
 Eindhoven University of Technology

MASTER

The real-time EMPS kernel : memory management and suitability for EPEP/PhyDAS

Marissen, R.J.

Award date:
1994

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/61fc78fc-8eb9-4f0c-858c-041347f938c8

The reai-time EMPS kernel:
Memory Management and

suitability for EPEP /PhyDAS

Technische Universiteit Eindhoven
Faculteit Technische Nat uurkunde
Vakgroep Fysische Informatica

Rob Marissen

September 14, 1994 NF/FTL 94o4

Afstudeerdocent: prof. dr. ir. K.Kopinga
Technische begeleiding: ing. L.A.H.M. van Houten

Abstract

The EMPS system is a multi-processor system designed for two different
application areas, namely (i) reai-time data processing and control of physics
experiments, and (ii) dependable distributed computing. The hardware of
the EMPS system is built around a VME/VSB computer bus and computer
modulesbasedon the MC68030 processor. A short description of the EMPS
hardware can he found in chapter 1. The emphasis of the rest of the chapters
is on the software of the system, which is called the EMPS kernel.

Multi-processor systems require another approach to writing system soft
ware than single processor systems do. Chapter 2 deals with the particular
multi-processor related parts of the kernel. Also, some more practical prob
Ieros associated with the multi-tasking properties of the kernel are addressed.

In a system that serves multiple purposes, the system software must he
fiexible in order to accommodate different needs. One of the parts of the ker
nel in which this fiexibility is expressed, is the handling of memory resources,
often referred to as memory management. The MC68030 processor, which is
used in the EMPS system, offers hardware support for memory management
in the form of a Memory Management Unit (MMU). Extensions that have
been added to the memory management in the EMPS kernel, and the use of
the MMU are discussed in chapter 3.

The performance and reai-time beha.vior of kernel services is important
when the EMPS system is used to control physics experiments. In chapter 4,
the results of performance tests are presented. The performance degradation
caused by the particular way interrupts are handled in the EMPS kernel, as
wellas some suggestions for improvements, are a.lso discussed.

In chapter 5, the results of the previous cha.pters are discussed.
In the appendixes, the kernel functions tha.t can he ca.lled from applica

tion programs are described. lnforma.tion a.bout the most important data
structures inside the kernel, as well as other relevant data., is also given.

Contents

1 Introduetion
1.1 EMPS hardware

1.1.1 The VME/VSB bus ..
1.1.2 The processor module
1.1.3 The memory module .
1.1.4 The PhyLAN module .
1.1.5 The VME-PhyBUS converter

1.2 EMPS software
1.3 Data processing and experiment control .

1.3.1 PhyDAS .
1.3.2 EPEP

1.4 Overview

2 Multi-processor and multi-tasking aspects
2.1 Multi-processor services

2.1.1 Mailbox communication
2.1.2 Process migration . .

2.2 Multi-tasking facilities
2.2.1 Tasks and processes ..
2.2.2 Supervisor/user mode
2.2.3 Interrupt handling

3 Memory Management
3.1 Memory allocation

3.1.1 Implementation of memory allocation .
3.2 MMU

3.2.1 Address translation with the MMU ..
3.2.2 Use of the MMU in the kernel
3.2.3 Process migration and memory management

3.3 The MMU of the MC68030
3.3.1 Table index limits
3.3.2 Descriptor type
3.3.3 Supervisor only /Read only proteetion .

3.4 The old memory management
implementation

1

4
4
5
6
8
8
9
9
9
9

10
11

12
12
12
13
14
14
15
15

20
20
22
23
23
24
26
26
28
28
30

30

3.5 The new memory management
implementation . 31
3.5.1 Shared translation tables for processes in one task . . 31
3.5.2 Dynamic allocation of memory for translation tables 33
3.5.3 Early termination page descriptors 33
3.5.4 Proteetion of memory areas 33

3.6 Use of the MMU to divert VME
memory access to the VSB bus

4 Performance tests
4.1 Context switch time
4.2 Overhead from Interrupt Service Processes

4.2.1 Effects of the MMU .
4.3 Performance loss from ISPs . .

4.3.1 The clock ISP
4.3.2 The terminal output ISP

4.4 Semaphores

5 Conclusions and suggestions

A Command interpreter

B Memory maps

C Initialization

D Kernel services for application programs
D.1 Calling of kernel functions by

applications
D .2 ANSI C functions
D .3 Mailbox functions
D .4 Location independent process

management routines
D .5 Other process related fundions
D .6 Semaphore routines . .
D.7 Inquiry routines
D.8 Send/Receive routines ..
D.9 Interrupt related routines.
D.10 Low level process management routines .
D.ll Other routines

E Memory related routines

34

37
37
38
40
41
41
42
43

45

48

51

54

56

56
57
59

61
63
63
65
67
68
69
71

72
E.1 Other memory allocation routines 75

2

F Process queues 77

78 G Interrupt Service Processes
G.l Process priorities 79

H Data structures 80
H.l Process descriptor 80
H.2 Task descriptor 83
H.3 Common memory vector table . 83
H.4 Program file header 84

I Improvements and extensions of the original kernel 87

3

Chapter 1

Introduetion

The Eindhoven Multi Processor System (EMPS) has been designed at the
Eindhoven University of Technology for two different application areas, name
ly data processing and control of physics experiments, and dependable dis
tributed computing. The EMPS oomprises both the hardware and the soft
ware of this multi-processor system.

In this chapter, an overview of the EMPS hardware is given, foliowed by
some charaderistics of the EMPS software and a section that focuses on the
use of the EMPS for control of physics experiments. The development status
of the software is also dealt with.

1.1 EMPS hardware

Multi-processor systems can he classified by the way information is exchanged
between processors. Two types of communication can he distinguished:

• A system in which processors communicate via shared memory: a
tightly coupled system.

• A system in which processorscan only communicate via other means,
e.g. a local area network: a loosely coupled system.

In the EMPS system, both types are combined, thus forming a hierarchy
of communication channels. The system consists of nodes, which contain
a number of processor-, memory-, and other modules. Within each node,
shared memory can he used for communication. Communication between
nocles uses either alocal area networkor fast (20 Mbits/s) serial transputer
links which reside on each processor module.

The local area network, which is called PhyLAN, is also used to load the
EMPS software when the system is started. The EMPS software and other
files are supplied through PhyLAN via a fileserver. In the development stage
of the EMPS software the fileserver is a PC, as shownis figure 1.1. Because
the actual development of the software is doneon a another computer, namely
a SUN workstation, the PC in turn is connected to this workstation using

4

a different local area network, ETHERNET. Hence, the PC is only a link
between the SUN workstation and the EMPS system.

EMPS

PhyLAN ETHERNET

Figure 1.1: The EMPS is connected via PhyLAN to its fileserver, a PC.
The PC is connected via ETHERNET to a SUN workstation.

1.1.1 The VME/VSB bus

The hardware of the EMPS system is built around a VME/VSB computer
bus. The VSB is an extension of the VME bus, but can he considered as an
independent bus. Most of the modules that are used in the EMPS system,
can he accessed via both the VME bus and the VSB bus. In multi-processor
systems the shared bus often forms a bottleneck. The availability of two
separate buses helps to avoid this. Processor modules, memory modules,
and others are connected to the bus by inserting them in slots, of which a
maximum of 20 are available in each node.

In figure 1.2 the bus architecture is shown. All modules within one node
can he accessed via the VME bus, whereas the VSB bus is split into groups
of 5 slots, called clusters. The VSB bus can only he used to access modules
that belong to the same cluster. The division of a node into clusters further
helps to eliminate the occurrence of a communication bottleneck, because
access to shared memory within the same cluster using the VSB bus does
not occupy the VSB bus of other clusters.

Both the VME and the VSB bus use 32 bits data and addresses. On the
VME bus, data and addresses have separate sub-buses, whereas on the VSB
bus, data and address lines are time-multiplexed.

Within the bus system, the first slot has a special function: it contains
the system controller. The hardware of the system controller is almost the
same as that of processor modules, except that it has extra facilities for bus
arbitration. The software of the EMPS system is designed in such a way that
system bus interrupts are handled exclusively by the system controller.

5

LAN direct linb

Figure 1.2: The bus architecture of the EMPS system. The VME bus con
nects all modules in a node, whereas the VSB bus is split in clusters of 5
slots.

1.1.2 The processor module

The hea.rt of the processor module on which the EMPS system is ba.sed
is formed by a Motorola MC68030 processor, that is upward object code
compatible with the MC68000. Some of the features of the MC68030 are
an on-chip memory management unit, data- and instruction caches, 32 bits
data- and address buses, and 16 general purpose registers. The processor
is clocked at 33 MHz and can be extended with a MC68882 floating point
co-processor. Figure 1.3 shows a block diagram of the computer module.

Ea.ch processor module is equipped with 2 Mbyte static RAM and 512 kb
EPROM. These memories are loca.l to the processor module, and cannot be
accessed by other modules. The RAM, also referred to as private memory, is
used in applica.tions that make extensive use of memory, e.g. program code.
A monitor program is stored in the EPROM. At system start up, the monitor
program is executed, and copies itself to the loca.l RAM memory for fa.ster
access. The monitor program is used to download programs, i.e. the EMPS
kernel, via the local area network.

A Dual Universal Asynchronous Receiver/Transmitter (DUART) pro
vides two RS232 serial connections, e.g. for terminals. A programmabie
timer is also ava.ilable; it is used to periodically generate interrupts at 20 ms
in tervals.

Transputer links offer a mea.ns for fa.st communica.tion. Every processor
module ha.s four transputer links that transfer data at 20 Mbit/s each. The
links ca.n be used for communication between processors in the EMPS system,

6

R5-232
20

Mbit/s

PRIVATE
MEMORY

2M

CLUSTERBUS
INTERFACE CONTROLLER

tembus
VME

Figure 1.3: A block diagram of the processor module.

but arealso used for fast transfer of data obtained from physics experiments
from a computer module to a PC.

The processor modules in the EMPS system are equipped with a special
facility for e:fficient communication between processors within a node in the
form of communication registers. Communication in tightly coupled multi
processor system is often done by writing a message into shared memory, and
generating an interrupt at the target processor to a.ttract its a.ttention. The
VME bus offers 7 interrupts for all modules together, which is insuflident to
use this method efficiently. Communication registers offer a more efficient
wa.y of generating an interrupt at another processor, while simultaneously
exchanging some informa.tion. The communication register of one processor
can directly be written by a.nother processor, by writing to a. specific mem
ory location. An interrupt is automatically genera.ted at the target processor,
which then can rea.d the communica.tion register. Thus, the generation of a.n
interrupt at a.nother processor requires nothing but a write action to a. spe
cific memory loca.tion. The processor module has a. separate communica.tion
register for the VME and the VSB bus, respectively.

The address at which a coii)Illunication register can be reached, depends
on the slot of the processor module. The slot number is derived from the
pla.ce within a. cluster, which is obtained from geographical a.ddress signals
supplied by the bus, a.nd from the setting of two jumpers on the module,
which are set to the number of the cluster. In appendix B, the a.ddress of

7

the VME communication register is listed for each slot number.

1.1.3 The memory module

The memory modules used in the EMPS system can contain 4 Mbyte to
64 Mbyte DRAM. Memory can he accessed via both the VME and the VSB
bus, with cycle times of 500 ns and 600 ns, respectively. The memory modules
can he accessed by all processors within one node and will he used, among
others, as the shared memory that is used for communication between pro
cessors. It will also he referred to as common memory.

Access arbitration is arranged in 3 priorities: refresh cycles, which have
the highest priority, VME memory accesses, which are handled when no
refresh is pending, and VSB memory accesses, which have the lowest priority.
Thus, if a memory module is accessed at the same time via the VME and
VSB bus, VME access is handled first. This does not have a serious impact
on the speed of VSB accesses, because the access time of the DRAM memory
on the module is much smaller than the cycle time of the VME and VSB
buses. A VSB memory access may therefore he started before the VME
access cycle is completed, so that the accesses overlap.

Both the VME and the VSB buses support uninterrupted read-modify
write cycles, which are useful forsome multi-processor functions, e.g. sema
phore handling.

The address space of the memory module is determined by the slot in
which the module is placed. The slot number is obtained in the same way as
for the processor module. In appendix B the addresses of memory modules
as a function of the slot number are listed. Whether a memory module is
accessed via the VME bus or via the VSB bus, is determined by the address
that is used.

1.1.4 The PhyLAN module

Each node in the EMPS system is equipped with a local area network con
troller that is used for communication with other computer systems. The
local area network, which is called PhyLAN, has a transmission rate of
2.5 Mbit/s. The PhyLAN module has an on-board DMA controller to sup
port fast data transfer to VME/VSB memory modules. Direct data transfer
to the local memory of the computer modules is not possible, because this
memory cannot he accessed via the VME/VSB bus.

In the future, a different networking capability will he added to the system
in the form of an ETHERNET module.

8

1.1.5 The VME-PhyBUS converter

PhyBUS is the bus system of interface modules that are used to control
physics experiments. The VME-PhyBUS converter forms the conneetion
between the VME bus and the PhyBUS. This module contains a DMA con
troller for fast data transfer between the PhyBUS and the VME bus, and
some logic to convert the 32 bit PhyBUS signals to variabie size (8/16/32 bit)
VME bus signals.

1.2 EMPS software

The system software of the EMPS, also called the EMPS kernel (dij 93], was
designed to perform the basic functions needed by both the Department of
Physics and the Department of Mathernaties and Computer Science. These
include multi-tasking facilities, interrupt handling, semaphores, and memory
management, which arealso present in single-processor kernels.

Support for multi-processor applications is given in the form of location
transparent exchange of information between processes using mailboxes, and
process migration. Facilities offered by the kernel are available uniformly
at all processor modules in the EMPS system, since the program code of
the kern el is exactly the same at all processors. Ho wever, access to speci:fic
objects is in some cases limited to one processor module, or to processors
within one node (e.g. semaphores, memory).

For efficiency reasons, the EMPS kernel has been implemented in the
C programming language. The kernel is developed using an Oasys cross
compiler (oas 93] running on a SUN workstation.

1.3 Data processing and experiment control

At the time cheap computers first became available, increased use of com
puters in control of physics experiments resulted in a fast expansion of the
different types of interfaces that were being developed for this purpose. It
was realized that, in order to limit this growing number of different hardware
designs, some form of standardization was required. Within the Department
of Physics this has lead to the development of a general purpose Physics Data
Acquisition System (PhyDAS).

1.3.1 PhyDAS

PhyDAS is the name of the system that was developed to control physics
experiments and to acquire experimental data. It consists of a number of

9

data-acquisition and control interfaces, which are connected with an asyn
chronous bus system, called the PhyBUS. The PhyBUS is connected to a
computer system that controls the interfaces, and that can have a different
bus system. Since the life cycle of computers is generally much shorter than
the life cycle of the interface modules, separating the interface bus from the
computer bus enables cost-efficient upgrading to a new computer generation.

The PhyDAS concept was developed around 1979 and has since been used
with three different computer generations: first DEC PDPll, foliowed by a
system based on the Motorola 68000 processor, which is called the Micro
Giant, and more recently, the EMPS system. Currently, only the hardware
part of the EMPS system is used to control the PhyDAS hardware. The
software of the EMPS is still in development and willlater be incorporated
in the system. At this moment, the software that is used to control the
PhyDAS interfaces is an "all in one" program, called EPEP.

1.3.2 EPEP

The system software that is used for the control of physics experiments, is an
interpreter type of programming language, called EPEP (Eindhoven Program
Editor and Processor). This language provides special features for process
control in the farm of a multi-tasking capability with event driven process
switching. Furthermore, processes can have different priorities, refl.ecting the
urgency of each process. EPEP has a command interpreter that can be used
interactively while processes are being executed, which is useful for accessing
data and parameters of an experiment that has already started, i.e. runs
under program controL

The version of EPEP that is currently used in the Department of Physics
is not only an interpreter, but also comprises the underlying operating system
plus a program editor. All these functions are integrated in one program. Be
cause EPEP was developed at a time that efficient use of computer resources
was still a factor of primary importance, this program has been written in
assembly language.

Because of the ongoing development of micro electronica, efficient use
of resources, especially memory, has become less important. Ma.intainability
and portability, on the other hand, are now factors of increased consideration.
Therefore, the three functions of EPEP, (interpreter, editor, and operating
system) will be split in separate parts, which are implemented in a higher,
portable programming language, namely C.

One of main the goals of the EMPS kernel is to provide the basic func
tionality upon which the EPEP interpreter and editor will be built. This is
refl.ected in theservices affered by the kernel, which include the capabilities
of the operating system part of EPEP, for instanee multi-tasking with event
driven process switching, different process priorities, and semaphores.

10

1.4 Overview

Low level multi-tasking facilities form the basis for all other kernel functions,
including multi-processor services. Chapter 2 includes a description of multi
tasking concepts which are specHic for the EMPS kernel. The multi-processor
services that are concerned with handling interrupts are also described.

The original version of the EMPS kernel has a property that limits its
usefulness: hard limits are placed on the amount of memory that can be used
by application programs, because fixed-size data structures are used in mem
ory management routines. To make memory management more flexible, this
part of the kernel has been rewritten. In chapter 3, the memory management
of the kernel is described.

