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Summary 

The design of high performance controllers for a specific process is usually based on a model of 
the process. An analytica! approach, using basic laws from physics and chemistry may lead to 
a complex, high order model that is not appropriate for the controller design. An alternative 
approach is system identification. This approach uses experimentally obtained data to fit the 
parameters of a certain model. With respect to this identification for control problem it has 
been established that the data obtained from a closecl-loop identification experiment usually 
give a better model for the controller design. 
lt is therefore necessary to study closecl-loop identification. This report examines different 
methods that can tackle the closecl-loop identification problem. It includes a study on the 
general properties of identification and on the identification objective. Recently developed 
methods are examined theoretically and by an application to a magnetic levitation process. A 
Labview visual interface has been built to control this process and to collect data. A special 
interface has been implemented to make data exchange with Matlab possible. This interface 
allows the use of user defined input signals, that are created in the Matlab environment, in 
the experimental setup that is supervised by the Labview interface. 
The success of an identification experiment depends heavily on the input signal. A study of 
different input signals led to the condusion that multisines are appropriate input signals for 
an identification experiment. They allow full control over the order of excitation and they 
can he optimized to the information density. 
Any identification experiment should he foliowed by a validation. In this report, different 
types of validation are examined. This overview includes statistica! validation methods as 
well as methods that are directed towards the control objective. 
Special attention is being paid to this control objective of identification. A scheme that 
iteratively performs an identification and a controller design is included in the report. This 
scheme was applied to a simulated system as well as to the laboratorium experiment. 
The experiments led to an important conclusion. All identification schemes as well as the 
identification for control scheme needed a data filter to perform successfully. A method to 
construct this filter from closecl-loop data has been developed and was applied successfully in 
the identification of the magnetic levitation. 
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I 

Introduetion 

1.1 Backgrounds 

Many industrial processes must he controlled to operate safely and efficiently. To design high 
performance controllers a model of the process to he controlled is needed. These rnadeis 
can he derived in different ways. An analytica! approach, using basic laws from physics and 
chemistry, leadstoa mathematica! model of the process under consideration. This procedure 
aften results in a very detailed description of all the individual phenomena governing the 
behaviour of the system, leading to a complex high order model. But in many cases the 
processes are so complex that it is nat possible to find a reasanabie model that explains the 
behaviour of the system. An alternative approach is system identification. This approach 
uses experimentally obtained data to fit the parameters of a certain model. In contrast to 
analytically obtained rnadeis they are relatively easy to use but they have only limited validity 
and they give little physical insight. 
One of the objectives of an identification experiment is the derivation of an appropriate 
model for model-based control design. An interrelation between these fields of research can 
thus he expected. However, these relations have been developed only recently. On the one 
hand, the objective of identification was mainly the reconstruction of the 'real' plant. On 
the other hand model-based control developed into robust control, taking into account that 
an estimated model is nat necessarily a perfect description of the process. At the end of the 
eighties some first attempts were made to bring identification and control together. This led 
to a new area of research: identification for control. 
Within the latter context, it has been established that identification performed in a closecl-loop 
setup usually gives a more appropriate model for the controller design. One reason is that the 
input spectrum is automatically adjusted to the frequency range of interest. Another reason 
is that larger control signals can then he used for e.g. resonant systems. A third motivation to 
study closecl-loop identification is the fact that sametimes it is nat at all possible to perfarm 
an open-loop experiment. The open-loop system may he unstable or poorly damped or there 
may he practical restrictions from e.g. a safety point of view. This report will concentrate 
on closecl-loop identification and touch the subject of identification for con trol. However, 
emphasis will he put on the identification problem. 

1.2 Outline 

A typical identification experiment consists of different parts. Chapter two will outline the 
general concepts of identification. The problem of identifiability will he considered and an 
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analysis of the properties of both open-loop and closecl-loop identification will be given. By 
means of an example it will be shown that closecl-loop identification can give better results 
than an open-loop one. But before any identification experiment can be performed an input 
signal must be selected. The third chapter will treat this problem. The fourth chapter 
will discuss different methods of validation. Any identification experiment should always be 
foliowed by a validation in order todetermine the quality of the obtained estimates. Chapter 
five discusses some methods for closecl-loop identification. Not only schemes for identification 
will be treated, but also a scheme that combines the identification with a controller design 
in an iterative way. A benchmark example is chosen for comparison and evaluation of the 
different methods. In chapter six a 'reallife' identification experiment will be presented, and 
the relation between identification and control will be shown by the application of an iterative 
scheme in which identification and controller design are alternated in order to arrive at a high 
performance controller. 



II 

ldentification 

In this chapter the general concepts of identification will be introduced. The first section will 
give some definitions of the concepts that will be used later. The prediction error framework 
will be discussed in the second section and problems of identifiability and uniqueness will be 
treated in the third. These concepts can be used to analyze the properties of the so-called 
classical identification methods. This analysis will show the need for a new approach for the 
closecl-loop identification problem. Same first examples of validation methods, that will be 
discussed in more detail later, are given in the last two sections. Bath a statistkal validation 
and a validation towards a control objective will be treated. 

2.1 General concepts 

The result of an identification experiment depends on four concepts: the system, the model 
structure, the identification method and the experimental condition. These concepts will be 
used throughout this report and are therefore defined below. A block diagram of a general 
system is given in Figure 2.1. 

e(t) 

u(t) y(t) 

Figure 2.1: Block diagram of a system 

Definition 2.1 The system S 
The system S is the physical reality that provides the experimental data. lt includes a 
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deterministic part, the plant G5 , and a stochastic part H 5 • A linear, time invariant, single 
input single output (SISO), discrete time system can be written as: 

(2.1) 

where a white noise e(t) enters through the dynamics Hs at the output y(t). The input is 
denoted by u(t). D 

Definition 2.2 The model structure M 
When parametrie models are considered 1 the model structure denotes a set of models that 
are characterized by a parameter vector 0: 

M : { y(t) 
1 

= G(q-1, 0) u(t) + H(q- 1
, 0) E(t), 

EE(t)E(t) = A(O) Ót,t', 
(2.2) 

where 0 is varied over all parameter values, 0 E 8. D 

The model structure consists of two parts: a model for the plant and a model for the noise. 
These two parts are not necessarily parameterized independently. It is therefore convenient 
to define a set of plant models. 

Definition 2.3 Modelisation of the plant 
The set P consists of all possible modelisations of the plant: 

p: {G(q-1
' 0) I 0 E 8p}, (2.3) 

where, ep is the parameter space containing all possible parameter vectors. D 

In every identification experiment, the model structure must be chosen beforehand. Several 
factors should be taken into account when a model structure has to be determined. The 
structure must be flexible. It is important how the parameters enter the system and how 
many parameters are chosen. The latter consideration leads to the principle of parsimony: 
the model structure should contain the smallest number of free parameters to represent the 
system adequately. Typical structures are the output error structure, the ARX structure 1 

and the Box-Jenkins structure. 

Definition 2.4 The identijication methad I 
The identification metbod is the metbod that is used to identify the system under considera­
tion. An identification metbod can be either parametrie or nonparametric. D 

Definition 2.5 The experimental condition 1i 
The experimental condition is a description of how the identification experiment has been 
clone. It describes e.g. what signals are measured, how an input signal has been selected and 
generated and what sampling time has been used. D 

1 Autoregressive with an exogeneous signal. This structure is sometimes referred to as equation error 
structure. 
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From these definitions it is clear that only the system S is a property that ean not he influ­
eneed. The experimental eondition, the identifieation method and the model strueture are 
'parameters' that ean he ehanged eaeh identifieation experiment, and give the possihility to 
'tune' the experiment towards a eertain identifieation ohjective. 

2.2 The prediction error framework 

2.2.1 Model structure and predietor 

Consicier again the model (2.2). The one step ahead predietor depends on hoth the old inputs 
and the old outputs. It is defined hy: 

The precise form of the predietor depends on the model strueture that is used. The prediction 
error of output error and ARX model struetures is diseussed helow. 

Example 2.1 One step ahead predietor 
ARX: The strueture of an ARX model is the following: 

M: y(t) + a1y(t- 1) + ... + anaY(t- na)= b1u(t- 1) + ... + bnbu(t- nb) + E(t)(2.5) 
<:> A(q-1)y(t) = B(q-1)u(t) + E(t), (2.6) 

(2.7) 

The plant is thus modelled as G(q- 1) = B(q- 1 )/A(q-1 ). The noise model is given hy 
A- 1 (q- 1 ). Analog to (2.4) the one step ahead predietor is: 

y(t I t- 1,0) = [1- A(q-1)]y(t) + B(q-1)u(t). (2.8) 

OE: In an output error or OE model structure the noise model is equal to one. The model 
of the plant is B(q- 1 )/ F(q- 1 ), where F(q-1) is monic (F(O) = 1). 

y(t) 
B(q-1) 
F(q-l) u(t) + E(t), 

[bi, ... , bnb, JI, ... , fnJ]T. 

The eorresponding one step ahead predietor is: 

A B(q- 1) 
y(t I t- 1, 0) = F(q-l) u(t). 

(2.9) 

(2.10) 

(2.11) 

0 
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2.2.2 Prediction error identification 

The prediction error is defined as the difference between the output of the system and the 
one step ahead predietor at time t: 

E(t,O) = y(t)- y(t I t -1,0). (2.12) 

Using (2.1) and (2.4), this can be expanded to: 

(2.13) 

The identification problem is now reduced to the minimization of the prediction error with 
regard to some criterion. For a least-squares (2-norm) criterion on the, possibly filtered, 
prediction errors the loss function is given by: 

arg min VN(O). 
0E8 

(2.14) 

(2.15) 

where EJ(t,O) = L(q-1)E(t,O), with L(q- 1 ) some stabie prefilter. The number of data is 
denoted by N. For results on consistency, convergence and statistica! properties of predie­
ti on error estimation is referred to [Söderström and Stoica (1989)]. Example 2.2 shows the 
computation of the prediction error estimate for an ARX model structure. 

Example 2.2 Prediction error identification for equation error structure 
Example 2.1 already introduced the parameter vector 0. If the measurements of the input 
and the output are collected in an information vector <jy(t) = [-y(t- 1), ... , -y(t- na), u(t-
1), ... , u(t- nb)]T then the output of the model can be written as: 

y(t) = </JT 0 + E(t). (2.16) 

The residual E(t) is linear in the parameters and a minimization of 

(2.17) 

has one unique salution given by 

(2.18) 

In the case of an output error model structure the loss function is nat linear in the parameters 
(see (2.9) and note that <p(t) depends on 0 through y(t- k, 0), k = 1, ... ,na) leading to a 
nonlinear optimization problem that must be solved numerically. D 
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2.3 ldentifiability and uniqueness 

This section will introduce the concepts of identifiability and uniqueness. ldentifiability will 
he introduced here in a general way, assuming a parametrie model structure. Consider the 
system depicted in Figure 2.1. 

Introduce a set Dr(S, M) consisting of all parameter veetors for which the model structure 
M gives a perfect description of the system S. Formally, 

(2.19) 

The following situations can occur: 

S E M The system is a memher of the set of models. There are two cases possible: 

• The set Dr(S, M) consistsof several points. More than one parameter vector can 
describe the system perfectly. This situation is called overparametrization. 

• The set Dr(S, M) consistsof exactly one point. A perfect description ofthe system 
is thus possible within the model structure. The parameter vector descrihing the 
system exactly will he denoted by Ba. 

S ~ M, but G E P A perfect description of the plant can he given, but there is no perfect 
description of the noise. 

S ~ M The set Dr(S, M) can he empty. This means that there is no perfect description of 
the system possible in the model structure M(B). This situation will he referred to as 
underparametrization. 

ldentifiablity can now he introduced using the concepts defined above. 

Definition 2.6 System identifiable 
The system S is system identifiable under M, I, 1i if 

ê(N;S,M,I, 1i)--+ Dr(S,M), as N--+ oo, (2.20) 

(with probability one). Here, N denotes the number of measurements and ê is the esti­
mated parameter vector obtained from the application of an identification methad I to the 
measurement data. 0 

Note, that, if the set Dr(S, M) consistsof more than one point, (2.20) should he interpreted 
as 

lim inf iiê(N;S,M,I,1i)-BII=O. 
N-+oo IIEDT(S,M) 

(2.21) 

Definition 2. 7 Parameter identifiable 
A system is parameter identifiable if it is system identifiable and the set Dr ( S, M) consists 
of exactly one point. o 
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2.3.1 ldentifiability in open-loop 

This subsection will pay attention to the concept of identifiability for systems that are oper­
ated in an open loop. Although the main issue in this report is closed-laap identification, it 
is important to know the properties of an open-loop identification as well. Especially since 
some of the closed-laap identification algorithms that will be discussed later in this report 
are based on a transformation from the closecl-loop identification problem to an open-loop 
estimation problem. Consider the case where S E M; the true system is in the set of rnadeis 
that is considered, ar mathematically: 

(2.22) 

If furthermore the input signal u(t) is persistently exciting2 then the estimates of the pa­
rameter vector ON will converge to the true parameter vector 00 once the number of available 
measurements becomes infinite. Notice that identifiability is only guaranteed if infinitely many 
measurements are available. There are, however, na restrictions on the model structure. 
If only the plant is to be identified, G( q- 1

) E Ç ,but S ~ M, i.e. 

if 

30o : G(q- 1, Oo) = Gs(q- 1
) but H(q- 1, Oo) =f. Hs(q- 1

), 

G(q-l, ON) ---7 G5 (q-l) for N-+ oo, 

• open-loop operation (u(t) and e(t) independent). 

