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Abstract 

The transport properties of 2D flows are relevant to many branches of fluid dynamics. The mixing 

properties of, for instance, geophysical and industrial flows have received a lot of attention recently. 

In order to study the evolution of passive tracers in 2D flows two numerical algorithms have been 

developed. In the first method, which is based on the Eulerian approach, the advection-diffusion equa­

tion for a passive scalar is solved using a pseudospeetral method. The time-discretization yields a 

Helmholtz equation with homogeneaus Neumann boundary conditions, which is solved using a Cheby­

shev tau method. The secoud methad consists of following a large amount of particles and is referred to 

as the Lagrangian approach. Bath methods have been implemented in a speetral solver for the Navier­

Stokes equations in the velocity-vorticity formulation. 

In ordertotest the numerical algorithms several simulations are performed. Simulations of natura} 

convection in a square cavity are performed for Rayleigh numbers as high as 108 and are used totest 

the implementation of the Eulerian approach. The results are in excellent agreement with benchmark 

data from the literature. The evolution of a tracer cloud during spin-up has been simulated in order to 

estimate the accuracy of the numerical schemes. The results of these simulations appeared to be very 

dependent on the accuracy of the velocity field. As an example of the application of the developed 

methods we have simulated the dispersion of a passive tracer in a linear array of vortices. The disper­

sion of the tracer in such a cellular flow appeared to be a hypodiffusive process, where the varianee of 

the tracer cloud increases in time according toa power law with an exponent close to 0.5. 
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Chapter 1 

Introduetion 

The study of two-dimensional (2D) flows has received an important impetus from increased interest in 

the dynamics and adveetion properties of geophysical flow systems. With the advent of satellite im­

agery it became clear that long-lived coherent vortex structures are abundant in theEarth's atmosphere 

and oceans. Well-known examples of rather persistent, coherent oceanic vortex structures are the Gulf 

Stream rings that are pinched of from the unstable, meandering current they are named after. In the at­

mosphere, the high and the low pressure regions are in fact huge vortices that govem to a large extent 

our weather. Also in atmospheres of other planets large vortices have been observed to exist: the best 

known examples are probably Jupiter's Great Red Spot (first observed by Hooke, more than 300 years 

ago) and the Great Dark Spot on Neptune. 

The emergence and persistenee of these vortex structures are the result of a remarkable property 

of 2D flows: in contrasttotheir three-dimensional counterparts, these flows are characterized by the 

so-called inverse energy cascade, according to which kinetic energy shows a speetral flux to the larger 

scales of motion. Phenomenologically, this intriguing property - now commonly referred to as self­

organization - results in the formation of larger, organized coherent flow structures. 

In oceans and planetary atmospheres the background rotation and density stratification, associated 

with both temperature and salinity gradients, provide the required dynamica! constraints to make the 

large-scale geophysical flows to good approximation two-dimensional. In addition, the geometrical 

constraint (atmospheres and oceans are in fact thin shells covering the surface of our spherical planet) 

provides another two-dimensionalization mechanism. Two-dimensionality can also be established in 

other ways, for example by extemal magnetic forces or by enclosing the flow in an essentially two­

dimensional domain. Such situations are met in magneto-hydrodynamic flows, in plasmas, in accretion 

disks of neutron stars, and also in soap films. It must be clear that understanding processes in 2D flows 

is not only relevant to geophysical fluid dynamics, but also to other fields of physics, such as plasma 

physics and astrophysics. 

Chaotic adveetion properties of 2D flows are relevant to many branches of fluid dynamics. Exam­

ples are enhancement of stirring efficiency by chaotic adveetion (see Aref [1]), the mixing properties 
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of geophysical flows (see Pierrehumbert [2]), chaotic adveetion and anomalous diffusion in Rayleigh­

Bénard convection (see Salomon & Gollub [3]), and many others, including industrial flow problems. 

The chaotic transport properties of these flows are generally studied in experiments by following added 

or naturally available passive tracers, i.e. tracers which have no dynamica! influence on the advecting 

velocity field. In experiments smallsolid particles or dye can serve as passive tracers. In Nature tem­

perature, salt, but also pollutants in the atmosphere and the oceans may act as passive tracers. 

At the Fluid Dynamics Labaratory of the Department of Physics (quasi-) two-dimensional flows 

are examined in a combined experimental, numerical and theoretica! approach. Noother field of fluid 

dynamics has shown a recent increase in importance comparable to that of numerical methods, nor has 

any other field developed as rapidly. Of course, the main reason for this evolution is the development 

of computers, from the microcomputer to the Cray, and we see no end of it. Most of the numerical 

simulation techniques have their own merits and are applied to specific model problems. Due to their 

superior convergence properties, speetral methods are successfully used for problems which demand 

high-resalution techniques. A speetral solver for the Navier-Stokes equations in the velocity-vorticity 

formulation for flows with two nonperiadie directions has been developed by Clercx [4]. 

The main goal of the research presented in this report is the development and investigation of nu­

merical algorithms for the simulation of adveetion of passive tracers in 2D flows. Two different meth­

ods are implemented in the speetral solver developed by Clercx. In the first metbod the advection­

diffusion equation for a continuous tracer distribution is solved using a pseudospeetral method. This 

Eulerian approach is seldom used and only a few studies appeared on mixing using this metbod ( see, 

for example, Richards, Jia & Rogers [5]). The second metbod consists of following a large amount of 

partiel es. For the investigation of chaotic adveetion and mixing this Lagrangian approach is commonly 

used (see, for instance, [1-3]). 

In order to gain some insight in the accuracy of the numerical algorithms, several simulations have 

been performed. A popular test-problem for high-accuracy schemes is natural convection in a square 

cavity. This is not only a test for the Navier-Stokes sol ver, but also for the implementation of the Eule­

rian approach. The results of the simulations can be compared with data from the literature. Another 

test for the algorithms is the simulation of the evolution of a passive tracer dis tribution during spin-up. 

A third problem, the dispersion of a passive tracer in a linear array of vortices, is an application of the 

developed methods. Note that a detailed analysis of the transport properties of these flows is beyond 

the scope of this report, and will be reported elsewhere. 

The further organization of this report is as follows. In Chapter 2, the salution procedure of the 

2D Navier-Stokes equations is described. Two methods for the simulation of the evolution of a passive 

tracer distribution are presented in Chapter 3. In Chapter 4, we discuss the results of the simulations. 

Finally, the main conclusions are given in Chapter 5. 



Chapter 2 

2D Navier-Stokes Equations 

This chapter is devoted to the solution procedure of the 2D Navier-Stokes equations. A pseudospee­

tral method conceming the Navier-Stokes equations in velocity-vorticity tormulation for nonperiadie 

geometries, has been developed by Clercx [ 4]. In this chapter we give a review of his approach. 

2.1 Velocity-Vorticity Approach 

In this work we consider a 2D rectangular domain V with boundary äV. The origin of a Cartesian 

coordinate frame is placed in the center of the domain and the boundary is described by x = ± ~ Lx and 

y = ±~Ly (see Figure 2.1). The flow in this domain is described by the 2D Navier-Stokes equations 

which consist of the momenturn equation and the continuity equation. These equations represent the 

conservation of momenturn and mass, respectively. The vorticity equation is obtained by taking the 

curl of the momenturn equation and using the continuity equation. In dimensionless form the vorticity 

equation reads 

äw ( 1 2 - + u· \7)w = -\7 w 
ät Re 

in V, (2.1) 

y av 

Ly V 
x 

Lx 

Figure 2.1: Definition of the domain. 
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where u is the dimensionless velocity vector with components (u, v) and w = g~ - ~~ is the dimen­

sionless vorticity. The vorticity equation has been made dimensionless by introducing the Reynolds 

number defined as Re = UvL, where U and L are a characteristic velocity and length scale, respec­

tively, and where vis the kinematic viscosity. In order to solve Eq. (2.1) it is complemented with the 

definition of the vorticity, the continuity equation and the boundary conditions for the velocity 

V' x u 
\7. u 

u 

wk 
0 

in V, 
in V, 
on av, 

(2.2) 

where kis the unit vector normalto the plane of flow and ub is the velocity on the boundary. Fora 

given initial flow field which satisfies the incompressibility constraint and the definition of vorticity, 

the system can be solved. An extra condition for the flow field is obtained when the continuity equation 

is integrated over the domain V and the divergence theorem is applied. This yields 

Ju· n dl!= 0, 

av 
(2.3) 

where n is the unit vector normal to the boundary. This condition implies that the net flow through the 

boundary equals zero (conservation of mass). 

The problem that arises when trying to solve Eqs. (2.1) and (2.2) is that generally the boundary 

condition for the vorticity is not known. This is due to the fact that the boundary condition for the 

velocity cannot be reformulated in terms of the vorticity. To tackle this problem several techniques 

have been developed, varying from approximations as interpolation to more sophisticated techniques 

like the influence matrix methad [6] and the application of vorticity integral conditions [7]. 

In most studies the definition of the vorticity and the continuity equation are combined in a vector 

Poisson equation for the velocity. Daube [8] has shown that the formulation of the equations of mo­

tion presented by Eqs. (2.1) and (2.2) is mathematically equivalent to the set consisting of the vorticity 

equation tagether with the following relations 

u 

V' x u 

k x V'w 

Ub 

wk 

in V, 
onoV, 
onoV. 

For a more comprehensive and detailed discussion the reader is referred to Daube [8]. 

2.2 Time Discretization 

(2.4) 

The time discretization of the vorticity equation is semi-implicit and second-order accurate. For the ad­

vection terman explicit Adams-Bashforth scheme is used and for the diffusive terman implicit Crank­

Nicolson scheme. This combination is quite aften used in computational fluid dynamics and is gen­

erally referred to as the ABCN scheme. Due to the explicit treatment of the adveetion term, the time­

marching scheme has a severe stability condition. To assure stability the dimensionless time step is 
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restricted to tlt:::; 9/N2 , with N the cut-off ofthe Chebyshev expansion [9]. An explicit treatment 

of the diffusive term would lead to an even more severe stability limit, i.e. tlt :::; C j N 4 with C some 

constant. More stabie or accurate time schemes like Adams-Moulton or Runge-Kutta methods can be 

used but are not our main concern. 

Since the Adams-Bashforth scheme evaluates the adveetion term at two previous time levels, it is 

not self-starting and weneed an alternative first time-integration step. A combination of asecond-order 

Runge-Kutta scheme with a Crank-Nicolsou scheme for the viseaus term has been used to tackle this 

problem. This time discretization is second-order accurate and needs only one previous time level, 

but per time step it evaluates an intermediate salution of the vorticity and velocity. A more detailed 

discus si on about this first time step is given by Willemen [ 1 0]. 

