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Abstract

This report is part of a research of which the main goal is to reduce the necessary computation
time to simulate combustion processes, but without losing too much accuracy. Besides the
detailed numerical simulations, there are traditionally two different methods to model flames.
The first are the chemical reduction techniques, which are based on the observation that during
combustion most of the time-scales corresponding to chemistry, are often much smaller than
time-scales associated with transport phenomena. The second are the flamelet models, which
describe the internal flame structure, and which are based on the assumption that in a flame,
gradients in the direction perpendicular to the flame are much larger than gradients along
flame. This means that a multi-dimensional flame can be accurately described by a set of
quasi one-dimensional flame structures.

Both the aforementioned methods can be used to construct a database in a pre-processing
step, in which the mixture composition is stored as a function of so-called controlling variables.
The number of controlling variables is one of the factors that limit the accuracy when a
database is used to retrieve the flame structure. As said before, the reduced mechanism is
constructed by assuming steady-state conditions for a portion of the species. This is where
reduction techniques essentially differ from the flamelet approach.

Therefore, the Combustion Technology Group at the Eindhoven University of Technology
has been investigating ways to ’bridge the gap’ between reduction techniques and flamelet
models. Until now, this research has been concentrated on (partially) premixed systems,
which resulted in the Flamelet Generated Manifolds (FGM) method and the Phase-Space
Intrinsic Low-Dimensional Manifolds (PS-ILDM) method. It is desirable to develop such a
hybrid method for non-premixed flames as well.

The ultimate challenge is to develop a reduction technique that is based on a universal
flamelet model, which describes both premixed and non-premixed flames with the same set of
equations. When this has been achieved, it may be possible to apply an automated time-scale
analysis to this flamelet model, analogous to the PS-ILDM method.

Before this can be done, however, an existing non-premixed flamelet model, and the as-
sumptions that have been made, will have to be studied, which has been done in this gradu-
ation thesis. Therefore, the goal of this thesis was to gain insight in a non-premixed flamelet
model and to estimate the effect of the assumptions that were made in the derivation of this
flamelet model.

In this thesis, an existing, standard non-premixed flamelet method [14] has been discussed
in more detail. This non-premixed flamelet method is based on the assumption that there
are no preferential diffusion effects, i.e. Lei = 1. To investigate the effects of this assumption,
the derivation without assuming that there is no preferential diffusion was done. First, a
coordinate transformation was applied to the conservation equation for species, which leads
to a description of conservation equation for species in mixture fraction space. Using the

3



assumption that perturbations in the directions along the flame surface are small, led to a 1D
flamelet model describing species conservation in mixture fraction space. Using a 1D solver, a
numerical analysis was carried out, where it was shown that these effects cannot be neglected
for non-premixed flames, when using more realistic Lewis numbers. The preferential diffusion
terms were scaled with the maximum value of the chemical source terms, and it was observed
that this ratio was up to 10% for several species when a strain rate of a = 100 s−1 was chosen.
For a strain rate of 400 s−1, this ratio was even larger, i.e. 20% for CH3O and 21.5% for CO2.

The diffusion flamelet method can also be used to construct a flamelet database, where
commonly the flame structure is stored as a function of the mixture fraction Z and the
stoichiometric value of the scalar dissipation rate χst . An analytical model is needed that
relates the stoichiometric value of the scalar dissipation rate to the local value of the scalar
dissipation rate that is found during the simulation of a combustion process. It seems that
the accuracy of the analytical model for the scalar dissipation rate influences the results when
the flame structure is retrieved from the database. It was shown that the assumption,which
was made during the derivation of the analytical model, that the density is constant, results
in errors when predicting the stoichiometric value of the scalar dissipation rate.
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Samenvatting

Dit afstudeerverslag is een deel van een onderzoek waarvan het doel is om de rekentijd,
die nodig is om verbrandingsprocessen te beschrijven, terug te brengen, zonder dat de
nauwkeurigheid daar te veel onder leidt. Naast de gedetailleerde numerieke simulaties, zijn
er twee andere veel gebruikte methodes, die beide de rekentijd drastisch verlagen. Allereerst
zijn er de zogenaamde chemische reductie technieken. Deze zijn gebaseerd op de observatie
dat bij verbrandingsprocessen het merendeel van de chemische tijd-schalen veel kleiner is dan
de tijd-schalen die horen bij transport verschijnselen. Daarnaast zijn er de zogeheten flamelet
modellen, die de interne structuur van een vlam beschrijven en waarbij wordt aangenomen
dat in een vlam, gradiënten loodrecht op de vlam veel groter zijn dan gradiënten in de richting
langs de vlam. Met andere woorden, een multi-dimensionale vlam kan nauwkeurig beschreven
worden met een set van quasi-1D vlam structuren.

Beide bovengenoemde methodes kunnen gebruikt worden om, in een pre-processing stap,
een database aan te maken waarin de compositie van het mengsel is opgeslagen als functie
van zogeheten controle-variabelen. Het aantal controle-variabelen bepaalt ondermeer de max-
imale nauwkeurigheid die haalbaar is wanneer een database gebruikt wordt. Een gereduceerd
mechanisme wordt gevonden door aan te nemen dat het merendeel van de chemische com-
ponenten zich in steady-state bevindt. Dat wil zeggen dat de chemische bronterm van deze
chemische componenten 0 is.

Daarom wordt op de Technische Universiteit Eindhoven door de Combustion Technology
Group onderzoek verricht naar manieren om de chemische reductie technieken en de flamelet
modellen dichter naar elkaar te brengen. Tot nog toe is het onderzoek gericht geweest op
(deels) voorgemengde systemen. Dit heeft geleid tot de Flamelet Generated Manifolds (FGM)
methode en de Phase-Space Intrinsic Low-Dimensional Manifolds (PS-ILDM) methode. Het
is dan ook gewenst om een soortgelijke methode te ontwikkelen voor niet-voorgemengde sys-
temen.

De ultieme uitdaging is om een reductie methode te ontwikkelen die gebaseerd is op een
universeel flamelet model. Hiermee wordt bedoeld een flamelet model dat zowel voorgemengde
als niet-voorgemengde vlammen kan beschrijven. Wanneer dit is bereikt, is het wellicht
mogelijk om een geautomatiseerde tijd-schaal analyse toe te passen op dit universeel flamelet
model, analoog aan de PS-ILDM methode.

Voordat het echter zover is, zal een bestaande, veelgebruikte niet-voorgemengd flamelet
model en de aannames die in de afleiding van dit model gemaakt zijn, moeten worden onder-
zocht. Dat is in dit afstudeerverslag gedaan. Het doel van dit verslag is dan ook om inzicht
te krijgen in een niet-voorgemengd flamelet model en om een afschatting te maken van de
invloed van aannames die gedaan zijn tijdens de afleiding van dit model.

Daarom zal in dit verslag een bestaande, veelgebruikte niet-voorgemengd flamelet methode
[14] in meer detail worden bestudeerd. Dit niet-voorgemengd flamelet model is gebaseerd op
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de aanname dat er geen preferentiële diffusie is, m.a.w. Lei = 1. Om de invloed van deze
aanname te toetsen, is de afleiding van dit flamelet model herhaald, maar nu zonder de
aanname dat er geen preferentiële diffusie is. Allereerst is er een coördinaten transformatie
toegepast om de behoudsvergelijking voor chemische componenten in termen van de mengsel
fractie Z te schijven. Wanneer wordt aangenomen dat gradiënten in de richting langs het vlam
oppervlak mogen worden verwaarloosd, leidt dit tot een 1D beschrijving van het flamelet
model in de mengsel fractie ruimte. Een numerieke analyse is uitgevoerd met behulp van
een 1D rekenprogramma. Hierbij is aangetoond dat effecten die worden veroorzaakt door
preferentiële diffusie niet altijd kunnen worden verwaarloosd wanneer Lewis getallen worden
gekozen die realistischer zijn dan Lei = 1. De preferentiële diffusie termen zijn geschaald met
de maximum waarde van de chemische bron term en het blijkt dat voor sommige chemische
componenten deze verhouding meer dan 10% was. De ’strain rate’ die hierbij hoort is a =
100 s−1. Voor een ’strain rate’ van 400 s−1, was deze verhouding voor sommige componenten
nog groter, nl. 20% voor CH3O en 21.5% voor CO2.

De niet-voorgemengde flamelet methode kan ook worden gebruikt om een flamelet database
te construeren. Het is dan gebruikelijk om de vlam structuur op te slaan als functie van
de mengel fractie Z en de stoichiometrische waarde van de scalaire dissipatie snelheid χst .
Hierbij is een analytisch model nodig om de lokale waarde van de scalaire dissipatie snelheid,
die uit de vlam simulatie volgt, te relateren aan de stoichiometrische waarde van de scalaire
dissipatie snelheid. Het lijkt erop dat de nauwkeurigheid van het gebruikte analytisch model
voor de scalaire dissipatie snelheid invloed heeft op de resultaten wanneer de compositie van
het mengsel wordt opgezocht in de flamelet database. Het blijkt dat de aanname bij de
afleiding van het analytisch model, dat de dichtheid constant is, resulteert in afwijkingen bij
de voorspelling van de stoichiometrische waarde van de scalaire dissipatie snelheid.
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Chapter 1

Introduction

1.1 General introduction

In recent years, it has become increasingly important to accurately model combustion systems.
The reason behind this is twofold: to use the models to improve the efficiency of burner
systems and to reduce the amount of pollutants that are produced during a combustion
process.

The accuracy of the calculations is mainly determined by the chosen chemical model.
Unfortunately, not only the number of equations can be very large, but they are also strongly
coupled. The wide range of time-scales implies that the set of equations is stiff. These facts
amount to large computation times, which is undesirable. Generally, there are two approaches
that lead to a considerable decrease in calculation times: chemical reduction techniques and
flamelet models.

Reduction techniques reduce the number of equations that has to be solved during flame
calculations, but without losing too much accuracy. These reduction techniques are based
on fact that most of the chemical processes are much faster than transport phenomena, i.e.
most of the chemical time-scale are much smaller than the physical time-scales. This leads to
steady-state assumptions for species corresponding with the fast chemical time-scales.

Flamelet models are based on the assumption that changes along the flame are much smaller
than changes perpendicular to the flame, which results in a quasi one-dimensional description
of the flame structure. Reduction techniques on the other hand, are generally based purely on
chemistry, which makes them applicable to both premixed and non-premixed flames. However,
as transport processes are not included during the construction of the reduced mechanism,
they can be inaccurate in regions where transport phenomena become more important, i.e.
the colder regions in the flame. To solve this problem, new approaches were developed at
the Eindhoven University of Technology, the Flamelet Generated Manifolds (FGM) method
and the Phase-Space Intrinsic Low-Dimensional Manifolds (PS-ILDM) method. Both these
methods, amongst others, will be discussed in more detail later on.