• u ( t) is persistently exciting. 

• G ( q-1 , 0) and H ( q- 1 , 0) are parameterized independently . 

(2.23) 

(2.24) 

This result is particularly of interest for later analysis of closed-laap identification schemes and 
is one of the main reasans for transforming closed-laap identification into open-loop equiva­
lents. It guarantees that the true plant can be estimated from the data, but only if infinitely 
many measurements are available. Purthermare the estimate is unbiased, irrespective of the 
noise model. In this asymptotic case, it is thus nat important whether e.g. an output error 
ar a Box-Jenkins model structure is used. However, when only finite data are available, the 
situation changes drastically. In this case, a Box-Jenkins structure will probably give a better 
estimate of the plant's parameters. The reason is that the prediction errors contain a filter, 
the inverse of the noise model. This filter is adapted automatically during the identification. 
In an output error structure however, the noise model is fixed and equal to one. Notice, 
that in an ARX structure the noise model contains the same parameters as the plant model. 
Therefore the estimates will be biased. 

2.4 Closecl-loop identification 

This section will define the closed-laap identification problem more precisely. Consider the 
general closed-laap setup as depicted in Figure 2.2. The signal r(t) is an external signal that 
is chosen to be of suflident order of excitation. Chapter 3 will further discuss this property 
and analyze different choices for this excitation. The controller is defined by the polynomials 
T(q- 1

), R(q-1
) and S(q- 1). With respect to the closed-laap setup, the following assumptions 

are made: 
2 A discussion on this concept is given in chapter 3. 



Assumption 2.0 
It is assumed that 
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• The data set{r(t), y(t)} is given and either the input { u(t)} or the controller is known. 

• There is no algebraic loop in the system. 

• The closed loop is stable, i.e. the controller stahilizes the plant G s· 

0 

l 
e(t) 

Hs 

e-,.6 r 
1 

u(t) y(t) 
T o- R Gs 

s 

Figure 2.2: General closecl-loop setup, under two-parameter controL 

If these assumptions are fulfilled the identification experiment can be carried out. The identi­
fication methad that is used depends on the goal of the identification. Sametimes a consistent 
estimate of the parameters (including the noise model) is the main goal, but more aften the 
results of an identification experiment will be used to design a new controller. In the latter 
case nat necessarily a consistent estimate of the plant is needed, but the identification must 
be explicitly tunable to meet the control design requirements. In this report the following 
requirements, that were adapted from [Van der Klauw (1995)], will be used: a closed-loop 
identification method that estimates a model G of Gs must have the following properties: 

1. If Gs E (}, butS~ M, the estimate G must be consistent; 

2. The model must be of low order, and herree it only approximates the real plant; 

3. lt should be possible to incorporate control design specifications into the identification 
procedure, if G(q-1) =f=. Gs(q-1 ). 

A description of "classica!" approaches to deal with the closecl-loop identification problem 
can be found in [Söderström and Stoica (1989)]. These methods are referred to as the direct 
method, the indirect methad and the joint input-output method, and should allbeseen in the 
prediction error context. lt has been established that under week conditions these methods 
can consistently identify the true plant, provided that the system is in the set of rnadeis that 
is considered (S E M). However, these methods have some drawbacks. The approximation 
cannot be explicitly tuned and consistency properties are asymptotic, i.e. one needs infinitely 
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many data to arrive at a consistent estimate of the parameters. The latter is a consequence 
of the "PEM nature" of these methods. Same examples given below show these properties. 

Example 2.3 Direct identification 
A straightforward way to approach the closed-laap identification problem could be the fol­
lowing. Consider a linear, time invariant discrete time system Gs, that is operated in a closed 
loop. The setup is depicted in Figure 2.2. Assume that the plant input u(t) and the plant 
output y(t) are measured. Aprediction error methad is used to find an estimate of the system. 
This estimate is known to converge under weak conditions to 8*, with probability one: 

8* = argmin __!__J11" <l>e
1
(w)dw, (2.25) 

11E9 27r -1r 

where <Pep is the speetral density of the filtered prediction error. This expression can be found 
by applying Parseval's theorem to (lossvn). In an open-loop case, using an output-error model 
structure with a fixed noise model H ( q- 1 , 8) = 1 the resulting estimate 8* is given by: 

(2.26) 

where Hu is a stabie speetral factor of <l>u. Note that the estimate is independent of the noise 
spectrum. Moreover, the estimate G(8) can be "tuned" to make a good approximation in a 
frequency range emphasized by HuL. On the contrary, in a closed-laap setup the expression 
for the speetral density of <Pep is 

(2.27) 

Here the act u al sensitivity, Ss is equal to (1 + G sC) - 1. No te that the estimate is no langer 
independent of the noise spectrum, and that there does nat exist a simple choice of the noise 
model which could make the <l>e-dependent term in (2.27) independent ofthe parameter vector. 
The consequence is that the estimate G(8) will depend on the (unknown) noise spectrum and 
is nat explicitly tunable. 0 

Example 2.4 Indirect identification 
Consider a system Gs(q-1 ) that is operating in a closed-loop, as depicted in Figure 2.2. 
Assuming that the prefilter T(q- 1) equals one, the closed-laap transfer function can be easily 
derived: 

B AR 
S: y(t) =AR+ BSr(t) +AR+ BSHse(t), (2.28) 

where y(t) is the closed-laap output and r(t) the reference signal. The noise e(t) enters the 
loop through Hs at the output of the plant. An indirect identification uses the knowledge of 
the controller to extract the estimate of the plant from the estimation of the closed loop. The 
most logical choice for the model structure is thus an ARMAX structure: 

M : Ä(q-1, 8)y(t) = Ë(q- 1, 8)r(t) + ë(q-1 , 8)E(t), (2.29) 

with the interpretation:Ä = AR+ BS, Ë = B and ë = ARH8 • But this structure can only 
give an unbiased estimate of the plant if infinitely many data are available and ARHs is a 
polynomial. Furthermore, in the second step the plant must be calculated from: 

Ê RË(q-1, 8) 
À - A(q-1, 8)- SB(q-1, 8). (2.30) 
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The bias on the estimates now makes that common dynamics in numerator and denominator 
are not exactly cancelled out. This leads to a high order model and a model reduction step 
is necessary. 

In the chapter 5 the so-called BELS method will be presented. This method takes into account 
the fact that the parameter estimates in the first step are biased, since an ARX structure is 
used. Estimation of this bias makes it possible to subtract it from the parameter estimates, 
thus giving an unbiased identification. D 

In practical situations, the data records that one can use to identify the plant are finite. lt is 
known that in this case an instrumental variabie approach can give more accurate results. A 
direct IV method can work also in closecl-loop forsome systems, but the instruments need to 
be chosen with care and it is less straightforward than in the open-loop case. An interesting 
alternative is therefore to transferm the closecl-loop identification problem into two open-loop 
on es, where A and B are estimated separately. This is discussed below. 

Example 2.5 Identification of coprime factors 
Consider again the closecl-loop setup in Figure 2.2. lf the reference signal, the input and the 
output are known from measurements, they can be used to identify the plant from these data 
directly. Consider the following equations, descrihing the closecl-loop system: 

y(t) 
BT ARHs 
Acr(t) + --;ç-e(t), (2.31) 

AT ASHs 
-r(t)- --e(t) 
Ac Ac 

u(t) (2.32) 

where Ac is the closecl-loop charaderistic polynomial. Let the prefilter T( q- 1) equal one, 
then 

y(t) (2.33) 

u(t) = (2.34) 

where the noise terms are denoted shortly by ey(t) and eu(t). Estimate B(q-1), A(q-1) and 
Ac(q-1 ) from (yr) and (ur). Denotetheestimates by Ê(q- 1), J.Î(q-1 ), Ac,y(q-_1 ) and Ac,u(q- 1 ). 

The estimates can now be validated from a comparison of Ac,y(q-1) and Ac,u(q-1) and the 
calculated closecl-loop charaderistic polynomial Ac,calc· The latter polynomial is defined as 
A(q-1)R + Ê(q- 1 )S. This validatien testcanthen be used todetermine a suitable model 
structure. 

This method has some drawbacks. As was already established in the sectien on the predietien 
error framework, a bias free estimate of the parameters is only possible when infinitely many 
data are available and the noise model is parameterized independently of the plant model. 
From the structure of the equations (2.31) and (2.32) though, an ARMAX structure is the 
most logical choice. Another disadvantage is that no use is made from the fact that the 
charaderistic polynomial Ac is the same in equations (2.33) and (2.34). These problems, 
however, can be avoided by using a more elaborated scheme. This scheme will be presented 
in chapter 5 on different methods for closecl-loop identification. D 
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2.5 Alternative identification methods 

Recently, alternative methods have been formulated. These methods are mainly directed 
towards finding a tunable bias expression and consistency for the situation when the system 
is not in thesetof models under consideration (S rf. M), but the true plant is in thesetof 
plant models (Gs E Ç). There are different methods known that can deal with this situation. 
In this report, the following methods will be examined: 

• The two-stage method, see [Van den Hof and Schrama (1993)]. 

• The dual Youla method, see [Bore-Kuen (1995)]. 

• The bias elimination least squares method, proposed in [Zheng and Feng (1995)]. 

• The recursive output error method, see [Landau (1996)]. 

The charaderistics and algorithms of these methods will be discussed in chapter 5. The 
application to both simulations and a lab-process will give some idea of their performance. 

2.6 Identification for control 

It was already mentioned that a consistent estimate of the plant is not the only goal. Al­
though a consistent identification can be fruitfully used in model-based controller design, the 
goal of the latter is clearly to design a controller that meets performance criteria which 
are based on the controlled process. A discussion on this discrepancy can be found in 
[Van den Hof and Schrama (1994)]. A matching of the criteria is possible and is proposed 
in [Áström (1993)]. In this report a new iterative scheme [Holmberg et al. (1996)] will be 
presented and an application of this scheme to a magnetic levitation experiment will be de­
scribed later. Close to the subject of identification for control is validation for controL This 
will be discussed at a later stage. A typical controller design validation is given below. 

1. Do the identification experiment (in open- or closed-loop set up). 

2. Use the estimated model to design a controller, given a certain pole placement of the 
closed-loop transfer function. 

3. The obtained closed-loop poles can now either be calculated from the true plant (in 
simulations) or estimated from an estimation of the closed-loop directly (in practice). 

4. Compare the obtained poles with the designed pole placement. 

This proeed ure gives insight on the resulting closed-loop dynamics, once an estimated model 
is used for the controller design. lt is demonstrated in the example below, that considers both 
an open-loop and a closed-loop identification. 

2. 7 Closed-loop versus open-loop identification 

In some situations both an open-loop and a closed-loop identification of the unknown system 
is possible. The example in this section will show that it is very well possible that an identi­
fication experiment carried out in a closed-loop setup gives better results than an open-loop 
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identification experiment. The example system is known as Áströms example. lt is a stabie 
plant, with two complex-conjugated poles at 0.75 ± 0.37i. The controller was adopted from 
[Landau (1996)], the noise model from [Van den Hof and Schrama (1993)]. This system will 
he used as a benchmark example system throughout this report. lts exact properties are 
given in appendix A. 

Example 2.6 Closed-loop and open-loop identification 
Consicier the following plant to he estimated: 

(2.35) 

In order to make a fair comparison between the open-loop and the closecl-loop identifi­
cation Landau 's recursive output error algorithm will he used for the identification; see 
[Landau (1996)]. This algorithm is similar for both the uncontrolled and the controlled 
system. Experiments have been carried out with a constraint on the output, i.e. the ex­
periments were made, such that the signa! to noise ratio in the open-loop output as well as 
in the closecl-loop output were equal 3 . In the experiment under consideration, five hundred 
measurements were made; the noise contribution in the output was approximately equal to 
twenty-five percent. The following model structure has been chosen: 

(2.36) 

where the parameter vector 0 consists of the coefficients a and b. Notice, that the model has 
an output error structure. Consequenly, the noise model is not estimated. The estimated 
model was used to construct a controller, such that the resulting closecl-loop poles equal 
pre-specified ones. Thus, for both estimated models a controller was designed, based on a 
pre-specified pole placement. Th is validation gives insight in the 'value' of the obtained model 
for control purposes. The results are given in the figures below, together with the parameter 
estimates as they evolved in time. D 

3 The signa! to noise ratio is here defined at the output as the ratio of the standard deviation in the signa! 
and the standard deviation in the noise. 
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(a) (b) 

Figure 2.3: Closecl-loop from open-loop (a) ancl closecl-loop (b) iclentification, o: the clesignecl 
closecl-loop poles, x: the obtainecl closecl-loop poles. 
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Figure 2.4: Estimates of the parameters cluring time, in open loop (a) ancl closecl loop (b). 
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Input signals 

This chapter will consider input signals. The success of any (parametric or nonparametric) 
identification depends not only on the identification algorithm that has been used, but also 
on the excitation of the system. Examples of different input signals are a step function, a 
white noise, a pseudorandom binary sequence and a periadie excitation. The first section de­
scribes some important properties of an input signal. It has been established [Godfrey (1993)], 
[Schoukens et al. (1994)] that multisines can be fruitfully used in an identification experiment. 
They are introduced in the second section. The third section considers the effect of the input 
signal on the identified model. This is illustrated with an example, showing the Nyquist plots 
of an approximate identification with two different input signals. 

3.1 Properties of input signals 

This section treats the different properties of input signals. The charaderistics that will be 
looked at are the mean, speetral properties, the order of persistent excitation and the Crest 
factor. 

