulator is shown in Fig.24. One input is a
continuous-time current input, which receives the output current iit) of the
position-sensitive detector. The other input is switched-capacitor voltage input, which
receives the feedback voltage vqI2[n] of the quantiser. Note that the clock phases <1>1 and
<1>2 are non-overlapping.
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Figure 24. First integrator of the sigma-delta modulator.

The transfer of the input current to the output is determined by capacitor C1. The output
voltage of the integrator is sampled, so it is determined per sampling period Ts=l/fs.
The equation describing the output voltage at the end of clock phase <1>1 is

nT,

= ~ J iit)dt + V 0 ( [n - 1] Ts)
1
[n-l]T"

(27)

Because the sampling frequency is much higher than the maximum signal frequency,
the signal amplitude at two adjacent sample moments can be assumed equal, thus
id(nTs ):::::: ii[n - 1]Ts ). With this assumption the output voltage at the end of clock
phase <1>1 becomes

(28)

Depending on the output of the quantiser, vqI2[n] has the value of one of the two
quantiser levels ±q/2. The transfer of the input voltage vqI2[n] to the output of the
integrator is determined by the ratio of capacitors al C1 and C1. The difference equation
describing the output voltage at the end of clock phase <1>1 is

(29)

A condition for C1 has to be derived, to proportionally relate the magnitude of the input
current to the magnitude of the quantiser output voltage. Assume id,ql2 to be the value
of the input current which is proportionally related to the quantiser output value q/2.
Per sampling period both id,ql2 and ql2 have to be converted to a difference in the output
voltage of ~vo[n]=alq/2,so for the value of C1 can be derived

(30)
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The stable input range of higher-order sigma-delta modulators is ±crq/2, thus the input
current range of the circuit is ±crid,ql2' With id,max=crid,qI2 as the maximum allowed
value of the input current the condition for the value of C1 becomes

(31)

The switched-capacitor part of the integrator realises a forward-Euler integrator. For
the continuous-time part a suitable transformation has to be found, in order to describe
its discrete-time transfer function. In general the bilinear transformation is the most
suitable for describing the discrete-time model of a continuous-time circuit [to].
However, for this application the value of the input current of two adjacent sample
moments can be assumed equal. Therefore the applied transformation is not relevant,
because in this case a forward-Euler transformation gives the same result as a bilinear
transformation. For modelling the continuous-time part of the integrator, the
forward-Euler transformation is taken. This was already implied in equation (28) and
is in compliance with the topology of Fig. 23. Combining equations (28), (29) and (31)
gives for the complete difference equation of the first integrator

(
crq/2. )vo[n] = a 1 -.--ld[n-l]+vq12 [n-l] +v)n-l]
ld, max

(32)

In this equation is (crq/2)/id max a proportional current-to-voltage converting factor.
This is useful for illustrative purposes, so the relation between the integrator gain factor
al and the input current id[n-l] is clear in models of the sigma-delta modulator. In the
z-domain the transfer function is

a
-I { }l Z crq/2

Vo(z) = -1 -.-liz) + Vq12(z)
1- z ld, max

3.4.2. The second and the third switched-capacitor integrators

(33)

Because of the specific character of the sigma-delta modulator input signal, the first
integrator is a mixed-mode element. The following integrators are not directly
connected to this signal, but to voltage outputs of the preceding integrators. Therefore
they can be completely realised in switched-capacitor technology. Their configuration
is shown in Fig.25.
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k=2,3

Figure 25. Second and third integrator of the sigma-delta modulator.

Input vJn] receives the output voltage of the preceding integrator and input vqI2[n]
receives the feedback voltage of the quantiser. The difference equation describing the
output voltage at the end of clock phase <1>1 is

(34)

It is a forward-Euler integrator, which is in compliance with the topology of Fig. 23. In
the z-domain the transfer function is

(35)

3.4.3. Analogue-to-digital and digital-to-analogue converter

As previously mentioned, is the combination of the analogue-to-digital converter and
digital-to-analogue converter regarded as the quantiser. Its input signal is
continuous-amplitude and its output signal discrete-amplitude. Note that the digital
output signal of the sigma-delta modulator is taken at the output of the
analogue-to-digital converter. For a single-bit output format the analogue-to-digital
converter is a comparator. Depending on its input signal, its output signal is a logical 0
or a logical 1. The digital-to-analogue converter converts these logical values to the
analogue voltages they represent, the quantisation levels.

In Fig. 24 and Fig. 25 the output of the integrators is taken at clock phase <1>1' because
they have to realise forward-Euler integrators. Therefore the timing of the quantiser has
to be regarded very accurately, in order to realise the correct delay throughout the
system. In the topology of Fig.23 is the delay from the output of the sigma-delta
modulator, to the outputs of the integrators exactly one clock cycle. The
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analogue-to-digital converter in the topology has no delay, so the delay to the output of
the sigma-delta modulator is the same as to the output of the third integrator. Also the
digital-to-analogue converter in the topology has no delay. In a circuit implementation
however, the analogue-to-digital converter has a delay due to its required tracking and
decision phases. Therefore the circuit has to be designed in such a way, that its transfer
function is in compliance with the one of the topology. This is the case for the circuit
in Fig.26.

I-----,.....-~y[n]

-AZ-1I2

(1- Z-l )C3
---------.---------

C3

ql2

-a3C3z- 1I2

------ .. ----_.

<PI a3
C

3 <P2
vJn]-~~ ~.L...-j

<P1 f<Pl

Figure 26. Delay of the third integrator in combination with the quantiser.

The quantiser tracks its input signal on clock phase <P2' while holding its previous
output value. On clock phase <PI the comparator decides, so the sample moment is at
the end of this clock phase. For vi[n] to y[n] is thus a forward-Euler integrator realised,
which is in compliance with the topology. The capacitors connected to the constant
reference voltage q/2 realise the quantisation levels ±q/2. This reference source,
together with the two clocked logical AND gates, realises the digital-to-analogue
converter. This makes the total quantiser delay one clock phase, thus for the feedback
of the sigma-delta modulator output signal an inverting forward-Euler integrator is
realised. This is also in compliance with the topology. Note that for a logical 0 the value
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Q3b3q/2 is fed back to the system and for a logical 1 the value -Q3b3Q/2. Like in
section 2.5 represents Athe non-linearity of the quantiser, which causes a quantisation
error in the output signal of the third integrator. The total transfer function of Fig. 26 in
the z-domain is

y(z) = (36)

This results is basically a first-order sigma-delta modulator, which is in compliance
with equation (22) for L= 1 and b3= 1. Note that in this equation the format of Y(z) is
not relevant, but the represented quantiser level is.

3.5. The complete circuit

After determining the elements of the circuit, they can be combined to make up the
sigma-delta modulator. At this point a single-ended circuit is discussed, but it can be
extended to a differential circuit.

I---.,....~y[n]

Figure 27. Simplified circuit of the third-order sigma-delta modulator.

The switched-capacitor reference source is repeated for each integrator, in order to
realise the correct gain factors for each integrator input. The reference sources and the
clocked logical AND gates form the digital-to-analogue converter and this in
combination with the comparator is the quantiser. Of course it is only a matter of
definition, so the comparison between theory, topology and circuit implementation is
clear.
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3.6. Summary

The topology of the sigma-delta modulator is a basic third-order one, with a single-bit
output format. Its resolution can be approximated by calculation, but especially in the
single-bit case this is inaccurate. Therefore the resolution is optimised by high-level
computer simulations, which make it also possible to determine if the system is stable
under all conditions. In this stage some circuit specifications are already relevant.

The circuit implementation has to realise exactly the same transfer function as the
topology. Therefore the timing throughout the circuit has to be carefully designed. The
circuit given is a simplification of the one that will actually be implemented, but its
basic operation is the same.

The first integrator has a continuous-time current input and a switched-capacitor
voltage input. The capacitors of the first integrator are fixed, due to the topology
parameters and the specified maximum input current of the sigma-delta modulator. The
integrator gain factor and the sampling frequency are the topology parameters, which
determine in combination with the maximum input current the value of the feedback
capacitor and thus also the value of the switched-capacitor. Therefore the only degree
of freedom during the circuit design of the first integrator, is its operational amplifier.

The second and the third integrator are completely realised in switched-capacitor
technology. Therefore their capacitor values can be freely chosen, as long as the
capacitor ratios are equal to the corresponding gain factors in the topology.
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4. THE EFFECT OF CIRCUIT LIMITATIONS

In this chapter the effect of circuit limitations on the performance of the sigma-delta
modulator is analysed. The analysis differs for every design, because it depends mainly
on the specific circuit implementation. Whenever possible the effect of the circuit
limitations is calculated, but in several cases it can only be determined by computer
simulation. Limitations that can be calculated will during the circuit design be used to
set specifications. Limitations that can not be calculated accurately are modelled. After
circuit design the models will be used to evaluate the system. Because not every circuit
limitation can be taken into account, only the most relevant ones are discussed.

4.1. Limitations due to circuit noise

Except the quantisation noise, also the circuit noise limits the resolution of a
sigma-delta modulator. Circuit noise added somewhere after the first integrator is
shaped in a similar way as the quantisation noise [11]. If the circuit noise is added
directly after the first integrator it undergoes a first-order noise-shaping function, if it
is added directly after the second integrator it undergoes a second-order noise-shaping
function and so on. Therefore their contributions are assumed negligible and only the
contribution of the first integrator and its input circuitry is relevant. In Fig.28 the first
integrator with relevant noise sources is shown. For this analysis the capacitance Cd of
the position-sensitive detector has to be taken into account. The displayed noise
sources are the operational amplifier noise vn,OA' the switched-capacitor noise vn,SC

and the reference voltage source noise Vn,q!2' Their contribution can be represented by
an equivalent noise source in, eq,. at the input of the sigma-delta modulator.

Figure 28. First integrator with noise sources and equivalent input noise source.
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4.1.1. Noise contribution of the operational amplifier

The noise of the operational amplifier consists of two parts, white noise and IIf noise
[12]. The power spectral density of the equivalent input noise source vn OA is thus,

(37)

The noise behaviour of this configuration is analysed per clock phase, which is
illustrated in Fig.29. Note that also the input capacitor azCz of the second integrator is
displayed, because it is relevant for the analysis. Voltage source vq/2[n] is assumed to
have the value of the positive quantiser level ql2.

<1>1

q/2---

<1>z

Figure 29. Noise analysis of the first integrator per clock phase.

Due to capacitance Cd this configuration is during clock phase <1>1 an amplifier for vn,OA,
with an amplification of 1+CiCl' To calculate the equivalent input noise, the
operational amplifier noise is first continuous-time amplified to the output of the
integrator and after that continuous-time differentiated to the input of the sigma-delta
modulator. The power spectral density of the equivalent input noise source during this
clock phase is thus

(
1 + Cd)2

C1 2

= I 1 1
2Sn,OA(!)

j2nfC1

(38)
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During clock phase <1>2 this configuration is again an amplifier for vn,OA' with an
amplification of 1+al +CiC I' The power spectral density of the equivalent input noise
source during this clock phase is thus similar to equation (38)

(39)

During the operation of the sigma-delta modulator the output noise of the integrator on
clock phase <1>1 is sampled by capacitor a2C2' Because of the sampling all the noise
power folds into a bandwidth from DC to f/2. However, it can be regarded as an
additive noise source directly after the first integrator. Therefore its spectral density is
shaped with a first-order noise-shaping function and thus is its contribution assumed
negligible. Note that folding of l/fnoise is negligible anyway, because it has a very low
bandwidth compared to the sampling frequency [13]. If the operational amplifier is
assumed ideal, vn,OA also appears on its inverting input terminal [12]. During clock
phase <1>2 capacitor al CI samples this noise, but the voltage over this capacitor becomes
ql2 in clock phase <1>1 and the noise has thus no effect. The total equivalent input noise
power spectral density is the average of the ones on both clock phases [13]

(40)

With equations (37), (38) and (39) this becomes

It is obvious that the capacitance of the position-sensitive detector causes an increase
in equivalent input noise. The only way to decrease the noise contribution of the
operational amplifier is its design, because al and CI are already determined by the
topology and the maximum input current of the sigma-delta modulator.