Applying the ABCN scheme to the vorticity equation (Eq. (2.1)) yields1 

----,---=- -u·\7w --u·\7w +- -\7w +-\7w . wn+
1

-wn [3( ) n 1( ) n-1] 1 [1 2 n+1 1 2 n] 
tlt 2 2 Re 2 2 

With the introduetion of À = ~~ the time discretization of the equations of motion results in 

(\72 _ .\)wn+1 
\72un+1 

un+1 
\7 X un+1 

sn,n-1 

k X \7wn+1 

un+1 
b 

wn+1k 

where sn,n-1 includes all explicitly evaluated terms 

in 1J, 
in 1J, 
on ä1J, 
on ä1J, 

(2.5) 

(2.6) 

(2.7) 

Due to the time discretization the set ofEqs. (2.1) and (2.4) has been reduced toa Helmholtz equation 

for the vorticity and a vector Poisson equation for the velocity. This linear set of elliptic differential 

equations (2.6) can be solved when the boundary conditions are known. From here the reference to the 

time level will be omitted. 

2.3 Spatial Approximation 

For now we are interested in the flow in a rectangular domain with no-slip boundary conditions. For 

large Reynolds numbers there will appear thin boundary layers with thickness 0(1/ VRe). To approxi­

mate these thin layers accurately, a high resolution methad is required. A pseudospeetral methad based 

on the expansion of the relevant flow parameters in terms of Chebyshev polynomials Tk (x) can satisfy 

this requirement. The assets of speetral methods are exponential convergence and reduced numerical 

damping and dispersion. 

1The superscripts denote the time level, i.e. wn+l = w((n + 1)6t). 
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Figure 2.2: Chebyshev polynomial T16 (x). 

The Chebyshev polynomials can be expressed as 

Tk(x) = cos(ke) with e = arccos(x). (2.8) 

In Figure 2.2 the Chebyshev polynomial T16 (x) is shown. The physical domain V is transformed to 

the computational domain [ -1, 1] x [ -1, 1], since the Chebyshev polynomials are defined inside this 

range. 

Both the vorticity and the velocity are expanded in double truncated series of Chebyshev polyno­

mials, i.e., 

N M 

w(x, y, t) L L wkl(t)Tk(x)Tz(y), (2.9) 
k=Ol=O 
N M 

u( x, y, t) = L L Ûkl(t)Tk(x)Tz(y). (2.10) 
k=Ol=O 

The expansion coefficients (denoted by the hat) can be obtained using the orthogonality relations for 

Chebyshev polynomials and a collocation procedure at the Chebyshev-Gauss-Lobatto points. This re­

sults in 

where Xi and Yj are the Chebyshev-Gauss-Lobatto points 

Xi =COS ( ~) 
Yj =cos(~) 

0 :Si :SN, 

0 :S j :SM, 

(2.11) 

(2.12) 
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and Ci is a constant 

_ -{ 1 1:Sk:SN-1 
ck - 2 k = 0 or N · (2.13) 

The grid points (xi, Yj) condense near the boundaries (the distance between adjacent grid points near 

the boundary is O(N-2 )). Therefore, steep gradients in the flow field near the boundary can easily be 

resolved. 

It is possible to perform the transformation from physical space to speetral space, and vice versa, 

using a Fast Fourier Transfarm (FFT) method, because the Chebyshev expansion is, in effect, a eosine 

sum in termsof the variables ( arccos(x ), arccos(y) ). This fast transfarm metbod is especially impor­

tant for the evaluation of the nonlinear term. In speetral space the quadratic nonlinear term produces 

convolution-type sums which can be computed at great costs (O(N2 M 2 ) operations). A more sophis­

ticated procedure has been designed by Orszag [ 11]. This metbod consists of the following steps: first 

are both the velocity and the vorticity transformed to physical space using an FFT method. Then the 

product is taken in physical space and the result is transformed back to speetral space, again using 

FFTs. Aliasing errors are eliminated using the padding technique (see, for instanee Canuto et al. [9]). 

Both Relmholtz and Poisson equations are solved in speetral space using the efficient Raidvogel­

Zang algorithm [12]. The boundary conditions are imposed by the Lanczos tau method, which consists 

of dropping the two highest modes of the Chebyshev expansion in favour of the boundary condition. 

In the Raidvogel-Zang algorithm the elliptic equations are formulated in terms of second-order deriva­

tive operators working on the expansion coefficients. One of the operators (e.g., -$x) is diagonalized, 

which results in a set of decoupled ID Relmholtz equations. Using the reenrsion formulas for Cheby­

shev polynomials, these equations can be simplified and then be solved very efficiently with a modified 

Thomas algorithm. A more detailed treatment of the Raidvogel-Zang algorithm will be given in Sec­

tion 3.1.2. 

Because of the even-odd properties of the Chebyshev polynomials, it is possible to employ an even­

odd decoupling to the complete algorithm. This enhances the efficiency of the algorithm conceming 

CPU-time and memory requirements. 

For a more complete review on speetral methods in ftuid dynamics the reader is referred to Canuto 

et al. [9]. 

2.4 Influence Matrix Metbod 

The time discretization of the vorticity equation yields a linear elliptic partial differential equation, 

which can be solved when the boundary condition is known. Rowever, this boundary condition is not 

known a priori and has to be evaluated each time step. We have used an inftuence matrix metbod to 

obtain the correct boundary conditions for the vorticity. This metbod has already been used in pre­

vions studies conceming the primitive variabie formulation. In this formulation the inftuence matrix 

metbod is used to resolve the lack of boundary conditions for the pressure [6]. (See also Weme [13] 
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who discusses a minor but important modification.) An implementation of this methad for the (u, w) 

formulation has been presented by Daube [8]. 

The influence matrix technique is based on the superposition principle for linear equations. The 

salution of an elliptic problem with unknown boundary condition can be found by consiclering a super­

position of elementary problems with known boundary condition. The solutions of these elementary 

problems are combined in a self-consistent way satisfying some extra conditions for the total solution. 

Daube demonstrated that enforcement of the vorticity at the boundary of the domain is sufficient to 

ensure the definition of the vorticity in the whole domain and the flow being divergence-free. An al­

temative approach, enforcement of the continuity equation, also gives satisfactory results [ 4, 8]. 

Following Daube, we derive the Poisson equation for the velocity field by taking the curl of the 

definition of the vorticity, V' x (V' x u), subsequently using the vector relation defining the vector 

Laplacian, \72u = \7(\7 · u) - V' x (V' x u), and applying the assumption that the velocity field is 

divergence-free. We now see that there actually exists an infinite number of solutions of the vorticity 

equation combined with the Poisson equation, for which the vorticity is not necessarily the curl of u, 

i.e. V' x u = ( i- w, and the flow field is not divergence-free. In order to satisfy the definition of the 

vorticity and to obtain divergence-free velocity fields, we havetoenforce the following relation 

\72u = \7(\7 ·u)+ k x V'(= k x \i'w. (2.14) 

Taking the cross product of (2.14) with k and the divergence of the resulting equation yields the Laplace 

equation 

in V. (2.15) 

The maximum and minimum value of the salution of a Laplace equation will occur on the boundary. 

Therefore demanding ( = w on oV is sufficient to satisfy the requirements. 

The enforcement of the definition of the vorticity at the boundary is performed by the influence 

matrix method. Consider the following vorticity and velocity fields 

and 

p 

w = w + L aJ:ZJi 
i=l 

p 

u= u+ L:aiÜi. 

i=l 

(2.16) 

(2.17) 

Here the vorticity and velocity are written as a sum of a particular salution (w, u) and a set of comple­

mentary solutions (wi, üi). The summation '2:[=1 represents all the points which lie along the boundary 

excluding the corner points. The particular salution w is a salution of the vorticity equation with arbi­

trary boundary conditions. The most obvious choice is the homogeneaus boundary condition. There-
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fore the particular solutions w and ii are obtained by solving the following problem 

(\72 - À)w s in V, 
w 0 on av, 

(2.18) \72ii k x V'w in V, 
u 0 on av. 

The complementary solutions Wi are solutions of the vorticity equation with zero souree term and zero 

boundary condition except at one boundary point, where it equals one. The complementary velocity 

fields Üi are obtained by solving the Poisson equation. Summarizing, Wi and Üi are solutions of the 

following set of equations 

(\72 - À)wi 0 in V, 
wi{'-yj) Óij on av, 

(2.19) 
\72üi k x Y'wi in V, 

ü· 
' 0 on av, 

where i runs from 1 toP, '/j are the relevant boundary nodes and Dij is the Kronecker delta. By de­

manding ( = w at the boundary nodes, the coefficients O:i can be obtained: 

p 

((- w)j + L ai(Ci- wi)j = o. (2.20) 
i=l 

Here are ((i- wi)j the components Mji ofthe infiuence matrix M. Since Eq. (2.19) is time indepen­

dent, the influence matrix can be determined in a preprocessing stage. The inversion is stored and is 

used to obtain the coefficients O:i which represent the value of the vorticity at the boundary nodes 

p 

ai=- L Mi/((- w)j. (2.21) 
i=l 

The vorticity equation and the Poisson equation are now solved again with the correct boundary con­

ditions. This procedure is more economical than storing the complementary solutions to achieve ade­

quate linear combinations. 

2.5 Tau-correction 

Simulation of the Navier-Stokes equations in the (u, w) formulation using an algorithm as described 

so far, exhibits enormous numerical instabilities. Although the definition of the vorticity is satisfied 

within machine accuracy on the boundary, it is not in the interior of the domain. As a consequence the 

velocity field is not divergence-free. This seems to contradiet with the analysis presented by Daube. 

His analysis is, of course, mathematically correct, but numerically it is not, because of numerical con­

tamination caused by the discrete representation of the equations of motion. In simulations based on the 

primitive variables approach analogous problems occur, which result in interior divergences as well. 

However, these divergences do not lead to numerical instabilities. 



2.5 Tau-correction 10 

To correct these interior divergences different techniques have been introduced. One of them is 

the tau-correction, which can be applied when the differential equations are solved in speetral space. 

Because of the Lanczos-tau procedure to impose the boundary conditions, the differential equations 

are not satisfied numerically for the highest frequency modes. A discussion on the tau-correction can 

be found in the paper by Tuckerman [14]. 