Because the FGM and PS-ILDM methods were developed for (partially) premixed flames,
it remains to be seen if they are applicable to non-premixed combustion. The ultimate goal
of this research is to develop a reduction technique that is based on universal flame equations,
applicable to both premixed and non-premixed flames. In the long run it may be possible to
develop a reduction method based on a unifying flamelet theory. The idea behind this is that
the equations that describe premixed flamelets [6] may also be used to describe non-premixed
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flamelets. This could be used as a starting point to develop a reduction method based on a
truly unifying flamelet theory. However, this method still has to be developed and tested,
which goes beyond the scope of this report.

In this report, the standard, often used flamelet model, introduced by Peters [14], is studied
in detail. The main focus of this study is to investigate which assumptions are made and what
the effects of these assumptions are on the accuracy of this flamelet model.

This chapter starts with a historical background on combustion in section 1.1.1, followed by
an introduction to combustion in general in section 1.1.2. Then, in section 1.2 the equations
that will be used throughout this report will be presented. An overview of this thesis and a
description of the main goals of this thesis are given in section 1.3.

1.1.1 Historical background

Even today combustion is still essential to humankind, as it was in the past and as it will
be in the foreseeable future. It still is the major energy-release process, as nearly 80 percent
of the world primary energy is generated through combustion. Unfortunately combustion
generates pollutants, which have several unwanted effects on the environment. Furthermore,
the resources of fossil fuels are not unlimited and it is obvious that they have to be used as
efficiently as possible. Even when renewable energy sources are considered, fossil fuels will
remain an important energy source for the next 100 years [1]. Besides that, combustion of
biomass is also an example of a renewable energy source. With this in mind, it is clear that
studying combustion is very relevant.

Since early history man has used fire as a source for heat and light. The nature of com-
bustion was not always clearly understood. For instance, the ancient Greeks believed fire
to be a basic element of the universe and in 1697 the German physician and chemist Georg
Ernst Stahl proposed the existence of phlogiston, derived from the Latin word phlegma, which
means fire spirit. The idea of phlogiston was discarded by Lavoisier [7]. Although it was clear
that combustion required a fuel and an igniter. It was not until the 17th century that it was
learnt that air was also needed. In 1663 Boyle discovered that, under vacuum, sulphur could
not be ignited by concentrated light, but the first to realise that oxygen was the key was
Lavoisier, which was in 1777.

Since then combustion science has advanced a lot. Deeper understanding in fundamental
aspects of combustion has been gained, with numerous ways to accurately model combustion
processes as a result. With the introduction of modern computers, it became possible to
perform detailed studies of combustion phenomena. However, due to the complexity of the
models, simulation times can become very large and are still restricted to simple configura-
tions.

1.1.2 Introduction to combustion

Combustion can be described as a self-sustaining oxidative chemical reaction characterised
by a thermal runaway, i.e. it is a quick exothermal oxidation producing light, heat, smoke
and gases near the so-called flame front.

Chemistry is very important for combustion, as it not only determines at what rate the fuel
and oxidiser are consumed but it also indicates which reactions and chemical components are
important to the reaction progress. Furthermore, the reaction rates determine which combus-
tion products are formed and at which rate. The global reaction mechanism for combustion is
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Fuel + Oxidiser → Products.

In reality these products are not formed in just one step, but there are a lot of elementary
reactions, describing the conversion of fuel and oxidiser into intermediates and finally into
products. In order to accurately describe a combustion process, these elementary reactions
have to be included as well.

1.1.3 Premixed and non-premixed combustion

Depending on the initial state of the mixing of fuel and oxidiser, a combustion process can be
identified as (partially) premixed or non-premixed. In premixed combustion, the unburnt gas
is already a mixture of fuel and air, and the rate of reaction is only limited by the chemical
kinetics of the reactions involved and heat diffusion towards the unburnt mixture. Figure
1.1 (left) shows an example of a premixed flame geometry. The unburnt mixture is at the
left side of a tube, while the burnt gasses are at the other side. The unburnt mixture is
separated from the burnt gasses by the flame front, which moves from right to left through
the tube, consuming the unburnt mixture. The velocity of the flame front is the so-called
burning velocity, denoted by SL. Due to the rise in temperature, the burnt gasses expand,
causing an outflow of burnt gasses.

In non-premixed combustion there is no characteristic burning velocity, and diffusion of
fuel towards the oxidiser and vice versa, is the limiting process. The mass burning rate is
fixed by the rate at which fuel and oxidiser approach the flame by diffusion from each side.
An example of the non-premixed geometry is a counterflow diffusion flame, which can be seen
in figure 1.1 (right). This configuration will be considered throughout this report. The fuel
and the oxidiser flow in opposite directions and the two flows are separated by a stagnation
surface. This causes the flows to diverge outward in y-direction. On the stagnation surface
the overall velocity in x-direction is equal to zero. Individual molecules can diffuse beyond
the stagnation plane to keep the chemical reaction going.

In figure 1.2 (l) the structure of a premixed flame can be seen. Note that only a few species
are shown. The unburnt mixture containing both fuel and oxidiser, is present in a large
amount at the left side of the flame, and is consumed at the flame front. The combustion
products, consisting of CO2 and H2O amongst others, are produced at the flame front. The
intermediate species are produced and consumed almost immediately at the flame front. In
this figure one of the intermediates, OH, is shown. Because the mass fraction for OH is very
small, it is scaled with 0.25 × YOH,max for convenience. The temperature T rises from its
minimum value at the unburnt side of the flame to its maximum value at the burnt side.

Figure 1.2 (r) shows the structure of a non-premixed flame in a counterflow geometry.
Combustion can only take place when mixing on a molecular scale is accomplished which is
the result of diffusion. As can be seen, both the fuel and the oxidiser are consumed at the
flame front, while products like CO2 and H2O are produced there. The intermediate species,
of which OH is one, are produced and consumed at the flame front. Here, the mass fraction
for OH is again scaled with 0.25 × YOH,max. The temperature T has its maximum value at
the flame front, and decreases to both the fuel side and the oxidiser side.

In both figures 1.2, (l) and (r), the species mass fractions are shown as a function of the
spatial position x. With non-premixed combustion however another coordinate is often used,
i.e. the mixture fraction Z, which is a measure for the mixing of the gas-streams. One of the
benefits of using the mixture fraction is that it is not influenced by chemistry.
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Fig. 1.1: Schematic representation of a premixed flame in a tube (left) and a counterflow
diffusion flame (right).
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Fig. 1.2: The internal structure of a premixed flame (l) and a non-premixed flame (r).
Shown are the mass fractions Yi and the scaled temperature T̃ . Solid: YO2

; dash-dot:
YCH4

; dotted: YH2O; dashed: YCO2
; thin solid: YOH, scaled with 10 × YOH,max (l) and

2.5 × YOH,max (r) for visualisation purposes; thick solid: temperature scaled with the
maximum value of the temperature.

The mixture fraction Z is defined in such a way that Z = 1 at the fuel side and Z = 0 at
the oxidiser side of the flame. Furthermore, it is continuously increasing, which allows the
mixture fraction to be used as a coordinate describing the reaction progress in a non-premixed
flame. Another quantity that is closely related to the mixture fraction is the so-called scalar
dissipation rate χ, which is the inverse of a characteristic diffusion time scale. More details
about Z and χ can be found in chapters 3 and 4. The scalar dissipation rate is often used in
combination with the mixture fraction to characterise diffusion flames.

1.2 Governing equations

Flames can be described as thin reactive-diffusive layers embedded within an otherwise non-
reacting flow field. Mathematical models based on this view are the so-called flamelet models
[19]. The flow field is described by the conservation equations from fluid dynamics, i.e.
conservation of mass, momentum and energy or enthalpy [11]. In addition, conservation
equations for the chemical components are needed to describe the chemical behaviour of
the flame. These conservation equations are presented in section 1.2.1. The conservation
equations are complemented by two state equations, of which the first is the caloric equation
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of state and the latter the thermal equation of state. This is done in section 1.2.2. Various
other variables, such as the stress tensor, the heat flux, and the diffusion velocities require
transport models. Additionally, chemical models are needed to calculate the chemical source
terms. These transport and chemical models are presented in section 1.2.3.

1.2.1 Conservation laws

In a chemically reacting flow, a mass balance equation for every species has to be solved

∂ (ρi)

∂t
+ ∇ · (ρiui) = ω̇i for i = 1, . . . ,Ns , (1.1)

with ρi the mass density of species i and ui the particular velocity of species i. The species
source term ω̇i describes the rate of change of the mass of species i due to chemical reactions.
The particular velocity of species i is determined by a combination of the average flow
velocity u and the diffusion velocity Vi and can be written as ui = u+Vi. The species mass
fraction is defined as

Yi = ρi/ρ for i = 1, . . . ,Ns . (1.2)

For the species mass density the following is true

Ns
∑

i=1

ρi = ρ, (1.3)

which means that
∑Ns

i=1
Yi = 1. When the definition of ui is substituted in equation (1.1),

and by using the definition of the mass fraction of each species (1.2), equation (1.1) can be
written as

∂ (ρYi)

∂t
+ ∇ · (ρuYi) + ∇ · (ρViYi) = ω̇i for i = 1, . . . ,Ns . (1.4)

In section 1.2.3 an approach to model the diffusion velocity Vi will be introduced. Taking
the summation of equation (1.1) over all species, results in

Ns
∑

i=1

∂ (ρi)

∂t
+

Ns
∑

i=1

∇ · (ρiui) =

Ns
∑

i=1

ω̇i. (1.5)

Considering that
∑Ns

i=1
ρiui = ρu, which defines the average mixture velocity, and where ρi

is defined by (1.3), leads to the conservation equation of mass for the mixture

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.6)

with ρ the mass density and u = (u, v, w)T . Note that this equation does not contain a
source term ω̇i, contrary to the conservation equation of species (1.4).

Conservation of momentum is described by the Navier-Stokes equations

∂ (ρu)

∂t
+ ∇ · (ρuu) = ρg −∇ · P . (1.7)

11



Here, g is the gravitational acceleration and P is the stress tensor, which is defined as P =
pI − τ . Here, p is the hydrostatic pressure, τ is the viscous stress tensor, and I the unit
tensor.

The transport equation for the conservation of enthalpy is

∂ (ρh)

∂t
+ ∇ · (ρuh) = ρu · g −∇ · q + τ : (∇u) +

dp

dt
, (1.8)

where h is the enthalpy density and q is the heat flux, which is a field quantity. The last term
on the r.h.s. is the material derivative for the pressure.