4.1.2. Noise contribution ofthe switched-capacitor input

The noise added by a switched-capacitor depends on the value of its capacitance.
Switched-capacitor al CI in Fig.28 sees two switch paths per clock cycle and therefore
its noise variance or noise power is [14]

(42)
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It is assumed that due to the sampling process this noise power is uniformly distributed
over a bandwidth from DC tof/2, so its spectral density is

s~, se(!) (43)

To calculate the equivalent input noise, the switched-capacitor noise is first
discrete-time integrated to the output of the integrator and after that continuous-time
differentiated to the input of the sigma-delta modulator. The discrete-time integration
is approximated by

z = ej9 r j912 I= :=:::---
j2sin(8/2) j21tfTs

,fs»fb (44)

The power spectral density of the equivalent input noise source becomes in this case

s~, eqsc(f)

al 2

j21tfTs 2

= I I 1
2Sn, se(f)

j21tfC I

(45)

The contribution of this noise source can not be decreased, because al and C1 are
already determined by the topology and the maximum input current of the sigma-delta
modulator. The sampling frequency can not be decreased, because this will decrease
the resolution of the system.

4.1.3. Noise contribution of the reference voltage source

Reference voltage source vql2[n] in Fig.28 adds white and lifnoise to the circuit, so the
noise power spectral density is

2 _ ~ql2
Sn,ql2(f) - Yql2 + T (46)

The noise is sampled by switched-capacitor al C1, so its total noise power is folded into
a bandwidth from DC to f/2. The noise power spectral density becomes then

2BW r
S2<wmp l.d(f) _ n, ql2 + ~ql2

n,q/2 - f
s

Yql2 T (47)

In this equation is BWn,q12 the bandwidth of the white noise which is folded, so
2BWn,q12lfs is the number of times the white noise contribution increases. Note that the
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1/f noise is not folded, because its bandwidth is very low compared to the sampling
frequency. To calculate the equivalent input noise, the reference source noise is first
discrete-time integrated to the output of the integrator and after that continuous-time
differentiated to the input of the sigma-delta modulator. The power spectral density of
the equivalent input noise source is thus

at 2

'2 fT

= (~ y~::;mf) =
j2rtfCt

The only way to decrease the noise contribution of the reference voltage source is its
design. Its noise power spectral density and its noise bandwidth have to be low.
Decreasing the sampling frequency is not an option and at and Ct are determined by
the topology and the maximum input current of the sigma-delta modulator.

4.1.4. Total circuit noise contribution ofthe first integrator

The total equivalent input circuit noise power spectral density of the first integrator, is
the sum of equations (41), (45) and (48)

(49)

The input signal of the sigma-delta modulator is an AM modulated signal, with a
carrier frequency of f e= 1kHz and a modulating bandwidth offm=200Hz. After AM
demodulation the total noise power fromfe-fm tofe+fm appears in the base band from
DC tofm [15]. Therefore the relevant circuit noise power is

Ic+lm

i;, eqc = f S;, eqc (f)df

Ic- 1m

(50)

The circuit noise power adds to the quantisation noise power of the sigma-delta
modulator, so the signal-to-noise ratio of the system decreases. This will be discussed
further on in section 4.4, when all noise sources are determined.

4.2. Limitations due to the operational amplifiers in the circuit

For the high-level simulations of the sigma-delta modulator topology in section 3.3,
ideal integrator models are used. Mainly because of its non-ideal operational amplifier
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the behaviour of a real integrator differs from its ideal model. Therefore the influence
of the operational amplifiers in the circuit has to be examined, in order to determine
their required specifications. It is not possible to accurately calculate the consequences
of every operational amplifier non-ideal effect on the performance of the sigma-delta
modulator. Therefore these effects will be modelled in its topology, of which the
performance is again verified by high-level computer simulations.

4.2.1. Finite amplifier DC gain

Due to the finite DC gain of an operational amplifier, a fraction of its output voltage is
reflected to its input terminals [12]. Therefore the inverting input terminal does not
behave as a virtual ground, when the non-inverting input terminal is connected to
ground. The consequences will be discussed for a switched-capacitor and a
continuous-time integrator. In Fig.30 a non-inverting switched-capacitor integrator
with a finite DC gain operational amplifier is shown.

c

Figure 30. Switched-capacitor integrator with finite DC gain operational amplifier.

The difference equation describing the output voltage at the end of clock phase <1>1 is

Ao Ao+ 1 .
vo[n]=a

A
1 vJn-l]+A 1 vo[n-I]

0+ +a 0+ +a

For Ao » 1 this becomes

With cA =(l +a)/Aoand cA =a/Ao, the transfer function in the z-domain is
I 2

(51)

(52)

=
a(l-CA)z-1

1 - (l - CA )z-I
2

(53)
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Error EA causes a linear deviation in the integrator gain factor a. Like previously
I

mentioned is the performance of sigma-delta modulators not severely affected by
relatively large linear integrator gain errors. Error EA

z
causes a linear deviation of the

feedback factor from unity, which causes the pole of the integrator to shift from zp= 1
to zp= 1- EA' Because of this the integrator gain decreases for low frequencies, so
according td equation (8) the system suppresses less quantisation noise from the signal
band. The ideal quantisation noise spectral density of the sigma-delta modulator shown
in Fig.9, has an L-fold zero at zz= 1. This L-fold zero is determined by the poles of the
L ideal integrators in the system, thus every integrator pole causes a matching zero at
the same frequency. If an integrator pole shifts from zp= 1 to zp= 1- EA

z
' its matching

zero shifts from zz= 1 to zz= 1- EA
z

' In the f-domain the zeros shift from fz=O to
f z :::< EA//2rt. The increase in quantisation noise is negligible if the zeros are well below
the maximum signal band frequency fb [4], so the condition for the minimum value of
the amplifier DC gain of each integrator is

C!:.D
rt

(54)

The impact of finite operational amplifier DC gain can not be accurately calculated, so
it has to be simulated. Simulations show that if Ao~D, the increase of quantisation
noise power in the signal band is negligible [16]. Both errors can be modelled like
shown in Fig. 31, with a A =1- EA and a A =1- EA'

1 I z Z

vi[n]

Figure 31. Switched-capacitor integrator model for finite amplifier DC gain.

The analysis of the continuous-time integrator is similar to the one in section 3.4.1, but
now the finite DC gain of the operational amplifier is taken into account. In Fig. 32 is a
continuous-time integrator with a finite DC gain operational amplifier shown.

c

Figure 32. Continuous-time integrator with finite DC gain operational amplifier.
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The equation describing the output voltage at the end of clock phase <1>1 is

nT,

V 0 (n Ts) = 1 + ; / A0~ f iit)dt + V0 ( [n - 1] Ts)
[n-l]T,

(55)

(56)

The difference equation describing the output voltage at the end of clock phase <1>1 is

With cA =l/Ao the transfer function in the z-domain is given by
3

(57)

=
T (1 - cA )z-1

s 3

C 1- Z-l

= crq/2 a(1 - CA)Z-l

id, max 1- Z-l
(58)

Note that the gain factor for converting the input current to a proportional voltage is
present. The continuous-time integrator has a linear error in its gain factor, which will
not severely affect the behaviour of the sigma delta modulator. Because the errors
caused by the switched-capacitor integrator are more severe than the errors caused by
the continuous-time integrator, the model of Fig. 31 will be used to model the entire first
integrator of the sigma-delta modulator. Because the second and the third integrator are
completely in switched-capacitor technology, this model also applies to them.

Finite integrator DC gain also causes so called low signal-level distortion [4]. This is
basically cross-over distortion due to the threshold discussed in section 2.4, which is
now regarded for DC input signals. The minimum required value of the total amplifier
gain product in the forward path of the sigma-delta modulator, depends on its required
resolution. For an Lth-order sigma-delta modulator, the condition for the DC gain of
every operational amplifier is given by [4]

(59)

4.2.2. Non-linear amplifier DC gain

An integrator introduces harmonic distortion due to the non-linear DC gain of its
operational amplifier. In order to determine the harmonic distortion of the sigma-delta
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modulator caused by this, the contribution of every integrator has to be analysed. The
first integrator is shown in Fig.33, with a non-linear DC gain operational amplifier.

Figure 33. First integrator with non-linear DC gain operational amplifier.

If the switched-capacitor input is omitted, the equation describing the output voltage at
the end of clock phase <1>1 is similar to equation (56)

(60)

If v0 hinTs) is defined as the harmonic distortion at the output of the integrator, this,
equation can be rewritten as

(61)

The DC gain of the operational amplifier can as a function of its output voltage be
approximated by a polynomial. This polynomial and its inverse are given by

m

Ao(vo ):::: L alv~

l = 0

m
1 _, A l

A (v ) - £..J IJlvo
o 0 l = 0

(62)

With the inverse polynomial, the distortion component can be written as

(63)



50

The input signal of the first integrator is the difference between the input signal of the
sigma-delta modulator and a previous value of it, with a quantisation noise term added.
Apart from the quantisation noise term, this can be regarded as a differentiated version
of the sigma-delta modulator input signal. The output signal of the first integrator is
thus the sigma-delta modulator input signal, multiplied by the integrator gain factor and
again with a quantisation noise term added. It is assumed that only a sinusoidal signal
id sin[n] is present at the input of the sigma-delta modulator and that cross products,
between the sinusoidal signal and the quantisation give negligible contributions to
harmonic distortion [17]. The harmonic distortion is thus entirely determined by the
sinusoidal part of the integrator output signal, thus the input signal of the sigma-delta
modulator multiplied by the integrator gain factor. The difference equation of the
harmonic distortion due to the first integrator is in this case given by

(64)

In Fig. 34 the harmonic distortion due to the first integrator is modelled. Note that the
lower gain factor is only present to convert the input current to a proportional voltage.

ld, max

Figure 34. Model of the first integrator harmonic distortion.

The second and the third integrator of the sigma-delta modulator cause also harmonic
distortion, but their non-linearity is attenuated by the gain product of the preceding
integrator(s) [18]. Therefore their harmonic distortion is negligible, so the harmonic
distortion of the sigma-delta modulator is completely determined by its first integrator.

4.2.3. Finite amplifier gain bandwidth product and slew rate

Due to its finite gain bandwidth product and slew-rate, the settling of an operational
amplifier is non-ideal. Therefore also the settling of the integrators in the sigma-delta
modulator is. The given analysis provides specifications for the design, but the exact
performance has to be verified by high-level computer simulations afterwards.
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4.2.3.1. Finite gain bandwidth product

This analysis concentrates for now, on the relation between the gain bandwidth product
GBW of the first integrator and the capacitance of the position-sensitive detector Cd'
Because on clock phase <P2 the integrator input changes abruptly, the settling on this
clock phase critical. The first integrator on clock phase <P2 is shown in Fig. 35.

Figure 35. First integrator on clock phase <P2'

For the operational amplifier a single-pole model with DC gain Ao, time-constant 'tpOA

and ideal input and output impedances is assumed

A(s) =
I + S'tpOA

(65)

The transfer function of the integrator in the s-domain on clock phase <P2' can be
determined with basic feedback analysis [19]

(66)

The pole frequencies determined with the denominator of this equation are

(67)

The second pole is determined by the time constant of the non-ideal operational
amplifier, which has the following relation with the gain bandwidth product [12]

Ao
't =

POA 21tGBW
(68)
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The gain bandwidth product depends on the design of the operational amplifier and its
configuration in the circuit. Substituting the time-constant in equation (67) gives for the
second pole frequency of the integrator

The settling time of the integrator is determined by the time-constant 't
P2

=1/2rcjP2

of the second pole. Input current idCt) does not suddenly change, but the voltage over
capacitor al CI does on clock phase <1>1' with magnitude q of the quantisation step. The
exponential settling [12] of the maximum integrator output step is thus given by

(70)

The voltage which is taken from the integrator output on clock phase <1>1, is the same as
the output voltage at the end of clock phase <1>2. The on-time of clock-phases <1>1 and <1>2
is respectively T", and T", , with T", = T", <T/2. The integrator has to settle within

• '1'1 '1'2 '1'1 '1'2

clock phase <1>2 10 a time T <1>2 ' so it settles at

(71)

If in this equation the pole frequency and the on-time of clock phase <1>2 are both
assumed constant, a finite gain bandwidth product gives a linear settling error cCBW in
the integrator gain factor of the feedback signal vq/2[n]. This error can be modelled in
the sigma-delta modulator as shown in Fig. 36, with UCBW= l-cCBW

id, max

Figure 36. Model of the error due to finite gain bandwidth product.