In order to understand the tau-correction for the (u, w) approach, we first consicter the primitive 

variables case. The time discretized momenturn equation reads 

(V'2 - >.)u- V'p = T + B, (2.22) 

where pis the normalized pressure, À as before, and T an anologous expression as Eq. (2.7). The 

vector B is a representation of the highest frequency modes and therefore its Chebyshev expansion 

coefficients Bnm are zero for n :::; N- 2 and m :::; M- 2. Since the salution procedure ofthe equation 

does not involve the highest frequency modes of the source, the salution of Eq. (2.22) is independent 

of B [12]. However, the velocity is infiuenced by B in an indirect way via the pressure. The pressure 

follows from the pressure equation, which can be derived by taking the divergence of Eq. (2.22). This 

yields 

(2.23) 

Because differentiation of a Chebyshev polynomial of degree k results in the appearance of Chebyshev 

polynomials of lower degree, the highest modes of B contribute to the salution of Eq. (2.23). The lower 

modes of V' · B act as an extra souree term, resulting in a modified pressure field, which, on its part, 

modities the velocity field. In order to keep the flow divergence-free, the high frequency modes have 

to be determined in such a way that Eq. (2.22) is satisfied in a self-consistent way. This implies that 

after calculation of u and p, the operation (Y'2 ->.)u- V'p- T should exactly be equal to the high 

frequency modes. 

Befare retuming to the vorticity equation, we first show what causes the breakdown of Daube's 

theory. Anticipating on a tau-correction technique, the Poisson equation reads 

V 2 u = Y'(Y' ·u)+ k x V'(= k x V'w + B*, (2.24) 

where B * is again a representation of the high frequency modes, but now with an asterix to avoid con­

fusion with B in Eq. (2.22). Although B* doesnotaffect the velocity field u itself, it does infiuence 

the difference between ( and w. This is demonstrated when we follow the procedure as inSection 2.4. 

We obtain 

V'2 ((- w) =-V'· (k x B*), (2.25) 

which is obviously not a Laplace equation but a Poisson equation. Because the derivatives of the high 

frequency modes act as a source, the maximum-principle for Laplace equations is no langer effective. 

In order to resolve this problem the high frequency modes B* should be set equal to zero in a self­

consistent way. 
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The vorticity equation is obtained by taking the curl of the momenturn equation (2.22), which yields 

(\72 
- À)w = S + k ·(V x B), (2.26) 

where S = k ·(V x T) represents the previous time levels. Besides the unknown boundary condition 

for the vorticity, the high frequency modes B have to be determined. This should be done in such way 

that the high frequency modes B* in Eq. (2.24) are equal to zero. This can be achieved by introducing 

another set of complementary solutions, wi and ui. Together with Eqs. (2.16) and (2.17), the vorticity 

and velocity are now written as 

p Q 

w = w + 2:::: a/ÁJi + 2:::: f3iwi (2.27) 
i=l i=l 

and 

p Q 

u= u+ 2:::: O:iÜi + 2:::: (Jiu.i, (2.28) 
i=l i=l 

where Q = 2N + 2M - 4 the total number of relevant high frequency modes. This second set of 

complementary functions are solutions of the following set of equations 

(V2 - À)wi k ·(V x bi) in V, 
Wi 0 onäV, 

(2.29) 
V2ui k x vwi in V, 

Ui 0 onäV, 

where bi, with i = 1, ... , Q, are the high frequency modes, which are subsequently set equal to one. 

The correct combination of the solutions is obtained by simultaneously putting V' x u = w k at all 

boundary points and requiring B* = 0. This yields the following equations for ai and f3i 

and 

where 

p Q 

((- w)j + L ai((i- wi)j + L f3i(Ci- wi)j = o 
i=l 

V 2u- k x vw, 
V'2üi- k x V'wi 
V 2ui- k x vwi 

i=l 

with i = 1, . . . , P, 

with i = 1, . . . , Q, 

(2.30) 

(2.31) 

(2.32) 

are the high frequency residuals of the Poisson equation. The inftuence matrix M is expanded with 

terms conceming the tau-correction technique 

(2.33) 
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Because this inftuence matrix is time independent as well, it can be determined in a preprocessing stage. 

The inversion of M is stored and is used to obtain the coefficients ai and f3i 

p Q 

- 2)M-1)f}((- w)1 - 2:)M-1)7jû1, (2.34) 
j=l j=l 

p Q 

f3i - 'I)M-1)7}((- w)1 - I)M-1)7]û1. (2.35) 
j=l j=l 

Now both ai and f3i are known, and we proceed, as explained inSection 2.4, by determining the var­

ticity and velocity field by solving Eq. (2.6) with the correct boundary conditions and high frequency 

modes. 



Chapter 3 

Passive Tracers 

In this chapter we describe two numerical methods which can be used to investigate transport phenom­

ena of passive tracers. The first and the second section are devoted to the Eulerian and the Lagrangian 

approach, respectively. Some quantities to characterize dispersion are given in the last section. 

3.1 Eulerian Approach 

This section is devoted to the Eulerian approach of the transport of passive tracers. In this metbod 

the tracer is regarded as a continuous scalar field, and it is for that reason sometimes referred to as 

the continuous model. In order to investigate dispersion of a tracer, this approach has been used in 

various fieldsof fluid dynamics, for example, oceanography (e.g., see Richards, Jia & Rogers [5]) and 

astrophysics (e.g., see Knobloch & Merryfield [15]). 

3.1.1 Governing equations 

We consicter a continuous distribution e( x, y, t) of a passive tracer in the domain V as described in 

Section 2.1. The transport of such a passive scalar field in a flow is govemed by the advection-diffusion 

equation 

oe 1 2 - + (u· V')e = -\7 e ot Pe 
in V. (3.1) 

Eq. (3.1) has been made dimensionless by introducing the Peelet number defined as Pe = U"'L, where 

U and L are a characteristic velocity and length scale, respectively, and where "' is the diffusivity of the 

tracer. The ratio of diffusion of tracer and of momenturn (v) is given by the Schmidt number defined 

as Sc = PejRe = v / "'· If the scalar e represents a temperature field, then this ratio is referred to as 

the Prandtl number Pr. 

We impose a no-flux boundary condition, which is equivalent to imposing a zero normal gradient 

oe= 0 
on 

onoV. (3.2) 
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Although Eq. (3.1) is a linear differential equation, exact solutions do not exist for most ftows of inter­

est. Therefore the advection-diffusion equation is solved numerically for a given initial concentration 

field with the velocity obtained as described in Chapter 2. Since the vorticity equation is, in effect, 

an advection-diffusion equation for w, the discretization of Eq. (3.1) is performed similarly to the dis­

cretization of Eq. (2.1 ). 

Applying the ABCN scheme to the advection-diffusion equation results in the time discretized form 

where Àc = ~~, and 

(\72 - Àc)cn+l = s~,n-1 
acn+l 
--=0 

än 

an analogous expression as Eq. (2.7). 

in V, (3.3) 

on av, (3.4) 

(3.5) 

Au inftuence matrix method to obtain the correct boundary conditions is not needed, since the 

boundary condition for the concentration is known a priori. 

The spatial approximation of the concentration field is performed similarly to the discretization 

of the flow parameters, i.e. the passive scalar is expanded in a double truncated series of Chebyshev 

polynomials and Eq. (3.3) is solved in speetral space. The adveetion term in Eq. (3.5) is evaluated 

pseudospeetrally using the procedure designed by Orszag [11]. 

We eau conclude that, due to the time discretization, the advection-diffusion equation is reduced 

toa Helmholtz equation for the concentration c with homogeneaus Neumann boundary conditions. 

3.1.2 Helmholtz equation with Neumann boundary condition 

Above we have demonstrated that the salution procedure of the advection-diffusion equation consists 

of solving a Helmholtz equation at each time step. This section concerns the salution of this elliptic 

partial differential equation with homogeneaus Neumann boundary conditions. 

Because Eq. (3.3) will be solved in speetral space, the scalar field c is expanded in a double trun­

cated series of Chebyshev polynomials: 

N M 

c(x, y, t) L L êkz(t)Tk(x)Tz(y). (3.6) 
k=Ol=O 

Using dJ; (±1) = (±l)kk2 and the orthogonality relation for Chebyshev polynomials, the boundary 
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conditions in terms of expansion coefficients are 

l = 0, 1, ... , M, (3.7) 

N 

:~.:)-1)kk2 êkz = 0 l = 0, 1, ... ,M, (3.8) 
k=O 

k = 0, 1, ... ,N, (3.9) 

M 

2:) -1)1Z2
êkz = o k = 0, 1, ... ,N. (3.10) 

l=O 

These boundary conditions are imposed using the Lanczos tau procedure, therefore the Chebyshev tau 

approximation of Eqs. (3.3) and (3.4) is1 

A(20) A(02) \ A SA 
ckl + ckl - /\Ckl = kl 

N-2 
A 1 ~ k2A 
cNl = - N 2 L...t ckz 

k=O 
keven 

N-3 
A 1 ~ k2A 
CN-l,l =- (N _ 1)2 L...t Ckz 

k=l 
k odd 

M-2 
A 1 ~ z2A 
CkM = - M 2 L...t ckz 

l=O 
leven 

A 1 M-3 2 A 

Cn,M-1 = - (M _ 1)2 L l Ckl 

l=l 
l odd 

k = 0, 1, ... , N- 2, (3.11) 

l = 0, 1, ... , M- 2, 

l = 0, 1, ... , M, (3.12) 

l = 0, 1, ... ,M, (3.13) 

k = 0, 1, ... ,N, (3.14) 

k=0,1, ... ,N, (3.15) 

where the superscripts (20) and (02) in Eq. (3.11) denote the secoud derivative with respect to x and 

y, respectively. The coefficients ê~~o) and 4~2 ) can be expressedas 

and 

A(20) - 1 
ckl - ~ 

Ck 
p=k+2 

p+k even 

M 
A(02)- 1 ~ 
ckl - --;;-- L...t 

cz 
p=l+2 

p+l even 

1The subscripts of Àc and Sc and the superscripts denoting the time level are omitted. 

(3.16) 

(3.17) 
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where ck is a constant 

- {1 ifk>1 
ëk = 2 if k: 0 . (3.18) 

Substitution of (3.12) in (3.16) results in the coefficients of the second derivative with incorporated 

boundary conditions for k even 

N-2 

ê~~O) =! ~ 
Ck p=k+2 

(3.19) 

p+k even 

A similar procedure yields the coefficients for the odd case 

N-3 N-3 

A(20)_ """ ( 2 2)A 1 (( )2 k2)"' 2A ckl - ~ p p - k Cpl- (N _ 
1

) N- 1 - ~ p Cpl· 
p=k+2 p=1 

(3.20) 

p+k even p odd 

With the introduetion of matrix A, which contains the components Akp defined by 

Acp ~{ _=1 (N2-k2)p2 p~k 
k,p even: ckN (3.21) _1 p(p2 _ k2) _ = 1 (N2 _ k2)p2 p>k ' Ck ckN 

k,p odd: Akp ~{ - (N~1) ((N- 1)2 - k2)p2 p~k 
(3.22) 

p(p2- k2)- (N~l) ((N- 1)2 - k2)p2 p>k ' 

the Helmholtz equation is written in matrix notation 

AC + CB - >.C = S, (3.23) 

where Cis a (N - 1) x (M - 1) matrix, which consistsof êkl for k = 0, 1, ... , N- 2 and l = 
0, 1, ... , M - 2. Matrix B is the transpose of the second derivative operator A and matrix S is a 

(N- 1) x (M - 1) matrix, which consistsof the speetral coefficients of the souree term for k 

0, 1, ... , N- 2 and l = 0, 1, ... , M- 2. 