Definition 3.1 Mean of a signa[ 
Consicier a stochastic signal u(t). lts mean or first order moment is defined as: 

m = E[u(t)], (3.1) 

where E denotes the expectation operator. 0 

For deterministic signals the expectation operator can be changed to the limit of a normalized 
sum: E ---t limN--1-oo ~ '2:~ 1 , assuming that the limit exists. In the analysis of identification 
algorithms it is sametimes convenient to use expectations instead of fini te sums, if the number 
of data tends to infinity. Stochastic signals for which the finite limit reaches the expectation 
value with probability one, as N ---t oo, are called ergodie . A zero mean of an input signal 
is of importance, since this is assumed in most model structures. The mean of the measured 
signals must therefore be removed befare the identification. 

Definition 3.2 Power spectrum 
The power spectrum of a stochastic signal u(t) is given by: 

<I>u(k) =: u(k)u*(k), (3.2) 
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where u(k) is the k-th Fourier coefficient. D 

A necessary condition for the consistent estimation of a n-th order linear system is that the 
input signa! is persistently exciting of order n. This means that the input signa! is rich enough 
to excite all modes of the unknown system and to make an identification possible. Formally, 
the order of persistent excitation is defined by: 

Definition 3.3 Order of persistent excitation 
A signa! u(t) is said to be persistently exciting of order n if: 

(i) the following limit exists: 

1 N 
ru(r) = lim N,Lu(t+r)uT(t) 

N-+oo t=l 
(3.3) 

(ii) 

Ru(n) = 
ru(-1) ru(O) 

(3.4) 

ru(1- n) 

is positive definite. 

D 

This definition was adapted from [Söderström and Stoica (1989)]. If the signa! u(t) is ergodic, 
then the sum in (3.3) can be replaced by the expectation operator E. Then, the matrix Ru(n) 
becomes the usual covariance matrix (supposing that u(t) has zero mean). 
The concepts defined above give the possibility to construct an input signa! that is rich enough 
to identify all the parameters of a model and can furthermore be tuned with respect to its 
speetral densities. The question is, however, if a chosen input signa! is efficient, and how this 
efficiency can be determined. The Crest factor can be used to measure the density of a signa!. 
This factor is defined as the quotientof the peak value and the root mean square value of the 
signa!. For a continuous time signa!, the Crest factor is defined below. 

Definition 3.4 Crest factor 
The Crest factor CFu of a continuous time signa! u(t) is given by 

(3.5) 

where [00 is the Chebyshev norm of u and 12 denotes the 2-norm. D 

The above definition is valid for continuous time functions u(t). In discrete time, where the 
signa! u(t) is sampled at a certain frequency, the following approximation can be used: 

(3.6) 

Here, tn is used to stress the discrete time nature of the Lp norms. If trigonometrie signals 
are used and the sampling is clone at equally spaeed time intervals, an upper and a lower 
bound for the approximation can be computed. See [Guillaume et al. (1991)] and appendix 
B. 
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3.2 Multisines 

Since the multisine will turn out to be of great value in the identification procedure, a defi­
nition is given below. 

Definition 3.5 Multisine 
A multisine is the sum of a number of harmonieally related sinusaids with programmabie 
amplitudes an: 

N 

u(t) = L an cos(27rknt/T + O!n), t = iT5 , i= 1, 2, ... , M. (3.7) 
n=l 

The phase shift is here denoted by O!n, while the included harmonies are represented by kn 
(kn E N,n = 1,2, ... ,N and 0 < k1 < k2 < ... < kN)· The period ofthe excitation is T, the 
sampling time is T5 • The number of data that is used is given by M, such that MTs = pT, 
pEN. o 
In [Schoukens et al. (1994)] and [Godfrey (1993)] a number of advantages of multisine input 
signals are discussed. The most important properties with respect to identification are given 
below. 

3.2.1 Impravement of the signal to noise ratio 

The signal to noise ratio can be ameliorated by: 

• Minimization of the Crest factor 

• Selection of frequency lines 

• Time domain averaging 

The minimization of the Crest factor will be discussed later. With regard to the selection 
of the frequency lines, multisines contain only pre-specified frequencies. This knowledge can 
be used to eliminate all other frequencies in bath the input and the output spectrum that 
do nat contribute to the experiment. This advantage is valid essentially for the frequency 
domain, although the applieation of a fast Fourier transfarm and an inverse FFT, putting 
the non-excitation lines to zero, can ameliorate the results also in the time domain. This 
procedure can also lead to an impravement of the finite sample behaviour of the identification 
scheme. lt is shown by [Schoukens et al. (1994)] that the risk that the identification scheme 
gets trapped in alocal minimum decreases once all non-excitation lines are removed from bath 
the input and the output spectra. Furthermore, the periadie nature of a multisine makes it 
possible to do a time domain averaging. These procedures do all contribute toa better signal 
to noise ratio. 

3.2.2 Simplify the model validation 

The next chapter will explain that a model validation is a necessary step in the identification 
process. One way to do a validation is a validation in the frequency domain. If periadie 
excitations are used, it is very simple to obtain a good measurement of the non-parametrie 
transfer function. See e.g. [Guillaume et al. (1992)]. The latter artiele even claims that 
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an unbiased estimate of the non-parametrie transfer function is possible in a closecl-loop 
identification experiment, using the plants input and output. In this report, however, is 
focused on short data records and therefore no advantage can be taken of nonparametrie 
estimates. 

3.2.3 Crest factor minimisation 

A more dense input signa! leads to a increment of the signa! to noise ratio for a given peak 
value or to a reduced peak value for a given SNR. The latter leads to a reduction of the 
non-linearities which can be hidden in the stuclied system. The reduction of the Crest factor 
can be done in different manners, see e.g. [Guillaume et al. {1991)] or [Godfrey {1993)]. The 
search of the phases is a highly non-linear problem. Schroeder (see e.g. [Godfrey (1993)]) 
proposed the following (empirica!) phase selection: 

n-1 

Ctn = a1- 27r l:)n- k)Pk, 
k=l 

(3.8) 

where Pk is the relative power of the kth component. For a multisine with a flat-amplitude 
spectrum, (3.8) reduces to: 

1r(n- 1)n 
Ctn =- N . (3.9) 

Here, only input signals with a flat amplitude spectrum will be considered, and Schroeders 
formula will be used for the optimization of the Crest factor. The phase selectionfora multi 
sine of ten sines is depicted in Figure 3.1, together with the resulting input signa! for a flat 
amplitude spectrum. 
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Figure 3.1: Multisine of ten sines: (a) Multisine, (b) Phase selection. The resulting Crest 
factor is equal to 1.92. 
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3.2.4 Selection of harmonies 

The introduetion from this chapter already mentioned that the outcome of an identification 
experiment not only depends on the identification method that is used, but also on the input 
signal that is chosen. A multisine input signal can easily he tuned by the a selection of the 
amplitudes of the different components. The problem is, however, that in order to design an 
optima! input signal, one needs information on the (unknown) plant. lt is therefore not easy 
to select a proper input signal. But sometimes, some charaderistics of the controlled system 
are already known, from e.g. the Nyquist curve identification as discussed in the next chapter 
on validation. Especially the frequencies which determine the (controlled) systems behaviour, 
the frequency range between the crossover frequency and the critical frequency, are important 
to identify. This gives a first selection of the harmonies to he included in the input signal. A 
multisine input signal then inserts all input energy into this specific frequency region, that is 
shown in Figure 4.2. 
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IV 

Validation 

4.1 Introduetion 

It was already mentioned that the objectives of an identification experiment are nat always 
the same. An estimation of the 'true' parameters could be a goal as well as the identification 
of a model for control purposes. These different objectives demand for different validation 
methods. In this chapter four different validation procedures are presented and explained. 
They are gathered in the table below tagether with their respective goal. 

Objective of identification Validation Method 
Estimation of 'true' parameters Statistica! test 

Sum of squares test 
Determination of model structure U ncorrelation test 
Identification for control Pole closeness test 

Ziegler-Ni cols test 

Table 4.1: Methods for validation. 

4.2 Statistica! test 

A straightforward way to do a validation test, is to campare the true parameters that describe 
the system with the estimated parameters. Especially when a simulated system is used, 
e.g. for comparison of different identification schemes, the true parameters are known, and 
Monte-Carlo loops can be carried out in order to determine the statistica! charaderistics of 
the estimates: mean and variance. This gives an idea of the performance of the identification 
scheme and makes it possible to campare different identifications, clone with different settings 
of the estimation algorithm. When the plant to be estimated is unknown, it is nat always 
possible to run a lot of experiments to arrive at a validation. In this case it is better to use one 
of the methods mentioned below, that give the means for validation after every experiment 
that is carried out. 
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Figure 4.1: Setup for the uncorrelation test 

4.3 U ncorrelation test 

A methad that can test whether all the dynamics of the system are explained by the model is 
an uncorrelation test. The setup from Figure 4.1 can easily be implemented. The data that are 
used for this validation can either be the measurements that were used for the identification 
experiment or new measurements. The uncorrelation between ECL and fl(t) shows how well 
the dynamics of the true plant are incorporated in the estimated model. Note that this test 
is controller dependent. 

4.4 Pole closeness test 

A pole closeness test is an easy way to do a model validation. Where a statistkal validation 
can only be performed when a true plant is known and P E Ç, a pole-closeness test can also 
be performed when an approximate identification has been carried out. The test consists of 
three steps: 

1. Identification of the closecl-loop poles, by e.g. a coprime factor identification 

2. Calculation ofthe closecl-loop poles from the estimated modeland the (known) controller 

3. Comparison 

In step 1, obtained closecl-loop poles are estimated (which is an open-loop identification prob­
lem), while in step 2, the designed closecl-loop poles are computed based on the identified 
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Figure 4.2: Typical Nyquist plot of the open-loop controller system, Wx 1s the crossover 
frequency, Wc is the critica! frequency. 

model. The comparison is made with regard to the closenessof dominant (slow) poles. 

4.5 Sum of squares test 

This time domain test calculates 

1 N 
VN(O) = N L [c}(t, 0)), 

t=l 

(4.1) 

where the filter was chosen equal to unity, throughout this report. The value of this loss 
function shows the quality of the abtairred model. 

4.6 Frequency domain tests 

This validation checks if the frequency domain charaderistics of the identified model match 
the charaderistics of the true plant. However, the difficulty here is that only finite data 
are available. A nonparametrie identification of e.g. the Bode curves can therefore nat be 
performed with a high accuracy. But a Ziegier-Nicols test can very well be carried out to obtain 
an estimate of the Nyquist curve of the open-loop controlled system, i.e. CG (C = Sj R). A 
typical Nyquist plot is depicted in Figure 4.2. The gain margin is now defined as the inverse 
of Gm; the phase margin is defined as W, Wx is the crossover frequency and Wc is the cri ti cal 
frequency. If the gain in the controller polynomial S is augmented, the gain margin will 
become smaller and reach one, when the point -1 is reached by the Nyquist curve. At this 
point, the system starts to self-oscillate with the frequency Wc and an estimate of the plant 
can be made as 

(4.2) 
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Figure 4.3: Nyquist plot of the open-loop controlled system; (a) a= 0, (b) a= 0.2. 

sirree the controller C is known. The frequency Wc can he estimated from a parametrie 
estimate for under an ARX model structure: 

(4.3) 

Taking r 1 as one of the roots of the denominator polynomial, the estimate of the crossover 
frequency is: 

[ 
Jm(ri)] 

Wc= I arctan Re(r
1

) I· (4.4) 

This estimate can he compared with a parametrically identified model, but for this frequency 
only! In order to identify more points on the Nyquist curve, a low pass filter 1!.;:-;_1 , with 
1 < a ~ 0 can he incorporated in the controller. This will rotate the Nyquist curve and 
consequentially the critica! frequency will change for this new situation. The experiment as 
described above can again he carried out. The figures below show the Nyquist curve of the 
open-loop controlled system, with a = 0 to a = 0.5 1 . 

a Gain margin Critical frequency {rad} 
0.0 13.73 3.14 
0.2 5.81 1.21 
0.35 2.72 0.73 
0.5 1.42 0.44 

Table 4.2: Ziegier Nicols identification of the Nyquist curve. 

1 In contrast to the other examples, the system that was used to create this plots was not the system from 
Aströms example, but a first order plant under RST controL 
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Figure 4.4: Nyquist plot of the open-loop controlled system; (a) a= 0.35, (b) a= 0.5. 
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Figure 4.5: Reconstruction of the Nyquist plot of the open-loop controlled process. 
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A validation in itself for this test consists of the computation of the power spectrum. This 
spectrum should show one peak at the asciilation frequency. Even when few data are available, 
the spectrum gives some information on the frequency of oscillation. This validation will be 
illustrated in chapter 6 for a magnetic levitation experiment. 
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Methods for closecl-loop identi:fication 

In this chapter different methods for identification in closecl-loop will be discussed. The 
properties of the different methods are clarified by an example. The first section of this 
chapter is devoted to the identification algorithms, the second section shows the results from 
an identification experiment. Since the description of the different approaches is short, for 
more details is referred to the bibliography, especially with regard to convergence properties. 
At the end of the second section, an iterative identification for control method is included. 
The last section shows an identification experiment, that was carried out on an example 
system. An application from these methods to a real life system can be found in chapter 6. 

