
 Eindhoven University of Technology

MASTER

Digital signal processors for the measurement of turbulence

Donker, Marcel

Award date:
1997

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b71c074f-742e-4a8c-834b-c4734b189463

Eindhoven U niversity of Technology,
Faculty of Applied Physics,
Department of Fluid Dynamics,
Group Turbulence, Chaos and collodial systems.

Digital Signal Processors for the
measurement of turbulence

R-1418-A

Marcel Donker

Februari 13, 1997

Thesis of a graduation project carried out in the group Turbulence, Chaos and collodial
systems of the Eindhoven University of Technology. This graduation project is clone in coop­
eration with the group Measurement and Computer Science.

Supervisor: dr. ir. W. v/d Water
Professor: Prof. dr. ir. K. Kopinga

Abstract

Thrbulence is a common phenomenon that we encounter everyday. There is no closed
theory of turbulence and experiments are a prime souree of information.

For fundamental turbulence research the prime goal is understanding of its smali-scale
structure. Two important tools to quantify the smali-scale structure are the energy spec­
trum and the structure function, the second being equivalent to the correlation function of
fluctuating veloeities in two different spatial points.

In this graduation project, the measurements of these turbulence characteristics in a
windtunnel have succesfully been implemented using a Texas lnstruments TMS320C40 Digital
Signal Processor. Because of its fast real-time Digital Signal Processing (DSP) capability, the
DSP processor is an excellent tool to implement these turbulence measurements in real­
time. We call the implementation of the real-time measurement of structure functions the
'Structurator'.

The turbulent wind veloeities are measured using Constant Temperafure Anemometry
(CTA) in fully developed turbulent air-flow generated with a grid in the windtunnel. Energy
spectra are measured and calculated using a Fast Fourier Transform. The velocity differences
needed for the structure functions are calculated from veloeities measured in the longitudinal
direction using the Structurator implemented in real-time on the Digital Signal Processor.
In this report it is indicated how to extend the real-time techniques towards multiple probe
measurements.

Special attention has been paid to digital signal analysis. The measurement of turbulence
quantities involves the estimation of statistkal properties of a time-dependent signal. Because
the signal becomes discrete (in time and signal value) after sampling, the question is how the
discretization will effect the estimate. The used hot-wire velocity probe is sensitive to two
perpendicular velocity components. We will discuss the affect of the associated rectification
principle on measured turbulence characteristics.

Some recommendations are given regarding future research. A proposal is given for a
multi-channel Structurator using multiple probes, forthereal-time measurement of transverse
structure functions. Also some recommendations regarding the use of a different Analog-to­
Digital Converter (ADC) are given.

Dankwoord

Hierbij wil ik iedereen van de vakgroepen FTI en Transportfysica bedanken die mij tijdens
mijn afstudeerperiode hebben geholpen. In het bijzonder gaat mijn dank uit naar:

• dr. ir. Willem v /d Water, voor de dagelijkse begeleiding tijdens mijn afstudeerperiode.
Tevens veel dank voor de nodige opmerkingen op theoretisch gebied.

• Prof. dr. ir. Klaas Kopinga, voor de algehele supervisie en voor zijn inbreng op het
gebied van de TMS320C40 en Real-time data-acquisitie, in het bijzonder op het gebied
van de Structurator.

• dr. Doug Binks, voor zijn hulp op het gebied van C en LaTeX en zijn hulp bij het
oplossen van praktische problemen.

• Gerard Trines, voor de hulp op het gebied van de hot-wire anemometer en het PhyDAS
systeem.

1

Technology assesment

The relevanee of fundamental turbulence research can he found in various technological
fields. Turbulence can he found in many industries such as the aircraft industry, the aerospace
industry or the process industry. The basic understanding of turbulence can he benificial for
all these technologkal fields of interest.

Digital Signal Processors (DSP) have become one of the most important and promising
new digital electronk devices of the past ten years. It is assumed that the growth of the DSP
market will continue into the next century and will rise above that of other electronic devkes.
Digital Signal Procesors are used intensive in a whole range of industries for a lot of purposes.

2

Contents

1 Introduetion
1.1 Thesis outline

2 Turbulence models
201 Cascade models, the legacy of Kolmogorov 0

201.1 Kolmogorov 1941 0 0 0 0 0 0 0 0 0 0 0
202 Other turbulence models 0 0 0 0 0 0 0 0 0 0 0
203 Exact results for third order structure functions 0
2.4 Batchelor parametrization and the bottleneck phenomenon
205 Connecting turbulence theory and experiments 0 0 0 0 0 0 0

3 Real-time signal processing
301 Structurator requirements 0 0 0 0 0 0 0 0

301.1 Measuring Structure functions 0
301.2 Longitudinal Structure functions
301.3 Transverse Structure functions 0

302 Motivation for using a digital signal processor
30201 Realtime requirements 0 0 0 0 0 0 0 0 0
30202 TMS320C40 DSP processor characteristics

303 Implementation of the Structurator 0
30301 Initialisation 0 0 0 0 0 0
30302
30303

Main structurator loop 0
Program end phase 0 0 0

4 Experimental setup and instrumentation
401 Overview of instrumentation
402 Hot-wire anemometry 0 0 0 0 0 0 0 0 0 0 0

40201 Operating principle 0 0 0 0 0 0 0 0 0
40202 Constant temperature anemometry and hot-wire probe

403 Calibration of the hot-wire probe 0 0 0 0
4.4 Signal conditioning and data conversion
405 The windtunnel 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 Signal analysis
501 Turbulence flow characteristic quantities
502 Discrete approximation of signal characteristics
503 Approximation of derivatives 0 0 0 0 0 0 0 0 0 0

3

5
6

8
8
9

11
11
12
15

16
16
16
17
18
18
19
20
21
22
23
25

26
26
27
27
29
31
33
35

37
37
38
39

5.4 Spectrum, Fast Fourier Transform and windowing
5.4.1 Fast Fourier Transform
5.4.2 Windowing

5.5 Differential non-linearity
5.5.1 lnfluence of non-linear calibration
5.5.2 ADC differential non-linearity ...
5.5.3 lnfluence on velocity difference PDFs .

5.6 The rectification problem
5.6.1 Influence on the energy spectrum .
5.6.2 Influence on velocity PDFs

6 Experimental results
6.1 Turbulence energy spectrum .
6.2 Velocity PDF
6.3 Velocity difference PDFs .
6.4 Structure functions

7 Recommendations for future research
7.1 Setup fora multi-channel structurator
7.2 Analog to Digital conversion

7.2.1 Higher resolution ADCs
7.2.2 ADC differential non-linearity .

7.3 Hot-wire probe

8 Conclusions

A Digital signal processing hardware and software
A.1 The architecture of Digital signal processors
A.2 The Texas Instruments TMS320C40 Digital signal processor .
A.3 The Transtech DSP PC-board .

A.3.1 Hardware
A.3.2 Software .

B Program listings
B.1 Spectrum program
B.2 Structurator program

Bibliography

4

42
42
44
45
46
47
48
49
50
51

54
54
55
56
57

60
60
62
62
63
64

65

67
67
71
75
75
78

80
80
91

99

Chapter 1

Introduetion

This thesis is a description of my graduation project clone at the turbulence research group at
the physics department of the Eindhoven University of Technology. The project involved is
a combination of real-time data-acquisition and turbulence research, however the prime field
of interest is the real-time data-acquisition and the digital signal processing and analysis.

Despite its familiar appearance and despite many years of research, there is still no good
description of turbulence. An intuitive look at turbulence might come up with the idea that
the essential characteristic of turbulence is that the local velocity or pressure fluctuations are
random. Random means that we cannot precisely predict when and what the next move of
the particles will be. Figure 1.1 shows the typical velocity fluctuations of a turbulent flow as
is measured in the windtunnel.

It is very difficult to give a precise definition of turbulence. We can make a list of some
characteristics ofturbulent flows, [26]. A turbulent flow is or exhibits: Irregularity ar random­
ness; the turbulent flow is unpredictable in nature, Diffusivity; wich causes rapid mixing and
increases rates of momentum, heat and mass transfer, Large Reynolds number; turbulent flows
always occur at high Reynolds numbers, 3-Dimensional vorticity fiuctuations; turbulence is
rotational and 3-dimensional, Dissipation; turbulent flows are always dissipative, Continuum;
turbulence is a continuous phenomenon, Flows; turbulence is a feature of fluid fiows and not
of fluids.

Usually, turbulent flows are characterized with the dimensionless Reynolds number, which
is a characteristic parameter of the flow. At low Reynolds numbers, the flow is called laminar,
i.e. the variations in the flow are predictabie in both space and time. At higher Reynolds
numbers the flow becomes unstable, and at large enough Reynolds numbers it becomes fully
turbulent. The Reynolds number is characterized as

Re= ÜL
11 '

(1.1)

with Ü the mean velocity of the flow, L a characteristic dirneusion of the flow (e.g. the
diameter of the pipe through which the fluid flows) and 11 the kinematic viscosity.

For incompressible flow, the fundamental dynamica! equations are the Navier-Stokes equa­
tions (1.2). This is a system of coupled partial differential equations and must be supple­
mented with initialand boundary conditions. The problem of the description of turbulence is
the simultaneous presence of large- and smali-scale motions and the impossibility of a closed
statistkal theory.

5

10

--;;;'

---.!. 9

~ ...
<..> .g
<»

:::..
8

Time [s]

Figure 1.1: Velocity fiuctuations as a junction of time, measured in turbulence generated with a grid.

dü +u· 'Vu= -'\JE+ v'V2u
dt p '
'V. u= 0.

(1.2)

In this thesis we will consider the case of homogenous and isotropie turbulence, which is the
case when the statistica! properties of the flow field do not change under spatial translations
and rotations. We wil concentrate on the statistica! description of turbulence in the limit
of infinite Reynolds numbers. In this case turbulence has scale-invariance which allows to
short cut the dosure problem. The dosure problem is the essence of the failure of a dosed
turbulence theory. It means that one has a set of n - 1 equations with at least n unknown
variables in it.

For a statistica! description of turbulence we can use different kinds of tools. Valuable
information can be taken from the measured turbulence energy spectrum. Other tools are
the so-called structure functions which are correlations of two-point velocity differences. The
experimental measurement of these statistica! charaderistics of turbulent flows is the major
field of interest in this thesis. We look into the use of Digital Signal Processors for the
real-time measurement of these turbulence statistics.

Digital Signal Processors are processors which allow for the fast data-acquisition needed
for real-time turbulence measurements. Digital Signal Processing (DSP) applications such
as the Fast Fourier Transfarm (FFT) can be implemented very fast allowing for an almast
real-time measurement of turbulence energy spectra. DSP processor features such as the
implementation of circular buffers and parallel instructions make it possible to measure the
structure functions in real-time. We successfully implemented these turbulence measurements
on the Texas Instruments TMS320C40 DSP processor, and further turbulence research can
now be carried out with this real-time data-acquisition system.

1.1 Thesis outline

This thesis starts with a chapter Turbulence models covering an important statistica! model
based in the turbulence cascade assumption. Although there are many models available, we

6

restriet ourself to the most basic model, the Kolmogorov K41-model. The dynamic theory of
the local structure of turbulence is described which results in some important relationships
between the second and third order structure functions basedon the Navier-Stokes equations.
Finally the Batchelor parametrisation is described and the bottleneck phenomenon, which
results in an energy pileup in the energy spectrum, is described. The bottleneck phenomenon
is hidden in this emperical Batchelor parametrisation and can also be measured with our DSP
processor data-acquisition system.

Chapter 3, Reai-time signal processing, is devoted to the Digital Signal Processor system
and the real-time requirements needed for this system for the turbulence experiments. The
implementation of the real-time measurement of structure functions is called the Structurator
and is described in detail.

In the next chapter, Experimental setup and instrumentation, the instrumentation is de­
scribed among which the used hot-wire anemometers for the measurement of the local veloe­
ities in the windtunnel. It describes the operating principle, the calibration of the hot-wire
probes and the signal conditioning of the anemometer signal. Finally the windtunnel used
for our experiments is described.

After the description of the theory, the experiments and the real-time data-acquisition,
chapter 5 is devoted to Signal Analysis. The measurement of turbulence characteristic quau­
tities involves the estimation of statistica! properties of a time-dependent signal. Because the
signal becomes discrete (in time and signal value) after sampling, the question is how the
discretization will effect the estimate. The principle of the Fast Fourier Transform (FFT),
which is used to transform the discrete velocity time-signal to the frequency domain, is de­
scribed. Yet another effect related to the discretization of the signal, is due to the usage of
discrete calibration tables, which together with the Analog-to-Digital converter (ADC) re­
sults in a differential non-linearity error. Another error is due to the hot-wire velocity probe
which is sensitive to two perpendicular velocity components. We will discuss the effects of
this rectification principle on measured turbulence characteristics.

Chapter 6, Experimental results, presents some experiment al results of measurements dorre
in the windtunnel with the DSP processor data-acquisition system. We present turbulence
spectra, velocity probability distribution functions (PDFs), velocity difference PDFs and some
structure functions calculated from these velocity difference PDFs.

In chapter 7, Recommendation for future Research, some recommendations are made re­
garding future research. A possible setup is given for a multi-channel Structurator for the
measurement of transverse structure functions. Also some recommendations regarding the
use of a new Analog-to-Digital converter are given, especially regarding the differential non­
linearity of the ADC. The rectification error should also be investigated further.

The thesis ends with some global Conclusions in chapter 8. In appendix A a detailed
description is given of Digital Signal Processors on the whole, the used DSP processor from
Texas Instruments (TMS320C40) and the used DSP development PC-board from Transtech
Parallel systems. Appendix B gives the C-programs and the Structurator assembler routine
developed for this project.

7

Chapter 2

Turbulence models

There are mainly two groups of ideas which have opposing points of view of how to approach
turbulence: The first group, the statistica[, tries to model the flow in averaged quantities. This
group follows Kolmogorov and believes in the phenomenology of cascades and the possibility
of any coherence or order in turbulence. The second group believes in the coherence among
chaos and considers turbulence from a purely deterministic point of view by studying either
the dynamics of isolated "coherent" structures or the stability of flows (that is no turbulence)
in various situations. In this thesis the first group will be of interest.

2.1 Cascade models, the legacy of Kolmogorov

In case of cascade modelling, Richardson was the first who put forward some ideas on the
theory of fully developed turbulence, [22]. He assumed a hierarchy of turbulent distauces
on different scales. 'Eddies' of a certain scale would be the result of the instability of larger
'eddies' at a larger scale. Richardson assumed a cascadeprocessof eddies breaking down and
in this cascade there is a transmission of energy of the flow motion of smaller and smaller
eddies down to the smallest scale, where the breaking-down process is stopped by dissipation.
Kolmogorov further developed and formulated the idea of Richardson in 1941. He assumed an
inertial range in which energy is transported from large eddies to smaller eddies. This range
of scales is bounded from above by the size A of the eddies at which energy is injected and
from below by the size rJ of the eddies where kinetic energy is dissipated to heat. Kolmogorov
assumed a uniform energy distribution over all eddies. Since then many reseachers came
op with ideas and models to descri he the statistkal (cascade) behavior of fully developed
turbulence. In these models the energy dissipation per unit of mass per unit of time is an
important parameter,

()

2
1 "' aui auj

E=-v~ -+-
2 . . axj axi

Z,J

(2.1)

where v is the kinematic viscosity, Ui and Uj are velocity components and Xi and Xj are
components of the position vector. In the inertial range E equals the energy transmission
from large eddies, where the energy is injected, to small eddies where the energy is dissipated
to heat by viscosity, see Figure 2.1. In the case of homogeneous and isotropie turbulence, on
average

8

Energy injection

A
()

0000
()OOOO
000()0000
OOOOOODODO DOO

I

~
1'] Dissipation

Figure 2.1: The energy cascade process following Richardson ideas. At eddies of size A energy is

injected, then energy is transmitted to smaller and smaller eddies, until it is dissipated to heat at the

smallest eddies of size TJ

(2.2)

The size, A, of the largest possible eddy will be bounded from above by the size of the
system. The size, TJ, of the smallest eddy, the cutoff scale, is determined by viseaus dissipation.
The range of scales TJ < < r < < A where no energy is injected and in which no viseaus processes
occur, is called the inertial range.

2.1.1 Kolmogorov 1941

One very important model that was of one of the first developed using the scenario of the
energy cascade is from Kolmogorov (1941), usually abreviated with K41. He developed his
theory for locally isotropie and homogeneaus turbulence, using structure functions, [14]. Lo­
cally isotropie and homogeneaus turbulence means that the probability distribution of the
relative velocity differences .ó.ü(T) = ü(x + T)- ü(x) is independent of x, independent of time
and invariant under translations (which is the same as independenee of i) and rotations, [11].
Structure functions are correlations of two-point velocity differences. A structure function of
order p is defined as:

Gp(T) = ([.ó.ü(r)]P) = ([ü(x + r) - ü(x)JP), (2.3)

Where the angular brackets denote the ensemble average.
lmplicitly assuming that the energy dissipation is uniformly distributed, Kolmogorov for­

mulated his famous similarity hypotheses:

9

First similarity hypothesis:
For locally isotropie turbulence the relative velocity distributions are uniquely determined
by the kinematic viscosity v and the average energy dissipation, (E), per unit time and per
unit of mass, provided that all distauces r = liJ are small compared with macroscales, r < < A.

Second similarity hypothesis:
When, in addition the distauces r are large compared with the dissipation range, so when r
is in the inertial range rJ < < r < < A, then the relative velocity distributions are uniquely
determined by the quantity (E) and do not depend on v.

A functional discription for the moments of velocity differences and thus for the structure
functions can be derived using dimensional analysis and the two similarity hypotheses and
this willlead to, [11]

(2.4)

in which the Cp are universa! constants. For the third-order structure function , C3(= -t)
follows directly from the Navier-Stokes equations, see section 2.3. This is called Kolmogorov's
four-fifths law,

4
G3(r) = - 5(E)r.

It follows from Eq. (2.4) that the structure functions have a sealing behavior given as,

where (p is called the sealing exponent. For the Kolmogorov theory (K41) (p = ~·

(2.5)

(2.6)

In tune with the mentioned hypothesis, there is a smallest length scale in turbulence that
can be derived from v and (E) using dirneusion counting only, taking

(2.7)

tagether with a (Kolmogorov) velocity scale,

1

VK = (v(E))4 (2.8)

By definition, the Reynolds number based on rJ and v K is unity,

VK'TJ
ReTJ = -- = 1.

V
(2.9)

It implies that fluid motion on scale rJ is dominated by viscosity.
As for the structure functions, a discription for the energy of the turbulent fluctuations per

unit of mass of fluid in scales r can be derived from the hypotheses by dimensional analysis.
By a dimensional argument, the first similarity hypothesis implies the following universal
form for the energy spectrum at large wavenumbers, the famous minus five-third law,

(2.10)

10

2 5
The proportionality constant b in E(k) = bE3k-3 is usually referred to as the Kolmogorov
constant and can experimentally be derived from measured turbulence energy spectra. In a
log-log plot of a measured energy spectrum versus the wavenumber (or frequency) a linear
behavior can be observed in the inertial range with a slope -i· In chapter 6 a measured
energy spectrum is given having this kind of sealing behavior in the sealing range.

2.2 Other turbulence models

Shortly after Kolmogorov published his two similarity hypotheses, Landau pointed out [17],
that the K41 theory could not be right, because he did not take into account intermittency.
By intermittency he meant that turbulence is not uniformly distributed in space; there are
regions with less intense and regions with more intense turbulence. In the log-normal model
Kolmogorov [15] and Oboukhov [21] tried to reconcile Kolmogorov's original theory with
intermittency. They suggested that the logarithm of the local spatially averaged dissipation
rate Er has a normal distribution.

Deviations of the K41 modeland the log-normal model from measurements are associated
to the description of intermittency in these models, therefore intermittency must be a crudal
ingredient of a sealing description of fully developed turbulence. After the ideas of Kolmogorov
and others, different models have been developed. It is beyond the scope of this thesis to
describe them all in detail, but one model will shortly be mentioned here.

Fractal models are an attempt to capture intermittency in a geometrie framewor~. The key
idea is that self-similar cascades do not need tobespace filling. Such a processis characterized
by a fractal dimension, even by a continuous dirneusion function. Measurements have shown
that the sealing exponents of the structure function depend on the order of the structure
function in a nonlinear way. The multifractal model seems to give a good discription of the
turbulence cascade.

2.3 Exact results for third order structure functions

Whereas dimensional arguments would seem to suffice for predicting the form of structure
functions, there is an exact result that explicitly relies on the Navier-Stokes equations. The
result is that for the third-order structure function, [20],

4 dGL(r)
GL(r) = --(E)r+6v 2

. 3 5 dr
(2.11)

It relates the second- and third-order longitudinal structure functions of locally isotropie
turbulence, corresponding to isotropie turbulence with sufficiently large Reynolds number.
For anisotropic turbulence we would still expect the general form of Eq. (2.11), but with
different prefactors. For example, the factor -~ would be different in the case of anisotropic
turbulence. For r » rJ (in the inertial range), when the viscosity is negligible we can write,

(2.12)

This equation was first found by Kolmogorov and is often referred to as Kolmogorov's Four­
Fifths law. A popular normalisation of the third-order structure function is the one where
we normalize the structure function by the Kolmogorov velocity v K and devide the distance

11

scale by the Kolmogorov length rJ. Then the third-order structure function Gf(r!TJ)/v'k can
be written as (for r » rJ),

(2.13)

1 3 l
where we use that VK = (v(E))4 and rJ = (fu) 4 so that v'k = rJ(E). Ifwe plot this normali-

sation of the third-order structure function Gf(r/rJ)/v'k against r/rJ on a log-log scale, then
we must find according to (2.13) in the inertial range a slope equal to unity and an offset at
log(4/5), for locally isotropie turbulence.

2.4 Batchelor parametrization and the bottleneck phenomenon
5

The famous E(k) ,....., k-3 form of the energy spectrum is a direct consequence of the form
2

G2(r),....., r3 ofthe second-order structure function. This can beseen from Fourier-transforming
G2 and using the fact that

G2(r- r') = ((v(r)- v(r'))2) = 2 i: (1- eif(r-r')) E(J)dj, (2.14)

where f denotes the frequency.
An interesting problem arises from the finite extent of sealing. In an experiment that is

performed at a finite Reynolds number, the inertial range has a finite extent. This affects the
quality of sealing of both G2(r) and E(k). A remarkable observation is that G2(r) and E(k)
are affected in a different way such that, while the sealing of G2(r) rapidly deteriorates as Re
decreases, that of E(k) remains relatively unaffected. Viscosity sets an obvious lower limit
on the sealing range.

Near r ,....., rJ the second-order structure function can be represented by the Batchelor
parametrisation, [18], [19],

(2.15)

where the sealing exponent (2 denotes the asymptotic value of (2(r) for r » rJ, vis the kine­
matic viscosity, rJ = (v314)/(E114) the Kolmogorov length, and bis the Kolmogorov constant.
The Kolmogorov constant b can be determined experimentally from the turbulence energy
spectrum. Originally Eq. (2.15) was given by Batchelor as a parametrization [1], but recently
got theoretica! support by Sirovich, Smith and Yakhot [24], who, moreover, find agreement
between the Batchelor energy spectrum and numerical simulation spectra for 30 orders of
magnitude.

It can beseen from Eq. (2.15) that for large r

(2.16)

w hereas for small r

(2.17)

12

10-3

(a) (b)

Figure 2.2: The Batchelor parametrization. (a) Second order structure function according to the

Batchelor parametrisation of Eq. (2.15). (b) Batchelor energy spectrum derived from the Fourier

transfarm of the Batchelor parametrization, multiplied with k513 .

One could say that Eq. (2.15) is an interpolation between these two behaviors. Figure 2.2a
shows a plot of the second order structure function according to the Batchelor parametrization
of Eq. (2.15). In this plot the simplified function G~8)(r) = r 2/[1 + r 2j213 has been plotted
to depiet only the sealing character of the Batchelor fit.

Next, we want to calculate the Batchelor energy spectrum E(B)(j). The second order
velocity structure function for a given energy spectrum can be calculated through the Fourier
transformation of Eq. (2.14) and can be expressed as, [20],

G2(r) = 4lo
00

(1- cos(fr))E(f)df. (2.18)

By inverting this equation we can calculate the energy spectrum from a given structure
function. First, the second order structure function can be expressed as,

((v(x + r)- v(x)) 2
)

2(v2(x))- 2(v(x)v(x + r))

(2.19)

(2.20)

We call r(r) = (v(x)v(x + r)) the second order correlation function and according to Eq.
(2.20) can be written as,

1
r(r) = (v2)- 2c2(r).

The second order correlation function is related to the energy spectrum as,

E(f) = -
2
1 {oo eifrr(r)dr.
7r } -oo

Substituting Eq. (2.21) into Eq. (2.22), gives the following relation,

13

(2.21)

(2.22)

E(f) (2.23)

(2.24)

Here, we use that (v2(x)) = kG2(oo) = 0 according to [19], and we use that f~oe eifrG2(r)dr =
2 J0oe cos(fr)G2(r)dr and we write

1 roe
E(f) =-

2
7f Jo cos(fr)G2(r)dr (2.25)

This relation between the second order structure function and the energy spectrum can be used
to derive the Batchelor energy spectrum resulting from the Batchelor second order structure
function of Eq. (2.15). Inserting this parametrization into the transformation relation of Eq.
(2.25) gives,

E(B)(f) = _-.!.._ 1oe cos(fr) Er2 /(3v) dr

27f 0 [1+(ib)!(~)2r-~
(2.26)

In order to make a graphical representation of this energy spectrum in a log plot, we use again

the simplification that G~B)(r) = r 2/[1 +r2j213 and we solve the Batchelor energy spectrum
by writing,

E(B)(f) 1 1oe r2 -- cos(fr) 213 dr
27f o [1 + r2]

(2.27)

= -.!.._~ roe cos(fr) dr
21r dj2 lo [1 + r2f13 ·

(2.28)

This will only introduce a singularity at f = 0, which we safely discard. Solving this integral
numerically we get Figure 2.2b, which gives a log plot of the resulting Batchelor energy
spectrum, times k513 . For k-513 sealing this would give a horizontal line at k = 1, but from
Figure 2.2b it can be seen that the Batchelor parametrization contains an important physical
phenomenon. An energy pileup in the crossover region of EB(!) becomes noticeable if we
compare the Batchelor spectrum with the classica! k-5/ 3 Kolmogorov spectrum. We can also
see that an energy pileup is visible at the beginning of the spectrum.

Falkovich [6] was the first to introduce the name bottleneck phenomenon for this energy
pileup. This phenomenon has been discussed recently, in various publications, [4], [6], [9], [10],
[18], [19], [23], [24], [25], and its important physical consequences hidden in the transformed
Batchelor parametrisation are a major point of discussion.

Lohse and Müller-Goeling, [19], give an analytica! solution for the relation of Eq. (2.26)
is terms of Bessel functions. For (2 = ~, the solution these authors found is of the form,

(2.29)

where A is a dimensionless constant, and p = pr~ with r~ the crossover point between the
inertial range and the viscous range in the structure function and Kv(x) is the modified Bessel

14

\
I

(a) (b)

Figure 2.3: (a) Batchelor energy spectrum according to Eg. {2.29}. {b} Enlarged section showing the

energy pileup region just befare the energy drops off due to viseaus dissipation.

function of the third kind. To view the sealing behavior of this solution for the spectrum we
only give a plot without the constants EoE213 (p')d_5

/
3 A. Equation (2.29) is plotted in Figure

2.3.
The enlarged section in Figure 2.3b shows clearly the energy pileup in the crossover region.

The question remains to what kind of physical effect the bottleneck phenomenon originates
from.