1.2.2 State equations

With the use of two state equations the pressure and enthalpy can be written as functions
of the density, the temperature and the species mass fractions. For the enthalpy the caloric
equation of state will be used and for the pressure this is the thermal equation of state.

In most common combustion problems the gas mixture and its components are con-
sidered to behave as perfect gasses. The thermal equation of state is then given by
the ideal gas law, which is a relation between the pressure, the density, the temperature
and the species mass fractions. The ideal gas law for the pressure for each species pi is given by

pi = niRT = nXiRT for i = 1, . . . ,Ns , (1.9)

where R is the universal gas constant and Xi = ni/n the species mole fraction, with ni the
molar concentration of species i and n the total gas mixture. The species mole fraction is
related to the species mass fraction as follows

Xi = Yi
M̄

Mi
for i = 1, . . . ,Ns , (1.10)

with Mi the molar mass of species i and M̄ the mean molar mass. When ρ = nM̄ is used in
combination with (1.10), equation (1.9) becomes

pi = ρRT
Yi

Mi
for i = 1, . . . ,Ns . (1.11)

The sum of all the partial pressures pi is equal to the hydrostatic pressure according to

p =

Ns
∑

i=1

pi = ρRT

Ns
∑

i=1

Yi

Mi
. (1.12)

The enthalpy density is related to the temperature T and the species mass fractions Yi by
the caloric equation of state as follows

h =

Ns
∑

i=1

Yihi, (1.13)

where hi is the enthalpy density of species i. The enthalpy density hi is related to the
formation enthalpy at the reference temperature T ∗

hi = h∗i +

∫ T

T ∗

cpi
(T ) dT for i = 1, . . . ,Ns , (1.14)
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with h∗i the species enthalpy density of formation at the reference temperature T ∗ and cpi

the specific heat of species i at constant pressure, which is well tabulated in polynomial form
[10].

1.2.3 Transport and chemistry models

In this section the transport models for the diffusion velocity, the viscous stress tensor and
the heat-flux are presented. Furthermore a model is given in order to calculate the chemical
source terms.

Transport models

The diffusion velocity field Vi can be solved by using the so-called Stefan-Maxwell equations
[23]. When neglecting contributions caused by pressure and temperature gradients, the
equations that have to be solved, are

∇Xi =

Ns
∑

k=1

XiXk

Dik

(Vk − Vi) for i = 1, . . . ,Ns , (1.15)

with Dik the binary mass diffusion coefficient of species i into species k. Because the
computational costs to solve equation (1.15) are very high, a model that is less complex will
be used. This model is based on Fick’s law and it is commonly used to model the diffusion
velocities [13]. The diffusion velocities are defined as

Vi = −
Dim

Yi
∇Yi for i = 1, . . . ,Ns − 1, (1.16)

where Dim is the diffusion coefficient of species i into the mixture m, which can be related to
the overall diffusion coefficient D as follows, D = DimLei. The Lewis number, which is the
ratio of thermal conduction and species mass diffusion, is defined as

Lei =
λ

ρDimcp
for i = 1, . . . ,Ns − 1, (1.17)

where cp is the specific heat at constant pressure and λ the heat conductivity. Equation
(1.16) assumes that there is an abundant species. For premixed methane-air flames, this is
nitrogen. With non-premixed flames, however, nitrogen is only abundant at the oxidiser side.
However, for the counterflow configuration that is used in this thesis, the flame is situated at
the oxidiser side of the flame, see figure 1.1, meaning that this will not have a large effect on
processes that occur near the flame. Using (1.17), equation (1.16) becomes

Vi = −
D

LeiYi
∇Yi for i = 1, . . . ,Ns − 1, (1.18)

where it has been assumed that the Lewis number is constant. Equation (1.18) is the
diffusion model that will be used throughout the remainder of this report. Using this
definition, equation (1.4) becomes

∂ (ρYi)

∂t
+ ∇ · (ρuYi) −

1

Lei
∇ · (ρD∇Yi) = ω̇i for i = 1, . . . ,Ns − 1. (1.19)
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The transport model for the heat flux q, is given by [23]

q = −λ∇T +

Ns
∑

k=1

ρVkYkhk, (1.20)

The first term of (1.20) represents heat transport through conduction and the second term
represents heat transport through mass diffusion. It can be shown [20] that equation (1.20)
can also be written as

q = −ρD∇h− ρD

Ns
∑

k=1

(

1

Lek
− 1

)

hk∇Yk. (1.21)

When it is assumed that the gas mixture behaves as a Newtonian fluid, the viscous stress
tensor τ can be modeled with Stokes’ law of friction, cf. [23]

τ = µ

(

∇v + (∇v)T −
2

3
(∇ · v) I

)

, (1.22)

where µ is the dynamic viscosity of the mixture, which is related to the kinematic viscosity ν
as µ = ρν. Using equation (1.21), the conservation equation for the enthalpy (1.8) becomes

∂ (ρh)

∂t
+ ∇ · (ρuh) −∇ · (ρD∇h) =

Ns
∑

k=1

(

1

Lek
− 1

)

∇ · (ρDhk∇Yk) , (1.23)

where it has been assumed that effects caused by gravity, viscous stress and pressure can be
neglected.

Chemistry model

For combustion of a methane-air flame, the global reaction can be written as

CH4 + 2O2 → CO2 + 2H2O.

On a molecular level, many elementary reactions take place. The general form that describes
these reactions is given by

Ns
∑

i=1

νij
′ρYi

Mi

⇀↽

Ns
∑

i=1

νij
′′ ρYi

Mi
for j = 1, . . . , Nr, (1.24)

where νij
′ and νij

′′ are the molar stoichiometric coefficients of species i in reaction j, and
Nr is the number of reactions. The chemical source term for species i ω̇i contains the
contribution of all chemical reactions and is given by

ω̇i = Mi

Nr
∑

j=1

(

νij
′′ − νij

′
)

rj for i = 1, . . . ,Ns , (1.25)

where the reaction rate rj , is defined as

rj = kf
j

Ns
∏

i=1

(

ρYi

Mi

)νij
′

− kb
j

Ns
∏

i=1

(

ρYi

Mi

)νij
′′

for j = 1, . . . , Nr, (1.26)
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where kj is the reaction rate constant of reaction j, and the superscripts f and b refer to
the forward and backward reactions. This leads to the following expression for the chemical
source term

ω̇i = Mi

Nr
∑

j=1

(

ν
′′

ij − νij
′
)

{

kf
j

Ns
∏

i=1

(

ρYi

Mi

)νij
′

− kb
j

Ns
∏

i=1

(

ρYi

Mi

)νij
′′
}

for i = 1, . . . ,Ns . (1.27)

The reactions and the reaction constants are listed in reaction mechanisms. The reaction
mechanism that has been used in this study is the mechanism from Smooke [18], which
contains only 16 species and 25 reactions.

1.3 Overview of this thesis

This work is part of a research, of which the main objective is the development of a reduction
method that is based on a unified flamelet model. This reduction method can be used in both
premixed and non-premixed flame computations. However, the development and testing of
such a method goes beyond the scope of this thesis. The goal of this work is to evaluate the
existing, standard Diffusion Flamelet Method, which is based on a number of assumptions
that can lead to inaccuracies.

The first assumption that will be investigated is the assumption that the Lewis numbers for
all species are unity, i.e. that there are no preferential diffusion effects. In order to evaluate
this, a new flamelet model will be derived, which includes preferential diffusion. The order of
magnitude of preferential diffusion effects is then calculated for a one-dimensional counterflow
diffusion flame, using a 1D solver.

The second assumption arises when a flamelet database is constructed and used during
complex flamelet computations. When it is assumed that the chemistry is infinitely fast,
which is known as the Burke-Schumann solution, the reaction takes place at the infinitely
thin reaction zone. Because the chemistry is assumed to be infinitely fast, the fuel and
oxidiser will be completely converted into combustion products. However, when the other
time-scales become more important, which occurs if the scalar dissipation rate increases, the
assumption that chemistry is infinitely fast is no longer valid. The fuel and oxidiser are no
longer completely converted, which means that the flame temperature drops. It can therefore
be concluded that the solution also depends on the scalar dissipation rate.

Therefore, when diffusion flamelets are computed, the composition is stored in a database
as a function of the mixture fraction Z and the stoichiometric value of the scalar dissipation
rate χst . This can be done in a pre-processing step. Later, during complex flame calcula-
tions, an equation for the mixture fraction is solved. Then the scalar dissipation rate, which is
strongly coupled with the mixture fraction, can then also be determined. The flame structure
is then found from the flamelet database. Generally, the local value of the scalar dissipation
rate is not equal to its stoichiometric value. Therefore, an analytical model is used to relate
the local values of the scalar dissipation rate to their corresponding stoichiometric values.
The assumption that is made to derive the analytical solution and that will be studied is the
assumption that the density is constant, i.e. a non-combusting system. For a combusting
system, this assumption is not valid, which leads to an error in the analytical model. There-
fore, numerical values of the stoichiometric scalar dissipation rate will be compared to their
modeled counterparts.
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This chapter started with an introduction to combustion in general. Then the equations
that will be used throughout this report were derived. An overview of existing reduction
methods is given in chapter 2. In chapter 3, the existing, standard diffusion flamelet model
with Lei = 1, that was introduced by Peters will be derived. After that, the same procedure
will be repeated, but the Lei = 1 assumption will not be made, which means that all species
can have a different diffusivity, leading to so-called preferential diffusion. Chapter 3 will start
with the introduction to the mixture fraction. After that, the quasi-1D flamelet equations
will be derived, starting from the full set of 3D equations. Using a numerical approach, the
order of magnitude of preferential diffusion effects is also discussed, as well as the effect of
preferential diffusion on the flame structure. An analytical solution for the mixture fraction
will be presented in chapter 4. This solution can be used to derive a model for the scalar
dissipation rate. The scalar dissipation rate is very important to diffusion flame models as
it is the inverse of a characteristic diffusion time scale. As said, the mixture fraction and
the scalar dissipation rate can be used to characterise diffusion flames. There are some
doubts on whether the choice for these two variables as characteristic parameters is the best
[8]. Furthermore, the model for the scalar dissipation rate that was derived in the previous
chapter will be compared with the numerical values in this chapter as well. In chapter 5,
conclusions will be drawn and recommendations for future research will be given.
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Chapter 2

Reduction of the computation time

In order to accurately predict temperature profiles and the composition of the gas mix-
tures, detailed combustion models have to be solved, i.e. equations (1.6), (1.7), (1.23) and
(1.19). These detailed models generally involve large reaction mechanisms, which contain
many chemical components and even more reactions. Generally, there are two approaches to
model flames, which both reduce the amount of computation time, but without losing too
much accuracy. The first are the chemical reduction techniques, which are based on the as-
sumption that chemical time-scales are much smaller than time-scales representing transport
and mixing processes. The second are the so-called laminar flamelet models, which are based
on the assumption that distortions along the flame surface are small compared to distortions
perpendicular to the flame. This is also an indication that the chemistry is fast compared to
transport and mixing phenomena.