The performanceandreal-time behavior of kernel routines is important
when the EMPS system is used to control physics experiments. The results
of performance tests are presented in chapter 4. Special attention is given to
the performance degradation that is caused by interrupts, which are handled
by dedicated Interrupt Service Processes in the EMPS kernel.

The results of the previous chapters are discussed in chapter 5.
Documentation about the original kernel was only available from an ob

ject oriented description and from sourees code. From these sources, infor
mation that is important for extensions of the kernel, plus a description of
kernel services that can be used in application programs has been gathered.
This information is presented in the appendices.

11

Chapter 2

Multi-processor and
multi-tasking aspects

A property of the EMPS system is its non-homogeneaus communication
topology, which is supported by kernel services. If processors are located
in the same node, shared memory is used for communication, otherwise the
Phy LAN is used. Which communication path is used, is transparent for
application programs that use kernel services developed for this purpose.
However, some other kernel services are not available transparently in differ
ent nodes, e.g. semaphores, can only be used within the same node. When
the kernel is used as a basis for EPEP, it is not expected that more that one
node will be needed in the near future. The description of multi-processor
functions will therefore be limited to services that work within one node.

The basis of the EMPS kernel is formed by a set of low level fundions that
offer multi-tasking facilities. Interrupt driven task switching is one of these
facilities. The handling of interrupts, which is done by dedicated processes,
is described in section 2.2.

2.1 Multi-processor services

Mailbox communication and process migration are the services that make
the kernel a multi-processor kernel. Mailbox communication offers commu
nication between processes without the need that processes keep track of
each others locations. Process migration provides the possibility to transfer
a process between processors in a distributed system. It supports efficient use
of computing resources, because the processing load can be balanced evenly
over all processors in the system.

2.1.1 Mailbox communication

Location transparent communication is one of the goals of the EMPS kernel.
It is achieved by using mailboxes, which allow transparent communication
between processes, even if a process has been migrated toanother processor.

12

When mailbox communication is used, processes send information to a mail
box instead of to another process. The kernel, which handles the mailbox,
routes the information to its destination.

Setting up a communication path between processes using mailboxes con
sista of 2 steps:

1. Creating a mail box. The mailbox data structure that is created, is used
by the kernel to keep track of processes that are communicating. Only
one mailbox must he created for all processes that communicate via
that mailbox.

2. Attaching a process to a mailbox. This is done by connecting a data
structure of type PORT to the mailbox. PORT is used by the process
to communicate via the mailbox. Each process that communicates via
a mailbox must conneet a port to that mailbox.

Processes connected to the same mailbox can communicate by issuing
send- or receive commands to the port through which they are attached to
that mailbox.

Mailbox communication is location transparent, because processes send
and receive information via the mailbox and have no knowledge of the lo
cation of the process with which they communicate. The actual process
locations are stared in the mailbox data structure, and are updated by the
kernel when a process migrates.

Mailboxes provide both a unicast service (send and receive primitives)
and a Remote Procedure Call (RPC) service (send request, receive request
and send reply primitives). When a process attaches to a mailbox, the port
type determines whether the unicast service or the RPC service is provided.
Details a bout the port types are included in appendix D.

The kernel also includes unicast and RPC services that are not loca
tion transparent. These services are completely separate from the mailbox
services and are used internally in the kernel. They provide the same func
tionality as the mailbox services, but in a location dependent way.

The mailbox operations are very similar to the file I/0 operations in the
C language.

2.1.2 Process migration

Processes in the EMPS system can he migrated to another processor trans
parently, i.e. without any changes to their computation or communication.
Process migration can he used to balance the processing load over all pro
cessor modules in the system.

Process migration is handled by migration server processes that are present
at each processor in the EMPS system. To initiate migration, a message is

13

sent to the migration server process at the processor where the process that
must be migrated is present. This message contains an identification of the
process that will be migrated, plus the destination of this process. The mi
gration request can be sent by any process on the system.

The migration server at the souree processor detaches the process from
its environment by removing it from the queue it is in and by locking the
mailboxes to which it is connected. Next, it gathers all process information,
e.g. process state, processor registers, code-, data-, and stack memory, and
sends this to the migration server at the destination processor. The process
is then removed from the souree processor.

At the destination processor, a new process is created using the process
information obtained from the souree processor, and mailbox connections are
redirected to the new process. The new process is then restarted.

A process can only be migrated if it meets the following demands:

• The process only communicates via mailboxes. Most services of the
kernel are provided by server processes which can be reached via a
mailbox, and can therefore be used by a process that is migrated.

• No dynamically allocated heap memory is used. Migration of heap
memory is not supported.

Use of the EMPS process migration facility is less appropriate for load
balancing within the EPEP interpreter. In EPEP, a process consists of
EPEP instructions that are interpreted, whereas an EMPS process consists
of MC68030 instructions. Some sort of mapping is needed such that a EPEP
process corresponds to an EMPS process. In practical terms, this means that
the interpreter will be an EMPS process that interprets EPEP instructions.
When a new EPEP process is created, this will cause the creation of a new
EMPS process, that again interprets EPEP instructions. If an EMPS pro
cess is created, only a reference to the program code, data, and heap is made.
Ho wever, if a process is migrated, a copy of the code and data is made. This
is undesirable, because it can cause multiple copies of the same code and
data to be present on one processor if the process that has been migrated
was part of a task including more processes. Also, within EPEP information
is exchanged between processes through the memory they share. When the
EMPS process migration facility is used, this is no longer possible.

2.2 Multi-tasking facilities

2.2.1 Tasks and processes

Programs that run on top of the kernel, such as EPEP, are called application
programs or tasks. Within one task, several related processes can be defined.

14

The memory space for program code, data and heap are shared between all
processes in one task. Each process within a task has its own stack memory.

2.2.2 Supervisor/user mode

The MC68030 processor supports proteetion of system facilities by offering
two modes for program execution: the supervisor mode, which allows access
to all facilities, and the user mode, which limits access. Each mode has
its own stack pointer. In user mode, execution of certain instructions is
prohibited and memory access can be limited to specific areas by using the
MMU (chapter 3).

For some kernel functions, execution in supervisor mode is required.
Switching between user mode and supervisor mode is a time consuming oper
ation, because of the rather complicated passing of parameters between user
mode and supervisor mode routines. Therefore, the whole kernel, including
all system processes, execute in supervisor mode.

Application programs should not access privileged facilities, and execute
in user mode. A switch from user mode to supervisor mode is made when
a kernel routine is called. Parameters for this routine are put on the user
stack, and must be copied to the supervisor stack before the kernel routine
is invoked. The way a kernel fundion is called from an application program
is described in appendix D.

2.2.3 Interrupt handling

Interrupts are generated by hardware devices to indicate that an event has
occurred, e.g. a character was received from the terminal. For some hardware
devices, the interrupt can have multiple causes. The DUART for example,
contains a doek, 2 serial outputs, and 2 serial inputs, each of which can
cause an interrupt. One physical interrupt souree may thus be associated
with several logical interrupts, each of which is associated with a logical
device.

When an interrupt is activated, this leads to the starting of an Interrupt
Service Routine (ISR). Each physical interrupt souree has its own ISR. In
the EMPS kernel, the ISR does not handle the interrupt itself. lnstead,
logical interrupts are handled by dedicated processes, called Interrupt Service
Processes (ISPs). The ISR determines which logical device is the cause of
the interrupt, and unblocks the ISP that corresponds to it.

The main reason for using ISPs to handle interrupts is that this offers
location independent access to devices. A process that wants to perform an
1/0 operation sends a request message to the ISP that handles the device.
Because messages can be sent to processes at any location in the system,
location independenee is achieved. A typical ISP consistsof an infinite loop,

15

in which it waits for a request message, initialires the 1/0 device, waits for
the interrupt that signals 1/0 completion, and handles the interrupts. When
the ISP is associated with an input device, it sends a response message. An
example of such an ISP is shown in figure 2.1.

Receive request

lnitialize device 1/0

Await interrupt

Handle interrupt

Send response message

Figure 2.1: A typical !SP consists of an infinite loop in which I/0 related
actions are performed.

Apart from location independent device access, handling of interrupts by
ISPs has the following advantages:

• Mutual exclusion: Mutual exclusion between processes that perform
1/0 operations on the samedevice is achieved automatically, because
there is only one ISP that physically accesses the device.

• Minimal stack use for handling interrupts: Interrupts are han
dled on the supervisor stack of the currently executing process. When
an ISR would handle device interrupts, sufficient stack memory would
have to he allocated to each process to handle nested interrupts from
all devices. Interrupt handling can involve calling of other routines
which use the stack to ~tore local variables. By using ISPs that handle
interrupts, these routines use the stack memory of an ISP, so that stack
use by ISRs is minimized.

We like to note that for the MC68030 processor, this argument is not
completely valid, because it has the possibility of using a separate stack

16

pointer for interrupt processing. By using this interrupt stack pointer,
reserving extra. sta.ck memory in all processes is not necessary.

• Buffered interrupts: Access to some internal data. structures in the
kernel must not he shared by processes. Shielding these data. structures
with sema.phores is not alwa.ys possible (e.g. sema.phore data. structures
cannot he shielded by sema.phores). Therefore, interrupt driven ta.sk
switching must he disa.bled during a.ccess to these data. structures. If
this is done by disa.bling interrupts completely, interrupts ma.y he lost.
With ISPs, a.ctiva.tion of the ISP is postporred until a.ccess to the data.
structure is permitted. If a.n interrupt occurs while a.ctiva.tion of the
ISP is postponed, the 1/0 registers of the device tha.t corresponds to
the interrupt are stared in a. buffer.

There arealso some disa.dva.nta.ges in using ISPs:

• Performance loss: For every interrupt, a. context switch is needed to
a.ctiva.te the ISP. When the interrupt handling is completed, another
context switch is needed to continue execution of a. regular process.
Some overhead is also crea.ted by the kernel routine tha.t unblocks the
ISP a.fter a.n interrupt ha.s occurred, and by the routine tha.t blocks the
ISP when interrupt handling is completed. In cha.pter 4, the perfor
mance loss is discussed.

• Increased interrupt latency: The context switch a.nd other process
ing tha.t occurs befare the ISP is a.ctiva.ted, increa.se the time between
a.ssertion of the interrupt and handling of the device.

Interrupt service processes alwa.ys have a. higher priority than other pro
cesses, and therefore they should only he used to perfarm a.ctions tha.t are
directly rela.ted to the interrupt. Any subsequent a.ctions, e.g. the numeri
cal processing of data. from the device, must he done by a.ctiva.ting a.nother
process (e.g. by sending a. message to a. process or by signaling a. sema.phore).

Ea.ch logical device is a.ssocia.ted with a. data. structure of type DEVICE,
which conta.ins informa.tion concerning the device, i.e. which ISP handles the
device interrupts, a.n optional timeout routine, and the number of times tha.t
the device interrupt ha.s occurred.

The following logical devices are connected with an interrupt service pro
cess:

• Clock: the doek ISP is a.ctiva.ted a.t 20 ms intervals, and is used tostart
timeout routines and torestart processes tha.t are wa.iting fora. specified
a.mount of time. The doek ca.n a.lso he used to divide the processor time
over the processes which are ready to execute, by rota.ting the queue

17

of these processes. This is called time slicing. Time slicing may not
always he desirable, and therefore the corresponding program code for
time slicing is compiled conditionally. Compilation of the program code
for time slicing is enabled with a #define TIME_5LICE statement.

• Terminal input: the terminal input ISP is activated when a character
is received from the terminal.

• Terminal output: the terminal output ISP is only activated when two
conditions are met: the DUART must he ready to send a character,
and output must he available.

• Communication register: the communication register ISP is acti
vated when another processor has written a message into the commu
nication register of the processor module. It is used in communication
between processors.

• PhyLAN 1/0: the PhyLAN ISP is used to service the PhyLAN mod
ule. This interrupt is handled by the system controller (processor in
slot 0).

• Link input: the link input ISP is activated when data was received
via a transputer link on the processor module.

• Link output: the link output ISP is activated when sending data via
a transputer link is completed.

• PhyBUS interrupt: contrary to the other interrupts, the PhyBUS
interrupt cannot he handled completely within the kernel.

The PhyBUS interrupt is a VME bus interrupt, which is generated
by the VME-PhyBUS converter when one of the interfaces connected
to the PhyBUS signals an interrupt. There can he a maximum of 16
interfaces acting as an interrupt souree on the PhyBUS. Which inter
face caused the interrupt, is determined by the ISP that handles the
PhyBUS interrupt.

The configuration ofthe PhyBUS interfaces depends on the experiment
for which they are used, and therefore the PhyBUS interrupt cannot
he handled any further inside the kernel. This PhyBUS interrupt must
somehow he handled by the software which controls the experiment,
which will he an EPEP program. To activate a process that han
dles the PhyBUS interface which caused the interrupt, semaphores are
used. For each of the 16 possible PhyBUS interrupt sources, a separate
semaphore exists. When a PhyBUS interrupt occurs, the ISP performs
a signal operation on the semaphore that corresponds to the so-called

18

interrupt bit of the interface from which the interrupt originates. The
16 PhyBUS semaphores are named PhyBUS 0 through PhyBUS 15.

Because the PhyBUS related program code is only needed when the
EMPS system is used to control the PhyBUS, it has been made op
tional. At compile time of the kemel, generation of the extra code for
the PhyBUS can he enabled with a #define PHYBUS statement.

19

Chapter 3

~er.nory ~anager.nent

One of the primary functions of every operating system is handling memory
resources, which is called memory management. In the EMPS system this
consists of two parts:

• Maintaining a list of memory locations that are occupied.

• Proteetion of memory areas, and separation of (logical) addresses used
in programs from the (physical) addresses that are used to access hard
ware. This is done by using the MMU (Memory Management Unit) of
the MC68030 processor.

These two parts are largely independent.
In many operating systems, memory management allows programs to ac

cess more memory than is physically available. This can he achieved on com
puter systems that contain an MMU, by mapping memory areas to secondary
(disk) storage, and is completely transparent for application programs. In the
EMPS kernel this technique is not used, because the delay caused by swap
ping memory areas to secondary storage is not compatible with the reai-time
requirements of the kernel.

3.1 Memory allocation

In any computer system that can have more than one program in memory
simultaneously, the use of memory by each program must somehow he ad
ministered to avoid that different programs use the same memory area. This
administration is one of the tasks of the kernel. To this end, it must keep
information about occupied and free memory areas, which is only possible if
a program invokes akernel routine when it needs memory.

When a program needs a specified amount of memory, it issues a call to
the kernel (e.g. in the C language the function malloc is used). The kernel
then checks whether the required amount of memory is available and, if so,
it registers the memory area as occupied and returns the start address of the
area. If there is not suflident free memory, some sort of error condition is

20

signaled. When the program no longer needs the memory, it issues another
kern el call (in C, the fundion free is called) so that the memory can be added
tothefree area.

In the EMPS system, memory is divided into blocks of a fixed size, called
the pagesize. The size of a memory area that is allocated is always an in
teger multiple of the pagesize. The reason for splitting memory intopages
originates from the hardware of the MMU, which will be discussed in the
following sections. In the current kernel version, the pagesize is 1 kbyte.

To register free and occupied pages, the EMPS kernel uses an array of
bytes, which will be referred to as the allocation table. The index of an
element of this array is equal to the number of the memory page that corre
sponds to it. A byte in the allocation table contains the value FREEPAGE
if the corresponding page is free. If a page is occupied, it contains the value
OCCUPIEDPAGE, FIRSTPAGEor LASTPAGE. An example ofthe alloca
tion table is shown in figure 3 .1.

Physical
available memory T b

------__ a Ie of tree- and
w//~m~ ~ occupied pages

~____;__)
)
)

:

~)
~-----)

Occupied area

Free area

Occupied area

Free area

Occupied area

D Free memory ~ Allocated memory
Memory aHocated tor
the table of free- and
occupied pages

Figure 3.1: A list of free- and occupied pages is used for memory allocation.
The list is located at the end of the memory area to which it belongs.

21

The lowest level memory allocation routine takes a parameter which con
tains the number of contiguous pages that is required. When memory must
be allocated, the allocation table is searched for the requested number of
contiguous free pages. The array is then modified to indicate that memory
is occupied.

The method of memory allocation that is employed in the EMPS system
is not used in mostother systems, because searching an arrayfora number of
contiguous pages is a slow operation. Several other ways of keeping track of
memory use are described in [tan 87]. The most commonly used algorithms
maintain a linked list of allocated and free memory areas, respectively. An
advantage of such a method is that searching for a free memory area is
faster. A drawback is that the size of the linked lists changes when memory
is allocated, whereas the size of the allocation table always remains the same.
A variabie list size is more difficult to implement. When the EMPS system
is used in control of physics experiments, the speed of memory allocation
operations is not an important factor, because memory allocation will not be
performed in time-critica! program sections.

We like to note that other methods of memory allocation can be imple
mented in the EMPS kernel relatively easy, since the allocation part of the
kernel is completely separated from the other memory management functions.

3.1.1 lmplementation of memory allocation

The basic routines that the kernel has to supply are the allocation of a
memory area, and the release of a previously allocated area. In the EMP S
kernel, this is done by the low level functions reserve_contiguous_pages and
release_contiguous_pages.