Following the Raidvogel-Zang procedure, operator A is diagonalized: 

A= QAQ-1 , (3.24) 

where A is a matrix with eigenvalues Àk on the diagonal, and where the matrix Q contains columnwise 

the eigenvectors. Substitution of (3.24) in Eq. (3.23) and multiplying the result with Q- 1 from the left, 

yields 

AC*+ C*B- >.C* = S*, (3.25) 

where C* and S* are the transformed matrices Q-1c and Q-1s, respectively. 

The diagonalization of A results in a set of N- 1 decoupled one dimensional Helmholtz equations 

k = 0, 1, ... , N - 2, (3.26) 

l = 0, 1, ... , M - 2, 
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with transformed boundary conditions 

k = 0, 1, ... , N - 2, (3.27) 

M-3 
A* 1 ""' z2 A* 

ck,M-1 = - (M _ 1)2 ~ Ckz 

l=l 

k = 0, 1, ... , N - 2. (3.28) 

l odd 

The one-dimensional equations are solved successively for k = 0, 1, ... , N - 2. After the salution 

matrix C* bas been transformed by multiplication with Q from the left, the highest modes êNZ and 

êN-l,l are obtained using Eqs. (3.12) and (3.13). 

In order to keep Eq. (3.26) comprehensible, the asterix and the indices conceming the x direction 

are omitted. This results in 

l = 0, 1, ... , M - 2, (3.29) 

where >..' = (>.. - Àk)· A very efficient salution procedure for Eq. (3.29) can be obtained using the 

recursion relation 

(3.30) 

This results in 

>..'cz-2 A ( >..' f3z ) A >..' f3z+2 • 
4l(l- 1) Cz- 2 + 1 - 2l(l 2 - 1) Cz + 4l(l + 1) Cz+ 2 = 

cz-2 A f3z A f3z+2 A 

4l(l- 1) Sz- 2 - 2l(z2- 1) Sz + 4l(l + 1) 81+2
' 

(3.31) 

for l = 2, 3, ... , M, where f3z is a constant 

(3 ={ 1 O~l~M-2 
1 0 l>M-2 . 

(3.32) 

Note that theeven and odd coefficients are decoupled. The linear system for theeven coefficients bas 

a quasi-tridiagonal structure 

0 4 16 M2 êo 0 

* * * ê2 fo 

* * * ê4 J2 
* * * ê6 14 

(3.33) 

* * * êM-4 !M-6 
* * êM-2 !M-4 

* * êM !M-2 

where the *'s denote the non-zero coefficients and Jz is the right-hand side of Eq. (3.31). The linear 

system for the odd coefficients bas a similar structure; of course in this case the first row, which repre­

seuts the boundary condition, contains 1, 9, 25, ... , (M -1)2 . Bath systems can be solved efficiently 

using a modified Thomas algorithm. 
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3.1.3 Conservation of mass 

The advection-diffusion equation withno-flux boundary condition satisfies conservation of mass, i.e., 

:t !! c dA = 0. (3.34) 

D 

Naturally, it is desirabie for the discrete salution to satisfy this conservalion law as well. The discrete 

analogue of the integration over the whole domain is given by a summation of the Chebyshev coeffi­

cients: 

!! 
N M A 

c dA = 4 L L ( k2 - ;)( [2 - 1) 
k=O l=O 

D k even l even 

(3.35) 

Consider the conservalion of mass at one time-integration step. In order to explain the conservation 

properties, we have divided the salution procedure at a time level into two steps. The first step consists 

of the computation of the souree S by evaluating the explicit terms. The integration of Eq. (3.5) results 

in2 

N M Sn,n-1 

~ ~ (k2 - ~
1

)(z2- 1) 
kevenleven 

~ ~ \12êï;z - À ~ ~ êï;z 
~ ~ (k2 - 1)(z2- 1) ~ ~ (k2- 1)(z2- 1) + 
k=O l=O k=O l=O 

k even l even k even l even 

N M ,ên,n-1 

Pe ~ ~ (k2 _ ~)(z2 _ 1), (3.36) 

kevenleven 

where ikz are the Chebyshev coefficients ofthe part between square brackets in Eq. (3.5). The Cheby­

shev coefficients of the linear terms can be calculated exactly and therefore, the integral conditions 

conceming these terms are satisfied exactly. The nonlinear terms are computed pseudospeetrally us­

ing the padding technique to avoid aliasing. In this technique extra modes are added to the double series 

of Chebyshev polynomials. These extended series, where the coefficients of the extra modes are zero, 

are transformed to physical space. After multiplication in physical space the result is transformed back 

to speetral space using all modes. Then, the series are truncated for further calculations by dropping 

the extra modes (which arenotzero anymore). Although the remaining (N + 1)(M + 1) modes are 

exact, they cannot represent all (2N + 1)(2M + 1) modes from the convolution sum. After all, the 

complete approximation of quadratic nonlinearities consists of 2N + 1 modes: 

(3.37) 

2The subscript of Àc and Sc is omitted. 
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Due to this truncation the integral condition J J (u · V')c dA = 0 is not exactly satisfied anymore. 

However, the truncation error is related to the highest modes and decays faster than algebraically in 

1/ N (this property is termed speetral accuracy). 

The second step of the salution procedure at every time level consists of the salution of the Helm­

holtz equation. Integration of Eq. (3.3) yields 

N M >72 An+l N M An+l 
""" """ V C kl """ """ C kl 
L L (k2 - 1)([2- 1) -À L L (k2- 1)([2- 1) 
k=O l=O k=O l=O 

k even l even k even l even 

N M Sn,n-l 

2::: 2::: (k2 _ ~\(z2 _ 1) · (3·38) 
k=O l=O 

kevenleven 

Since the first term of the left-hand side equals zero, Eq. (3.38) together with (3.36) would in the ideal 

case represent conservation of mass: 

N M An+l An 
""" """ ckl - ckl 
L L (k2- 1)([2- 1) = 0. 
k=O l=O 

kevenleven 

(3.39) 

However, as can beseen in Sec ti on 3.1.2, the solution procedure of the Helmholtz equation does not in­

volve the high frequency modes of sn,n-l. In other words, the discrete equation that is actually solved 

can be expressed as 

(3.40) 

where B again represents high frequency modes, which are not known a priori. Integration ofEq. (3.40) 

results in 

N ~ s~t-l + Àê~tl ~ ~ Ê~/1 
L L (k2- 1)([2 - 1) =- L L (k2- 1)([2 - 1). 
k=O l=O k=O l=O 

(3.41) 

k even l even k even l even 

Generally, the right-hand side of (3.41) is not zero, causing an error in the conservation of mass. Again 

the error is related to the high-frequency modes and therefore it decays exponentially in N. 

Note that, in contrast to the conservation of total concentration, the integral condition conceming 

the Navier-Stokes equations is satisfied within machine accuracy: 

j j w dA = f u dl. (3.42) 

V EJV 

However, this condition is not related to time integration, but it is obtained by application of Stokes' 

theorem using w = V' x u. Since the definition of the vorticity is enforced by the influence matrix 

method, Equation (3.42) is satisfied exactly. 
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3.2 Lagrangian Approach 

Mixing in ftows has been investigated using the Lagrangian approach in many branches of ftuid dy­

namics. Examples are the very efficient mixing by two agitators running altematingly [1], the mixing 

properties of geophysical ftows [2], chaotic adveetion and anomalous diffusion in Rayleigh-Bénard 

convection [3], and many others, including industrial flow problems. The chaotic transport properties 

of these ftows are stuclied by following a large number of passive tracers. 

3.2.1 Time scheme 

The position of a particle, x(t), is given by the Lagrangian description of motion. The partiele trajec­

tory is related to the velocity field by: 

dx 
dt = u(x, t), (3.43) 

with initia! condition x(O) = x 0 . 

The integration ofEq. (3.43) is carried out simultaneously with the Navier-Stokes simulation, which 

provides the velocity at integer time steps. We use a fourth-order predietor-corrector technique that 

consists of a fourth-order Adams-Bashforth predictor: 3 

b..t 
x = xn +- [55un- 59un-l + 37un-2 - 9un-3] 

p 24 ' 
(3.44) 

and a fourth-order Adams-Moulton corrector: 

b..t 
xn+l =x +- [9u + 19un- 5un-l + un- 2] . 

p 24 p 
(3.45) 

Because this predietor-corrector metbod is not self-starting, we have to use an alternative procedure 

for the initia! time steps. The first time integration step is calculated using a fourth-order Runge-Kutta 

method. The next step consists of a third-order predietor and a fourth-order corrector: 

x = x 1 + b..t [19u1 
- 20u112 + 7u0] 

p 6 ' (3.46) 

x 2 = xp + ~t [2up + 7u1
- 4u112 + u 0

]. (3.47) 

These first two steps both evaluate the velocity at t = 1/2, which follows from the Runge-Kutta in-

tegration of the first time step of the Navier-Stokes equation. The third time step consist of the same 

predietor-corrector combination, but now based on other time levels: 

b..t 
x = x 2 +- [23u2 

- 16u1 + 5u0
] 

p 12 ' 
(3.48) 

b..t 
x 3 =x +- [9u + 19u2

- 5u1 + u 0
] . p 24 p 

(3.49) 

The combination of these schemes is tested and found to be fourth-order accurate. 
3 The superscripts denote the time level. 
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An alternative for this predietor-corrector technique can be found in the Runge-Kutta method. A 

classica! fourth-order Runge-Kutta scheme can be implemented if the intermediate salution needed 

for this methad is evaluated at the odd time levels. This enlarges the effective time step to 2~t, which 

reduces the accuracy of the time scheme. However, the advantage of a Runge-Kutta methad is the 

possibility to add extra tracers at any time step. For techniques like interface tracking as described by 

Xue & Tangbom [16], this is needed to prevent lossof detail of the interface. 

Since the particles are not generally at a grid point, we need to calculate the velocity of the tracer 

by a direct transformation from speetral to physical space. This is achieved by evaluating Eq. (2.10) 

at the position of the particle. In consequence of this, the determination of the velocity of NP particles 

has an operation count of O(NpN M). 