This can be regarded as an error in the unity-gain feedback of vqI2[n], which causes an
error in the difference between the input and the feedback signal. This error thus affects
the proportionality between the input signal and the output signal of the sigma-delta
modulator. Therefore its effect on the performance has to be determined after the circuit
design. Note that the left gain factor converts the input current to a proportional voltage.
The settling of the second and third integrator does not depend on the capacitance of
the position-sensitive detector. Their settling will be discussed further on, during the
circuit design.
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4.2.3.2. Finite slew rate

If the derivative of equation (70) is higher than the slew rate of the operational
amplifier, slew rate limitation occurs. The output voltage of the integrator rises linearly
to a transition point, where the slew rate and the recalculated derivative of equation (70)
are equal. From this point on the settling continuous exponential. The derivative of
equation (70) is recalculated, to make the transition from slew rate limited to
exponential settling is continuous. If ,1.v0 is the step at integrator output, the settling
error due to slew rate limitations at the end of clock phase <l>2 is [20]

(72)

The step at he output of the integrator is the quantisation error multiplied by the
integrator gain factor, which is assumed uncorrelated with the input signal of the
sigma-delta modulator. Therefore the settling error due to slew rate limitations can also
be assumed uncorrelated with the input signal of the sigma-delta modulator [20]. If
cSR,max is the maximum settling error due to slew rate limitation, the maximum voltage
step ,1.vo,max is present at the output of the integrator. If it is assumed that the settling
error is uniformly distributed over the interval [-CSR,max' CSR,max], the settling error can
be regarded as a noise source with power

1
V2 =n,SR

[SR, mllX

f2cSR, max
-ESR,mll.l

2
cSR,max= 3

(73)

If this noise power is assumed uniformly distributed over a bandwidth from DC to1/2,
its spectral density is

2£2
S2 (I) = _ SR, max

n,SR 3 Is (74)

It is an additive noise source, shown in Fig. 37, at the output of the operational amplifier.
This implies that it is not negligible, because its spectral density is not shaped with a
first-order noise-shaping function, like it would be directly after the first integrator.

Figure 37. First integrator with slew rate noise source.



54

The noise source at the output of the operational amplifier can be transformed to an
equivalent input noise current in ' at the input of the sigma-delta modulator. By
differentiating the noise powe;qS~t the output of the operational amplifier
continuous-time to the input of the sigma-delta modulator, the power spectral density
of the equivalent noise current becomes

2 S; SR(f)
Sn, eqSR (f) = '-1---'-'-1-"-12

j 2nfC I

(75)

The only possibility to lower the noise due to slew rate limitation is the design of the
operational amplifier. The sampling frequency and capacitor C1 are determined by the
topology and the maximum input current of the sigma-delta modulator, so changing
them is not an option. Note that according to equation (72) changing the sampling
frequency changes the settling error, because T <P2 ::::; T/2.

After AM demodulation only the bandwidth from fe-fm to fe+fm is relevant for the
noise contribution, like in case of the circuit noise. Therefore the equivalent input noise
power due to slew rate limitations is

Ic+ 1m

i;, eqSR = f S;, eqSR (f)df

Ic- 1m

(76)

The noise power due to slew rate limitations adds to the circuit noise power and the
quantisation noise power, so the signal-to-noise ratio of the system decreases. This will
be discussed further on in section 4.4, when all noise sources are determined. The slew
rate related equivalent input noise sources of the second and third integrator are
assumed negligible, because their spectral densities are noise-shaped.

4.3. Jitter of the sampling clock

The sampling clock has some jitter, so the sampling moments are not equidistant in
time. Their time uncertainty causes an error during the sampling of an analogue signal,
which appears as so called aperture noise [4]. In this design the sampling of the
analogue signal occurs directly after the first integrator. The signal-to-noise ratio due
to aperture noise can for the output signal of the first integrator be calculated as

(77)

In this equation is (J(~T) the standard deviation of the clock uncertainty, for which
relatively large values are acceptable. For example, the condition for SNRA~ 100dB is
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(j(~T) ~ 1.3ns. The aperture noise is assumed negligible, because its power spectral
density is shaped with a first-order noise-shaping function. This assumption is justified
by the large clock uncertainty, that would even without noise-shaping be acceptable.

A switched-capacitor circuit is insensitive to sampling clock jitter, because the charge
transferred during one clock phase is independent of its on-time [4]. The
switched-capacitor input of the first integrator and the other switched-capacitor
elements are thus not affected by sampling clock jitter.

4.4. The total noise of the sigma-delta modulator

It can be concluded that the circuit noise and the settling noise due to slew rate
limitations are the relevant noise courses, besides the quantisation noise. The sum of
the powers of these three noise sources in the band of interest determines the achievable
resolution of the sigma-delta modulator. The power of the circuit noise and the settling
noise is given by equations (50) and (76). They are both determined for the bandwidth
fromfc-fm tofc+fm' which is relevant after AM demodulation. This also applies for the
quantisation noise. The topology of the sigma-delta modulator was designed to achieve
the specified resolution for a bandwidth from DC to fb=fc+fm, but the quantisation
noise contribution up tofc-fm is negligible compared to the contribution in the band of
interest. The oversampling ratio and the order of the sigma-delta modulator are thus not
chosen unnecessarily high, so the margin left for circuit limitations is the 7 dB
determined in section 3.3. In that section the maximum signal-to-noise ratio due to
quantisation noise was determined for a maximum input signal amplitude id maX" A,
good approximation for the quantisation noise power in the band of interest is thus

(78)

The total noise power can now be calculated with equations (50), (76) and (78)

The signal-to-noise ratio of the sigma-delta modulator is in this case

(
iJmax/2]

SNR = 10 x 10glO 'i~ dB

(79)

(80)

To achieve a resolution of l4bit the signal-to-noise ratio has to be at least 86dB, so
SNR~86dB. In chapter 1 the maximum input current of the sigma-delta modulator is
specified at id,max= lOOnA. Substituting these values in equation (80), gives as a
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condition for the noise power in the band of interest ~$; 1.2xlO-23 A2. If the noise
power spectral density is assumed uniform for the bandwidth from !e-!m to !e+!m
(400Hz), the condition for it is S;(!)$;3XlO-26 A21Hz, which is equivalent to a noise
spectral density of Sn(f)$;0.17pAJ,JHZ. The sigma-delta modulator dimensioned in
section 3.3 has a signal-to-noise ratio of 93dB, so according to e~uation (78) the
quantisation noise power in the band of inte.r-est is i; Q=2.5 x 10-

24
A . To achieve the

required resolution this leaves a margin of i;-i;, Q~ 9.5 x 10-
24

A2 for the circuit and
settling noise powers. The margins for the noise power and noise ~ctral densities are
thus S;, e+ SR(!) $; 2.4xlO-

26
A21Hz and Sn, e+ SR(!) $;0.15pAJ ,JHz.

4.5. Offsets, finite integrator output range and capacitor deviations

An integrator without external feedback integrates its offset and is thus DC unstable,
but the feedback of the sigma-delta modulator stabilises the integrator operating points
[4]. When the second and following integrators have an offset, the loop will build up a
DC signal at their preceding integrator output to compensate. Therefore the offset of
the second and following integrators is not relevant, it only affect the dynamic output
range of the integrators. In the same way the comparator offset causes no signal
degradation, because it is compensated by a DC signal build up at the preceding
integrator output. The offset of the first integrator is in series with the input signal of
the sigma-delta modulator, so it can be regarded as a DC input signal. This is also the
case for the offset of the digital-to-analogue converter in the feedback path.

In section 3.3 the topology was dimensioned to have an output range for every
integrator of about ±1.5q/2=0.3VDD, which is lower than the supply voltages. This is
because the actual output range of an integrator is determined by the output range of its
operational amplifier, which has to accommodate the integrator output range under
normal operation. If the output signal becomes too large, the gain of the operational
amplifier decreases and eventually the signal clips. If the operational amplifier is not
rail-to-rail, the clipping levels deviate from the supply voltages. In case the operational
amplifiers are overdriven during for example an overload, the resolution decreases but
stability can be maintained. High-level computer simulations have to determine if the
system stays stable under all conditions, for the clipping levels of the designed
operational amplifiers.

Like previously mentioned are sigma-delta modulators relatively insensitive to
deviations in their gain factors. High-level computer simulations have to determine the
effect of capacitor ratio deviations, on the resolution and stability of the sigma-delta
modulator. This applies for errors in the gain factors of the switched-capacitor part of
the system.

In the design feedback capacitor C1 of the first integrator determines, together with the
sampling frequency, the proportionality between the analogue input current and the
digital output code of the sigma-delta modulator. The maximum allowed value id,maxl

of the input current is thus set by this capacitor. This implies that the stable input range
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of the sigma-delta modulator changes for deviations in C I . A larger value of C I allows
a larger maximum input current id,max2>id,maxl' If a position-sensitive detector with
maximum output current id,maxI is connected, the full dynamic range of the sigma-delta
modulator is not used, so there is a resolution loss of

tlN = N I -N2 = IOg2(_~d:....-,m_ax_2)
ld, max!

(81)

A smaller C1 leads to a smaller allowed maximum input current id ,max3' If a
position-sensitive detector with id,maxI >id ,max3 is connected, the sigma-delta
modulator overloads if id,maxI is present at its input.

Basically deviations in capacitor C I can be regarded as a gain factor a c at the input of
the sigma-delta modulator, which is shown in Fig. 38. Note that the secbnd gain factor
converts the input current to a proportional voltage.

aq/2

ld, max

Figure 38. Model of the error due to deviations in capacitor C I .

4.6. Resolution of the comparator

The effect of limited comparator resolution, or comparator sensitivity, has to be
determined by high-level computer simulations. The system can correct the comparator
error in a certain degree, but there is a minimum required comparator resolution for the
system to be useful.

VDd 2--------

1 Error Qin

-:~~~ :::::::::::¢:::: r
o

-VDd2 --------

Figure 39. Maximum error comparator model.
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To determine the minimum comparator resolution a model is used, which makes the
maximum possible error if its input signal is below a certain threshold. This model is
shown in Fig.39. If its input signal Qin is in the range [-OVDly2,OVDly2] the comparator
always makes an error, which gives a comparator resolution of 0VDd2.

4.7. Summary

The effect of several circuit limitations on the resolution and the stability of the
sigma-delta modulator can not be accurately calculated, so it has to be determined by
high-level computer simulations. Some specification can be determined before the
circuit design and others have to be verified by simulation afterwards. Note that the
discussed single-ended circuit can be extended to a differential implementation.

Mainly the circuit limitations of the first integrator are decisive. As discussed in
section 3.6, the value of its switched-capacitor is fixed by the topology parameters and
the maximum input current of the sigma-delta modulator. Therefore also its noise
contribution is, which can lead to a too large circuit noise contribution. If the
switched-capacitor turns out to be a resolution limiting factor, the topology has to be
redesigned.

Most circuit limitations of the second and the third integrator are suppressed by the
feedback action of the system.
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5. CIRCUIT DESIGN

This chapter deals with the design of the sigma-delta modulator circuit. Especially the
critical first integrator gets extra attention, in order to reduce its non-ideal behaviour
within acceptable margins. When possible advantage is taken of the robustness of
sigma-delta modulators, in order to relax circuit specifications. Because it is very
difficult to take all circuit limitations into account, the circuit will be optimised towards
the most critical ones. If the design itself is completed, its performance can be verified
by including the circuit specifications in the high-level simulation model.

5.1. The complete circuit and its parameters

A simplified version of the sigma-delta modulator circuit has already been discussed in
section 3.5. This circuit is translated into its final form and the circuit parameters,
which are the values of the quantisation levels and the capacitors, are determined.

5.1.1. Thefinal circuit ofthe sigma-delta modulator

The single-ended circuit of section 3.5 is translated into the fully-differential version
shown in Fig.40. The advantages of a fully-differential implementation are lower
harmonic distortion, better power supply rejection ratio and reduction of clock
feed-trough due to charge injection of switches [21].

azCz a3C3
~fT<Pz ~fT<Pz

iit)~ <Pz1 {<PI <pzl {<PI y[n]
~fT<Pz ~fT<Pz
<Pz1 {<PI <Pz1 {<PI

/
aICI

VCM
a3b3C3azbzCz

<1>z

Figure 40. Fully-differential implementation of the sigma-delta modulator.
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The basic operation of this circuit is the same as of its single-ended version. Several
switches are connected to a delayed version <l>ld of clock phase <1>1' in order to reduce
distortion due to clock feed-through [4]. The previously assumed supply voltages
±VDd2 are replaced by a single supply voltage VDD. This implies that instead of
ground, the common-mode voltage VCM= VDd2 is the reference level of the circuit.
The quantiser levels ±ql2=±VDdS become V Q =VCM- VDdS and V Q = VCM+ VDdS,
which are obtained from separate reference s~urces. According to s~ction 3.3 is the
output range of the integrators during normal operation of the sigma-delta modulator
around ±1.SqI2=±0.3VDD, which becomes VCM±O.3VDD .