The memory space in the EMPS system consistsof different areas: private
memory, which is the on board memory of the processor module, and one
or more common memory areas from memory modules. In general, memory
areas from different memory modules are not contiguous; a gap of unused
addresses exists between these areas.

For each contiguous memory area, a separate allocation table is main
tained. The position of the table is always at the end of the memory area to
which it belongs, as can be seen in figure 3.1.

Because multiple processes may be allocating or releasing memory, mutual
exclusion is required. This would suggest using semaphores to shield access
to the allocation table. Ho wever, memory used to store sernaphare data
structures is allocated dynamically in the initialization phase of the kernel,
which means that the allocation tableis accessed before semaphores can be
used. To avoid the circular problem that results from this, the allocation
algorithm should be made such that semaphores are only used for shielding
of the table after the initialization of the semaphores.

22

In the EMPS kernel, no semaphores are used, but instead context switch
ing is disabled w hen the allocation tableis accessed. This is done by disabling
the context switch for interrupt handling by ISPs, as explained in section
2.2.3. When the allocation table for common memory is accessed, disabling
interrupts is not sufficient, because the table is shared between all proces
sors. In this case the TAS (Test And Set) instruction of the MC68030 is
used to test a busy fiag: a processor that wants to access the table performa
TAS instructions on the fiag until the allocation tableis available. When the
allocation table becomes available, the fiag is cleared. The TAS instruction
cannot he interrupted by another processor.

3.2 MMU

Most modern microprocessors, including the MC68030, provide an MMU
that can he used to support multi-tasking facilities and to make the software
independent of the memory locations in hardware. The MMU translates
a virtual (also called logical) address used by the software into a physical
address which is used to access the hardware. In this section, the function
of an MMU in general is described. Details of the MMU in the MC68030
processor and the way it is used in the kernel can he found in the subsequent
sections.

3.2.1 Address translation with the MMU

Translation of a virtual address into a physical address is the most basic
function of an MMU. In the translation process, not all bits of the virtual
address are used. lnstead, the memory space is divided into pages, as is shown
in figure 3.2. A page is the smallest blockof memory for which a translation
can he made. An address is split in a page number plus a subaddress within
the page. The page number is translated through the MMU page table,
whereas the subaddress within the page is the same for the virtual- and the
physical address.

In the example of figure 3.2, the pagesize is 1 kbyte, so 10 bits are used as
a subaddress within the page. There are 32 address bits, so 22 bits are used
to define the page number, giving 222 = 4194304 possible page numbers. If
this example would represent reality, a table would he needed with a size
equal to the number of pages. Clearly, such a large table is not economical.
Therefore, MMUs always have a way to limit the translation table size that
is required.

The translation table can he built in such a way that more than one
virtual address translates to the same physical address, because different
table entries can point to the same physical page.

23

j32 Bit Virtual Address

Pa e Table

Index

I Physical Address

Figure 3.2: The MMU uses a table to translate virtual addresses into physical
addresses.

Apart from translating addresses, an MMU can he used toproteet mem
ory areas from illegal access. For instance, it is possible to define a page to he
read only, so that a write operation to a address within that page produces
an exception which can he handled by the system software.

3.2.2 U se of the MMU in the kernel

The reasons for using the MMU in the EMPS system are:

• Efficiency of application programs. Every time an application program
is loaded, it has the same virtual memory map, so absolute addressing
can he used in the program code of the application. This is more
effi.cient than position independent program code.

• Protection. The MMU can he used to prevent application programs
from overwriting the address space of other programs.

In the EMPS system, a virtual memory map is created for each process.
The memory map, which is shown in figure 3.3, consistsof three parts:

24

Virtual Address

OxOOOO 0000

Ox0100 oooo

Ox0200 0000

Ox7EFF FFFF

Ox7FFF FFFF
Ox8000 0000

Ox9000 0000

OxOOOO 0000

OxFFOO 0000

~
!'""'"""'""'

\ I Process address space

Figure 3.3: A virtual memory map is created for each process. The pro
cess address space is owned by the process, whereas the task address space is
shared by all processes in a task, and the system address space is shared by
all processes on a processor.

1. The system address spa.ce. This is the part of the memory that is shared
between all processes running on one processor. In the system address
spa.ce, all memory locations, plus all memory mapped 1/0 locations,
can be reached. The program code and the data structures of the ker
nel are situated in this part of the virtual memory. In the kernel, it is
necessary to emulate some MMU actions in software. For efficiency of
this emulation, it is essential that a simple relation between a physical
memory address and the corresponding system address exists. There
fore, the virtual memory map is created in such a way that the system
address and the physical address differ by a constant offset.

In the current kernel version, all processes have full access to most of the
system address spa.ce. However, shielding of the system address spa.ce
against write access by application programs is desirable. Proteetion
of memoryareasis discussed insection 3.5.4.

25

2. The task address space. A task consists of one or more related pro
cesses. The memory areas that are shared between all processes within
a task are the code, data, and heap, which together form the task
address space.

3. The process address space. Each process in a task has its own stack
memory. A separate stack exists for user- and supervisor mode.

3.2.3 Process migration and memory management

Multiple processes within one task can use the data area of the task to
exchange information. When one process in a task is migrated to another
processor, this is no longer possible: the data area of the migrated process
has become disjunct from the original data area.

Allowing only migration of processes that do not share the code, data,
and heap areas with other processes (i.e. single process tasks) can solve
this problem, but this limits migration possibilities. Instead, it is assumed
that processes that are migrated only communicate via mailboxes. At the
destination processor, a new task is created that contains a copy of the code,
data, and stack areas. As mentioned in chapter 2, migration of heap memory
is not supported. The migrated process is the only process that exists within
the newly created task.

After a process has migrated, the stack memory that was used by the
process at the souree processor is released. If the migrated process was the
only process in the task at the souree processor, memory in the task address
space (code and data areas) is also released.

3.3 The MMU of the MC68030

The MC68030 processor contains a very flexible Memory Management Unit
[mot 90], which has many features that arenotrelevant for the kernel. Only
the functional part of the MMU that is used will he described here.

For address translation, the MMU uses a set of tables that are organized
in a tree structure: the Translation Table Tree. The tree is stored in the
private memory of the processor module. An entry of the tableis called a
descriptor. In the kernel, the tree has 3 levels. The actual address translation
can best he explained with an example.

Figure 3.4 showshow the virtual address Ox02001234 is translated using
the translation table tree. In each level of the tree, a number of bits of
the virtual address is used as an index for a table. In figure 3.4, the 2
most significant bits of the virtual address are used as an index of the table
of the first level (A). Since both bits are 0, the first entry of this table is