3.2.2 Diffusion 

The Lagrangian methad described so far does not include diffusion. Simulation of diffusion can be 

accomplished by a random-walk methad which uses a Lagrangian approach based on the stochastic 

differential corresponding to the scalar advection-diffusion equation. Saffman [17] used a random­

walk approach to study the effects of molecular diffusion on the transport of a passive scalar in flow 

through porous media. For a brief survey with view to applications in numerical schemes based on 

random-walk methods, see Chorin & Marsden [18]. 

In the random-walk methad a partiele in the flow is actvaneed according to 

(3.50) 

where ~xn is the deterministic jump in a time step ~t, calculated using the methad described before, 

and where 'IJ is a random component descrihing the Brownian motion of the molecules. The com­

ponentsof 'IJ are Gaussianly distributed random variables, each with zero mean and varianee 2~t/Pe, 

which are generated using standard algorithms basedon the Box-Müller transformation (e.g., see Press 

et al. [19]). 

Error-estimation techniques show the accuracy ofthe random-walk methad to be O(Np-l/2
). The 

slow convergence, which is typical of random-walk methods, requires that Np be very large for accurate 

solutions. In our computations the number of particles is limited by computational resources to 0 ( 104 ) 

resulting in an error of a few percent. 

A subtie point which needs our attention is the combination of the time scheme and a random­

walk method. The predietor-corrector technique used in our simulations is based on an extrapolation 

of the velocity using previous time levels. The superposition of a random component disturbs this 

extrapolation technique: the veloeities at the previous time levels contain an "error" ~u of magnitude 

0(1'1711 g~ J ). This error results in an extra displacement, which can be added to Eq. (3.50) 

(3.51) 

It can be seen that for a small time step this error is actually much smaller than the random component 

and therefore, it can be neglected. Moreover, simulation of the diffusion of a point in a fluid in solid 
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body rotation, showed that the accuracy of this method is not affected by the error arising from this 

interference. Note that Runge-Kutta schemes do notsuffer from this disturbance, since they do not 

use previous time levels. 

3.3 Characterization of Mixing 

3.3.1 Anomalous diffusion 

Transport in a fluid flow can be characterized by the varianee of a tracer cl oud about its mean position 

denoted by a 2 , which for normal diffusive processes grow linearly with time: a 2 ,....., ta with a = 1. 

Processes with a i= 1 are termed anomalous diffusion. 

Hypodiffusion (a < 1) can take place when "traps" embedded in the flow, inhibit the motion of 

the tracer. Trapping can occur in two-dimensional cellular flows. For instance, Guyon et al. [20] argue 

that in a spatially perioctic two-dimensional series of convection rolls between slippery boundaries, 

a= 1/2. If the rolls are enclosed by rigid boundaries, a= 2/3 (Young, Pumir & Pomeau [21]). The 

latter result was confirmed by the experimentsof Cardoso & Tabeling in Rayleigh-Bénard convection 

[22]. Experimentsof dispersion in a quasi-two-dimensional perioctic flow revealed a = 2/3 as well 

[23]. 

Superdiffusion (a > 1) can occur if tracer trajectories in the flow have long excursions. These 

excursions are termed Lévy flights, which are well known mathematically, and are recently observed 

by Solomon, Weeks & Swinney in a 2D flow in a rotating annulus [24]. 

Determination of the varianee is very straightforward. In case of the Lagrangian approach the vari­

anee can be computed by summation over all particles: 

Np 
2 1 ~ -2 

a = N ~ lxi - xl , 
p i=l 

(3.52) 

where x is the mean position defined as };p ~~1 Xi. In the Eulerian approach this results in the con­

tinuous form of (3.52): 

2 ff lx- xl 2c(x) dA 
a = ~~~~--~---JJ c(x) dA ' 

(3.53) 

with 

_ JJxc(x) dA 
x= -"--';;-;c--;-'--:-'--JJ c(x) dA 

(3.54) 

These equations can be reeast in a summation over the Chebyshev expansion coefficients. Note that 

the initia! value of the varianee is not zero but depends on the spread of the initia! tracer distribution. 

3.3.2 Correlation dimension 

The varianee of a tracer cloud about its mean position gives us useful information about dispersion 

processes. However, for characterizing the degree of mixedness, the measurement of a is often insuf-
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ficient. The varianee already attains nearly its maximum value for a single filament snaking through 

the flow, at a stage when the tracer is not at all well mixed. 

Another approach, which has been developed recently, uses the correlation integral C(f) to char­

acterize mixing. The correlation integral is defined as 

I! 

C(f) = J dr Ç(r), (3.55) 

0 

where Ç is the standard correlation function 

Ç(r) = J dx c(x- r)c(x). (3.56) 

A definition of the correlation integral in words is the number of tracer pairs whose distance is less than 

f. When C ( f) exhibits a subrange in which 

(3.57) 

then JL is the correlation exponent, characterizing the geometry at the corresponding length scales. 

Some partienlar valnes of JL are the following: JL = 0 corresponds totracers clustered at a point, JL = 1 

corresponds to well-separated filaments of tracer, and JL = 2 corresponds to an area-filling cloud; the 

whole panoply of intermediate structures associated with fractional JL is also available. 

Summarizing, the slope ofthe correlation integral in a log-log plot reveals the degree ofmixedness: 

a steep slope means weil-mixed. In order to estimate mixing times the correlation integral should be 

considered at several times. How the correlation integral is used to characterize the degree of mixed­

ness is illustrated in Section 4.2.2. 

Grassberger & Procaccia [25] argue that JL is closely related to the information dirneusion and the 

fractal dimension, which is often determined by box-counting techniques. The relation between the 

fractal dirneusion of the iso-concentration lines and the velocity field, is given by several exact in­

equalities conceming JL and structure function exponents of the velocity and con centration fields [26]. 

Experiments performed in a 2D turbulent flow [23] seem to be consistent with them. 

In the Lagrangian approach the correlation function is computed in the following manner. First, 

compute the Np(Np -1)/2 distauces between all pairs ofparticles, then C(f) is defined as the number 

of pairs with distance less than f. For the continuons approach the determination of C( f) is not straight­

forward and is very time-consuming; O(N2 M 2) operations are needed for each given f. Nevertheless, 

machine accuracy is reached. 



Chapter 4 

Simulations 

In this chapter we present the results of the numerical simulations. We describe the results of three 

different problems: 

• Natura) convection in a square cavity This is a popular problem for comparing algorithms 

designed to solve the Navier-Stokes equations in the Boussinesq approximation. It is also a test 

for the implementation of the numerical algorithm developed to solve the advection-diffusion 

equation for a tracer. 

• Spin-up in a square container This problem is used to estimate the accuracy of the numerical 

algorithms based on both the Eulerian and Lagrangian approach. 

• Linear array of vortices In order to show an application of the developed methods we have 

simulated the dispersion of a passive tracer in a periodic cellular flow. 

4.1 Natoral Convection in a Square Cavity 

The thermally driven square cavity with adiabatic top and bottorn walls is one of the classica! prob­

lems in the heat transfer literature. Moreover, it bas become one of the most popular test-problems to 

compare numerical algorithms designed for the integration of the Navier-Stokes equations of incom­

pressible recirculating flows. Note that this problem is free of any singularity in the boundary condi­

tions except the presence of the corners. This makes it more attractive than other problems, such as 

the driven cavity configuration, for example, to test the accuracy of high precision schemes. Another 

advantage of the thermally driven cavity is the fact that it can be used for testing the implementation 

of the algorithm based on the Eulerian approach, since the temperature of the fluid can be considered 

as a tracer. 

Consider the flow of a Newtonian fluid of kinematic viscosity v, thermal diffusivity "' and thermal 

expansion coefficient (3 enclosed in a square cavity ofheight L. The coordinate system is defined so that 

the y-axis points vertically upwards in the direction opposite to the gravity vector of modulus g. The 
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x-axis is horizontaL Constant uniform temperatures eh and Be (b..B =eh- Be > 0) are imposed at the 

left and right vertical walls, respectively. The top and bottorn horizontal walls are considered perfectly 

adiabatic. The resulting flow is assumed to be two-dimensional and the temperature difference is small 

enough so that the Boussinesq approximation holds. 

The goveming equations are cast in dimensionless form using sealing variables as proposed by Le 

Quéré [27]. Using the sealing factors b..B fortemperature, L for length, (K,j L )Ra112 for velocity, where 

Ra = (g(3b..BL 3
) I VK, is the Rayleigh number, and the relating sealing factor for time (L 2 I"' )Ra-112, 

the goveming equations read 

aw Pr 2 ae 
at + (u . \i')w = Ral/2 V' w + Pr ax 
ae 1 2 
at +(u. \7)8 = Ral/2 V' e 

V'. u= 0. 

(4.1) 

(4.2) 

(4.3) 

The value of the Prandtl number was set to 0. 71, which corresponds toa cavity tilled with air. In order 

to coincide with the literature we have transformed our computational domain in such a way that the 

dimensionless domain extends from 0 to 1 in both the x and y directions. The boundary conditions for 

the temperature are then: 

8=1 at x= 0 (4.4) 

8=0 at x= 1 (4.5) 

ae 
-=0 ay at y = 0 and y = 1. (4.6) 

The solution of the 2D Boussinesq equations in this contiguration becomes unsteady for a value of 

Ra very close to 2 x 108 . For the Rayleigh numbers 103 , 104
, 105 and 106 De Vahl Davis [28] pro­

vided "benchmark solutions" that were obtained with a second-order tinite difference scheme and a 

Richardson extrapolation scheme. Accurate solutions at Ra = 106 , 10 7 and 108 have been obtained 

by Le Quéré [27] using a pseudospeetral Chebyshev algorithm. 

The steady-state solution corresponding to the Ra value of 108 is presented in Figure 4.1 by means 

of temperature and stream function contours. The following characteristic values of the steady-state 

solutions are determined: 

11/Jimid 

11/Jimax 

Umax 

Vmax 

Nu 

the absolute value of the stream function at the mid-point of the cavity, 

the maximum of the absolute value of the stream function together with its location, 

the maximum horizontal velocity on the vertical mid-plane of the cavity together with 
its location, 

the maximum vertical velocity on the horizontal mid-plane of the cavity together with 
its location, 

the average Nusselt number on the left boundary (this is equivalent to the rate of heat 
transfer across the cavity), 
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Figure 4.1: Ra = 108 . Isotherms (left) and stream function (right). 

the maximum value of the local Nusselt number on the left boundary together with its 
location, 

the minimum value of the local Nusselt number on the left boundary together with its 
location. 