5.1.2. Determining the circuit parameters

The signal levels in the circuit are proportional to the supply voltage, which is
VDD=SV and when mentioned Vss=Oy' The common-mode voltage is in this case
VcM=2.SV and the quantisation levels VQL =1.SV and V QH =3.Sy' The integrator
output range during normal operation is 1V to 4 V single-ended or ±3 V differential.

For the capacitors a minimum value of O.SpF is taken, in order to prevent too large
errors due to parasitic capacitances. Capacitor C1 of the first integrator is calculated
with equation (31) at C1=0.93pF. This value is truncated to C1= 1pF, in order to avoid
overload of the system due to a too small fabricated capacitor. This means that the
maximum allowed input current of the sigma-delta modulator becomes id max z 108 nA.,
If a position-sensitive detector with a maximum output current of 100nA is connected
to the sigma-delta modulator, the loss of resolution is according to equation (81) about
0.1 bit.

Capacitor al C1 of the first integrator is determined by C1 at al C1=0.6pF. Capacitor C2
of the second integrator is chosen at C2=4pF, which gives a2C2=0.8pF and
a2b2C2=0.6pF. Capacitor C3 of the third integrator is chosen at C3=2pF, which gives
a3C3= 1pF and a3b3C3= l.SpF. The capacitors are kept as small as possible, in order to
limit the loading and thus the bias currents of the operational amplifiers.

5.2. Process parameters and design equations

The process used to implement the sigma-delta modulator is the AMS 0.8 J.lm CMOS
(CYE) n-well process, from Austria Mikro Systeme International AG [22]. In all
circuits the transistors are dimensioned to operate in the saturation region, so only the
design equations [12] for this region are relevant. The drain current of an nMOS
(PMOS) transistor in saturation is

(82)
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The transconductance of an nMOS (PMOS) transistor in saturation is calculated with
equation (82) and its derivative iDS (iSD) to vCS (vsc)

2/SD
g =----

m VSG + VT J'

(83)

With equations (82) and (83) can for the W over L ratio of the nMOS (PMOS) transistor
be derived

W
L

(84)

The saturation voltage of the nMOS (PMOS) transistor is given by

VDS sat = VGS - VT, " VSD sat = VSG + VT, p
(85)

K~ and K; are determined by the process parameters

J..lo CK':::::: J' ox
p 2

(86)

-3 2 -3 2 -3 2 hWith J..lo =47.89xlO m Ns, J..lo =21.70xlO m Ns and Cox=2.22xlO F/m, t e
values of" these constants become K~::::::53XlO-6NV2 and K;::::::24XlO-

6
NV2. The

threshold voltages are in the calculations assumed V T =0.8 V and VT =-0.8V, which
are about the values for zero bulk-source voltage. For"this process the" minimum gate
length is taken Lmin=3 J..lm, in order to obtain MOS transistors with high enough output
impedance to be useful. If the design allows it, a length of L= 5J..lm or larger is
preferred. For switches a minimum length of 0.8J..lm is taken, in order to obtain low
resistance switches with small transistor areas.

5.3. The first integrator

First the type of the operational amplifier is determined and analysed. The capacitors
of the first integrator are already determined at C1= 1pF and al C1=0.6pF. The
capacitance of the position-sensitive detector at the input of the sigma-delta modulator,
is in the range of 2pF to 50pF. The maximum step at the integrator input is the
quantisation step size q= VQ - V Q ' because the input signal of the sigma-delta
modulator does hardly chang~ for two adjacent samples moments. The maximum
output step at the integrator output is thus 1L1v0 ,maxi =al (VQ - VQ) = 1.2 V. Because
the integrator integrates on clock phase <1>2' its slettling behavi~ur is optimised for this
clock phase. The operational amplifier is analysed and an approximation of its required
parameters is made by hand calculations. After that the design is optimised by HSPICE
simulations, using the analysis as a guideline.



62

5.3.1. Operational amplifier analysis

A fully-differential folded-cascode operational amplifier [12], with switched-capacitor
common-mode feedback [11], is chosen for the design. This circuit can achieve high
gain and low harmonic distortion, for a large output range. During normal operation all
MOS transistors are set in the saturation region. In Fig.41 is the schematic of the
operational amplifier shown, without the switched-capacitor common-mode feedback.

VDD
VCMI

181AS
VCMR

VI_ Vo.

VO+v,.

v:'sD-----L--===============±==~:::t:==~1=t::!:::±===--.J

Figure 41. Fully-differential folded-cascode operational amplifier.

Transistors M12 and M13 form the differential input pair of the cascoded input stage.
Because of their lower 1/fnoise pMOS transistors are selected for the input. Transistors
M14 and MIS form the cascode transistors for the differential input pair. Transistors Ms,
M6, Ms and M9 form a load for the input stage. By means of Ms and M6 the
common-mode voltage of the output terminals is controlled. Transistors M16 and M17
make up a negative-feedback, in order to keep the currents of transistors M 19 and M20
proportional to the current of transistor M3. Transistor M7 generates a reference voltage
for the common-mode feedback. The pMOS cascodes are biased by transistors M10 and
the nMOS cascodes by transistor MIl. The currents are set by an external current
source and transistors M1 to M4 and MIS to M22. The currents of transistors M19 and
M20 both have to be equal to the current of transistor M3.

The common-mode voltage of the output terminals of the operational amplifier has to
be kept on VCM=(VDD+ Vss)/2. This is accomplished by the switched-capacitor
common-mode feedback circuit shown in Fig.42. Switched-capacitor common-mode
feedback is chosen, because the sigma-delta modulator circuit is in switched-capacitor
technology. Therefore the required clock signals are already available. Also requires
this form of common-mode feedback less circuitry than its continuous-time variant.

For the common-mode voltage of the output terminals to be VCM=(VDD+ Vss)/2, the
voltage VCMW VCM has to be present between the gates of transistors Msand M6 and
the output terminals. This is accomplished by means of two switched-capacitors C2 and
C3· The reference voltage VCMR- VCM is sampled by these capacitors on clock phase ct>2'
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Figure 42. Switched-capacitor common-mode feedback.

On clock phase <1>1 reference voltage VCMR- VCM is set over the gates of transistors Ms
and M6 and the output terminals, forcing their common-mode voltage to
VCM=(VDD+ Vss)/2. Capacitors C1 and C4 hold the reference voltage on clock-phase
<1>2' The clock phases are chosen as displayed, because the integrator integrates on clock
phase <1>2 and its output is sampled on clock phase <1>1' Settling during integrating and
the correct common-mode voltage during sampling are relevant.

5.3.1.1. Gain bandwidth product and phase-margin

The gain bandwidth product of the operational amplifier is determined by its DC gain
Aoand its dominant pole fd' which is created on node n3 and its counterpart. These two
nodes carry signals with the same amplitude and opposite phase, thus only one pole is
created [12]. Therefore the gain bandwidth product is given by

I
GBW = A x f = g R x =

o d m l2 0 21tR (C + C )
o n3 l

(87)

In this equation is Ro the output resistance per output terminal of the operational
amplifier, but its exact value is in this case not relevant. Capacitances Cnand Cz are

3
respectively the capacitance of node n3 and the equivalent load capacitance connected
to this node. Note that this equation is only valid ifthe non-dominant poles are at higher
frequencies than the unity-gain frequency. A large gain bandwidth product is thus
obtained, for a large transconductance gml2 of the input transistors M12 andM13.

To calculate the phase margin, the non-dominant poles have to be determined. The first
one is created on node n 1 and its counterpart. Again these two nodes carry signals with
the same amplitude and opposite phase, thus only one pole is created. The first
non-dominant pole is

f nd1
(88)
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The bulk transconductance gmb has to be taken into account, because bulk and source
14 ••

are not connected together. The second non-dommant pole IS created on node n2 and
its counterpart. Also these two nodes carry signals with the same amplitude opposite
phase, thus only one pole is created. The second non-dominant pole is

The phase margin is determined by the non-dominant poles and is given by

[GBW] [GBW]PM = 90° - arctan -f-- - arctan f
nd, nd2

By substitution of equations (88) and (89) this becomes

(89)

(90)

(91)

For a large phase margin gm should be small and also smaller than gm and gm . The
12 R 14

first condition contradicts tne condition for a high gain bandwidth product. Node
capacitances Cn 1 and Cn2 should be kept as small as possible.

5.3.1.2. Slew rate and output swing

The slew rate of the operational amplifier is determined by its bias current and
equivalent load capacitance per output terminal

SR =
1bias

Ct
(92)

A larger slew rate is obtained increasing the bias current of the operational amplifier.

The output swing of the operational amplifier is determined by the saturation voltages
of transistors Ms, Mg, MI4, MI9 and their counterparts. For each output terminal the
voltage swing is

vss + VDS, sat
l9

+ V DS, sat'4 ::;; V0 ± ::;; VDD - VSDsats - VSD, satR (93)

The output swing will be chosen larger than the output range of the integrators during
normal operation of the sigma-delta modulator. In this case the gain will be more linear
for the required integrator output range. Note that within the range of equation (93) all
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transistors stay in saturation. If the sigma-delta modulator becomes unstable due to for
example an overload, is returns to normal operations by means of the clipping levels
discussed in section 3.3. In that section it was assumed that these clipping levels are set
by the supply voltages, but in reality they are near the supply voltages. The output
swing can exceed the range of equation (93), but this means that several transistor go
out of saturation. This is not relevant, as long as the system goes back to normal
operation. During an overload the output signal of the sigma-delta modulator does not
contain any information.

5.3.1.3. Noise

The operational amplifier noise consists of a white noise contribution and a 1/f noise
contribution, due to the thermal noise and 1/f noise of its MaS transistors. In Fig.43
the noise model of a MaS transistor is shown. In this figure two noise sources are
displayed, which both represent the same noise contribution. The noise is thus referred
to the input or referred to the output of the transistor.

Figure 43. Noise model MaS transistor.

For calculating the equivalent input noise of the operational amplifier, all noise sources
are transformed to one input terminal. Therefore the equivalent input noise voltage vn,M

of several transistors has to be transformed to an equivalent output noise current in.M
and vice versa, by means of

in
2
, M = g2 v2

Mm n, (94)

The equivalent input noise power spectral density of vn,M for a MOS transistor in
saturation is [12]

(95)
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Constant KFF is a technology parameter and depends on the transistor type used. This
constant is higher for a nMOS than for a pMOS transistor, so the last one is preferred
for lower lifnoise. Every MOS transistor in the circuit contributes noise according to
equation (95), but not all noise sources are relevant. Because the circuit is fully
differential, common-mode noise sources do not affect the differential signal. Only
differential-mode noise sources do, so the noise contribution of transistors Ms, Mg,

M I2 , M I4 , M I9 and their counterparts have to be taken into account. The equivalent
input noise sources of transistors M I6 and M17 are floating for lower frequencies.
Therefore their contribution is not relevant for the band of interest. The equivalent input
noise power spectral density of the operational amplifier can thus be derived as

( J
2 (J22 2 gms 2 gmR 2

Sn OA (1) = 2[Sn M (f) + - Sn M (1) + - Sn M (1)
, '12 g 's g 'R

ml2 m12

+ (gm 14J2S2 (1) + (gm 19J2 S2 (1)]g n, M I4 g n, M I9
m l 2 m12

Substituting equation (95) in equation (96) gives

(96)

(97)

Both white noise and lif noise decrease if gm is large and also if larger than
gm ,gm ,gm and gm . Only the lifnoise term od}ansistor M12 is not affected by the

s R 14 I~

transconductances of tne transistors. Because the transconductance of a MOS transistor
is proportional to its drain current, the white noise term is inversely proportional to it,
so a larger drain current gives a lower white noise contribution. This is not the case for
the lif noise contribution. The lif noise is inversely proportional to the area of the
transistors, so large areas lowers the lif noise contribution. Increasing the transistor
areas leads however to a smaller phase margin, due to increasing node capacitances.

5.3.2. Operational amplifier design

The design of the operational amplifier will for simplicity be discussed for the
differential half-circuit. The analyses of the circuit limitations in chapter 4 also apply
to the differential (half-)circuit, but some equations have to be slightly altered. This will
be discussed when relevant during the design. The capacitance of the position-sensitive
detector is in the range of Cd=2 pF to Cd=50pF. Its largest value gives the worst-case
conditions for noise and settling, so the design is focused on it. In equations is thus
Cd=50pF assumed.
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In section 4.1, the circuit noise has been analysed for a single-ended circuit. In order to
apply the analysis on the differential half-circuit, the model of the operational amplifier
equivalent input noise has to be related to the corresponding HSPICE simulation
results. In case of a differential amplifier, HSPICE calculates an equivalent input noise
source between its two input terminals. The power spectral density of this noise source
is given by equation (97). This noise source can be represented by a noise source of half
the value at each input terminal, like is shown in Fig.44.