5.1 Algorithms 

5.1.1 Two Stage Method 

The introductory chapter on identification mentioned that a possible solution for the closecl­
loop identification problem is a transformation to an open-loop identification problem. This 
solution is used in the two stage method ([Van den Hof and Schrama (1993)]), although no 
use is made of the dual Youla parameterization. Assume that the true system is given by: 

(5.1) 

under one-parameter control, where S(q-1) and R(q-1) are collected in a controller C = 
S(q-1 )/ R(q-1), 

u(t) = r(t)- Cy(t). 

The closecl-loop behaviour can be expressed as: 

y(t) G8 u(t) + Hse(t), 

u(t) ~ Cr(t)- Hsg Ce(t). 1+ s 1+ s 

(5.2) 

(5.3) 

(5.4) 

Introduetion of the sensitivity function Ss( q-1) = (1 + G sC)-1 shortens this equation to: 

(5.5) 

Th is is the (open-loop) system that must be identified in the first step of the algorithm. Since 
the input u(t) is known, the system can be modelled by: 

M1 : u(t) = S(q- 1
, (3)r(t) + R(q-1

, '!')Eu(t), (5.6) 
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where (3 is the parameter vector. The parameters are then estimated using a prediction error 
technique. The estimated parameters are collected in the veetors ~ and ..y. Note that S(f3) 
and R( 1) are parameterized independently to obtain an unbiased estimate of the parameters 
(3. This completes the first step of the algorithm. In the second step, the estimate of the 
sensitivity function is used to identify the plant. Defining ur(t) = T(q- 1)r(t), equation (5.3) 
can be rewritten to 

(5.7) 

Since ur (t) is nat available from measurements, a reconstruction of this signa!, 

(5.8) 

should be used in the second step. System S2 can be modelled by 

(5.9) 

Notice that the plant and the noise model are modelled independently, in order to arrive at 
unbiased estimates for the plant. The parameter estimates are collected in the veetors () and 
7]. 

5.1.2 Dual Youla parameterization 

In the two stage methad the closecl-loop identification problem was transformed to two open­
loop problems, estimating not only the plant but also the sensitivity function. In the Chap­
ter 2, an example was given on the identification from the closecl-loop data directly, see 
example 2.4. There, the closecl-loop identification problem was reduced to two open-loop 
problems. lt is, however, possible to do the identification by only one open-loop estimation 
procedure. This approach is based on the dual Youla parameterization and will be explained 
in this section. For details is referred to [Bore-Kuen (1995)]. In short, the knowledge of the 
controller is used to find a set of plant rnadeis that are stabilized by this controller. lt can 
be shown that all the rnadeis in this set can be parameterized with respect to one nomina! 
plant model. Since the true plant is stabilized by the controller, it is a memher of this set and 
consequentially, it can be expressed as a function of the nomina! plant model. As a result, 
the identification problem reduces to an identification of one transfer function. 
Consicier a plant Gs, Hs that is controlled by a RST controller: 

(5.10) 

Assume that the transfer functions G s and Hs can be written as co prime factorisations: 

Gs 
Ns 

(5.11) 
Ds' 

Hs 
Cs 

(5.12) 
Ds' 

where Ns, Ds and Cs are polynomials in the backward shift operator. From the experimental 
setup (Figure 2.2), the charaderistic polynomial can be found to be: 

(5.13) 
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where U is some stabie polynomial. From the nature of the true system, it is natural to use 
an ARMAX model structure: 

(5.14) 

where A, B and C are polynomials in backward shift. With regard to this model structure, 
the set of all possible plants that are stabilized by the controller is given by: 

G(Q) 

H(Q,F) 

N+QR 
D-QS' 

F 
D-QS" 

(5.15) 

(5.16) 

The polynomials N and D are some salution of the Diophantine-Aryabhatta-Bezout (DAB) 
identity1 : 

DR+NS=l. (5.17) 

The parameterizing transfer function is Q. The transfer function F defines the numerator of 
H and as such, the quotient D!Qs can be seen as a parameterisation of the possible noise 
models. Let the true plant be given by: 

(5.18) 

(5.19) 

Then, the identification of the unknown system reduces to an identification of Qs and F8 • If 
the plant only is to be identified, the estimation of Qs suffices. lt can be shown (appendix B) 
that the parameterized plant can be expressed as: 

y(t) 

u(t) 

(N + QsR)r(t) + RFse(t), 

(D- QsS)r(t)- SF8 e(t), 

where a prefilter T = 1 is assumed. From this, a reduced system can be defined as: 

Sr : j3(t) 

j3( t) 
Q8 r(t) + Fse(t), 

Dy(t)- Nu(t). 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

Collecting the parameters of Q and C in a parameter vector 8, a model structure for the 
reduced system is: 

Mr : j3(t) = Q(q- 1
, 8)r(t) + F(q- 1

, 8)E(t). (5.24) 

Since, N and D are known from (5.17), j3 can be constructed from measurements, and from 
the resulting reduced plant Q(q-1, j3) an estimate of the plant can be computed via (5.15). 
Notice, that the computation of the plant involves the controller. This may lead to a high 
order plant estimate, making a model reduction step necessary. 

1The one on the right hand side can be obtained by a normalisation of the controller, see [Bore-Kuen (1995)] 
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5.1.3 Bias Eliminating Least-squares Method 

This subsection gives a description of the BELS (Bias Eliminating Least-squares) Method, 
see [Zheng and Feng (1995)]. This methad estimates the plant indirectly from the closecl­
loop data. Consider a general closecl-loop system under one-parameter control, where G(q- 1) 

represents the transfer function of the plantand C(q-1 ) the feedback controller. The input 
u(t), the output y(t) and the reference r(t) are assumed to be known. The closed loop is 
defined by 

y(t) 

u(t) 

Gu(t) + e(t), 

r(t)- Cy(t). 

Bath the plant and the controller can be written as a quotient of two coprime factors, 

-dB(q-1) -d b1q-1+ ... +bnbq-nb 
q - q d;::: 0, 

A(q-1) - 1 + a1q-1 + ... + anaq-na' 

Q(q-1) qo + q1q-1 + ... + qnqq-nq 

P(q- 1)- 1 + P1q-1 + ... + Pnvq-nv' 

where d denotes the number of time delays that are present in the system. 

Assumption 5.0 
The following assumptions must be made: 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

• The external signal r(t) is stationary, measurable and persistently exciting of sufficient 
order. 

• The colared disturbance e(t) is a stationary random sequence, independent of r(t). 

• The closed loop is asymptotically stable. The polynomials A(·) and B(·), as wellas P(·) 
and Q ( ·) are co prime. 

• The structure parameters, na, nb, np, nq, are given and we know the regulator. 

• The order of the polynomial P is greater than or equal to the order of the polynomial 
A, i.e. np ;::: na. 

0 

Notice that bath A( q-1) and P( q- 1 ) are chosen manie. The relationship between the output 
y(t), the external input r(t) and the disturbance e(t) can be written in ARX notation: 

where 

A( q-1 )P( q-1) + q-d B( q-1 )Q( q-1) 

1 -1 + -2 + + -na + 0:1 q o:2q · · · CXnaq , 
q-dB(q-1)P(q-1) 

q-d (Jhq-1 + f32q-2 + ... + f3nM-nf3) . 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 
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In this equations, no: = deg [A(q- 1 
)] = max[na + np, nb + nq + d] and n(3 = np + nb, while 

deg [B(q- 1)] = nb + np + d. Further, since A is chosen monic and A, Pare monic it is 
implicitly assumed that d ~ 0. Further, the disturbance in closed loop can be written as: 

(5.34) 

Introduce the closecl-loop parameter vector {), 

(5.35) 

with length no: + n(3. Write the closecl-loop equation (5.29) as: 

(5.36) 

where 
7/J(t) = [-y(t- 1) ... - y(t- no:) r(t- k- 1) .. . r(t- k- n(3)]T. (5.37) 

Next, create a matrix '11 containing all observations, 

'11 T = [7f;(1), ... , 7/J(N)], (5.38) 

a vector y of all the measurements and a vector Ç of errors. Then the following holds: 

(5.39) 

A least-squares estimate of{) is given by: 

(5.40) 

wt denotes the general inverse of '11, wt = (wTw)- 1wT, which is assumed to exist, due to 
the first assumption above. It can be shown that the least-squares estimate JLs is biased 
with respect to the true parameter vector {), 

JLs = {) + b.{)(N), (5.41) 

where 

b.fJ(N) wtç = :R;!(N)R1Pç(N), (5.42) 
N 

R1/!1/!(N) ~ L 7j;(t)7j;(t)T, (5.43) 
t=1 

R1jlç(N) ~ f. ,P(t)~(t) = [ ~,(N) l· 
N t=1 Rrç(N) 

(5.44) 

The bias b.fJ(N) cannot be computed. The reason is that Ç(t) is not measurable. T~erefore 

R1/lç(N) cannot be computed. The idea is to replace R1/lç(N) with an expression R1/lç(N) 
that can be calculated and is a good approximation for large N. Introduce 

E [7/J(t)7j;(t) T) , (5.45) 

E [7/J(t)Ç(t)] = [ :~: l = [ ~yç l = SRyç, (5.46) 
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then it holds that 

lim R.;;,;;(N) 
N-too 

lim R.;;ç(N) 
N-too 

(5.47) 

(5.48) 

In (5.46) we use that r and Ç are uncorrelated and introduce for convenience the projection 

matrix S = [Ina Onaxn,8]T. lt can be shown below, that Ryç(N) actually can be approxi­
mated for large N when knowledge of the controller is taken into account. Therefore it makes 
sense, fora long enough data record, to choose 

(5.49) 

where R.;;ç(N) is an approximation for R.;;ç(N). Notice, though, that R.;;ç(N) =/= R.;;ç(N) for 
small N. The bias is, thus, estimated as 

~ 1 ~ 
fl.f)(N) = R.;;.;;(N)- R.;;ç(N), (5.50) 

and the bias-eliminated estimate is: 

(5.51) 

The closecl-loop parameter vector i) can be related to the open-loop parameter vector () by, 

(5.52) 

where p = [p1 , ···Pnp; 0, ... , O]T with length na+ nb. The size of the matrix M is equal to 
(na+ nj3) x (na+ nb) and can be expressed as 

M = [ Pt Q l 
0 p2 ' 

(5.53) 

where the matrices P 1 and P 2 are Sylvester matrices expanded by the vector [1, p1 ... Pnp]T. 
Their sizes are na x na, nj3 x nb respectively. The matrix Q consists of d rows of zeros above 
a Sylvester matrix expanded by the vector [q0 .•• qnq]T, with size (na- d) x nb. Therefore 
the matrix Q has size na x nb. 
Following to proposition 1 of [Zheng and Feng (1995)] a full column rank matrix H of size 
(na+ nj3) x (na+ nj3- na- nb) is defined, such that 

T H M=O. (5.54) 

The columns of H span the null space of the matrix M. Multiplication of (5.52) by HT 
yields: 

HT{) = HT p. (5.55) 

For large N it holds that fl.f)(N) = JLs- 1). Multiply from the left by HT to get 

(5.56) 
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In this last equation, the number of unknowns is no:, while the number of equations is no: + 
nf3 - na - nb. In order to have a unique solution, it is required that: 

no: 

=> np 

no: + nf3 - na - nb 

na, 

(5.57) 

(5.58) 

which corresponds to the fifth assumption above. If np > na, there are more equations than 
variables and there is not necessarily any solution, but approximations, e.g. least-squares 
approximations, can be found. The overall result is: 

(5.59) 

5.1.4 Recursive Output Error 

This section outlines briefly the character and some properties of a recursive identification 
scheme. Within this scheme an output error model structure is employed, fixing the noise 
model to one. The system is assumed to be operated under a two-parameter control scheme. 
The complete algorithm for a recursive identification will be given, for both unfiltered data 
and filtered data. The latter algorithm has different stability and convergence properties. 
These properties are discussed at the end of this subsection. A more complete treatment of 
this method can be found in [Landau (1996)]. In an output error structure, the model is given 
by 

M: y(t) = G(q-1)u(t) + E(t) (5.60) 

where the plant transfer operator can be written as the ratio of two polynomials B(q-1 ) and 
A(q-l) 

G( -1) = B(q-l) = -d b1 q-l + ... + bnbq-nb 
q A( -1) q 1 + -1 + + -na· q al q ··· anaq 

(5.61) 

In the latter equation, d denotes the time delay. The parameter vector () consists of the 
coefficients of both polynomials: () = [al, ... ,ana,bl,···,bnbY· Now introduce B*(q- 1 ) = 
qB(q- 1 ) and A*(q-1 ) analogously, then the deterministic output of the closed loop is given 
by 

y(t + 1) = -A*(q-1)y(t) + B*(q-1 )u(t- d), (5.62) 

where r(t) is the reference signal, u(t) is the plant input and y(t) is the plant output. Collect­
ing the parameters of the polynomials A and Ê in a parameter vector () and the observations 
in a vector 7/J = [ -y(t), ... , -y(t- na+ 1)û(t- d), ... , û(t- nb + 1- d)]T, where y(t) and û(t) 
are defined in (5.65) and (5.71) respectively. The a priori output is given by 

y0 (t + 1) -A*(t)y(t) + Ê*(t)û(t- d). 

iJT (t)~(t). 
(5.63) 

(5.64) 

The hats denote the estimate of the property under consideration. The a posteriori output is 

y(t + 1) = -A*(t + 1):Y(t) + Ê*(t + 1)û(t- d). (5.65) 

From these predietors both the a priori error, 

(5.66) 
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as the a posteriori error, 
E(t + 1) = y(t + 1)- y(t + 1), (5.67) 

can he defined. Using equations (5.64) and (5.66), the a priori error equation can he rewritten 
to 

B*(t) -ds 
-A*(t)y(t) + A*(t)y(t)- ; y(t) 

+ Ê*(t)q-d~y(t) + (B*- Ë*) q-d~r(t). 