2.5 Connecting turbulence theory and experiments

The statistics of velocity fluctuations on the flow are of main interest in turbulence research.
We are interested in the sealing properties of both the energy spectrum and the structure func­
tions. The experimental quantification of the small scale turbulent fluctuations is important
for comparing numerical simulations or to value (new) turbulence models, [12]. Therefore, it
is necessary to be able to measure energy spectra and structure functions with high statistica!
accuracy.

Experimentally measured energy spectra are inherent to have a low signal-to-noise ratio,
and the improverneut of the statistica! accuracy of these measurements is very important.
The suspicion arises that there may be phenomena visible in the spectrum, with energy levels
that sofar have remained undetected.

Structure functions Gp(r) of order p are also a key tool in the statistics of the small se ale
motion of turbulence. However, for higher orders these are an average over increasingly rare
instances and increasingly large velocity differences, so the statistica! accuracy is also here a
problem and extremely long-time averages are needed. The deviation from the K41 model
and other models are visible in this higher order region of the structure functions.

This is the major motivation for developing a system based on a digital signal processor
to measure the energy spectra and the structure functions with high statistica! accuracy.

15

Chapter 3

Reai-time signal processing

This chapter deals with the initial goal of this work; the implementation of real-time measure­
ment of turbulence characteristics using a digital signal processor (DSP). First the require­
ments for the measurement of structure functions are described. We look at the structure
functions on the whole and at longitudinal structure functions in particular. Also transverse
structure functions, although not applicable to this thesis, are mentioned. Then the moti­
vation for using a digital signal processor for this kind of measurements is discussed. And
finally the actual 'Structurator' which was developed, is explained in detail.

3.1 Structurator requirements

3.1.1 Measuring Structure functions

The structure function of order p can be calculated as the integral over the probability dis­
tribution function (PDF) of velocity differences ~u(r) = u(x + r)- u(x) that are measured
a distance r apart.

Gp(r) = ((~u(r))P) = j P(~u)(~u)Pd(~u) (3.1)

In real-time measurements it suffices to accumulate the PDF's of the velocity differences for
a range of distances and to compute the structure functions Gp(r) later on. The structure
functions have sealing behavior in the form of Gp(r) ,....., r(p and we will be interested in the
sealing exponent (p which can be calculated from

(= dlog(Gp(r))
P dlog r ·

(3.2)

This exponent can be found by plotting Gp(r) in a log-log plot, and measuring the slope of
the resulting straight line. Therefore it is advantageous to select the points r exponentially.

The various configurations for measuring longitudinal and transverse structure functions
are shown in Figure 3.1.

The correlation function can be expressed in the second-order structure functions, see Eq.
(2.21). Whereas for real-time measurement of the correlation function it may still be feasible
to actually perform multiplications such as u(x)u(x+r), this is no longer possible for structure
functions of arbitrary order p, and the route via storage of the velocity difference distribution

16

(a)

/1\
I
I
I
I

: r=U 't
I
I
I
I
I

'V

~0

<:::--------------7
r

(b)

Figure 3.1: The longitudinal velocity components uL(x), uL(x + r) are defined as the veloeities on

the direction of the distance vector r, whereas the transverse velocity components ur(x), ur(x + r) are

defined as the veloeities perpendicular to the distance vector i. (a) The longitudinal veloeities are in

the direction of the mean flow. (b) The transverse veloeities are in the direction of the mean flow.

functions P(Llu) is unavoidable. Also the PDFs are an important souree of information in
turbulence research, so all is not lost.

3.1.2 Longitudinal Structure functions

The longitudinal structure function of order p is defined as the pth moment of the longitudinal
velocity difference over a distance r. In Figure 3.1 we can see that for the longitudinal structure
functions the component of the velocity which is in the direction of the difference vector ris
measured.

In turbulent flows, the turbulent velocity fluctuations u' are a small fraction of the mean
flow velocity 0. A velocity measuring probe in a turbulent flow, therefore, registers a velocity
signal whose time dependenee is mainly caused by the spatial fluctuations of the turbulent
velocity field that is swept across the probe by the mean flow. This situation is the subject
of Taylor's frozen turbulence hypothesis:

a - a
-=-U­at ax (3.3)

This hypothesis implies that temporal differences can be interpreted as spatial differences
through r = rU (Figure (3.1a)). A straightforward recipe for which flows the Taylor hy­
pothesis is applicable can not be given. A frequently used guideline is the ratio between the
standard deviation O"u of the velocity and the mean velocity 0. For au/0 < 0.3 the use of
Taylor's hypothesis is permitted, [11].

If Taylor's hypothesis is applicable, longitudinal structure functions can be computed from
a time series of velocity readings u(t) using the velocity differences,

(3.4)

17

u(x, t)- u(x, t + r)
= -~u(r)

(3.5)

(3.6)

in which r (=r /Ü) is in practice equal to multiples of the sample time. The measured velocity
signal u(t) is digitized and read by the DSP processor running the Structurator routine. This
is a DSP processor assembler routine that is capable of real-time measurement of longitudinal
structure functions. The workings of the Structurator is described in detail in section 3.3,
but a briefdescription is given here. Because the used probe voltage has a non-linear relation
to the actually measured wind velocity, an integer calibration table is used to convert the
voltage-word to a velocity-word. For 32 different exponentially distributed time delays the
velocity differences are then calculated and the velocity difference probability distribution
functions (PDFs) for each time delay are created and updated. These activities take place in
real-time. From these distribution functions the structure functions of arbitrary order can be
calculated off-line, using Eq. (3.1).

3.1.3 Transverse Structure functions

Transverse or lateral structure functions are calculated from transverse velocity differences.
The transverse velocity component is perpendicular to the direction of the distance vector r
over w hich the velocity difference is calculated (Figure 3.1).

Measuring transverse structure functions is more complicated than measuring longitudinal
structure functions. For longitudinal structure functions Taylor's frozen turbulence hypothesis
can be used and only a one-wire probe is needed. For transverse structure functions, however
an X-wire probe in combination with Taylor's hypothesis should be used to measure the
lateral velocity increments or an array of detectors perpendicular to the mean flow. In such
a configuration there is no need to invoke Taylor's hypothesis. For isotropie and homogenous
turbulence the second-order transverse structure function, GT(r), is related to the second­
order longitudinal structure function, Gf(r), as

GT() = GL() !._ dGf(r) 2r 2r+ d . 2 r
(3.7)

The degree to which Eq. (3.7) is satisfied for measured GT(r) and Gf(r), therefore, indicates
the validity of Taylor's hypothesis and the isotropy and homogeneity of the turbulent fluctu­
ations. Eq. (3. 7) can be derived from the relation between the second-order longitudinal and
transverse correlation functions, [11].

In this thesis we will not go into these type of transversal measurements and we will
restriet ourselves to longitudinal measurements, but in chapter 7 a possible setup is given to
do these transverse measurements using a multi-wire setup.

3.2 Motivation for using a digital signa! processor

In this section the motivation for chosing a digital signal processor for the kind of measure­
ments described in this thesis are pointed out. A detailed description of the DSP-system
which has been used, is given in appendix A. Here we will only give a summary of the main
characteristics of the digital signal processor and the implications for using it as a device for
measuring turbulence.

18

3.2.1 Realtime requirements

Digital Signal Processors are processors which are specially designed for doing fast real-time
digital signal processing. For the measurements described in this thesis we ask ourselves
what the real-time requirements of the hardware should be, if we want to use a special device
for doing real-time turbulence measurements. There are three main types of turbulence
measurements in which we are interested:

1. Measuring turbulence energy spectra,

2. Measuring charaderistics of the turbulent flow,

3. Measuring structure functions.

For the first type of measurements there doesn't seem to be a real-time requirement. It
seems straightforward to just sample a block of velocity samples in the time-domain and to
calculate the Fourier transformation to the frequency domain off-line using a Fast Fourier
Tranformation (FFT) algorithm. However, because turbulence energy spectra inherents a
high noise level, we want to improve the signal-to-noise ratio of these spectra. A way to do
this is to measure a high number of blocks of velocity data in the time domain, calculate
the Fourier transfarm of each time-block and updating an average energy spectrum with
the resulting frequency data-block. In this way the signal to noise ratio can be improved
significantly by averaging out the noise. It is then possible to measure a huge time-history
record of veloeities and calculate the average energy spectrum of these blocks afterwards off­
line. But improving the signal-to noise ratio even better would require storing vast amounts
of data whkh is limited by available diskspace and is not very efficient.

With a DSP processor however, it is possible to do the Fourier transformation on-line;
sample a block of velocity data, calculate the Fourier transfarm of this block using a FFT
routine, update an average energy spectrum and sample the next block of data and so on.
In this procedure information is missed between succesive time-blocks but for measuring the
energy spectrum this is not a problem. If the turbulence flow is measured far enough behind
the grid, the flow is statistically homogeneaus and isotropie and the turbulence is independent
of the way it was generated, see section 4.5. Thus the statistkal properties of the flow do
not change in the time between measuring successive time-blocks of data and calculating the
FFT algorithm. The program spectrum.c, see appendix B.l, uses this setup to measure the
energy spectra of the turbulent flow.

The second type of measurements, the calculation of the turbulence characteristics, can be
incorporated in the former, the measurement of energy spectra. When a velocity time-blockis
measured, before the FFT is calculated, some statistics can be clone on the time-block and the
resulting statistkal quantities can be used to update running averages, just as is clone for the
average energy spectrum. The extra time it takes to calculate these statistics is neglectable
compared with the time it takes to do a FFT algorithm.

Forthelast type, the measurement of structure functions, real-time requirements are high.
One way of measuring structure functions, or better, the measurent of velocity difference
probability distribution functions (D.u PDFs), is again to take a long time-history record of
the veloeities and to calculate the D.u PDFs and the structure functions afterwards off-line.
However, we want to measure large velocity differences whkh are necessary for structure
functions of higher order, and for that we need to sample a long time-history record. These

19

large velocity differences are rare events and the probability of these accuring is small, so
in order to measure them with sufficient statistkal accuracy, we need to sample for a long
integration time. This would again require vast amounts of data starage which is not very
efficient.

Here, real-time data-acquisition will provide for data-reduetion and the ability to measure
for a long duration of time. Therefore the Structurator has to form distribution functions of
(longitudinal) velocity differences ~u(T) measured a time T (conform the Taylor's hypothesis
in section 3.1.2) apart. Because the interest is in the sealing properties of the structure
functions, the time delays T need to be spaeed exponentially. The expected dynamica! range
of the sealing behavior is such that the ratio of the largest to the smallest time delay is at
most a factor of 103 . The required delay times T = nT5 , in units of the sample time Ts, have
to be stored in a lookup table. For generating the velocity differences a long circular buffer
can be used. The result of a difference calculation of two 12-bit velocity values at a certain
delay T corresponds to an address in (fast) memory. Each time a certain difference at that
delay occurs, the contents of the memory at that address has to be incremented.

3.2.2 TMS320C40 DSP processor characteristics

The requirements mentioned above have lead to the choise of using a Digital Signal Processor
for the kind of measurements described. Some of the characteristics of a DSP processor link
up with the real-time requirements needed. A detailed description of DSP processors on the
whole, in particular of the TMS320C40 DSP processor and the Transtech DSP development
board is given in Appendix A. Here, only some of the most important characteristics of the
TMS320C40 that are beneficia! to our turbulence measurements will be mentioned:

• Pipelined processing and Harvard architecture; for fast processing capability,

• 32-Bit wide instruction word; for parallel instructions or more-operand instructions,

• Bit reversed addressing; for FFT algorithm implementation,

• Circular addressing; for implementing circular buffers,

Pipelining is a technique which allows for two or more operations to overlap during ex­
ecution. In pipelining, a task is broken down into a number of distinct subtasks which are
overlapped during execution. It is used extensively in digital signal processors to increase
speed. The TMS320C40 DSP processor has a four stage pipeline in which during a given
machine-cycle, four different instructions may be active at the same time, although each will
be at a different stage of completion. Pipelining is used tagether with a Harvard architecture
of the DSP processor. In a Harvard architecture the access to data and instruction memory
is clone with seperate channels so that the information streams do not interfere. Data and
instructions are placed in seperate memory spaces. For a detailed description of the Harvard
architecture and pipelining see Appendix A.

The TMS320C40 has a 32-bit wide instruction word which makes it possible for two parallel
instructions or two- or three-operand instructions to be executed in one machine-cycle. This
parallel instruction capability also increases the speed of the DSP processor.

The capability of bit reversed addressing makes it possible for the TMS320C40 to impie­
ment Fast Fourier Transfarms (FFTs). If the data to be transformed is in the correct order,

20

the final result of the FFT algorithm is in bit-reversed order, see section 5.4.1. To reeover
the frequency-domain data in the correct order, certain memory locations must be swapped.
The bit-reversed addressing mode makes swapping unnecessary. The next time data must be
accessed, it is accessed in a bit-reversed manner rather than sequentially. In the TMS320C40,
this bit-reversed addressing can be implemented through both the CPU and DMA.

In our Structurator assembler routine the velocity differences are generated using a circular
buffer storing old velocity samples. The circular buffer acts as a sliding window that contains
the last 1024 sampled veloeities which are compared with the current new velocity sample.
As a new velocity sample is brought in, the new data overwrites the oldest velocity data.
The key to using a circular buffer is the implementation of a circular addressing mode of
the TMS320C40. The block-size register (BK) (see App.A) specifies the size of the circular
buffer. In assembler code, using the circular addressing mode is implemented by using the
'%' character in the code when addressing the circular buffer, see the assembler code in the
next section.

3.3 lmplementation of the Structurator

We now turn to the actual program which has been developed to implement the real-time
Structurator on the C40 DSP processor. In what follows the working of the real-time struc­
turator routine is explained, [16].

The Structurator enables the computation of (longitudinal) structure functions of arbitrary
order from a line measurement in real-time. The structurator allows for evaluation of structure
functions of one 12-bits time signal through the accumulation of probability distribution
functions (PDFs) of discretized velocity differences. As was already mentioned insection 3.1.2,
it suffices to measure distribution functions of velocity differences and afterwards genera te the
structure functions. The Structurator, therefore, forms distribution functions of (longitudinal)
velocity differences ~u(T) measured a timeT apart (conform the Taylor's hypothesis insection
3.1.2). Because the interest is in sealing properties of the structure function, the time delays
T need to be spaeed exponentially. The required delay times T = nT8 , in units of the sample
time T 8 , are stored in a look-up table. The velocity differences are generated using a circular
buffer of 1024 positions long.

In appendix B.2 the assembler code for the Structurator routine c40struc.asm is given,
together with the C-code structur. c, which is used to call the structurator routine and to
control the flow of data to and from the PC's harddisk and the DSP processor. The assembler
routine has three main blocks which are the initialisation, the main-loop and the end-phase.
The call sequence for the structurator routine is:

int c40struc(MCATBL,RELOFS,CALIBR,BUFFER,SIZE)

with the following arguments:

int *MCATBL: pointer to location of MCA1memory block
int *RELOFS: pointer to table with relative offsets
int *CALIBR: pointer to location of calibration table
int *BUFFER: pointer to 1024-size circular buffer
int SIZE: total number of samples to take before program end
On return: intRO = status of ADC FIFO buffer

21

3.3.1 Initialisation

At start up of the structurator routine the arguments mentioned above are passed into registers
AR2, R2, R3, RC and RS respectivelly, for the case of register based argument passing. If
stack based argument passing is chosen, then the arguments are loaded from the stack and put
into these registers. After the passing of the arguments, the pointers in these arguments are
copied into named variables for convenience (variables @MCATBL, @RELOFS, @CALIBR,
@BUFFER, @SIZE). Now the initialisation part of the structurator can commence. The
initialisation code is given below, see for the complete code appendix B.2,

INITOl:

FILL:

LDA
LDI
LDA
LDA
LDA
LDI
LDI
LDI
LDI
ADDI3
LDI
LDI
STI
LDI
LDI
LDI
LDI
RPTB
STI
LDI
AND
LDA
LDI
STI
ADDI

1024,BK
@MCATBL,R5
@RELOFS,AR5
@CALIBR,ARl
@BUFFER,AR4
@SIZE,R8
@maxval,Rl
O,R9
l,R7
Rl,R5,R6
@adc,ADC
@cmdl,CMD
CMD,ADC_OUT
ADCJ:N,RlO
*AR4--%,RO
@cmd2,CMD
1023,RC
FILL
CMD,ADC_OUT
ADC_IN,RlO
OFFFFh,RlO
RlO,IRl
*+ARl(IRl),R4
R4,*AR4--%
1024,R9

The variables cantairring the pointers, are copied into processor registers. The variabie
@maxval is equal to 4095 and is the maximum value possible in the calibration table (12 bits
ADC). Register R6 is loaded with the base address of the MCA-memory block added with
the maximum value of the calibration table. After that, the ADC registers are initialized to
enable external triggering which also will empty the ADC FIFO buffer of old data. Register
AR4 is set to point to the oldest value in the circular buffer and after the cammand-word for
the ADC is set for single wordreadof samples from the ADC FIFO buffer, the circular buffer
can be filled with the first 1024 samples. The filling of the buffer is clone by requesting for the
next sample from the ADC, after that the sample value is used as an index for the calibration
lookup table. After converting the voltage integer value to a velocity integer value via the
calibration table, this velocity value is stared into the circular buffer and the buffer pointer is

1The term MCA, which stands for Multi Channel Analyser, is an artifact of the old Structurator which was
implemented on the PhyDAS system. A Multi Channel Analyser was used to store and to increment the PDF
memories, hence the term MCA for the block of DSP processor memory which stores the velocity difference
PDFs.

22

updated for the next sample. The '%' character in the instruction LDI * AR4--%,RO is used
to store the contents of register RO into the buffer using the circular address mode. After the
buffer is filled with 1024 velocity integer values the sample counter is increased with 1024.

3.3.2 Main structurator loop

The main Structurator loop calculates the subsequent MCA memory block address to be
incremented during the acquisition of the next samples. Themainloop code is given as:

STI
LDI
AND
LDA
ADDI

NXTSMP: LDA
LDA
LDI
LDI

11 LDI
RPTBD
STI
LDA
ADDI
LDA
SUBI3
LDA
ADDI
ADDI3
SUBI3
LDA
ADDI
ADDI3

11 STI
SUBI3
ADDI
SUBI3
ADDI3

11 STI
ADDI
LDA
ADDI3
STI

STRUCT: STI
LDA
LDA
CMPI
BZ
STI
LDI
BD
AND
LDA
ADDI

CMD,ADC_OUT
ADCJ:N,RlO
OFFFFh,RlO
RlO,IRl
R7,R9
*AR5,IRO
AR4,AR6
7,RC
* + ARl (IRl) ,R4
* AR6++(IRO)%,RO
STRUCT
R4,*AR4--%
*++AR5,IRO
R6,R4
*++AR5,IR1
* AR6++(IRO)%,R4,ARO
*++AR5,IRO
8191,R4
R7,*ARO,RO
* AR6++(IR1)%,R4,AR1
*++AR5,IR1
8191,R4
R7,*AR1,Rl
RO,*ARO
* AR6++(IRO)%,R4,AR2
8191,R4
* AR6++(IR1)%,R4,AR3
R7,*AR2,R2
Rl,*ARl
8191,R4
*++AR5,IRO
R7,*AR3,R3
R2,*AR2
R3,*AR3
@CALIBR,ARl
@RELOFS,AR5
R8,R9
END
CMD,ADC_OUT
ADCJ:N,RlO
NXTSMP
OFFFFh,RlO
RlO,IRl
R7,R9

23

12-bits
Calibration
table
4096 Words

Circular Buffer 1024 Words

12-bits velocity code
New velocity sample

New velocity sample

MCAmcmory
address to be
im.Temented

MCA
Memory
8191*32 Worcts

Figure 3.2: Schematic overview of structurator routine

The main structurator loop is illustrated in Figure 3.2 and is described as follows. The
rnain-loop is situated between the global labels NXTSMP and STRUCT, see code above.
Before the loop is executed, after the initialisation block, the next sample is read from the
ADC FIFO into index register IRl and the sample counter is updated. At the beginning of
the loop at label NXTSMP, the first relative offset from the offset table is read into index­
register IRO. Register AR6 is set to point to the running index in the circular buffer, which
is the pointer to the position in the circular buffer, which is the value of the offset earlier
relative to the new sample. lnside the rnain-loop there is a second loop which increments
the 32 MCA-memory addresses, and is situated between instructions RPTB STRUCT and
STRUCT. This loop processes the 32 offset values from the offset table in 8 runs. The offset
values are thus processed in 8 groups of 4 offsets more or less interleaved, to avoid register
confiicts. Before the offset-loop can commence pointers are set and the pipeline is fiushed
(the first three instructions following RPTB STRUCT are not part of the loop). The next
new sample is used as index (IRl) for the calibration table to convert the voltage integer to
a velocity integer, which is stored in register R4. Register AR6 is updated to point to the
position in the circular buffer of the sample at the first relative offset. The velocity integer is
stored in the circular buffer overwriting the oldest sample in the buffer, and the next relative
offset is read into index register IRO. In register R4 the MCA base address added with the
velocity integer and added with the maximum value of the calibration table is stored. After
that, the loop that increments the 32 MCA memory addresses can begin.

In this loop the subsequent offset values are loaded into IRO or IRl, alternately. And
register AR6 which points to the next sample in the circular buffer conform the offset value,
is updated accordingly. The MCA memory addresses are calculated by substracting register
R4 (= max. value calibration table + MCA base address + velocity integer) with the sample
in the circular buffer conform the offset value and adding (n*8191) (with n = number of the

24

offset being processed). This memory is then stared into registers ARO, ARl, AR2, or AR3.
These MCA memory locations are read, incemented and the result (= value of MCA memory
location) is stared into registers RO, Rl, R2 or R3, which are stared into the acccording MCA
memory locations. This loop is run for 8 times, processing the 8x4=32 offset values, stared
in the offset table.

When all 32 offsets are processed, register AR2 is reloaded with the start address of the
calibration table and register AR5 is reloaded with the baseaddress of the offset-tabel. Then
the program checkes whether or not the number of required samples is already taken, if this
is not the case, then next new sample is read from the ADC, the sample counter is updated
and a branche occurs to the loop beginning at label NXTSMP (but first doing the three
instructions after instruction BD NXTSMP, pipeline ftush).

3.3.3 Program end phase

The program end part of the structurator routine is given as,

END: LDI
STI
LDI

@stop,CMD
CMD,ADC_OUT
ADC..IN,RO

The STOP cammand word is send to the ADC and the FIFO status is read from the ADC
and stared into register RO. The structurator routine returns to the C-environment making
the ADC FIFO status available to the user. In the C-program (' structur. c') the FIFO status
is checked for overflow of the FIFO buffer, if so the MCA memory tabel is useless because
samples were missed and the MCA table is not correct. A lower sample frequency should
then he chosen.

The MCA memory block which is available after runnning the structorator routine is saved
to disk to he processed further. The MCA memory block which has a size of 32x8192x4 bytes
= lMb, consists of 32 arrays each representing a velocity difference probability distribution
function. Equation (3.1) canthen he used to calculate the structure functions using these 32
velocity difference PDFs.

In chapter 6 some structure functions are given, measured and calculated with the Struc­
turator.

25

Chapter 4

Experimental setup and
instrumentation

In this chapter the experimental setup and the instrumentation for the turbulence measure­
ments are described. First, an overview is given of the total experimental setup and the
instrumentation. Secondly, the different parts of this setup are described in more detail. The
instrumentation among which the hot-wire detectors and their calibration is discussed. The
signal conditioning and the data conversion is described and finally the windtunnel in which
the experiments were clone is described.

4.1 Overview of instrumentation

Figure 4.1 shows an overview of the total experimental setup and the instrumentation used
for turbulence experiments.

For the longitudinal measurements described in this thesis, a single velocity hot-wire probe
is used. This hot-wire is connected to a DISA 55M01 constant temperature anemometer
(CTA), which gives a voltage signal representing the windvelocity in the windtunnel. The
principle of hot-wire anemometry is described in section 4.2.

The signal conditioning unit adapts the resulting anemometer signal to the input of the
A/D-converter by substracting the mean voltage and amplifying the resulting fluctuations,
see section 4.4 for a detailed description. This signal is sent via an anti-aliasing filter to the
ADC.

The used Digital Signal Processor (DSP) is from Texas Instruments, type TMS320C40.
This is a programmabie floating-point DSP capable of fast digital signal processing. A detailed
description of the DSP is given in Appendix A. We used a DSP development board from
Transtech Parallel Systems, which is a DSP-board for AT-class Personal Computers (PC).
This so-called motherboard can be placed in one of the 16-bit expansion slotsof the PC. The
DSP is situated on this motherboard and can be controlled and programmed by downloading
programs made on the PC to the DSP processor. The processor executes the downloaded
program and the results can be transmitted back to the PC to be processed further. The
Analog-to-Digital converter (ADC) can be placed on the same DSP motherboard and is
connected to one of the six communication portsof the TMS320C40 Digital Signal Processor.