At the Combustion Technology Group of the Eindhoven University of Technology, these
the chemical reduction technique and the flamelet approach have been combined, effectively
”bridging the gap” between the two. This led to the Flamelet Generated Manifolds method
and the Phase-Space Intrinsic Low-Dimensional Manifolds method.

In section 2.1, first the general concept of combustion in the composition space and so-called
manifolds will be explained. The reduction methods that will be briefly discussed here are the
Conventional Reduction Method introduced by Peters [15], which will be done in section 2.2
and the Intrinsic Low-Dimensional Manifolds method [12], which will be presented in section
2.3. In section 2.4 the Flamelet Generated Manifolds method [22] will be discussed and the
Phase-Space Intrinsic Low-Dimensional Manifolds method [4] in section 2.5. Section 2.6 will
contain a short summary of this chapter, and some conclusions will be drawn.

2.1 Composition space and manifolds

A mixture of Ns chemical species can be represented by a point in the Ns -dimensional compo-
sition space, with Ns the number of species. A combustion process can be described by a path
through the reaction space, which is a lower dimensional sub-space of the composition space.
The reaction space has a lower dimension than the composition space due to restrictions, i.e.
species mass conservation and element mass conservation. By assuming correlations between
species, the chemical composition is restricted to an even lower dimensional space within the
composition space, which is also referred to as a manifold. There are various methods to find
these correlations, and some of them will be discussed below.
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c o m p o s i t i o n  1

c o m p o s i t i o n  2

Fig. 2.1: A projection on the Y1 − Y2 plane of a two dimensional composition space with
a one dimensional manifold, represented by the solid line, which is a correlation between
Y1, Y2 and Y3.

The vector containing the species mass fractions is defined as Y = (Y1, ..., YNs )
T . Each

correlation between species reduces the dimension of the manifold by 1. For instance,
steady-state assumptions, meaning that the chemical source term is equal to zero, can be
used to derive the correlations between species. By applying steady-state assumptions for
species i = 1, . . . , Nss , equation (1.27) can be written as follows

Mi

Nr
∑

j=1

(

ν
′′

ij − νij
′
)

{

kf
j

Ns
∏

i=1

(

ρYi

Mi

)νij
′

− kb
j

Ns
∏

i=1

(

ρYi

Mi

)νij
′′
}

= 0, for i = 1, . . . , Nss

(2.1)

where Nss is the number of steady-state species. Suppose that a certain mixture consists
of species Y1, Y2 and Y3, then Y becomes (Y1, Y2, Y3)

T . In figure (2.1), a projection on the
Y1 − Y2 plane can be seen. In principle any point represents a possible solution to a chemical
process in this 3-dimensional solution space. However, when correlations between Y1, Y2 and
Y3 are known, the solution space can be reduced to a 1-dimensional manifold. Now it is
possible to do calculations for only one species, for instance Y1, because for every solution of
Y1 the mass fractions of Y2 and Y3 are known. In case of Ns species, the manifold can be
constructed using multiple correlations.

2.2 Conventional reduction method

The Conventional Reduction Method (CRM), introduced by Peters [15], applies steady-state
assumptions for intermediate species and partial equilibrium assumptions for fast reactions.
This means that for species i = 1, . . . , Nss , which are assumed to be in steady-state, the
sum of all chemical reactions equals zero. Equation (2.1) indicates that the time scales of
the reactions producing or consuming a steady-state species are much shorter than the time
scales concerning convection and diffusion. For the first Nss species, an algebraic equation like
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(2.1) is solved, instead of equation (1.19). During flame calculations equation (1.19) is solved
for the remaining species, together with the algebraic equations for the steady-state species.
Because the fastest time scales are removed from the differential equations, the number of
differential equations as well as the stiffness of the system is significantly reduced.

Because the selection of the steady-state species is done manually, this method requires both
experience and insight in the chemical kinetics, making it only suitable for simple mechanisms.
Because the steady-state species are selected globally, the reduced mechanism is not accurate
in the entire domain. This is due to the fact that it depends on local conditions which species
can be assumed to be in steady-state. Because of this, a reduced mechanism will likely not
be accurate for conditions it is not developed for. These problems can be avoided by using
the Intrinsic Low-Dimensional Manifolds method, which applies such a time-scale analysis
locally.

2.3 Intrinsic low-dimensional manifolds

Like the CRM, the Intrinsic Low-Dimensional Manifolds (ILDM) method is used to reduce
the number of differential equations that needs to be solved during flame calculations. This
method is also based on steady-state assumptions. The difference is that with ILDM this is
done automatically. Furthermore, the analysis is based on a local time-scale analysis of the
chemical source term. It is assumed that the fast and slow time-scales can be well separated.
If that is the case, the progress of the chemical reactions can be accurately described by the
slow processes. Here only a brief overview will be given, for more information the reader is
referred to [12].

To decouple the fast and slow time-scales, a local eigenvalue analysis is applied to the
chemical source term. In this analysis, it is assumed that both convection and diffusion may
be neglected. When applying this assumption, the conservation equation for species (1.19)
becomes

ρ
∂Yi

∂t
= ω̇i for i = 1, . . . ,Ns . (2.2)

Linearising ω̇i around a reference composition Y0 =
(

Y0
1, ...,Y

0
Ns

)

results in

ρ
∂

∂t

(

Y − Y0
)

∼= J(Y − Y0), (2.3)

where J is known as the Jacobian, with Jij = ∂ωi

∂Yj
. The Jacobian is used in an eigenvalue

analysis that separates all time-scales, and the eigenvalues can be separated into three groups,
see figure 2.2.

The first group represents the conserved variables, corresponding to eigenvalues equal to
zero, i.e. the element mass fractions Zj and the enthalpy h. The other eigenvalues can be
separated into a fast and slow group. Depending on the size of the real part of the eigenvalues,
it is decided which processes can be assumed to be in steady-state. Large negative eigenvalues
represent the fast group while the slow group is identified by the positive and small negative
eigenvalues. When it is assumed that species, corresponding to the small time-scales, are
in steady-state, the reaction progress is restricted to a lower dimensional space within the
composition space. This lower dimensional space is referred to as manifold. In figure 2.3, it
is schematically shown how the reaction trajectories are rapidly attracted to the manifold.
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Fig. 2.2: Schematic representation of the eigenvalues. The slow group is made up of pos-
itive and small negative eigenvalues, identifying the species that span the manifold. Large
negative eigenvalues represent the fast group and identify the species that are assumed to
be in steady state. Eigenvalues equal to 0 correspond to conserved variables.

M a n i f o l d

1 D
2 D

3 D

E q u i l i b r i u m

F l a m e  t r a j e c t o r i e s

Fig. 2.3: Schematic representation of a manifold. The low-dimensional manifold is defined
by the points within the composition-space, where most of the chemical source terms reach
steady state very fast.

Once on the manifold, the reaction trajectory is much slower. This manifold is stored as a
function of so-called controlling variables. During the flame calculations, only the equations
(including convection and diffusion) for the controlling variables are solved. The values of the
other species are found by using the data stored in the manifold. Note that Zj and h are kept
constant. If, however, this is not the case in the application, variations in Zj and h have to
be added to the manifold. In that case, the element mass fraction Zj and h act as additional
controlling variables, and thus add extra dimensions to the manifold.

Because the steady-state species are identified locally, the reduced mechanism truly includes
only the slow reactions, prohibited that the slow and fast time-scales are well separated.
However, the ILDM method applies an eigenvalue analysis to the chemical source term only.
This means that it is only accurate where the chemistry is much faster than convection and
diffusion. This is true in the hot regions of the flame, but in the colder regions the ILDM
method becomes less accurate. For premixed combustion, the pre-heat zone plays a vital part
in the combustion proces. It is near the edge of this region and the reaction zone that diffusion
is very important for the heat transport from the flame to the pre-heat zone. The Flamelet
Generated Manifolds method is more accurate in the colder flame regions than ILDM is for
premixed flames.
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Fig. 2.4: Schematic representation of a premixed flamelet system.

2.4 Flamelet generated manifolds

The Flamelet Generated Manifolds (FGM) method [22] is the combination of two approaches,
i.e. the flamelet approach and the reduced chemistry approach. FGM is based on the flamelet
assumption that the gradients perpendicular to the flame surface are much larger than the
gradients along the flame surface. This essentially means that a multi-dimensional flame can
be considered as a set of 1D flamelets. Therefore, the compositions in 1D flames can be
used to represent the compositions in 3D flames. The way that it is implemented however,
is very similar to reduction techniques. In a pre-processing step, a manifold is constructed
that includes the slow time-scales. The dimension of the manifold can be increased to capture
more time-scales.

Figure 2.4 shows a schematic representation of a premixed flamelet system. Here, a pre-
mixed flame is defined as the area, separating the unburnt from the burnt gasses. The scalar
variable Y defines the flame and can be a linear combination of species mass fractions. It is
defined such that it is Yu = 0 in the unburnt gases and Yb = 1 in the burnt gases, while it
must also be continuously increasing.

A flame surface is defined as an iso-surface of Y, meaning that Y (x, t) = const on such a
surface. The motion of such a surface is described by the kinematic equation

dY

dt
≡
∂Y

∂t
+ uf · ∇Y = 0, (2.4)

which essentially means that a point on a flame surface stays on this surface for all t. The
local velocity of the flame surface uf is the sum of the local fluid velocity u and the local
burning velocity SL

uf = u + SLn, (2.5)

where n is the normal to the iso-surface, which is defined as n = −∇Y/|∇Y|.
Substitution of (2.5) in (2.4) results in

∂Y

∂t
+ u · ∇Y = SL|∇Y|. (2.6)

There is a great similarity with the well-known G-equation [23]. The difference is that
the G-equation describes the motion of a single flame sheet, i.e. Y = Y0, whereas equation
(2.6) describes the motion of all flame surfaces with Yu < Y < Yb. Furthermore, the burning
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velocity SL is a field quantity in (2.6), while in the G-equation it is defined at the flame sheet
only.