Addition and subtradion of (A*+ B*Ç"d8
) y(t) gives, 

E0 (t + 1) -[A*- A*(t)] y(t) + [B*- Ê*] û(t- d) 

- (A*+ B*~dS) c(t), 

[o- ê(t)r 1/;(t)- (A*+ B*~ds) E(t), 

where 

û(t- d) = q-d [- ~y(t) + ~r(t)]. 
Using this notation, the a posteriori error equation can he written as 

E(t + 1) T [ B* -ds l [o- IÎ(t + 1)] 1/;(t)- A*+ ~ E(t) , 

R [ A ]T A 0- O(t + 1) 1/;(t). 
c 

The polynomial Ac denotes the closecl-loop charaderistic polynomial: 

Ac = AR+ q-d BS. 

The parameters estimation algorithm is given by 

fJ 0 (t + 1) 
E

0 (t+1) 

E(t + 1) 

F-1 (t+1) 

ê(t + 1) 

f}T (t)7j;(t) 

y(t + 1)- fJ0 (t + 1) 
E

0 (t + 1) 
1 + 7j;T(t)F(t)7j;(t) 

À1F- 1 (t) + À21/;(t)1/;T(t) 

IÎ(t) + F(t)1j;(t)E(t + 1) 

Algorithm: 5.0 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 
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The parameters À1 and À2 should he chosen as 

0 < ).1 :S 1 (5.75) 

The parameter À2 can usually he taken equal to one. Then, À1 acts as a forgetting factor for 
the algorithm. The calculation of F(t + 1) can he clone by the matrix inversion lemma2 ; 

F(t) = ~ [F(t)- F(t)'lj)(t)'lj)T(t)F(t) l· 
À1 ~ + 'lj)T(t)F(t)'lj)(t) 

Stability and convergence 

The recursive parameter estimation algorithm is assures that: 

lim t:(t + 1) 0 
t-too 

lim E
0 (t + 1) 0 

t-too 

ll'lj)(t)ll < c, 0 < c < ()() Vt 

for all initia! conditions lÎ(O), E0 (0), 'lj)(O), if 

P( -1) = R(q-1) - ~ 
q Ac 2' 

(5.76) 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

is a strictly positive real transfer function. U nder some extra assumptions, this condition also 
implies: 

Prob { lim ê(t) = 00 } = 1. 
t-too 

(5.81) 

Proofs for bath statementscan he found in [Landau (1996)]. 
The condition on P is restrictful since it outrules the use of a controller with integral action 
(R(O)=O ;, P(O) jO nat SPR). An ad hoc modification of the algorithm is to filter the regression 
vector as 

R 
'lj)J(t) = -. 'lj)(t), 

Ac 
(5.82) 

where Ac denotes the estimated characteristic polynomial at time t, the parameter estimation 
algorithm can he applied on filtered data. This filtering has some advantages, with respect 
to the stability and convergence of the algorithm. 

5.1.5 ROR-scheme 

Section 2.6 already mentioned that a good estimate of the parameters is nat necessarily 
one that reconstructs the true system. Instead, the identified model must he such that a 
control design can he based on it. After the implementation of a new controller, a new 
identification experiment can he performed, giving an iterative scheme of identification and 
controller design. In literature different approaches can he found. A discussion is given in 
e.g. [Schrama (1992)]. One of the key issues is to make control and identification mutually 
supportive, so that sarnething can he said about the convergence of iterations. Another issue 

2 see appendix B 
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concerns the tendency to consider the varianee rnadeling errors only, assuming that the true 
system belongs to the model set. But a large model set must he taken into account to enable 
asymptotic convergence results. From a practical point of view this is toa stringent a require­
ment; see also section 2.3. The methad described below relaxes the model set completeness 
and introduces an adequate performance index. The entry point is a sequentia! use of the 
standard least-squares optimization on the system error equation for the purpose of controller 
design and plant identification. First, a problem definition will he given, from which a con­
trol performance criterion will he deduced. Then, a suboptimal salution to the minimization 
problem will he given: the ROR-scheme. 

Problem definition 

Let the true system he 

under two-parameter control: 

R(u(t) = -Sy(t) + Tr(t). 

The controller design is based on the equation error model structure 

M: Ay(t) = Bu(t) + E{t). 

The charaderistic polynomial of the closecl-loop model is 

Am= AR+BS, 

while the actual closecl-loop charaderistic polynomial is 

The output of the closed loop is 

Introduce the desired response as 

BT R 
y(t) = Am r{t) + Am E(t) 

BT 
Yd(t) = Ar(t), 

m 

then the control performance error can he defined as 

R R 
ecp = y- Yd = Am E = Am (Ay- Bu) .. 

Introduce a control performance criterion as: 

J = Ee~P = E { lim N
1 t e~p(k)}. 

N-too k=l 

From N samples, the criterion can he estimated to he 

" 1"" N2 J = N L....t +k = 1 ecp(k). 

{5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

{5.90) 

(5.91) 

(5.92) 
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If the poleplacement is chosen, the polynomial Am is fixed. 

The controller polynomial R can he written as a function of A and B. The salution to the 
pole placement equation can he parameterized by a polynomial Q, 3 making Ra function of 
Q, A and B. Collecting the coefficients of A and B in a parameter vector (), the optimization 
criterion is 

min J(R(Q, ()), 0), 
e,Q 

(5.93) 

where () and Q are memhers of some specified reduced order space. The optimization is 
highly nonlinear, but can he solved by replacing the nonlinear problem by a sequence of 
linear least-squares problems. 

The pole placement equation The pole placement equation has infinitely many solutions, 
that can he parameterized by a polynomial Q: 

R 

s 
R1- QB, 

s1 +QA, 

where R 1 and S1 are one particular solution. Defining 

the control performance error (5.90) is linear in Q 

As aresult J(Q) can he minimized by the least-squares method analytically. 

Model estimation Both the input and the output can he filtered over A:; let 

YF = 

The control performance error (5.90) can then he written as 

(5.94) 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

(5.99) 

(5.100) 

(5.101) 

so that J ( 0) is linear in the parameter vector and can minimized analytically by a least-squares 
method as well. 

3 The approach here is similar to the parameterization in the dual Youla method. But instead of a param­
eterization of the plant models is chosen for a parameterization of all controllers that stabilize the plant and 
that maintain the same Am. 
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Optimization procedure Let the initia! model be summarized in the parameter vector 
01 . This vector is e.g. a result of an open-loop identification or derived from a physical model. 
A controller based on this model is implemented and a closecl-loop excitation of the system 
is performed. The sampled data from the experiment are used in each of the minimization 
steps below: 

arg min J(R(Q, 01), OI) 
Q 

arg min }(R(Ql, 01), 0) 
(} 

arg min }(R(Q, ê), ê) 
Q 

Notice that each step is a linear least-squares problem. In the first step an impravement of 
the R polynomial is calculated. This is a necessary step that prevents disturbance effects 
from influencing the parameter estimation in the second step. A possible bias in the data will 
be "modelled" in R, and nat in A. Integral action will then automatically be introduced in 
the controller. From the new model, R must be computed again in the third step, since Ris 
a function of the model and Q. 

5.2 Application to an example system 

This section will use the system defined by Áström / Van den Hofl as a benchmark example. 
In order to make a fair comparison between the different methods that were examined in 
this chapter, different validation methods will be applied to the abtairred estimates. Several 
Monte Carlo loops of the identification procedure have been performed in order to arrive at a 
statistica! validation. The orders of the plant were assumed to be known; the signal to noise 
ration in the output was approximately 10%. The results from the dual Youla methad have 
been left out, because of the high order estimates this methad results in. An overview of the 
abtairred parameter estimates (mean and standard deviation) is given in Table 5.1. 
The ROR methad has nat been evaluated statistically. Since several iterations should be 
made each experiment, it is hard to judge which iteration should be used for this evaluation. 
However, after five iterations the control performance error doesn't decrease anymore. The 
model that was abtairred by then has been included in Table 5.1 Furthermore, the objective 
of the ROR methad is nat the reconstruction of the 'real' plant, but the control performance. 
Therefore five iterations have been carried out, to get an idea of this property. The results 
are depicted in Figure 5.1. The model structure was of second order. The parametrizing 
Q polynomial had one parameter. Consequently a third order controller has been designed. 
The designed pole placement was the same as the pole placement that was used for the 
validation tests below. In the sum of squares and the correlation test, the system (i.e. the 
estimated model after five iterations plus the conesponding controller) have been used. Since 
the controller changes with the iterations, the ROR Methad has nat been included in the test 
on the frequency domain properties of the open-loop controlled system. The outcome of the 
pole-closeness test is trivia!, since the model is designed such that the closecl-loop poles match 
the designed ones. 
The pole closeness test was performed with designed poles spread out in the complex plane. 
The circles denote the abtairred poles, the crosses denote the designed poles. 

4 The plant was adapted from [Áström (1993)], the noise model from [Van den Hof and Schrama (1993)]. 
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al az bl bz 
True plant -1.5 0.7 1.0 0.5 
Two Stage -1.47 ± 0.06 0.65 ± 0.09 1.00 ± 0.02 0.5 ± 0.1 
BELS -1.5±0.4 0.7± 1 1.00 ± 0.05 0.5 ± 0.4 
Rec. Output Error -1.50 ± 0.01 0.70 ± 0.01 1.01 ± 0.01 0.49 ± 0.03 
ROR Method -1.53 0.64 0.83 0.40 

Table 5.1: Estimated parameters their standard deviation from different methods. 
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Figure 5.1: Developement of the control performance error for the ROR Method. 

Correlation factor Sum of squares 
Two Stage 0.006 0.01 
BELS 0.3 0.02 
Rec. Output Error 0.001 0.01 
Dual Youla 0.09 0.02 
ROR 0.002 0.01 

Table 5.2: Correlation factors and sum of squares test (from one experiment). 
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Two Stage Methad Output Error 

BELS Methad Oual Youla Methad 

Figure 5.2: Result from the pole closeness test. 

Gain Margin Wc Phase Margin Wx 

True plant 3.0204 3.1416 50.4885 1.0540 
Two Stage 3.0194 3.1416 50.5809 1.0544 
BELS 3.1880 3.1416 43.1642 1.0782 
Rec. Output Error 3.0940 3.1416 50.1045 1.0602 
Dual Youla 2.8698 3.1416 46.6480 1.1323 

Table 5.3: Frequency domain properties of the open-loop controlled system. 
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Figure 5.3: lnfluence of correlation on estimates for the BELS Method. 

5.3 Discussion 
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This section intends to give a discussion on the identification methods that were reviewed 
above. These methods all differ in approach, they work with different model structures and 
batch algorithms as well as recursive and iterative algorithms. Furthermore, they include 
different possibilities for filtering the data and the ability to emphasize certain parts of the 
frequency domain. lt is therefore difficult to make a comparison of these methods. 

A possible salution to this problem is the use of validation methods. These methods allow 
a comparison with respect to a certain objective. The example above clearly shows that a 
"good" estimate in one respect does nat necessarily mean a good estimate in another. Notice 
that all validation tests were performed with the same data record. 

Consequently a definite answer to the question on how the identification should be performed 
can nat be given, leaving identification to be more of an art than a method. 

However, some remarks on the results above can be made. In Table 5.1 the bias eliminating 
least squares methad shows quite large standard deviations on the estimates of the a2 and 
b2 parameters. This is due to the assumption that the noise is uncorrelated with the input 
signal. However, in the example, a white noise input signal has been used. Since the data 
records are short, a correlation between those signals can occur. As a result, the estimate of 
the correlation matrices fails and so does the parameter estimate. Figure 5.3 shows on the 
x-axis the correlation that was present between the input signal and the noise, as it entered 
the system, for different experiments. The y-axis shows the 2-norm on (0- 00 ) , the obtained 
parameter vector minus the true parameter vector. From this figure can be deduced that 
biased estimates are more likely to occur when a high correlation is present. 

The recursive output error methad seems to give the best (statistica!) results. And also with 
respect to the other tests it perfarms very well. This makes it a valuable method. Moreover, 
it is recursive and consequently demanding less computing power and storage. Although this 
last argument does nat necessarily hold when only short data sequences are considered. 