For calibration of the hot-wire probes the situation is somewhat different. The calibration
procedure involves the use of the PhyDAS system for which this procedure originaly was de-

26

Traversing
mechanism

Windtunnel
experirnental section

Hot-wire

.....-probe
~~~ Main airflow direction 

~PC 

Figure 4.1: Schematic overview of total experimental setup. The local veloeities are measured with 

a hot-wire probe and a constant temperature anemometer {CTA) in the experimental section of the 

windtunnel. Via the signal conditioning unit consisting of a voltage offset (Eoff ), an amplifier {AMP) 

and an anti-aliasing low-pass filter, the voltage signal is sampled with the Analog-to-Digital converter 

( ADC) and processed by the Digital Signal Processor (C40). The final data is transfered to the Personal 

Computer (PC) to be processed further. 

signed and is described in detail insection 4.3. Here only a briefdescription of the PhyDAS 
system is given. PhyDAS (Physics Data-Acquisition System) is developed at the Physics de­
partment at the Eindhoven U niversity of Technology. The system is controlled by a Motorola 
M68030 microprocessor and a dedicated bus structure (PhyBUS) that can accommodate a 
variety of instrumentation modules, such as ADC's, stepper motor interfaces, etc. For the 
measurements described in this thesis the PhyDAS system has not been used, other than for 
the control of the hot-wire calibration setup. 

4.2 Hot-wire anemometry 

Our basic interest is in the measurement of velocity fluctuations in the air-flow. The hot­
wire anemometer has been succesfully used for many years to measure turbulent velocity 
fluctuations, because it can handle these fast velocity fluctuations with ease. In its simplest 
form, a hot-wire consists of a small metallic wire, usually of platinum or tungsten, which is 
heated by an electric current that flows through it. If the wire is caoled by air flowing around 
it, its electrical resistance is reduced and this reduction in resistance can be related to the 
local air velocity. 

4.2.1 Operating principle 

The operating principle can be understood as follows, [5]: Assume that the wire has initially 
the same temperature Tf as the air and that it has an electrical resistance RJ. Suppose that 
the wire is heated to a temperature Tw, the resulting resistance will then be given by 

27 



Plan view Side view 
z y 

L L 
x x 

w' >Jv' t • ~ I Probe 
U+u' U+u' 

(a) (b) 

Figure 4.2: Hot-wire configuration to measure the streamwise turbulent fiuctuations in an unidirec­

tional mean flow U. {a) plan view. {b) sideview. 

(4.1) 

where er is the temperature coefficient of the wire. If a current I flows through the wire, 
heat is generated at a rate 12 Rw. The heat is transferred from the wire to the fluid at a 
rate chS (Tw - Tt ), where eh is the heat transfer coefficient and S is the surface area of the 
wire. For thermal equilibrium the two rat es can be equated and, using Eq. ( 4.1) for the 
temperature difference, we get 

= 

chS (Tw- Tt) 

chS (Rw- Rt) 

crRt 

(4.2) 

(4.3) 

Heat is transferred from the wire to the perpendicular (laminar) flow U 1. by forced convection 
and to the support of the wire by conduction. Therefore, 

(4.4) 

where A and Bare measured to be independent ofthe air velocity. Eq. (4.4) is often referred to 
as King's Law. But in practice we assume a more general polynomial relation with coefficients 
that are determined in a static calibration procedure that uses a laminar flow with known 
U 1., see section 4.3. 

When a hot-wire is used for measuring turbulence fluctuations, it is to first order only 
sensitive to the components u' in the direction of the mean flow. The situation is illustrated 
in Figure 4.2, where it is assumed that the wireis aligned along the z-axis. Now, suppose that 
only the components perpendicular to the hot-wire affect its cooling. This means that the 
z-component w' does not contribute to the cooling of the wire. Thus, when the x-component 
u' is the turbulent velocity component in the direction of the main flow [! and v' is the lateral 
turbulent velocity component perpendicular to the wire in the y-direction, we can write 

1 

U 1. = [(U + u') 2 + v'2] 
2 

. ( 4.5) 

A series expansion gives 

28 



Figure 4.3: Schematic overview of an anemometer. It shows the Wheatstone bridge with a wire, Rw, 
two fixed resistors, R1 and Rs, and a variable resistor Rv. The constant resistance of the wire is 

controlled by the feedback amplifier. The voltage Eaut is a measure of the flow velocity. 

(4.6) 

Thus to first order in small quantities 

uj_ = [J +u'. (4.7) 

In section 5.6 we will worry about the neglect of the perpendicular fluctuating velocity. 
For measuring turbulent veloeities two different methods can be applied: constant-current 

anemometry and constant temperafure anemometry. The first methad is the oldest. Here 
the electric current I is kept constant and the temperature of the wire (and hence its elec­
trical resistance) changes due to the fluctuating cooling caused by the fluctuating velocity. 
Constant-current anemometers are less convenient to opera te because the response of the wire 
falls at high frequencies. In the second case, the electrical resistance of the wire and so its 
temperature is kept constant. Now, it is the electric current that fluctuates due to the air­
velocity fluctuations. This last methad is more convenient to operate and higher frequencies 
can be measured. The common methad of measuring the resistance change of the hot-wire is 
to build the probe into an arm of a Wheatstone-bridge. 

4.2.2 Constant temperature anemometry and hot-wire probe 

For the measurents in this thesis Constant-Temperature Anemometry (CTA) was used to 
measure velocity fluctuations. The anemometer used was a type DISA 55M10 anomometer. In 
Figure 4.3 the electrical circuit of the anemometer is schematically shown. The Wheatstone­
bridge consists of two fixed resistors R 1 and R 8 , the probe (hot-wire) resistance Rw and a 
variabie resistor Rv. 

The resistance of the wire has a positive temperature coefficient and therefore it will 
increase when the wire is heated by an electric current. When the probe is caoled through 
an airflow the feedback amplifier controls the current through the probe and therefore its 

29 



Wire 

Wire 

Ceramic pipe 

3mm 

Figure 4.4: Schematic view of the hot-wire probe with its dimensions. 

(constant) temperature and resistance. The values of the resistors R 1 , Rs and Rv determine 
the resistance of the probe for which the bridge is in equilibrium. The working temperature 
(resistance) of the hot-wire is determined by 

(4.8) 

A higher working temperature gives a better sensitivity of the anomometer. The set tem­
perature (Rw = 1.6RJ) is a campromise between sensitivity and mechanica! stability, where 
RJ is the resistance of the hot-wire for which the bridge is set in equilibrium with variabie 
resistor Rv· The voltage Eout is a measure of the velocity U of the flow. 

The probe used for the experimentsis shown in Figure 4.4. The probe is positioned in a 
holder at the front end of a long pipe that points into the flow. The diameter of the tube of 
the probe in which the prongs are fixed is 3 mm and the prongs are 10 mm long. 

The effective lenght lp of the probes is an important parameter. If this length is to 
small in relation to the diameter d of the wire, the heat loss to the prongs might affect the 
dynamic behavior of the wire. A frequently used rule of thumb is that the ratio ld/ d should 
be larger than 200, [5]. In this case it is assumed that the ends of the wire are at a constant 
temperature. However, the temperature of the ends of the wire fluctuates. The ratio of the 
heat lost from the wire by convection to that lost by conduction to the prongs changes under 
dynamic conditions and the temperature distribution along the wire changes, [11]. The latter 
is subject to the restrietion that the mean wire temperature is constant, which is imposed 
by the CTA circuitry. The frequency dependenee of the heat lost to the prongs implies that 
the static calibration might not be completely representative for the dynamic behavior of 
the probe. The dynamic behavior of hot-wire probes has been stuclied many times, and it is 
known that the influence of the prongs is insignificant for probes with ld/d ~ 200, [11]. 

In our measurements we used a wire with ld = 0.2mm and d = 2.5J.-Lm, which results in a 
ratio of ld/ d = 80. The size ld = 0.2mm is chosen to be of the order of the Kolmogorov length 
scale TJ, to minimize averaging effects. This implies that the above mentioned dynamic effects 
may become important. However, a smaller diameter d < 2.5J.-Lm for the wire is physically 
difficult to make. 

30 



....................... ~.-~. 
0.05 

cl 8.3511 +/· 3.5121·03 
c1 n.312 +/· 5.1011·01 
cl 95.1n +I· .m 

0 

dP 
c6 74.583 +/· 1.12 

U c5 Zt.Ul t/· 5.U Q) 
00 

~ o o 0 00 
'è 

0 OJ~ 0 

OOo t50 
0 0 

0 0 
Ooc 0 00 ~ 

~ 0 0 
0 Co ocj§l = 0 0 0 

'l:t!1:Po 
0 

'è oo 0 
ooo 

0& ó> @ 

'%o 
0 

0 0 'èo 0 0 

.. as 

l.O l.O 
Bpauin;·ilt de aaao1eter 

l.l 

(a) (b) 

Figure 4.5: A typical hot-wire probe calibration curve. (a) The fitted curve shows the relation between 

the wind velocity and the measured voltage from the anemometer. {b} The residues of the 4th order 

polynomial to the calibration points 

4.3 Calibration of the hot-wire probe 

The output voltage (Vaut) of the anemometer is a function of the air velocity U+ u'. As the 
relation between the velocity and the voltage can not be calculated on a theoretica! basis, the 
wires are usually calibrated in a laminar flow. 

In the experiments the wire has been calibrated before each measurement, using portable 
automated calibration equipment. The static calibration of the detector including the filters, 
amplifiers, ADC, etc was done in-situ. In this way, the probe was not moved after the 
calibration and possible deviations of the instrumentation were included in the calibration. 
A calibration nozzle is used to generate a known laminar flow perpendicular to the wire. The 
output voltage of the anemometer is measured over a range of air-velocities. The measured 
calibration functions U j_ (V) are parameterized using a fourth-order polynomial, 

(4.9) 

with co ... c4 the fit parameters. This polynomial is used to generate the calibration tables 
that are needed for the real-time data processing. Figure 4.5 shows a measured and fitted 
calibration curve. The residues for this polynomial fit seem to have some kind of correlation 
between them, which is of course undesirable. This is likely to be caused by the pressure 
transducer used during the calibration procedure. During calibration the pressure transducer 
has to be switched through different scale-ranges and this probably causes the effect depicted 
in Figure 4.5b. 

In ref. [8] the calibration procedure is described for the PhyDAS system. Because the 
ADC used as input device for the digital signal processor, was mounted on the Transtech DSP 
PC-board, it was neccesary to measure the voltage of the anemometer with this ADC and not 
with the ADC used for the PhyDAS system. Without having to do the whole procedure of 
rewriting the software for the calibration procedure for the Transtech DSP system, a method 

31 



DISK 
File exchange File exchange 

PhyDAS 

' 
' 

M68030 

i 
l ...... --i~n~l 

S<~l <oo.Otiool:• -ijl 'l _____ - ----~-113-- =----~ -::-- j 

Adapted calibration setup Old calibration setup 

Figure 4.6: Blockdiagram of the calibration setup. The old calibration setup with the PhyDAS system 

has been adapted to incorporate the DSP /PC system. The wire voltage is now read with the ADC from 

the DSP system and a mounted disk is used to transfer the voltage information to the PhyDAS system 

by means of a file exchange. 

was developed to combine the ADC and the DSP-system with the already existing calibration 
procedure on the PhyDAS system. 

In order to make it ourselves not too difficult it was decided that a means of communication 
had to be made to let the PhyDAS-calibration program take the voltage readings from the 
ADC /DSP-system and use it in the calibration of the hot-wire. Figure 4.6 is a schemetical 
representation of the adapted calibration setup in comparison with the old setup. 

The original calibration procedure has the following set up [8]: the airflow for the nozzle 
is generated with high pressure air (6bar) (HPA). The air is cleaned with a filter and an 
oil trap (FO). The pressure is reduced to 4bar with a reducer (RE) to dim the long time 
pressure variations and then led into a barrel with a capacity of 100dm3 (BA) to dim the 
high frequency pressure veriations. Next, the air is led to valves to regulate the airflow. One 
of the valves (Vauto) is controlled by the PhyDAS computer (M68030). The other two (Vmin 
and Vmax) determine the minimum and the maximum flowspeed. By introducing these two 
valves, the whole range of the automated valve is used independent of the range of the flow. 
After these valves, the airflow is led through a heat exchanger (HE), to allow the air to gain 
the temperature of the surroundings. Finally, the air reaches the nozzle (N). The nozzle is 
mounted on a computer controlled x-y-table (XY) for calibrating multiple wires. The velocity 
of the air-flow from the nozzle can be calculated from the pressure in the nozzle relative to 
the air pressure outside the nozzle. The pressure is measured with a pressure transducer 
(PD). The output voltage of the pressure transduceris within the range of 0-1 Volt. The ADC 
is designed for a range of ±lOVolt, therefore an amplifier with an offset (AMP) adapts the 
output voltage of the pressure transducer to the range of the A/D-converter (ADC). This 
converter is triggered by the PhyDAS computer (M68030). Aftera scan the computer writes 
the calibration data to disk to be processed further. 

32 



Low-pass filter 
Probe E 1\ 

o:=:J----i Anemometer Offset Amplifier 
0 L__j_ 

t 

Figure 4. 7: The principle of the signa[ conditioning unit. 

The calibration procedure was left the same except for the part where the voltage is 
measured from the hot-wire. For our experiments it was neccesary to use a different constant 
temperature anemometer (CTA, DISA 55M01) and to use the Transtech ADC tagether with 
the C40 digital signal processor. The transfer of the voltage reading from the CTA, to the 
PhyDAS computer is done by means of a so called 'file-handshake' between the PhyDAS 
and the DSP-PC system. When the PhyDAS calibration program is ready to take a voltage 
reading from the hot-wire probe, a 'ready file' is written to a directory on a mounted disk 
which is accessible for both systems, and the DSP-PC waiting for this ready-file, then takes 
1024 samples from the probe with the Transtech ADC, calculates the average, and writes the 
mean voltage value to a data file and writes an 'acknowledge file' to the same directory. In 
the mean time the PhyDAS system waits for the acknowledge file and when it receives it, the 
voltage data is available. The mean voltage value of the probe read from the data file is used 
as a point in the calibration curve. 

This adapted calibration procedure works well, only the time it takes to do a complete 
probe calibration is increased in comparison with the original calibration setup due to the ex­
tra time needed for the 'file-handshake '. It depends on future developments if this calibration 
procedure is maintained or if it will be completely transfered to the PC-DSP system. The 
only extra equipment needed will be a steppermotor controler to control the different motors, 
so this will not be a huge problem. Then only rewriting of the software for the C40 DSP and 
PC has to be done. 

4.4 Signal conditioning and data conversion 

Before data-acquisition can commence, the parameters of the digital measurement system 
must be set. The purpose of the signai-conditioning unit is considered first. An n-bit A/D 
converter operates in discrete voltage steps, D.E, with 2n different output values. A 12-bit 
converter can therefore only select 4096 different output values, and if the voltage range of the 
A/D converter is ±10 V then D.E = 4.9 mV. Consequently, if a nonlinear voltage signal with 
small fluctuations like a turbulence signal from an anemometer, is fed directly into the A/D 
converter, then significant resolution errors may occur in the fluctuating part of the acquired 
signal. 

A practical way of minimizing this problem is to match the fluctuating part of the hot­
wire signal to the A/D converter's voltage range, by using a signai-conditioning unit. The 
procedure is illustrated in Figure 4. 7. The signai-conditioning steps are as follows: first, an 

33 



offset voltage, Eoff, which is approximately equal to the time-mean value, E, is substracted 
from the direct hot-wire signal, E(t). Provided that the value of Eoff is known, then any 
reasonable value of Eoff can be used. The signal, E(t)- Eoff, is then amplified, with a gain 
G, so that the fl.uctuating output signal, Ec(t), from the conditioning unit, 

Ec(t) = G(E(t)- Eoff ), (4.10) 

nearly covers the complete A/D converter voltage range (±10Volt). Having set the offset, 
Eoff, and the gain, G, of the signai-conditioning unitand having set the low-pass filter (anti­
aliasing filter) with the appropriate cutoff frequency ( = half of the sampling frequency), the 
only remairring step is to specify the sampling ra te and the sampling time ( or the number 
of samples). Data-acquisition can then be initiated, and on completion a digital time-series 
record, Ec(i), will be available. 

The nonlinear voltage signal, E(t), has to be converted into the corresponding velocity 
time-history, U(t), using the calibration curve. The required statistica! velocity information 
can then be obtained by an analysis of U(t). The data acquired by the DSP processor is a 
time-series record ofthe voltage, Ec(i). The corresponding anemometer voltage values, E(i), 
can be obtained by inverting Eq. (4.10) giving 

E(i) = ~Ec(i) + Eoff· (4.11) 

To evaluate the required velocity information it is necessary to apply the calibration equation 
specified as the 4th-order polynomial curve fit of Eq. ( 4.9). It would be very time consuming 
to calculate each time the 4th-order polynomial to convert the voltages to velocities. A time­
saving solution to this problem is to combine digital data acquisition with a look-up table 
method. 

The most direct look-up table method utilizes the n-bit nature of an A/D converter. 
Consicier the following two A/D principles. Firstly, an n-bit A/D converter can only identify 
2n different output values over the complete input voltage range, in our case ± 10V, and 
for a typical 12-bit converter there are only 4096 different output values. Secondly, the 
direct output from the A/D converter is an integer value, I. For a 12-bit, ± 10V, ADC the 
relationship between I and the ADC output voltage, Eout. is 

20 
Eout = -10 +I 

4095
, (4.12) 

with 0 ::; I ::; 4095. For each input voltage, Ec to the A/D converter, the nearest value of I 
which will minimize Ec- ( -10+20I /4095) is selected1 , and at the end of the data acquisition 
an integer time history record, I( i), will be available. Setting Eout(i) equal to the A/D input 
voltage record, Ec(i), we have 

Ec(i) = -10+I(i) 4~~5 . (4.13) 

To obtain a velocity history record, it is neccessary to convert the voltage time-record to a 
velocity time-record. This can be done with the 4th-order polynomial fit, like Eq. ( 4.9), 
which is acquired during the calibration procedure, see section 4.3. As mentioned before it 

1This type of analog-to-digital conversion is called a successive approximation ADC. In section 5.5 we will 
consider the differential non-linearity, inherent for this type of ADC 

34 



would be time-consuming to calculate the 4th-order polynomial for each data point, but this 
can be clone with a table look-up method. If we write the calibration equation ( 4.9) as 

(4.14) 

and inserting Eq. ( 4.11) into Eq. ( 4.14) the following relationship between the perpendicular 
velocity U 1_ (i) to the hot-wire and the acquired voltage, Ec( i), can be obtained: 

(4.15) 

Finally, by introducing the digital relationship between Ec(i) and I(i) of Eq. (4.13), the 
relation for U 1_ (I( i)) becomes 

U1_(I(i)) = f (~ ( -10 + I(i) 4~~5 ) + Eoff) ( 4.16) 

In Eq. (4.14) the coefficients co, c1, c2, c3 and c4 are known calibration constauts determined 
from the calibration of the hot-wire probe, and in Eq. ( 4.16) G and Eoff are known preset 
values for a set of measurement points. The only variabie in Eq. ( 4.16) is the integer variabie 
I, and fora 12-bit ADC I can only have 4096 different values. Therefore, if a large number of 
data conversions are required, it is worthwhile using the look-up table methad due to savings 
in the data-conversion time. The table look-up methad can be implemented in the following 
way [5]: 

1. The probe is first calibrated and the signai-conditioning unit set. A look-up table, 
V(j), 0:::; j:::; 4095, is then created using Eq. (4.16). 

2. For each data acquisition, the input voltage record, Ec( i), is stared in its equivalent 
ADC integer format, I( i). 

3. Data conversion is achieved by poking each value of I(m) into the look-up table and 
retrieving and storing the related velocity integer representation. 

4.5 The windtunnel 

The measurements in this thesis were clone in the large windtunnel of the Eindhoven University 
of Technology situated in the building 'Warmte en Stroming' and is shown in Figure 4.8. This 
tunnel is a closed windtunnel and can generatea flow with a maximum speed of 25m / 8 • lt has 
an experiment section of Sm lenght with a 0. 7 x 0.9m2 cross-section. In this tunnel we can 
generate grid turbulence by a grid in the flow. Since there is no continuing souree of turbulent 
energy, the turbulence decays slowly with the distance downstream. Far enough behind the 
grid the flow is statistically homogeneaus and isotropie and the turbulence is independent of 
the way it was generated, [2]. 

Measurements for the longitudinal structure functions and for the turbulence spectra 
where clone in this windtunnel. The grid consists of a planar mesh with square rods. Grids 
are usually characterized by the solidity of the grid, which is the ratio of open to blocked area, 
and the mesh size. Several investigators have found that the flow should be fully developed 
and thus independent of the initial conditions for x/M > 30, where M is the mesh size of 

35 



··------------------------· 21..S. -----------~--:f· 

/// I 
,~, I 

/:" I 

(a) (b) 

Figure 4.8: Schematic view of the Windtunnel 'Goliath' at the Eindhoven University of Technology. 

(a) Photograph. (b) Schematic view: 1} experiment section, 2) blower, 3) contraction, 4) lamellae, 5) 
fiowdirection. 

the grid, [11]. The used grid in this thesis had a mesh size M = O.lm and 36% solidity. The 
probewas situated at about xjM = 30 behind the grid. 

In grid-turbulence, the situation of isotropie turbulence is most closely approached at the 
centerline of the grid. However, in an attempt to find a campromise between isotropy and 
the value of the Reynolds number Re>.. the probe were placed away from the centerline closer 
to the wall. So higher Reynolds numbers could be measured while losing isotropy of the 
turbulence flow. 

The vertical position of the hot-wire probe in the windtunnel can be varied by means of 
a traversing mechanism, see also Figure 4.1. This mechanism makes it possible to move the 
probe from the bottorn to the top of the experiment section by means of a stepper motor. 

36 



Chapter 5 

Signal analysis 

In this chapter a description of the digital signal analysis is given. The measurement of 
turbulence quantities involves the estimation of statistica! properties of a time-dependent 
signal. Because the signal becomes discrete (in time and signal value) after sampling, the 
question is how the discretization will effect the estimate. Another, related, effect will be due 
to the usage of discrete calibration tables. The used hot-wire velocity probe is sensitive to two 
perpendicular velocity components. It is most sensitive to the component u' in the direction 
of the mean flow, the contri bution of the v' component being of the order of ( v')2 jü, where Ü 
is the mean flow velocity. We will discuss the effect of this rectification principle on measured 
turbulence characteristics. 

5.1 Turbulence flow characteristic quantities 

Turbulence flow is characterized by the following quantities. We use () to denote ensemble 
averages. It is assumed that those can be approximated by a time average. The mean velocity 
Ü is thus defined as 

Ü = (u(t)). (5.1) 

Due to stationarity of the flow the result will not depend on t. The root-mean-square velocity 
f7 u is defined as 

(5.2) 

and the mean energy dissipation (E),see Eq. (2.2), 

(5.3) 

From these quantities we can calculate; the Kolmogorov lenght fJ, 

(5.4) 

the kolomogorov velocity Vk, 

37 



the kolmogorov time-scale tK, 

the K olmogorov frequency f K, 

f) 
fK = -2-, 

1frJ 

the internallength scale À(= the Taylor micro scale), 

À = U a, ( ( ~~)} l , 
and the internal Reynolds number Re>. based on the Taylor micro scale, 

R 
À(Ju 

e>. = -. 
IJ 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

These quantities are neccesary to characterize the flow in the windtunnel. An important 
quantity is thus the RMS derivative of the turbulence signal. 

5. 2 Discrete approximation of signal characteristics 

If u(t) is the measured velocity, then weneed the mean velocity (Ü), the RMS velocity (urms) 
and the RMS derivative velocity ( Ürms) to ealculate the turbulenee eharacteristies of the flow. 
The mean velocity is 

1 fT 
tJ = (u(t)) = T Jo u(t)dt (5.10) 

where we have invoked the ergodie theorem that says that the average () ean be approximated 
by a time average. The RMS velocity and the RMS derivative velocity are 

_ 1 [ 1 fT -] ~ Urms = ((u(t)- U) 2
)2 = T Jo u2(t)dt- U2 

, (5.11) 

(5.12) 

These quantities ean be extraeted from both the time-series data u(t) and from the turbulenee 
power spectrum lu(w)j2. The companion speetral estimates are, for the RMS velocity, 

Urms = (u2 )~ = 2~ [i: iu(w)l 2dw] ~, (5.13) 

and for the RMS derivative velocity, 

38 



. . 2 l 1 [!00 

2 2 ] ~ 
Urms =(u ) 2 = 27f -oo W iu(w)l dw , (5.14) 

where Iu( w W represents the measured turbulence power spectrum and w = 27r f denotes 
angular frequency. 

5 
A typical turbulence spectrum shows a rapid drop off (as f-3) to the noise level, equiva-

lent with the K41 theory. It is crudal to understand the way in which various time-discrete 
approximations are sensitive to noise and allow an adequate discrimination of the true tur­
bulence and noise components of the measured signal. 

The mean velocity and the rms velocity can be directly calculated from the time-series 
data u(t) but are most efficiently calculated from stored histograms of discrete signal values. 
For the mean and rms values of velocities, a lookup in a discrete table F is needed to couvert 
the discrete voltage signal to discrete velocities. Let us call i the signal voltage value that is 
discretized with 2log(N + 1) bits, then 

[J = ~~(/ F( i)P( i) 