26

Translation of virtual address Ox02001234

0 2 0 0 2 3 4 --------lo:o:o:o;o:o> :o;o:o:o:o;o:o:o:o;o:o:o> io:o> :o;o:o:1 > io> :o:ol ------Index 0 2

~~~--~ 

A ç. -::::; ç. ~ 

8 c 
Physical Address I 

Figure 3.4: A 3-level translation tree is used for address translation. In the 
first and second level, the table entries each point to a new table. In the last 
level, the table entries point to the physical page address. 

selected. The descriptor in this table entry contains the start address of the 
next table. Note that 4 of such tables can he selected. For the index of the 
selected second table (B), 6 bits (bit 24-29 of the virtual address) are used 
in this exa.mple. This bit field contains the number 2, so the start address 
of the table of the third level is obtained from entry 2. In principle 4x64 
of such tables can he selected. The index of the selected table of this (last) 
level (C) of the translation tree is obtained from 14 address bits (bit 10-23 
of the virtual address), which contain a 4. This table contains the physical 
page addresses, so in this exa.mple the address of the page is found in the 
table at position 4. The remaining address bits (bit 0-9) are the subaddress 
within the page, and are not used in the address translation. These address 
bits are the sa.me for the virtual and physical address. 

The start address of the first table in the tree is stared in an MMU register. 
The virtual memory map that is used, can he changed by making this MMU 
register point to another translation tree. This happens in the kernel when 
a context switch occurs, so each process has its own virtual memory map. 

In the exa.mple of figure 3.4, bit fields of sizes 2, 6, and 14 were used to 
obtain an index of a table of level A, B, and C, respectively. The number 
of bits that are used for each index can he programmed when the MMU is 
initialized. When the MMU is initialized by the kernel, the sizes of the bit 
fields comply with the exa.mple. 

27 



The address translation process outlined above requires 3 accesses to ta
bles in the translation tree for every address translation. If this tree search 
would he performed for each memory access, a lot of overhead would he 
caused by reading the tables. Therefore, the MMU contains an Address 
Translation Cache (ATC), which keeps the results of the last 22 address 
translations. When a memory address is used fo·r which the translation is 
present in the ATC, notree search is needed. 

The descriptors in a translation table not only supply either the address 
of the next level table or the physical page address, but also contain other 
information items that are used in the translations process. The items that 
are used by the kernel are described next. 

3.3.1 Table index limits 

Insection 3.2, it was mentioned that the table used fortranslation of virtual 
addresses into physical addresses could become unacceptably large. The 
fact that a tree of tables is used for address translation does not solve this 
problem: if the wholetree withall its branches would he present, the total 
number of table entries in the last level of the tree would he equal to the 
number of pages. 

To reduce the size of each table in the tree, a limit can he placed on the 
index that is used for accessing the tree. Imposing a limit on the size of 
a table in the first or the second level of the tree means that the number 
of tables in the next level is also reduced. For this purpose, a limit field is 
present in every descriptor in the translation table. The limit field contains 
the extreme value that will he accepted as an index of the next level table 
in the tree. An index that falls outside the range of allowed values causes an 
exception which can he handled by the kernel. 

The limit that is imposed on the index, can he either a lower limit or an 
upper limit. If it is a lower limit, the index of the next table level must he 
greater than or equal to the value in the limit field. If it is an upper limit, 
the index value must he less than or equal to the limit. Whether the limit is 
a lower or an upper limit, is determined by the 1/U bit in the descriptor. 

3.3.2 Descriptor type 

From the description of the address translation process, it is clear that not 
all descriptors are the same: the descriptors in the first two levels of the 
translation tree contain the start address of the next table, whereas in the 
last level, the descriptors contain the physical page address which results 
from the translation. In the kernel, 3 types of descriptors are used: 

28 



Translation of virtual address Ox02001234 using early terminetion page descriptors 

Index 

0 2 0 0 1 2 3 4 --------
lo:o:o:o;o:o:1:o;o:o:o:o;o:o:o:o;o:o:o:1io:o:1:o;o:o:1:1;o:1:o:ol 
...__ ------·-·----·-·-··~··;;.:.··:..:.···~··:.:.··:.:.··:..:..··:....· __ ·_··_··_·· _____ ___ 

0 2 Ox1234 
4 '>~-~----··-----~ 

=j ~t-------t ...... .'::: Page index 

A 

B 

is checked against 
Limit field 

Figure 3.5: An example of a translation tree which contains early termina
tion page decriptors. The last level of the tree is omitted. 

1. INVALID DESCRIPTOR. When an invalid descriptor is encountered 
in the translation tree, an exception occurs. Invalid descriptors are 
used if the virtual memory map contains gaps for which no translation 
is available. 

2. TABLE DESCRIPTOR. In the fi.rst two levels of the translation tree, 
the descriptors normally contain the address of another table. In that 
case, the descriptors are called table descriptors. 

3. PAGE DESCRIPTOR. The last level of the tree contains descriptors 
that corresponds to the page address which results from the address 
translation and are called page descriptors. 

When a page descriptor is encountered, the physical page address is ob
tained from the descriptor. The use of the page descriptor type is not re
stricted to the last level of the translation tree. It can also he used in the 
first two levels. If a descriptor in the first two levels of the translation tree is 
marked as a page descriptor, it is called an early termination page descriptor, 
beca.use the tree search is terminated when this descriptor is found. 

Early termination page descriptors are used for the translation of a con
tiguons range of pages. The limit field of an early termination page descriptor 
is used to check the index of the page, similar to table descriptors. In normal 
page descriptors, the limit field is ignored. An example of a translation tree 
in which an early termination page descriptor is used, is shown in figure 3.5. 

29 



The use of early termination page descriptors reduces the total number of 
descriptors in the translation tree, because such a descriptor replaces multiple 
normal page descriptors. Early termination page descriptors can only he used 
for a range of pages that are physically contiguous. Normal page descriptors 
provide a separate translation for each page, so that pages that are contiguous 
in the virtual memory map, do not have to he physically contiguous. 

3.3.3 Supervisor only /Read only proteetion 

The MMU offers proteetion of memory areas against illegal accesses. Memory 
areas can he protected against access in the user mode of the processor by 
setting the S bit in the descriptor, and against overwriting by setting the 
WP bit in a descriptor. If during the table search a descriptor is encountered 
in which the S bit or the WP bit does not comply with the access mode, an 
exception occurs. 

3.4 The old memory management 
implementation 

One of the reasons for using the MMU is to allow application programs to 
use absolute addressing. Therefore, the MMU address translation must he 
created in such a way that the virtual memory map of a process is always 
the same, independent of its physical memory location. 

As described in the previous section, the address space of an application 
process basically consists of five areas: the code area, the static data area, 
the heap, the user stack and the supervisor stack. Each of these areas has 
its own MMU tables for address translation. 

In the original version of the EMP S kernel, the MMU translation tables 
are stored in static array variables, and as a result they have the same size 
for every process. The arrays contain 64 entries for the code, 32 for data, 
16 for heap, and 64 for both stack areas. Since the pagesize is 1 kbyte, the 
maximum size of each area in kbytes is equal to the number of entries. (Note 
that the number of entries in a table defi.nes the maximum size of an area, but 
that in general a process will occupy less memory. The remaining entries are 
marked as INVALID descriptors by the kernel when a program is loaded.) 

When the EMPS kernel is used as a basis for data acquisition in physics 
experiments, the limitation of the size of memory areas caused by the static 
size of MMU tables is unacceptable. In particular the heap, which is used to 
store the data acquired from the experiment, may grow to a size of several 
megabytes. 

lncreasing the size of the MMU tables may seem to he a solution. How
ever, the amount of memory required for storing the tables beoomes prob-

30 



Iernatie when the table size is increased. In the present version of the EMPS 
kernel, the maximum number of processes is chosen as 50. Because the MMU 
translation tables are allocated statically, the total number of MMU descrip
torsin the last level of the translation tree is 50 * {64 + 32 + 16 + 64 + 64) = 
12000. Each descriptor accupies 8 bytes, so that 96000 bytes are used. If 
the number of page descriptors would he increased such that megabytes of 
memory can he accessed, the translation tables would beoome excessively 
large. 

Another problem with the original implementation is that each process 
has its own MMU descriptors for code, data, and heap, whereas the memory 
areas for code, data, and heap are ahared between all processes in one task. 
The descriptors of all these processes must therefore be kept consistent: they 
all contain a copy of the same information. Every time a new process is 
created in a task, all descriptors for code, data and heap must he copied, and 
every time the heap area is expanded, the heap descriptors of all processes 
in the task must he updated. Apart from the overhead that is created, this 
implementation also involves a large number of MMU tables. 

3.5 The new memory management 
implementation 

To avoid the problems of statically declared MMU tables, a new implemen
tation of the memory management routines has been made. In this new 
implementation, MMU tables are allocated dynamically, and the translation 
tables of the task address space ( the code, data, and heap sections) are shared 
between all processes in the task. Also, early termination page descriptors 
are used for address translation of contiguous memory areas. 

The translation tree that is built by the new implementation, is presented 
in figure 3.6. 

3.5.1 Shared translation tables for processes in one 
task 

As already mentioned above, application processes that belong to the same 
task share memory areas for program code, static data, and heap. Therefore, 
the part of the translation tree that is used for these areas can also he shared. 

Insome cases, memoryareasof an application will be accessed by external 
devices using DMA.In this case, memory accesses do not occur via the MMU, 
and the physical address of the memory area is used. Because the data that 
is transferred using DMA willoften cross page boundaries, the memory area 
must he physically contiguous. Therefore, a contiguous range of pages is 

31 



Level A Level B 

---
Data* 

....... 

1/0 area* 

Level C 
---'J 

Code 
Code 
Code Task 

Address 
Space 

Process 
Address 
Space 

System 
Address 
Space 

Figure 3.6: In the address translation tree created by the new memory man
agement routines, early termination page descriptors are used, and the de
scriptors for code, data, and heap are shared between all processes in a task. 
Early termination page descriptors are marked with a *. 

reserved in all cases where DMA is possible. These are the data, heap, and 
stack sections. 

Contiguous memory areas are also needed when data structures of an 
application process are accessed by a kemel process. The kemel process 
is not part of the application, and cannot access the data structure at the 
same virtual address as the application process, because these processes have 
a different address translation tree. Therefore, the kemel process translates 
virtual addresses of the application process to virtual addresses in the system 
address space, through w hich all memory locations can be reached. Because 
the data structure may cross page boundaries, the pages of this structure 
must be physically contiguous. 

32 



3.5.2 Dynamic allocation of memory for translation 
tables 

The memory that is used to store the task related part of the address transla
tion tree is allocated dynamically when a new task is created on the system. 
Similarly, the process related part of the tree is allocated when a new pro
cess is created in a task. This way, the size of the translation tables can be 
adjusted to the requirements of the task and the process. 

A new task can be created by loading an application program via the 
LAN. The size of the translation tables is derived from the file header, which 
contains the size of the code area and the size of the data area. A detailed 
description of the file header can be found in appendix H. 

3.5.3 Early termination page descriptors 

Most memory areas of an application program are required to be physically 
contiguous, as explained above. Forthese areas, the use of early termination 
page descriptors is advantageous, because the last level of the translation 
tree is omitted. Early termination page descriptors are used for the memory 
areas of data, heap, and stack. 

The early termination page descriptors are located in the second level of 
the translation tree. In this level of the tree, the translation tables contain 
64 descriptors (see section 3.3). The code area and data area each use 1 
descriptor, so that 62 descriptors remain for the heap area. The heap area 
contains memory that is allocated dynamically when the application program 
is executing, and therefore the descriptors for the heap area must be written 
into the tablewhen the application program allocates memory. If only early 
termination page descriptors would be used for the heap area, this would limit 
the number of memory blocks that could be allocated to 62 for each task, 
because only 62 descriptors are available for the heap area. This can be a 
problem for programs that allocate many small blocks of memory. To bypass 
this limitation, the implementation of the memory allocation functions also 
supports use of normal page descriptors. Normal page descriptors are located 
in the last level of the tree, in which the translation tables contain 16384 
descriptors. The number of normal page descriptors that are required for a 
task, is a parameter of the kernel function that creates the task related part 
of the MMU tree. 

3.5.4 Proteetion of memory areas 

Restricting access to certain memory areas in application programs can pro
teet programs from the consequences of errors in other programs. The MMU 
offers read-only and supervisor-only access restrictions for memory areas. 

33 



Combining these two options gives proteetion against write access in super
visor mode. It is not possible to proteet a memory area against write access 
in user mode, while allowing write accessin supervisor mode, except by pro
hibiting access of that memory area in user mode completely. 

Because all memory locations can he accessed in the system address space, 
proteetion of this area against write access by application programs is de
sired. Application programs execute intheuser mode of the processor, and 
therefore the system address space should he protected against write access 
in user mode. As explained above, the MMU doesn 't offer this proteetion, 
but it can prohibit access to the system address space in user mode com
pletely. However, in the current version of the kern el, it is assumed that 
application programs can read some parts of the system address space (e.g. 
when a message is sent via a mailbox). Completely prohibiting access to this 
area for application programs is therefore only possible by making substantial 
changes to the kernel. Because those parts of the system area which must 
he accessible to applications are alllocated in common memory, proteetion 
of the private memory part of the system address space is possible. 

In the current kernel version, access restrietions have been implemented 
for the code area of application programs, which has read-only protection, 
and for the private memory part of the system area, which has supervisor
only proteetion. 

3.6 U se of the MMU to divert VME 
memory access to the VSB bus 

Communication between processors within one node uses common memory, 
as explained in chapter 1. In the EMPS system, processors are connected 
to common memory with two separate hardware buses, namely the VME 
bus and the VSB bus. All processors within one node can access common 
memory via the VME bus, which has 20 slots. Access via the VSB bus is only 
possible if the processor and the memory module belong to the same cluster, 
which is a group of 5 slots. Which bus is used, depends on the address that 
is used to access a location in common memory. Some memory locations 
in shared memory can thus he accessed at two different addresses, one for 
access via the VME bus, and the other for access via the VSB bus, as shown 
in figure 3. 7. 

The bus system of a multi-processor system often forms a communication 
bottleneck. The availability of two separate buses for access to common 
memory can help to avoid this. Access to shared memory should occur via 
the VSB bus if the processor module and the memory module belong to the 
same cluster, so that the VME bus is available for communication between 

34 



Common memory 
accessed via VME 

Common memory 
accessed via VSB 

·"· Physical memory 

Figure 3.7: Memory that is shared between processors witkin one cluster 
can be accessed at two different addresses, corresponding to the VSB and the 
VME bus, respectively. 

modules that do not belong to the same cluster. Even when the EMPS 
system is equipped with only one processor module (which is a configuration 
that is likely to he used for the control of many physics experiments), using 
the VSB bus for memory access by the processor can he advantageous when 
the VME bus is used for DMA data transfer. 

To exploit the access hierarchy formed by the VME/VSB buses in soft
ware, additional actions would be required. Each time shared memory is 
accessed, a program would have to check whether the memory module be
longs to the same cluster as the processor module. In that case, it would 
have to calculate the address at which the memory location can he reached 
via the VSB bus. This would increase the complexity of the software, and 
add significant overhead. 

Using the MMU, communication via the VSB bus can he made completely 
transparent. The MMU translation tables can be filled in such a way that 
when a memory location is accessed with an address that corresponds to the 
VME bus, but refers toa memory module that belongs to the same cluster, 
the translation of that address causes the VSB bus to be used instead. Any 
access to shared memory can therefore be done using the virtual address that 
belongs to the VME memory area. 

Creating MMU translation tables in such a way that a virtual address 
which normally corresponds to the VME bus translates toa physical address 
that causes access via the VSB bus is straightforward. At system start up, 
on every processor a table is generated that contains the VME address areas 

35 



of memory modules which can also he reached via the VSB bus. When 
an entry in the MMU translation table is filled, it is checked whether the 
physical destination address corresponds to a VME area that can also he 
reached through the VSB bus. If this is so, the corresponding VSB address 
is substituted. 

Because for some applications the automatic use of the VSB buo may 
he undesirable, it has been made optional. At compile time of the kernel, 
generation of the extra code for transparent access via the VSB bus can he 
enabled with a #define TRANSPARENT _VSB statement. 

36 



Chapter 4 

Performance tests 

Since the EMPS system will be used for reai-time experiment control and 
data acquisition, knowledge of the amount of time that various kernel func
tions take is essential when writing application programs. Another reason 
for determining the performance of kernel functions is to gain some insight 
in the overhead that is caused by processes running within the kernel. In 
this chapter, the performance of several kernel functions is discussed on the 
basis of test results. The tests that have been used give the average time for 
executing each kernel function. Worst case behavior is not determined for 
two reasons: 

1. Various data acquisition interfaces that are used within the PhyDAS/ 
EMPS system contain a large internal buffer for the data that is mea
sured, so the soft reai-time constraints for controlling these interfaces 
are more important than worst case behavior. 

2. It is very diffi.cult to measure or calculate the worst case time, because 
this depends on many aspects, e.g. the number of wait states for ac
cessing memory locations, the state of the MMU translation cache, and 
the instruction that is being executed at the time an interrupt occurs. 

As mentioned in chapter 2, in the EMPS kernel interrupts are handled 
by Interrupt Service Processes. The overhead caused by using an Interrupt 
Service Process instead of using an Interrupt Service Routine is determined 
by oomparing the two (section 4.2). This overhead can cause significant 