- +

Figure 44. Transformation of the HSPICE equivalent input noise source.

Note that not the noise power is divided by two, but the noise is, because both sources
represent the same noise source and are thus correlated. The differential half-circuit
with its relevant noise sources is shown in Fig.45.

Figure 45. Differential half-circuit of the first integrator with noise sources.

This figure is alike Fig.28, but now also the input capacitance Cg of the differential
input pair and the bias current feedback circuit is taken into account. This is the
capacitance which is seen between the two input terminals of the operational amplifier.
If a MOS transistor is in saturation, mainly a gate-source capacitance is seen at its gate.
In the differential circuit two of these capacitances are in series, so half of it is seen at
the differential input. In the differential half-circuit, twice that resulting capacitance Cg
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is relevant. Note that in the differential half-circuit also twice capacitance Cd is
relevant. The input capacitance Cg has to be estimated, because it depends on the
design. To be on the safe side a relatively high value of Cg =2pF is taken, in order to
take transistors M I2, M 13, M 16 and M 17 into account.

Equations (45) and (48) of the equivalent power spectral densities of respectively vn SC,
and Vn ,ql2' do not change for the differential half-circuit. The power spectral density of
the differential operational amplifier equivalent input noise is alike equation (37)

(98)

Note that in case of the differential half-circuit the noise power spectral density is
divided by four. The power spectral density of the equivalent input noise source due to
the operational amplifier is thus

n2
S;,eqoA(f) = 2{[2Cd +2Cg+C1]2

+ [2Cd + 2Cg + (1 + a 1)Cd 2 }{YoA/2 + SOA/}

(99)

The power spectral density of noise source vn,sc is already determined by the circuit
parameters. Substituting their values into equation (45) gives for its noise power
spectral density S; eq (f) = 2.5xlO-

27
A2/Hz. According to the calculations in

• . ' SC. -26 -27 -26 2
sectIOn 4.4 thiS leaves a margm of 2.4xlO -2.5xlO :::::2.2xlO A /Hz, for the
total power spectral density of other noise sources.

At this point the noise specification for the operational amplifier of the first integrator
can be determined. As a condition S; e (f) « 2.2xlO-

26
A2/Hz is taken.

Substituting the circuit parameters into equatio~o(99), gives as a condition for the
equivalent input noise of the operational amplifier at a frequency off= 1.2kHz

2 -13{ SOAd} -26 2Sn eq (1200) = 1.6xlO YOA +-- «2.2xlO A /Hz ~, OA d 1200

SOA -13 ITT:
YOAd + 120~« 1.4xlO y 2/Hz ~ Sn,OA(1200)« 375nY/",Hz

(100)

This frequency is the highest signal frequency, for the with frequency increasing
equivalent input noise spectral density of the operational amplifier. It gives thus the
worst-case condition for the noise power spectral density in the band of interest.
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In section 4.2.3.1 the settling behaviour has been analysed for a single-ended circuit.
In Fig.46 the differential half-circuit of the first integrator on clock phase <1>2 is shown.

Clock phase <1>2

Figure 46. Differential half-circuit of the first integrator on clock phase <1>2'

Also for this analysis capacitance Cg has to be taken into account. The equivalent load
capacitance C1of equation (87) is given by

(101)

With this equation the maximum equivalent load capacitance is estimated at C/ "" 1pF.
I

At this point the actual design can begin. First the bias current is chosen, which has to
be sufficiently large in order to obtain low noise, large gain bandwidth product and
large slew rate. For the bias current is taken Ibias=200JlA, which would according to
equation (92) give a slew rate of SR= 200V/Jls. If all transconductances are assumed to
be 10-3NV, the spectral density of the white noise power can with equation (97) be
estimated at Yo Ad "" 10nVIJHZ. This is well below the condition set by equation (100)
and leaves thus a large margin for the 1ifnoise.

It is assumed that the non-dominant poles of the operational amplifier will be located
at higher frequencies than the unity-gain frequency. In that case equation (87) is valid
for determining the gain bandwidth product. The on-time of clock phase <1>2 will be
around T $2 = 1.5 Jls, so the settling of the operational amplifier should occur within this
time. Sigma-delta modulators are relatively insensitive to relatively large exponential
settling errors, so the settling requirements of the operational amplifiers can be relaxed
[14]. If as a condition 1% settling error within an exponential settling time of 1.5Jls is
taken, the frequency of the second integrator pole can with equation (71) be determined
to be f P2 ~490kHz. This implies that 'tp SR > I~v0 ax! for Cd=50pF and also for
Cd=2pF, so slew rate limitation should ~ot occur. tile gain bandwidth product is
determined with a for the differential half-circuit altered version of equation (69)

(102)
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The gain bandwidth product has according to this equation to be GBW~52MHz.

Capacitance Cn in equation (87) has to be estimated, because it depends on the design.
3

To be on the safe side a relatively high value of Cn =1pF is taken. The
3

transconductance of the input transistors has then according to equation (87) to be
gm ~ 7X10-

4
AIV. In order to keep the input transistors M 12 and M 13 in saturation, a

12 • fsaturatIOn voltage 0 VSD,sat=0.2V is chosen. The transconductance of the input
transistors is according to equation (83) gm =10-3AIV, which is sufficiently large. The
W over L ratio of transistors M12 and IMl3 is calculated with equation (84) at
W12/L 12=104.

The next step is to dimension load transistors Ms and M6, current sources M19 and M20
and cascode transistors M s, M9, M 14 and MIS' These will be dimensioned to
accommodate a large output swing. The saturation voltage of load transistor Ms and its
complement is for matching [12] chosen on VSD sat =0.4 V, which gives Ws/Ls=25.

Matching is in this case preferred over a iarg~r output swing, because the
common-mode feedback is connected at this point. The saturation voltage of current
source M19 and its complement is chosen on VDS, sat =0.2 V, which gives
W 19/L19=95. In this case is chosen to accommodate a larger output swing. The
saturation voltage of casode transistors Ms, M14 and their complements are chosen on
V SDsat =0.2V and VDS sat =0.2V, so their transconductance is high and they also

R , 14

accommodate a large output swing. This gives for Ws/Ls= 104 and for W14/L14=50.

The output swing can be calculated at Vss+ V DS sat + V DS sat =0.4 V to
'19 '14

VDD- V SD, sat - V SD, sat =4.4 V. The bias voltages of the cascode transistors are set to
keep transistdrs Ms, Ml

x
9 and their complements in saturation. The bias voltage of the

pMOScascodestageiscalculatedatVDD-VSD sat -VSD sat -IVT I=3.6V and the bias
'5 'R It'T

voltage of the nMOS cascode stage at Vss+V DS s~t +V DS sat + V T =1.2V. In reality
the last one will be larger, because bulk and smircelYof these n~OS transistors are not
connected together. This causes an increment of the threshold voltage [12].

Transistors M 16 and M17 have the same dimensions as input transistors M 12 and MIS'

in order to keep their source-gate voltages about equal. The saturation voltage of
transistors M l to M4 is chosen at V SD sat =0.5, which gives W3/L3=33. Transistors
MIS and M 2l have the same dimension~ as transistor M 19 and its complement.
Transistors M lO, MIl' M7 and its current source M22 will be determined by simulation,
in order to obtain the required reference voltages.

The circuit is first simulated with ideal cascode bias voltages and an ideal
common-mode feedback loop. It is optimised towards phase margin, 1/f noise and
linear DC gain for a single-ended output range of 1V to 4 V or ±3 V differential. Note
that the white noise level is already set by the bias current and the W over L ratios of
the transistors. The minimum transistor length was already given as Lmin=3Jlm.
Equations (91) and (97) are used to identify the critical points that compromise phase
margin and 1/fnoise.

After that the dimensions of transistors M lO and MIl are determined, in order to obtain
the required cascode bias voltages. The calculated cascode bias voltages are adjusted
to 3.5V for the pMOS cascode stage and 1.4V for the nMOS cascode stage. Finally the
ideal common-mode feedback circuit is replaced by the switched-capacitor circuit.
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Capacitors CI to C4 of the common-mode feedback circuit are chosen at 0.5 pF, in order
not to load the output terminals too much. Its biasing circuit consisting of transistors
M 7 and M 22, can now be dimensioned to keep the common-mode voltage at
VCM=2.5 V. All the transistor dimensions are given in Table 1. For these dimensions
and the other circuit parameters, an adequate compromise between phase margin,
lIf noise and linearity is obtained.

Table 1. Dimensions of the MOS transistors.

Transistor W[~m] L [~m]

M I -M4 332 10
M s,M6 260 10
M7 20 34.2
M g,M9 312 3
MIO 254 10
M ll 150 10
M 12, M 13 312 3
M I4, MIS 140 3
M I6,MI7 312 3
MIg - M 2I 564 6
M22 21 20

The specifications obtained by simulation are listed in Table2. The equivalent load
capacitance is taken 1pF larger than calculated, thus Ct =2pF per output terminal. This
is to leave a margin for extra loading due to the switched-capacitor common-mode
feedback and due layout parasitic capacitances. If required in the final circuit, it also
gives a margin for a small compensation capacitor. All transistors stay in saturation
during normal operation of the sigma-delta modulator. The settling, the common-mode
feedback and the distortion are verified further on, in the complete circuit.

Table 2. Operational amplifier specifications (differential out).

Parameter Value I

GWB 53MHz2

FM 58°2
Ao >80dB3

Sn.OA}f) 59nV/ ,JiiZ4
Pdiss 4mW

1. Temp=300K

2. C/=2pF (per output)

3. Output range ±3V
4.1= I kHz (differential in)
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5.4. The second and the third integrator

The design procedure for the second and the third integrator, is alike the one for the first
integrator. Their capacitors have already been detennined at C2=4pF, a2C2=0.8pF,
a2b2C2=0.6pF, C3=2pF, a3C3= 1pF and a3b3C3= 1.5pF. The maximum output step of
th~se.condintegratorisl.1v02,maxl=a21.1vol.maxl +a2b2(VQ - VQ ) ",,0.6V and of the
third mtegrator l.1v03' maxi =a31.1VO2,maxi + a3b3(VQH - VQ) "" 1.8 V.

5.4.1. Operational amplifier design

The operational amplifier topology of the second and the third integrator is the same as
for the first integrator. Therefore the operational amplifier analyses of section 5.3.1 are
also valid here. Again the design procedure will for simplicity be discussed for the
differential half-circuit. Noise specifications will is this case not be derived, because
the circuit noise contribution of these integrators can be assumed negligible.
Nevertheless the operational amplifier noise will be minimised, without compromising
the phase margin too much. The settling time and gain bandwidth product equations of
section 4.2.3.1 can in a slightly altered version also be used. This will be discussed for
the second integrator and when relevant the difference with the third integrator is given.
In Fig.47 the differential half-circuit of second integrator on clock phase <1>2 is shown.

a2C2
vj(t) ------i I-----,----'----r------i

Clock phase <1>2

Figure 47. Differential half-circuit of the second integrator on clock phase <1>2'

This figure is alike Fig.46, but now the input signal is a voltage source viet) connected
to a series capacitor a2C2' The equivalent load capacitance Cl of equation (87), which
is similar to equation (01), is calculated as

C l =
2

[2Cg + a2(1 + b2)C2]C2
2Cg +[1 +a2(1 +b2)]C2

(103)
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The only difference with the third integrator is at this point. The third integrator is on
clock phase <1>2 connected to the comparator. During clock phase <1>2 it sees thus a
capacitance Cc of the comparator, between its two output terminals. Like Cd it is a
differential input capacitance, in this case of the differential input pair of the
comparator, thus for the differential half-circuit 2Cc is relevant. The equivalent load
capacitance of the third integrator is thus

(104)

Capacitances Cg and Cc depend on the design, so to be on the safe side their values are
estimated at Cg =2pF and Cc= 1pF. The last one is estimated smaller, because in
general a comparator can be made with less and smaller input circuitry. This gives
C, ;::::2.3pF and C, ;::::3.5pF. The third integrator has the largest maximum output step

2 3
and the largest equivalent load capacitance, so the design of the operational amplifier
focuses on it. If it meets the required specifications, it can also be applied in the second
integrator. Note that for both integrators the poles are fixed, because they are not
affected by the capacitance of the position-sensitive detector.