~~o1 P(i) ' 

and the rms velocity Urms = CJu is given by, 

1 

u - () - ~-o - u2 (~~-
1 F(i) 2 P(i) - ) 2 

rms- u- ~~0 1 P(i) 

(5.15) 

(5.16) 

In section 5.5 differential non-linearity is described which influences the velocity PDFs 
P( i) from which these quantities are calculated. 

5.3 Approximation of derivatives 

For calculating the rms derivative velocity ( Ürms) we need the first derivative of the velocity 
signal u(t). We use a numerical differentiating formula of some order n. A secoud order 
( n = 2) discrete approximation of the time-derivative is given as 

-:- u(t+~t)-u(t-~t) 
U=~----~~~----~ 

2~t ' 
(5.17) 

where the tilde denotes approximation. Calculating the rms derivative velocity of the time­
series signal then results in the following: 

1 

-:- _ ( (u(t + ~t)- u(t- ~t)) 2 ) 2 

Urms- 2~t (5.18) 

For the time averaged value of the derivative we use a discrete averaging. For a test let us use 
a simpel cosinus input signal for the velocity: u(t) = cos(wt). This testsignal has a true rms 

1 

derivate value of: Ürms = ( ~) 2 
w. We can see that this value is depending on the frequency 

of the input signal. If we look at the Ürms value of the testsignal in a discrete way, we find: 

1 

Urms = [
_!_ f= [cos((i + 1)w~t)- cos((i- 1)w~t)] 2]

2 

Ni= 1 2~t 
(5.19) 

39 



Working out the square and letting 8 = w~t, gives: 

1 

-:- = [!__ ~ [1 + ~cos((i + 1)28)- 2cos((i + 1)8)cos((i -1)8) + ~cos((i -1)28)]]
2 

Urms N ti 4(~t)2 

(5.20) 
Using that -2cos((i + 1)8)cos((i- 1)8) 
cosinus gives: 

- (cos 2i8 + cos 28), some rearranging of the 

1 

-:- = [!__ ~ [1 + ~ cos((i + 1)28) + cos((i- 1)28) - cos(2i8) - cos(28) ]]
2 

Urms N LJ 4(~t)2 
t=l 

(5.21) 

Then using that L::~1 cos(i+1)28 = L::f=l cos 28k-cos28 and 'L:~ 1 cos(i-1)28 = L::f=1 cos 28K + 
1, gives the result: 

1 

- 1 [ 1 N 1 1 N 1 1 N ]
2 

Ûrms = -- 1 + N L cos28k- N cos28 +- L cos28k +-- N L cos28k- cos28 
2~t 2 k=l 2 2N k=l 2N k=l 

(5.22) 
Striking away the sums in the last equation gives the result: 

1 - 1 (2N + 1) 2 1 
Ûrms = 2~t 2

N (1- cos(28))2; with 8 = w~t (5.23) 

If we approximate the cosinus to the first order with: cos(28) ~ 1- 282 for small 8, then it 
follows with 8 = w~t: 

-:- _ (~) ~ (2N + 1) ~ 
Urms- W 2 2N (5.24) 

1 

For N -t oo, this will give: Ûrms = w ( ~) 2, which is the value mentioned earlier for the true 
rms value of the cosinus testsignal. This tells us that the error in the rms derivative verlocity 
is depending on N, which is very small. A much more grave error results if 8 is no langer 
small. The latter error is catastrophic if 28 = 1r, or ~t = Zf; = l1, where f is the frequency 
of the signa!. Of course, this ~t would vialate the Shannon sampling theorem. 

In order to understand these errors better, we will compute the workings of our simple 
2nd order differencing formula in the frequency domain. Therefore it is useful to reeall the 
formula for the inverse Fourier Transfarm 

u(t) = - eiwtu(w)dw 1 /00 
27r -00 (5.25) 

and Parseval's identity 

(5.26) 

(5.27) 

40 



with the energy spectrum E(w) = (u(w)u( -w)) = (ju(w)j 2). From Eq. (5.25) we also see that 

((ü(t))2) = (
2
:)2 j_: w2 E(w)dw, (5.28) 

equivalent to Eq. (5.14) mentioned earlier. The working of the differencing operator can be 
written as a convolution 

j H(r- t)u(t)dt (5.29) 

j ~ [8(r + ilt- t)- 8(r- ilt- t)] u(t)dt (5.30) 

for the case of the simple 2nd order differencing formula. So it follows that: 

1 
H(t) = 2" [8(t + ilt)- 8(t- D.t)]. (5.31) 

The spectrum of the approximation to the derivative iJ, then is the product of the original 
spectrum and H(w), with, 

(5.32) 

and 

-( 
1

)2 joo !H(w)j 2E(w)dw 
27r -00 

(5.33) 

_1_ joo sin
2
(wilt) E( )d 

(27r)2 -oo (D.t)2 W W 
(5.34) 

-( 
1 

)2 joo w
2 E( w )dw ; for the case that wilt « 1. 

27r -00 

(5.35) 

This means that the i deal differentiation has H ( w) = w 2 , and the differencing formula is only 
correct for wilt« 1. We can extent these arguments for higher order differencing formula's. 
Figure 5.l(a) shows formula's of order 2 (Eq. (5.17)), 4 and 6 in the speetral domain. Figure 
5.l(b) shows what happens if we multiply these speetral representations of the differencing 
formula's with the turbulence power spectrum E(w). The turbulence signalis measured with 
a sampling frequency of 40 KHz and with an ADC resolution of 12 bits. As can be seen 
from Figure 5.1(b) the grid generated turbulence signal stops at about 10KHz and the higher 
frequency region can only be accounted for by noise from the analog to digital converter and 
other electronic equipment in the experimental set up. On fi.rst sight it seems that a simple 2nd 
order differencing formula is less accurate then the higher order versions if compared with the 
ideal case of w2 . But because of the fact that the measured turbulence signal has ( unwanted) 
noise in the higher frequency range when sampled with a sampling frequency of 40KHz, a 2nd 
order differencing formula can be used as a filter, to eliminate the unwanted noise. lt seems 
paradoxal that a lower order differencing formula gives a more accurate result than a higher 
order formula, but this is only valid when measuring with a high sample frequency such as 
40KHz. If a lower sample frequency, for example 20 KHz, is used then the opposite is valid; 
a higher order differencing formula gives a more accurate result. 

41 



1e+11 1000 

1e+10 
100 

1e+09 

1e+08 :;;t 10 

C\i 
~ 

.!!! 
1e+07 .§. 

C\1 

~ 1e+06 ~ 
100000 ~ 0.1 

10000 
0.01 

1000 

100 0.001 
10 100 1000 10000 10 100 1000 10000 

f[Hz] I[Hz] 

(a) (b) 

Figure 5.1: Representation of the discrete differencing formula in the speetral domain. (a) The 2nd, 

4th and 6th order differencing formulas are compared with the ideal case of w2 , lower, 2nd, 3th and 

upper curve respectively. (b) The same speetral representations of the 2nd and 4th order differencing 

formula 's multiplied with the measured turbulence spectrum, compared with the exact solution. 

5.4 Spectrum, Fast Fourier Transfarm and windowing 

In appendix B.l the C program spectrum.c is given which is used to calculate the turbulence 
characteristic quantities and the energy spectrum of the turbulent flow. The calculation of 
the energy spectrum requires the use of a Discrete Fourier Transfarm (DFT) to transfarm the 
sampled velocity time-blocks to the frequency domain. 

5.4.1 Fast Fourier Transforrn 

When a signal in the frequency domain has to be processed by digital components such as the 
Digital Signal Processor, the signal has to be sampled similar to the sampling of signals in 
the time-domain. Sampling in the time-domain results in a periodic signal in the frequency 
domain, likewise a sampled signal in the frequency domain results in a periodic signal in the 
time domain. Therefore the sampling of a signal in the frequency domain is only usefull for 
signals that are limited in time. To derive the Discrete Fourier Transfarm we start of by 
recalling again the standard Fourier Transform: 

X(w) =i: x(t)e-iwtdt. (5.36) 

The standard Fourier Transfarm of an analog signal x(t) determines the associated Fourier 
Spectrum X(w). As mentioned above, both signals X(w) and x(t) have to be sampled to 
enable digital processing. If the input signal x(t) is sampled the Fourier Transfarm of the 
sampled signal x( n) takes the form: 

00 

X(eiw) = "L:x(n)e-iwn. (5.37) 
-oo 

42 



g[O] 

g[l] 

g[2] 

g[3] 

g[4] 

g[5] 

g[6] 

g[7] 
-1 -1 -1 

G[O] 

G[4] 

G[2] 

G[6] 

G[1] 

G[5] 

G[3] 

G[7] 

Figure 5.2: Schematic overview of a 8-point Fast Fourier Transform, the socalied butterfly. The 

output array G(ij is bit-reversed. 

If this Fourier Transfarm is calculated at discrete points in the w-domain it will result in the 
Discrete Fourier Transfarm (DFT): 

N-1 

X(k) = L x(n)W,Vk, (5.38) 
n=O 

where k, n = 0, 1, · · ·, N- 1 and W,Vk is determined by: 

nk _ i21rnk 
WN = e N • (5.39) 

If this Discrete Fourier Transfarm is calculated directly the complexity of the algorithm is of 
order 

(5.40) 

When the number of points used to calculate the DFT increases, the number of operations 
that are to be performed increases quadratically, hence the Discrete Fourier Transfarm will 
become extremely inefficient for large N. To overcome the computational problems of the 
DFT a much more efficient algorithm, called the Fast Fourier Transform, has been developed. 

The definition of the Fast Fourier Transfarm (FFT) is identical to the definition of the 
Discrete Fourier Tranform. The only difference can be found in the algorithm used for calcu­
lating the spectrum X(k). When the DFT series, given by Eq. (5.38), is expanded it can be 
seen that identical twiddle factors (W,Vk) occur. Through smart bookkeeping, Eq. (5.38) can 
be calculated as indicated in Figure 5.2. The complexity of the FFT algorithm is given by 

O(C) = Nlog2(N), (5.41) 

therefore the FFT algorithm is much more efficient then a direct calculation of the DFT for 
large N, [3]. The FFT algorithm depicted in figure 5.2 results in a bit reversed output signal 
X ( k). Bit reversed output means that the index es of the array re presenting the samples in the 
frequency domain are bit reversed, that is, the binairy representation of the indexes have to be 
reversed to produce the right sequence of the array in the frequency domain. The TMS320C40 
Digital Signal Processor has the ability to address arrays in a bit reversed manner, so no time 
is lost in converting the bit reversed output into the correct output. 

43 



1.2 0.9 

0.8 

0.7 

0.8 
0.6 

0.5 

~ 
0.6 <=" 0.4 

~ 0.3 
0.4 0.2 

0.1 
0.2 

·0.1 

·0.2 
0.2 0.4 0.6 0.8 ·8 

t[s] 

(a) (b) 

Figure 5.3: A rectangular analysis window. (a) A time window. (b) A speetral window. 

5.4.2 Windowing 

Analysis of a time-history record of a finite time, T, will result in speetral leakage, and 
windowing techniques can be applied to minimize this phenomenon, [5]. The transformation 
of a time-history signal of a finite duration T to the frequency domain, results in speetral 
leakage in the frequency domain. A time-history record, xk(t), specified for a finite time T, 
can be viewed mathematically as an unlimited time-history record, x(t), viewed through a 
rectangular window, w(t), with 

w(t) = { 1 ; for 0::; t::; T 
0 ; otherwise 

Consequently, for the complete time interval ( -oo, oo) 

x(t)w(t) = { xk(t) ; for 0 ::;_ t::; T 
0 ; otherw1se. 

The finite Fourier transform of the function x(t)w(t) is again given by: 

X(J, T) =i: x(t)w(t)e-i27rftdt. 

(5.42) 

(5.43) 

(5.44) 

The convolution theorem states that the Fourier Transform of a product of two functions is 
equivalent to the transform of one of the functions convolved with the transform of the other; 
that is 

X(J, T) =i: X(Ç)W(J- Ç)dÇ. (5.45) 

For the rectangular function, w(t) defined by Eq. (5.42), the Fourier transform, W(J), is 
given by 

W(J) = Tsin1rjT 
1fjT 

(5.46) 

A plot of W(J) is depicted in Figure 5.3. The large side lobes of W(J) allow leakage of power 
at frequencies which are well separated from the main lobe of the speetral window, and this 

44 



1.2 0.45 

0.4 

0.35 

0.8 0.3 

0.25 

~ 
0.6 

~ 0.2 

0.4 0.15 

0.1 
0.2 

0.05 

-0.05 
0.2 0.4 0.6 0.8 -8 -6 -4 -2 0 

t[s] f = niT 

(a) (b) 

Figure 5.4: A Hanning analysis window. (a) A time window. (b) A speetral window. 

may introduce a significant distartion of the estimate spectrum. If it is considered necessary 
to suppress the leakage problem then it is common practice to introduce a data window that 
tapers the time-history data to eliminate the discontinuities at the beginning and the end of 
the record being analysed. The window used in the program spectrum.c is called a Hanning 
window or also called the eosine squared window. It is defined as 

{ 
1 [1- cos ( 271"t)] = 1- cos2 (71"t) WH(t) = 2 T T 
0 

; for 0 ~ t ~ T 

; otherwise. 
(5.47) 

Figure 5.4 shows the hanning window in the time and in the frequency domain. The Fourier 
Transfarm of Eq. (5.47) is 

1 1 1 1 1 
WH(!)= -W(J) + -W(J- -) + -W(J + -) 

2 4 T 4 T' 
(5.48) 

where W(J) is defined as in Eq. (5.46). 
Gomparing Figure 5.3 and 5.4 it can be observed that the Hanning window has smaller 

side lobes and a larger bandwidth for the main lobe than the rectangular window. In general, 
the use of any tapering operation to suppress side-lobe leakage will increase the bandwidth 
of the main lobe of the speetral window in an autospeetral density analysis. 

Finally, if a tapered window, w(t), is used in Eq. (5.44) to evaluate a speetral estimate 
then a loss factor must be introduced. As discussed in [5], when a Hanning window is used 
then a scale factor of (8/3)112 should be introduced to obtain the correct magnitude of the 
speetral density estimate. 

5.5 Differential non-linearity 

A point of concern is the differential non-linearity in the process of converting analog voltages 
to digital velocities. Figure 5.5a shows the dramatic effect of differential non-linearity on 
measured velocity probability functions. The PDF is the result of a very long experimental 
integration time, and it does not change when averaging longer. Therefore, the noise in the 
PDF is not statistica! and is entirely due to differential non-linearity. 

45 



ct 1.3m +/- J.Slli·Ol 
el n.Jll +/· 5.1171-n 
cl t5.361 +/· .25& 
c' H.m +/· l.U 

15 c5 u.m +/· s.u 

10 

12 14 l.l 

(a) (b) 

Figure 5.5: (a) Velocity probability distribution function as measured in the windtunnel. The distribu­

tion Ju netion shows large and small spikes and dips which are a result of differential non-linearity. {b) 

Example of a hot-wire probe calibration curve. The curve represents the relation between the measured 

voltage and the windvelocity in the windtunnel. The curve has clearly a non-linear behavior. 

There are two sourees of non-linearity present. The fi.rst is the differential non-linearity of 
the analog-to-digital converter (ADC). The second souree is the non-linear integer transfor­
mation of digital voltages to digital velocities. The first souree is by far outweighted by the 
second souree of differential non-linearity. 

5.5.1 Influence of non-linear calibration 

The transformation of digital voltages to digital veloeities is determined by the calibration 
procedure that precedes each experiment. The calibration determines the relation between 
voltages v and veloeities u. This relation is a fourth order polynomial u= f(v) (Eq. (4.9) and 
it is used to generate a look-up table that maps the 12-bits voltages from the ADC to 12-bits 
velocities. In Figure 5.5b we can see that the calibration curve is clearly non-linear. 

This non-linearity causes the effect that different voltages representing different veloeities 
are mapped on the same integer velocity value whereas other integer velocity values do not 
correspond to any binary voltage. As a consequence, a measured PDF (histogram) of veloeities 
will show large spikes at the velocity values that correspond to two integer voltages and clips 
at the skipped velocity values. 

However, this effect can be minimised because we know exactly which binary codes in 
the calibration table are double and which codes are missing. With this information we can 
make a smoothing procedure to smooth the histogram of recorded veloeities without changing 
the statistica! properties of the signa! we want to evaluate. The recept for smoothing the 
histogram of recorded velicities is as follows: Let tlj be the difference between two successive 
velocity codes in the calibration table. If u = f ( v) is the relation between analog voltage and 
velocity, then tlj is: 

46 



12 14 

Figure 5.6: Smoothed velocity probability distribution function. The effects of the non-linear calibra­

tion table are removed, but the effects of the ADC differential non-lineariry are still present. 

b.j(i) = [4096f (~~~)]- [4096f (40i96)]' (5.49) 

where i E [0 ... 4095] is the ADC voltage code. If we calculate b.j for each i E [0 ... 4095] 
then the actions to smooth the histogram are: 

{ 

b.j (i) = 1 ; do nothing 
b.j (i) = 0 ; di vide by two and add extra bin 
b.j (i) = 2 ; skip, no information is lost 

This recept will only remove the effects of the non-linear calibration table. The effects of the 
differential non-linearity caused by the ADC are still present and this will be topic of the next 
subsection. Figure 5.6 shows the smoothed histogram which is the same measurement as in 
Figure 5.5a 

5.5.2 ADC differential non-linearity 

In an ideal ADC, code transitions are 1 LSB (Least Significant Bit) apart. Differential non­
linearity (DNL) is the maximum deviation expressed in LSB's, from this ideal value. It is 
often specified in terms of the maximum number of bits for which no missing codes (NMC) 
are guaranteed. 

As can beseen from Figure 5.6 the effect of differential non-linearity which remains after 
the removal of the effects of the non-linear calibration curve, is still reasonably high. In the 
used ADC-card from 'franstech (TDM431) there are anolog to digital converters from Burr­
Brown (type ADS7810). Burr-Brown gives for the differential non-linearity error a maximum 
of ±1 LSB. 

Could this error cause such an effect on the velocity PDFs? To answer this question we 
try to find out what the effect of the differential non-linearity is on the mean of the velocity 
PDF curve. A second order polynomial fit to a normalised PDF is shown in figure 5.7a, 
and the residues of this polynomial fit are shown in figure 5.7b. The PDF is normalised 
such that 2:~0 1 P(i) = 1. Burr-Brown, the manufacturer of the ADCs, gives the following 

47 



(a) 

512 1 o24 1536 2048 2560 3on 3584 4095 

Oecimal Code 

(c) 

1.8 • 2.0 
Codes 

(b) 

2.2 

512 1024 1536 2048 2560 3on 3584 4095 

Oecimal Code 

(d) 

Figure 5.7: {a) Velocity PDF nomalised such that 2::~~ 1 P(i) = 1 and asecondorder polynomial 
fit. {b) Residues of thesecondorder polynomial fit of the normalised PDF. {c) Data from Burr-Brown 

ADC7810 data-sheet, ADC differential non-linearity (DNL). (dJ ADS7810 integral non-linearity (INL) 

specifications for the differential non-linearity (DNL), see Figure 5.7c. This DNL is measured 
by Burr-Brown by applying a full-scale sine wave to the ADC and taking a large number 
of samples (several million for a 12-bit converter). The number of occurrences of each code 
is recorded on a histogram plot. The data is normalized by comparison with the U-shaped 
ideal probability density distribution of a sine wave. From it, the DNL in Figure 5.7c can be 
plotted, and integral nonlinearity can be determined by compiling a cumulative histogram. 
The INL is shown in Figure 5.7d. 

As can beseen from comparison from both figures 5.7b and c the differential non-linearity 
is comparable in nature. The ADS7810 is an Analog-to-Digital converter of the succesive 
approximation type, which is a bad performer where DNL is of interest. For more accurate 
determination of velocity PDFs, it should be considered to use another type of ADC, see also 
section 7.2.2 for some recommendations. 

5.5.3 lnfluence on velocity difference PDFs 

When measuring the structure functions we are not interested in the velocity PDFs, but in the 
velocity di.fference PDFs. The question arises how the differential non-linearity affects these 
PDFs of ~u. In ref. [11] it was shown that apart from a series of peaks at discrete ~u, almast 
all the error caused by the differential non-linearity is piled up at ~u = 0. Figure 5.8 shows a 
velocity difference PDF that has experimentally been determined with the Structurator from 

48 



0.45 

0.40 

0.35 

-1 0 
delta u 

Figure 5.8: Measured velocity difference distribution function after taking 109 samples. Shown is the 

enlarged section around l:iu = 0. 

a turbulent signal. Shown is the range around l:iu = 0 and from the figure it can clearly be 
seen that there is a large peak (compared with the rest of the PDF) at the point .6.u = 0. 

The effect becomes insignificant in the tails of the PDF, sirree in an experimentally deter­
mined PDF the tails suffer most from statistica! noise. When we are interested in high order 
structure functions then the error caused by the differential non-linearity is not important, 
because these are determined by the tails of the PDF. But if low-order structure functions 
are to be measured then the differential non-linearity will no longer be an unsignificant error. 

5.6 The rectification problem 

When using a single hot-wire probe for the measurement of the mean and fluctuating turbulent 
velocity component in one direction, namely in the direction of the mean flow, a type of error 
can occur which is usually referred to as the rectification error. Due to the fact that the hot­
wire has rotational symmetry, it is sensitive both for velocity pertubations in the transversal 
direction (i.e. perpendicular to the main flow) as for pertubations in the direction of the mean 
flow. Sirree a single cylindrical hot-wire is also sensitive for flow in the u' direction as for flow 
in the v' direction this means that an error can be made, see Figure 5.9. 

This error is usually ignored in the recent turbulence literature. However, the suspicion 
arises that this error could effect the value of measured sealing exponents. Therefore it is 
important to try to quantify this error. 

In the section covering the calibration of the hot-wire probes (section 4.3) it was assumed 
that only components perpendicular to the hot-wire affect its cooling. This means that the 
z-component w' does not contribute to the cooling of the wire. Thus, when the x-component 
u' is the turbulent velocity component in the direction of the main flow U, and v' is the 
lateral turbulent velocity component perpendicular to the wire in the y-direction, we can 
write, conform Eq. ( 4.5), 

1 

[J = ((u+ u')2 + v'2) 2' (5.50) 

49 



~ 
u 

Figure 5.9: Illustration of the hot-wire probe with the flow components u', v' and w' in the x, y and 

z direction respectivelly. 

where U denotes the measured resultant velocity and u' and v' are turbulent velocity fl.uctua­
tions in the x and y direction. It was shown in section 4.3 that to the first order the hot-wire 
probe was only sensitive to the component u' in the direction of the mean flow. But, is this 
really the case? First we take a look at the infl.uence on the energy spectrum and after that 
we try to investigate the infl.uence on the velocity PDF. 

5.6.1 lnfluence on the energy spectrum 

Lets consider Eq. (5.50) and rewrite it in the following form, 

U(t) 
1 

((ll + u'(t))2 + (v'(t))2) 2 

1 

(0 + u'(t)) (1 + (v'(t))2 ) 2 

(U+ u'(t)) 2 

Then we take the first order expansion of the last term, 

U(t) ~ (Ü+u'(t)) (1+ (v~~;) 2

), 
then the measured resultant velocity is, 

U(t) = 0 + u'(t) + (v~(J) 2 

+ 0 ( u';~
13

) • 

The Fourier spectrum of the measured velocity is, 

U(w) = i: U(t)e-iwtdt 

Joo [u+ u'(t) + (v'(t))2] e-iwtdt 
-oo 2U 

u'(w) + ~ joo (v'(t)) 2e-iwtdt 
2U -oo 

For the last term in Eq. (5.57) we take a look at the convolution, which is defined as, 

50 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

(5.57) 



1 100 100 . F(f * g) = - f(p)g(x- p)e-twxdpdx, 
27r -oo -oo 

(5.58) 

where F denotes the Fourier transform. Using Eq. (5.58) in Eq. (5.57) gives the following 
result for the measured energy spectrum 

U(w) = u'(w) + 1
U- ..!._ 100 

v'(w')v'(w- w')dw'. 
2 27r -oo 

The modified energy spectrum then becomes, 

E(w) (lu(w)l2) 

(lu'(w) + ~ 100 
v'(w')v'(w- w')dw'l

2

) 
47rU -oo 

(lu'(w)l 2
) +~Re {u'(w) 100 

dw'v'(w')v'(w- w')dw'} + .. · 
47rU -oo 

(5.59) 

(5.60) 

( 5.61) 

(5.62) 

Clearly, the energy spectrum obtains an extra term which can be written in termsof 3-point 
correlations between u' and v', 

---Re dw'(u'(w)v'(w')v'(w- w')) 1 100 
27rU -oo 

(5.63) 

It is very hard to say something about this quantity, because it envolves 3-point correlations 
between veloeities of which the relations are unknown. In order to further quantify this 
infiuence on the sealing of the spectrum more experimental work is necessary. 

5.6.2 Inftuence on velocity PDFs 

In Figure 5.10 an illustration is given of the velocity probability distri bution function ( velocity 
PDF) as is measured in grid turbulence. Figure 5.10a is given with linear axes and Figure 
5.10b with a logarithmic scale of the y-axis. In figure 5.10b it can be seen that the velocity 
PDF is non-symmetrical. 

We take a look at the infiuence of the rectification error on the velocity PDFs and try to 
investigate if the measured non-symmetrical behavior of these PDFs can be explained in this 
way. The measured velocity is defined according to Eq. (5.50) 

1 

u(t) = ((ü +u'(t)) 2 +v'(t) 2rz = f(u',v'). (5.64) 

The probability distribution function of the turbulence flow velocity components are for the 
u' and v' direction defined as P(u') and P(v'). We want to investigate the PDF of P(U), 

P(U) =i: 8(U- f(u',v'))P(u',v')du'dv'. (5.65) 

lf we make the assumption that P( u') and P( v') are independent, then P( u', v') = P( u')P( v'). 
Let's first look at a simplified case, in which the measured velocity is only depending on one 

variable; U = f( u'), then according to the fundamental transformation law of probabilities 
the probability distribution of U, denoted by P(U)dU, is given by 

51 



[05 

[04 

"' 103 I .. I ;o 
I 0 

'-' I 

102 I 
I 
I 
I 

10 
I 
I 
I 
I 
I 

12 14 10 15 
Velocity m/s 

(a) (b) 

Figure 5.10: Measured velocity probability distribution function in the windtunnel. (a) Velocity PDF 

with linear axes. (b} Same velocity PDF but with logarithmic scale of the y-axis; the PDF is clearly 
non-symmetrical. 

IP(U)dUî = IP(u')du'l, (5.66) 

or 

P(U) = P(u') I~~ I, (5.67) 

and the following relation holds 

P(U) = /_: 8(U- j(u'))P(u')du'. (5.68) 

The expression for U= j(u') can be expanded into a Taylor series to the first order around 
the point u' = U 

j (u ) = U + (u - U) -- + · · · . 1 - 1 - dj (u') I 
du' ü 

(5.69) 

Inserting Eq. (5.69) into Eq. (5.68), gives the following relation for the probability distribution 
of U, 

P(U) = 1oo 8 ((u- u') dj(~') 1-) P(u')du', 
-oo du u 

(5.70) 

and using that 8(ax) = far8(x) in Eq. (5.70) gives 

- 1oo 8(U - u') ' ' 
P(U) = -oo ldf(ul)l P(u )du. 

du 1 Ü 

(5.71) 

52 



Taking the inverse of the relation U= f(u') gives the relation of u' = f- 1(U) and willlead 
to the following expression for the probability distribution of the measured velocity U, 

P(Û) ~ ~~~ P(r'(û)) 
du' Ü 

(5.72) 

Now, we do the same for the two variabie situation of Eq. (5.65) under the assumption 
that the probability distributions for u' and v' are independentso that P( u', v') = P( u')P( v'), 

P(U) 

with, 

i: ó(U- J(u',v'))P(u')P(v')du'dv' 

1
00 

ó(U - u') ( ') ( ') , 
-oo I af~::v') lü p u p V dv' 

1 

f(u',v') = ((ü + u') 2 + (v') 2
) 

2 =U, 

which can be rewritten for u', 

u'= -Ü ±Ju+ (v')2, 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

which has two solutions for u'. If we substitute this in the same manner as is done with the 
one variabie situation, then we get, 

P(Û) ~ ~~((±v'û + (v') 2
- U)P(v') 

au' 
(5.77) 

Equation (5.77), which is the probability distribution of the measured velocities, is com­
posed of two probability distributions which result from the velocity pertubations u' and v' 
in the parallel and in the lateral direction relative to the mean velocity of the flow. 