performance loss when interrupt activity is high, e.g. when writing output 
to the terminal (section 4.3). 

The tests results in this chapter have been obtained with an MPS030 
computer module with a doek frequency of 33 MHz. 

4.1 Context switch time 

Context switching can happen as aresult of executing akernel function, and 
hence the amount of time used by akernel function depends on the context 

37 



switch time. In the EMPS kernel, the context switch time is influenced 
by the presence of a. floa.ting point coprocessor, beca.use the registers of the 
coprocessor must he storedinmemory a.t ea.ch context switch. It is therefore 
useful to mea.sure the context switch time, a.nd especia.lly, to mea.sure the 
extra. a.mount of time tha.t is needed when a. coprocessor is used. When 
a. coprocessor is present, a.t ea.ch context switch it is checked whether the 
coprocessor ha.s been used by the process tha.t is being dea.ctiva.ted a.nd by 
the process tha.t is a.ctiva.ted. This informa.tion is obta.ined from the state 
register of the coprocessor. Only if the coprocessor wa.s used, the register if 
the coprocessor a.re sa.ved resp. restored. 

For this test, the regula.r kernel functions in which a. context switch is per
formed ca.nnot he used, beca.use a.n unknown a.mount of overhead is ca.used 
by executing instructions a.pa.rt from the context switch. Therefore, in this 
test only the kernel function cswitch, which is the lowest level context switch
ing function, is used. Applica.tion programs ca.nnot ca.ll the function cswitch 
directly, so the test program for mea.suring the context switch time involved 
tempora.rily a.ltering the kernel. In the program tha.t wa.s used for this test, 
a. large number of context switches a.re executed between two processes tha.t 
a.re crea.ted inside the kernel especia.lly for this purpose, a.nd the time used is 
derived from the number of doek interrupts. 

The context switch time mea.sured with this test a.mounts to 39J.ts if no 
floa.ting point coprocessor is present. If both processes involved in the context 
switch use the coprocessor, the context switch time a.mounts to 72J.ts, a.n 
increa.se of 33JLS with respect to the test where no coprocessor is present. 
The MC68882 coprocessor tha.t is used in the EMPS system ha.s eight 80 
bit floa.ting point data. registers, a. 16 bit control register, a. 32 bit status 
register, a.nd a. 32 bit instruction a.ddress register. At ea.ch context switch, 
these registers must he storedinmemory for the process tha.t is dea.ctiva.ted, 
a.nd must he restored from memory for the process tha.t is a.ctiva.ted. This 
accounts for the extra. time used. 

In subsequent sections, mea.surements have only been made without the 
presence of a. coprocessor. If a. coprocessor is used, the results determined in 
these sections ca.n he a.da.pted by counting the number of context switches 
tha.t occur, a.nd a.dding 33J.ts for ea.ch context switch. 

4.2 Overhead from Interrupt Service Pro
cesses 

The use of Interrupt Service Processes instea.d of Interrupt Service Routines 
for interrupt ha.ndling clea.rly will have some effect on the time needed to 
service a.n interrupt. Figure 4.1 illustra.tes the timing of the va.rious stages in 

38 



interrupt 
asserted 

ISR 
activated 

tsh 

Start hand/er 
called 

Context switches 

twi 

Await_interrupt 
called 

ISR 
continued 

ISR 
terminaled 

Figure 4.1: The various steps involved when an interrupt is handled by an 
!SP. 

which an interrupt is handled. 
The extra time used by handling interrupts in an ISP insteadof an ISR is 

t.h + twi· To measure the extra time, some temporary alterations have been 
made to the doek interrupt handler. Normally, the doek interrupt starts 
an ISR which increments the system time and then starts the doek ISP. 
The doek ISP checks whether a device timeout has occurred and handles 
processes in the DELA Y state. For the measurements made in this test, the 
doek ISP has been altered such that no action is performed. 

Two tests are used to find the extra amount of time used for the ISP. 
In both tests, an application program containing an empty waiting loop is 
used. The loop will take a fixed number of doek cydes. By counting the doek 
interrupts that occur while a certain number of loops is executing, the time 
is measured. In the first test, the ISP is altered in the way described above. 
In this case, the time measured is equal to the time which the processor uses 
to go through the empty loops, plus the total time for handling the doek 
interrupts. In the second test, calling the ISP is omitted by changing the 
ISR. Now, the time measured does not indude the overhead for activating 
the ISP. 

The two tests are performed with the doek interrupts occurring at dif
ferent rates, so that the total time for handling the doek interrupt can he 
calculated for each test. This time is called t1sP forthetest where the inter
rupt is handled by an ISP, and inthetest where calling of the ISP is omitted 
it is called tiSR· Gomparing these times for the two tests gives the amount 
of time used for calling the doek interrupt process: 

t.h + twi = t1SP - tiSR 
t1sP can he calculated from the test results with the doek interrupts 

39 

t 



occurring at different rates. 1f the time between subsequent doek interrupts 
is called teloe/cl resp. teloclc2 and the number of doek interrupts occurring 
during the executions of the wait loops is neloe/cl resp. neloclc2, the time elapsed 
during the test is teloe/cl • neloe/cl resp. teloclc2 • neloclc2 • The difference between 
these two times, teloe/cl • neloe/cl - teloclc2 • neloclc2, is the time used for handling 
for handling neloe/cl - neloclc2 doek interrupts. The time needed to handle one 
doek interrupt is: 

t 
teloe/cl • neloe/cl - teloclc2 • neloclc2 

ISP = 
neloe/cl - neloclc2 

t1sR is calculated similarly. 
From these tests, t1sP is found to be 275p,s and t1sR is found to be llp,s. 

Use of ISPs instead of ISRs for interrupt handling causes an increase of 
264p,s in the time needed to handle an interrupt. Which consequences this 
has for the performance, depends on how frequently interrupts occur. For 
the interrupts associated with the doek and the terminal, the consequences 
are discussed insection 4.3. For interrupts from the PhyBUS, the interrupt 
rate depends on the types of interfaces that are used and on the experiment 
for which the interfaces are used, and therefore no general condusions are 
possible about the performance loss. In consiclering whether to use an ISR 
instead of an ISP for handling certain interrupts, the a.dvanta.ge of loca.tion 
independent communication that is possible with ISPs is an important factor. 

In the handling of an interrupt by an ISP, two context switches occur. 
The time needed for two context switches (78p,s) is much less than the extra 
time needed to handle an interrupt with an ISP (264p,s ). This suggest that 
a significant amount of overhead is present in other routines. 

4.2.1 Effects of the MMU 

When a context switch occurs, the contentsof the MMU Address Translation 
Cache are erased and must be refreshed each time a new process is started. 
In application programs that depend heavily on the use of the ATC, the 
context switch that happens after an ISP is responsible for ATC misses in 
the application program that is reactivated. The time needed to refill the 
ATC is therefore attributed to the ISP. 

To find out how much effect intensive use of the ATC has on the amount 
of time used by the context switch that accompanies an ISP, an application 
program consisting of two test procedures is used. The test procedures only 
differ in the number of memory pages that are accessed. In both procedures, 
a loop is executed in which an array is accessed. In the first procedure, all 
array elements are located within the same page, whereas in the second loop, 
the array elements are located in 21 different pages. Together with the page 
from which program code is read, the first test procedure accesses 2 pages, 

40 



whereas the second test procedure aecesses all 22 pages for whieh an address 
translation can he stored in the ATC. 

Measuring the amount of time used by the ISP is done in exactly the 
same way as the determination of the overhead from ISPs outlined above. 
From the results of these tests, is found that the time used by the ISP is 
275p.s if only 2 pages are aecessed by the test program, and 322p.s if 22 pages 
are accessed. The 20 extra ATC misses that oeeur aftereach doek interrupt 
are responsible for the extra 4 7 p.s. In most programs it is unlikely that all 22 
ATC entries will remain constant during exeeution of the whole, hence the 
effect of ATC misses due to an ISP will he less than 47p.s. 

4.3 Performance loss from ISPs 

In this section, the performance loss from the ISPs that are aetive in the 
kernel is analyzed. The performance loss eaused by two ISPs is measured: 

1. The doek ISP; this process is aetivated at regular intervals and hence 
the performance loss is always present 

2. The terminal output ISP; this is the process that is assoeiated with the 
most frequently used device interrupt. It has been selected beeause the 
terminal output has a high interrupt rate. 

4.3.1 The clock ISP 

Normally, the only ISP in the kernel that is aetivated at regular intervals is 
the doek process. The doek process is used to re-activate processes in the 
DELA Y state, and to start device timeout routines. To determine how much 
performance is lost due to this interrupt, only the situation that no other 
process is aetivated by the doek process is of importance. 

The performance loss eaused by the doek process is measured similarly to 
the method that was used to find the time for handling an ISP, as diseussed 
in the previous section. Again, an applieation program consisting of a wait 
loop is used, and the time to exeeute a certain number of such loops is 
measured at different doek interrupt rates. The time used forservice of the 
doek interrupt by the doek process is computed from the results. 

From this test, the time used for the doek ISP is found to he 396p.s. 
The doek rate that is normally used in the EMPS kernel corresponds to 
time intervals of 20ms between subsequent doek interrupts, and hence the 
performance loss due to the doek ISP is about 2%. 

These results suggest that it is unlikely that the performance loss due to 
the doek ISP will play an important role for most applications. 

41 



4.3.2 The terminal output ISP 

The terminal output ISP is activated when the seria.l output line, controlled 
by a MC68681 DUART [mot 85], is ready to transmit a chara.cter. This serlal 
output line is connected to a terminal and operatea at 9600 bits per second 
(which corresponds to nearly 1000 interrupts per second) in the current ver
sion of the kernel. In the near future, the speed of the terminal output will 
he increased to 19200 bits per second. 

The DUART contains an output buffer for 2 chara.cters, and generatea an 
interrupt if the buffer is not full. The interrupt remains active until the buffer 
is full, and must he disabled w hen there is no data to he transmitted. In the 
origina.l implementation of the kernel, the interrupt activatea an ISP for each 
chara.cter to he transmitted. When text is being sent to the terminal, the 
terminal output interrupt is activated at a much higher frequency than the 
doek interrupt of which the performance loss was described in the previous 
section. It can he expected that the performance degradation during output 
to the terminal is also much higher. 

To measure the performance loss when output is sent to the terminal, an 
application program containing two processes is used. One process contains 
an empty waiting loop which is executed twice: the first time while no output 
occurs, and a second time while output is generated by the other process. 
This second process continuously prints lines of 80 chara.cters on the terminal 
after it has been activated, and has the highest priority of the two processes. 
The printing process is suspended from execution when it must wait until 
the terminal output is ready. The time that is used to execute the loop in the 
first process is measured both without printing and with printing, and the 
performance loss is computed from the result. From this test, it appears that 
the execution time of the program increases by a factor of 1.84 when output 
is being sent to the terminal. This corresponds toa performancelossof 46%. 
If the speed of the terminal output would he doubled, the performance loss 
would a.lso roughly double. In that case, the performance loss during output 
to the terminal would become very severe. 

The performance loss can he reduced by lowering the number of times 
the ISP is activated. To accomplish this, handling of terminal output of 
chara.cters is moved from the ISP to the ISR. A buffer is used to store a w hole 
line of chara.cters, and the ISP is only activated when the buffer is empty. 
Because a line of output chara.cters usua.lly contains a number of chara.cters, 
the ISP is activated less often. The terminalISP is used to handle what can 
he called a logica.! interrupt, that indicates that a whole line of chara.cters 
has been transmitted. In figure 4.2 the relation between the ISP and the ISR 
is shown. 

By moving the handling of terminal output from the ISP to the ISR, 
the latter will he expanded. This expansion is only small, because reading 

42 



Process that 
prints output 

Messageto 
print 

ISP 
Line buffer 

ISR 

Figure 4.2: Output for the terminal is sent in a message to the terminal 
output ISP. The ISP transfers the message to the ISR, and wait until the 
transmission is completed. 

characters from a buffer and sendingthem to the DUART is a very simple 
action. By altering the terminal output in this way, all of the advantages of 
using ISPs are still valid. 

The performance test described above is used to test the results of the 
changes. The result indicates that with the new implementation, the execu
tion time of the test program increases only by a factor of about 1.03 times 
as long when output is sent to the terminal, and hence the performance loss 
is reduced to 3%. Of course, the present method that is used to reduce per
formance loss from the terminal output can also he applied to other devices 
which allow a number of I/0 operations to he buffered. 

4.4 Semaphores 

In the EPEP interpreter, semaphores can he used for shielding of resources 
that are shared between processes. The EPEP semaphores will somehow he 
mapped to semaphores as provided by the EMPS kernel. The semaphores 
from the kernel will also he used to activate EPEP processes that handle a 
PhyBUS interrupt. Therefore, the time used for signal-wait operations on 
semaphores in the kernel directly effects the time used by the corresponding 
EPEP routines. 

Two types of semaphores are available in the kernel: local semaphores, 
which can only he used by processes running on the same processor, and 
common semaphores, which can he accessed from all processors in a node. 
Of both sernaphare types, the time used for a pair of signal-wait operations 
has been measured. Two situations are distinguished: those in which the 
signal-wait operations cause a context switch, and those in which the signal 
wait operations do not cause a context switch. The test results are shown in 
table 4.1. 

43 



Local sernaphare Cornrnon sernaphare 
with context switch 217p.s 675 JLS 
without context switch 56 JLS 78p.s 

Table 4.1: The time used by a pair of signal-wait operations on local- and 
common semaphores. 

The results of the sernaphare tests show that the local semaphores are 
more than 3 times faster than the common semaphores if the wait-signal 
operations cause a context switch. In the implementation of the EPEP in
terpreter, semaphores are used to signal that a PhyBUS interrupt has oc
curred. Using common semaphores for this purpose would allow handling of 
a PhyBUS interrupt by any processor in a node, but has the disadvantage of 
increased response time. Because in practical use a single processor system 
is a likely contiguration of the EMPS when it is used for experiment control, 
local semaphores are used to signal PhyBUS interrupts. Even if more than 
one processor is available in the EMPS, handling all the PhyBUS interrupts 
by a single processor is the most practical solution. 

44 



Chapter 5 

Conclusions and suggestions 

In the EMPS kemel, multi-processor services consist of mailboxes, whieh offer 
loca.tion transparent communica.tion, and process migration, whieh ean he 
used to balanee the processing load over all processors in the system. These 
services are related in the sense that loca.tion transpareney of mailboxes is 
exploited when processes are migrated. All necessary reconfiguration of the 
communica.tion is done inside the kemel. A restrietion to process migration 
is that the migrated process should not use heap memory. The migration 
faeility might he made more useful by removing this restrietion. 

Interrupts are handled by dedica.ted processes, instead of interrupt ser
vice routines. This method of interrupt handling offers loeation independent 
aecess to I/0 devices. One of the advantages of using processes to handle 
interrupts is that stack memory required for interrupts is minimized. An
other way to reduce the stack memory that is needed, is using the interrupt 
stack pointer provided by the MC68030. Whether use of this stack pointer 
is advantageous should he examined in more detail. 

The memory management in the EMPS kemel uses a Memory Manage
ment Unit to ereate a virtual address space for each process in the system. In 
the original kemel, hard limits are placed on the amount of memory that ca.n 
he used by each applica.tion program, beca.use MMU translation tables of a 
fixed size are used. This restrietion prohibits the use of the kemel for appli
eations that involve large data struetures. Therefore, a new implementation 
of the memory management was made, in whieh the tables are alloeated 
dynamically when a new task is ereated. In this new implementation, the 
early termination page descriptors provided by the MMU are exploited to 
reduce the size of the tables. As a result of these improvements, the amount 
of memory that ean he used by applica.tion programs is -in practical terms
only limited by the physieally available memory. 

For memory alloeation, an array offree- and oeeupied pages is maintained. 
This array is shielded against simultaneous access by different processes, 
by disabling interrupts during aecess to the array. A consequence of this 
approach is that task switehing is temporarily disabled. This situation can 
he improved by using semaphores for shielding. When semaphores are used, 
context switehing is not disabled. It can also he advantageous to rep!ace the 

45 



current allocation routine by another routine, which is based on a linked list 
of occupied memory areas. Linked list allocation routines are generally faster 
then routines that use an array of pages. 

Performance tests show that the extra amount of time needed to handle an 
interrupt by an Interrupt Service Process instead of by an Interrupt Service 
Routine is more than 260JLs. This means that a severe performance loss can 
he caused by interrupts that occur at a high rate. For one interrupt source, 
the terminal output device, an improvement is implemented by using a buffer 
in the ISR, and activating the ISP only when the buffer needs updating. This 
method can also he useful for some other interrupt sources. 

Two projects, which will use the EMPS kernel as a basis, are the de
velopment of the EPEP interpreter for control of physics experiments, and 
the development of a dependable distributed operating system. Most of the 
improvements that were made with respect to the original version of the 
kernel are useful in both areas. The EPEP interpreter is application of the 
kernel that is of interest in the Department of Physics. At this moment, the 
development of a C-language version of theEPEP interpreter is nearing its 
completion. In preliminary tests, the EMPS has successfully been used as a 
basis for EPEP. 

Notall improvements and extensions that were made to the original ver
sion of the kernel have been discussed in this report. A summary of these 
changes is given in appendix I. 

46 



Bibliography 

[mot 90] Motorola., MC68030 Enha.nced 32 bit Microprocessor User's Ma.n
ua.l, rev.2, 1990. 

[mot 92] Motorola., Progra.mmers Reference Ma.nua.l, rev.1, 1992. 

[dij 93] G.J.W. va.n Dijk, The Design of the EMPS Multi-processor Execu
tive for Distributed Computing, 1993. 

[oa.s 93] Oa.sys/Green Hills 68K, Cross Development Guide, version 1.8.6, 
1993. 

[ta.n 87] A.S. Ta.nenba.um, Opera.ting Systems, Design a.nd lmplementa.
tion,1987. 

[mot 85] Motorola., MC68681 Dua.l Asynchronous Receiver/Transmitter, 
1985. 

47 



Appendix A 

Command interpreter 

The oommand interpreter is a process within the kernel that executes com
mands entered by a terminal connected to one ofthe processor modules. With 
the oommand SET_PROCthe processor module that executes the oommand 
interpreter ca.n he changed. The oommand SET_OUTPUT changes the pro
cessor module to which the terminal output is send. 

The oommands recognized by the oommand interpreter are:. 

• BATCH filename: execute batch file filename. The batch file may 
oontain any valid oommand. 

• BROADCAST filename jq: load Motorola "S" or "Q" file filename 
at all processors. Qualifier q is the type of file to he loaded, "S" for a 
Motorola "S" file (default), or "Q" fora "Q" file. This command is used 
only at system startup, to load the kernel software at all processors in 
the system. 

• DEV devicenr: display information about device devicenr: the device 
name, the first process in the device queue, the device oount ( this is 