Again first the bias current is chosen, which mainly has to accommodate the gain
bandwidth product. As discussed in chapter 4 noise and slew rate are less relevant for
the second and third integrator. For the bias current Ibias=20 J..IA is taken, which would
according to equation (92) give a slew rate of SR;::::6V/Jls.

The same settling condition as in section 5.3.2 is taken here, so the second pole
frequency of the third integrator has to be also f P2 ~490kHz. This implies that
'tP SR > I~v0 I, so slew rate limitations should not occur. Basic feedback
cafculations f6r

a
determining the poles of the third integrator, are almost the same as for

the first integrator in section 4.2.3.1. Note that in this case an exponential settling error
also causes a linear deviation in the corresponding gain factor. The gain bandwidth
product is thus determined with an altered version of equation (102)

(105)

The value for the gain bandwidth product has according to this equation to be
GBW~2.1 MHz. Capacitance Cn in equation (87) has to be estimated, because it
depends on the design. To be on the safe side a relatively high value of Cn = 1pF is

3
taken. The transconductance of the input transistors has then according to equation (87)
to be gm ~ 6xl0-

5
AN. In order to keep the input transistors M 12 and M13 in

12

saturation, a saturation voltage of VSD sat=O.1 V is chosen. The transconductance of the
input transistors becomes according' to equation (83) gm = 2xlO-

4
AN, which is

ffi
. 12

su clently large.
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The rest of the design procedure is alike the one in section 5.3.2. The calculated and
afterwards by simulation optimised transistor dimensions are listed in Table 3.

Table 3. Dimensions of the MOS transistors

Transistor W [~lm] L [J-lm]

M1 -M4 33.2 10
Ms,M6 94 10
M7 48 25
Ms,M9 41.6 4
M lO 60.8 15
M ll 31.6 20
M 12,M13 208 5
M14, MIS 18.8 4
M16, M 17 208 5
MIS - M21 170 18
M 22 18 18

The specifications obtained by simulation are listed in Table4. Again the load
capacitance is taken 1pF larger than calculated, thus C/ =4.5pF per output terminal.
This is to leave a margin for extra loading due to the switched-capacitor common-mode
feedback and due layout parasitic capacitances. If required in the final circuit, it also
gives a margin for a small compensation capacitor. All transistors stay in saturation
during normal operation of the sigma-delta modulator. The settling and the
common-mode feedback are verified further on, in the complete circuit.

Table 4. Operational amplifier specifications (differential).

Parameter Value I

GWB 4. 1MHz2

FM 82°2
Ao >84dB3

Sn,OA/f) 36nV/JHz4
Pdiss 0.5mW

1. Temp=300K

2. C[=4.2pF (per output)

3. Output range ±3V
4. f= I kHz (differential in)
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5.5. The comparator

The differential comparator circuit is shown in Fig.48. Note that it are basically two
separate circuits, the actual analogue comparator and the digital switch control logic.
The analogue part is connected to the same power supply as the operational amplifiers
(VDD=5 V, Vss=OV) and the digital part is connected to a separate digital power supply
(VDDD=5V, VssD=5V), in order to reduce supply crosstalk [4].

V/_-~:: v/-/'Hl2D------I-~:::::t::::;:;1.
v/+_ V,+I'HI2D-------+-----l~

-....4'1
-~ V/_/'HlID-------+---+
-....4'1
-~V/+/'HlID-------+--t-----i

VssD--------i>---'------+--'

r----,---...--..-----..---..-----?"---,------,~-~--<JVDDD

..--+----I----C>VYPH/2N
+-+---+----i-t--+--+--C>VYPH12

"--+--+---,,+-+--c>VYNPH12
..---{>VYNPHI2N

'me{ t-

M17

---+--t--+----+---+---+---+

~Lb~~~-------r-- VSSD
VO./J

~I

Figure 48. The comparator and the digital switch control logic.

The output terminals of the third integrator are connected to the sign corresponding
input terminals V/+ and V/_ of the comparator. During clock phase <1>2 the input signal is
tracked by the comparator, a symmetrical operational amplifier made up by transistors
M I to MID' On clock phase <1>1 the comparator makes a decision by means of positive
feedback. During this clock phase the output signal Vo_of the comparator is inverted
twice, by the inverters made up by M I7, M I8 , M 21 and M 22> so the correct logical level
is generated. On the next clock phase <1>2 the comparator is disconnected from the
inverters. These are then connected into a positive feedback loop, to hold the data signal
during this clock phase. At the same time two logical NAND gates, made up by
transistors MIl to M I4 , M 23 , M 24, M 29 and M 30, transfer the data signal to the output.
Note that the output signals of the previously mentioned inverters have already settled
at the end of clock phase <1>1. The output inverters, made up by the remaining transistors,
turn the previous NAND operation into an AND operation and they drive the switches
connected to them. An estimation of the total load capacitance is made by the input
capacitance of the switches and the capacitance of a clock line, which is about O.5pF
per output terminal. For simulations O.7pF is taken.
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The symmetrical operational amplifier is dimensioned to be stable during the tracking
clock phase <1>2. The bias current is I bias=201lA. Except the output inverters all logical
gates are dimensioned to have a low peak current. All inverters have equal noise
margins in both states. The noise margins of the NAND gates, for one high input and
the other input swept from low to high are equal. This because the data signal at their
inputs has already settled, before clock phase <1>2 becomes high. In Table 5 the
dimensions of the transistors are listed.

Table 5. Dimensions of the MOS transistors.

Transistor W [Ilm] L [Ilm]

MI,M2 80 3
M3,M4 25 5
Ms,M6 106 10
M 7 -MlO 3.9 5
MIl - M I4 2 14
MIS, M I6 4 0.8
M 17, M I8 2 16
M I9, M20 4 0.8
M 21 , M22 2 28
M23,M24 2 19
M 2S -M28 2.5 0.8
M29,M30 2 19

In Fig.49 is the timing-diagram of the comparator shown. At the left are the signal
labels of Fig.48 and at the right the signals they represent. Note that to simplify the
figure, VYPH12N= y[n] . <1>2 and VYNPH12N= y[n] . <1>2 are not shown.

T/2 (Comparator delay=1 clock phase)
~, ,

VI+-VI_ - - - - - - - - - - - - - - - - - - - - --R--j- - ---- -- --- -- -- ---- -- - V in, comp

,

V YPH12 --JnL.....- y[n] . <1>2

VYNPH12

Figure 49. Timing diagram of the comparator.
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The comparator delay from the end of decision clock phase <1>1, to the end of the
following output controlling clock phase <1>2 is one clock phase. Note that the output
signal of the third integrator, thus the input signal of the comparator, changes on clock
phase <1>2 and remains at the integrator output on clock phase <1>1' Simulations show that
the comparator has a resolution of 1.3mV differential, which is equivalent to 0.026%
of a maximum differential input signal of ±VDD=±5Y. Also for this maximum
differential input signal the comparator operates correctly. The relative comparator
resolution defined in section 4.6, is thus 8= 2.6xlO-

4
. The average power dissipation

is Pdiss =0.3 mW. Note that in reality the on-time of the clock phases is smaller then
depicted, because they are non-overlapping.

5.6. The clock signal generator

The non-overlapping clock phases <1>1 and <1>2 are generated by the logic shown in
Fig.50. This is a simplified version of the actual circuit, because only two clock phases
are displayed. The input clock signal determines the sampling rate, so its frequency is
the sampling frequency is' With the dimensions of the transistors and the number of
inverters, the required timing is obtained.

2M inverters (M=I, 2, 3, ...)

Figure 50. Logic for generating the non-overlapping clock phases.

The circuit for generating the clock signals is shown in Fig. 51. Note that this circuit is
also supplied by the power supply for the digital circuitry (VDDD=5V, VSSD=OV), in
order to decrease supply crosstalk. Transistors MI to M15, M 20, M21 to M 34 , M 39 to
M51, M54 and M55 to M 68 make up the clock logic of Fig. 50. All logical gates formed
by these transistors are dimensioned to have a low peak current. All inverters have
equal noise margins in both states. For the two NAND gates the minimum noise
margins are equal for the most outer transfer characteristics, because their inputs can
change at the same moment. Transistors MI6 to M19, M 35 to M 38 , M 52, M53, M 69 and
M70 make up the output buffers, which drive the switches and logic gates connected to
them. An estimation of the total load capacitance due to the input capacitance of the
switches, the capacitance of the clock lines and the capacitance of the comparator
logical gates connected is made. The load capacitance for each output terminal is
estimated at 0.6pF for VpHlI , VPHlIN, VpHllD and VpHllDN, 1.3pF for VPH12 and IpF
for VpH12N For simulation is for these capacitances respectively 0.8pF, 1.5pF and
1.2 pF taken.
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VpHIIDN
VpHlI
VPH1IN

VpHI2N
VPHn

M J9 _ - M~II M S2 M SJ

MS5 • M6f', M"9 M 711

Figure 51. Circuit of the clock logic.

In Table 6 the dimensions of the transistors are listed.

Table 6. Dimensions of the MOS transistors.

Transistor W[J.lm] L [Jlm]

M I 2 8
Mb M3 2 7
M4 - M I5 2 8
M I6 - M I9 4 0.8
M20 2 9.5
M2I 2 14
M22 2 9.5
M23 - M34 2 14
M35 - M38 2.5 0.8
M39 2 9.5
M40 - M5I 2 14
M52,M53 2.5 0.8
M54 2 9.5
M55,M56 2 7
M57 - M68 2 8
M69,M70 4 0.8

In Fig. 52 the timing diagram of the clock logic is shown. At the left are the signal labels
of Fig.51 and at the right the signals they represent. Clock phases <P I and <P2 are
non-overlapping, with a non-overlap time of about 90ns. Clock phase <PId changes after
about 5 ns when <PI has already settled. Clock phase <PId is settled about 70ns before <P2

starts changing. The transition from low to high and vice versa is about 20ns for all
clock phases. The on-time is for all clock phase about 1.8 Jls, which is larger than the
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estimated 1.5 ~s. This implies that the assumed settling time for the design of the
operational amplifiers has been taken with adequate margin. Note that only the on-time
is relevant. The other times not so, as long as the signals change in the order as is
displayed. The average power dissipation is Pdiss =60~W

VPHII

~ \ <PI

VpHIIN \ / <PI

VPHIlD / \ <PId

VPHIlDN \ / <PId

VPHI2 / ~
<P2

VPHI2N \ / <P2

Figure 52. Timing diagram of the clock logic (proportions are not exact).

5.7. The switches

All switches used are CMOS switches, shown in Fig. 53, with equal areas for the pMOS
and nMOS transistors. Equal areas are chosen to minimise charge injection, but thus
gives a little increment of harmonic distortion. The feedback action of the system will
reduce this harmonic distortion.

VCLKN D--------I------,

VA

Vsss

Figure 53. CMOS switch.
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As a condition for the maximum on-resistance of the switch is taken 1kn, but
simulations show that the maximum on-resistance is about 600n. The bulks of
switches are connected to a separate power supply (VDDS=5V, Vsss=OV), in order to
decrease supply crosstalk. The maximum gate capacitance is estimated 40tF per gate.

5.8. Biasing circuitry

The bias currents of the sigma-delta modulator are for the prototype obtained from
three separate external current sources. The current bias circuit is shown in Fig. 54.
Input terminal IB ZOOUA receives a 200JlA current, which is mirrored to the operational
amplifier ofthe first integrator. Input terminal IBI ZOUA receives a 20JlA current, which
is mirrored to the operational amplifiers of the second and third integrator. Input
terminal IB2_Z0UA receives a 20JlA current, which is mirrored to the comparator.

<C N <'"l

~I ::J ~I ~I
\.)

0 ~I
~ N ~ ~

::s I ::s ::s ::s
~

VSSA e>--L----l----l--=::t:::::::::-l

Figure 54. Bias current circuitry.

The saturation voltage of all transistors is for matching chosen at VDS,sat=0.5V.
Connected to the operational amplifiers and the comparator, the error is 0.8% for the
operational amplifier bias currents and 0.9% for the comparator bias current. The
power dissipation is Pdiss=2.5 mW. The transistor dimensions are listed in Table 7.

Table 7. Dimensions of the MOS transistors.