With the coordinate system attached to the flame surface, see figure 2.4, described by (2.6),
the full set of conservation equations (1.6), (1.7), (1.8) and (1.4) can be cast in a quasi-1D
form, referred to as the flamelet equations. Introducing the arc-length perpendicular to the
flame surfaces s and the variable σ, which is a measure for the area through which transport
takes place, in the flame-attached system, the conservation equations become [9]

∂σm

∂s
= −σρK, (2.7)

∂(σmYi)

∂s
−

∂

∂s

(

σ
λ

Leicp

∂Yi

∂s

)

= σω̇i − σρKYi +Qi for i = 1, . . . ,Ns , (2.8)

∂(σmh)

∂s
−

∂

∂s

(

σ
λ

cp

∂h

∂s

)

=
∂

∂s

(

σ
λ

cp

Ns
∑

i=1

(

1

Lei
− 1

)

hi
∂Yi

∂s

)

− σρKh+Qh, (2.9)

where Qi describes transport along the flame surfaces that arise because generally the iso-
surfaces of Yi and h do not lie along the iso-surfaces of Y

When assuming that there are no perturbations from a 1D-flat flame perturbations, i.e.
K = 0, σ = 1, Qi = 0 and Qh = 0, the above flamelet equations can be written as

∂m

∂s
= 0, (2.10)

∂(mYi)

∂s
−

∂

∂s

(

λ

Leicp

∂Yi

∂s

)

= ω̇i for i = 1, . . . ,Ns , (2.11)

∂(mh)

∂s
−

∂

∂s

(

λ

cp

∂h

∂s

)

=
∂

∂s

(

λ

cp

Ns
∑

i=1

(

1

Lei
− 1

)

hi
∂Yi

∂s

)

. (2.12)

A more detailed derivation can be found in [22].
In order to construct a manifold, the set of 1D flamelet equations (2.10)-(2.12) can be

solved with CHEM1D [5]. The solution of this set of equations is determined by the initial
temperature and pressure of the unburnt mixture and each solution forms a curve in the
composition space and can be considered as a 1D manifold. In order to capture more time-
scales, i.e. increasing the dimension of the manifold, the initial composition is varied, while
the enthalpy and element mass fractions are kept constant. This can be done by changing
the values of the controlling variables and the temperature, so that all flamelets end up in
the same chemical equilibrium.

While FGM is shown to give accurate results [19, 21], the time-scale analysis is not based
on a strong mathematical fundament yet, as is the case with ILDM. It is also developed for
(partially) premixed flames only and it remains to be seen if it can be applied to diffusion
flames. Inclusion of more time-scales in the manifold is also not straightforward. With the
Phase-Space Intrinsic Low-Dimensional Manifolds method, which is under development, a
mathematic fundament is introduced for the FGM method.
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2.5 Phase-space intrinsic low-dimensional manifolds

As with the ILDM method, the Phase-Space Intrinsic Low-Dimensional Manifolds (PS-ILDM)
method [4] is used to create a unique manifold, but now diffusion effects are included. This
is done by performing a time-scale analysis of the reactive-diffusive system, instead of the
reactive system only. Subsequently, the ILDM approach is used to find a manifold in the
composition phase space. The composition phase space is defined by the species mass fractions
and their gradients.

Using the assumption that effects like stretch and curvature are small and that there is no
transport along the flame surfaces, i.e. K = 0, σ = 1, Qi = 0 and Qh = 0, equations (2.11)
and (2.12) can also be written as

∂ψi

∂s
= m

Leicp
λ

ψi − ω̇i for i = 1, . . . ,Ns , (2.13)

∂ψh

∂s
= m

cp
λ
ψh −m

Ns
∑

i=1

(1 − Lei)
cp
λ
ψi. (2.14)

Here, the diffusive flux for species ψi and the diffusive flux for enthalpy ψh are defined as

ψi =
λ

Leicp

∂Yi

∂s
for i = 1, . . . ,Ns , (2.15)

ψh =
λ

cp

∂h

∂s
+
λ

cp

Ns
∑

i=1

hi

(

1

Lei
− 1

)

∂Yi

∂s
. (2.16)

This is done in order to transform the otherwise second order differential equations into first
order differential equations. In vector form these equations read

dΘ

ds
= Ω (Θ) , (2.17)

where Θ = (Y1, ..., YNs , h, ψ1, ..., ψNs , ψh)T is a vector in the 2(Ns+1)-dimensional composition
space and Ω is the source of Θ, defined by equations (2.13)-(2.16). Note that the form of
equation (2.17) is analogous to (2.2). Instead of the time t, the spatial coordinate s will be
used to parameterise the evolution of the system. But this is irrelevant, because the evolution
through phase-space domain is considered and not through the time-spatial domain.

Analogous to the ILDM method, equations (2.17) can be linearised around reference
points Θ0

∂

∂s

(

Θ − Θ0
)

= A
(

Θ − Θ0
)

, (2.18)

where A is defined as

A =

(

0 B

−J mB

)

. (2.19)

Here 0 is a ((Ns + 1) × (Ns + 1)) null-matrix, J the Jacobian of the source term, which was
defined in section 2.3. B is a ((Ns + 1) × (Ns + 1)) matrix containing the definitions of the
fluxes ψi and ψh. The mass burning rate m is an independent variable, which introduces
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an additional degree of freedom. Because it can be chosen independently, it adds an extra
dimension to the manifold.

Where the Jacobian J was used to separate the fast and slow processes for the ILDM
method, for the PS-ILDM method the matrix A is used. The resulting eigenvalues can be
separated into three groups. The first group corresponds to eigenvalues equal to zero, which
are the conserved variables. The other two groups are distinguished as a slow and fast group.
These eigenvalues correspond to the eigenvalues found with the ILDM method. The difference
is that the (mostly) negative eigenvalues of ILDM have, in case of PS-ILDM, a positive
counterpart. The positive eigenvalues represent transport in the negative s-direction and
negative eigenvalues corresponds to transport in the positive s-direction. The construction of
the manifold is analogous to the construction of an ILDM.

Because of the mathematical fundament for the time-scale analysis, separating the fast and
slow processes can be done automatically. Increasing the dimension of the manifold is then
in theory straightforward. Unfortunately, the PS-ILDM method is not yet easy to apply to
actual flame computations [3]. Furthermore, because the flamelet model is based on premixed
equations, PS-ILDM will likely not be applicable to diffusion flames. One way to possibly
resolve this is to combine the time-scale analysis of ILDM with the flamelet equations of the
diffusion flamelet method.

2.6 Summary and conclusions

All the mentioned reduction methods have their limitations as to what they can be used
for. Like CRM, the ILDM method can be used for premixed as well as non-premixed flame
calculations, but because the reduced mechanisms are based on chemistry only, these methods
become less accurate in the colder flame regions. It is in these regions that the convection
and diffusion time-scales become of the same order as the chemistry time-scale. In premixed
flames the preheat zone is essential to the combustion. Diffusion is a very important process
to transport the heat from the flame to the preheat zone. Therefore, the ILDM method is
less suitable to use for premixed flames. For laminar (partially) premixed flames FGM gives
more accurate results, and although it has been successfully used [19, 21], its applicability
to diffusion flames is questionable. Furthermore, unlike the ILDM method, the time-scale
analysis of the FGM method is not based on a mathematical fundament. It is also not sure
whether the manifold that is constructed with the FGM method is the intrinsic manifold,
whereas the ILDM is. Increasing the dimension of the FGM is also not straightforward. Based
on the same ideas as the ILDM method and having the advantages of the FGM method is the
PS-ILDM method. The manifold includes both chemistry and diffusion, and should give more
accurate results than the ILDM method, but because premixed flamelet equations are used,
the PS-ILDM method is only applicable to (partially) premixed flames. This makes their
applicability to non-premixed flames questionable. Therefore, a method that is analogous to
either FGM or PS-ILDM has to be developed, but based on diffusion flamelet equations. But
before that, an existing, standard diffusion flamelet model will be studied. It is important to
know what assumptions are made, and what the effects are of these assumptions. This will
be done in the next two chapters.
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Chapter 3

Non-premixed flamelet model

Before a diffusion flamelet model based reduction technique can be developed, the flamelet
model itself has to be studied. A flamelet model, introduced by Peters [14], will be derived in
this chapter, and the assumptions that are made, will be reviewed. One of these assumptions
will be analysed numerically. The major assumption on which flamelet models are based is
that all gradients of a flame are much larger perpendicular to the flame than they are along
the flame surfaces. This model of Peters is often used in turbulent flame simulations, and is
regarded as a reference case.

Usually, for methane-air flames, combustion takes place near the surface of stoichiometric
mixture, which is the iso-surface where the mixture fraction Z equals its stoichiometric value.
Because the mixture fraction is an independent variable, it can be used as a new independent
coordinate. Rearranging the set of 3D equations leads to a set of quasi-1D equations. Assum-
ing that gradients along the flame surface are small, the resulting equations can be written
in 1D form, which are called the flamelet equations. These flamelet equations describe the
inner flame structure in mixture fraction space.

The mixture fraction is presented in section 3.1, and the coordinate transformation to
mixture fraction space in section 3.2. First, the flamelet model as derived by Peters is given in
section 3.2.2. The assumption that is made during this derivation, is that all Lewis numbers
are unity. This means that preferential diffusion effects are not included in this flamelet
model. To evaluate this assumption, a flamelet model including the preferential diffusion
terms, is derived in section 3.2.3, followed by a comparison between this flamelet model and
an alternative approach introduced by Peters and Pitsch, which will be presented in section
3.2.4. The order of magnitude of the preferential diffusion terms and the effect on the flame
structure in general will be numerically studied in section 3.3. Finally, some conclusions will
be drawn in section 3.4.

3.1 The mixture fraction

The mixture fraction Z is an important variable for diffusion flames. There are several
definitions for Z, but all these definitions are normalised such that Z = 1 for pure fuel and
Z = 0 for pure oxidiser. In this section, a conservation equation for Z will be derived.

During a reaction, species are consumed or produced, but chemical elements are conserved.
The element mass fraction is defined as
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Zj =

Ns
∑

k=1

wjkYk for j = 1, . . . ,Ne , (3.1)

where wjk is defined as

wjk =
ajkMj

Mk
for j = 1, . . . ,Ne and for k = 1, . . . ,Ns , (3.2)

with ajk the total number of chemical elements j in species k. Furthermore, Mj and Mk are
the molar masses of element j and species k, respectively.

Since elements cannot be created or annihilated by chemical reactions, element mass is
conserved during chemical reactions. This implies

Ns
∑

k=1

wjk ω̇k = 0. (3.3)

Taking the sum of equation (1.19) according to (3.1), leads to the following equation for
Zj

∂(ρZj)

∂t
+ ∇ · (ρuZj) −

Ns
∑

k=1

wjk

1

Lek
∇ · (ρD∇Yk) = 0 for j = 1, . . . ,Ne . (3.4)

To regain a transport equation on the l.h.s. of the above equation in terms of Zj , ∇·(ρD∇Zj)
is subtracted on both sides of equation (3.4). Using (3.1), equation (3.4) can be written as

∂(ρZj)

∂t
+∇·(ρuZj)−∇·(ρD∇Zj) =

Ns
∑

k=1

wjk

(

1

Lek
− 1

)

∇·(ρD∇Yk) for j = 1, . . . ,Ne ,

(3.5)

where the terms on the r.h.s. represent element mass fraction variations caused by preferential
diffusion. Note the similarity with the conservation equation for enthalpy (1.23).