the number of interrupts that the device has generated), timeout flag, 
timeout time, the a.ddress of the routine that is ca.lled when a timeout 
occurs, and a list of device registers. 

• DIR name: display the oontents of directory name. 

• DOWNLOAD filename AT procnr/q: loa.d Motorola "S" or "Q" file 
filename at processor procnr. Qualifier q is the type of file to he loaded, 
"S" for a Motorola "S" file (default), or "Q" for a "Q" file. This 
oommand is the sa.me as the BROADCAST oommand, except that the 
file is only loa.ded at the specified processor. 

• DUMP start end: display memory oontents from start to end. 

• HELP: display all valid oommands. 

• KILL pid: terminate process pid and release the process memory. 

48 



• LOAD filename {AT procnr}: load a new program with name filename 
from the file-server. The process is loaded at processor procnr (default 
current processor). 

• MIG RA TE pid procnr: migrate process pid to processor module procnr. 

• P D pid: display information about process pid. This command shows 
the process name, process state (ready, blocked, ... ), additional infor
mation depending on the process state, the queue in which the process 
is, the memory used by the process, and the mailbox connections of 
the process. 

• REGS pid: show the CPU register contents of process pid 

• RESTART procnr: restart processor procnr after a hardware system 
reset. 

• SET_OUTPUT procnr: redirect all terminal outputto processor mod
ule procnr. 

• SET_P ROG procnr: change processor that executes the commands that 
are entered via the keyboard to procnr. 

• SHOW-ALL: display the process table. Of each process (on the cur
rent processor), the pid, process name, priority, and process state are 
displayed. 

• SHOW_CHANNELS: display the status of file-server channels. 

• SHOW_CLOCKQ: display the processes and their wake-up time in the 
doek queue of the current processor. 

• SHOW_CSW: display the number of context switches that have oc
curred on the current processor. 

• SHOW JJEV: display the device table. Of each device, the device num
ber, the device name, the waiting process, and the number of times the 
device has been used is displayed. 

• SHOW _ERRORS: display the number of VME bus errors. 

• SHOW _MAILBOXES: display mailbox information. Of each mailbox, 
the pid of senders, the pid of receivers, and the mailbox queue is showed. 

• SHOW _MEM: Display a list of free memory pages and the number of 
free pages. 

49 



• SHOW _MSG: display the number of messages that have been sent from 
the current processor. 

• SHOW-READY: Display all processes that are in the READY state. 
The processes are listed in the order in which they will be executed. 
Of each process, pid, priority, and name are displayed. 

• SHOWSEM: display the semaphore table. Of each local semaphore, 
the name, count, and the queue of waiting processes is shown. Of each 
common semaphore, the count, head, tail, a variabie (listfull), name, 
and a list of waiting processes is shown. 

• START pid: put process pid in the READY queue. 

• TIME: display the time since system start-up. 

• TRANSLATE pid viradr: translate the virtual address viradrof process 
pid into a physical address. 

Additionally, any command that is not recognized is interpreted as a 
name of an EMPS program file. If the program file can be loaded, execution 
of the first process declared in the file is started immediately and input from 
the terminal is redirected to the newly created process. The <control> Z 
key can be used to conneet the terminal input to the command interpreter 
again. 

50 



Appendix B 

Memory maps 

Two memory maps are of importance in the kernel: 

1. The physical memory map, which lists the addresses at which memory 
locations can be reached physically. The addresses listed here appear 
on the address bus of the system, and are used by all hardware devices 
that access memory directly. 

2. The virtual memory map, which list the addresses that are used by 
program instructions. These addresses are translated by the MMU to 
a physical address. 

The physical memory map is represented in figure B.l. 
The virtual memory map that is created by programming the MMU, con

sistsof a system area which is only used within the kernel, and other memory 
areas which are used for application programs and process stacks, as de
scribed in chapter 3. The system area occupies virtual addresses Ox80000000 
and higher, whereas the address range below Ox80000000 is used for the other 
areas. In the system area, all physical memory- and 1/0 addresses can be 
reached. A simple relation exists between physical memory addresses and 
virtual memory addresses in this area: they differ only by an offset. The 
offset has a different value for private memory and common memory. Two 
different offsets are necessary because all physical memory addresses must fit 
in the system area. The system area is shown in figure B.2. 

Common memory can be accessed via the VSB and the VME bus. Vv"hich 
addresses are used to access common memory locations, depends on the slot 
of the memory module. Ta.ble B.1 lists the addresses that corresponds to 
each slot. 

The a.ddresses of the VME communication register of a. processor module 
also depends on the slot of the module, and are listed in the ta.ble. From 
this ta.ble it follows that an area of 32 Mbyte is a.vailable for each memory 
module. In principle, the memory modules can conta.in 64 Mbyte of memory, 
and in order to address the second 32 Mbyte, a. feature of the VME bus is 
used. The VME bus contains 6 so called Address Modifier (AM) lines. These 
lines are used to signa! special VME bus accesses, such as a.ccess to modules 

51 



OxOOOOOOOO 
Ox001FFFFF 
Ox00200000 
Ox0027FFFF 

Ox40000000 
Ox7FFFFFFF 

Ox80000000 
OxBFFFFFFF 

OxFFEOOOOO 
OxFFEOFFFF 

2 Mbyte local 
RAM 

512 kbyte EPROM 

Unused 

Common memory area 
accessed via VSB. 

Common memory 
accessed via VME. 

Unused 

VMEshort 
(PhylAN) 

Unused 

/~FFFFFCOO 
OxFFFFFEOO 

OxFFFFFDOO 

OxFFFFFFBO 

OxFFFFFFCO 

OxFFFF FCOO OxFFFF FFFO 
IK> area OxFFFF FFFF -· · · • • • • • · · · · · ·- •• 

OMA contraHer 

VIC 

Unused 

OMA ex1ension 

T ransputer links 

OU ART 

Figure B.l: The physical memory map. 

r'-..J 

Ox80000000 
Ox801FFFFF 

0x90000000 
OxCFFFFFFF 

OxDOOOOOOO 
OxDFFFFFFF 

OxFFEO 0000 
OxFFEO FFFF 

2 Mbyte loc-J 
RAM 

Unused 

Common memory 
accessed via VME. 

Common memory area 
accessed via VSB. 

Unused 

VME short 
(PhyLAN) 

Unused 

r t------' 

....................... 

./~FFFFCOO 
OxFFFF FEOO 

OxFFFFFDOO 

OxFFFF FFBO 

OxFFFFFFCO 

OxFFFF FCOO OxFFFF FFFO 
IK> area OxFFFF FFFF • • · • • · · · · · · • · • • -·· 

OMA controller 

VIC 

Unused 

OMA extension 

T ransputer &nks 

OU ART 

Figure B.2: The virtual memory map of the system area. 

52 



Slot VME address VSB address Com. Reg. address 
0 Ox8000 0000 Ox4000 0000 OxFFFE F07C 
1 Ox8200 0000 Ox4200 0000 OxFFFE FOFC 
2 Ox8400 0000 Ox4400 0000 OxFFFE F17C 
3 Ox8600 0000 Ox4600 0000 OxFFFE F1FC 
4 Ox8800 0000 Ox4800 0000 OxFFFE F27C 
5 Ox9000 0000 Ox4000 0000 OxFFFE F47C 
6 Ox9200 0000 Ox4200 0000 OxFFFE F4FC 
7 Ox9400 0000 Ox4400 0000 OxFFFE F57C 
8 Ox9600 0000 Ox4600 0000 OxFFFE F5FC 
9 Ox9800 0000 Ox4800 0000 OxFFFE F67C 
10 OxAOOO 0000 Ox4000 0000 OxFFFE F87C 
11 OxA200 0000 Ox4200 0000 OxFFFE F8FC 
12 OxA400 0000 Ox4400 0000 OxFFFE F97C 
13 OxA600 0000 Ox4600 0000 OxFFFE F9FC 
14 OxA800 0000 Ox4800 0000 OxFFFE FA7C 
15 OxBOOO 0000 Ox4000 0000 OxFFFE FC7C 
16 OxB200 0000 Ox4200 0000 OxFFFE FCFC 
17 OxB400 0000 Ox4400 0000 OxFFFE FD7C 
18 OxB600 0000 Ox4600 0000 OxFFFE FDFC 
19 OxB800 0000 Ox4800 0000 OxFFFE FE7C 

Table B.1: Physical addresses of common memory areas and communication 
registers for each slot number. 

that only use 16 address lines (VME short AM). One of the AM codes is used 
to access the second half of the memory in 64 Mbyte modules. Generating 
AM signals to access this part of memory is not implemented in the kernel. 
It is doubtful whether a transparent access method can he created using the 
AM signals. 

53 



Appendix C 

Initialization 

During initialization of the kemel, actions taken by the processor module 
in slot 0 ( the system controller) are different from those taken by the other 
processor modules. In particular, data structures in common memory which 
are shared by all processors are allocated and initialized by the processor in 
slot 0. Therefore it is necessary that initializations performed by processor 
0 are finished before the kemel is started at other processors. The PhyLAN 
interface is also controlled exclusively by the system controller. When the 
system is booted, the kemel is first loaded via PhyLAN at the processor 
module in slot 0. The other processors in the system canthen he started by 
issuing the command "broadcast mps:emps.q". 

In the startup sequence described above, the kemel starts executing at 
processor module 0 before it can he started at other processors. The initial
izations that must he performed by processor module 0 are therefore always 
completed before other processors are used. In future versionsof the kemel, 
another startup method will he used, in which the kemel is loaded at all 
processors at once. In that case, it must he arranged explicitly that initial
izations are performed by the system controller before other processors are 
activated (i.e. by sending a message to all processors using the communiea
tion registers). 

Initialization can he split in two parts: the initialization that is per
formed before the kemel is loaded, and the initialization performed in the 
kemel. Before the kemel is loaded, the MMU is programmed such that pri
vate memory is mapped to address Ox80000000 and higher. This is necessary 
because the kemel code is compiled for execution in this memory area. At 
processor 0, the mapping is created by running the program "init" whereas 
at other processors, it is automatically done at start-up by the boot EPROM 
(slave monitor). After programming the MMU, the init routine running at 
processor 0 loads the kemel and starts execution of the kemel at address 
Ox80010000. 

The rest of the initialization phase occurs inside the kemel. The following 
actions are performed: 

1. The assembly routine in load.s is executed: 

54 



• The static variables of the kernel are filled with 0. 

• The Supervisor Stack Pointer (SSP) is filled with virtual address 
Ox8000FFA8. 

• The Vector Base Register (VBR) is filled with virtual address 
Ox80000000. 

• The vector for TRAP #13 is initialized to point to the trap13 
handler (in empscall.s). This trap (software interrupt) is used 
when an application program calls a kernel routine. 

• The veetors forTRAP #14 and TRAP #15 are initialized to point 
to the trap14 and trap15 handlers (in enable.s). Trap 15 is used 
to switch to supervisor mode, trap 14 tests whether the processor 
is in user mode or in supervisor mode. 

• The User Stack Pointer (USP) is filled with Ox8000FOOO. 

• The Status Register (SR) is filled with Ox2000, which means that 
execution is continuedinsupervisor mode at processor priority 0. 

• lnitialization is continued by calling the routine main in initmps.c. 

2. initmps. c 

• The version of the EMPS kernel is printed. 

• The number of the processor within the node is read from memory 
location Ox4 (this number is written here by init.c for processor 0 
or by slavemon.c for the other processors). 

• If the processor number is 0, the node number is read from the 
variabie PhyLANFlags.ownsta (PhyLANFlags is initialized by the 
monitor). 

• The variables pid_NULL, currpid and currprio are initialized. 

• SYSTABLEPTR (at fixed memory location Ox80000004) is ini
tialized. SYSTABLEPTR is used when akernel function is called 
from an application. 

• Memory management is initialized. See the chapter 3 for a full 
description. 

• Data structures are initialized (Semaphores, message buffers, pro
cess descriptors, etc.). 

• A number of system processes are initialized and started. 

55 



Appendix D 

Kernel services for application 
programs 

D.l Calling of kernel functions by 
applications 

Using the EMPS kernel, application programs normally run in user mode, 
whereas the kernel always works in supervisor mode. Therefore, a switch 
from user mode to supervisor mode is necessary when an application calls 
akernel service. This switch is achieved by executing a TRAP instruction, 
which generatea a software interrupt. The softwareinterrupt is handled inside 
the kernel. 

Only 16 different TRAP interrupts can be generated by the MC68030 
CPU, which is not su:fficient for all kernel functions. Therefore, each kernel 
function has been given a number that is put in register DO when an appli
cation issues akernel call, and one software interrupt is used (TRAP #13). 
The interrupt handler of this TRAP instruction uses the value in register DO 
to determine which function must be called. The value in DO is used as an 
index for a table that contains the start addresses of all the kernel functions 
that are accessible for applications. 

Arguments for the kernel routines are written to the user stack by the 
application program. Because the kernel executes in supervisor mode, the 
kernel routines expect the arguments on the supervisor stack. The arguments 
must therefore be copied from the user stack to the supervisor stack, which is 
done by the TRAP interrupt handler. The TRAP interrupt handler always 
copies 10 arguments, irrespective of the number of arguments that the func
tion actually expects. This methad can be used because all functions have 
less than 10 arguments (with the possible exception of functions that have a 
variabie number of arguments, such as print/). 

Access to the kernel functions is provided through a table that contains 
the start addresses of each function. This table is located in private memory, 
and starts at the address pointed to by the pointer SYSTABLEPTR. The 
pointer SYSTABLEPTR is located at a fixed memory location (at virtual 

56 



memory address Ox80000004). 
The functions of the kernel that can he called by an application program, 

are accessible by linking SDTEMPS. OBJ with the application program. This 
file contains the code that puts the function number in register DO, copies 
the stack pointer in AO, and executes the TRAP instruction. The program 
code in this file must start at address 0. The reason for this is that when 
a process has finished, it jumps to address 0, where code should he present 
that leads to leads to the correct termination of the process. STDEMPS. OBJ 
starts with code that terminatea the current process, and therefore it must 
he the first file in the link command. 

Not all functions provided by including STDEMPS. OBJ are appropriate 
for use in application programs. Some low levelkernel functions, that should 
only he used in system software, can also he called. These functions are only 
available for testing of extensions or changes of the kernel, and in a future 
version of the kernel they will possibly he removed from STDEMPS.OBJ. 

D.2 ANSI C functions 

Only the most essential functions from the standard libraries are provided by 
the kernel. Other ANSI C functions are available from the Oasys libraries. 

Definition SLONG open(SBYTE *filename, SLONG mode} 

Description The standard C open function. 

Definition SLONG creat(SBYTE *filename, SLONG prot) 

Description The standard C creat function. Parameter prot is not used. 

Definition SLONG read{SLONG fno, SBYTE *buj, SLONG n} 

Description The standard C read function. Due to limitations of the Phy
LAN file-server, the return value (number of bytes read) is always a 
multiple of the PhyLAN block size (512 bytes) when the end of file is 
reached during the read operation. Also, if the file size is not a multiple 
of 512 bytes, the file is expanded to fill an integer number of blocks. 

Definition SLONG write(SLONG fno, SBYTE *buj, SLONG size) 

57 



Description The standard C write function. Due to limitations of the Phy
LAN file-server, the size of the file that is written is always a multiple 
of the PhyLAN block size (512 bytes). 

Definition SLONG close(SLONG fno) 

Description The standard C close function. 

Definition SLONG lseek(SLONG jno, SLONG offset, SLONG end} 

Description The standard C lseek function. Only moving the file position 
pointer to offset (end = 0) and increasing the file position pointer by 
offset (end = 1) are supported. 

Definition void *malloc(SLONG size) 

Description Described in appendix E. 

Definition void free(void *ptr} 

Description Described in appendix E. 

Definition void realloc(void *ptr, SLONG newsize) 

Description Described in appendix E. 

Definition void calloc(SLONG number, SLONG size_each) 

Description Described in appendix E. 

Definition void malloc_type(SLONG size} 

Description Described in appendix E. 

58 



Definition void putchar( SBYTE c) 

Description Write character c to the terminal. This function differs from 
the ANSI definition because no return value is given, and because out
put is sent directly to the terminal, and not to STDOUT. Unlike other 
terminal output functions, this function is not interrupt controlled. 
Conflicts may occur if putchar is used together with other terminal 
output functions (such as print!). 

Definition void printf(SBYTE str, ... ) 

Description Send formatted text to STDOUT (the terminal). Because at 
present, only 10 argumentscan he passed toa kernel routine, the num
ber of items that can he printed is limited. Another difference from 
the ANSI standard is that no return value is generated. Printing of 
floating point numbers is not yet supported. 

D.3 Mailbox functions 

Definition STATUS CreateMailBox(SBYTE *key, MEMTYPE memtype, 
SLONG procnr) 

Description Create a mailbox data structure at processor procnr. Mail
boxes are used for location transparent communication between pro
cesses and are described in chapter 2. 

Definition STATUS RemoveMailBox(SBYTE *key) 

Description Remove the mailbox with identifier key. 

Definition STATUS Connect{PORT *port, SBYTE *Key) 

Description Before a process can exchange information via a mailbox, a 
port must he connected to the mailbox. The Conneet routine estah
lishes a conneetion with the mailbox that is identified by K ey. The port 
data structure is used to access the mailbox in the routines SendToPort 
and ReceiveFromPort. Three different port types exist: 

59 



1. Sender port. A sender port type provides a non blocking send
receive service. This port type establishes a communication path 
in which the SendToPort and ReeeiveFromPort routines are sirn
ilar to the (non location transparent) Send and Reeeive routines 
(which are described insection D.8). 

2. Client port. For implementing a (blocking) Remote Procedure 
Call (RPC), the dient-and server port typescan he used. When 
a message is sent to a elient port with the SendToPort routine, 
the current process blocks, and the message is transferred to a 
server process that is connected to the mailbox via a server port. 
After the server process completes the RPC, it returns a message, 
and the elient process unblocks. Because a elient port can only he 
used to invoke a service, calling ReeeiveFromPort on a elient port 
is invalid. For a elient process, the SendToPort routine is similar 
to the (non location transparent) SendRequest routine. 

3. Server port. A server port is connected toa server process which 
services a RPC. The server process receives its parameters via a 
call to ReeeiveFromPort. When the server is finished, it sends a 
reply message with SendToPort. For a server process, the Re
eeiveFromPort and SendToPort routines are similar to the (non 
location transparent) ReeeiveRequest and SendReply routines. 

Before Conneet is called, the PortType field of port must he filled, to 
indicate the port type that is required: 

port.PortType = SENDER_PORT, port.PortType =CL/ENT _pQRTor 
port.PortType = SERVER_pQRT. 

All other fields in the port data structure are initialized by the Conneet 
routine. 

Definition STATUS DisConneet(PORT *port) 

Description DisConneet removes the conneetion between a port and a mail
box (e.g. before a process terminates ). 

Definition STATUS SendToPort(PORT *port, MSG *message) 

Description SendToPort sends a message to the mailbox that is connected 
to port. The port type (see Conneet) determines what message is sent: 

60 



• Sender port. For a sender port, the information in the message 
buffer of thesending process (proctable[currpid}->CMmsg) is sent, 
and not the information pointed to by the message parameter. 
The message parameter is ignored for this port type. 

• Client port. For a elient port, the information pointed to by the 
message parameter is sent to the mailbox. After transmission, the 
sending process blocks until a reply is received. 

• Server port. For a server port, the information pointed to by the 
message parameter is sent to the mailbox, which routes it to the 
elient process. The elient process then unblocks. 

Definition STATUS ReceiveFromPort{PORT *port, MSG **message) 

Description By ReceiveFromPort the current process receives information 
from the mailbox connected to port. The port type ( see Con neet) de
termines where the received information is placed: 

• Sender port. For a sender port, the information received with 
ReceiveFromPort is placed in the message buffer of the receiving 
process (proctable{currpid}-> CMmsg). Actually, the buffer point
ers of the sending and receiving process are exchanged, so that 
the sending process receives the buffer of the receiving process. 

• Server port. For a server port, the pointer *message is filled with 
the address of the message that is received. 

For a elient port, ReceiveFromPort is not a valid operation. 

D.4 Location independent process 
management routines 

The routines described here can he used to create new processes within a 