Transistor W [Jlm] L [Jlm]

M1,Mz 150 10
M3 -M7 15 10

The reference voltages are for the prototype are obtained from external voltage sources.
These voltages are the common mode voltage VCM=2.5V and the quantiser levels
V Q

L
= 1.5V and VQ

H
=3.5Y. In the final version of the circuit they are obtained from

voltage dividers, with proportions VCM= VDd2, VQL = VCM- VDd5=0.3 VDD and
VQ

H
=VCM+VDd5=0.7VDD.
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5.9. Summary

The sigma-delta modulator circuit is fully differential. The power dissipation is 7.6 mW
and the required chip area about 1.5 mm2. For the first integrator is a stronger
operational amplifier designed as for the second and third integrator, because the
capacitance of the position-sensitive detector affects its settling and its circuit noise
contribution.

With an extended version of the circuit limitation analyses from chapter 4, several
required specifications of the operational amplifiers can be derived as a starting point
for the design. When possible the robustness of sigma-delta modulators is exploited, in
order to relax the required amplifier specifications.
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6. EVALUATION OF THE DESIGN

In this chapter several circuit properties are included in the high-level simulation model
of the sigma-delta modulator, in order to determine their effect on its resolution and
stability. For several other circuit properties the effect on the resolution of the system
can be calculated. The possible combinations of circuit limitations are infinite, so it is
not possible to determine a clear worst-case condition. High-level simulations can thus
only give an estimation of the robustness of the sigma-delta modulator. Nevertheless
this estimation is assumed reliable, regarding the fact that other designs have proven
the high insensitivity of sigma-delta modulators to circuit limitations [4][11][14].

6.1. Performance of the operational amplifiers

During the design of the operational amplifiers in chapter 5, several specifications have
been estimated by calculation and have been met by the realised circuits. High-level
MATLAB simulations and HPSICE circuit simulations have to estimate the actual
behaviour of the sigma-delta modulator, due to the operational amplifier properties.

6.1.1. Amplifier DC gain

The conditions for the DC gain magnitude of the operational amplifiers, given by
equations (19) and (59), are amply met. Integrator leakage and threshold limitations are
according to high-level simulations negligible for every integrator. This is also the case
for the linear settling error due to finite DC gain in equation (53).

As discussed in section 4.2.2, the harmonic distortion of the first integrator determines
the harmonic distortion of the sigma-delta modulator. To calculate the harmonic
distortion, the DC gain characteristic as a function of the output voltage has to be
approximated by a polynomial. In case of a differential circuit only the odd harmonics
are relevant, because the even ones are cancelled out [2l]. In Fig. 55 the simulated DC
gain of the first operational amplifier as a function of its differential output voltage is
shown. Three coefficients of the approximating polynomial of equation (62) are taken
into account, which gives an accurate enough approximation

The inverse polynomial is approximated by

1 R R 2 R 4 -6 -7 2 -7 4
Ao(vo>::::::I-'O+1-'2VO+1-'4VO = 66.5xlO +4.2xlO vo +2.7xlO Vo

(106)

(107)
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Ao
104

1.8

1.6

1.4

1.2

1

0.8 '----'----'----'----'------'------'--'-------' v0

-4 -3 -2 -1 0 1 2 3 4

Figure 55. Simulated DC gain characteristic of the operational amplifier.

Taking the differential signal swing into account, the magnitudes of the third and fifth
harmonic distortion components, for the maximum allowed input current
id,max= 108 nA determined in section 5.1.2 are

The signa1-to-harmonic distortion ratio SPhdR is with these values calculated at

(l08)

142 dB (109)

This seems a very optimistic estimation, but note that only the sinusoidal part of the
integrator output signal determines the harmonic distortion. For a maximum input
current of 108nA, the proportional differential output swing of the first integrator is
±0.84V. For this range is the DC gain characteristic relatively linear, so the harmonic
distortion is very low. The harmonic distortion components are outside the band of
interest anyway, but their inter-modulation products are not. These are because of the
low harmonic distortion negligible.

6.1.2. Settling ofthe operational amplifiers

The settling of the integrators on clock phase <1>2 is verified for their maximum output
step. The differential values of the maximum output steps are for the first, the second
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and the third integrator respectively I~va x I=2.4V, A~Va ax 1= 1.2V and,ma ld ,m 2d

I~va, max31 =3.6V. The current of every operational ampli er output terminal is
monitored, in order to detect slew rate limitation during the rising of the output step.
Slew rate limitation occurs if the current of an output terminal reaches its maximum
value, which is the bias current of the operational amplifier. For all operational
amplifiers the maximum output terminal currents stay well below the value of the bias
current, so slew rate limitations do not occur. The settling is thus exponential.

The second and the third integrator settle very fast, which makes their exponential
settling errors at the end of clock phase <1>2 negligible. This is also the case for the
exponential settling error of the first integrator, for a position-sensitive detector
capacitance of Cd=2 pF. For Cd=50pF the settling of the first integrator is slower,
which gives an exponential settling error of 0.7% at the end of clock phase <1>2'

According to high-level simulations is the settling at this point critical for the design.
Due to the linear settling error in the unity-gain feedback factor of the first integrator,
discussed in section 4.2.3.1, decreases the stable input range of the sigma-delta
modulator with 11 %. The consequence is that the maximum allowed input current
decreases from 108nA to 96nA. The system still reaches a signal-to-noise ratio of
SNRQ=93 dB, equivalent to a resolution of 15.2bit. This is the case for a linear settling
error of 1%, but the performance stays stable for larger settling errors. The system is
sensitive to this error, because the proportionality between the input signal and the
output signal of the sigma-delta modulator is lost. If the error would also occur at the
same time for the input signal of the sigma-delta modulator, it would lead to an error
in the gain factor of the first integrator, for which the system is relatively insensitive.

The settling on clock phase <1>1 is also adequate for all operational amplifiers and the
assumption that it is less critical is confirmed. The switched-capacitor common-mode
feedback keeps the common-mode voltage of all integrators at the required value,
during both clock phases.

6.1.3. Finite integrator output range

During normal operation of the sigma-delta modulator, the differential integrator
output range of ±3 V is accommodated by the operational amplifiers. When the
integrators are overdriven due to instability or overload, they clip at 0.1 V and 5V
single-ended or ±4.9V differential. High-level simulations show that the system stays
stable under all conditions. There is sufficient margin to compensate for different
clipping levels, due to variations in the fabrication process of the chip. The clipping
levels do not affect the resolution of the system, as long as they not limit the integrator
output range during normal operation. Note that for large integrator output signals
several transistors go out of saturation, which causes signal degradation. Like
previously mentioned is this not relevant, as long as the system is forced back to normal
operation.
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6.2. Performance of the comparator

The effect of the comparator resolution on the performance of the system is determined
with the maximum error model of section 4.6. According to high-level simulations the
stable input range of the sigma-delta modulator decreases with II %. This was also the
case for the settling error of the first integrator in section 6.1.2, thus the consequence is
also that the maximum allowed input current decreases from 108nA to 96nA. The
system still reaches a signal-to-noise ratio of SNRQ=93 dB, equivalent to a resolution
of 15.2bit.

Due to the combination of the comparator error and the settling error of the first
integrator, the system achieves a signal-to noise ratio of SNRQ=92dB, equivalent to a
resolution of 15bit, for a maximum allowed input current of id,max= 108nA. Thus for
the combination of the two errors, a larger stable output than for the individual errors
is obtained. This demonstrates very well that a clear worst-case condition for the
sigma-delta modulator can not be determined. Therefore the worst-case specifications
of both errors are taken, thus SNRQ=92dB and id,max=96nA.

6.3. Circuit and slew rate related noise

Because slew rate limitations do not occur in the circuit, only the circuit noise is
relevant. The circuit noise contributions of the second and third integrator have been
assumed negligible, because their spectral densities are shaped with a noise-shaping
function. Regarding the noise performance of their operational amplifiers, this
assumption is justified. Only the circuit noise contribution of the first integrator has to
be evaluated. The noise contributions of the operational amplifier and the
switched-capacitor can be determined, but the noise contribution of reference sources
VQ

L
and VQ can not. This because for the prototype of the sigma-delta modulator

they are obtai~ed from external sources. Only a specification for their acceptable noise
contribution can be determined.

In Fig.56 the equivalent input noise spectral density due to the operational amplifier
noise and the switched-capacitor noise of the first integrator is shown. This
characteristic is calculated by taking the square-root of their summed noise power
spectral densities. The equivalent input noise power spectral density of the first
integrator due to its operational amplifier, is obtained by HSPICE simulations. First the
equivalent input noise spectral density is determined per clock phase and afterwards the
square-root of the average of the noise power spectral densities is taken. The equivalent
input noise spectral density of the switched capacitor is calculated with equation (45).

The increase in quantisation noise due to the limited resolution of the comparator has
to be taken into account. With SNRQ=92dB and id,max=96nA, the quantisation noise
power in the band of interest is according to equ,!!ion (78) i; Q=2.9xlO-

24
A2. To

achieve the required resolution, there is a margin of i 2 - i 2 Q=9.1 X10-
24

A2 left, for then n,
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circuit noise power. The new margins for the circuit noise power and the circuit noise
spectral densities are S~, cCf) ~ 2.3xlO-

26
A2IHz and Sn, cCf) ~0.15pNJHZ. These

calculations are alike the ones in section 4.4.

Sn, eq,Cf) [N JHZ ]
10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10° 101

f=1.2kHz

Figure 56. Equivalent noise spectral density due to circuit noise.

For lower values of the position-sensitive detector capacitance Cd, the circuit noise is
determined by switched-capacitor al CI . For larger values of Cd the noise of the
operational amplifier becomes relevant. For a maximum signal frequency of
fb= 1.2 kHz, the noise spectral density is 0.06pNJHZ, which is well below the
specification of 0.15 pNJHZ. The m~in left for other noise contributions, mainly of
the reference sources, is 0.14 pN,JHz. The acceptable noise contribution of the
reference sources can be calculated with equation C48). An exact expression is not
given, because it also depends on the noise bandwidth of these sources. If the noise of
the reference sources is assumed negligiblesompared to the other noise sources, the
total noise power in the band of interest is i~ = 4.3 x 10-

24
A2. With a maximum input

current of ii.max=96nA, the achievable signal-to noise ratio and resolution are
respectively SNR=90dB and N= 14.7bit.

6.4. Capacitor deviations

Capacitor matching errors in the process used are well below 1%, thus the error in the
integrator gain factors is in the same order. High-level simulations show that the
performance of the sigma-delta modulator is insensitive to these small errors.
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The absolute error of a capacitor is about 15%, which can cause relatively large
deviations for the first integrator. In section 4.5 has been discussed that this causes a
change in the stable input range of the sigma-delta modulator, which depends on the
value of capacitor CI' Note that for C1= 1pF, id,max= 108 nA was calculated in
section 5.1.2. If C1 is 15% too large the maximum allowed input current becomes
124 nA. According to equation (81) the loss of resolution is 0.4bit, if a
position-sensitive detector with a maximum output current of 96nA is connected. The
resolution of the sigma-delta modulator becomes in this case 14.3 bit.

If C1 is 15% too small, the maximum allowed input current becomes 93nA. If a
position-sensitive detector with a maximum output current of 100nA is connected, the
sigma-delta modulator overloads for input current around this value. This is also the
case in section 6.1.2, for the maximum allowed input current 96nA. If the system
overloads, its digital output signal does not contain any usable information, but the
system returns to normal operation when the input signal decreases. In the prototype
this kind of overload can be avoided by increasing the sampling frequency, so the ratio
between Ts and C1 is corrected. For the eventual circuit this is not an attractive solution.
In this case on-chip tuning of capacitor C1 is a better option, but this leads to higher
production costs of the chip. Therefore the maximum allowed input current will be set
at id max=90nA, which leaves according to equation (81) a worst-case resolution of,
N= 14.2bit.

6.5. Summary

According to a combination of high-level computers simulations, circuit simulations
and calculations, the designed sigma-delta modulator achieves a worst-case resolution
of N= 14.2bit. In this case the noise contribution of the reference voltage sources VQL
and V Q

H
is assumed negligible. The dominant circuit noise source is the

switched-capacitor input of the first integrator. The system maintains stability under all
conditions, for a input current range of id max=±90nA.,

The worst-case resolution is determined by the largest capacitance Cd of the
position-sensitive detector and the largest possible deviation of feedback capacitor C1
of the first integrator. The system is still usable for larger values of Cd, but in that case
the resolution decreases. If this is acceptable depends on the application.
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7. DIGITAL POST-PROCESSING

The single-bit output signal of the sigma-delta modulator has a pulse-density
modulated format. In the application it contains the information of interest in AM
modulated form. For recovering this information, filtering and AM demodulation are
required. Digital low-pass filtering removes undesired signals present at higher
frequencies, which consist mainly of quantisation noise. For a pulse-density modulated
signal, a digital low-pass filter is realised relatively simple with full-adders and
delay-elements [4]. For AM demodulation of a pulse-density modulated signal, a
method has to be developed.