In this way the non-symmetrical behavior of the velocity PDF could be explained, but it 
is not decisive. lt is very hard to say something about the total distribution function of the 
velocities. The assumption that the velocity distributions P( u') and P( v') are independent 
can also be questioned. 

Further research should be carried out to investigate this rectification error more. An idea 
might be to compare a single wire probe and an X-probe or multiple probes in 3 perpendicular 
directions. 

53 



Chapter 6 

Experimental results 

In this section some experimental results are given. The experiments were clone in the wind­
tunnel and the veloeities were measured with the hot-wire anemometer and the signal condi­
tioning unit, as described in chapter 4. The experiments were mainly clone to check the new 
instrumentation that was developed in this project. The results agree with those of earlier 
experiments. The improved statistics of energy spectra, however, led to verification of 'a 
novel' phenomenon. Presented here are: turbulence energy spectra, velocity PDFs, velocity 
difference PDFs and structure functions. 

6.1 Turbulence energy spectrum 

Figure 6.1 shows a measured energy spectrum of turbulence flow generated with a grid in the 
windtunnel. 

10-3 

::!: 10-5 

M;: 
.. 1o-s 
~ 
~ 10-7 

10-8 

10-9 

10 1oz 103 
Freq. Hz 

Figure 6.1: Measured energy spectrum of turbulence generated with a grid, compared with the -i 
K olmogorov energy spectrum. 

When compared with the Kolmogorov minus five-third law (K41), see section 2.1.1, we 
see clearly that the law holds for a certain inertial range. The inertial range spans a frequency 
range from approximately 20 till1000 Hz, until the energy drops off due to viscous dissipation. 
The energy spectrum stops at approximately 10 KHz and any signal beyond that frequency is 

54 



to-4 

w-s 

2•102 5•!02 

Freq. Hz 

(a) 

N ., 
--­ME: .. ., 
;;. 
Q ... 

!02 
Freq. Hz 

(b) 

Figure 6.2: Measured energy spectrum of turbulence generated with a grid. (a) Enlarged section of 

Fig. 6.1, showing clearly the energy pileup when compared with the classica[ -i energy spectrum. (c) 

Residu plot of the spectrum when compared with the classica[ -i slope. 

ADC noise due to LSB fluctuations. The total turbulence energy range relative to this ADC 
noise spans almost 8 decades which is a 'good performance for a 12-bit ADC. 

Insection 2.4 the Batchelor parametrisation was discussed and its related Batchelor energy 
spectrum. It was mentioned that the Batchelor energy spectrum has aso-called energy pileup 
region just at the end of the sealing range before the energy drops off due to viscous dissipation. 
This energy pileup is ascribed to the bottleneck phenomenon and is most clearly seen in the 
energy spectrum of fully developed turbulence. 

From comparison with the experimentally measured energy-spectra of Figure 6.1 it can 
beseen that the energy pileup is a physical phenomenon. Figure 6.2a shows the same energy 
pileup, as is predicted by the Batchelor energy spectrum. Figure 6.2b shows the residues of 
the -i fit to the energy spectrum. The maximum of the pileup occurs at approximately 550 
Hz. 

We are able to measure this energy pileup due to the ability to sample for long periods of 
time without having to store vast amounts of data. This long integration time allows us to 
improve the signal-to-noise ratio of the energy spectrum by averaging over a longer period of 
time, thus removing the noise which is inherent of measured turbulence energy spectra. 

6.2 Velocity PDF 

The velocity probability PDF can also he measured for long periods of time without having 
to store vast amounts of data. From it, several statistica! charaderistics can he calculated, 
such as the mean velocity and the rms velocity. In section 5.5 we discussed the differential 
non-linearity which affects these velocity PDFs as can he seen in Figure 6.3a. 

The rectification problem discussed insection 5.6 could also influence these velocity PDFs 
and from Figure 6.3b it can he seen that the velocity PDF is clearly non-symmetrical. It 
even seems to consist out of a summation of two probability distributions as is denoted by 

55 



10 

12 14 

(a) 

ex 

I 
I 

10 
Velocity m/s 

(b) 

15 

Figure 6.3: Velocity probability distribution function measured in turbulence generated with a grid. 

(a) Linear vertical and horizontal scale. (b) Logarithmic vertical scale 

the Gaussian fit in Figure 6.3. 
It is not known how these errors in the velocity PDFs affect the calculated statistics from 

these distribution functions. The rectification error which causes the non-symmetry of the 
PDF might seem to cause the mean velocity to be to high. How the rms velocity is infl.uenced 
is not known. 

6.3 Velocity difference PDFs 

Research on small-scale structures of turbulence is often clone via the sealing behahavior of 
structure functions. The structure function of order p is the pth-order moment of the dis­
tribution functions of velocity differences. Interesting phenomenon may possibly be detected 
at large p, but the statistica! accuracy of high-order moments is a problem. Therefore, also 
the velocity difference distribution functions are stuclied directly. This avoids the problems 
associated with determining high-order moments, [11]. 

Figure 6.4 shows 4 velocity difference (~u) probability distribution functions P(~u), 
measured in real-time using the Structurator routine described in section 3.3. The velocity 
difference PDFs represent distributions each at different relative distances. The PDFs are 
normalised such that I P(~u)d(~u) = 1 and I P(~u)(~u) 2 d(~u) = 1. From the figures it 
can be seen that at small scales P(~u) has wide, almost exponential tails. At large scales 
P(~u) tends to a Gaussian. 

The measured longitudinal distribution functions are asymmetrie. They have their maxi­
mum at a value ~u < 0. This asymmetry is a key phenomenon in turbulence; it is related to 
the cascade of energy from large to small scales and is called the skewness. 

From the PDFs it can be seen that the tails are not accurate. These tails correspond 
to rare events of high velocity differences and an even longer sampling time is necessary to 
imprave their statistics. But the sampling time is a campromise between the ability to sample 

56 



0.1 0.1 

10-2 10-2 

10-3 10-J 

~ 10-4 ;; 10-4 
.s Ci:;" a.. 

."1!. 10-5 ."1!. 10-5 

10-6 1o-6 

10-7 1o-7 

10-8 

10-9 
-20 0 

10-9 
-20 0 20 

àu/uAu àu/uAu 

(a) (b) 

0.1 0.1 

10-2 10-2 

10-J 10-3 

~ 10-4 ~ 10-4 

Ci:;" Ci:;" 
."1!. 10-5 ."1!. 10-5 

10-6 10-6 

10-7 10-7 

10-8 w-8 

0 
10-9 

-10 0 
àu/uAu àu/uAu 

(c) (d) 

Figure 6.4: Some velocity difference probability distribution functions measured with the reai-time 
Structurator in turbulence flow. (a) f::lu PDF for relative distance rfry = 1.4. {b) f::lu PDF for relative 
distance r/ry = 13.6. {c) f::lu PDF for relative distance rfry = 92.2. {d) f::lu PDF for relative distance 
r/ry = 867.3. 

for long periods and the stability of the hot-wire probe. The characteristics of the hot-wire 
are not stabie over a long period of time and recalibration is then necessary, which of course 
limits the longest possible integration time of the Structurator. 

6.4 Structure functions 

Structure functions are important quantities in the research of the behavior of smali-scale 
structure of turbulence. They show the sealing properties of turbulence. From the 32 velocity 
difference PDFs measured with the Structurator, of which 4 are shown in Figure 6.4, we 
can calculate longitudinal structure functions G{;(r) of arbitrary order p, using Eq. (3.1). 
Figure 6.5a shows 3 third-order structure functions measured at 3 different distances from 
the wall of the windtunnel. The third order structure functions in Figure 6.5a are normalised 

57 



r/~ 

(a) 

p 

(c) 

r/~ 

(b) 

Figure 6.5: Calculated structure functions 

from the Llu PDFs measured with the stuc­

turator. (a) Third order structure functions 

normalised to v K, measured at three differ­

ent distances from the wall. Distance from 

the wall is 5cm, 1 Ocm and 19cm for the up­

per, middle and lower curve respectively {b} 

Structure functions Gp11P of order p = 3, 6 

and 12, lower, middle and upper curve respec­

tively; the slope ((p)fp of the sealing range de­

creases with higher orders. (c) Sealing expo­

nents (p/P, taken from the structure functions 

measured at three different distances from the 

wall. The horizontal line depiets the Kol­

mogorov K41 sealing exponents (p = ~ 

to the Kolmogorov velocity v K in a manner as was described in section 2.3. The third order 
structure function can be written as Eq. (2.13) resulting in, when plotted on a log-log scale, 
a slope equal to unity and an offset at log( 4/5) in the sealing range. 

The third order structure functions in Figure 6.5a were measured with the hot-wire probe 
at 5cm, lOcmand 19cm distance from the wall, for the upper, middle and lower curve respec­
tively. In this figure, the structure function nearest to the top shows a slope in the sealing 
range that is equal to 1.01, very close to unity. The middle curve, measured at lOcm from the 
wall, has a slope of 0.98 and the lowest structure function, measured at 19 cm from the wall, 
has a slope in the sealing range that is equal to 0.87. On the other hand, the upper curve, 
which has the best slope nearest to unity, has the worst offset at 0.26, which should be 0.80 
( 4/5), the middle curve has an offset of 0.45 and the lowest structure function has an offset 
at 0.57, closer to 0.80 but still not enough. 

In grid-turbulence, the situation of isotropie turbulence is most closely approached at the 

58 



centerline of the grid. However, it is common practice to find a compromise between isotropy 
and the value of the Reynolds number Re;.. and to place the probes away from the centerline. 
The result is that due to the higher Reynolds number, the structure function measured nearest 
to the wall shows the best sealing exponent but the offset of the structure function (in the 
log-log graph) differs from 4/5, this discrepancy in the offset is due to the non-isotropy of 
the flow. The behavior of the structure function G3(r) as a function of the distance of the 
detector to the wall is caused by the fact that grid-turbulence is decaying. The preserree 
of the wall makes the flow non-isotropie and non-homogenous. A question is, therefore, the 
applicability of sealing concepts. On the other hand one could argue that the influence of the 
particular flow configuration disappears at scales that are small enough, [11]. 

The structure functions have sealing behavior with a sealing exponent (p· This sealing 
exponent can be found by plotting Gp(r) in a log-log plot, and measuring the slope of the 
resulting straight line. A standard procedure is toselect in a log-log plot of G3(r) the interval 
bounds such that a straight line is fitted to the logG3(r). In this interval the slope of G3(r) 
should have (3 = 1, as predicted by the Kolmogorov theory. The bounds of this interval are 
taken to be the bounds of the inertial range for all structure functions of order p. 

Figure 6.5b shows a 3th, 6th and 12th order structure functions G~IP, measured at 5cm 
from the wall. From this figure it can be seen that the slope in the sealing range on a log-log 
plot, ((p)jp, decreases with higher order. In the case of the Kolmogorov K41-theory, the 
slope of the lines in the log-log plot would be 1/3 for all p. Instead, the slope of the structure 
function decreases with increasing p, which is called anomalous sealing. 

Figure 6.5c shows sealing exponents taken from the structure functions measured at three 
distauces from the wall. The upper curve represents the sealing exponents from the mea­
surement at 5cm from the wall. The middle curve is measured at 10 cm from the wall and 
the lowest (the most oscillating curve) is the measurement at 19 cm from the wall. Recalling 
that for the K41-theory the sealing exponent ((p)fp is equal to 1/3, which is denoted by the 
horizontalline in Figure 6.4c. The sealing exponents of the 2nd, 3rd and 4th order structure 
functions are close if not equal to this 1/3 line, but the deviation from the K41 sealing the­
ory becomes clear at higher orders. This is why the accurate meassurement of higher order 
structure functions is so important. 

59 



Chapter 7 

Recommendations for future 
research 

In this chapter some recommendations are given regarding future developments. A possible 
setup is given for a multi-channel structurator for the measurement of transverse structure 
functions. Also some recommendations are given regarding the Analog-to-Digital conversion 
used for the turbulence measurements. 

7.1 Setup for a multi-channel structurator 

In experiments invalving structure functions measured with several probes, transverse mea­
surements for instance, the velocity differences are calculated between the different probe­
signals. Therefore, a number of time-signals (for example eight) is sampled in parallel and 
the Structurator program for this kind of measurements has to be changed. 

Taylor's hypothesis is not used in multiple probe measurements and hence gaps in the 
time series are not vital. Transverse measurements are becoming more important and langer 
measurements are desirable. So also for multi-channel experiments it becomes desirabie to 
generate distribution functions in real-time. 

In the following we assume that there are eight probes placed parallel in the turbulence 
flow. Ref. [11] gives several possible strategies for a multi-channel Structurator. The cal­
ibration and difference calculations can be implemented in a serial algorithm, in a parallel 
algorithm, or in a combination of these two. The kind of algorithm farms the basis of the 
possible performance, it defines in how many machine-cycles the desired velocity differences 
between a set of eight probe signals can be calculated. 

Suppose that we have n probes for which we want to calculate all relevant mutual differ­
ences. When we just sequentially calculate( all ~>Ossible combinations, n 2 arithmetic operations 
are needed for each set of signals. Only n n2-

1 calculations correspond to different, non-zero 
physical distauces r. For an 8 probe multi-wire setup there are thus 28 relevant velocity 
differences. On the other hand, all the (relevant) calculations can be clone in parallel and 
only one cycle of n(n2-l) arithmetic operations is needed. The upper and lower boundaries 
of the number of cycles (Ne) are thus n2 and 1. A sequentia! algorithm is slowest but most 
flexible; adding a detector in the experiments only means expanding the number of arithmetic 
operations. A parallel algorithm is the fastest option, but obviously not the most flexible. 
The choise of an optima[ algorithm is, however, not the only requirement of a design. It also 

60 



Difference 
Table 
28 Words 

Max. value calibr. table (=4095) 

Index diff. table 

Difference 
Table 
28 Words 

MCA-Memory 
28*8191 Words 

Figure 7.1: Schematic view of aserial design for the multi-channel Structurator routine, basedon the 

idea of the one-channel Structurator. 

has to fit in the required environment, in our case the Digital Signal Processor. 
When implementing a multi-channel Structurator on the DSP system it is most efficiently 

done in assembler language, this is the best way of implementing the multi-channel Struc­
turator using the full potential of the DSP processor for example for pipelining, for processing 
velocity difference calculations interleaved (as is done in the one-channel Structurator) and 
using parallel instructions. Ref. [11] reports of a serial Structurator-like multi-channel design 
being implemented in compiled C-code and run on the Texas Instruments C40 simulator. One 
cycle of 28 velocity difference calculations and 28 memory increments took about 1400 DSP 
clock-cycles, which corresponds to a real-time throughput of about 28 KHz for a 40 MHz 
DSP. Knowing that the performance of the C40's C-compiler can not match a routine written 
in assembler, it is clear that a serial multi-channel Structurator setup written in assembler 
can be done, achieving a substantial higher throughput. 

For comparison let me point out that the one-channel Structurator described in section 
3.3, has also been implemented in compiled C-code on the C40 for comparison. The real-time 
throughput was experimentally checked by increasing the sampling frequency and checking for 
an ADC FIFO buffer overflow, that is when the Structurator routine (in C) could notkeep up 
with the input stream of new samples. In this way a throughput of about 25 KHz was possible. 
For comparison, the one-channel Structurator assembler routine can reach a throughput of 
about 120 KHz, as was measured experimentally. Knowing this, then in the same way the 
multi-channel Structurator implemented in assembler can also achieve a substantially higher 
throughput, comparable with the one-channel Structurator. 

A serial design for the multi-channel Structurator is based on the already existing one­
channel design, so this can be used as a basistostart from. Figure 7.1 gives a schematic view 
of a possible serial design based on the one-channel Structurator. 

For eight probes there are 28 relevant velocity differences. When calculating differences, 
the velocity difference of two veloeities stored in a buffer have to be calcuted. Hence, we 
can store the numbers of the probes being compared in two difference tables. The multi-

61 



probe velocity data has to be read in parallel in some way, we talk about that later, and be 
calibrated. For each of the eight velocity data, the integer voltage code has to be transformed 
into a integer velocity code. The eight input velocity codes are stared into a 8 word long 
buffer. For each of the 28 difference calculations, the difference tables move two pointers 
along the buffer and the velocity values at these pointers in the buffer are substracted to 
give the velocity difference. Again the MCA memory to be incremented consists of this 
velocity difference, added with the maximum value of the calibration table ( =4095 for a 12-
bits ADC) to prevent a negative result (sign extend), added with the base address of the MCA 
memory block and added with (n * 8191), where n is the counter for the difference tables. 
The resulting MCA memory can than be incremented. These 28 velocity differences can be 
processed interleaved in 7 * 4 = 28 differences as is dorre in the one-channel structurator for 
8 * 4 = 32 offsets. 

A problem for this serial design or any other design in that case, can be the actual 
data-acquisition itself. The eight velocity probes in the turbulence flow have to be sampled 
simultaneously and the DSP processor running the Structurator routine has to read these eight 
channels simultaneously. If there would be an ADC board available that has for example 8 
parallel (not multiplexed!) analog inputs and 8 ADC converters each having a FIFO buffer, 
than that would be an option. For implementing this on the Transtech DSP PC-board, it 
would also be necessary for this parallel 8 channel ADC-card to be able to communicate with 
the C40's comports to get the data to the DSP processor and the ADC-card would have to 
be implemented on a TIM40 size card (for details about the Transtech DSP PC-board and 
the TIM40 standard see Appendix A). If this kind of multi-channel ADC is not available, 
then the whole setup for implementing the multi-channel Structurator on the TMS320C40 as 
it is now, would be obsolete. Then another way has to be found to get the desired dataflow 
to the DSP processor. 

If such an ADC is available and if the multi-channel Structurator is to be used in transverse 
experiments, then it should be mentioned that the calibration procedure for the hot-wires 
should be speeded up. The calibration of 8 parallel hot-wires otherwise consumes to much 
time. 

7.2 Analog to Digital conversion 

7.2.1 Higher resolution ADCs 

The longitudinal measurements of the turbulence characteristics such as the energy spectrum 
and the structure functions can be further improved by using a higher resolution for the 
Analog-to-Digital converters. If, for example an ADC of 16-bit resolution could be obtained 
then the resolution of these measurements would be much improved. Also, if 64 instead of 
32 velocity differences would be used for the Structurator, then the structure functions would 
gain in accuracy. However, the setup as it is now would then have to be changed regarding 
the available memory. 

The DSP system currently has two blocks of 1Mbyte (262 KWord) SRAM available. For 
the current setup of the Structurator, the size of the memory block required for storing the 32 
velocity difference PDFs when using a 12-bit ADC, is now 32x8192*4 = 1Mbyte, thus exactly 
enough for filling one SRAM memory block. However, if a 16-bit ADC is to be used, then for 
storing the same 32 velocity difference PDFs we would require 32*131072*4 = 16Mbyte! This 
option inSRAM memory for the Transtech C40 module (Transtech TDM407, see Appendix 

62 



A) is not available. For the memory required using different ADC resolutions and for using a 
32 or 64 size offset table see Table 7.1. 

n-bits ADC # offsets Mbyte Memory 
12 32 1 
12 64 2 
14 32 4 
14 64 8 
16 32 16 
16 64 32 

Table 7.1: Required DSP processor memory for several Structurator setups. 

The largest memory available for each memory block on the C40 module (TDM407) is 
4Mbyte, but that is for the case of slower DRAM. In that case the best possible setup for 
the Structurator will be an 14-bit ADC with 64 velocity difference PDFs. However, using 
slower DRAM will slow down the Structurator routine because memory access is slower, so 
the incrementing of the MCA memory locations will slow down. But on the other hand, we 
currently only use the Structurator with a 40 KHz ADC sampling frequency for the structure 
functions measurements, and a throughput of 120 KHz is possible, so there is considerable 
overhead available. 

7.2.2 ADC differential non-linearity 

In section 5.5.2 the differential non-linearity (DNL) of the ADC problem was discussed and 
the statistica! error it has on the velocity PDFs. This differential non-linearity is an artifact 
of the used ADC type (BurrBrown ADS7810), which is a successive approximation ADC. 
This Analog-to-digital conversion principle is a poor performer where DNL is of importance. 

A known cure of ADC differential non-linearity in repeated measurements of the same 
signal is the sliding scale principle. The principle is that before digitization of the signal a 
random voltage is added. This voltage corresponds to a known (random) binary number. 
This number is substracted from the digitized result, giving the digitized voltage of interest, 
[11]. This will smear the signal out over an appreciable fraction of the ADC's range, and 
should reduce the effect of the intrinsic differential non-linearity of the ADC. 

Where DNL is of prime interest there are other techniques for Analog-to-digital conversion 
that cope with the differential non-linearity problem. The commonly used ADC type is the 
Wilkinson ADC. Conceptually, the measured quantity is deposited as a charge on a capacitor. 
A counterthen measures the time needed to discharge the capacitor with a linear ramp. These 
type of ADCs are used intensively in high-energy physics. Other types of ADC couverters 
also have low DNL error, such as sigma-delta ADCs or integrating ADCs. 

If the measurement of velocity PDFs are considered of major importance than another 
type of ADC or the sliding scale principle, should be considered. 

63 



7.3 Hot-wire pro he 

Another point of concern is the rectification error described in section 5.6. Due to the fact 
that the hot-wire has rotational symmetry, it is both sensitive for velocity pertubations in 
the transversal direction, that is perpendicular to the main flow, as for pertubations in the 
direction of the mean flow. In section 5.6 possible errors due to this rectification problem 
were investigated. It seems that there is an influence on the energy spectrum in the form of 
an extra sealing term, and the velocity PDFs also seem to be influenced by a second PDF 
term in the resulting velocity PDF. 

Therefore, if the measurements are to be improved and also if investigation of this rec­
tification problem for a single hot-wire setup is required, it would be necessary to compare 
the single wire setup with a multiple wire or a X-wire setup. Multiple wires in the three 
directions or an X-wire also sensitive for 3-dimensional velocities, can then be used to filter 
out the single velocity direction of interest. 

64 



Chapter 8 

Conclusions 

The real-time turbulence measurements have succesfully been implemented on a TMS320C40 
Digital Signal Processor. The developed software uses some characteristics of the Digital Sig­
nal Processor which are beneficia! for our requirements, such as the fast processing capability, 
provisions for Fast Fourier transformations and circular buffers. Turbulence characteristics 
can now be measured with high accuracy. 

This thesis looked into the digital signal analysis. Because the signalis discretized in both 
time and signal value, an investigation is done on how this affects the measurements and the 
statistica! turbulence characteristics. The discrete approximation of derivatives is one of the 
most important issues in this matter. The representation of discrete differencing algorithms 
in the frequency domain, turns out to have some kind of filtering capability. On first sight it 
seems that a simple second order discrete differencing formula is less accurate then the higher 
order versions. But if a high enough sampling frequency is used, then this lower accuracy can 
be used to filter out the noise resulting from the Analog-to-Digital conversion and other noise 
from electronc equipment. 

Another error, related to the discretization of the turbulence signal, is the differential 
non-linearity (DNL). It is composed out of two contributions, one resulting from the non­
linear calibration table and one from the differential non-linearity of the Analog-to-Digital 
converter (ADC). The DNL is mainly visible in measured velocity probability distribution 
functions (PDFs). The influence of the non-linear calibration table has successfully been 
removed. The influence of the ADC remains still present, and several techniques to counter 
this problem have been discussed. It is recommended that a different type of Analog-to-digital 
conversion is necessary to remove this DNL contribution. 

The windtunnel measuments have been carried out using a hot-wire anemometer system 
consisting of a single hot-wire positioned in the turbulent airflow and a constant temperature 
anemometer (CTA). Due to the rotational symmetry of the hot-wire, it is sensitive for both 
velocity pertubations in the transversal direction (i.e. perpendicular to the main flow) as 
for pertubations in the direction of the mean flow. The suspicion arises that this socalied 
rectification error effects the value of measured sealing exponents and the velocity PDFs. In 
case of sealing behavior it seems that the energy spectrum obtains an extra term, which can 