The local Nusselt number is defined as the heat flux in horizontal direction: 

26 

(4.7) 

In Tables 4.1 and 4.2 the values are listed together with the benchmark solutions. The solutions at 

Ra = 103 , 104 and 105 are consistent with the results from De Vahl Davis, consictering the estimated 

error of 0.1% in the benchmark values. At higher Rayleigh numbers the similarity between the present 

results and the solution obtained by Le Quéré is exact. Note that there seems to be a discrepancy in the 

last digit for some values. However, this is caused by round-off errors. 
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Ra 103 104 105 

Present Ref. [28] Present Ref. [28] Present Ref. [28] 

11)Jimid X 102 3.715 3.713 5.074 5.074 2.883 2.883 

11)Jimax X 102 3.041 3.040 
x 0.285 0.285 
y 0.601 0.601 

Umax X 10 1.154 1.154 1.618 1.618 1.099 1.098 
y 0.814 0.813 0.823 0.823 0.855 0.855 

Vmax X 10 1.169 1.169 1.963 1.962 2.170 2.169 
x 0.178 0.178 0.119 0.119 0.066 0.066 

Nu 1.118 1.118 2.245 2.243 4.522 4.519 

Numax 1.506 1.505 3.531 3.528 7.720 7.717 
y 0.089 0.092 0.144 0.143 0.082 0.081 

NU min 0.691 0.692 0.585 0.586 0.728 0.729 
y 1.000 1.000 1.000 1.000 1.000 1.000 

Table 4.1: Characteristics of the steady-state salution for Rayleigh numbers 103 , 104 and 105 in com-
parison with the benchmark salution from De Vahl Davis [28]. 

Ra 106 107 108 

Present Ref. [27] Present Ref. [27] Present Ref. [27] 

11)Jimid X 103 16.386 16.386 9.2849 9.285 5.2322 5.232 

11)Jimax X 103 16.811 16.811 9.5387 9.539 5.3848 5.385 
x 0.1504 0.150 0.0860 0.086 0.0483 0.048 
y 0.5467 0.547 0.5556 0.556 0.5525 0.553 

Umax X 102 6.4834 6.483 4.6987 4.699 3.2188 3.219 
y 0.8499 0.850 0.8793 0.879 0.9279 0.928 

Vmax X 10 2.2056 2.206 2.2115 2.211 2.2224 2.222 
x 0.0381 0.038 0.0213 0.021 0.0121 0.012 

Nu 8.8252 8.825 16.523 16.523 30.255 30.255 

Numax 17.536 17.536 39.395 39.39 87.245 87.24 
y 0.0392 0.039 0.0180 0.018 0.0083 0.008 

Nu min 0.9795 0.9795 1.3663 1.366 1.9191 1.919 
y 1.0000 1.000 1.0000 1.000 1.0000 1.000 

Table 4.2: Characteristics of the steady-state salution for Rayleigh numbers 106 , 107 and 108 in com-
parison with the benchmark salution from Le Quéré [27]. 
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4.2 Spin-up in a Square Container 

Spin-up is the adjustment process of fluid in a container, initially rotating with angular velocity D, after 

a sudden change of the rotational velocity of the container from D to D + ~n at t = 0. Experimental 

studies on spin-up of fluid in rectangular and square containers were recently reported by Van Heijst, 

Davies and Davis [29] and Van de Konijnenberg [30]. An important feature of rotating flowsis the 

existence of a two-dimensionalization mechanism which enables one to study specific aspects of ro­

tating flows by 2D numerical simulations. To lowest order the flow dynamics in spin-up experiments 

in square or rectangular containers is a two-dimensional phenomenon, as well. Numerical simulations 

of 2D spin-up in rectangular containers have been reported by Suh [31], Vissers [32], Tacken [33] and 

Willemen [10]. 

In a coordinate system corotating with the container one observes a large anticyclonic1 cell that 

fills the domain entirely; this motion arises because of the inability of the fluid to follow the change in 

rotation of the boundaries. At t = o+ boundary layers are formed and cyclonic vorticity, generated in 

the boundary layers, is advected by the primary anticyclonic flow along the sides of the container. In 

the subsequent stage it is observed that, when the Reynolds number is large enough, boundary layer 

separation takes place and the advected cyclonic vorticity gets accumulated in small cyclonic cells in 

the corners of the container. In case of a square container these corner vortices are of equal strength 

because of symmetry reasons. 2 For low Reynolds numbers a quasi-steady state sets in, since the decay 

of the cells occurs on a time scale considerably larger than the eddy turnover time scale, which is of 

the order 21r / ~D. For higher Reynolds numbers, the vorticity generated in the boundary layers will 

perturb the core vortex, hence affecting the transport properties of the flow. 

Consider 2D spin-up in a square container, with sidewalls of length L. The starting flow can be 

obtained by solving the Poisson equation for the stream function at t = 0, \l2 'lj; = 2~0 with 'Ij; = 0 

at the boundaries of the domain [30]. The components of the velocity can be derived via the definition 

of the stream function: u = ~~ and v = - ~~. The boundary condition for the normal component of 

the velocity is satisfied, but the tangential velocity of the starting flow is not zero at the boundary. In 

order to satisfy the no-slip condition an extremely thin boundary layer is set up at t = o+. An alterna­

tive initial condition is found by simply assuming solid-body rotation of the fluid with respect to the 

corotating coordinate system. The starting flow is given by u = ~D(r x k), and violates the boundary 

conditions for both the normal and tangential components of the velocity. However, this starting flow 

satisfies conservation of mass. The boundary conditions are corrected in the first integration step and 

both initia! flows give the samenumerical results [4]. 

In dimensionless coordinates the computational domain extends from -1 to 1 in both the x and y 

directions. We have simulated spin-up for several values of the Reynolds number, which is here defined 

as Re= L
2 t.n 
4v 

Note that the investigation of mixing during spin-up is beyond the scope of this report. We have 

1 Anticyclonic vortices rotate faster than the container, whereas cyclonic vortices rotate slower than the container. 
2For very high Reynolds numbers the symmetry in the flow pattem can be broken by turbulence. 
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only used this partienlar flow to test the numerical schemes based on both the Eulerian and Lagrangian 

approach for simulating the adveetion of passive tracers. 

4.2.1 Eulerian approach 

Simulations of spin-up have been performed for two different valnes of the Reynolds number: Re = 
1000 and Re = 2500. Due to the appearance of very thin boundary layers at t = o+, in which the 

vorticity can have large values, simulations at these Reynolds numbers are quite difficult to perform. 

In order to avoid disturbance of oscillations arising from the singular character of the initial condi­

tions, the initial stage of the spin-up is simulated without any tracer. At t = 2 the vorticity profiles 

have converged and corner vortices have been formed. 3 At this time a Gaussian blob of tracer, with 

an e-folding value of 0.1, is placed intheupper right corner and t is reset to zero. This initial tracer 

distribution is multiplied with the function f(x, y) = (1 - e-ZO(l-x
2

)
2 )(1 - e-20(1-Y

2
)

2
) in order to 

satisfy the homogeneons Neumann boundary conditions. 

The process of mixing during spin-up with Re = 2500 and Pe = 5000, is illustrated in Figure 4.2 

by means of snapshots of the tracer distribution at several times. Part of the blob, initially placed in the 

upper right corner (t = 0), is advected by the primary anticyclonic cell (t = 4 and t = 8). At t = 8 

the corner cell starts to move along the boundary, hereby transporting the tracer in its core. However, 

this cell is squeezed between the primary cell and the right wall, and does not survive. The tracer is 

advected further along the edge of the anticyclonic cell and is mixed throughout the region outside the 

primary cell (t = 12, 16, 20). 

Figures 4.3 and 4.4 show the varianee rJ2 (defined by Eq. (3.53)) for several valnes of the Reynolds 

and Peelet number as a function of time. In all simulations the varianee increases substantially during 

the first half rotation period (t :S 1r). This is caused by the filament of tracer which is advected from 

the blob to the lower left corner of the container. When the head of the filament returns in the direction 

of the blob (see Figure 4.2), the varianee decreases. At later times the varianee seems to have reached 

a quasi-constant value of rJ 2 ~ 1. 

In order to estimate the accuracy of the valnes of rJ
2 , we have compared the results of calcula­

tions which have been performed with different numbers of Chebyshev polynomials N.4 The time­

integration step was the same for both simulations, i.e., b:.t = 5 x 10-4 . Figure 4.5 shows the differ­

ence E(J" in rJ 2 between computations of spin-up at Re = 1000 with N = 120 and N = 104. Startingat 

10 -lO the difference increases a few orders of magnitude during the first half rotation period. Hereafter 

E(J" seems to stabilize around 10-7 and 10-5 for calculations with Pe = 1000 and Pe = 5000, respec­

tively. In case Re = 2500 a similar evolution takes place, but the resulting difference is one order of 

magnitude larger for the simulations at both Pe = 1000 and Pe = 5000. 

A reasou for this discrepancy can be found in the accuracy of the velocity field. Since the velocity 

3 0ne rotation period of the container with respect to the original angular velocity of the container at t < 0 corresponds 
with a dimensionless time t = 21r. 

4 Actually the number of Chebyshev polynomials is N + 1, since the index runs from 0 toN. However, for the sake of 
simplicity we refer to N as the number of Chebyshev polynomials used for the computations. Also note that M = N for all 
simulations on a square domain. 
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t=O t = 12 

t=4 t = 16 

t=8 t = 20 

Figure 4.2: Mixing of a passive tracer during spin-up: Re = 2500 and Pe = 5000. 
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Figure 4.3: The varianee of the tracer cloud during spin-up, Re= 1000. 
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Figure 4.5: Absolute difference E" in IJ 2 between calculations performed with 104 and 120 Chebyshev 
modes for Re= 1000. 

is an input for the advection-diffusion equation, we cannot expect the tracer field to be more accurate. 

If we campare the velocity fields at t = 0 calculated with N = 104 and N = 120, we findan average 

difference of order 10-8 in case Re = 2500. In the corners and along the sides of the container local 

differences of order 10-5 occur. For Re = 1000 these differences are somewhat smaller: 10-10 and 

10-7 , respectively. 