With respect to a control objective, all methods make a good estimate of gain margin and 
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phase margin. Except for the Dual Youla Method. This is probably due to the high order 
estimate of the plant. A model reduction step was already mentioned to be necessary, but 
lies outside of the scope of this project. From Figure 5.2 can be concluded that the obtained 
model fails, if it were used for a pole-placement controller design. 
The two-stage method performs well. lt can be easily implemented using the standard 
open-loop identification algorithms that are provided by the MATLAB Identification Tooi­
box. Although classical identification methods were not considered in this report, it must 
be mentioned that the two-stage method fits in the framework from these methods. In 
[Van der Klauw {1995)) the direct, indirect, joint input-output and two-stage method are 
merged into one General Identification method. 
With respect to the identification for control method, some remarkscan be made. First of all, 
it performs quite well. After the first iteration the control performance error is already half 
of the initial one. In later iterations, it starts to oscillate. The fifth iteration has been taken 
as a final one. In this particular case, the loss increased a little after a sixth iteration. In 
practical situations, iterations are therefore executed until no further decrease of the control 
performance criterion is observed. The estimate ofthe model is given in Table 5.1. It is biased 
with respect to the true plant. This is not a problem, since it is the control performance error 
that is the criterion to be optimized. The application of the ROR Method to a 'real life' lab 
experiment will be discussed in the next chapter. 
Some remarks must be made concerning the initial models that were used in the identification. 
'Although a fair comparison demands the same initial model for all methods, different initial 
models have been used. The reason is that the Recursive Output Error has more stringent 
restrictions on the initial model than e.g. the Dual Youla Method. Moreover, the latter 
method constructs its own initial model from the knowledge of the controller. Any model 
that is stabilized by the controller can be used for the identification with this algorithm. 
The initia! model for the Recursive Output Error method was adapted from [Landau (1996)). 
However, this initial model did not give good results when fed to the ROR Method. It has 
therefore been slightly changed to make the ROR Method work as well. 
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Magnetic Levitation 

The theory introduced in the foregoing chapters has only been applied to simulated processes. 
The advantage of simulations is clear. Full control over the experimental conditions is possible 
and "what if'' type of experiments can easily he carried out. However, the use of a "real 
life" system to test theoretica! results is valuable. In this situation full control over the 
experimental setup is no longer possible. Noise and uurnodeled dynamics can show up and 
introduce difficulties. The experiments that are described in this chapter were all carried out 
on a magnetic levitation process. The goal of this process is to position an iron hall using 
a magnetic force to compensate the gravitational force exerting on the hall. This process is 
schematically depicted in Figure 6.1 (a). In the system under consideration the hall is to he 
suspended at a distance of ten to fiJteen millimeters under an electromagnet. The next section 
will discuss a physical model of the system. Modelisation gives some idea of the properties of 
the system and the derived model can he used to tune some initial controller that stahilizes 
the system. The system setup gives rise to the implementation of a cascade control scheme. 
Control of the system and related topics will he discussed in the third section. The forth 
section will describe the experimental setup in more detail. Attention will he paid to the 
construction of the process and the implementation of the (discrete time) controller. The last 
two sections will he devoted to identification and identification for controL 

R 

ul 
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Figure 6.1: (a) Schematic experimental setup and (b) definition of symbols. 
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6.1 Physical modelisation 

The modelisation of the system consists of finding the relations that link the output of the 
system to its input. In a first attempt the input will he taken to he the voltage, u, that is 
applied to the magnet. The position of the hall, x, is the output that must he controlled. 
From the more detailed description of the process, that is given in the next section, it can he 
found that also the current, i, in the magnet is availahle from measurements. Therefore the 
current will he considered to he an output as well. Consider Figure 6.1(a) and 6.1(h). The 
magnet can he modelled hy a resistance and a perfect spool in series, leading to the following 
equation: 

R . d'ljJ ( ) 
u= 2 + dt' 6.1 

where Ris the Ohmic resistance of the magnet. The magnetic flux is represented hy '1/J. With 
regard to the equations of motion of the hall, the following relations are trivial: 

mx F9 +Fm 
mg. 

(6.2) 
(6.3) 

The gravitational force and the magnetic force are represented hy respectively F9 and Fm. 
The mass of the hall is m, g is equal to the gravitational acceleration. An expression for 
the magnetic force can he found from the expression for the magnetic energy Em, which is a 
function of the flux 'ljJ and the position x of the hall, 

(6.4) 

Under Assumption 6.0 the flux can he calculated from 

'1jJ = Li, (6.5) 

where the inductance L depends on the position of the hall. This latter (static) relation will 
he derived empirically in the fifth section. 

Assumption 6.0 
In order to arrive at a physical model for the levitation process, the assumptions helow with 
regard to the magnet will he made: 

• The core does not have any flux of its own. 

• The hall does not create any ft u x. 

• There are no Foucault currents present. 

• No hysteresis is present. 

• There is no saturation. 

The total differential of the energy can he found from equation (6.4), 

ÖEm . ÖEm 
dEm = Tdz + a;-dx. 

0 

(6.6) 
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Further, the magnetic energy is equal to the sum of the electrical and mechanical work 
functions, 

dEm = dWe + dWm, 

where the two right hand side terms are 

Subtrading equation (6.7) from (6.6) gives 

[
8Em ·L] d. [8Em ·2dL F ] d 0 = Ti- z z + a;;-- z dx + m X. 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

Sirree the current i is independent of the position x, an expression for the magnetic force can 
now be found from: 

Integration of (6.11) gives 

Em = j(x) + t iLdi = j(x) + ~Li2 , Jo 2 

where j(x) is some function of the position.Substitution of (6.13) in (6.12) leads to: 

äEm dj 1 dL ·2 --=-+--z. 
äx dx 2 dx 

From (6.12) follows the expression for the magnetic force, 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

Sirree the magnetic force should be zero in the absence of a current, dj jdx must be zero. 
Hence, 

(6.16) 

Collecting equations (6.1), (6.2), (6.3), (6.5) and (6.16), a statespace description of the model 
IS 

x V (6.17) 

V 
1 { 1 dL .2 } - --z +mg 
m 2dx 

(6.18) 

di 1 { R. dL·} (6.19) - L u- z- v dx z . dt 

Notice, that 
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1. The current is a state space variabie that appears quadratic in the equation for the 
acceleration, 

2. The factor dL/dx is still unknown. 

Because of the geometrical complexity of the system it is not possible to derive an analytica! 
expression for L(x) from physicallaws. Therefore an empirica! approach was chosen. Taking 
i; = 0 in equation (6.18) gives 

dL .2 
dx z = 2mg. (6.20) 

By measuring the current as a function of the setpoint, the next relation was fit to the data: 

dL L1 
- = -- exp( -x/o:) 1 o: > 0, L1 constant. 
dx o: 

(6.21) 

Herree follows 
L(x) =La+ L1 exp( -x/o:). (6.22) 

The constant La can be found from identification of the magnet. Experiments and results are 
described in appendix C. 
Substitution of the last equation in the statespace equations leads to the final model: 

x 

V 

di 
dt 

1 { L1 ·2 } - -- exp( -x/o:)z + mg 1 m 2o: 

L L 
1 

( / ) {u- Ri + '}!_L 1 exp( -x/o:)i}. a + 1 exp -x o: o: 

6.2 Linearisation 

(6.23) 

(6.24) 

(6.25) 

In order to find a stahilizing controller, the model must first be linearized. The setpoint can 
be found by taking the left hand sides of the state space equations equal to zero, which gives 

iJ 01 

z ± 

ü Rz, 

2o:mg --y-;- exp(x/o:), 

(6.26) 

(6.27) 

(6.28) 

where the setpoint of the position, x can be chosen arbitrarily. Derroting the deviation 
variables by a tilde, the linearized state-space model is given by: 

x 

dz 
dt 

L1zexp(-x/o:)-: L1z2 exp(-xjo:) _ -: b-
- o:m z + 2o:2 m x = az + x 

1 -R --------.,-u + i+ 
La+ L1 exp( -x jo:) La+ L1 exp( -x jo:) 

L1z exp( -x jo:) _ _ -: _ 

(L L ( -; )) v = cu + dz +ev. o: a + 1 exp -x o: 

(6.29) 

(6.30) 

(6.31) 

(6.32) 
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a [;A] bl~l C lst J d l~J el~ J 
12.95 1954.81 23.10 -38.81 -2.99 

Table 6.1: Numerical values of the parameters of the transfer fundions in the Laplace domain, 
for a setpoint x = 15mm. 

~s 
c 

û z x 
~ ..... c a 

s+d s2-b 

Figure 6.2: Interactions between statespace variables in the Laplace domain. 

The equivalent system in the Laplace domain is given in the Figure 6.2, where the numerical 
values from the parameters a toe can be found in Table 6.1 The counter reaction e represents 
the induced tension originating from the movement of the hall. lts effect is negligeable. The 
remairring interactions can be written in transfer functions in the Laplace domain: 

G1 (s) 
z c 

(6.33) - -
s+d' û 

Gz(s) 
x a 

(6.34) s2 - b' z 

The poles of the latter transfer function are ±Jb, which shows that the system is unstable. 
Notice furthermore that the overall transfer function GI(s)G2 (s) is of third order. 

6.2.1 Cascade control 

In the experimental setup that was used for the experiments bath the position of the hall and 
the current in the magnet were available from measurements. This lead to the idea of cascade 
controL The control scheme is depicted in Figure 6.3, where K 1 and K 2 are controllers. 
The reference input is f and the input signal was the current z1 . In this control scheme, the 
controller K 1 is used to control the first order process G 1 (s). This processis stabie and a high 
gain proportional controller eliminates the dynamics of this system. The controller has been 
implemented by analog devices. The process described by G 2 (s) however cannot be controlled 
by a proportional controller, sirree it pushes bath poles of the transfer function away from the 
imaginary axis. The system can be stabilized by ad ding a derivative action to the regulator. 
The outer loop regulator was implemented on a computer. 

1 In the experimental setup only a tension could be applied to the magnet. A (known) resistance has been 
used to convert the current to a voltage. 
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Figure 6.3: Cascade control scheme for the magnetic levitation. 

6.2.2 Conversion to the discrete time domain 

The outer-loop controller was implemented on a computer, and all relevant signals are sam­
pled. lt is therefore necessary to consider the discrete-time domain equivalent of the transfer 
function. 

Th en 

This is equal to 

x 
H2(z) = .."-. 

l 

H2(z) = Z { c-1 {G2 (s)}}. 

-1(1 + -1) H ( -1) q q 
2 q = 'Y 1 - (3 q-1 +q-2. 

(6.35) 

(6.36) 

(6.37) 

The sampling time is denoted by T8 • The numerical values of the parameters are for a 
sampling time of 10 ms, 

(3 = 2.20, 

'Y = 0.65. 

(6.38) 

(6.39) 

(6.40) 

The position is assumed to be measured in millimeters. This discrete time model was used to 
build a PD controller. Although various efforts have been clone, it was not possible to tune 
the PD controller such that it stabilized the plant. However, by trial-and-error it has been 
possible to construct one. And this controller has been used in the identification experiments. 

6.3 Identification 

The identification of the plant can be exploited from the data that were obtained from mea­
surements on the controlled process. Since the controller is of first order and the structure of 
the model is known. The fact that the order of the controller is lower than the order of the 
plant prevents the bias elimination least squares methad (BELS) from being used for the iden­
tification of the plant. Also the two-stage methad proved inapplicable. The reconstruction 
of the input signal may work fine, but this leaves the second step with an identification with 
two bounded signals. Therefore, the identified plant will always be stable, in contradiction to 
reality in the experiments. This leaves only the Dual Youla transformation and the recursive 
output error methad to be used for identification. 
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6.3.1 Input signal 

A multisine input signal has been selected that consists of ten sinusoids. This was necessary 
for the open-loop identification of the whole closed-laap that was used to construct a data 
filter. The design of the filter will he discussed below. The shape, and phase selection for a 
multisine of ten sinusaids was already given in Chapter 3. The Crest factor that was obtained 
from the Schroeder phase selection is equal to 1.92. 

6.3.2 Model structure 

Figure 6.3 shows that the plant is operated under cascade controL The transfer function 
of the inner loop can be taken equal to one. This leaves the plant G2 under controller K 2 • 

Defining the input to be the current, u=~ and the output the position ofthe hall, y(t) = x(t). 
For notational convenience the tildes will be eliminated below. The plant is defined by two 
co prime polynomials B ( q-1 ) and A ( q-1) as 

B(q-1) 
G2 = A(q-1 ) (6.41) 

According to the discretisation from the physical model, the following model structure has 
been chosen: 

M: q ' - A(q 1,(1)- l+aiq 1+a2q 2' 
{ 

G( -1 0) - B(q-1,(1) - biq-i+b2q-2 

y(t) = G(q-1, O)u(t) + H(q- 1 , O)E(t) 
(6.42) 

where G(q-1 ,0) represents the unknown plantand H(q- 1 ,0) defines the noise filter. In 
this model structure, the order of the numerator and denominator polynomials are equal 
to two. Later, it will be shown that order three polynomials sametimes give better results. 
The parameter vector consists of the parameters of the plant. The noise model will nat be 
estimated and assumed to be equal to one. Evidence for this assumption is given below, 
where the identification of the closed-laap charaderistic polynomial shows that the dynamics 
of the noise model can be neglected. 

6.3.3 Construction of a prefilter 

A first experiment was done with a multisine input signal. The data from this experiment 
were used by the ROR scheme to identify the plant. Although the estimate led to a model 
that was stabilized by the controller, the estimated plant turned out to he stable! In some 
cases, the estimated plant was unstable, but a newly designed controller did nat stabilize the 
plant. Although different pole placements were chosen for the controller design, it was nat 
possible to make the ROR scheme work. 
A salution to this problem was found in a data filter. By filtering the data over an appropriate 
filter the identification was shown to work much better. The construction of this filter was 
done from an open-loop identification of the charaderistic polynomial from signals in the 
loop. Notice, that the closed-laap itself contains the same "data filter". However, it turned 
out to be necessary to filter the signals directly befare the identification. 
The following equations, that are valid for the modelled closed-laap setup, were found to 
be useful in constructing the filter. Moreover, they include a validation in itself, since the 
closed-laap charaderistic polynomial should be equal in bath ( estimated) transfer functions. 

AS AS 
u= -r- H-E (6.43) 

Ac Ac 



56 

and with e = r - y, 

AR AR 
e= -r- H-E. 