In [2], Z∗ is introduced according to

Z∗ = 2
ZC

MC
+

1

2

ZH

MH
−
ZO

MO
, (3.6)

for hydrocarbon mixtures. In more general form this reads

Z∗ =

Ne
∑

j=1

βjZj , (3.7)

where βj is the specific stoichiometric coefficient of element j, being 2

MC
for C, 1

2MH
for H

and −1

MO
for O, respectively. The mixture fraction Z is defined as, c.f. [2]

Z =
Z∗ − Z∗

ox

Z∗
fu − Z∗

ox

, (3.8)

where Z∗
ox is defined as Z∗ for pure oxidiser and Z∗

fu is Z∗ for pure fuel.
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Applying equations (3.1), (3.7) and (3.8) to the conservation equation for species, results
in a conservation equation for the mixture fraction

∂(ρZ)

∂t
+ ∇ · (ρuZ) −∇ · (ρD∇Z) =

Ne
∑

j=1

Ns
∑

k=1

β′jk

(

1

Lek
− 1

)

∇ · (ρD∇Yk) , (3.9)

where β′jk is defined as

β′jk =
βjwjk

Z∗
fu − Z∗

ox

for j = 1, . . . ,Ne and for k = 1, . . . ,Ns . (3.10)

The unsteady convection-diffusion equation can be recognised on the l.h.s. of equation
(3.9), while the term on the r.h.s. represents mixture fraction variations caused by preferen-
tial diffusion. Preferential diffusion can be regarded as a source term and is the result of two
different effects. The first effect is that there is the preference of mass diffusion over thermal
conduction or vice versa if the Lewis numbers are not equal to 1, which leads to a non-zero
r.h.s. for the enthalpy equation (1.23). And the second effect is that there is a preference in
the mass diffusion of the species themselves, which occurs when all species have a different
diffusion velocity, and thus all species have different Lewis numbers. This leads to a non-zero
r.h.s. for the species equation (1.19) as well. Note that when all Lewis numbers are equal to
1, the r.h.s. of equation (3.9) cancels, leading to

∂(ρZ)

∂t
+ ∇ · (ρuZ) −∇ · (ρD∇Z) = 0, (3.11)

When the Lewis numbers for all species have the same value, i.e. Lek = Le, it is possible
to write equation (3.9) as

∂(ρZ)

∂t
+ ∇ · (ρuZ) −

1

Le
∇ · (ρD∇Z) = 0. (3.12)

This equation indicates that there is no preferential mass-diffusion between species when
they all have the same Lewis number. The equation for the element mass fractions for this
case is

∂(ρZj)

∂t
+ ∇ · (ρuZj) −

1

Le
∇ · (ρD∇Zj) = 0 for j = 1, . . . ,Ne , (3.13)

which is similar to equation (3.12).

3.2 Transformation to mixture fraction space

In diffusion flames, the mixture fraction can be used as an independent variable. This allows
to apply a coordinate transformation to mixture fraction space. Assuming that gradients
perpendicular to the surface of stoichiometric mixture are larger than gradients along this
surface, leads to a 1D flamelet model in mixture fraction space. First, the transformation
rules that will be applied, are derived. After that, the coordinate transformation of the species
equations to Z-space will be presented, followed by a comparison to an alternative approach
to include preferential diffusion in the flamelet model.
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Fig. 3.1: A coordinate system attached to the surface of the stoichiometric mixture of a
flame. The new coordinate Z is locally perpendicular to the iso-surfaces of the flame. This
is not the case with the new coordinates x′2 and x′3. This results in a coordinate system
that is only orthogonal at the surface of the stoichiometric mixture.

3.2.1 Transformation rules

In [14], Peters considers a diffusion flame with a coordinate system, (x1, x2, x3, t), attached
to the surface of the stoichiometric mixture Zst . See figure 3.1 for a two-dimensional
representation. The general transformation rules are as follows

∂

∂x1

=
∂Z

∂x1

∂

∂Z
+
∂x′

2

∂x1

∂

∂x′
2

+
∂x′

3

∂x1

∂

∂x′
3

+
∂t′

∂x1

∂

∂t′
, (3.14)

∂

∂x2

=
∂Z

∂x2

∂

∂Z
+
∂x′

2

∂x2

∂

∂x′
2

+
∂x′

3

∂x2

∂

∂x′
3

+
∂t′

∂x2

∂

∂t′
, (3.15)

∂

∂x3

=
∂Z

∂x3

∂

∂Z
+
∂x′

2

∂x3

∂

∂x′
2

+
∂x′

3

∂x3

∂

∂x′
3

+
∂t′

∂x3

∂

∂t′
, (3.16)

∂

∂t
=

∂Z

∂t

∂

∂Z
+
∂x′

2

∂t

∂

∂x′
2

+
∂x′

3

∂t

∂

∂x′
3

+
∂t′

∂t

∂

∂t′
. (3.17)

The scale factors can be chosen arbitrarily, as long as three independent coordinates remain.
With these choices for the scale factors

∂x′
2

∂x1

=
∂x′

3

∂x1

=
∂x′

3

∂x2

=
∂x′

2

∂x3

=
∂x′

2

∂t
=
∂x′

3

∂t
=

∂t′

∂x1

=
∂t′

∂x2

=
∂t′

∂x3

= 0. (3.18)

and

∂x′
2

∂x2

=
∂x′

3

∂x3

=
∂t′

∂t
= 1, (3.19)
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the transformation rules can be written as

∂

∂x1

=
∂Z

∂x1

∂

∂Z
, (3.20)

∂

∂xη
=

∂Z

∂xη

∂

∂Z
+

∂

∂x′η
, (3.21)

∂

∂t
=

∂Z

∂t

∂

∂Z
+

∂

∂t′
, (3.22)

with (η = 2, 3), indicating the two directions along the flame surfaces. The second derivatives
are given by

∂2

∂x2
1

=
∂2Z

∂x2
1

∂

∂Z
+

(

∂Z

∂x1

)2 ∂2

∂Z2
, (3.23)

∂2

∂x2
η

=
∂2Z

∂x2
η

∂

∂Z
+

(

∂Z

∂xη

)2 ∂2

∂Z2
+
∂Z

∂xη

∂2

∂Z∂x′η
+

∂2

∂x′2η
. (3.24)

3.2.2 Transformation into a spatial-coordinate-free system with Le i = 1

When the transformation rules (3.20)-(3.24) are applied to the species equation (1.19), this
equation can be written as

∂Yi

∂Z



ρ
∂Z

∂t
+ ρuα

∂Z

∂xα
− ρD

∂2Z

∂x2
α

−

(

∂Z

∂xα

)2 ∂(ρD)

∂Z
−

3
∑

η=2

{

∂Z

∂xη

∂(ρD)

∂x′η

}



+

ρ
∂Yi

∂t′
+

3
∑

η=2

(

ρux′

η

∂Yi

∂x′η

)

− ρD

(

∂Z

∂xα

)2 ∂2Yi

∂Z2
−

3
∑

η=2

{

2ρD
∂Z

∂xη

∂2Yi

∂Z∂x′η
+

∂Z

∂xη

∂Yi

∂x′η

∂(ρD)

∂Z
+ ρD

∂2Yi

∂x′2η
+
∂Yi

∂x′η

∂(ρD)

∂x′η

}

= ω̇i for i = 1, . . . ,Ns − 1, (3.25)

where it was assumed that Lei = 1, and equation (1.6) was used. In (3.25) the Einstein
summation convention was used, with (α = 1, 2, 3). Likewise, the same transformation can
be applied to the conservation equation for the mixture fraction (3.9), resulting in

ρ
∂Z

∂t
+ ρuα

∂Z

∂xα
− ρD

∂2Z

∂x2
α

−

(

∂Z

∂xα

)2 ∂(ρD)

∂Z
−

3
∑

η=2

{

∂Z

∂xη

∂(ρD)

∂x′η

}

= 0, (3.26)

which is used to eliminate the 5 terms between the first set of brackets. The scalar dissipation
rate is defined as

χ = 2D

(

∂Z

∂xα

)2

, (3.27)

which is the inverse of a characteristic diffusion time-scale. It can be regarded as the diffu-
sivity in mixture fraction space. Using equations (3.26) and (3.27), the species conservation

29



equation can finally be written as

ρ
∂Yi

∂t′
=
ρχ

2

∂2Yi

∂Z2
+ ω̇i −Ri

‖ for i = 1, . . . ,Ns − 1, (3.28)

which is the flamelet model derived by Peters. In the above equation, Ri
‖ represents transport

in the x′
2

and x′
3

directions and is defined as follows

Ri
‖ =

3
∑

η=2

{

ρux′

η

∂Yi

∂x′η
−

(

∂Z

∂xη

∂(ρD)

∂x′η

∂Yi

∂x′η
+ 2ρD

∂Z

∂xη

∂2Yi

∂Z∂x′η
+ ρD

∂2Yi

∂x′2η

)}

(3.29)

for i = 1, . . . ,Ns − 1,

where the first term represents convection along the x′
2

and x′
3

directions, and the other
terms represent diffusion along the x′

2
and x′

3
directions. By arranging equation (3.28) in

this way, it is easy to see that when a stationary 1D flame geometry is chosen, like figure
1.1 (l), Ri

‖ is equal to zero and the instationary term in (3.28) vanishes. This leads to the
following expression

ρχ

2

∂2Yi

∂Z2
+ ω̇i = 0 for i = 1, . . . ,Ns − 1, (3.30)

which is the flamelet model for the case that Lei = 1. If however, iso-surfaces of species mass
fractions Yi are not parallel to Z, then Ri

‖ 6= 0. On the other hand, Ri
‖ = 0 if the iso-surfaces

are parallel. It would be interesting to study the magnitude of Ri
‖, compared to the source

term ω̇i, from a DNS of a turbulent flame to see how large these terms in practice can be.