be related to 3-point velocity correlations. In case of the velocity PDFs, it seems that these 
consist of a summation of two velocity distributions. However, these errors are not completely 
understood and have to be investigated further. 

Some experimental results are presented in this thesis. The experiments were mainly done 

65 



to check the new instrumentation that was developed in this project. Experimental results 
which are presented are: energy spectra, velocity PDFs, velocity difference PDFs and Structure 
functions. The results agree very well with those of earlier experiments. 

The highly improved statistics of the energy spectra, however, led to the verification of a 
new turbulence phenomenon. In the energy spectra, a socalied energy pileup becomes visible 
that is ascribed to the bottleneck phenomenon. It is most clearly seen in a region in the 
spectrum just before the energy drops off, due to viscous dissipation. Some theoretica! results 
also show the same energy pileup as the experiments. It is of high importance to further 
investigate this energy pileup. 

Some recommendations are given for a multi-channel Structurator. Due to the succesful 
implementation of the one-channel Structurator on the Digital Signal Processor, it must be 
straightforward to implement a multi-channel Structurator for the measurement of transversal 
structure functions in the same way, provided that a suitable multi-channel ADC is available. 
Also for the impravement of the accuracy of the current instrumentation, another ADC is an 
option, provided that the necessary memory configuration of the Digital Signal Processor can 
be obtained. 

66 



Appendix A 

Digital signal processing hardware 
and software 

This appendix describes the hardware and software that is used for the implementation of 
the real-time measurements of turbulence characteristics. The first part deals with digital 
signal processors on the whole and their special design which makes them ideal for this kind 
of work. The second part describes the used digital signal processor, the Texas Instruments 
TMS320C40 DSP processor and the last part describes the actually used DSP PC-board of 
Transtech Parallel Systems. 

A.l The architecture of Digital signal processors 

Digital Signal Processors (DSP's) are special designed integrated circuits for doing fast digital 
signal processing. There are two kinds of digital signal processors; the ones which are general 
purpose and freely programmabie and the ones which have a fixed function specific for the 
application. Both these DSP processor types can have two kinds of arithmetic; fixed point 
or floating point arithmetic. The common known digital signal processors are the ones which 
are programmabie ( general purpose). For the application described in this thesis we use a 
programmabie general purpose digital signal processor with floating point arithmetic. 

On the whole, digital signal processors are in fact still common CPU's, but the architec­
ture is optimized for fast input, fast processing and fast output of continious data at high data 
rates. If a DSP processor has to workin real-time then the architecture has to be specially de­
signed and optimized to do real-time digital signal processing tasks. A hardware architecture 
which is optimized for real-time DSP is often characterized by the following items: 

• Multiple bus structure with separate memory space for data and program instructions. 

• The I/0 port deals with the transport of data of external devices such as an ADC or a 
DAC and deals with the transport of digital data to other processors. Direct memory 
acces (DMA) (if applicable), deals with fast transport of data-blocks direct to or from 
RAM. 

• Arithmetic units for logical and arithmetic operations, like an ALU (Arithmetic Logic 
Unit) and a hardware multiplier-accumulator (MAC). 

67 



Why is such an architecture necessary? Most DSP algorithms such as filtering, corre­
lation and the Fast Fourier Transform (FFT), involve repetitive arithmetic operations such 
as multiply, add, memory accesses and heavy data flow through the CPU. The architecture 
of standard microprocessors is not suited for this type of activity. An important aspect of 
DSP processor hardware design is the optimization of both the hardware architecture and the 
instruction set for DSP operations. In digital signal processors, this is achieved by making 
extensive use of the concepts of parallelism. In particular, the following techniques are used, 
[13]: 

• Harvard architecture; 

• Pipelining; 

• Fast, dedicated hardware multiplier-accumulator (MAG); 

• Special instructions dedicated to DSP; 

• Replication; 

• On-chip memoryjcache; 

For successful DSP design, it is important to understand these key architectmal features and 
they are discussed below. 

Harvard architecture: The architecture of a digital signal processor is usually characterized 
by the Harvard architecture. In this setup the access to data and instruction memory is clone 
with seperate channels so that the two information streams do not interfere. Data and 
instructions are placed in seperate memory spaces. This in contrast to the Von Neumann 
architecture which can be found in general purpose CPU's like in a PC. The Von Neumann 
architecture does not destinguish between instructions and data. The same memory can be 
used for the storage of data and instructions. A CPU executes an instruction in a socalied 
Von Neumann cyclus: 

• Instruction Fetch (IF); the instruction is fetched from memory and the program counter 
is updated, 

• Instruction Decode (ID); the instruction is decoded and operand address generation is 
performed, 

• Operand Fetch (OF); if necessary, the operands are read from memory, 

• Execute (EX); performs the requested operation and stores the result. 

In a standard microprocessor, without a Harvard architecture, the program instructions (pro­
gram code) and the data ( operands) are held in one memory space. Thus the fetching of 
the next instruction while the current one is executing is not allowed, because fetch and ex­
ecution phases each require memory access. The use of a Harvard architecture permits the 
full overlap of instruction fetch and execution, because seperate memory spaces are used. 
Strict Harvard archtecture is used by some digital signal processors (for example, Motorola 
DSP56000), but most use a modified Harvard archtecture (for example the TMS320 family 
of Texas Instruments). In the modified architecture used by the TMS320C40, for example, 

68 



NON-PIPELINED PROCESSOR 
IF IF IF IF IF 

ID ID ID ID 

OF OF OF OF 
EX EX EX EX 

time 

PIPELINED PROCESSOR (4 STAGES) 

IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF 
ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID 

OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF 
EX EX EX EX EX EX EX EX EX EX EX EX EX EX 

sctup time time 

Figure A.l: Schematic representation of a non-pipelined and a (4 stage) pipelined processor. After 

an initial setup time the pipelined processor clearly processes instructions Jaster than a non-pipelined 

processor. 

separate program and data memory spaces are still maintained, but communication between 
the two memory spaces is permissible, unlike the strict Harvard architecture. 

Pipeling: Pipelining is a technique which allows two or more operations to overlap during 
execution. In pipelining, a task is broken down into a number of distinct subtasks which are 
overlapped during execution. It is used extensively in digital signal processors to increase 
speed. Figure A.l shows a schematic representation of a 4 stage pipeline processor in com­
parison with a non-pipelined processor. Each step in the pipeline takes 1 machine cycle (nat 

one clock cycle). Thus duringa given cycle up to four different instructions may he active at 
the same time, although each will he at a different stage of completion. Complications which 
can occur if a pipelined structure is used are: 

• The maximal speed-up is reached only after a certain setup time, because the pipeline 
must be filled at startup. 

• The former also applies when after each branch (Branch, Branch from subroutine) to 
a different part of the program, the program returns (Branch from subroutine). Then 
again the pipeline has to he filled. 

• Not all stages of the pipeline have the same execution time. Decoding sometimes costs 
a lot of time; then the rest of the pipeline has to wait. 

• Memory conflicts can occur at IF, OF and EX if instruction and operand are in the 
same memory block. 

The last complication can he avoided if the Harvard architecture is used. Thus, this architec­
ture is well suited to use with the pipeline structure of a CPU, because memory conflicts are 
avoided. On the whole, pipelining can give a significant reduction in execution time per in­
struction. The throughput of a pipelined machine is determined by the number of instructions 
through the pipe per unit time. All stages of the pipeline are to he synchronized. The time 
for moving an instruction from one step to another within the pipe is one cycle and depends 

69 



Databus I 

Databus2 

Addressbus I 

Addressbus 2 

~':!~ipy~r ____ _ 
ALU 

Figure A.2: Schematic representation of the buildup of the internal DSP processor architecture. 
DSP processors usually have more than one seperate data- and instruction-busses and multipliers­
accumulators {MACs) in hardware. 

on the slowest stage of the pipeline. In a perfect pipeline, the average time per instruction is 
given by, [13] 

time per instruction 

number of pipeline stages 

In the ideal case, the speed increase is equal to the number of pipeline stages. In practice the 
speed increase will be less because of the overheads in setting up the pipeline, and delays in 
the pipeline registers, and so on. 

Hardware multiplier-accumulator: Other basic elements of a digital signal processor are 
also used to let the processor do more than one operations per clockcycle. For this the DSP 
processor has aften one or more hardware multipliers-accumulators (MACs) and the com­
plete internal processing is captured in a pipeline structure. The basic numerical operations 
in DSP are multiplications and additions. To make real-time DSP possible, a fast dedicated 
hardware multiplier-accumulator using fixed or fioating point arithmetic is mandatory. Fur­
ther the troughput capacity is increased by using multiple data andjor addressbusses in the 
architecture, which makes it possible to read more than one words per cycle and by which 
better I/0-functionallity is reached. One or more serial commmunication channels increase 
further the I/0 capability, see Figure A.2 

Special instructions: Digital signal processing involves the use of special data structures 
such as can be found in FFT -operations and working with circular buffers. This has lead to 
some specific addressing modes. Some of them can also be found with regular processors: 

• immediate; operand is part of instruction. 

• direct; address of operand is part of instruction. 

• indirect; address is in register, which is increased or decreased after execution. 

• modulo; for addressing circular buffers. 

• index; basic address with offset. 

70 



• bit reverse; for FFT operations. 

Also DSP processors are equiped with special instructions which can be of use when dealing 
with special DSP operations. The benefits of having special instructions are twofold: they 
lead to a more compact code which takes up less space in memory and they lead to an 
increase in the speed of execution of DSP algorithms. Special instructions provided by DSP 
IC's include (i) instructions that support general DSP operations (such as digital filtering 
and correlations), (ii) instructions that reduce the overhead in instruction loops (for example 
zero overhead loops and single cycle branching instructions) and (iii) application-oriented 
instructions (for example for updating of LMS-algorithm adaptive filters, FFT operations). 

Replication: In DSP processors, repHeation involves using two or more basic units, for 
example using more than one ALU, multiplier or memory unit. Often the units are arranged to 
work simultaneously, see also Figure A.2 where more than one data and addressbus makes the 
concurrent use of basic units possible. However, full-blown parallel processing concepts where 
for example a number of independent processors work on a given task, or several processors 
under one control unit work simultaneously on a single problem, are being extended to DSP. 
An examples of a DSP processors with parallel processing capability is the Texas Instruments 
TMS320C40. 

On-chip memoryjcache: In most cases, DSP chips operate so fast that slow inexpensive 
memories are unable to keep up. The common practice is to slow the processor down by 
adding wait states. In some processors, wait states are software programmable, but in others 
a piece of external hardware is necessary to slow the processor down. Wait states mean 
of course that the processor cannot operate at full speed. To alleviate this problem many 
DSP chips contain fast on-chip data RAMs and/or ROMs. In such processors, slow external 
memories may be used to hold program code. At initialization, the code may be transferred 
to the fast, internal memory for full-speed execution. Fast on-chip EPROMs are useful for 
real-time development and for final prototyping. Some DSP ICs provide an on-chip program 
cache which may be used to hold often repeated sections of a program. Execution of codes 
in the cache avoids further memory fetches and speeds up program execution. 

A.2 The Texas Instruments TMS320C40 Digital signal pro­
cessor 

The general purpose digital signal processor used for the implementation of the real-time 
turbulence measurements, is a DSP processor manufactured by Texas Instruments, type 
TMS320C40. Often this DSP processor is simply called the 'C40'. It is a high performance 
digital signal processor, especially suitable for applications in parallel processing systems and 
real-time embedded applications. The C40 provides vast 1/0 bandwidth through the im­
plementation of two external interface ports and six additional communication ports. The 
on-chip DMA coprocessor supports concurrent 1/0 and CPU operations, alleviating the CPU 
from time consuming 1/0 operations. Due to an on-chip floating point/integer multiplier 
and an arithmetic and logic unit the C40 is capable of executing computationally intensive 
algorithms. 

In order to become acquainted with the architectmal concepts of the TMS320C40 this 
section presents a brief summary of its key features. Many of the techniques discussed in the 
former section are used in this DSP processor. Figure A.3 depiets the internal architecture 

71 



Figure A.3: Schematic overview of the internat architecture of the Texas Instruments TMS320C40 
DSP processor. 

of the C40. 
The central processing unit: The Central Processing Unit (CPU) of the C40 is capable of 

performing both fioating point and integer operations. In order to do so, the CPU comprises 
a multiplier and an Arithmetic Logic Unit (ALU). The multiplier of the C40 performs single­
cycle multiplications on both 32-bit integer and 40-bit fioating point values. These operations 
include integer and fioating point conversions. Additional to the ALU and the multiplier, the 
C40 CPU comprises a 32-bit barrel shifter. This barrel shifter is used to shift an operand up to 
32 bits left or right in a single cycle. To augment efficiency in the hardware implementation, 
the fioating point format of the C40 differs from the IEEE fioating point standard. To 
overcome this problem the C40 provides two special instructions which couvert numbers from 
C40 to IEEE format and vice versa. The C40 provides 32 registers in its primary register 
file, this primary register file is tightly coupled to the C40 and all of its registers can be 
manipulated by the multiplier and the ALU. The narnes and the functions of the registers 
in the primary register file are tabulated in Table A.2. In addition to the 32 registers in the 
primary register file, the expansion register file provides two registers representing pointers 
to the trap vector table and the interrupt vector table. The registers in the expansion register 
file can not be modified by the multiplier or AL U, however the C40 provides the instructions 
LDEP and LDPE to copy their contents to and from the primary register file. The registers in 
the expansion register file are tabulated in Table A.2. A special case is the program counter 
(PC), a 32-bit register. Although the PC is not contained in the primary register file, its 
contents can be modified by instructions that control the program flow. 

Memory organisation: In contrast to other memhers of the TMS family of DSP proces­
sors, the C40 is completely memory mapped, i.e. there are no separate program, data or 
I/0 strobes. The total memory span of the C40 is 4 GigaBytes. In order to increase per­
formance the C40 is equipped with internal storage facilities such as RAM, ROM and Cache 
memory. The internal RAM of the C40 is organized into two blocks of 1Kx32bit each. in 
order to access these memory blocks the C40 is equipped with multiple address, data and 

72 



Register Function 
RO .. Rll Extended Precision registers 0 to 11 
ARO .. AR7 A uxiliary registers 0 to 7 
DP Data-page pointer 
IRO, IR1 Index register 0 and 1 
BK Block-size register 
SP System stack pointer 
ST Status register 
DIE DMA interrupt enable 
IIE Internal interrupt enable 
IIF IIOF register 
RS Repeat start register 
RE Repeat end address 
RC Repeat counter 

Table A.l: TMS320C40 registers 

Register Function 
IVTP Interrupt vector table pointer 
TVTP Trap vector table pointer 

Table A.2: TMS320C40 expansion regeisters 

program busses. These seperate busses allow program fetches, data reads or writes and DMA 
operations to occur parallel. The internal ROM is reserved for an internal boot loader. This 
boot loader is described later on. The internal cache is a 128x32bit instruction cache capable 
of storing often repeated sections of program code. Due to the use of internal cache, exter­
nal starage devices may be slower, without significantly deteriorating processor performance. 
An additional advantage is the less frequently use of the external busses, thus simplifying 
DMA-transfers to external devices. External devices can be connected to the C40 through 
the implementation of two almost identical interfaces: the Global memory interface and the 
Local memory interface. Each of these interfaces is made up of a 32bit data bus and a 31bit 
address bus and two independently functioning sets of control signals. Both busses can be 
used to access shared or dedicated resources. Therefore, an unlimited number of different 
multiprocessor configurations may be constructed. 

Boot loader: The internal ROM of the C40 is reserved for a factory fitted boot loader. 
This boot loader enables the processor to load and execute programs from a host computer, 
external memory or another C40. The boot loader can operate in two modes, depending on 
the values of the IIOF[l..3] pins during boot phase. 

73 



These modes are: 

• Memory boot laad, 

• Communication port boot laad. 

During the memory boot load the C40 normally loads the program from relatively slow ROM 
to fast RAM. If the load phase is completed the program is executed. The C40 is also capable 
of performing a boot load by using one of its 6 communications ports. The C40 scans each 
communication port repeatedly for incoming data. If incoming data is detected the associated 
communications port is used to perform the bootload. 

Communication Ports: A main feature of the C40 DSP processor is the implementation 
of 6 communication ports. These communication ports enable direct, Glueless, interprocessor 
communications without the need for external hardware. Although many multiprocessor 
systems use a shared bus structure to provide a datapath between processors this method 
limits the processor communication bandwith. In many high performance multiprocessing 
systems processor to processor communication is critical. The six communication ports of 
the C40 consists of four controllines and eight data lines. Both control and data lines may be 
defined as either outputs or inputs by a Port Arbitration Unit (PAU). Each PAU determines 
the direction of its associated communication port by examining the ownership of a transmit­
token. To obtain bus ownership a communication port must request the token from another 
bus or device and await the associated acknowledge that signals a successful token transfer. 
At reset ports 0, 1 and 2 own the transmit token and are consequently configured as outputs, 
whereas ports 3, 4 and 5 are configured as inputs. Due to their parallel transmission protocol, 
the maximum data transfer rate of each communication port is 5Mx32bit wordsper second. To 
avoid deceleration of the data transfer each communication port is buffered by a bidirectional 
First-In First-Out buffer (FIFO). Each FIFO is made up of an eight level 32bit storage. To 
synchronize operations between CPU or DMA and communication ports, the ports report 
their condition via internal interrupts and internal ready signals. 

Direct Memory Acces: To increase the data transfer rate the C40 is equipped with a Direct 
Memory Access (DMA) coprocessor which supports 6 DMA channels. These DMA channels 
can perform transfers to and from anywhere in the processor's memory map. Transfers can 
be made to and from external devices, internal memory or communication ports. The DMA 
coprocessor is especially designed for use with digital signal processing algorithms because it 
provides special addressing modes for Fast Fourier Transforms (FFT) and matrix operations. 
An important feature of the C40's DMA coprocessor is its autoinitialisation mode. Due to 
this autoinitialisation mode the DMA coprocessor can be configured completely autonomous 
and hence data transfers can be started without any intervention of the CPU. In addition to 
transferring data the DMA channels may also be programmed to fill a block of memory with 
a single value. This operation can be used to initialize array's in a CPU independent manner. 

Timers: The C40 provides two internal timers (Timer 0 and Timer 1), which can be used 
to count external events or to signal a device at specified intervals. These timers may be 
docked by an internal or an external ckock. By using the internal doek the timer may signal 
external devices such as A/D couverters to start a conversion. If an external doek is used, 
the timer can interrupt the C40 if a specified number of external events has occurred. 

Pipeline Operation: As mentioned before a basic processor may be partioned in four 
destinguished levels: 

74 



• Fetch; the instruction is fetched from the memory and the progam counter is updated, 

• Decade, the instruction is decoded and operand address generation is performed, 

• Read. if necessary the operands are read from memory, 

• Execute; performs the requested operation and stores the result. 

To augment the processor's performance, the C40 is equipped with a four stage instruction 
pipeline. This pipeline enables the 4 levels listed above to be executed in parallel. If the 
pipeline is completely filled, the CPU operates at an execution rate of one execution per 
cycle. Although the maximum benefit of the pipeline can only be reached by carefull pro­
gramming, no special precautions are needed to guarantee correct operation and hence the 
pipeline operation is completely transparent to the user. In order to take full advantage of the 
instruction pipeline, the C40 provides a number of special instructions. These instructions 
include delayed branches, delayed calls and parallel instructions. 

Instruction Set: The C40 provides a number of different addressing modes, some of them 
implemented to support signal processing algorithms: 

• Register; the operand is one of the registers in the primary register file (see table A.2), 

• Immediate; the operand is a 16bit immediate value contained in the instruction word, 

• Direct; the data address is formed by the concatenation of the 16 least significant bits 
of the DP register with the 16 least sifnificant bits of the instruction word, 

• Indirect; the data address is formed by the addition of the auxiliary register content and 
an optional displacement, 

• PC-relative; is used for branch instructions. 

JTAG-Interface: The C40 is equipped with a dedicated emulation port. This emulation 
port is operated according toa superset of the IEEE 1149.1 (JTAG) standard. To access the 
JTAG port an XDS510 emulator should be used. Multiple processors may be daisy-chained 
to enable easy debugging of a multiprocessor configuration. 

A.3 The Transtech DSP PC-board 

For the implementation of the digital signal processing hardware a DSP PC-board from 
Transtech Parallel Systems was used. This internally mounted PC-board has a PC-AT bus 
(or ISA-bus) connector for communication with the host personal computer. In the next 
subsection the hardware is described. After that we describe the Transtech software used to 
operate this DSP board. 

A.3.1 Hardware 

The Transtech system consists of the following hardware elements: 

• TDMB412; Transtech motherboard for PC-AT class host machines, 

75 



Figure A.4: Block diagram of the Tmnstech TDMB412 motherboard. The motherboard has room for 

4 TIM size one cards, which can be either a TIM40 module with a TMS320C40 DSP processor or a 

TIM40 size one 12 bit ADC/DAC card. 

• TDM407; Transtech TIM40 module with a Texas Instruments TMS320C40 DSP pro­
cessor, 

• TDM431; Transtech two channel 12-bit analog to digital converter with the size of one 
TIM40 module. 

The TIM40 standard: TIM40 is a recognized industry standard developed by a consortium 
lead by Texas Instruments for C40 and C44 modules. The specification allows (for example) 
for a processor and memory or other circuitry on a small daughter board. The TDMB412 
motherboard conforms to the standard of a TIM40 motherboard and will accept any modules 
which have been produced to the TIM40 specification. 

The TDMB412 motherboard: The TDMB412 is a four slot TIM40 motherboard for PC­
AT class machines. The TDMB412 has both an 8 and a 16 bit host interface which drive a 
single C40 communications link (comport). The comport from the interface can be connected 
either to the first on-board TIM40 slot or to the board's edge connector (see figure A.4). This 
allows the TDMB412 to be used as a PC-to-comport interface card for connecting to C40 
equipment outside the PC. It is possible to disable the interface circuitry completely, allowing 
the TDMB412 to be used as a slave board to another TDMB412. There can be up to four 
TIM40 modules installed on a TDMB412 allowing up to eight C40 or C44 processors per 
board. Some of the TIM40 comports are hardwired by the motherboard to conneet between 
certain of the slots. Most remaining TIM40 comports are brought to cable headers along the 
top edge of the board. This allows customization of the C40 topology by the use of comport 
cables. The TDMB412 contains an XDS510 compliant JTAG PC interface. This is designed 