Another indication of the accuracy of the numerical metbod is the ability of the algorithm to satisfy 

the conservation of mass. In Section 3.1.3 we have demonstrated that the conservation of mass is not 

exact in the discrete solution. Herewedefine two errors which correspond to the two steps as presented 

inSection 3.1.3. The first error corresponds to the calculation ofthe souree sn,n-1 using previous time 

levels: 

EJ = 
N M ê'kz + tS~t-1 
~ ~ (k2- 1)(z2- 1). 

kevenleven 

The salution procedure of the Helmholtz equation causes the second error 

N M ,n+1 + l§n,n-1 
""""' """"' ckl À kl 

En= ~ ~ (k2 -1)(12- 1). 
k=O l=O 

kevenleven 

(4.8) 

(4.9) 

Figure 4.6 shows the errors EJ and En as a function of time. 5 The time-evolution ofboth errors is approx­

imately the same, because they are both related to the high frequency modes. Subtraction of Eq. ( 4.8) 

5The errors are scaled with the total mass. 
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Figure 4.6: The relative errors in the conservation of mass. Re = 2500, Pe = 5000 and N = M = 
120. 

farm Eq. ( 4.9) results in an expression for the loss of mass during a single time step. Since these sep­

arate errors accumulate, the totalloss of mass defined as 

N M 'n+l 'Ü 

"""' """' ckl - ckl 
Eacc = D D (P- 1)(l2- 1)' 

k=O l=O 
kevenleven 

(4.10) 

is a few orders of magnitude larger than theseparate errors (see Figure 4.6). At lower Reynolds and 

Peelet numbers the salution is more smooth, resulting in smaller errors at the same number of Cheby­

shev modes. 
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Figure 4.7: Partiele distribution during spin-up at t = 20 for Re= 100 (a) and Re= 1000 (b). 

4.2.2 Lagrangian approach 

In order to test the numerical algorithm for the Lagrangian method, simulations of spin-up are per­

formed with Re= 100 and Re= 1000. Similar to the procedure as described in the previous section, 

we start the simulation of tracer trajectories at t = 2. The initial tracer distribution consists of 1000 

random points Gaussianly distributed around (x, y) = (0.7, 0.7) with varianee 0.1. The partiele paths 

are integrated with time step fit = 5 x 10-4 up tot = 20. First we show the results of the simulations 

performed without the random walk method, then we will discuss the results of simulations with tracer 

diffusion. 

The partiele distributions at t = 20 are shown in Figure 4.7 for both Re = 100 and Re = 1000. 

For Re = 100 the cloudof particles is elongated along the stream lines, and since the stream function 

is quasi-stable, hardly any mixing takes place. For Re = 1000 a large amount of particles is captured 

in the secondary cell, which occurs in the upper right corner of the container. The tracers outside the 

corner cell are drawn into a spiral structure by the core vortex. 

In order to estimate the accuracy of the algorithm, these simulations are performed with a differ­

ent number of Chebyshev polynomials, as well. The mean difference in the position of the tracers is 

defined as 

(4.11) 

where the xf denotes the position ofthe i-th partiele calculated using N Chebyshev modes. The maxi­

mum number of Chebyshev polynomials used for the approximation of the velocity field Nmax is 80 for 

Re = 100 and 120 for Re= 1000. The time-evolution of Ex is displayed in Figure 4.8 for Re = 100 

and in Figure 4.9 for Re = 1000. The substantial increase of the deviation during the initial stage 

(t < 3) originates from the difference in the velocity fields. Since the error in the velocity fields in­

creases for smaller N, the deviation of the partiele positions also increases for smaller N. After the 

initial stage the difference grows linearly in time for Re= 100. At higher Reynolds numbers the flow 

becomes unsteady, introducing chaotic partiele motion. Chaotic adveetion implies that the paths fol­

Iowed by two particles that are separated by an infinitesimal distance will tend to diverge exponentially. 
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Figure 4.8: Time-evolution of Ex for Re= 100. 
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Figure 4.10: Correlation integral of the distribution displayed in Figure 4.7(a). (t = 20) 
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This exponential behaviour can clearly beseen in Figure 4.9. The sarne series of simulations but with 

a smaller time-integration step does not yield significant smaller differences. 

InSection 3.3.2 we have introduced the correlation integral C(.€) for the characterization ofthe de­

gree of mixedness. In order to elucidate this method, the correlation integral of the tracer distributions 

displayed in Figure 4.7 are shown in Figure 4.10 and 4.11. Note that C( .€) is normalized with the total 

number of pairs [Np(Np -1)/2]. First consicter the curve corresponding tothetracer distribution for 

Re = 100. In the range .e ;S 0.02 the correlation integral behaves like C(.€) "' .€2 which corresponds 

to a homogeneaus distribution of the tracers within the elongated blob. The position of the bend in the 

curve (.€ ~ 0.02) corresponds to the thickness ofthe filament. Atlarger scales (0.02 ;S .e ;S 2) the tracer 

distribution can be considered as a single well-separated filament. Therefore the correlation exponent 

equals one in this subrange. The correlation integral of the distribution which has been computed with 

Re = 1000, exhibits a large range in which C(.€) "' .€'"", with f.L = 1.36 ± 0.01, which corresponds 

to thin separated filamentsof tracer. The distance at which C(.€) beginstoflatten is indicative of the 

overall extent of the cloud. In this case both correlation integrals reach the maximum value of 1 at 

.e ~ 2. 

Calculations of spin-up for Re = 1000 have also been performed using the random-walk metbod to 

simulate tracer diffusion. The Peelet number was set to 10000 and the initia} conditions as before. We 

have used 64 and 84 Chebyshev polynomials to approximate the velocity field. Figure 4.12 shows the 

time-evolution of the varianee of the tracer distribution for both simulations. The relatively large differ­

ence between the two curves (a few percent) is due to the slow convergence ofthe random-walk method. 

In order to reach an accuracy comparable to the accuracy ofthe Eulerian approach order 0(1010 ) parti­

cles are needed. This is far beyond our current computational resources; a comparable simulation with 

0(1010 ) particles would take thousands ofyears. However, it is nothard to realize that the Lagrangian 
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Figure 4.12: Time-evolution of a-2 during spin-up with Re= 1000 and Pe = 10000. 
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approach is ideally suited for parallel computation and an implementation of the metbod on a parallel 

computer reduces the computation time by an order of magnitude. 
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4.3 Linear Array of Vortices 

Our main objective of the development of numerical algorithms to simulate the adveetion of passive 

tracers in 2D-flows is to investigate chaotic adveetion in a linear array of vortices. The transport pro­

cess in such a cellular flow can be considered as a one-dimensional model for mixing in turbulent flows. 

An example of cellular flow is Rayleigh-Bénard convection which occurs in a fluid layer which is con­

fined between two horizontal planes and is heated from below. A cellular pattem can also arise due 

to self-organization in 2D-flow. The so-called inverse energy cascade, according to which kinetic en­

ergy shows a speetral flux to the larger scales of motion, results in the formation of larger, organized 

coherent flow structures. Experiments on the self-organization of flowsin stratified fluids in reetangu­

lar containers are described by Flór [34]. In his experiments a flow was generated by either using two 

horizontal jets in juxtaposition at the longer sidewalls or by stirring the fluid in the entire domain with 

a rake. In both types of experiments the flow becomes organized in a cellular pattem. 

Spin-up experiments on fluid in a rectangular container reported by van Heijst, Davies & Davis [29] 

also revealed the self-organization of the flow in an array of quasi-2D cells, with the number of cells 

roughly sealing with the aspect ratio of the container. During the initial stage of spin-up the cyclonic 

vorticity, generated in the boundary layers, will be convected by the primary anticyclonic cell along the 

sides of the container. In the subsequent stage it is observed that the advected cyclonic vorticity gets 

accumulated in cyclonic cells in the corners of the domain, with the cells at the downstream ends of 

the longer si de walls being larger and more intense than those in the corners downstream of the shorter 

walls. The larger cells then grow and migrate into the interior, upon which complicated, irregular flow 

pattems may be observed. The details of the flow evolution in this transition stage depend on the rota­

tion parameters and on the aspect ratio 8 = L j B, with L and B the length and the width of the tank, 

respectively. Via a complicated process of interactions between cells the flow is finally observed to 

organize into an array of counter-rotating cells which completely fills the domain. A quasi-stationary 

state sets in because the decay of the cells occurs on a time scale considerably larger than the eddy 

turnover time scale. During this stage the cell positions reveal a small oscillatory motion [33]. The 

oscillation parallel to the long side walls (x-direction) are approximately in phase, whereas the oscilla­

tions perpendicular to the long si de walls are out of phase. At the same time the strength of the vortices 

reveals an oscillation as well. This phenomenon is also observed in Rayleigh-Bénard convection and 

in the experiments presented by Flór [34]. 

We have simulated the adveetion of a passive tracer in an array of vortices which originates from 

self-organization during spin-up. The results of the simulations performed in containers with aspect 

ratio 8 = 3 and 8 = 5 are presented in the following sections. 

4.3.1 Aspect ratio 3 

The size of the container has been made dimensionless using the half width of the container, i.e., the 

Reynolds number is defined by Re= t~.J2B 2 j4v. It also implies that for aspect ratio 3 the dimension­

less domain is given by [-3, 3] x [-1, 1]. 
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We have simulated spin-up at Re= 1250 without tracer, until an array ofvortices exists. At t = 25, 

when three counter-rotating cells can be observed, the time is reset to zero and the tracer is added. The 

initial tracer distribution consists of a Gaussian "hill" with an e-folding value of 0.5, which is placed 

at the left si de of the domain: 

c(x, y, 0) ~ c- cxp [- ( xo+/)'] . (4.12) 

The maximum value of the tracer distribution denoted by Cmax, has been chosen in such way that the 

total dimensionless concentration is approximately one. 

Two simulations have been performed in the Eulerian approach with different Schmidt numbers: 

Sc = Pe/Re = 1 and Sc = 4. The simulation results with Sc = 1 has been obtained with N = 120 

and M = 64 while the simulation with Sc = 4 has beenbasedon a computation with N = 160 and 

M = 80. The time step is in bath cases i:::,.t = 5 x 10-4 . Although this time step does not satisfy the 

stability restrietion J:::,.t ::; 9 j N 2 , the simulations appeared to be stable. Figure 4.13 shows a sequence of 

snapshots of the tracer distribution during the simulation with Sc = 4. At t = 5 the initial distribution 

has been drawn into a spiral structure by the left vortex. From then the tracer is pulled into the central 

cell near the oscillating stagnation point at the upper wall between the two left cells (10 ;S t ;S 100). 

From t = 20 the tracer enters the right cell in the same way, now near the stagnation point at the bottorn 

wall between the right and central cell. At t = 150 the tracer has been distributed homogeneously in 

the outside of each cell, whereas the care of the vortices has not been penetrated yet. At this time the 

asciilation of the cells has almast disappeared and the total dimensionless energy of the flow defined 

as~ JJ(u 2 + v2 )dA, has decreased to approximately 10% of its value when the tracer was added. 

Therefore the inter-cellular flux of tracer is now mainly due to diffusion instead of chaotic advection. 