3.2.3 Transformation into a spatial-coordinate-free system with Le i 6= 1

In this section, the procedure of the previous section will be repeated, but without making
the assumption that all Lewis numbers are unity. Transforming the species equation (1.19)
leads to

∂Yi

∂Z

(

ρ
∂Z

∂t
+ ρuα

∂Z

∂xα

)

+ ρ
∂Yi

∂t′
+

3
∑

η=2

(

ρux′

η

∂Yi

∂x′η

)

−

1

Lei

[

ρD

(

∂Z

∂xα

)2 ∂2Yi

∂Z2
+ ρD

∂Yi

∂Z

∂2Z

∂x2
α

+
∂Yi

∂Z

(

∂Z

∂xα

)2 ∂(ρD)

∂Z
+

3
∑

η=2

{

2ρD
∂Z

∂xη

∂2Yi

∂Z∂x′η
+
∂Z

∂xη

∂Yi

∂x′η

∂(ρD)

∂Z
+
∂Yi

∂Z

∂Z

∂xη

∂(ρD)

∂x′η
+

ρD
∂2Yi

∂x′2η
+
∂Yi

∂x′η

∂(ρD)

∂x′η

}]

= ω̇i for i = 1, . . . ,Ns − 1, (3.31)

which is similar to (3.25), except for the Lewis numbers dependence. The transport equation
for Z can be used to eliminate the terms between the first set of brackets on the l.h.s. of
equation (3.31). Applying the coordinate transformation to (3.9), results in
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ρ
∂Z

∂t
+ ρuα

∂Z

∂xα
− ρD

∂2Z

∂x2
α

−

(

∂Z

∂xα

)2 ∂(ρD)

∂Z
−

3
∑

η=2

{

∂Z

∂xη

∂(ρD)

∂x′η

}

=

Ne
∑

j=1

Ns
∑

k=1

β′jk

(

1

Lek
− 1

)

[

ρD

(

∂Z

∂xα

)2 ∂2Yk

∂Z2
+ ρD

∂Yk

∂Z

∂2Z

∂x2
α

+

∂Yk

∂Z

(

∂Z

∂xα

)2 ∂(ρD)

∂Z
+

3
∑

η=2

{

2ρD
∂Z

∂xη

∂2Yk

∂Z∂x′η
+
∂Z

∂xη

∂Yk

∂x′η

∂(ρD)

∂Z
+

∂Yk

∂Z

∂Z

∂xη

∂(ρD)

∂x′η
+ ρD

∂2Yk

∂x′2η
+
∂Yk

∂x′η

∂(ρD)

∂x′η

}]

, (3.32)

Using equation (3.32), the species conservation equation can finally be written as

ρ
∂Yi

∂t′
=
ρχ

2

1

Lei

∂2Yi

∂Z2
+ ω̇i −Ri

‖ − P i
⊥ − P i

‖ for i = 1, . . . ,Ns − 1, (3.33)

which is similar to equation (3.28), if Lei = 1 is chosen. As before, Ri
‖ represents transport

in the x′
2

and x′
3

directions and is now defined as

Ri
‖ =

3
∑

η=2

{

ρux′

η

∂Yi

∂x′η
−

1

Lei

(

∂Z

∂xη

∂(ρD)

∂x′η

∂Yi

∂x′η
+ 2ρD

∂Z

∂xη

∂2Yi

∂Z∂x′η
+ ρD

∂2Yi

∂x′2η

)}

(3.34)

for i = 1, . . . ,Ns − 1.

Furthermore, P i
⊥, represents preferential diffusion perpendicular to the flame surface, and

can be written as

P i
⊥ = −

∂Yi

∂Z

(

1

Lei
− 1

)[

1

4

∂(ρχ)

∂Z
+

1

4

χ

D

∂(ρD)

∂Z

]

+

∂Yi

∂Z

Ne
∑

j=1

Ns
∑

k=1

β′jk

(

1

Lek
− 1

)[

ρχ

2

∂2Yk

∂Z2
+

1

4

∂(ρχ)

∂Z

∂Yk

∂Z
+

1

4

χ

D

∂(ρD)

∂Z

∂Yk

∂Z

]

(3.35)

for i = 1, . . . ,Ns − 1.

Note that the term in the double summation arises due to the source term at the r.h.s. of
the mixture fraction conservation equation (3.9). In section 3.1, the mixture fraction was
defined as a linear combination of element mass fractions, which is the definition on which
P i
⊥ is based. Preferential diffusion along the x′

2
and x′

3
directions, represented by P i

‖ , can be
written as

P i
‖ = −

∂Yi

∂Z

(

1

Lei
− 1

) 3
∑

η=2

{

∂Z

∂xη

∂(ρD)

∂x′η

}

+

∂Yi

∂Z

Ne
∑

j=1

Ns
∑

k=1

β′jk

(

1

Lek
− 1

) 3
∑

η=2

{

∂Z

∂xη

∂(ρD)

∂x′η

∂Yk

∂x′η
+ 2ρD

∂Z

∂xη

∂2Yk

∂Z∂x′η

+ρD
∂2Yk

∂x′2η
+
∂Z

∂xη

∂(ρD)

∂x′η

∂Yk

∂Z

}

for i = 1, . . . ,Ns − 1. (3.36)
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Using the flamelet assumption, i.e. that perturbations perpendicular to the flame are
much larger that perturbations along the flame, both Ri

‖ and P i
‖ vanish. This leads to the

following expression

ρχ

2

1

Lei

∂2Yi

∂Z2
+ ω̇i − P i

⊥ = 0 for i = 1, . . . ,Ns − 1. (3.37)

The same coordinate transformation can be applied to the enthalpy equation (1.23), which
will result in a preferential diffusion term for the enthalpy P h = P h

⊥ + P h
‖ . However, this has

not been done in this thesis.
Note that equation (3.37) cannot always be used to construct a manifold in Z-space. This is

caused by the fact that when there is preferential diffusion, Z is no longer always continuously
increasing. However, it will be used to evaluate the preferential diffusion terms, which gives
an indication of what is neglected if Lei = 1 is chosen.

3.2.4 Alternative approach to include preferential diffusion

Because the mixture fraction of the preferential diffusion flamelet model, which was derived in
the previous section, may not be always continuously increasing, another flamelet model that
also includes preferential diffusion will be discussed in this section. This alternative flamelet
model has been derived by Peters in Pitsch [17]. Unlike the flamelet model derived in the
previous section, the mixture fraction defined in this section is still continuously increasing.

In their paper, Peters and Pitsch show that the commonly used definitions for the
mixture fraction can not be used easily to derive a conservation equation without the Lei = 1
assumption. Therefore, Peters and Pitsch introduced an alternative definition for the mixture
fraction. As mentioned before, there are several definitions for the mixture fraction. The
two most commonly used are based on a one-step overall reaction and on the local element
conservation equation, respectively. Peters and Pitsch define the mixture fraction directly as
a conserved scalar in a two-feed system, being fuel and oxidiser. The mixture fraction obeys
the following transport equation

ρ
∂Z

∂t
+ ρu · ∇Z −

1

LeZ

∇ · (ρD∇ · Z) = 0, (3.38)

where LeZ is introduced as the mixture fraction Lewis number. Furthermore, Z is defined as
being zero in one feed and unity in the second feed. For this definition no assumptions about
Lewis numbers have been made. The result is that the mixture fraction distribution is only
determined by the conservation equation and hence it is uncoupled completely from the local
composition, i.e. this definition of Z no longer has a physical meaning if Lei 6= LeZ .

If a laminar counterflow diffusion flame is considered, a 1D set of equations can be derived
and the governing transport equations for species mass fractions Yi are given by

ρ
∂Yi

∂t
+ ρu

∂Yi

∂s
+

∂

∂s
(ρYiVi) − ω̇i = 0 for i = 1, . . . ,Ns . (3.39)

The diffusion velocity Vi, is defined as a combination of the species diffusion velocity V D
i

and a correction velocity V C , i.e. Vi = V D
i + V C . The correction velocity arises due to the

mass conservation constraint
∑Ns

k=1
YkVk = 0. These velocities are defined as follows
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V D
i = −

D

LeiYi

∂Yi

∂s
for i = 1, . . . ,Ns , (3.40)

V C =

Ns
∑

k=1

D

Lek

∂Yk

∂s
. (3.41)

Assuming that the Lewis numbers are constant throughout the domain, the resulting
equation becomes

ρ
∂Yi

∂t′
=
ρχ

2

LeZ

Lei

∂2Yi

∂Z2
+ ω̇i − P i ,alt

⊥ for i = 1, . . . ,Ns , (3.42)

where P i ,alt
⊥ represents an alternative expression for preferential diffusion, containing both

contributions of V D
i and V C . This expression can be written as

P i ,alt
⊥ = −

∂Yi

∂Z

(

LeZ

Lei
− 1

)[

1

4

∂ρχ

∂Z
+

1

4
ρχLeZ

cp
λ

∂

∂Z

(

λ

cpLeZ

)]

+

Ns
∑

k=1

[

ρχ

2

LeZ

Lek

Yi
∂2Yk

∂Z2
+

1

4

LeZ

Lek

(

∂

∂Z
(ρχYi) + ρχLeZ

cp
λ

∂

∂Z

(

λ

cpLeZ

Yi

))

∂Yk

∂Z

]

(3.43)

for i = 1, . . . ,Ns .

Furthermore, it is assumed that the Lewis number for the mixture fraction LeZ , is equal to
1, and by using (1.17), P i ,alt

⊥ can be written as, cf. [17]

P i ,alt
⊥ = −

∂Yi

∂Z

(

1

Lei
− 1

)[

1

4

∂ρχ

∂Z
+

1

4

χ

D

∂ (ρD)

∂Z

]

+

Ns
∑

k=1

1

Lek

[

ρχ

2

∂2Yk

∂Z2
Yi +

1

4

∂ (ρχYi)

∂Z

∂Yk

∂Z
+

1

4

χ

D

∂ (ρDYi)

∂Z

∂Yk

∂Z

]

(3.44)

for i = 1, . . . ,Ns .

Note that the first term is identical to the first term of P i
⊥ (3.35). The second term arises

due to the introduction of the correction velocity V C . In the derivation of the preferential
diffusion term P i

⊥ of section 3.2.3, no correction velocity was introduced. Instead, mass

conservation, i.e.
∑Ns

k=1
YkVk = 0, is obeyed by using the following constraint for nitrogen

Ns
∑

k 6=N2

YkVk = −YN2
VN2

. (3.45)

If this approach is also followed here, the velocity correction terms will vanish from the P i ,alt
⊥

term. Then it is possible to express the preferential diffusion term P i
⊥, from section 3.2.3, in

terms of P i ,alt
⊥ as follows

P i
⊥ = P i ,alt

⊥ +
∂Yi

∂Z

Ne
∑

j=1

Ns
∑

k=1

β′jk
1

Lek

[

ρχ

2

∂2Yk

∂Z2
+

1

4

∂(ρχ)

∂Z

∂Yk

∂Z
+

1

4

χ

D

∂(ρD)

∂Z

∂Yk

∂Z

]

(3.46)

for i = 1, . . . ,Ns − 1,
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where the additional term with the double summation at the r.h.s. of (3.46) is the result of
mixture fraction variations caused by preferential diffusion. These mixture fraction variations
already appeared at the r.h.s. of the conservation equation of the mixture fraction (3.9). This
means that if the same definition for Z is used as Peters and Pitsch use, i.e. equation (3.38),

the preferential diffusion term P i
⊥ equals P i ,alt

⊥ .