task, start processes, and terminate processes. Location independent process 
management routines can act on any process running on any processor in 
the EMPS system. The functions are executed by the process-server process 
which gets its commands through a mailbox. When one of these routines is 
called, a mailbox message is sent to the server process, which performs the 
requested action. 

Definition STATUS CreateProcess{SLONG *pid, void (*junc){), SBYTE 
pnamelj, SLONG prio, LONG usz, LONG ssz, MEMTYPE ust, MEM
TYPE sst, SLONG ProcNr) 

61 



Description CreateProcess initializes a new process by sending a message 
to the process server. 

The process identifier is returned in *pid. 

func is the start address of the function that is called when the process 
is started. 

pname is the name of the process. 

The process starts execution at priority prio. 

usz and ssz are the user- and supervisor stack sizes. ust and sst are 
the user- and supervisor stack memory types, either PRIVATE, COM
MON_ VME or COMMQN_ VSB. For applica.tion processes, ust and sst 
should always be PRIVATE. 

ProcNr is the processor number where the process is created. 

Definition STATUS StartProcess{ SLONG pid) 

Description StartProcess starts execution of process pid by sending a mes
sage to the process server. If the priority of process pid is higher 
than the current process, then process pid starts executing immedi
ately. Otherwise, process pid is put in the ready queue. 

Definition STATUS KillProcess{SLONG pid) 

Description KillProcess terminates process pid by sending a message to the 
process server. The process is dequeued from the queue it is in, and 
the memory used by the process is released. 

Definition STATUS GetProcessidentifier(SLONG *pid, SBYTE *pname, 
SWORD pn) 

Description GetProcessidentifierfi.nds the process identifier pid of the pro
cess with name pname. The function looks for the process on processor 
pn. The process identi:fier is returned in pid. 

1f a process with name pname does not exist, the value NoSuchProcess 
is returned. 

62 



D.5 Other process related functions 

Definition SYSCALL delay_process( SLONG n ) 

Description The routine delay_process delays the execution of the current 
process for n doek ticks. To this end, the process is inserted in the 
doek queue, the state of the process is changed into DELA Y, and the 
process blocks. 

Definition SLONG LoadFile{SBYTE *file_name, WORD proc_nr) 

Description Load the Motorola S program file with name file_ name at pro
cessor proc_nr. If the file could be loaded, the pid of the first process 
defined in the file is returned. Otherwise INVALJD_pffl is returned. 

Definition STATUS Migrate{SLONG pid, WORD proc_nr) 

Description Migrate process pid to processor proc_nr. This routine can be 
invoked by any process, except by the process that is migrated. 

D.6 Sernaphare routines 

Two types of sernaphores are ava.ilablein the EMPS kernel: local semaphores, 
which can only be used within one processor module, and common serna
phores, which can be used by all processors within one node. Common serna
phores are slower than loca.l sernaphores, but allow distributed applica.tion 
programs to use the same sernaphore. A distributed version on the EPEP 
interpreter will therefore require common sernaphores. 

Definition SYSCALL create_csemaphore{CommonSemaphore **sem, 
SLONG init_count, SBYTE csnamelj) 

Description The routine create_csemaphore creates a semaphore. If a serna
phare could not be created the function returns the value ERROR. 
Otherwise, a structure of type CommonSemaphore is reserved and ini
tia.lized. The structure is located in common memory so the sernaphare 
can be accessed by all processors in a node. The routine returns a 
pointer to the structure of type CommonSemaphore in sem, which is 
used by cwait and csignal to identify the semaphore. init_count is the 
initialsernaphore counter. csname is the sernaphare name. 

63 



Definition SYSCALL cwait(CommonSemaphore *sem) 

Description The routine cwait executes a P operation on a semaphore: If 
the semaphore counter of the semaphore is greater than or equal to 1, 
the counter is decremented. Otherwise, the current processis inserted 
into the semaphore queue, and it changes its state into 
WAlT YOR-COMMONSEMAPHORE and hlocks. sem is a pointer to 
a structure of type CommonSemaphore on which the operation is to he 
performed. 

Definition SYSCALL csignal{CommonSemaphore *sem) 

Description The routine csignal executes a V operation on a semaphore: if 
the semaphore queue for this semaphore is not empty, the fi.rst process 
in the queue is dequeued and added to the ready list of processes; if 
the semaphore queue is empty, the semaphore counter is incremented. 
Parameter sem is a pointer to a structure of type CommonSemaphore 
on which the operation is to he performed . 

Definition SYSCALL create_semaphore{semaphore **sem, SLONG 
init_count, SBYTE snamelj) 

Description The routine create_semaphore creates a semaphore. The sema
phore that is created, is a local semaphore: it can only he accessed hy 
processes on the current processor. If a semaphore could not he created 
the function returns the value ERROR. Otherwise, a structure of type 
semaphore is reserved and initialized. The routine returns a pointer 
to the structure of type semaphore in sem, which is used hy wait and 
signal to identify the semaphore. iniLcount is the initia! semaphore 
counter. sname is the semaphore name. 

Definition SYSCALL wait{semaphore *sem) 

Description The routine wait executes a P operation on a semaphore: If 
the semaphore counter of the semaphore is greater than or equal to 1, 
the counter is decremented. Otherwise, the current process is inserted 
into the semaphore queue, it changes its state into 
WAlT _FQR_SEMAPHORE and hlocks. Parameter sem is a pointer 
to a structure of type semaphore on w hich the operation is to he per
formed. 

64 



Definition SYSCALL signal(semaphore *sem) 

Description The routine signa[ executes a V operation on a semaphore: If 
the semaphore queue for this semaphore is not empty, the first process 
in the queue is dequeued and added to the ready list of processes; If 
the semaphore queue is empty, the semaphore counter is incremented. 
Parameter sem is a pointertoa structure of type semaphore on which 
the operation is to he performed. 

D.7 lnquiry routines 

For the purpose of ohtaining information ahout the system, the following 
routines are availahle: 

Definition SYSCALL GetTime{LONG *Time) 

Description GetTimeputs the system time (the time in ms since startup) 
in Time. 

Definition SYSCALL GetCurrentPD(PD **p) 

Description The routine GetCurrentPD puts a pointer to the process de
scriptor (of type PD) of the current processin p. 

Definition SYSCALL GetPD(PD **p, SLONG pid} 

Description The routine GetPD puts a pointer to the process descriptor 
(of type P D) of process pid in p. 

Definition STATUS GetPID{SLONG *pid, SBYTE *pname, WORD pn} 

Description GetPID returns the process identifier pid of the process with 
name pname. The process must he running on the sameprocessor that 
make the function call, which must he the processor with numher pn. 
The process identifier of a process that runs on another processor can 
he found with the function GetProcessldentifier. If the function could 
not he found, is returns the value NoSuchProcess. 

65 



Definition SLONG getpid(void} 

Description getpid returns the process identifier of the current process. No
tice the subtie spelling difference with the previous function. 

Definition SYSCALL GetSEM(semaphore **sem, SBYTE *sname) 

Description GetSEM returns a pointer to the local semaphore with name 
sname m sem. 

Definition SYSCALL GetCSEM{CommonSemaphore **csem, 
SBYTE *csname) 

Description GetCSEM returns a pointer to the common semaphore with 
name csname m csem. 

Definition SYSCALL GetDevice(DEVICE **dev, SBYTE *dname) 

Description GetDevice returns a pointer to the device with name dname in 
dev. 

Definition PROCESSORS *GetProcessors{void} 

Description Return a pointer to an array with the processor numbers of 
each processor in this node. 

Definition SLONG GetNrOJProcessors(void} 

Description Return the number of processors in this node. 

66 



D.8 Send/Receive routines 

The send and receive routines described in this section offer communica.tion 
between processes in a way that is not location transparent. They are used 
inside the kernel for communication between system processes. When pro
cess migration of a specific application program is desired, that applica.tion 
program should use the loca.tion transparent mailbox communication services 
instead of the routines described in this section. 

Definition SYSCALL Send{SLONG pid) 

Description Send and Receive are routines that are used within the kernel 
for passing information between processes. For applica.tion processes, 
it may he better to u se mailbox fundions instead ( this provides lo
ca.tion transparent ad dressing). The routine Send sends the informa
tion in the message buffer of the current process (proctable{currpid}
>msg) to another process. The state of the process is changed into 
BLOCKED_QN_SEND, and the processis inserted in the message queue 
of the receiving process. lf the state of the other process is RECEIV
ING, the receiving process is added to the list of ready processes. 

pid is the process identifier of the process to which the message is sent. 

Definition SLONG Receive(void) 

Description Send and Receive are routines that are used within the kernel 
for passing information between processes. Receive makes the current 
process receive a message. If no sending processes are pending in the 
message queue, the state of the current process is changed into RE
CEIVING, and the process blocks. If a process is pending in the mes
sage queue, the pointer to the message buffer of the sending process 
is exchanged with the pointer to the message buffer of the receiving 
process. The sending process is de-queued from the message queue, 
and added to the list of ready processes. 

The value ERROR is returned if something went wrong, otherwise the 
pid of the sending process is returned. 

Definition STATUS SendRequest{SLONG pid, MSG *message) 

Description SendRequest, ReceiveRequest and SendReply are routines used 
inside the kernel for Remote Procedure Calls (RPC). For application 

67 



processes, it may he better to use mailbox functions instead (this pro
vides location transparent addressing). SendRequest sends the infor
mation in message to process pid., and blocks the current process until 
a reply message is received. 

Definition SLONG ReceiveRequest(MSG **message) 

Description ReceiveRequest makes the current process receive a request for 
a RPC. The parameters for the RPC are received through message. 
After the request is handled, the current process responds by a message 
via SendReply. The process identifier of thesending processis returned. 

Definition STATUS SendReply(SLONG pid, MSG *message) 

Description SendReply sends the result of a RPC which was initiated by 
SendRequest. The result is returned in message to process pid. The 
process that initiated the RPC is added to the list of ready processes. 

D.9 Interrupt related routines 

Interrupts are handled by ISPs ( chapter 2). The ISP waits for an interrupt 
by issuing a call to A waiLinterrupt, and is activated from an ISR via a call 
to StarLhandler. A Device Control Block forms the conneetion between an 
ISP and an ISR. 

In the design of kernel, it is assumed that both the ISR and the ISP 
are system routines operating within the kernel. Therefore, these routines 
should not be used by application programs. The description of the interrupt 
related routinescan he useful when new interrupt based devices (such as an 
ETHERNET controller) are added to the EMPS. 

Definition SYSCALL create_device{DEVICE **dev, SBYTE dnameD, void 
*Regs, SLONG Maxinterropts) 

Description The routine create_device creates a Device Control Block (DCB). 
First a free index in the devicetableis searched for. If no free entry 
is found, the routine returns the value ERROR. Otherwise, a structure 
of type DEVICE (the DCB) is allocated and initialized. 

The routine returns a pointer to the new allocated structure of type 
DEVICE in *dev. dname is the name of the device. 

68 



Paramerer Maxlnterrupts is the size of the buffer that is associated 
with the device. If Maxlnterrupts = 1, no buffering is applied. If 
Maxlnterrupts > 1, Regs pointstoa buffer for the device registers. 

Definition SYSCALL AwaiUnterrupt(DEVICE *dev) 

Description The routine A waiLinterrupt waits for an interrupt to occur. 
The process identifier of the waiting process is written in the device 
control block pointed to by dev: This indicates that an interrupt ser
vice process is expecting the interrupt. The process blocks until the 
interrupt service routine calls the routine StarLhandler. 

Definition SYSCALL Start_handler{DEVICE *dev) 

Description StarLhandler activates the process awaiting the interrupt from 
device dev. The routine Start_handler is called by interrupt service 
routines (ISR). The routine obtains the process identifier of the process 
waiting for the interrupt from the device control block. 

D.lO Low level process management routines 

The low level process management routines form the nucleus of the kernel. 
These are single processor routines, and are used within the kernel as a 
basis for multi-tasking services. Although the low level functions are made 
available to application programs in the current version of STDEMPS. OBJ, 
application programs should not use these routines. The description of these 
routinescan he useful when updates are made to the kernel. 

Definition STATUS create_proc(SLONG *pid, void {*func}(}, 
SBYTE pnamefl, SLONG prio, LONG usz, LONG ssz, MEMTYPE 
ust, MEMTYPE sst} 

Description The routine create_proc initialires a new process on the current 
node, and sets the state of the new process to BLOCKED. 

The process identifier is returned in *pid. 

func is the function in the process that is called when the process is 
started. 

pname is the name of the process. 

prio is the process priority. 

69 



usz a.nd ssz a.re the user- a.nd supervisor sta.ck sizes. 

ust a.nd sst a.re the user- a.nd supervisor sta.ck memory types, either 
PRIVATE, COMMON_ VME or COMMON_ VSB. For a.pplica.tion pro
cesses, ust a.nd sst should a.lwa.ys be PRIVATE. 

Definition SYSCALL Block(void) 

Description The routine Block blocks the current process: The current 
process is de-queued from the rea.dy queue, the highest priority rea.dy 
process is looked up, a.nd a. context switch occurs in order to execute 
the latter process. 

Definition STATUS Add_ready(SLONG pid) 

Description Add process pid to the rea.dy list a.nd a.ctiva.te this process 
immedia.tely if the priority is higher tha.n the priority of the current 
process. 

Definition SYSCALL Block_and_add-ready(SLONG pid) 

Description For time-efficiency, Block_and_add_ready combines the func
tions Add_ready a.nd Block. The routine Block_and_add_ready inserts 
the process with process identifier pid in the rea.dy queue a.nd blocks 
the current process, thus scheduling the highest priority process. If the 
priority of the process pid is higher tha.n the priority of the current 
process, the process ca.n be executed immedia.tely, without ha.ving to 
sea.rch through the rea.dy list. 

Definition SYSCALL wake_ up {SLONG curtime) 

Description The routine wake_up wa.kes up a.ll processes in the doek queue 
with wa.ke up time< curtime: All these processes a.re inserted into the 
rea.dy queue a.nd dequeued from the doek queue. The highest priority 
rea.dy processisthen sea.rched for. If tha.t processis the current process, 
no context switch occurs. 

70 



Definition SLONG Disable(void} 

Description Disable disahles immediate ha.ndling of device interrupts. When 
a device interrupt has occurred, a.nd no call to Disable was made, the 
process waiting for the device is placed in the ready queue a.nd a con
text switch is made to activate the process immediately. Otherwise, 
the process is only placed in the ready queue. 

Return value The return value (Status) indicates whether the immedi
ate interrupt ha.ndling already was disahled. The return value must he 
used as the Status parameter when Enable is called. This way, multiple 
nested calls to Disahle are allowed. 

A more detailed description of the use of the Disable and Enable rou
tines ca.n he found in appendix G. 

Definition void Enable(SLONG Status) 

Description Enable enahles ha.ndling of device interrupts hy an ISP. In
terrupts are huffered while disahled hy Disable, a.nd will he handled 
immediately when Enable is called. Status is the value returned hy the 
corresponding call to Disable. 

D.ll Other routines 

The following routines are prohahly less interesting for application programs. 
These routines are only used by the Oasys development system, or are obso
lete. 

• Low level routines required for the Oasys compiler: sbrk, getpid, 
u.nlink, isatty, _exit 

• Supervisor/user mode switch: ChangeModeToSuperVisor, 
ChangeMode To User, CheckMode 

• Low level PhyLAN routines: Looku.pFile, EnterFile, DeleteFile, 
ReadBlock, WriteBlock, CloseFile, OpenChannel, CloseChannel, 
EchoMessage 

• Low level communication register routines: ExchangeMessage, 
lnitializeComRegM essage 

71 



Appendix E 

Memory related routines 

In chapter 3 the memory management in the EMPS kernel was discussed. 
In the present section, some more practical information is given about the 
kernel functions that are related to the memory routines. 

For allocating andreleasing memory, the standard ANSI C routines mal
loc, free, calloc and realloc are provided. An extra routine, called malloc_type, 
can he used to allocate private memory. 

• void *malloc( SLONG size ) 

Allocate size bytes of memory, and return a pointer to the first byte. If 
no memory could he allocated, return NULL. This function allocates 
memory of type COMMON_ VME, which can he accessed by all mod
ules connected to the VME bus. malloc calls the routine malloc_type, 
which has the same functionality, but can also allocate PRIVATE and 
COMMQN_ VSB memory. For the exact behavior of malloc, see mal
loc_type. 

• void *malloc_type( SLONG size, MEMTYPE type) 

Allocate size bytes of memory, andreturn a pointer to the first byte. 
type is the type of memory allocated. If no memory could he allocated, 
return NULL. 

When malloc_type is called from an application program, it behaves 
different from when it is called from within the kernel. Memory al
located in the kernel is accessed via the system address space, which 
is the area with addresses Ox80000000 and higher. For this memory 
area, a MMU mapping is created when the kernel is initialized, and no 
additional mapping is necessary. In this case, malloc_type just reserves 
the requested amount of memory. 

If an application process calls malloc, just reserving memory is not 
sufficient, because application processes should not access the system 
address space. Therefore, it is necessary to create an additional MMU 
mapping, so that the allocated memory can he accessed via the address 
space that is reserved for application programs. How this má.pping is 

72 



actually created, depends on the amount of memory requested. If the 
number of memory pages requested is less than MAX_SMALL_pAGES 
( defined in the file memory.c as 16), normal page descriptors are used 
for the mapping. If there are insufficient page descriptors available, or 
if the number of memory pages requested is more than 
MAXSMALL_pAGES, the mapping is made with early termination 
page descriptors. 

Memory allocated with malloc_type is both physically and virtually 
contiguous. This is obvious for memory allocated by system processes, 
because for the system address space, physical addresses and virtual 
addresses only di:ffer by a constant offset. In application processes, this 
is achieved of by allocating the requested memory contiguously, and by 
using contiguous page descriptors to create a mapping. 

malloc_type returns NULL if the requested amount of memory could 
not he allocated. For application programs, this can have two reasons: 
either not enough contiguous free memory is available, or not enough 
contiguous page descriptors are available. For system processes, it can 
only mean that not enough contiguous free memory is available. 

• void free( void *ptr) 

Release memory that was allocated with malloc, calloc, realloc or mal
loc_type, with start address ptr. If ptr does not point to a memory 
area that was allocated with one of the above routines, the behavior is 
undefined. 

When free is called by a system process, it just releases the memory. 
When free is called by an application process, it releases memory and 
also releases the MMU descriptors used for the mapping of the memory 
area. 

• void *calloc( SLONG nr, SLONG size } 

calloc allocates memory for nr items of size bytes each, and initialires 
all items to the value 0. If memory could he allocated, a pointer to 
the first byte is returned, else NULL is returned. See the description 
of malloc_type for details of memory allocation. 

• void *realloc{ void *ptr, SLONG size ) 

realloc changes the number of memory bytes allocated by malloc, calloc, 
realloc or malloc_type to size, copying the contents of the old memory 
area. ptr points to the old memory area, which is freed. The return 
value is the address of the new memory area. See the description of 
malloc_type and free for details of allocating and releasing memory. 

73 



Translation of addresses is often necessary in system software, e.g. when 
a hardware device is progra.mmed to perform 1/0 via DMA, physica.l mem
ory addresses are needed. Also, if an application process sends a message 