Ac Ac 
(6.44) 

The identification of these two relations will he referred to as u-r and e-r identification. The 
closecl-loop characteristic polynomial is denoted by Ac and is equal to AR+ BS. Th is model 
represents a Box-Jenkins structure. Since the noise filter was nat physically modelled, no 
information on the orders of H is present. The multisine input signal makes it possible that 
up to twenty parameters are estimated. To estimate the influence of the noise model, for bath 
identifications a Box-Jenkins model structure is assumed, Define A as a model for Ac and T> 
as a model for the denominator of the noise model of fourth order. From (6.43) and (6.44) 
it can he expected that A and T> have the same dominant roots. The identified poles are 
given in Table 6.2. From this data can he concluded that an ARMAX structure is sufficiently 

A V 
u-r -0.99 0.41 ± 0.84i 

0.70 ± 0.46i 0.69 ± 0.59i 
e-r -0.67 0.36 ± 0.42i 

0.60 ± 0.66i 0.70 ± 0.43i 

Table 6.2: Identified poles of the plant and noise model in a Box-Jenkins structure. 

complex, since the dominant poles in A and V are approximately equal. 

In an ARMAX model structure, the plant model and the noise model are assumed to have 
the same poles. These (identified) poles are given in Table 6.3. The complex roots from bath 
estimates are approximately equal, which gives confidence in the procedure. The data filter 
was constructed from the average: 

1 -1 -q 
L = (1- 0.7816 + 0.4138iq- 1)(1- 0.7816- 0.4138i). 

(6.45) 

The derivative action in the numerator can he included to remave a possible offset on the 
data. The Bode plots of the data filter where the numerator was chosen equal to one are 
depicted in Figure 6.4 

pol es 
u-r 0.7974± 0.4137i 0.0523 
e-r 0.7659 ± 0.4104i -0.8323 

Table 6.3: Poles from ARMAX estimate of the system. 
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Figure 6.4: Bode plots of the data filter. 

6.3.4 Data preparation 
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Consider an output error model structure for the magnetic levitation. Then, the closecl-loop 
transfer function for the true system is: 

TB AR 
y(t) = AR+ BS r(t) +AR+ BS e(t). (6.46) 

This implies that an ARMAX model structure is an appropriate model structure: 

M: Dy(t) = Nr(t) + QE(t). 

Consider equation 6.37. Define the fixed factor in the numerator as B fix 
comparison of the true system and the modelleads to 

AR+ -y q-1 BJixS = D. 

(6.47) 

(1 + q-1 ). A 

(6.48) 

Sirree D is a polynomial that can be constructed from the estimates of the closecl-loop poles 
(see subsection 6.3.3) and the controller polynomials S and R are known, ')' and A can be 
computed from equation (6.48): 

" 0.26. 10-3 (q- 1 + q-2 ) 
G = . (6.49) 

1- 2.16 q- 1 +1.09q-2 

Most importantly, this analysis shows a factor 10-3 in the numerator. The order of mag­
nitude in the numerator is 10-4 compared to the denominator. In order to make a proper 
identification, this problem should be easily eliminated by sealing the data. 
Summarizing, the data should be preprocessed befare any identification experiment can be 
carried out. Here, preprocessing consists of three steps: 

1. Remave an average or trend from the data 

2. Scale the data 

3. Filter the data by a prefilter 
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Rec. Output Error 

Dual Youla Methad 

ê - 0.43q "'+0.43q -~ 
- 1-2.47q• [+1.13q 2 

G _ o.31q -o.o9q -•-o.07q -3 

- 1-2.82_q_: l±2.46q· 2-0.68q" 3 

Table 6.4: ldentified models. 

Methad 2-norm validation Poles of plant Computed closecl-loop poles 
Recursive Output 0.0188 1.87 0.8810 
Error 0.60 0.5733 ± 0.5079i 

Dual Youla 0.0031 1.42 0.8306 ± 0.2718i 
Methad 0.82 0.4365 

0.58 0.4365 

Table 6.5: Validation by sum of squares and pole placement. 

6.3.5 Results 

This subsection describes the results from the identification experiments, where the dual 
Youla methad and the (filtered) recursive output error methad were used. The modelisation 
gives rise to a second order model for the plant. Then, four parameters are to he estimated 
and a double-sine input signa! is a sufficient excitation. However, the output error methad 
then estimates a unstable plant and an unstable closed-loop. The dual Youla methad works, 
but the 2-norm on the error is high (~ 0.4). The samebad results are obtained with input 
signals of three and ten sinesoids. The correlation test that was carried out on the model 
from the dual Youla methad gave a correlation of 0.6. The better results were obtained a 
third order estimate of the plant transfer function under the dual Youla method. The data 
was filtered over the data filter that was constructed above. 
The recursive output error methad was implemented in the "filtered" version. The data filter 
that was constructed above proved to work counterproductive and was therefore omitted. 
The identified model was of second order. This results show clearly that the identification 
procedure is a mathematica! one. Although the physical modelisation led to a second order 
model, a better estimate is obtained with a third order approximation, if the dual Youla 
methad is applied. The numerical values of the estimates are given in Table 6.4. A validation 
of the rnadeis will he discussed in the next section. 

6.3.6 Validation 

Dominant closecl-loop poles 

The identification of the data filter gives a nice means for validation purposes. The dominant 
closecl-loop poles are known, and with the knowledge of the controller, any estimated model 
can he validated from a comparison of these poles and the ones that can he computed from 
the estimated model. The results of this validation are displayed in Table 6.5 and in Figure 
6.5. 
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Figure 6.5: Validation of the dominant poles, ( o) Experimentally identified polesfrome-r and 
u-r identification, (x) identified by the Dual Youla Method, ( +) identified by the Recursive 
Output Error Method. 

Frequency domain validation 

In the frequency domain, the Nyquist curves of the open-loop controlled plant (BS/AR) and 
the plant itself were identified. Section 4.6 introduced a means to find the Nyquist curve of a 
plant from closecl-loop data. This methad was applied to the magnetic levitation system and 
the primary results are gathered in Table 6.6 and Figures 6.7(a) and 6.7(b). The latter tigure 
was constructed by employing the knowledge of the controller. lt shows that the controller 
stahilizes the plant and that a reasanabie gain margin is present in the system. This could be 
expected, because of the robustness of the PD controller. The identified cross-over frequencies 
were validated by a speetral analysis of the data. However only few data were available (the 
system becomes unstable rapidly for bigger a) a speetral analysis can confirm the identified 
cross-over frequency. The error margin in the speetral estimate of the crossover frequency is 
due to the small number of data that were used. Figure 6.6 gives the oscillatory response of 
the system and the speetral density of the output. 

6.3. 7 Conclusions 

From the two validations above some conclusions can be drawn. The validation on the 
dominant closecl-loop poles indicates that the Dual Youla Methad perfarms better than the 
Recursive Output Error Method. Concerning the frequency domain validation, however, it 
is hard to judge which methad perfarms best. In tigure 6.7 b) the Recursive Output Error 
methad seems to give the better results. From the Nyquist plot of the plant can be concluded 
that the Dual Youla Methad perfarms better. There are some aspects that could explain these 
results. The Dual Youla Methad was applied to a third order model. lt therefore has more 
parameters to estimate than the Recursive Output Error Method. Furthermore, the latter 
methad is sensitive to the initia! model. This arises from the stability condition that includes 
a SPR condition, see 5.1.4. Another aspect is the data filter. This filter was applied on the 
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0: Ks Wx ARX estimate Speetral validation G GC 
0.0 2.28 0.98 0.96 ± 0.05 -0.2978 +0.2192i -0.4386 +O.OOOOi 
0.0 2.51 1.02 1.03 ± 0.10 -0.2643 +0.1912i -0.3984 +O.OOOOi 
0.2 2.23 0.82 0.76 ± 0.05 -0.4123 +0.2185i -0.4843 -0.0822i 
0.2 2.25 0.83 0.82 ± 0.10 -0.4062 +0.2141i -0.4809 -0.0823i 
0.4 2.06 0.56 0.52 ± 0.01 -0.6510 +0.2209i -0.5345 -0.1712i 
0.4 2.10 0.58 0.54 ± 0.02 -0.6311 +0.2125i -0.5276 -0.1733i 
0.4 2.17 0.62 0.57 ± 0.05 -0.5397 +0.1780i -0.4682 -0.1611i 
0.5 1.18 0.34 0.33 ± 0.01 -1.4476 +0.3175i -0.8971 -0.2857i 

Table 6.6: ldentification of the Nyquist curve of the magnetic levitation. C = Sj R is the 
controller. 
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Figure 6.7: (a) The identified Nyquist curve of the plant. (b) The estimated points on 
the Nyquist curve of the open-loop controlled system. The crosses denote the nonparametrie 
Ziegier-Nicols estimates of the Nyquist curve. The ei rel es denote the corresponding frequencies 
on the parametrically estimated Nyquist curves. 

data that were fed to the Dual Youla algorithm. On the contrary, the Recursive Output Error 
Methad did not work when the data filter was applied to the data. Again, this proves that 
the data filter contributes to a better estimate of the process. 

6.4 Identification for control 

The identification for control scheme was applied to different data sequences and a validation 
has been performed by a 2-norm criterion on the control error as defined in 5.91. 

6.4.1 Setup for the identification 

The model structure was chosen according to the physical modelisation: 

(6.50) 

This model structure contains four parameters to he estimated. A complicated input signa! 
is therefore not necessary. The experiments showed the better results with a multisine input 
signa!, that consisted of ten sinesoids. Purthermare a square wave input signa! has been 
selected for validation purposes. A data filter was necessary to obtain good results and has 
been implemented. It differs only slightly from the filter that was constructed above. The 
filter has three poles, at 0.77 and 0.75 ± 0.45i and no derivative action was implemented. 
A sealing of the data was implemented for the reasans that were already mentioned. The 
designed poles of the closed loop were located at 0.4, 0.5, 0.65 ± 0.4i and 0.75 in the complex 
plane. The number of poles (five) made a higher order controller necessary. The initia! 
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Iteration Poles of plant model Dominant closecl-loop poles 
Initia! 1.42 0.77 ± 0.42i 

0.69 
1 st iteration 1.41 0.79 ± 0.36i 

0.71 

2nd iteration 1.31 0.74 ± 0.29i 
0.70 

3rd iteration 1.31 0.78 ± 0.29i 
0.71 

4th iteration 1.30 0.77 ± 0.29i 
0.71 

5th iteration 1.29 0.69 ± 0.22i 
0.71 

Table 6. 7: Pol es of the model and the dominant closecl-loop pol es. These po les were identified 
by a coprime factor identification. 

controller was a PD controller. Five iterations have been performed. The results and the 
validation are discussed below. 

6.4.2 Results and validation 

Since the goal of the ROR-scheme is the construction of a model-based controller, the scheme 
can best be evaluated by the control objective. Furthermore a validation with respect to 
the dominant poles of the closed loop has been carried out. Table 6.4.2 shows the poles of 
the estimated rnadeis and the identified closecl-loop poles from a coprime factor identification, 
where the location of the dominant poles from the u-rand e-r identification were averaged. No 
dominant real poles were identified. Therefore the dominant closecl-loop poles in tabel 6.4.2 
should be compared with the designed dominant poles: 0.65 ± 0.4 and 0.75. Note, that the 
dominant closecl-loop poles for the initial situation correspond to those that were computed 
in subsection 6.3.3. With regard to the identification objective, Figure 6.8 gives the control 
performance criterion for bath the multisine input signal, that was used in the identification, 
and for a square wave input signal. The latter experiments were carried out exclusively for 
the purpose of validation. The numbers for the initial situation have nat been included, since 
these numbers are determined by the first experimental setup and nat a result from the ROR­
scheme. As an example of the effectiveness of the scheme, a modelled output, the measured 
output and the control performance error are depicted in Figure 6.9. The controller of the 
second iteration has been used to construct the picture. Other evidence of the success of 
the ROR-method can be found from the tracking properties of the initia! controller, and the 
controller that was constructed in the last (fifth) iteration. These are depicted in figure 6.10. 
The oversboot has decreased ( notice the scales on the axes), as well as the oscillations. 
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Figure 6.8: Development of the control performance criterion for a multisine input signa! 
(left) and fora square wave input signa! (right). 
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Figure 6.9: (a) Measured (-) and desired (.-)output, (b) the control performance error. 
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Figure 6.10: Tracking performance of the initia! PD controller (a), and of the controller after 
five iterations (b). 



VII 

Conclusions and outlook 

This chapter reviews the most important conclusions from this report. Moreover, it gives 
references to articles that appeared very recently and are interesting to mention, but were 
nat considered within the context of this report. 

7.1 ldentification using fini te data 

The main difference between the "classica!" closecl-loop identification schemes and the algo­
rithms that are discussed in this report is the goal of the identification. "Classica!" methods 
aim at an identification , i.e. a reconstruction, of the true plant. Consequently, the system 
should he a memher of the model set, SE M. Recent algorithms, however, aim at a control 
objective. The identified model should he appropriate for model-based controller design and 
this respect, only the plant is to he identified, Gs E Ç, butS~ M. The requirements that 
are met are 

1. If Gs E Ç, butS~ M, the estimate ê must he consistent; 

2. The model must he of low order, and hence it only approximates the real plant; 

3. lt should he possible to incorporate control design specifications into the identification 
procedure, if G(q-1) "f=. G5 (q- 1). 

Furthermore, the problem of finite data is addressed. "Classica!" ,methods are of a "PEM 
nature", i.e. their consistency properties are only asymptotic. This also holds for the two­
stage method. lt was shown by (Van der Klauw (1995)] that this methad can he incorporated 
in a general identification scheme, that further included the direct identification method, the 
indirect identification methad and the joint input-output method. 