primarelly for use with C40 JTAG based debuggers which access the JTAG bus via an XDS510 . 
interface card (such as the Transteeh's C40 debugger). The JTAG bus can be easily daisy 
chained between any number of motherboards via the ParaDICE port on the TDMB412. 
The TDMB412 can be used as a component in a larger C40 system. Normally, one C40 in 
the whole network is regarcled as the root C40, and has the priviledge status in that one of 
its comports is connected via a comport adapter to the host computer. The motherboard 
which has the root C40 installed is referred to as the masterboard in the system and will have 
its host interface enabled. It will be responsible for coordinating other motherboards in the 
system at program boot time. All boards other than the masterboard are called slaveboards 
and they will have their host interface disabled. 

The TDM407 TIM40 module: The TDM407 is a Transtech TIM40 module which can be 
put into one of the four slotsof the TDMB412 motherboard. The TDM407 integrates a 40, 50 
or in our case a 60 MHz TMS320C40 DSP processor with a choise of memory configurations 

76 



r- ~. r r-
{ . .'ONTROL BUS COMM PORTS 1,2,4;'· 
COMM PORTS 0, 3 

GWBAL ADDRESS "' TIMER INTERUPTS TMS320C40 0 

0: GtOBAL ATA a g 0 
!"' 3: 

&I LOCALADDR 0 ~ 

~ GLOBAL "' "' 
0 'äëAL"'"" AODR 

;: ~ u DATA 8 "' ,. "' 0: ~ n < 
l l 

m 0 ::;: 
8 ! i:! 

' ~ "' 0 I LOCALmm&~ I ~;~ALm~~ t- LOGICADOCOOE I.OGIC A DECODE "' SRAM SRAM 
!Mb ~oLAI I IGruNlltO~ !Mb 

'-:c:· : ··~"••v•• GCONTROLB '- .. 7 

Figure A.S: Block diagram of the TDM407 TIM40 size one card. The TDM407 integrates a 60 MHz 

TMS320C40 DSP processor with a choise of memory configurations. In our case the memory blocks 

are devided into 2 blocks of 1 Mb SRAM split between the local and global busses of the C40 DSP 

processor. 

that may allow up to 8Mb of DRAMor 2Mb of SRAM. The TDM407 module conforms to 
the specification for a size one TIM40 module. The memory is split between the global and 
local busses of the C40 DSP processor. In our case the memory configurations are 1 MB 
SRAM local memory and 1 Mb SRAM global memory. The SRAM is configured as two 512 
Kb pages of memory within each local or global block. The SRAM memory has zero wait 
state access within a page, but an additional cyde is inserted when successive accesses cross 
the page boundary. The TDM407 has the additional feature of a global connector, allowing 
additional fiexibility with memory configurations. This global connector allows the TDM407 
to access any global memory available on the motherboard. The doek for the module may be 
derived locally ortaken from the motherboard. The block diagram for the TDM407 is shown 
in figure A.S. 

The TDM431 12-bit ADC: The Transtech TDM431 is a two channel 12-bit analog In­
put/Output TIM40 size one module capable of analog to digital and digital to analog conver­
sion at sampling rates of up to 250 KHz with FIFO buffering to two C40 comports, one for 
analog input and the other for analog output. In our case only the analog to digital part of 
the TDM431 was supplied. Each input channel accepts bipolar analog signals with a range of 
±10Volt. The inputs are digitised using analog to digital converters (ADCs) with a resolution 
of 12 bits and the data is routed via FIFO buffers to either comport 1 or 2. The analog input 
impedance is approximately 3 Kn. 4 Kbyte FIFOs are used to buffer data between each of 
the ADCs and DACs and the input and output comports. Transfers of one or two samples 
per word are supported with block transfers of up to 1024 32bit words between the comports 
and the FIFOs. The sampling rate is identical for all channels and is software adjustable from 
39 Khz to 250 KHz. Alternatively an external TTL doek up to 250 KHz may be used. When 
using the software adjustable sampling rate option, the sample interval counter is docked 
by a 10MHz internal doek, so this has a resolution of 100ns. Because of the fact that the 
sample interval is chosen by a socalied command byte ( = 8 bits) in the command word, the 
lowest possible sampling rate is 39.1KHz. Because of the fact that the TDM431 ADC-card 
is compatible with the TIM40 standard, the card can be put into one of the free slots of the 
TDMB412 motherboard and can be connected to one of the comports of the C40. In this 
way we can use the high transfer speed of the C40 comport to acquire data from the ADC 

77 



l 
u 

Figure A.6: Block diagram of the TDM431, a two channel 12bit analog InputjOutput TIM-40 size 

one module capable of analog to digital and digital to analog conversion at sampling rates of up to 250 

KHz with FIFO buffering to two C40 comports, one for analog input and the other for analog output. 

into the DSP processor. Figure A.6 shows the block diagram of the TDM431 The TDM431 
uses 12bit converters, so the -lOV to +lOV input range is mapped on to 212 or 4096 codes, 
corresponding to 4.833m V per step. The ADC data encoding is in two's complement format, 
so values from ADC-code 0 to code 2047 correspond to positive input voltages while ADC 
codes from 2048 to 4095 correspond to negative input voltages. 

A.3.2 Software 

The Transtech system is supplied with the Transtech Parallel C40 Environment (PaCE). 
PaCE enables the development of parallel programs on networks of TI's TMS320C40s. PaCE 
consists of a number of components: 

• Compiler; the Texas Instruments C40 optimizing compiler and assembler/linker tools, 

• loadc40; the Transtech C40 network loader, 

• TOPS; Transtech Open Parallel Server, 

• Emulator; Transtech C40 Emulator under Microsoft Windows. 

The PaCE development process by which a network of C40s can be loaded with an application 
consisting of a program or programs written in C is summarized in Figure A. 7. 

A PaCE application consists of programs written in C to run on each C40 in a network 
of C40s. The nocles all run the same program or run different programs as required. Each 
individual C program is compiled and linked using the Texas Instruments C compiler and 
linker. Given a network description file (extension .nd), TOPS is used to load the application 
onto a network of TIM40 modules. This network description file containes information for 
each processor in the network specifying the number of the processor from which the node 
is booted, the number for this node starting at 1 for the root processor, the booting node's 
camport down which the processor is booted, the name of the program to load onto the node 
and the cammand line arguments to give to the program. By using the TOPS server and 
library, the program running on the C40 connected to the PC can perfarm I/0 on the PC-host 
such as printing to the screen and file accesses. User programs on the root processor can access 
PC host I/0 facilities using standard ANSI C calls, such as printj(), jopen(}, fwrite(}, etc .. , 

78 



Key: ~ 

c§3 
Figure A. 7: The PaCE development process. Assembler programs are assembied with asm30 and C 

programs are compiled with cl30 which bath produce an .obj file. This can be linked with object libraries 

using a linker cammand file (.cmd) and the lnk30 linker. The produced .out file can be loaded onto a 

networkof C40s using the tops server program and a network discription file (.nd) or each individual 

C40 DSP can be loaded with the loadc40 bootloader. 

which have been implemented in the TOPS library. The TOPS server uses the C40 Network 
Loader ( loadc4 0) to load user's applications onto a network of C40s. PaCE applications can 
be debugged from MS Windows running on the host PC by loading the PaCE application 
using TOPS and controlling the execution of the individual C40 programs using the C40 
Emulator. 

79 



Appendix B 

Program listings 

In this appendix the programs are listed, which were developed for the turbulence mea­
surements. The first program, the spectrum program measures and calculates the turbulence 
energy spectrum and the turbulence characteristic quantities. The second program, the Struc­
turator program, is for the real-time measurement of structure functions. 

B.l Spectrum program 

The program spectrum. c takes a number of blocks of samples from the ADC with a given 
sample frequency. The number of blocks, the block size and the sample frequency can freely 
be chosen. On each block of data a series of processes are performed. The voltage codes 
are transformed into velocity codes via the calibration table. From this velocity time-block 
the velocity probability distribution (PDF) is calculated and the mean PDF is updated. 
Some statistica! quantities are calculated from the velocity time-block among which are the 
mean velocity, the rms velocity and the rms derivative velocity. From these quantities some 
turbulence quaracteristics are calculated such as the viscous dissipation rate, the Kolomorov 
-lenght, -velocity, -time-scale and -frequency, the Taylor microscale, the distance scale and 
the Reynolds number. The velocity time-blockis windowed using a Hanning window and the 
windowed data is transformed to the frequency domain using an assembler FFT routine. The 
resulting frequency record is converted into a power spectrum and the mean power spectrum is 
updated. The used FFT routine is called ffft_rl, a real radix-2 DIF FFT for the TMS320C40, 
and is described in ref. [27]. The program spectrum. c is listed below as first. 

The second file is the linker command file spectrum.cmd and is needed for linking the 
compiled spectrum.c program with the object libraries. The linker command file declares the 
available DSP processor memory and specifies the allocation of the different program sections 
into the available memory. 

The last file is an example of a configuration file spectrum. cnf used to pass some variables 
and filenarnes to the spectrum. c program. With this file the user can chose the amount of 
data blocks to be sampled, the size of each data blocks, the sample frequency and the energy 
spectrum cutoff frequency when calculating the rms- and rms derivative velocity from the 
energy spectrum. The last option can be used to filter out the ADC noise level. 

80 



00 ...... 

I* 
* 
* Program: spectrum.c 

* 
* Author: Marcel Donker 

* 
* Last Update: 101296 

* 
* This program uses the TI C40 DSP and a 12-bits ADC to 
* sample one input-channel. A FFT routine is used to transform 
* the real input data into a turbulence spectrum. A number of 
* power-spectra measured to give an average power-spectrum. 

* 
* The turbulence characteristics are calculated from the time-series 
* and from the power-spectrum. 

* 
* This program uses the Transtech TDMB412 motherboard, with one TIM-40 
* module (C40) in slot 1 and a TDM431 12-bits ADC in slot 3. Comport 4 of 
* the C40 is connected to comport 1 of the ADC. 
* Data is sampled from ADC channel 1. 

* 
* Some constants like the sample frequency, sample size, number of blocks 
* and some file narnes are read from the contiguration file: 
* c:\marcel\spectrum\spectrum.cnf 

* 
*I 

#include <stdio.h> 
#include <stdlib.h> 
#include <link.h> 
#include <values.h> 
#include <math.h> 
#include <fcntl.h> 
#include <string.h> 

#define TRUE 
#define FALSE 
#define CALIBR_SIZE 
#define BITREV 
#define DEFAULT_ADC_COMPORT 
#define ADC_READ_DATA 
#define ADC_READ_STATUS 
#define ADC_BLOCK_READ 
#define ADC_CHANNEL_1 
#define ADC_CHANNEL_2 
#define ADC_TWO_SAMPLES_PER_WORD 

0 
4096 
1 
4 
OxOO 
Ox01 
Ox04 
Ox02 
OxOO 

I* size of calibration table *I 
I* Enable bitreversing for FFT *I 
I* Comport ADC *I 

Ox08 

#define ADC_SET_SAMPLE_INTERVAL 
#define ADC_EXTERNAL_SAMPLE_MODE 
#define ADC_STOP 
#define ADC_CONTINUOUS_MODE 
#define ADC_FIFO_NOT_EMPTY 
#define ADC_FIFO_NOT_HALF_FULL 
#define ADC_FIFO_NOT_FULL 
#define MAX_BLOCK_SIZE 
#define TIMEOUT 

#define visc 1. 5e-5 

int *sample_data; 
int *calibr; 
float *veloc; 
float *fourier; 
float *power; 
float *power_average; 
float *sintable; 
float *fourier_align; 
float *hanning; 
int *hist; 

float vmul,vmin,vmax; 
float theta; 
float ugem,urms; 
float uugem,uurms; 
double s1du,s2du; 
double s1duu,s2duu; 
double dugem,durms; 
float urms_spec,durms_spec; 

Ox10 
Ox20 

Ox40 
Ox80 
Ox1 
Ox2 
Ox4 
1024 
100 

float eps,eta,vK,tK,fK,lambda,reynolds,scale; 

int LOG2_FFT_SIZE; 
int NUM_AVERAGE; 
int MAX_SIZE; 
int sample_size; 
int sample_freq; 
float sample_time; 
int spectr_cutoff; 
int adc_comport = DEFAULT_ADC_COMPORT; 
unsigned adc_channel = ADC_CHANNEL_1; 
int hist_size = CALIBR_SIZE; 
int fft_size; 
int half_fft_size; 
unsigned sample_interval; 



00 
1:-J 

char prefix[16]; 
char filename_1[13]; 
char filename_2[13]; 
char filename_3[13]; 
char filename_4[13]; 
char filename_5[13]; 

void read_cnf_file(void) 
{ 

int i; 
char dummy[60]; 
FILE *CNFFile; 

I* Reading the contiguration file *I 

CNFFile = fopen ("c:lmarcellspectrumlspectrum.cnf","r"); 
if (CNFFile == NULL) 
{ 

printf ("Unable to read configuration-file! \n"); 
printf ("Error-message: 'l.s \n",strerror(errno)); 
exit(O); 
} 

fscanf(CNFFile, "'l.d" ,&NUM_AVERAGE); I* # of blocks to sample *I 
fgets (dummy,60,CNFFile); 
fscanf (CNFFile, "'l.d", &sample_freq); I* sample frequency *I 
fgets (dummy,60,CNFFile); 
fscanf(CNFFile,"'l.d",&sample_interval); I* hex number for adc *I 
fgets (dummy,60,CNFFile); 
fscanf (CNFFile, "'l.d" ,&sample_size); I* # of samples per block *I 
fgets (dummy,60,CNFFile); 
fscanf(CNFFile,"'l.d",&LOG2_FFT_SIZE); I* Log 2 sample size *I 
fgets (dummy,60,CNFFile); 
fscanf(CNFFile, "'l.d" ,lcspectr _cutoff); I* Cutoff frequency for spectrum 
turbulence characteristics *I 

fgets (dummy,60,CNFFile); 
fgets (prefix,16,CNFFile); I* prefix for file narnes *I 
fgets (dummy,60,CNFFile); 
fgets (filename_1,13,CNFFile); I* filename calibration 

input file *I 
fgets (dummy,60,CNFFile); 
fgets (filename_2,13,CNFFile); I* filename power spectrum 

output file (binary) *I 
fgets (dummy,60,CNFFile); 
fgets (filename_3,13,CNFFile); I* filename histogram 

output file *I 
fgets (dummy,60,CNFFile); 

fgets (filename_4,13,CNFFile); 
characteristics output file *I 

fgets (dummy,60,CNFFile); 
fclose (CNFFile); 
return; 
} 

void flush_adc_fifo(void) 
{ 

int value; 
unsigned status; 

I* Stop previous sampling *I 
while(TRUE) 
{ 

I* filename turbulence 

I* Get status *I 
link_out_word(adc_channeliADC_READ_STATUSIADC_STOP,adc_comport); 
link_in_word( &value,adc_comport); 
status = value Ie 7; 
if (adc_channel == ADC_CHANNEL_2) 
value >>= 4; 
I* Test status *I 
if (!(status & ADC_FIFO_NOT_EMPTY)) 
{ 
I* Empty *I 
return; 
} 
else if (!(status & ADC_FIFO_NOT_FULL)) 
{ 
I* Read 2048 samples in 1024 words *I 
link_out_word( (1024<<8)ladc_channeliADC_STOPIADC_READ_DATAI 
ADC_TWO_SAMPLES_PER_WORDIADC_BLOCK_READ,adc_comport); 
link_in(1024, (int *) sample_data, adc_comport); 
} 
else if (!(status & ADC_FIFO_NOT_HALF_FULL)) 
{ 
I* Read 1024 samples in 512 words *I 
link_out_word ((512<<8)ladc_channeliADC_STOPIADC_READ_DATAI 
ADC_TWO_SAMPLES_PER_WORDIADC_BLOCK_READ,adc_comport); 
link_in(512, (int*) sample_data, adc_comport); 
} 
el se 
{ 
I* Read one sample in one word *I 
link_out_word(adc_channeliADC_STOPIADC_READ_DATAI 
ADC_TWO_SAMPLES_PER_WORDIADC_BLOCK_READ,adc_comport); 



00 
<:....-

link_in_word(kvalue, adc_comport); 
} 
} 
return; 
} 

void init_vars(void) 
{ 
int i; 
float *ptrl, *ptr2; 
float delta_t, t_trunc; 

delta_t = (float)(l.O/sample_freq); 
sample_time = delta_t; 
t_trunc = (float)(sample_size•delta_t); 
theta = 2*PI/fft_size; 

I* set some vars to zero •I 

ugem = urms = dugem = durms = 0.0; 
uugem = uurms = 0.0; 
sldu = s2du = 0.0; 
slduu = s2duu = 0.0; 
urms_spec = durms_spec = 0.0; 
eps = eta = vK = tK = fK = lambda 

I* making hanning memory table •I 

ptrl = hanning; 
for (i=O;i<sample_size;i++) 

reynolds scale 0.0; 

*(ptrl)++ = (float)(0.5 -0.5*cos(2.0•PI*i*delta_t/t_trunc)); 

I* Fill sinus table in memory: *I 

ptr2 = sintable; 
for (i=O;i<half_fft_size;i++) 
*(ptr2)++ = sin(i*theta); 
} 

void make_calibr_table(void) 
{ 

int i,k; 
float coef [6] ; 
float rw,ry,rg,V_offset,temp,press,ampl,V_tegen; 
float corr, volt; 
float vcal[CALIBR_SIZE]; 

char dummy [ 40] ; 
char filename[28]; 
int *ptr; 
FILE *DataFile; 
FILE *CalibrFile; 

I* Reading calibration characteristics file and making 
calibration table and writing it to file *I 

strcpy (filename,prefix); 
strcat (filename,filename_l); 
DataFile = fopen(filename, "r"); 
if (DataFile == NULL) 
{ 

printf("Unable to read calibration data file\n"); 
printf("Error-message: 'l.s \n",strerror(errno)); 
exit(O); 
} 

fscanf (DataFile, "'l.f" ,&temp); I* temperature *I 
fgets (dummy,40,DataFile); 
fscanf (DataFile, "'l.f\n" ,kpress); I* air pressure *I 
fgets (dummy,40,DataFile); 
fscanf (DataFile, "'l.f\n" ,krw); I* hot resistance Rw at calibration*/ 
fgets (dummy,40,DataFile); 
fscanf (DataFile, "'l.f\n", kry); I* calibration resistance Ry *I 
fgets (dummy,40,DataFile); 
fscanf (DataFile,"'l.f\n",kV_offset); I* offset voltage at calibration*/ 
fgets (dummy,40,DataFile); 
for (i=l;i<=5;i++) I* polynoom coefficients *I 
{ 

fscanf (DataFile, "'l.f\n", kcoef [i]) ; 
fgets (dummy,40,DataFile); 
} 

fscanf (DataFile, "'l.f\n" ,krg); I* cold resistance at measurement*/ 
fgets (dummy,40,DataFile); 
fscanf (DataFile, "'l.f\n", kV_ tegen) ; I* 'tegen spanning' at measurement*/ 
fgets (dummy,40,DataFile); 
fscanf (DataFile, "'l.f\n" ,kampl); I* amplification factor at measurement*/ 
fgets (dummy,40,DataFile); 

fclose(DataFile); 

corr = sqrt((rw-ry)/(rw-rg)); I* correction factor *I 

I* Make velocity-table for all possible voltages *I 



00 

"'" 

for (k=O;k<CALIBR_SIZE;k++) 
{ 
if (k <= 2047) 
volt = (float)(V_tegen + (10.0*k)l(2048.0*ampl)); 
el se 
volt = (float)(V_tegen + (10.0*(k-4096.0)1(2048.0*ampl))); 
volt = (float)(volt*corr - V_offset); 
vcal[k] = (float)(coef[5]); 
i = 4; 
while (i>O) 
{ 
vcal[k] = (float)(coef[i] + vcal[k]*volt); 
i--; 
} 
} 

vmin 
vmax 
vmul 

(float)(vcal[2048]); 
(float)(vcal[2047]); 
(float)(4095.0I(vmax-vmin)); 

for (i=O;i<CALIBR_SIZE;i++) 
{ 

calibr[i] = (int)((vcal[i]-vmin)*vmul); 
if (calibr[i] <0 I I calibr[i] >4095) 
{ 

printf("Giant fuckup in calibration table!!! !\n"); 
exit(O); 
} 
} 

write_calibr_file(); 
return; 
} 

void write_calibr_file(void) 
{ 

int i; 
int *ptr; 
FILE *Calibrfile; 

I* Writing calibration table to file *I 

Calibrfile = fopen("c: lmarcelldatalcalibr .dat", "w"); 
if (Calibrfile == NULL) 
{ 

printf ( "Unable to write calibration table to file! \n"); 
printf ("Error-message: 'l.s \n" ,strerror(errno)); 

exit(O); 
} 

for (i=O;i<CALIBR_SIZE;i++) 
fprintf (Calibrfile,"'l.d 'l.d\n",i,calibr[i]); 
fclose(Calibrfile); 
return; 
} 

float calibration (int adc_code) 
{ 

float velocity; 
int *ptr; 

I* Calibrating to integer veloeities (note: veloc is already 
an float array, this is needed later for kolmog and fft) *I 

ptr = calibr + adc_code; 
velocity = (float)(*ptr); 
return velocity; 
} 

void read_samples (void) 
{ 

int i,count,value,part; 
int *ptr; 
float *de st; 

count = sample_sizel2; 
ptr = (int *) sample_data; 

I* Start sampling data *I 

link_out_word(adc_channeliADC_SET_SAMPLE_INTERVALIADC_READ_STATUSI 
(sample_interval<<24),adc_comport); 
link_in_word(&value, adc_comport); 

I* Get data, read 4* block of 1024 32-bit words 

while (count >O) 
{ 

8192 samples *I 

part = (count>MAX_BLOCK_SIZE) ? MAX_BLOCK_SIZE : count; 
link_out_word((part<<B)Iadc_channeliADC_READ_DATAI 
ADC_TWO_SAMPLES_PER_WORDIADC_BLOCK_READ, adc_comport); 
link_in(part,ptr,adc_comport); 
ptr += part; 
count -= part; 



00 
CJl 

} 

I* Calibrating adc-codes to (integer) veloeities *I 

ptr = (int *) sample_data; 
dest = (float *) veloc; 

for (count=sample_sizel2; count>O; count--) 
{ 
*(dest++) 
*(dest++) 
ptr++; 
} 

return; 
} 

calibration((int)((*ptr) & OxOfff)); 
calibration((int)(((*ptr) >> 16) & OxOfff)); 

void histogram() 
{ 

int i; 
int index; 

I* Making histogram of recorded integer velocities. *I 

for (i=O;i<sample_size;i++) 
{ 
index= (int)(veloc[i]); 
hist[index] += 1; 
} 
return; 
} 

void int_to_veloc(void) 
{ 

int i; 
float *ptr; 

I* Turning integer veloeities into real veloeities *I 

ptr = veloc; 
for (i=O;i<sample_size;i++) 
{ 

*ptr = (float)(*ptrlvmul + vmin); 
ptr++; 
} 

return; 
} 

void mean() 
{ 

int i; 
float j; 
double mean,sum,sum_sqr; 

I* Calculate mean and rms-value of a series of n velocity values. 
* The mean and rms are calculated via the current histogram of 
* recorded velocities. 
*I 

mean = 0.0; 
sum = 0.0; 
sum_sqr = 0.0; 
for (i=O;i<hist_size;i++) 
{ 

j = (float)(i*1.0); 
sum += (float)(hist[i]*1.0); 
mean += (float)(j*hist[i]*1.0); 
sum_sqr += (float)(j*j*hist[i]*1.0); 
} 

uugem 
uurms 

return; 
} 

(float)(meanlsum); 
(float)(sqrt((sum_sqrlsum) - pow(uugem,2.0))); 

void mderiv(int ndif,float dx) 
{ 

int i; 
int nderiv; 
double s1,s2,dydx; 

I* Calculates the mean and rms values of derivatives dyldx of a 
*series of points y(1 .. n), which are assumed tobeon equidistant 
* x'es, with distance dx. This routine uses a differencing formula 
*of order ndif (ndif = 2,4,6,8 or 10). 
*I 

I* nderiv is the number of derivs 
* s1 is the sum of dydx 
* s2 is the sum of squares. 
*I 



00 
~ 

nderiv = sample_size - ndif; 
sl = 0.0; 
s2 = 0.0; 

if (ndif == 2) 
{ 

for (i=l;i<=(sample_size-l);i++) 
{ 

dydx = (veloc[i+l] - veloc[i-1])/(2.0*dx); 
sl += dydx; 
s2 += dydx*dydx; 
} 
} 

else if (ndif == 4) 
{ 
for (i=2;i<=(sample_size-2);i++) 
{ 
dydx = ((veloc[i-2] - veloc[i+2]) 
- B.O*(veloc[i-1] - veloc[i+1]))/(12.0*dx); 
s1 += dydx; 
s2 += dydx*dydx; 
} 
} 

else if (ndif == 6) 
{ 
for (i=3;i<=(sample_size-3);i++) 
{ 
dydx = (-l.O*(veloc[i-3] - veloc[i+3]) 
+ 9.0*(veloc[i-2] - veloc[i+2]) 
- 45.0*(veloc[i-1] - veloc[i+1]))/(60.0*dx); 
s1 += dydx; 
s2 += dydx*dydx; 
} 
} 

else if (ndif == 8) 
{ 
for (i=4;i<=(sample_size-4);i++) 
{ 
dydx = (3.0*(veloc[i-4] - veloc[i+4]) 
- 32.0*(veloc[i-3] - veloc[i+3]) 
+ 16B.O*(veloc[i-2] - veloc[i+2]) 
- 672.0*(veloc[i-1] - veloc[i+1]))/(840.0*dx); 
s1 += dydx; 

s2 += dydx*dydx; 
} 
} 

else if (ndif == 10) 
{ 
for (i=5;i<=(sample_size-5);i++) 
{ 
dydx = (-2.0*(veloc[i-5]-veloc[i+5]) 
+ 25.0*(veloc[i-4] - veloc[i+4]) 
- 150.0*(veloc[i-3] - veloc[i+3]) 
+ 600.0*(veloc[i-2] - veloc[i+2]) 
- 2100.0*(veloc[i-1] - veloc[i+1]))/(2520.0*dx); 
s1 += dydx; 
s2 += dydx*dydx; 
} 
} 

s1duu 
s2duu 

(double)(s1/nderiv); 
(double)(s2/nderiv); 

return; 

} 

void kolmog (int iblock) 
{ 

int i; 
int ndif; 
float du; 

I* Computes characteristic quantities from the 
* integer velocity signa! for the current 
* data block. 

*' 
mean(); 

du = sample_time; 
ndif = 6; 

I* calculating uugem and uurms from histogram *I 

mderiv (ndif,du); I* calculating s1duu and s2duu from velocity array *I 

I* Turn integer into real veloeities *I 

uugem 
uurms 

(float)(uugem/vmul + vmin); 
(float)(uurms/vmul); 



00 
-;r 

I* Update new ugem, urms, dugem and durms. 
* Because durms is fluctuating, we update sldu and s2du. 
*I 

u gem 
urms 
sldu 
s2du 

dugem 
durms 

(float)uugem; 
(float)uurms; 
(double)(((iblock-l)*sldu + slduu)/(iblock)); 
(double)(((iblock-1)*s2du + s2duu)/(iblock)); 

sldu; 
sqrt(s2du- sldu*sldu); 

I* Calculate some turbulence characteristics: *I 

I* Viscous dissipation rate *I 
eps = (float)((15.0 * visc * pow(durms,2.0))/(pow(ugem,2.0))); 
I* Kolmogorov length [m] *I 
eta = (float)(pow((pow(visc,3.0)/eps),0.25)); 
I* Kolmogorov velocity [m/s] *I 
vK = (float)(pow((visc*eps),0.25)); 
I* Kolmogorov time-scale [s] *I 
tK = (float)(pow((viscleps),0.5)); 
I* Kolmogorov frequency [Hz] *I 
fK = (float)(ugemi(2.0*PI*eta)); 
I* Taylor micro scale [m] *I 
lambda= (float)(ugem*urms/durms); 
I* Lenght of one sample 
* interval in units of eta: 
* (distance scale) 
*I 

scale = (float)((ugem*sample_time)/eta); 
I* The Reynolds number *I 
reynolds = (float)((urms*lambda)lvisc); 

return; 
} 

void hanning_window() 
{ 

int i, cntr; 
float *ptrl,*ptr2; 

I* multiply (real) velocity data with hanning window *I 

ptrl = veloc; 

ptr2 = hanning; 
for (cntr=O;cntr<sample_size;cntr++) 
{ 

*ptrl = (float)((*ptrl) * (*ptr2++)); 
ptrl++; 
} 

return; 
} 

void make_power(void) 
{ 

int i; 
float norm; 

norm= (float)(l.OI(sample_size*l.O)); 

power[O] = (float)( norm*fourier_align[O]* 
norm*fourier_align[O]); 
power[fft_sizel2] = (float)( norm*fourier_align[fft_sizel2]* 
norm*fourier_align[fft_size/2]); 
for (i=l;i<half_fft_size;i++) 
power[i] = (float)( norm*fourier_align[i]* 
norm*fourier_align[i] + 
norm*fourier_align[fft_size-i]* 
norm*fourier_align[fft_size-i]); 
return; 
} 

void update_average(int count) 
{ 

int i; 

for (i=O;i<=half_fft_size;i++) 
power_average[i]= (float) ( (power[i] + 
(count-l)*power_average[i]) I count); 
return; 
} 

void spectr_charact(int spectr_cutoff) 
{ 

int i,ifirst,ilast; 
float f; 
float spec_norm; 
float df; 

I* Compute speetral averaged quantities *I 



00 
00 

spec_norm = 1.0; 
df = (float)(sample_freq*1.0ifft_size*1.0); 

I* Forget 1st 'ifirst' points of spectrum and stop at 
spectrum cutoff frequency *I 

ifirst = 3; 
ilast = (int)(spectr_cutoff*fft_size•1.0I(sample_freq*1.0)); 

for (i=ifirst;i<(ilast+1);i++) 
{ 
urms_spec += power_average[i]; 
durms_spec += power_average[i]*i*i; 
} 
urms_spec = sqrt(2.0•urms_spec•df*spec_norm); 
durms_spec = sqrt(2.0•durms_spec*(4•PI*PI•df*df*df*spec_norm)); 

return; 
} 

void turbdata_to_files(void) 
{ 

int i; 
float f ,freq; 
float velocity; 
int *ptr; 
float *ptr1; 
char filename[28]; 
int append_file,file_size; 
FILE *PowerFile; 
FILE *KolmoFile; 
FILE *HistFile; 

I• Writing the calculated turbulence data to files •I 

I• Averaged power spectrum (binary) •I 

strcpy (filename,prefix); 
strcat (filename,filename_2); 
PowerFile = fopen(filename,"wb"); 
if (PowerFile == NULL) 
{ 

printf("Unable to create binary power file\n"); 
printf ("Error-message: Y.s \n",strerror(errno)); 
exit(O); 

} 
fwrite((void •)&sample_size,sizeof(int),1,PowerFile); 
freq = (float)(sample_freq*1.0); 
fwrite((void *)&freq,sizeof(float),1,PowerFile); 
append_file = 0; 
if (sample_size == 32768) 
{ 
file_size = 8192; 
append_file = 1; 
} 
el se 
file_size = half_fft_size; 
fwrite((void *)power_average,sizeof(float),file_size,PowerFile); 
if (append_file == 1) 
fwrite((void •)(power_average+file_size),sizeof(float),file_size,PowerFile); 
fclose (PowerFile); 

I* Histogram of recorded veloeities *I 

strcpy (filename,prefix); 
strcat (filename,filename_3); 
HistFile = fopen (filename,"w"); 
if (HistFile == NULL) 
{ 

printf("Unable to create histogram file\n"); 
printf ("Error-message: Y.s \n",strerror(errno)); 
exit(O); 
} 

ptr = hist; 
for (i=O;i<hist_size;i++) 
{ 

velocity = (float)(ilvmul + vmin); 
fprintf(HistFile,"Y.f Y,d\n",velocity,*(ptr)++); 
} 

fclose (HistFile); 

I• Turbulence characteristics (ascii) •I 

strcpy (filename,prefix); 
strcat (filename,filename_4); 
KolmoFile = fopen (filename,"w"); 
if (KolmoFile == NULL) 
{ 

printf("Unable to create turbulence data file\n"); 
printf ("Error-message: Y.s \n",strerror(errno)); 
exit(O); 



00 
(.0 

} 

fprintf(KolmoFile," \n"); I* Garbage line *I 
fprintf (KolmoFile, "'l.e sample time \n", sample_ time); 
fprintf (KolmoFile, "'l.f vmin \n", vmin); 
fprintf (KolmoFile, "'l.f vmax \n", vmax); 
fprintf(KolmoFile,"'l.f mean velocity \n",ugem); 
fprintf(KolmoFile,"'l.f rms velocity \n",urms); 
fprintf(KolmoFile," \n"); I* another garbage line *I 
fprintf(KolmoFile,"'l.e Kolmogorov length \n",eta); 