to another process, the message is loca.ted in the virtua.l address spa.ce of 
the sending process. The receiving process ha.s a different virtua.l address 
spa.ce, and cannot access the message at the sa.me address as the sending 
process. Therefore, the message address must be translated to an address in 
the system address spa.ce (which can a.lways be reached). 

• STATUS VirtualToSystemAddress{ LONG *virtuaLaddress, LONG 
*system_address, SLONG pid) 

The routine VirtualToSystemAddresstranslates virtuaLaddress (located 
in the address spa.ce of process pid) into system_address, which is a vir
tua.l address loca.ted in the system address spa.ce. virtuaLaddress can be 
loca.ted anywhere in the address space that can be reached by process 
pid, i.e. the code, data, hea.p, and sta.ck a.rea.s, as well as the system 
address spa.ce. 

VirtualToSystemAddress is used when a process sends information to 
another process, which does not use the sa.me virtua.l address spa.ce. To 
perform the translation, the routine uses the sa.me translation tree as 
theMMU. 

• STATUS Translate VirtualAddress{ LONG *virtuaLaddress, LONG 
*physicaLaddress, SLONG pid) 

The routine Translate VirtualAddress translates virtuaLaddress of pro
cess pid into physicaLaddress, which is the physica.l address used by 
the hardware. Translate VirtualAddress is used when a hardware de
vice performa 1/0 via DMA. The device must then be progra.mmed 
with the physica.l address of the memory area used in the 1/0 opera
tion. To perform the translation, the routine uses the sa.me translation 
tree as the MMU. 

• void *Virt( void *physicaLaddress} 

Translate physicaLaddress into a virtua.l address which can be reached 
via the system address spa.ce. The return value of this routine is the 
virtua.l address. Translation from a physica.l address into a system 
address is only possible because the relation between the two addresses 
is simple: the differ by a constant offset. Private memory, and common 
memory each have a different offset. 

• void *Phys( void *virtuaLaddress) 

Phys translates the system address virtuaLaddress into a physica.l ad
dress. The return value of this routine is the physica.l address. Phys 

74 



E.l 

a.ssumes that virtuaLaddress is located in the system address space, 
and cannot be used to translate virtual addresses from application pro
grams. 

Other memory allocation routines 

In the original kernel, some memory related routines were de:fined that are not 
available in the current kernel version. Also, some routines perform slightly 
different actionsin the new implementation. Although these routines are no 
longer needed, because the ANSI routines can now be used, they are still 
available for consistency. The memory related routines of the original kernel, 
and the di:fference in behavior between the old- and new implementations 
are listed next. In both implementations, the behavior is undefined if a 
parameter contains an illegal value. 

• STATUS AllocateContiguousMemory{ MALLOC *m, SLONG size, 
MEMTYPE type) 

The routine AllocateContiguousMemory allocates size bytes of mem
ory in the system address space. The start address is returned in 
m.StartAddress and the number of memory pages in m.NrOJPages. 
type is the memory type to be allocated: PRIVATE, COMMON_ VME 
or COMMON_ VSB. 

• STATUS ReleaseContiguousMemory( MALLOC *m) 

The routine ReleaseContiguousMemoryrelea.ses memory allocated with 
AllocateContiguousMemory. In the new implementation, when the 
memory area at m.StartAddress is released, the number of pages that is 
relea.sed is the same as was allocated with AllocateContiguousMemory. 
As mentioned in section 3.1, the number of pages is derived from the 
table in figure 3.1. The value in m.NrOJPages is not used. In the old 
implementation, m.NrOJPages is the number of pages relea.sed. 

• STATUS AllocateMemory( LONG *memory_address, SLONG size, 
MEMTYPE type) 

The routine AllocateMemory allocates size bytes of memory in the sys
tem address space. The start address is returned in memory_address. 
type is the memory type to be allocated: PRIVATE, COMMON_ VME 
or COMMON_ VSB. 

• void ReleasePage( LONG *page_address) 

The routine ReleasePage releases a memory area at address 
page_address. In the new implementation, a memory range is released 

75 



of the same size as was previously allocated at address page_address. In 
the old implementation, only one memory page was released. Because 
no use was made of the fact that only one page was released in the old 
implementation, the inconsistency has no e:ffects. 

76 



Appendix F 

Process queues 

In the EMPS system, process queues a.re used in the scheduling of processes. 
The queue in which a. process is, depends on its state a.nd its priority (ap
pendix H). When a. process is in the READY sta. te, the priority of the process 
determines in which queue it is. For ea.ch process priority, a. different queue 
exists. 

A process queue is orga.nized a.s a. linked list a.s shown in figure F .1. The 
object tha.t is rela.ted to the process state, e.g. a. sema.phore, conta.ins a. 
pointer to the hea.d of the queue a.nd a. pointer to the ta.il of the queue. If the 
queue is empty, the hea.d pointer conta.ins NIL. Ea.ch process in the queue 
conta.ins a. pointer to the next queue element, or NIL if there is no next queue 
element. Processes a.re a.dded a.t the ta.il of the queue, which ca.n be done 
very effi.ciently via. the ta.il pointer. 

Process 2 

Figure F .1: The process queues are organized as linked lists. 

Beca.use of the uniformity of the process queues, inserting a.nd deleting 
processes from a. queue ca.n be done with the sa.me routines for a.ll objects 
that conta.in a process queue. In the current implementa.tion, however, a 
separate process queue routine exists for ea.ch object. 

77 

NIL 



Appendix G 

Interrupt Service Processes 

In the EMPS kernel, interrupts are handled by dedica.ted Interrupt Service 
Processes. Two steps lead to the activation of an ISP: 

1. The interrupt causes the CPU to execute an Interrupt Service Routine 
(ISR). This is the routine to which the interrupt vector points. 

2. The ISR unblocks the Interrupt Service Process (ISP). All further ac
tions required to handle the interrupt are performed by the ISP. 

In the EMPS kernel, an ISP is associated with a device, which is the 
logical souree of the interrupt. One physical device may he the souree of 
a number of different interrupts, each of which is a.ssociated with a logical 
device and thus with an ISP. An example of a device that can cause more that 
one interrupt is the DUART (doek, serial input lines, serial output lines ). 

The following kernel routines are involved in interrupt handling: 

• StarLhandler: called by the ISR in order to unblock the ISP. 

• A waiLinterrupt: called by the ISP when it is ready to handle an inter
rupt. If no interrupts are pending in the device queue, the ISP is put 
in the state A WAlT JNTERRUPT. Otherwise, execution of the ISP is 
continued. 

• Disable: Disable the activation of ISPs by Start_handler. During some 
actions that involve common resources (e.g. updating of process de
scriptors, updating of the list of free memory pages, handling of an 
interrupt by an ISP) task switching must temporarily he disabled. If 
an interrupt occurs while activation of the ISP is disabled, the interrupt 
is registered in the device queue. 

• Enable: Undo the effects of disable: if an ISP was put in READY state, 
start its execution immediately. 

In the implementation of these routines, the variabie InterruptScheduler 
plays an important role: this variabie is contains the value IS_ENABLE if 

78 



a.ctiva.tion of ISPs is ena.hled or /S_D/SABLE if it is disa.hled. The variabie 
InterruptScheduler is saved on stack by the routine cswitch whenever 
a context switch takes place. This mea.ns tha.t the va.lue put in Inter
ruptScheduler ( a.nd therefore ca.lling of Ena.hle a.nd Disa.hle) only ha.s a.n effect 
on the current process, a.lthough it is declared a.s a. gloha.l varia.hle 

G.l Process priorities 

The rela.tive urgency of a. process is indica.ted hy its priority. In the EMPS 
kernel, two different 

types of priorities ca.n he distinguished: 

• the hardware priority, which is the processor priority or interrupt 
level. In the EMPS kernel, only Interrupt Service Routines execute a.t 
a. hardware priority different from 0. 

• the software priority, used hy the Interrupt Scheduler for scheduling 
of processes. 

In the EMPS kernel, a.ll processes execute a.t hardware priority 0. There
fore, scheduling of processes is only determined hy the software priority. 
There a.re 16 software priorities a.va.ila.hle for processes, of which the 8 high
est priorities are reserved exclusively for Interrupt Service Processes. Priority 
0 is reserved for the NULL process, so 7 process priorities ca.n he used in a.p
plica.tion programs. 

For ea.ch process priority, a. separate READY queue exists in the kernel. 
The process priority only affects processes tha.t are in one of the READY 
queues. Other process queues in the kernel, such a.s the sema.phore queues, 
are not a.ffected hy the priority of processes. 

Processes with priority ~ 8 differ from other processes in tha.t they ca.n 
hecome READY a.synchronously with respect to the a.ctive process, heca.use 
they are inserted in the ready queue a.s soon a.s the corresponding interrupt 
occurs. 

79 



Appendix H 

Data structures 

H.l Process descriptor 

The process descriptor of ea.ch process stores all information or pointers to 
the information that belongs to a process. For each process in the system a 
process descriptor data structure of type PD is crea.ted. PD is defined as: 

typedef struct PD { 
struct PD *next; I* Pointer to next process in ready queue *I 
SLONG pstate; I* Process state *I 
SLONG prio; I* Process priority *I 
SLONG pid; I* Process identifier *I 
SBYTE pname [ MAXPNAME ] ; I* Process name *I 
struct PD *nextsq; I* Pointer to next process in semaphore queue *I 
semaphore *sema; I* Pointer to semaphore *I 
SLONG psp; I* Process stack pointer *I 
LONGTABLEDESCRIPTOR srp;l* SuperVisor Root Pointer *I 
LONGTABLEDESCRIPTOR crp;l* CPU Root Pointer *I 
MSG *msg; I* Pointer to message buffer for this process *I 
SLONG nr_msg; I* Number of processas in message queue *I 
struct PD *next_clockq; 

I* Pointer to next entry in clock queue *I 
CommonSemaphore *csema; 

I* Pointer to common semaphore *I 
SLONG time; I* Wake up time *I 
SLONG msgQhead; I* Index in msgQ (see below) *I 

I* of first process in message queue *I 
SLONG msgQtail; I* Index in msgQ (see below) *I 

SLONG 
LONG 
void 

MSG 

I* of last process in message queue *I 
msgQfull; 
msgQ [ MAXMSGQUEUE ] ; 
*msgQmsg[ MAXMSGQUEUE ] ; I* Array of pointers to •I 

I• message data (for IN communication only) •I 
•CMmsg; I• Pointer to the message in the common memory •I 

80 



SLONG BlockedOnSendPid; 
CommonEvent *cevt; 
MB_LOCATION MBLocation; 

I* If pstate==RECEIVING then MBLocation valid *I 
PORT *Ports [ MAXPORTS ] ; 
void *Packet; 
PORT *BlockedOnMailBox; 
MSG *MailBoxMessage; 
MSG *RequestMessage; 
MSG *ThreadMessage; 
TASKDESCRIPTOR *td; I* Task to which the process belongs *I 
SLONG supervisor_stack_pages; 

I* Number of supervisor stack pages *I 
SLONG user_stack_pages; 

I* Number of user stack pages *I 
} PD; 

The most important :fields of PD are described below: 
next: if the processis in the ready queue, next contains a pointer to the 

next process in the ready queue, or NIL if there is no next process. 
pstate: de:fines the process state a.nd ca.n have the following values: 

• CURRENT (0): the state of the process that is currently being exe
cuted. On each computer module, only one process ca.n be in this state. 
Normally this is the highest priority process that has been in the ready 
queue for the longest time. The only exception is when activatien of 
ISPs has temporarily been disabled by a call to Disable. In that case, 
when aISPis un-blocked, it is not immediately activated even though 
it has a higher priority tha.n the current process. 

• READY(!): the processis ready to be executed. 

• BLOCKED (2): the process is blocked. This is the state of a process 
that has just been created. 

• TERMINATED (3): the processis terminated. When a process termi
nates, it is removed from all queues, a.nd all references to the process 
descriptor are removed. Therefore, this process state can never occur. 

• REGElVING (4): the processis waiting until it receives a message. 

• WAlT _FOR_EVENT (5): the process is waiting for a.n event. Events 
are not supported in the current kernel version. 

• WAlT YOR..SEMAPHORE (6): the processis waiting fora semaphore. 

81 



• BLOCKED_QN_SEND (7): the process has been sending information 
and is waiting for a reply. 

• DELAY (8): the process is delayed fora specified amount of time, and 
will be restarted by the doek process. 

• WAlT YOR-COMMONSEMAPHORE (9): the process is waiting for a 
common semaphore. 

• DEBUG_TRAPPED (10): the processis trapped for debugging. In the 
current kernel version, debugging is not supported. 

• BLOCKED_ON_COMREG (11): the processis waiting until a message 
is received via the communication register. This is used for communi
cation between processors. 

• WAlT YOR-COMMONEVENT (12): the processis waiting fora com
mon event. Common events are supported, but are not used in the 
current kernel version. 

• A WAlT JNTERRUPT (13): the (interrupt service) process is waiting 
for an interrupt. 

• SEND_TQ_MBX (14): the process has sent a message to a mailbox, 
and is waiting for a reply. 

• RECElVEYROM_MBX (15): the process is waiting until it receives 
information from a mailbox. 

prio: The process priority (0-15). Priority 0 is reserved for the NULL 
process. Priorities 8-15 are reserved exclusively for ISPs. 

pid: The process identifier, which is a 32 bit number associated with 
each process in the system. Each process has a number that is system wide 
unique. The 16 most significant bits are determined by the geographical 
location of the process: the first byte contains the number of the node, and 
the second byte contains the number of the processor within a node. The 16 
least significant bits are a unique number within the processor module. 

psp: When a context switch occurs, all processor registers of the current 
process are put on the supervisor stack. The supervisor stack pointer is then 
copied to psp, and is used when the process is re-activated. 

srp, crp: The MMU root pointers for supervisor- and user mode respec
tively. These define the start address of the MMU translation table for each 
process. Within the process descriptor, the position of srp and crp relative 
to psp must not be changed, because this relative position is used in the 
context switch routine cswitch. 

82 



H.2 Task descriptor 

The task descriptor contains information about the MMU tables of a task. 
The memory used for a task descriptor is allocated together with the memory 
used for storing the MMU tables when a new taskis created. 

typedef struct { 
SLONG 
SLONG 
LONGTABLEDESCRIPTOR 
LONGPAGEDESCRIPTOR 
LONGPAGEDESCRIPTOR 
LONGPAGEDESCRIPTOR 
SLONG 
SLONG 
SLONG 

} TASKDESCRIPTOR; 

nr_pages; 
nr_of_processes; 
*level_bO_descriptors; 
*user_code_area; 
*user_data_area; 
*user_heap_area; 
nr_of_code_pages; 
nr_of_data_pages; 
nr_of_heap_pages; 

nr_pages: The number of memory pages used by the task descriptor plus 
the MMU tables. 

nr_of_processes: The number ofprocesses is the task. When a processis 
created, nr _of _processes is incremented, and when a process is terminated, 
it is decremented. If a process is terminated and nr _of _processes reaches 
0, the memory used by the task, as well as the memory used by the task 
descriptor is released. 

The other fields in the task descriptor contain the start addresses of MMU 
descriptor tables and the sizes of these tables. 

H.3 Common memory vector table 

The common memory vector table contains information that can be ac
cessed by all processors in a node. It is initialized by the system controller, 
and is located at the first available memory locations in common mem
ory. The address of the first free memory location is determined by each 
processor when the system is started and is stored in the pointer variabie 
CommonMemoryVectorTable. It pointstoa structure of type 
COMMONMEMORYVECTORTABLE, which is defined as: 

typedef struct { 
LONG MemorySize; 
LONG *CommonSemasAddress; 
LONG *CommonMemoryBuffersAddress; 
LONG *PHYLANBuffersAddress; 

83 



LONG *ComRegBuffersAddress; 
LONG *ProcessNameTables; 
LONG *FSChannelsAddress; 
LONG *CommonEventsAddress; 
LONG NrOfProcessors; 
LONG *CommonMailBoxes; 
LONG *Processors; 
LONG *PacketBuffersAddress; 
LONG NodeNumber; 
LONG *XmitBuffer; 
LONG *RcvBuffer; 
LONG *XmitBuffers; 
LONG *RcvBuffers; 
BYTE *vme_mem_adr[MAX_VME_SLOTS]; 
LONG vme_mem_size[MAX_VME_SLOTS]; 

} COMMONMEMORYVECTORTABLE; 

H.4 Program file header 

The program file hea.der must he present at the start of each application 
program file. It consists of three parts: EMPS program file identifier plus 
an EMPS file hea.der version numher, information ahout the program (task) 
that is to he loaded, and information ahout the processes in the task which 
are crea.ted w hen the task is loaded. 

The program file identifier plus hea.der version are defined in EMPS_VERSION: 

typedef struct { 
SBYTE emps_id[4]; 
SBYTE version[4]; 

} EMPS_VERSION; 

emps__id: This field must contain the characters "EMPS" to identify the 
file as an EMP S program file. 

version: The EMPS file hea.der version numher. In the current imple
mentation, only EMPS file hea.der version "0000" is used. 

The task related part of the file hea.der of version "0000" is defined in the 
type EMPS_OOOO: 

typedef struct { 
LONG 
MEMTYPE 
LONG 
LONG 

nr_of_processes; 
memtype; 
code_size; 
data_size; 

84 



LONG max_heap; 
} EMPS_OOOO; 

nr _of _processes: The number of processes created when the task is 
loaded. For each process, a structure of type PROCESSIDENTIFICATION is 
present in the file header. 

mem_type: The memory type that is allocated for program code and data. 
mem_type can he either PRIVATE, COMMON_VME, of COMMQN_VSB. 

code..size: The number of bytes in the code area of the program. 
data..size: The number of bytes in the data area of the program. 
max...heap: As explained in chapter 3, programscan allocate 61 blocks of 

memory using early termination page descriptors. For programs that allocate 
many small blocks of memory, normal page descriptors can he reserved by 
setting max...heap to the required memory size for normal page descriptors of 
1 page each. Because most programs don't allocate more than 61 blocks of 
memory, it is usually suffi.cient to set max...heap to 0. 

The task related part of the file header is followed by one or more process 
related items. For each process that is created when the task is loaded, a 
structure of type PROCESSIDENTIFICATION is present in the file header. 

typedef struct { 
void 
SBYTE 

(*func)(); 
pname[ 20 ] ; 

SLONG prio; 
LONG UserStackSize; 
LONG SuperVisorStackSize; 
MEMTYPE UserStackMemType; 
MEMTYPE SuperVisorStackMemType; 
SLONG ProcNr; 

} PROCESSIDENTIFICATION; 

func: The function that is called when the process is started. 
pname: The process name. 
prio: The process priority. 
UserStackSize: The size of the user stack in bytes. The user stack is 

used for the local variables and return addresses of the process. 
SuperVisorStackSize: The size of the supervisor stack in bytes. Al

though application processes run in user mode, and therefore do not use the 
supervisor stack directly, each timeakernel function is invoked, a switch to 
supervisor mode is made. The kernel function then uses the supervisor stack. 
When an interrupt occurs, the supervisor stack is also used. 

UserStackMemType: The type of memory that is allocated fortheuser 
stack, either PRIVATE, COMMON_VME, of COMMON_VSB. 

85 



SuperVisorStackMemType: The type of memory that is alloca.ted for the 
user sta.ck, either PRIVATE, COMMON_VME, of COMMON_VSB. 

procnr: The number of the processor at which the process is created. 

86 



Appendix I 

lmprovements and extensions 
of the original kernel 

The following list contains a summary of improvements and extensions that 
have been made to the original kernel. 

• Adaptation of the C souree code to the ANSI standard. The 
original kernel contained a mixture of pre-ANSI C and ANSI C program 
code. A consistent use of ANSI C improves readability and allows type 
checking of parameters by the compiler. 

• Implementation of the XON/XOFF protocol for flow control 
of output to the terminal. The XON/XOFF protocol prevents 
characters to he lost when output is sent to the terminal at a higher 
rate than the terminal can handle. It also allows the use of the hold 
key on the terminal to suspend output. 

• lmplementation of time slicing. 

• Redesign of memory management services. The new memory 
management in the kernel is described in chapter 3. Apart from the is
sues discussed in chapter 3, the changes in memory management caused 
significant alterations of other parts of the kernel, e.g. process migra
tion and the loading of application programs. 

• Revision of the init program and slavemonitor. The init program, 
which performa the part of the initialization of the MMU that must 
he executed before the kernel can he loaded at the system controller 
processor module, has been completely rewritten. The slavemonitor 
performa a similar function at other processor modules and is present in 
EPROM memory. It has been updated to comply with the requirements 
of the new memory management implementation. 

• lmplementation of a new file header for application programs. 
In the new kernel version, MMU tables used for application programs 
are allocated dynamically. Therefore, the file header must contain the 

87 