The availability of only finite data also plays a role in the validation. A frequency domain 
validation of the estimated plant is nat possible with short data records. The validation 
methods that were examined in this report can handle this restriction. Furthermore, they are 
also directed towards the control objective. The identification of the closecl-loop charaderistic 
polynomial proved an efficient way to capture the dominant closecl-loop dynamics. Notice, 
that this validation is controller dependent. 
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7.2 The role of the initial model 

The initial model proved essential fora successful identification experiment. The functionality 
of the identification algorithms that were reviewed in this project almost all depend on the 
initial model for the plant. The Recursive Output Error Method has the strongest restriction. 
The algorithm is assured to give a consistent estimate of the plant only, if a "strictly positive 
real" condition is satisfied. The Dual Youla Method is the easiest to handle in this respect. 
It constructs an initial model from the knowledge of the controller only. This made the 
identification of the magnetic levitation easy. It was much more difficult to construct an 
initial model for the Recursive Output Error Method. A detailed model from first principles 
was not a good candidate. And this model also turned out to be useless in the controller 
design. The initial model is not necessarily one of the plant. The BELS method needs an 
initial estimate of the closecl-loop transfer function. However, it is difficult to give general 
guidelines on how to choose an initia! model. During this project, the choice was sametimes 
"ad hoc". This was already mentioned in section 5.3. Further research on the choice of the 
initial model and its influence on the finally estimated model would therefore be a nice future 
expansion from this project. 

7.2.1 Construction of the data filter 

Another reason why it was so hard to identify the magnetic levitation process, was the noise. 
But in order to construct a proper data filter one needs a good model of the plant. However, 
an experimentally obtained noise filter proved to work fine. Therefore the following data 
preparation steps are proposed: 

1. If an initia! model is necessary, extract it from the closecl-loop data. 

2. Employ this knowledge to construct a data filter. 

It was shown that this data filter is essential for the ROR Method to work on the levitation 
process. The Recursive Output Error Method is able to construct a data filter itself. It is 
therefore, that the "filtered" algorithm was used for the identification. Also the Dual Youla 
method that was used to identify the magnetic levitation process needed the data filter. 
Furthermore, a sealing of the data was essential. The difference in the order of magnitude in 
the numerator and denominator of the transfer function was of order 104 . The identification 
has not successfully been carried out until this problem had been removed by a sealing of the 
data. 
In chapter 5 it was mentioned that tackling the identification problem is sametimes rather an 
art than a method. This is clearly shown by the results from levitation experiment. Although 
the physical model is of second order, the Dual Youla Method gave the better results with 
a third order model structure. It is the validation that is essential in every identification 
experiment. 

7.3 ldentification for control 

A new iterative identification for control scheme has been successfully applied to a lab exper­
iment: the magnetic levitation process. In order to arrive at these results, a special real time 
Labview interface has been constructed to supervise the experiments. Also, an interface with 



67 

Matlab has been developed to make a transfer of data between the two software packages easy 
to handle. Furthermore, the Labview interface gives nice means to "play" online with the 
controller and other parameters of the process, e.g. the sampling time. lt can therefore also 
be used for educational purposes. With respect to the experimental setup, one aspect was 
crucial. At first instance, the infra-red sensor was assumed to be linear. This difficulty had to 
be removed to make the experiments successful. The problem has been solved by a calibration 
of the sensor, and the implementation of the 'inverse' of the sensor in the software. During the 
experiments several problems were encountered. The construction of the data filterprovedan 
essential step in the identification process. Furthermore, an appropriate input signa! had to 
be chosen. A study of different input signals and some literature has been performed to arrive 
at a multisine input signa!, that has been applied during all the experiments. A last step 
in the identification process was the design of a robust pole placement. This was not trivia! 
and by trial-and-error one has been constructed. It turned out to work quite fine during the 
identification process. 

7.4 Recent developments 

By an example, this report shows that a closecl-loop identification can give better results than 
an open-loop one. Recently, it has been shown [Hjalmarsson et al. (1996)] that a closed-loop 
identification gives a better performance than an open-loop identification, if the criterion is 
model based controL It is therefore preferabie to perfarm the identification from closed-loop 
data, even if the system is stabie and open-loop measurements are· available. 
With respect to the BELS Method, the major problem of this methad has recently been 
removed. The restrietion on the order of the controller has been removed. In [Zheng (1996)] 
it is shown that the methad can also be applied toa system with aloworder controller. The 
salution is the implementation of a stabie digital prefilter, that can be used to augment the 
dimensions of the M and HT matrices, such that the restrietion on the orders drops. 
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Samenvatting 

Het ontwerp van een regelaar voor een bepaald proces is meestal gebaseerd op een model van 
het proces. Een analytische afleiding, waarbij wetten uit de natuurkunde en de scheikunde 
worden toegepast leidt soms tot een complex hogere orde model, dat niet geschikt is voor 
het regelaarontwerp. Een alternatieve aanpak is identificatie van het systeem. Deze aanpak 
maakt gebruik van meetdata om de parameters van een bepaald model te schatten. Het is 
bekend dat een identificatie op basis van meetdata uit een systeem met regelaar vaak de beste 
resultaten geeft voor het ontwerp van een nieuwe regelaar. 
In dit verslag worden verschillende methodes onderzocht die het gesloten lus identificatieprob­
leem kunnen aanpakken. Het bevat een studie van zowel de grondslagen van identificatie in het 
algemeen, als van het doel van de identificatie. Recent ontworpen methodes zijn theoretisch en 
middels een toepassing op een magneetsyteem onderzocht. Een Labview gebruikersinterface 
is ontworpen om het proces te regelen en om meetdata te verzamelen. Een speciale interface 
is geïmplementeerd om een uitwisseling van gegevens met Matlab mogelijk te maken. Deze 
interface maakte het bovendien mogelijk om door de gebruiker ontworpen ingangssignalen, 
die in de Matlab omgeving zijn gemaakt, in de experimenten die met behulp van Labview 
zijn uitgevoerd, te gebruiken. 
Het succes van een identificatie experiment hangt in grote mate af van de keuze van het 
ingangssignaal. Verschillende ingangssignalen zijn bestudeerd en deze studie heeft geleid tot 
de conclusie dat multisinussignalen het meest geschikt zijn voor een identificatie experiment. 
Deze signalen bieden een volledige controle over de mate van excitatie en zij kunnen worden 
geoptimaliseerd naar informatiedichtheid. 
Iedere identificatie moet worden afgesloten met een validatie. In dit verslag worden ver­
schillende manieren om deze validatie uit te voeren bekeken. Dit overzicht bevat zowel een 
statistische validatie als een validatie die gericht is op het regelaarontwerp. 
Speciale aandacht gaat uit naar het doel om een regelaar te bouwen op basis van het geschatte 
model. Een methode die iteratief een identificatie uitvoert en een regelaar ontwerpt is 
opgenomen in het verslag. Deze methode is toegepast op een gesimuleerd systeem en op 
het laboratoriumexperiment. 
De experimenten hebben geleid tot een belangrijke conclusie. Alle identificatie methodes en 
het iteratieve schema hadden een datafilter nodig om tot goede resultaten te komen. Een 
methode om dit filter te ontwerpen op basis van meetdata uit een gesloten lus experiment is 
ontworpen en is succesvol toegepast op het magneetexperiment. 
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Appendix A 

Áströms Example 

The most important properties of Áströms example are given in this appendix. The system 
is defined as: 

s . G ( -1) - q-1 + o.5q-2 
. s q -1-1.5q-1 +0.7q-2 ' 

(A.1) 

with a sampling time equal to one. The poles are located at 0.75 ± 0.37i. The noise model 
was adopted from [Van den Hof and Schrama (1993)] and is of third order; 

H ( -1) _ 1 -1.56 q- 1 +1.045 q- 2 -0.3338q-3 

s q - 1 - 2.35 q-1 +2.09 q-2 -0.6675q-3 . 

The Bodeplot of this noise filter is given in figure A.I. 
In the closed-laap setup, the following RST controller was implemented: 

R 

s 
T 

1 - 0.6283 q- 1 -0.3717 q-2
' 

0.8659- 1.2763 q-1 +0.5204q-2
' 

1. 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

The resulting closed-laap poles are 0.63 ± 0.17i. The Nyquist plot of the open-loop controlled 
system, i.e. ~~ is depicted in figure A.2. The Recursive Output Error Methad works 
under the assumption that the transfer function R/ Ac is strictly positive real (SPR), where 
Ac is the charaderistic closed-laap polynomial. Figure A.3 shows that this is the case in this 
example. 
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Figure A.l: Bode plot of the noise filter. 
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Figure A.2: Nyquist plot of the open-loop controlled system. 
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Appendix B 

Mathernaties 

B .1 Matrix Inversion lemma 

Suppose that A and C are nonsingular matrices (not necessarily of the same dimension) and 
B,D are such that A+ BCD exist and is nonsingular. Then 

(A+ BCD)- 1 =A - 1 - A - 1B (nA - 1B + c-1) -
1 

DA - 1 , (B.1) 

with (nA- 1B + c-1) guaranteed to be nonsingular. 

B.2 Computation of the Crest factor from a sampled signal 

The Crest factor can be calculated from a continuous time signal u(t) by 

CF = loo[u] 
u l2[u] ' (B.2) 

where [00 denotes the Chebyshev norm of the signal u(t) and 12 is the 2-norm. In general, the 
lp norm of a function u(t) taken over the interval [0, T] is given by: 

[ 
1 T ]

1
/P 

lp[u] = T la iu(t)IPdt , p ~ 1. 

For large values of p this also defines the Chebyshev norm, 

loo[u] = max lu(t)l. 
tE[O,T] 

(B.3) 

(B.4) 

These definitions are valid for continuous time signals only. However, if the sampling is 
dorre at equally spaeed time intervals and if the signal is a trigonometrie polynomial, then 
Lp[un] = lp( u) for even values of p and for a number of measurements N is greater or equal 
to pi< + 1, where I< is the order of the trigonometrie polynomial. Notice, that sirree the 
Chebyshev norm is defined as a maximum the number of samples that is needed to calculate 
it is infinite. When only finite data are available, a lower bound of the Chebyshev norm is: 

(B.5) 

The upper bound on the norm is 

llui!L 
llullu = 1- ICrrjN' N > l<7r. (B.6) 

Proofs on this statementscan be found in [Guillaume et al. (1991)]. 
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Appendix C 

Magnetic levitation 

C.l Open-loop identification of the magnet 

From the theory in chapter 6 a first order model for the behaviour of the magnet has been 
derived. This model is given by: 

di = 2_ (u- Ri). 
dt Lo 

(C.1) 

The voltage that is applied to the magnet is denoted by u, and is taken to be the input. The 
resulting current is denoted by i. The properties of the magnet, inductance and resistance are 
denoted by respectively L0 and R. Defining a = R/ L0 the transfer function in the Laplace 
domain is 

G(s) = ajR. 
s+a 

Using a zero-order hold, the discrete time representation can be derived from: 

_!_z{1-e-Ts a }• 
R s s+a 

1 ( 1 - e-aT) q-1 

R 1-e-aTq-1 ' 
bq-1 

1 + aq- 1 • 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

The sample time is T, and was 10 ms. From the constants a and b, the properties of the 
magnet can be derived: 

R 

Lo 

1+a 
b , 
RT 

-In( -a)" 

(C.6) 

(C.7) 

Sirree only two parameters are to be estimated a square-wave input signal is of suflident 
order of persistence. The identification experiment has been performed and was validated by 
a statistica! validation, by a mean square fit of the predicted output and by a comparison 
of the Bodeplot that results from the parametrie model, and one that can be abtairred by 
speetral analysis of the data. With respect to these criteria, the best results were abtairred 
with an output-error model structure. 
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Figure C.l shows a part of the input-output data (the total number of measurements was 
1024) and a comparison of the predicted output tagether with the measured output. Figure 
C.2 shows the bodeplots of both the parametrie model and the nonparametrie model. The 
coefficients a and b were estimated as: a = -0.5974 ± 0.0011, b = 0.2428 ± 0.0007. Hence, 
R = 1.68f2, Lo = 39mH. 

C.2 Determination of dL/dx 

From the open-loop identification experiment, that was described in the section above, the 
properties of the magnet were calculated. Chapter 6 mentioned that the total inductance of 
the magnet not only depends on the magnet itself, but also on the position of the hall. The 
following relation was proposed to describe this phenomenon: 

(C.8) 

The determination of the constants L1 and a will be described in this section. 
Assume that the system of magnet and hall is controlled, such that the hall can be kept at a 
certain distance from the inductance. lf only few disturbances are present, the input voltage 
applied to the magnet is nearly constant and so is the current in the magnet. From the 
derivative of C.8, 

(C.9) 

and 6.20, 

(C.lO) 

can be derived that: 
. (2mga) x ln(z2

) = ln -y;;- + ~ = ax + b. (C.ll) 

250 
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(C.12) 

(C.13) 

The measurements that were carried out are depicted in the figures helow. From these data 
was found that a = 5mm and L1 = 8.6mH. 

C.3 Calibration of the sensor 

The sensor that measures the position of the hall isofan infra-red sensor. lt consistsof three 
LEDs and two photovoltaic sensors. This setup is depicted helow. The characteristics, 
i.e. the voltage-position relation was in the first experiments taken linear. Later, it turned 
out to he necessary to calihrate the sensor and invert its characteristics. The measurements 
of the position of the hall and the resulting voltage on the sensors is depicted in figure C.S. 
A spline approximation was made, yielding the position of the hall for all measured voltages. 
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Figure C.4: The infra-red sensor (schematically) 
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Figure C.5: Calibration of the sensor. 