fprintf(KolmoFile,"'l.e Kolmogorov velocity \n",vK); 
fprintf(KolmoFile,"'l.e Kolmogorov time scale \n",tK); 
fprintf(KolmoFile,"'l.f Kolmogorov frequency \n",fK); 
fprintf (KolmoFile, "'l.f Viscous dissipation ra te \n" ,eps); 
fprintf(KolmoFile,"'l.e Taylor micro scale \n",lambda); 
fprintf(KolmoFile, "'l.f Reynolds number (lambda) \n" ,reynolds); 
fprintf (KolmoFile, "'l.f Distance scale \n", scale); 
fprintf(KolmoFile, "'l.f rms derivative velocity \n" ,durms); 
fprintf(KolmoFile,"\nKolmog file created by spectrum.c (TMS320C40)\n"); 
fprintf(KolmoFile,"'l.f rms velocity (spectrum, cutoff = 'l.dHz)\n", 

power= calloc(half_fft_size, sizeof(float)); 
power_average = calloc (half_fft_size, sizeof(float)); 
sintable = calloc(half_fft_size, sizeof (float)); 
banning= calloc(sample_size, sizeof(float)); 
hist = calloc (hist_size, sizeof(int)); 

I* Align the start address of the fourier-array 
so that the first LOG2_FFT_SIZE bits are zero 
This is a requirement of the used FFT-algorithm 

align = pow(2,LOG2_FFT_SIZE); 
fourier_align = (float •)((fourier + align) -
(float •)((long)fourier & (align-1))); 
I* Cache is on: •I 
asm (" OR OBOOh,ST"); 

flush_adc_fifo(); 
init_vars(); 

*I 

urms_spec,spectr_cutoff); printf("Making calibration table\n"); 
fprintf(KolmoFile, "'l.f rms derivative velocity (spectrum, cutoff = 'l.dHz)\n", make_calibr_table(); 
durms_spec,spectr_cutoff); 
fclose(KolmoFile); 

return; 
} 

void main() 
{ 

int i, count; 
int align; 
int w; 

printf ("Reading contiguration file \n"); 
read_cnf_file(); 

fft_size = sample_size; 
half_fft_size = fft_size/2; 
MAX_SIZE = 2*fft_size; 

I* Allocate arrays from the heap *I 

sample_data = calloc (sample_size, sizeof (int)); 
calibr = calloc(CALIBR_SIZE,sizeof(int)); 
veloc = calloc (sample_size, sizeof(float)); 
fourier = calloc (MAX_SIZE, sizeof(float)); 

printf("Sampling and calculating 'l.d FFT's.\n",NUM_AVERAGE); 
count = 1; 
while (count<NUM_AVERAGE) 
{ 

read_samplesO; 
histogram(); 
int_to_velocO; 
kolmog(count); 
hanning_window(); 
ffft_rl(fft_size,LOG2_FFT_SIZE,veloc,fourier_align,sintable,BITREV); 
make_power(); 
update_average(count); 
count++; 
} 

spectr_charact(spectr_cutoff); 
printf("Writing turbulence data to files.\n"); 

turbdata_to_files(); 
exit(O); 
} 



(.0 
0 

The code below shows the linker command file spectrum. cmd, 
which is needed to link the compiled code from spectrum.c with 
the object libraries. 

spectrum.obj 
forc40.obj 
-c 
-v40 
-x 
-stack Ox2000 
-heap Ox038000 
-o spectrum.out 
-m spectrum.map 
-1 tops.lib 
-1 comport.lib 
-1 pace.lib 
-1 threel.lib 
-1 rts40r.lib 

I* Object-file name(s) *I 

I* LINK USING C CONVENTIONS(ROM-model)*l 
I* Create C4x code *I 
I* Re-reading of libraries *I 
I* 8 KWord STACK *I 
I* 224 KWord HEAP *I 
I* output file *I 
I* linker map file *I 
I* Link with object libraries *I 

I* Get Run-Time support (register-based 
argument passing) *I 

I* SPECIFY THE SYSTEM MEMORY MAP *I 

MEMORY 
{ 

ROM: org = OxOOOOOO 
RAMO: org = Ox2FF800 
RAM1: org = Ox2FFCOO 
LocalRAM: org = Ox300000 
GlobalRAM: org = Ox80000000 

} 

len = Ox1000 I* 
len = Ox400 I* 
len = Ox400 I* 
len = Ox0040000 I* 

len = Ox0040000 I* 

4 KWord INTERNAL ROM *I 
1 KWord RAM BLOCK 0 *I 
1 KWord RAM BLOCK 1 *I 
256KWord LOCAL SRAM *I 
256KWord GLOBAL SRAM *I 

I* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY *I 

SECTIONS 
{ 

} 

. text: load 

.cinit: load 

. const: load 

. bss: load 

. stack: load 

. sysmem: load 

.data: load 

. fftdat: load 

.ffttxt: load 

LocalRAM 
LocalRAM 
LocalRAM 
LocalRAM, 

LocalRAM 
GlobalRAM 
LocalRAM 
LocalRAM 
LocalRAM 

I* Executable code and float-point consts *I 
I* Tables with values for init. var's and consts *I 
I* float-point consts and switch tables *I 
block Ox10000 
I* Reserve space for global and static var's *I 
I* Allocate mem. for system stack *I 
I* memory heap used by dynamic memory funct's *I 
I* Assembly-code data section *I 
I* FFT routine data section *I 
I* FFT routine code section *I 

And the code below is an example of a contiguration file spec­
trum.cnf, which passes some constauts and filenarnes to the main 
program, spectrum. c: 

5000 
40000 
OxF9 
32768 
15 
20000 
c:lmarcelldatal 
c40disa8.dat 
spe11812.bin 
his11812 .dat 
kol11812. cnf 

# of blocks to sample 
sample frequency 
sample rate (hex number for ADC) 
sample size = fft size (max. 32768) 
log2 block size = log2 fft size 
spectrum cutoff freq for turb.char. 
prefix for all data filenarnes 
file name calibration input data 
file name average power-spectrum output data 
file name velocity histogram output data 
file name turbulence characteristics output data 



B.2 Structurator program 

The C40 assembler routine for the real-time measurement of velocity difference probability 
distribution functions (PDFs) is called the Structurator. The assembler routine is named 
c4 Os truc. asm and the call sequence from C environment is: 

int c40struc(MCATBL,RELOFS,CALIBR,BUFFER,SIZE) 

with the following arguments: 

int *MCATBL: pointer to location of MCA memory block 
int *RELOFS: pointer to table with relative offsets 
int *CALIBR: pointer to location of calibration table 
int *BUFFER: pointer to 1024-size circular buffer 
int SIZE: total number of samples to take before program end 
On return: int RO = status of ADC FIFO buffer 

A detailed description of the Structurator routine is given in section 3.3. The assembler 
routine c40struc. asm is the first file given below. 

The Structurator routine is called within the C-program structur.c, where the allocation 
of the arrays is clone. The memory positions of these allocated arrays are passed to the 
Structurator program by means of register-based argument passing, however, stack-based 
argument passing is optional. After the Structurator is called and has returned to the C­
environment, the ADC FIFO buffer status is available to the user and can be checked. In 
case of FIFO buffer overflow, the sampling frequency has been too high for the Structurator 
routine and samples were lost. In that case the available MCA memory block is useless and 
is not saved. In case of no overflow, the MCA memory holding the velocity difference PDFs 
is saved to disk via binairy transfer, to be processed further. 

The next file is the linker cammand file for linking the assembler routine c40struc.asm, 
the compiled code from structur. c and the object libraries. In this file the available DSP 
processor memory is declared and the allocation of the different program sections into this 
available memory is specified. 

The last file is an example of a configuration file structur.cnf and is used to pass some ar­
guments to the structur. c program, such as the number af samples to take for the Structurator 
routine, the externally set sample frequency and some file names. 

91 



<:0 
!:-.:> 

************************************************************************ 

* 
* Program: c40struc.asm 

* 
* What?: C40 Assembler routine for C40 Structurator implementation 

* 
* Authors: 
* - Klaas Kopinga (routine for the TI C40 Simulator) 
* - Marcel Donker (Transtech C40 implementien and C-callable function) 

* 
* Last update: 030197 

* 
* Description: 

* 
* This routine uses the Transtech TDMB412 DSP motherboard with one TIM-40 
* module (TMS320C40) in slot 1 and a TDM431 12-bits ADC in slot 3. 
* Camport 4 of the C40 is connected to camport 1 of the ADC. Data is 
* sampled from ADC channel 1. 

* 
* This routine is the DSP implementation of the 'Structurator' at the 
* turbulence 
* 
* Usage: int 
* 
* 
* int 
* int 
* int 
* int 
* int 

* 

research group at the Eindhoven Technological University. 

c40struc(MCATBL,RELOFS,CALIBR,BUFFER,SIZE) 
AR2 R2 R3 RC RS 

*MCATBL: points to location of MCA memory table 
*RELOFS: points to table with relative offsets 
*CALIBR: points to location of calibration table 
*BUFFER: points to 1024-size buffer 
SIZE : number of samples to take 

* On return: on return to the C-environment the ADC FIFO status is read 
* and stared into register RO. 

* 
* The MCA memory locations are calculated by addition of: 

* 
* - the index in the offset-table (by incrementing R4 with 8191) 
* - the (velocity)difference between the rnaving calibrated sample and 
* the calibrated sample that is located the value of the offset 
* earlier in the circular buffer. 
* (this difference is added with the maximum value of a sample (=4095) 
* to prevent a negative result (sign extend)) 
* - the startaddress of the MCA memory block. 

* 
* To avoid register conflicts, groups of 4 offset-values are more or 
* less processed interleaved. 

* 
* Registers in use: 

* 
* - RO/R3 
* - R4 
* - R5 
* - R6 
* - R7 
* - RB 
* - R9 
* - R10 
* - R11 
* - ARO/AR3 
* - AR1 
* - AR2 
* - AR4 
* - ARS 
* - AR6 
* - AR7 
* - IRQ 
* - IR1 
* - DP, BK, RC 

temporary storing of contents of MCA memory locations 
value from cal.-table, value + index offset table 
startaddress MCA memory block 
startaddress MCA memory block + max value cal.-table 
value 1 for increment MCA-memory and sample counter 
# of samples to take before return to C environment 
counter for the # of samples sofar 
temporary storing of ADC input value 
ADC command word 
temporary storing MCA-memory(sub)addresses 
startaddress cal.-table 
address max value from cal.-table 
startaddress circular buffer 
index table with relative offsets 
index sample in buffer conform offset-table 
address input-samples from ADC 
relative offset 
index cal.-table, relative offset 

************************************************************************* 

FP 

MCATBL: 
RELOFS: 
CALIBR: 
BUFFER: 
SIZE: 

adc 
cmd1 

.file "c40struc.asm" 

. set AR3 

.global _c40struc ; ENTRY EXECUTION POINT 

.global INIT01,FILL,NXTSMP,STRUCT,END 

.usect 

.usect 

.usect 

.usect 

.usect 

.data 

.word 

.word 

11 .strdat",1 
".strdat",1 
".strdat 11 ,1 
".strdat",l 
".strdat",1 

000100080h 
000000033h 

; RESERVE MEMORY FOR ARGUMENTS 

CPCR4 TO ADC-COMPORT 
ADC COMMAND WORD 1 = 
SETUP EXTERNAL TRIGGERING BY 
SENDING A DUMMY VALUE TO THE 
SAMPLING INTERVAL COUNTER AND 
READING THE STATUS OF THE FIFO 



THIS GOMMAND WILL ALSO EMPTY STI AR2,(QMCATBL ; STORE PASSED ARGUMENTS IN VAR'S 
THE ADC FIFO! STI R2,@RELOFS ; FOR REGISTER BASED MODEL 

cmd2 .word 000000032h ; ADC GOMMAND WORD 2 = EXTERNAL STI R3,(QCALIBR 
TRIGGER, 1 SPW, SINGLE WORD STI RC,(QBUFFER 
READ, CHANNEL 1 STI RS,(QSIZE 

stop .word 000000041h ; GOMMAND WORD FOR STOP SAMPLING 
maxval .word 4095 ; MAX. VALUE IN CALIBR.TABLE INIT01: LDA 1024,BK ; 1024 IN BLOCKSIZE REGISTER 

(ADC = 12BITS) LDI (QMCATBL,R5 ; STARTADDRESS MCA MEM. BLOCK 
LDA (QRELOFS,AR5 ; STARTADDRESS OFFSET TABLE 

.asg AR7,ADC ; REGISTER ALLOCATIONS FOR LDA (QCALIBR,AR1 ; STARTADDRESS CALIBR.TABLE 
ADC I/0 LDA (QBUFFER,AR4 ; STARTADDRESS CIRCULAR BUFFER 

.asg *+AR7(1),ADC_IN LDI (QSIZE,RB ; # OF SAMPLES TO TAKE IN RB 

.asg *+AR7(2),ADC_OUT LDI (Qmaxval,R1 ; MAXVAL INTO R1; 

.asg Rll,CMD LDI O,R9 ; SET SAMPLE COUNTER TO 0 
LDI 1,R7 ; INCREMENT FOR MCA AND COUNTER 
ADDI3 R1,R5,R6 ; MAX. CALIBR.TABLE+MCAMEM IN R6 

INITIALISE C FUNCTION LDI (Qadc,ADC ; INIT. REGISTER FOR ADC-COMPORT 
LDI (Qcmd1,CMD ; INIT. REGISTER FOR CMD-WORD 1 
STI CMD,ADC_OUT ; SEND GOMMAND WORD 1 TO ADC 

.sect ".strtxt" ; LOCATE INTO .strtxt ; (ENABLE EXT. TRIGGER + EMPTY 
; FIFO) 

_c40struc: PUSH FP ; PRESERVE C ENVIRONMENT LDI ADC_IN,R10 ; READ BACK STATUS OF FIFO IN R10 

~ LDI SP,FP LDI *AR4--'l.,RO ; AR4 POINTS TO OLDEST VALUE IN 

'"'"' PUSH R4 ; CIRCULAR BUFFER (RO = DUMMY) 
PUSH R5 LDI (Qcmd2,CMD ; INITIALIZE REGISTER FOR 
PUSH R6 ; CMD-WORD 2 
PUS HF R6 LDI 1023,RC ; LOAD REPEAT COUNTER = 1024 
PUSH R7 RPTB FILL ; REPEAT BLOCK 'FILL' 
PUS HF R7 STI CMD,ADC_OUT ; SEND GOMMAND WORD 2 TO ADC 
PUSH RB ; (SINGLE WORD READ) 
PUSH AR4 LDI ADC_IN,R10 ; LOAD VALUE FROM ADC INTO R10 
PUSH ARS AND OFFFFh,R10 ; 1 SPW -> LOGICAL AND WITH FFFFh 
PUSH AR6 LDA R10,IR1 ; ADC VALUE IN IR1, SAMPLE IS 
PUSH AR7 ; USED AS INDEX FOR THE CAL-TABLE 
PUSH DP LDI *+ARl(IRl) ,R4 ; VALUE CALTABLE CALIBR[SAMPLE] 

IN R4, THIS IS VELOCITY VALUE 
LDP MCATBL ; DATAPAGE -> .strdat SECTION FILL: STI R4,*AR4--'l. ; STORE CALIBR[SAMPLE] INTO 

CIRCULAR BUFFER 
.if .REGPARM == 0 ; ARGUMENTS PASSED IN STACK ADDI 1024,R9 ; 1024 INPUT VALUES ALREADY TAKEN 
LDA *-FP(2),AR2 STI CMD,ADC_OUT ; SEND GOMMAND WORD 2 TO ADC 
LDI *-FP(3),R2 ; (SINGLE WORD READ) 
LDI *-FP(4),R3 LDI ADC_IN,R10 ; THIS IS THE FIRST SAMPLE 
LDI *-FP(S),RC AND OFFFFh,R10 ; 1 SPW -> LOGICAL AND WITH FFFFh 
LDI *-FP(6),RS LDA R10,IR1 ; ADC-VALUE IN IR1, SAMPLE-VALUE 
.endif ; IS USED AS INDEX FOR CAL.TABLE 

ADDI R7,R9 ; INCREMENT SAMPLE-COUNTER WITH 1 



NXTSMP: LDA *AR5,IRO ; 1ST INDEX TABLE WITH RELATIVE ADDI3 R7,*AR1,R1 ; READ MCA MEMORY LOCATION, 
OFFSETS ([0]) IN IRO ; INCREMENT WITH 1, STORE INTO R1 

LDA AR4,AR6 ; AR6 POINTS (AGAIN) TO RUNNING 11 ST! RO,*ARO ; UPDATE THE LAST MCA LOCATION 
INDEX IN CIRCULAR BUFFER SUBI3 *AR6++(IRO)Y,,R4,AR2 

LDI 7,RC ; 8 DIFFERENT BLOCKS OF 4 OFFSET ; DECREASE R4 WITH VALUE OF 
VALUES ; SAMPLE FROM CIRCULAR BUFFER, 

LDI *+AR1(IR1) ,R4 ; VALUE CALTABLE CALIBR[SAMPLE] ; STORE RESULT IN ARO AND SET AR6 
IN R4, THIS IS VELOCITY-VALUE ; ONTO NEXT SAMPLE IN CIRCULAR 

11 LDI *AR6++(IRO)Y,,RO ; AR6 POINTS TO SAMPLE WITH 1ST ; BUFFER CONFORM THE OFFSET-TABLE 
RELATIVE OFFSETS ([0]) IN THE ADDI 8191,R4 ; R4+=8191(INDEX OFFSET-TABLE+1) 
CIRCULAR BUFFER, Y.=CIRCULAR SUBI3 *AR6++(IR1)Y.,R4,AR3 
ADDRESSING, RO = DUMMY REGISTER ; DECREASE R4 WITH VALUE OF 

RPTBD STRUCT : REPEAT BLOCK (STRUCT) DELAYED ; SAMPLE FROM CIRCULAR BUFFER, 
THE 1ST 3 INSTRUCTIONS ARE ; STORE RESULT IN ARO AND SET AR6 
NOT(!) PART OF THE LOOP, ; ONTO NEXT SAMPLE IN CIRCULAR 
(PIPELINE FLUSH) ; BUFFER CONFORM THE OFFSET-TABLE 

ST! R4,*AR4--Y. ; PUT CALIBR[SAMPLE] INTO ADDI3 R7,*AR2,R2 ; READ MCA MEMORY LOCATION, 
CIRCULAR BUFFER, OLDEST SAMPLE ; INCREMENT WITH 1, STORE INTO R2 
IS OVERWRITTEN 11 ST! R1,*AR1 ; UPDATE THE LAST MCA LOCATION 

LDA *++AR5,IRO ; NEXT RELATIVE OFFSET([1+4*J]) ADDI 8191,R4 ; R4+=8191(INDEX OFFSET-TABLE+1) 
IN IRO LDA *++AR5, IRO ; RELATIVE OFFSET ([1+4*(J+1)]) 

ADDI R6,R4 ; CALMAX+CALIBR[SAMPLE]+MCAMEM ; IN IRO 
-o ; IN R4 = MCA MEMORY LOCATION ADDI3 R7,*AR3,R3 ; READ MCA MEMORY LOCATION, .... ; LOOP BEGINS AT NEXT INSTRUCTION ; INCREMENT WITH 1, STORE INTO R3 

LDA *++AR5,IR1 ; NEXT RELATIVE OFFSET([2+4*J]) ST! R2,*AR2 ; UPDATE THE LAST MCA LOCATION 
IN IR1 STRUCT: ST! R3,*AR3 ; UPDATE THE LAST MCA LOCATION 

SUBI3 *AR6++(IRO)Y,,R4,ARO LDA <OCALIBR,AR1 ; RELOAD AR1 WITH STARTADDR 
DECREASE R4 WITH VALUE OF ; CALIBR.TABLE 
SAMPLE FROM CIRCULAR BUFFER, LDA <ORELOFS,AR5 ; RELOAD AR5 WITH BEGIN 
STORE RESULT IN ARO AND SET AR6 ; OFFSET-TABLE 
ONTO NEXT SAMPLE IN CIRCULAR CMPI RS,R9 ; CHECK FOR END OF PROGRAM 
BUFFER CONFORM THE OFFSET-TABLE BZ END ; GOTO END OF PROGRAM 

LDA *++AR5,IRO ; RELATIVE OFFSET ([3+4*J]) IN ST! CMD,ADC_OUT ; SEND GOMMAND WORD 2 TO ADC 
IRO ; (SINGLE WORD READ) 

ADDI 8191,R4 ; R4+=8191 (INDEX OFFSET-TABLE+1) LDI ADC_IN,R10 ; THIS IS THE NEXT SAMPLE 
ADDI3 R7,*ARO,RO ; READ MCA MEMDRY LDCATION, BD NXTSMP ; BRANCH DELAYED TO NXTSMP, 

INCREMENT WITH 1, STORE INTO RO ; BUT FIRST DO 3 INSTRUCTIONS 
SUBI3 *AR6++(IR1)Y,,R4,AR1 AND OFFFFh,R10 ; 1 SPW -> LOGICAL AND WITH FFFFh 

DECREASE R4 WITH VALUE OF LDA R10,IR1 ; ADC-VALUE IN IR1, SAMPLE-VALUE 
SAMPLE FROM CIRCULAR BUFFER, ; IS USED AS INDEX FOR CAL.TABLE 
STORE RESULT IN AR1 AND SET AR6 ADDI R7,R9 ; INCREMENT SAMPLE-COUNTER WITH 1 
ONTO NEXT SAMPLE IN CIRCULAR 
BUFFER CONFORM THE OFFSET TABLE 

LDA *++AR5,IR1 ; RELATIVE OFFSET ([4+4*J]) IN 
; IR1 ; RETURN TO C ENVIRONMENT 

ADDI 8191,R4 ; R4+=8191(INDEX OFFSET-TABLE+1) 



co 
CJl 

END: LDI IDstop,CMD ; INITIALIZE REGISTER FOR STOP 
; COMMAND WORD 

STI CMD,ADC_OUT ; SEND COMMAND WORD TO ADC (STOP 
SAMPLING) 

LDI ADC_IN,RO ; READ BACK THE FIFO STATUS AND 
; RETURN VALUE TO C ENVIRONMENT 

POP DP : RESTORE C ENVIRONMENT VARIABLES 
POP AR7 
POP ARS 
POP ARS 
POP AR4 
POP R8 
POPF R7 
POP R7 
POPF R6 
POP R6 
POP R5 
POP R4 
POP FP 
RETS 

.end 

* 
* no more 
* 
************************************************************************ 

Main program to control the flow of data to and from the 
Structurator assembler routine and the PC: structur. c. 

'* * * Program: structur.c 

* * Author: Marcel Donker 

* * Last update: 030197 

* * Description: 

* * C40 program in C-language for the implementation of the structurator. 
* In this program the offset table and the calibration table are read 
* from file and it uses the C-callable routine 'c40struc.asm' to start 

* the structurator routine. 
* After return to the C environment the ADC FIFO is checked for overflow, 
* and the MCA table is written to file. 

* * The file narnes and the # of samples to take are read from the 
* contiguration file structur.cnf 

*' 
#include <stdio.h> 
#include <stdlib.h> 
#include <link.h> 
#include <tops.h> 
#include <errno.h> 
#include <string.h> 
#include <ctype.h> 

#define MCAMEM_SIZE 8192•32 
#define OFFSET_SIZE 32 
#define IJKTBL_SIZE 4096 
#define BUFTBL_SIZE 1024 
#define ALIGN_SIZE 2500 

#define ADC_FIFO_NOT_FULL 

I• MCA table size in words *I 
I* Offset table size in words •I 
I* Calibr. table size in words •I 
I* Buffer size in words *I 
I* Length needed for declaring 
* enough space to align the 
* buffer startaddress to an 
* 11 bit boundary •I 

Ox4 

#pragma DATA_SECTION (mca_ptr,".mcasect") I* Data section .mcasect 
* allocated in linker *I 

int mca_ptr; 
int •mcamem = (void •)&mca_ptr; 
int •offset; 
int •ijktbl; 
int •buftbl; 
int •buftbl_align; 
int INPUT_SIZE; 
int sample_freq; 
char prefix[80]; 
char filename_1[80]; 
char filename_2[80]; 
char filename_3[80]; 
char filename[80]; 

void read_cnf_file(void) 
{ 



<:0 

""' 

int i; 
char dummy[60]; 
FILE *CNFFile; 

printf ("Reading the contiguration file\n"); 
CNFFile = fopen ("c:/marcel/struct/structur.cnf","r"); 
if (CNFFile == NULL) 
{ 

printf ( "Unable to re ad conf igurat ion file! \n") ; 
printf("Error-message = i(s \n",strerror(errno)); 
exit(O); 
} 

fscanf(CNFFile,"i(d",&INPUT_SIZE); 
fgets(dummy,60,CNFFile); 
fscanf(CNFFile, "i(d" ,&:sample_freq); 
fgets(dummy,60,CNFFile); 
fgets(prefix,16,CNFFile); 
fgets(dummy,60,CNFFile); 
fgets(filename_1,13,CNFFile); 
fgets(dummy,60,CNFFile); 
fgets(filename_2,13,CNFFile); 
fgets(dummy,60,CNFFile); 
fgets(filename_3,13,CNFFile); 
fgets(dummy,60,CNFFile); 

fclose(CNFFile); 
return; 
} 

void empty_arrays(voîd) 
{ 

int i; 
int *ptr; 

I* Empty some arrays to be sure, before we continue *I 

ptr = mcamem; 
for (i=O;i<MCAMEM_SIZE;i++) 
*ptr++ = (int)O; 
ptr = offset; 
for (i=O;i<OFFSET_SIZE;i++) 
*ptr++ = (int)O; 
ptr = ijktbl; 
for (i=O;i<IJKTBL_SIZE;i++) 
*ptr++ = (int)O; 

ptr = buftbl; 
for (i=O;i<BUFTBL_SIZE;i++) 
*ptr++ = (int)O; 
} 

void read_offset_table(void) 
{ 

int count; 
int *ptr; 
FILE *OffsetFile; 

printf ("Reading offset-table from file.\n"); 

strcpy(filename,prefix); 
strcat(filename,filename_l); 
OffsetFile = fopen (filename,"r"); 
if (OffsetFile == NULL) 
{ 

printf("Unable to read offset file\n"); 
printf("Error-message: Y.s \n",strerror(errno)); 
exit(O); 
} 

ptr = offset; 
for (count=O;count<OFFSET_SIZE;count++) 
{ 

fscanf(OffsetFile, "i(d", &:(*ptr)); 
ptr++; 
} 
fclose (OffsetFile); 
return; 
} 

void read_calibr_table(void) 
{ 
int count,i; 
int *ptr; 
int dummy; 
FILE *CalibrFile; 

printf ("Reading calibration-table from file.\n"); 

strcpy(filename,prefix); 
strcat(filename,filename_2); 
CalibrFile = fopen (filename,"r"); 
if (CalibrFile == NULL) 
{ 



<:0 
-..J 

printf("Unable to read calibration file\n"); 
printf("Error-message: 'l.s \n",strerror(errno)); 
exit(O); 
} 

ptr = ijktbl; 
for (count=O;count<IJKTBL_SIZE;count++) 
{ 

fscanf(CalibrFile, "'l.d 'l.d" ,&:dummy ,&:(*ptr)); 
ptr++; 
} 

fclose (CalibrFile); 
return; 
} 

void mcatbl_to_file(void) 
{ 

int i; 
int *ptr; 
FILE *MCAFile; 

I* Write the structurator MCA table and the 
*offset tabel to file (binary). 
*I 

printf("Writing MCA-table to file. \n"); 

strcpy(filename,prefix); 
strcat(filename,filename_3); 
MCAFile = fopen(filename, "wb"); 
if (MCAFile == NULL) 
{ 

printf("Unable to write MCA table to file\n"); 
printf("Error-message: 'l.s \n" ,strerror(errno)); 
exit(O); 
} 
fwrite((void *)offset,sizeof(int),OFFSET_SIZE,MCAFile); 
ptr = mcamem; 
for (i=O;i<32;i++) 
{ 
fwrite((void *)ptr,sizeof(int),(MCAMEM_SIZE/32-1),MCAFile); 
ptr += (MCAMEM_SIZE/32-1); 
} 
fclose (MCAFile); 
return; 
} 

void main() 
{ 

int i; 
int value; 
int status; 
char a; 
float time; 

printf ("Program start. \n"); 

I* Allocate 3 array's from the heap: *I 

offset 
ijktbl 
buftbl 

calloc (OFFSET_SIZE, sizeof (int)); 
calloc (IJKTBL_SIZE, sizeof (int)); 
calloc (ALIGN_SIZE, sizeof (int)); 

if ((offset == NULL)I l(ijktbl == O)l l(buftbl 
printf ("Not enough heap memory! \n"); 

NULL)) 

I* Align the address of the circular buffer so that the first 
* 11 bits of the address are zero. 
* This is needed for circular addressing. 
* (see TI TMS320C4x UG ,pp 5-25) 
*I 

buftbl_align = (int *)((buftbl + Ox800) - (int *)((long)buftbl &: 
Ox7ff)}; 

read_cnf_file(); 
empty _arrays(); 
read_offset_table(); 
read_calibr_table(); 

I* Cache is on: *I 
asm ("OR 0800h,ST"); 

time = (float)((INPUT_SIZE*1.0)/(sample_freq*60.0)); 
printf ("Running structurator routine (time= 'l.5.1f min CD 'l.dKHz). \n",time,sample_freq/1000); 
value = c40struc(mcamem,offset,ijktbl,buftbl_align,INPUT_SIZE); 
status = value &: 7; 
if (!(status & ADC_FIFO_NOT_FULL)) 
printf("WARNING: adc fifo full!, NOT writing mca-table 

to file. \n"); 
el se 
{ 

mcatbl_to_file(); 
printf("Program done.\n"); 



c.o 
(Y) 

} 

exit (0); 
} 

Linker command file structur. cmd needed to link the com­
piled program structur. c and the assembler Structurator routine 
c4 Ostruc. asm. 

structur.obj 
c40struc.obj 
-c 
-v40 
-x 
-stack Ox8000 
-heap Ox8000 
-e main 

I* Object-file name(s) *I 

I* LINK USING C CONVENTIONS(ROM-model)*/ 
I* Create C4x code *I 
I* Rereading of libraries *I 
I* 32 KWord STACK *I 
I* 32 KWord HEAP *I 

-o structur.out 
I* Define entry point *I 
I* output file *I 

-m structur.map I* Linker map file *I 
-1 tops.lib 
-1 comport.lib 
-1 pace.lib 
-1 threel.lib 
-1 rts40r.lib 

I* Link with object libraries *I 

I* Run-Time support (register-based 
argument passing) *I 

I* SPECIFY THE SYSTEM MEMORY MAP */ 

MEMORY 
{ 

ROM: org = OxOOOOOO 
RAMO: org = Ox2FF800 
RAM1: org = Ox2FFCOO 
LocalRAM: org = Ox300000 

len = Ox001000 
len = Ox00400 
len = Ox00400 
len = Ox0040000 

'* 
'* 
'* 
I* 

4 KWord INTERNAL ROM *I 
1 KWord RAM BLOCK 0 *I 
1 KWord RAM BLOCK 1 *I 
256 KWord LOCAL SRAM *I 

GlobalRAM: org = Ox80000000 len = Ox0040000/* 256 KWord GLOBAL SRAM*/ 
} 

I* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY *I 

SECTIONS 
{ 

.text: > LocalRAM 

.cinit: > LocalRAM 

.const: > LocalRAM 

.bss: > LocalRAM 

.stack: > LocalRAM 

.sysmem: > LocalRAM 

.data: > LocalRAM 

.strdat: > LocalRAM 

.strtxt: > LocalRAM 

.mcasect: > GlobalRAM 

} 

I* Executable C code and float-point consts *I 
I* Values for init. var's and consts*/ 
I* float-point consts and switch tables*/ 
I* Reserve space for C global + static var'*/ 
I* Allocate mem. for system stack *I 
I* memory heap used by dynamic memory functions *I 
I* data section *I 
I* Structurator data section *I 
I* Structurator code section *I 

block 40000h 
I* MCA table section = 8192*32 words *I 

Example of a configuration file structur.cnf, which passes some 
constauts and some filenarnes to the program structur. c. 

1008000000 
40000 
c:/marcel/data/ 
off1000c.dat 
calibr.dat 
mca11612. bin 

That 's all folks 

number of samples to take 
sample frequency (external) 
prefix for all data filenarnes 
file name offset table 
file name calibr. table 
file name MCA table 



Bibliography 

[1] Batchelor, G.K., Pressure fiuctuations in isotropie turbulence, Proc.Camb.Philos.Soc 47, 
359, (1951). 

[2] Bradshaw, P., An introduetion to turbulence and its measurement, Pergamon Press, Ox­
ford, (1971). 

[3] Brigham, E.O. and Cliffs, E., The Fast Fourier Transform, Prentice-Hall, England, 
(1974). 

[4] Borue, V. and Orszag, S.A., Forced three-dimensional homogeneaus turbulence with hy­
perviscosity, Europhys.Lett 29, 687, (1995). 

[5] Bruun, H.H., Hot-wire anemometry; principles and signal analysis, Oxford University 
Press, USA, (1995). 

[6] Falkovich, G., Bottleneck phenomenon zn developed turbulence, Phys.Fluids 6, 1411, 
(1994). 

[7] Frisch, U., Turbulence: the legacy of A.N. Kolmogorov, Cambridge University Press, 
USA, (1995). 

[8] Galen, R.A.M.L. van, Design of a modular multichannel hot-wire anemometer system, 
Institute for Continuing Education, Eindhoven University of Technology, (1994). 

[9] Grossmann, S., Asymptotic dissipation range in turbulence, Phys.Rev.E 51, 6275, (1995). 

[10] Grossmann, S. and Lohse, D., Universality in fully developed turbulence, Phys.Rev.E 50, 
2784, (1994). 

[11] Herweijer, J.A., The smalt scale structure of turbulence Eindhoven University of Tech­
nology, Ph.D Thesis, Eindhoven, The Netherlands (1995). 

[12] Herweijer, J.A., van Nijmweegen, F.C., Kopinga, K., Voskamp, J.H. and Water, W., A 
digital device for measuring high-order structure functions, Rev.Sci.Instrum. 65, 1786, 
(1994). 

[13] Ifeachor, E.C. and Jervis, B.W., Digital signal processing: a practical approach (Elec­
tronic systems engineering series), Addison-Wesley, Amsterdam, The Netherlands, 
(1993). 

[14] Kolmogorov, A.N., The local structure of turbulence in incompressible viseaus fiuid for 
very large Reynolds numbers, Dokl.Akad.Nauk SSSR 30, 4, (1941). 

99 



[15] Kolmogorov, A.N., A refinement of previous hypotheses eoneerning the loeal strueture of 
turbulenee in a viseaus incompressible fiuid at high Reynolds number, J.Fluid Mech. 13, 
82, (1962). 

[16] Kopinga, K., Eindhoven University of Technology. Private Communication. Developed 
the basic Structurator routine for the Texas lnstruments TMS320C40 simulator. 

[17] Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, 2nd ed. (Course oftheoretical physics, 
v. 6), Pergamon Press, Oxford, England (1989). 

[18] Lohse, D. and Müller-Groeling, A., Bottleneck effects in turbulence: Sealing phenomena 
in r versus p space, Phys.Rev.Lett. 74, 1747, (1995). 

[19] Lohse, D. and Müller-Groeling, A., Anisotropy and sealing corrections zn turbulence, 
Phys.Rev.E 54, 395, (1996). 

[20] Monin, A.S. and Yaglom, A.M., Statistica[ fiuid meehanics; Meehanics of Turbulence. 
Volume 2, MIT Press, Cambridge, Massachusetts, London, England (1975). 

[21] Oboukov, A.M., Same specific features of atmospheric turbulence, J.Fluid Mech. 13, 77, 
(1962). 

[22] Richardson, L.F., Weather prediefion by numerical process, Cambridge University Press, 
England, (1922). 

[23] She, Z.S. and Jackson, E., On the universa[ farm of energy spectra in fully developed 
turbulence, Phys.Fluids A 5, 1526, (1993). 

[24] Sirovich, L., Smith, L. and Yakhot, V., Energy spectrum of homogeneaus and isotropie 
turbulence in far dissipation range, Phys.Rev.Lett. 72, 344, (1994). 

[25] Stolovitzky, G., Sreenivasan, K.R. and Juneja, A., Sealing functions and sealing expo­
nents in turbulence, Phys.Rev.E 48, R3217, (1993). 

[26] Tennekes, H. and Lumley, J.L., A first course in turbulence, MIT Press, Cambridge, 
London, England (1972). 

[27] Texas Instruments, TMS320C4x User's Guide, Digital Signa[ Processor, Texas Instru­
ments, USA (1993). 

100 