The output signal of a sigma-delta modulator can basically be considered as a binary
random process. Therefore it is assumed that its AM demodulation is similar to AM
demodulation of an analogue random process, which is shown in Fig.57.

X(t)----?l

2cos(2nfct + 8)

Y(t)

Figure 57. AM demodulation of an analogue random process.

An AM modulated input signal X(t), is multiplied by a carrier with frequency f e and
phase-uncertainty 8E (O,2n]. The amplitude of the carrier is for correct scaling, but is
not relevant for the demodulation process itself. The demodulated output signal Y(t) is

Y(t) = X(t)2cos(2nfet + 8) (110)

Signals X(t) and Y(t) are both random processes with power spectral densities
Skx(f) and S'¥r(f). Their auto-correlation functions [15] are Rxx(t) and Ryy(t). The
auto-correlation function of Y(t) can be calculated as

Ryy(t, t + 't) = E[Y(t)Y(t + 't)]

= 2Rxx('t)E[ cos(4nfet + 2nfe't + 28) + cos(2nfe't)]

1 2n (111)
= 2Rxx('t) 2n J[cos (4nfet + 2nfe't + 28) + cos (2nfe't) ]d8

o

= 2Rxx('t) cos (2nfc 't)
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The power spectral density of this auto-correlation function is

(112)

In Fig.58 the AM demodulation process is illustrated, with X(t) assumed to have a
similar spectral density as the quantisation noise of the sigma-delta modulator. Note
that in this case both negative and positive frequencies are regarded.

Sxx(f)

------...........~"':-"" .............------fo
Syy(f)

_______...:::::L-.J.....= f
o

Figure 58. Spectral densities before and after AM demodulation.

Multiplication of logical signals is realised with an EXOR gate. It should thus be
possible to realise AM demodulation of a binary random process with a single EXOR
gate. To verify this assumption a high-level simulation of an EXOR gate is performed,
with at one input the single-bit output signal of the sigma-delta modulator and at the
other input a clock signal with frequency f e The simulation model is shown in Fig.59.

y[n]~Ul~ Ydem[n]

~

life

Figure 59. AM demodulation of a single-bit digital signal.
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The clock signal is a square-wave, so its Fourier series consists of a fundamental
frequency and a number of harmonics at higher frequencies, of which the amplitudes
decrease with increasing frequency. The fundamental frequency performs the desired
AM demodulation, but every harmonic also acts as a demodulating carrier. Therefore
more quantisation noise is multiplied down into the base band, than in case of the AM
demodulation of an analogue random process. The in section 4.1.4 expected doubling
of the quantisation noise in the band of interest is thus too optimistic.

An estimation of the performance is made by high-level simulation. In Fig.60 the
simulation result for the designed third-order sigma-delta modulator is shown.

Sxx(f) [dB]
o ------.--------

'-3dB
-50

-100

-150

Syy(f) [dB]
o _,

-50 -7dB

-100

-150

Figure 60. AM demodulation with an EXOR gate.
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AM demodulation is accomplished, but the resolution ofthe resulting signal Ydem[n] is
decreased to 5.4bit. Due to the specific character of the quantisation noise spectrum
and due to the harmonics of the clock signal, too much quantisation noise is multiplied
down into the base band. This makes the configuration as shown in Fig. 59 useless. The
demodulation can thus not be realised directly after the sigma-delta modulator, but it
seems that digital pre-filtering is required. The proposed method of AM demodulation
requires thus further development.

After demodulation digital low-pass filtering is required, to remove the undesired high
frequency components. Finally the signal is decimated, so a multi-bit signal at a lower
sampling rate is obtained.
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8. SUMMARY AND FUTURE DIRECTIONS

A sigma-delta modulator for optical detector applications is designed, using the AMS
0.8/lm CMOS (CYE) process. The achievable resolution is 14bit, for a stable input
current ra~ of ±90nA, giving a total input reduced noise current spectral density of
0.16pN ,JHz at 1kHz. This is equivalent to an input reduced noise current spectral
density, of a transimpedance amplifier with a 650kO feedback resistor. The
switched-capacitor input of the first integrator is the dominant circuit noise source. The
power dissipation is 7.6mW and the required chip area about 1.5mm2. The circuit is
suitable for position-sensitive photodetectors and other types of photodiodes, with a
capacitance between 2pf and 50pF.

To reduce chip area and to improve linearity, the output current of the source device is
directly offered to the sigma-delta modulator. A preamplifier can thus be omitted, but
the configuration requires continuous-time discrete-time mixed-mode circuitry. The
capacitors of the first integrator are fixed, due to the topology parameters and the
specified maximum input current of the sigma-delta modulator.

First the topology of the sigma-delta modulator is determined. Calculations give an
estimation for the required parameters of the topology, but high-level MATLAB
computer simulations have to verify and optimise them. Also high-level simulations
have to determine the stability of the system under all conditions. After these
simulations, a set of suitable parameters is obtained and the topology can be translated
into a circuit. It is relevant that the circuit realises exactly the same transfer function as
the topology.

When the circuit implementation is determined, the effect of its limitations can be
analysed. These limitations mainly affect the resolution and the linearity of the
sigma-delta modulator, but its stability can also be affected. The first integrator is
identified as the most critical element in the design. By analysing the circuit limitations,
several circuit specifications are obtained, which are taken into account during the
circuit design.

The circuit is fully-differential and the critical first integrator is built around a stronger
operational amplifier than the second and the third integrator. Where possible the
robustness of sigma-delta modulators is exploited, in order to relax circuit
specifications. Finally the system is evaluated by a combination of calculations,
high-level simulations and HSPICE circuit simulations. The specifications are met and
because of the robustness of the design it should be possible to use it for
position-sensitive detectors, which have a larger source capacitance than specified.
Performance will in this case decrease, but if the application allows this the sigma-delta
modulator is still useful, as long as it stays stable under all conditions.

The digital pulse-density modulated output signal of the sigma-delta modulator has to
be AM demodulated. A proposal for this operation has been given, in the form of a
logical EXOR gate. It seems that direct demodulation of the sigma-delta modulator
output signal is not possible in this way. Due to the specific character of the
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quantisation noise spectrum, too much quantisation noise is multiplied down into the
base band. Digital pre-filtering is required, in order to remove the quantisation noise at
higher frequencies. This method of demodulation needs further development.

The performance of the sigma-delta modulator can be evaluated directly at its digital
output. The output signal of a position-sensitive detector does not contain large
components at high frequencies, so an anti-alias filter is redundant. This would also
degrade the source signal. Note that the first integrator of the system already performs
some anti-alias filtering. Because the clock frequency is relatively low, digital
post-processing logic can be simulated real-time by computer.
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Appendix

General simulation ofthe third-order sigma-delta modulator

This simulation offers the possibility, to monitor all state signals of the sigma-delta
modulator during normal operation. Besides normal operation, overload of the input
signal and different initial state conditions are used to determine the stability of the
system under all conditions. Note that the ability to recover from instability also
depends on the amplitude of the input signal. Circuit limitations can be included,
according to their models of chapter 4.

% Basic third-order Sigma-Delta modulator

% Number of output samples
nmax=262144;

% Sampling frequency
fs=256000;

% Input signal
amp=0.7;
f=IOOO;
n=1 :nmax;
x=amp*sin(2*pi*f*nlfs);

% Integrator gain factors
al=O.6;
a2=O.2;
a3=O.5;

% Feedback gain factors
b2=0.75;
b3=1.5;

% Integrator initial states
t=O;
u=O;
v=O;

% Sigma-della modulator with clipping levels +/-2.5
for n=1 :nmax

intt(n)=t;
intu(n)=u;
intv(n)=v;

% Comparator
co=sign(v);
y(n)=co;

% First integrator
t=t+al*(x(n)-co);

if 1>2.5
t=2.5;

elseif t<-2.5
t=-2.5;

end

% Second integrator
u=u+a2*(t-b2*co);

ifu>2.5
u=2.5;

elseif u<-2.5
u=-2.5;

end

% Third integrator
v=v+a3*(u-b3*co);
ifv>2.5

v=2.5;
elseif v<-2.5

v=-2.5;
end

end

xx=l:nmax;

% Input signal sigma-della modulator
figure( I)
plot(xx,x)
xlabel(TIME'),ylabel('IN')
grid

% Output signal sigma-delta modulator
figure(2)
plot(xx,y)
xlabeICTlME'),ylabeICOlIT')
grid

% Output signal first integrator
figure(3)
plot(xx,intt)
xlabelCTlME'),ylabeICINT T)
grid

% Output signal second integrator
figure(4)
plot(xx,intu)
xlabel(TIME'),ylabeICINT U')
grid

% Output signal third integrator
figure(5)
plot(xx,intv)
xlabel(TIME'),ylabeICINT V')
grid

% Output histogram first integrator
figure(6)
hist(intt,50)
titleCINT T OUTPUT HISTOGRAM')

% Output histogram second integrator
figure(7)
hist(inlu,50)
title('1NT U OUTPUT HISTOGRAM')

% Output histogram third integrator
figure(8)
hist(intv,50)
titleCINT V OUTPUT HISTOGRAM')

% Windowing of the sigma-della modulator output signal
win=kaiser(nmax,20)';
sumw=sum(win)l2;
% Fast Fourier transform of the resull and correct scaling
hh=abs(fft(win. *y))/sumw;

f=(fs/nmax)*(O:(nmax-1 )12);

% Spectral density of the sigma-della modulator output signal
figure(9)
semilogx(f,20*logl O(hh(l :(nmax/2»»
xlabel('FREQUENCY')
ylabel('Spectral density OUT [dB]')
grid
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Simulation ofthe signal-to-noise ratio characteristic

This simulation makes a sweep of the sigma-delta modulator input signal, from -120dB
to OdB in steps of 1dB. The sweep starts well below the least significant bit value and
ends well above the maximum allowed value of the input signal. The signal-to-noise
ratio is calculated with the power of the sinusoidal input signal and the total
quantisation noise power in the band of interest, so from DC to lb. Circuit limitations
can be included, according to their models of chapter 4.

% Basic third-order Sigma-Delta modulator

% Number of output samples
nmax=262144;

% Sampling frequency
fs=256000;

% Initialisation input signal
f=IOOO;
amp=le-6;

% Sweep of the input signal from -120 dB to 0 dB
for i=I:121

% Input signal
n=l:nmax;
x=amp*sin(2*pi *f*n/fs);

%Imegrator gain factors
al=0.6;
a2=0.2;
a3=0.5;

%Feedhack gain factors
b2=0.75;
b3=1.5;

% Integrator initial states
t=O;
u=O;
v=O;

% Sigma-delta modulalOr with clipping levels +1-2.5
for n=l:nmax

inu(n)=t;
intu(n)=u;
intv(n)=v;

%Comparator
co=sign(v);
y(n)=co;

% First integrator
t=t+al*(x(n)-co);

if 1>2.5
t=2.5;

elseif t<-2.5
t=-2.5;

end

% Second integrator
u=u+a2*(t-b2*co);
ifu>2.5

u=2.5;
elseif u<-2.5

u=-2.5;
end

% Third integrator
v=v+a.l*(u-b3*co);
ifv>2.5

v=2.5;
elseif v<-2.5

v=-2.5;
end

end

% Windowing of the sigma-delta modulator output signal
win=kaiser(nmax,20)';
sumw=sum(win)l2;

% Fast Fourier transform of the result and correct scaling
hh=abs(fft(win.*y))/sumw;

% Calculating the power spectral density
kk=hh*hh;

% Removing the spectral component of the input signal
for j=928: 1152

kk(j)=O;
end

% Accumulating the spectral noise power components
gg=cumsum(kk);

% Noise power and signal power in the band of interest
noise=10*log IO(gg( 1229));
signal=1 O*)og I0«ampA2)12);

% Calculating the signal-to-noise ratio in dB
snr(i)=signal-noise;

% Calculating the magnitude of the input signal in dB
xx(i)=20*log IO(amp);

% Calculating the next amplitude of the input signal
amp= I0.A«20*log IO(amp)+ I )120);

end

% Signal-to-noise ratio characteristic as function of the input signal
plot(xx.snr)
xlabel('lN (dB]'),ylabel('SNR (dB]')
grid
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