The simulation with Sc = 1 results in nearly the same concentration fields, with the exception that thin 

filaments are spread due to diffusion. 

Simulations of the adveetion of particles basedon the Lagrangian approach have been performed in 

the same flow. The initial positions of the particles farm two Gaussian blobs with an e-folding value of 

0.1 placed at (x, y) = ( -2.8, 0) and ( -2, -0.5). The partiele distribution at several times are shown 

in Figure 4.14. The blob which initially was placed in the care of the left cell, has been stretched out 

and rolled up, but not a single partiele has left the cell. However, the other blob, originally placed near 

the middle ofthe left wall, has entered the centraland right cell. Note the striking resemblance of some 

features of the continuous and the partiele distribution at t = 20: a single filament entering the right 

cell and the characteristic folding near the stagnation point at the upper wall. 

The dispersion of a passive tracer can be characterized by the varianee of the tracer cl oud about its 

mean position. Since we are interested in the diffusion in only one direction, we introduce the varianee 

in one dirneusion (x) with respect to the left wallof the container: 

2 JJ(x + 8) 2c(x, y)dA 
~ = ~~~~~~~--

x JJ c(x,y)dA 
(4.13) 

Figure 4.15 represents, on a log-log plot, the evolution of~; as a function of time. The plot displays 
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Figure 4.13: Snapshots of the tracer distribution, 8 = 3, Re = 1250 and Sc = 4. 
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Figure 4.14: Snapshots of the partiele distribution, 8 = 3 and Re = 1250. 
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Figure 4.15: Time-evolution of a;, with 8 = 3, Re= 1250 and Sc= 4. 

42 



4.3 Linear Array of Vortices 

1 

0.1 

0.01 

0.001 

0.01 0.1 

dark -­
light ----­

slope = 1.2 

1 

43 

Figure 4.16: Correlation integral of the partiele distributions displayed in Figure 4.14. The solid curve 
represents the dark particles, whereas the dasbed curve represents the light particles. The smali-dasbed 
line is a guide to the eye with slope 1.2. 

a power law with the following exponent: O";, "' ta, with a = 0.50 ± 0.01 . The dispersive process 

is thus, according to the value of the exponent, slow er than normal dispersion, where a = 1; it can 

therefore be termed as hypodiffusive. 6 For increasing t the slope of the curve decreases. This is due 

to the decay of the flow, which reduces the inter-cellular transport of the tracer. The curve exhibits a 

small oscillation with a period that corresponds to the eddy turnover time (the period that a partiele 

needs to complete one tumover). 

Figure 4.16 displays, on a log-log plot, the correlation integral for both partiele distributions shown 

in Figure 4.14 as a function of .e. The curve representing the light particles shows two ranges in which 

the slope of the curve is approximately 1.2. These two ranges are separated by a bend at .e ~ 0.1 

which corresponds to the distance between the filaments. The curve reaches its maximum value at 

.e ~ 1, which implies that the overall extent of the partiele distribution is smaller than one cell. The 

correlation integral of the dark particles exhibits a large range where C(R) "' RI-L with JL = 1.20 ± 
0.01. This indicates that the tracer is not at all well mixed; well-separated filaments are still apparent. 

The maximum value of 1 is reached at .e ~ 5, which indicates that the particles have been distributed 

throughout the whole domain. 

4.3.2 Aspect ratio 5 

We consider spin-up in a container with aspect ratio 5 for two different Reynolds numbers: Re = 625 

and Re = 1250. In both cases a cellular pattem bas been formed at t = 50. However, a striking 

6The term hypodiffusion may sound confusing, since the dispersion process is actually much faster than molecular 
diffusion. 
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difference is the number of cells; for Re = 625 there exist 5 cells, whereas 7 cells are present for 

Re= 1250. Moreover, the flow pattem at Re= 1250 is seen to be less stationary and the strengthof 

the vortices is very different. 

At t = 50 the simulation of the adveetion of the passive tracer is started. The initia! tracer distribu­

tion equals the distribution given by Eq. (4.12) and the Peelet number is in both cases 1250, i.e. Sc= 1 

for Re= 1250 and Sc = 2 for Re= 625. Both simulations have been performed with N = 180 and 

M = 60, and the time-integration step i::J.t = 5 x 10-4 . 

Figure 4.17 shows the results of the simulation with Re = 1250 by means of concentration plots at 

several times. In Figure 4.18 the stream function plots are displayed. The initial distribution is rolled 

up by the first rolllike we have seen for 8 = 3. However, in this case the left vortex is anticyclonic, 

whereas for 8 = 3 the first cell is cyclonic. Therefore the exchange of tracer between the first two cells 

occurs in this case near the stagnation point at the bottorn wall. At t = 25 it is seen that the tracer 

enters the third cell and at t = 50 the tracer has reached the central cell. Since the velocity of the fluid 

in this case is much smaller than the velocity for 8 = 3, the effective diffusion is larger. This causes 

the cells to be tilled with tracer in a relative short time. At t = 150 the fluid is nearly motionless and 

the simulation is discontinued. 

For Re = 625 the velocity in the cellular pattem is even smaller and the decay of the vortices is 

faster. Therefore the fluid is practically motionless at t = 100. At this moment the tracer has not 

entered the third cell, while the first cell is almost homogeneously filled. The tracer distribution at 

t = 100 is shown in Figure 4.19. 

The dispersion of the tracer distribution is characterized by the one-dimensional varianee defined 

by Eq. ( 4.13). The time-evolution of CT; is shown in Figure 4.20 for the si mulation with Re = 1250. 

The plot displays a power law CT; rv to:, with exponent a = 0.60 ± 0.01. Again the curve reveals an 

oscillation with a period corresponding to the eddy turnover time. Like in the case 8 = 3, the slope 

of the curve decreases when time increases. In Figure 4.21 the time-evolution of CT; is shown for the 

simulation with Re = 625. In this case only one oscillation period is present, which corresponds to 

the adveetion of a filament around the first cell. In the range 20 ;S t ;S 70 the plot reveals a power 

Jaw with exponent a = 0.50 ± 0.01 . At larger times the slope of the log-log plot decreases due to the 

decay of the flow. 

For all our simulations we have found an exponent smaller than 1, which indicates that the disper­

sion of a passive tracer in an array of vortices is a hypoditfusion process. The simulation with 8 = 5 and 

Re = 1250 reveals an exponent which is slightly larger than the others (a = 0.60 and a = 0.50, respec­

tively). This is probably due to the relatively strong motion ofthe cells in the former case, which causes 

a better exchange of tracer between the cells. Although the exponent derived by Guyon et al. [20] is 

basedon a time-independent cellular flow, the present results showsome striking resemblance. More­

over, it must be noted that the particular value of a = 0.5 is a special case of anomalous diffusion (see 

Young [35]). 
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Figure 4.17: Snapshots of the tracer distribution, 8 = 5, Re= 1250 and Sc= 1. 
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Figure 4.18: Stream function, 8 = 5 and Re= 1250. 

Figure 4.19: Tracer distribution at t = 100, 8 = 5, Re = 625 and Sc = 2. 
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Figure 4.21: Time-evolution of IJ;, with 8 = 5, Re= 625 and Sc= 2. 
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Chapter 5 

Conclusions 

In this report we have discussed the numerical simulation ofpassive tracers in 2D flow. The 2D Navier­

Stokes equations are solved in velocity-vorticity formulation using a pseudospeetral methad basedon 

the expansion of the flow variables in series of Chebyshev polynomials. We have used a speetral solver 

for flows with two nonperiadie directions, which has been developed by Clercx [4]. The boundary 

condition for the vorticity and the requirement that the flow should be divergence-free are enforced 

with an influence matrix ineluding a tau-correction procedure. 

For the simulations of passive tracers two numerical methods have been developed. In the first 

method, based on the Eulerian approach, the transport of a passive scalar field is expressed by the 

advection-diffusion equation. Time discretization results in a Helmholtz equation with homogeneaus 

Neumann boundary conditions, which is solved using a Chebyshev tau method. The secoud method, 

known as the Lagrangian approach, consists of following a large amount of passive partieles. The tra­

jectory of a partiele is determined by integration of the velocity of the tracer, which is computed by a 

direct transformation from speetral to physical space. The effect of diffusion is simulated by a random­

walk metbod which uses a Lagrangian approach based on the stochastic differential corresponding to 

the scalar advection-diffusion equation. 

Simulations of natural convection in a square cavity are performed in order to test the numerical 

algorithm designed for the integration of the Navier-Stokes equations and the implementation of the 

numerical scheme for the integration of the advection-diffusion equation. Camparisou of the results 

with data from the literature is satisfactory; the benchmark data of De Vahl Davis [28] and Le Quéré 

[27] could be reproduced very well. 

In order to test bath numerical algorithms - the Eulerian and the Lagrangian approach - simu­

lations of passive tracers in spin-up have been performed. The accuracy of the results appeared to be 

very dependent on the accuracy of the velocity field. The simulations also revealed that a large number 

of Chebyshev modes is needed to resolve the steep gradients in the concentration fields, which occur 

at high Peelet numbers. Simulation of diffusion in the Lagrangian approach proved to be very imprac­

tical due to the slow convergence of the random-walk method. Summarizing we can conelude that the 
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Eulerian approach is suitable for simulations invalving relatively small Peelet numbers (Pe ;S 105), 

whereas the Lagrangian approach is practical for the simulation of non-diffusive tracers. 

The developed methods have been applied for the investigation of transport of a passive tracer in 

a linear array of vortices, which originates from the self-organization during spin-up in a rectangular 

container. The wiggling of the cells during the quasi-steady state introduces chaotic advection, like it 

has been observed in the experiments by Flór [34]. The dispersion of the tracer in this cellular flow 

appeared to be a hypodiffusive process, where the varianee of the tracer cl oud behaves like (}; ,......, ta, 

with a close to 0.5. Due to viscosity the velocity of the fluid decays, which makes this flow unsuitable 

for the study of chaotic adveetion and anomalous diffusion in a cellular flow. Hence, we recommend to 

simulate the adveetion of a passive tracer in a flow which is forced by, for example, moving boundaries 

or an extemal force. Depending on the Reynolds number we expect to be able to distinguish several 

regimes in such a forced flow: steady, periodic, chaotic and turbulent flow. The investigation of the 

transport properties of these flows could be the goal of future studies. 

The numerical algorithm based on the Eulerian approach does not satisfy the conservation of mass 

within machine accuracy. The very small errors which occur at every time step are explained and there­

fore we expect that with some further attention this problem will be solved. 

Since both methods to simulate passive tracers can be easily extended to three dimensions, they 

can be used for the investigation of mixing in three dimensional configurations as well. 
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