3.3 Numerical analysis

In this section, a numerical analysis will be applied to calculate the order of magnitude of
P i
⊥, using CHEM1D [5]. Equation (3.35) will be evaluated with CHEM1D to calculate P i

⊥.
The flame used is a methane-air counterflow diffusion flame, which is a 2D geometry, see also
figure 3.2. Fuel is flowing from the left side and air from the right side of the flame. The
ambient pressure is 1 atm and the ambient temperature is 300 K. Furthermore it is assumed
that the flame is stationary. To describe the 2D geometry with a 1D model, the flamelet
equations (2.7)-(2.9) are solved in physical space, where the 2D effects are represented by the
stretch term K, on the r.h.s. of these equations. This means that an additional equation
for K has to be solved. This equation is a rewritten form of the momentum equation (1.7)
in y-direction. The applied strain a is needed as a boundary condition to solve the equation
for K, i.e. Kox = a. Furthermore, ρK2 at the oxidiser side is equal to ρK2 at the fuel side,

which leads to Kfu =
√

ρox

ρfu
Kox . For additional information, see also [22]. Furthermore, it is

assumed that there is no curvature, i.e. σ = 1. The reaction mechanism that is used is the
Smooke mechanism [18]. The applied strain rate a was varied, i.e. a = 100 s−1, a = 200 s−1,
a = 300 s−1 and a = 400 s−1. For the Lewis numbers, three cases are considered, Lei = 1,
Lei = 1.1 and Lei = const , see appendix A.

f u e l o x i d i s e r

s t a g n a t i o n  
s u r f a c e

f l a m e  
f r o n t

x
y

Fig. 3.2: Schematic representation of a diffusion counterflow geometry

1. Unity Lewis numbers for all species (Lei = 1).

This is not a very realistic case, but it will be used to obtain numerical results for the
flamelet model derived in section 3.2.2. For this case it is obvious that equation (3.35)
is equal to zero. Using the above assumptions, the r.h.s. of equations (3.5) and (1.23)
then cancels, meaning that the element fractions and the enthalpy behave the same as
the mixture fraction. This indicates that the element mass fractions and the mixture
fraction should be linearly dependent on the mixture fraction.
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2. All Lewis numbers are equal for all species (Lei = 1.1).

In this case there is only a difference between thermal conduction and mass diffusion.
The mass diffusion is the same for all species and therefore it will have no contribution to
the preferential mass diffusion term, see also equation (3.12). When all Lewis numbers
are equal, equation (3.5) can be written analogous to equation (3.12), indicating that the
element fractions behave the same way as the mixture fraction. The enthalpy equation
(1.23) however, will have a source term on the r.h.s. of the equation. Because of this
source term in the enthalpy equation, the enthalpy does not behave the same as the
mixture fraction. This indicates that the element mass fractions again should be linearly
dependent on the mixture fraction, while the enthalpy is not.

3. All Lewis numbers are constant, but different for all species (Lei = const).

This is a more realistic case, where all species have different Lewis numbers. These
Lewis numbers can be found in appendix A. Now there is not only a difference between
thermal conduction and mass diffusion, but all species experience a difference in diffusion
as well. Now the r.h.s. of the equation for the element mass fractions (3.5) does not
cancel. Generally, the r.h.s. of this equation will be different for each element. Because
the mixture fraction is a linear combination of the element mass fractions, the element
mass fractions are no longer linearly dependent on the mixture fraction. This is also
true for the enthalpy.

3.3.1 Results for Le i = 1

The assumption that all Lewis numbers are equal to Lei = 1 is not very realistic, but this
is the flamelet model that was derived by Peters. It will therefore be discussed here as a
reference case for a non-preferential diffusion flame.

When all Lewis numbers are equal to 1, it follows from equation (3.35) that there is no
preferential diffusion at all, see figure 3.3. The solid line represents the chemical source term,
the dash-dotted line represents the diffusion term, and the dotted line is the preferential
diffusion term. Furthermore, only two species are shown here. For the other species, the
reader is referred to appendix B.1. Note that not the complete range of the mixture fraction
domain is shown.

The flame is situated near Zst = 0.055. All terms have been scaled according to ω̃i =
ω̇i/ω̇i ,max . The source term for CH4 is negative, indicating that CH4 is consumed, while the
source term for H2O is positive, meaning that H2O is produced. The preferential diffusion
term is equal to zero, not only for these two species, but for all species. This is exactly what is
expected, because there is no preferability of mass diffusion between species. Hence, P i = 0.
The element mass fractions and the enthalpy are linearly dependent on the mixture fraction,
and therefore will not be shown here. This figure, D.1, can be found in appendix D.1.

3.3.2 Results for Le i = 1.1

When all Lewis numbers are equal to 1.1, equation (3.12) shows that there is only preferability
of thermal conduction over mass diffusion. In figure 3.4 the scaled source terms and the
preferential diffusion term for CH4 (l) and for H2O (r) can be seen.

The preferential diffusion term P i
⊥ is still equal to zero, but this is also what is expected,

because there is no preferability of mass diffusion between species, and hence, there is also
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Fig. 3.3: Source term, preferential diffusion term and the diffusion term, as defined in
(3.37), for CH4 (l) and H2O (r) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = 1 and a = 100 s−1. All terms are scaled with ω̇i,max . Solid:
scaled chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion
term.

no preferability of mass diffusion between species and the mixture fraction. The r.h.s. of the
conservation equation the enthalpy (1.23), which represents enthalpy perturbations caused
by preferential diffusion, does not reduce to zero. This indicates that the enthalpy is no
longer linearly dependent on the mixture fraction, which can also be seen in figure 3.5. Here,
the enthalpy can be seen for Lei = 1.1 as a function of the mixture fraction. The enthalpy is
scaled according to

h̃ =
h− hox

hfu − hox

. (3.47)

The element mass fractions are still linearly dependent on the mixture fraction. This figure,
D.2, can be found in appendix D.2.
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Fig. 3.4: Source term, preferential diffusion term and the diffusion term, as defined in
(3.37), for CH4 (l) and H2O (r) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = 1.1 and a = 100 s−1. All terms are scaled with ω̇i,max . Solid:
scaled chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion
term.
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Fig. 3.5: Enthalpy, scaled according to (3.47). The dotted line represents the case that
the enthalpy is linearly dependent on the mixture fraction.

3.3.3 Results for Le i = const

A more realistic case is when all Lewis numbers are different, but constant, i.e. Lei = const .
The preferential mass diffusion is now described by equation (3.35). In figure 3.6 the chemical
source term and preferential diffusion term are scaled according to ω̃i = ω̇i/ω̇i ,max . Only 4
of the total 16 species are shown, i.e. CO2 (top left), H2O (top right) and two intermediate
species, CH3O (bottom left) and H2 (bottom right). The profiles for the other species can
be seen in appendix B. As can be seen, the preferential diffusion terms have their maximum
value near the surface of stoichiometric mixture. This can be understood when considering
that ∂Yi

∂Z
is at its maximum near Zst for almost all species. In table 3.1, the ratios of the

maximum value of the preferential diffusion terms and the maximum value of the chemical
source terms can be seen. For a = 100 s−1, this ratio is about 14% for CO, while for CO2 it
is nearly 20%. For a = 400 s−1, the ratio of the maximum value of the preferential diffusion
term and the maximum value of the chemical source term for CO is again about 14%, while
for CH3O and CO2 it is up to 20%. For the remaining species this ratio remains below 10%.

Species P i
⊥/ω̇i ,max Species P i

⊥/ω̇i ,max

CH4 0.0508 H 0.0800
CH3 0.0520 O2 0.0001
CH3O 0.0946 O 0.0113
CH2O 0.0547 OH 0.0177
HCO 0.0449 HO2 0.0002
CO2 0.1825 H2O 0.1141
CO 0.1422 H2O2 0.0001
H2 0.0061 N2 N.A.∗

Species P i
⊥/ω̇i ,max Species P i

⊥/ω̇i ,max

CH4 0.0797 H 0.0744
CH3 0.0849 O2 0.0019
CH3O 0.2002 O 0.0006
CH2O 0.0887 OH 0.0033
HCO 0.0551 HO2 0.0013
CO2 0.2146 H2O 0.0766
CO 0.1367 H2O2 0.0011
H2 0.0097 N2 N.A.∗

Table 3.1: Ratio of the preferential diffusion term and the chemical source term of each
species for a strain rate of a = 100 s−1 (l) and a = 400 s−1 (r).

In figure 3.7 the element mass fractions for carbon (tl), hydrogen (tr) and oxygen (bl) can
be seen for Lei = const , as well as the enthalpy (br). The enthalpy is again scaled according
to (3.47), and the element mass fractions are scaled according to
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Fig. 3.6: Source term, preferential diffusion term and the diffusion term, as defined in
(3.37) for CO2 (tl), H2O (tr), CH3O (bl) and H2 (br), as a function of the mixture fraction
Z in a non-premixed counterflow flame with Lei = const and a = 100 s−1. All source
terms and preferential diffusion terms are scaled with the maximum value of the source
term. Solid: scaled chemical source term; dash-dotted: diffusion term; dotted: preferential
diffusion term.
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Z̃j =
Zj − Zj ,ox

Zj ,fu − Zj ,ox
for j = 1, . . . ,Ne . (3.48)

Note that although there are preferential diffusion effects, Z is still continuously increasing.
It must be noted however, that this is not generally the case. Now, the element mass fractions
are no longer linearly dependent on the mixture fraction, see figure 3.7.
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Fig. 3.7: Element mass fractions and enthalpy for Lei = const . Shown here are carbon
(tl), hydrogen (tr), oxygen (bl), which are scaled according to (3.48) and the enthalpy
(br), scaled according to (3.47). The dotted line represents the case that the element mass
fractions and the enthalpy are linearly dependent on the mixture fraction.

The actual effect of preferential diffusion on the diffusion flame structure, can be seen in
figures 3.8 - 3.10. In these figures, the profiles for the mixture fraction (3.8), the temperature
(3.9) and the scalar dissipation rate (3.10) are shown for two cases: the solid line represents the
case without preferential diffusion and the dotted line is the case with preferential diffusion.
The strain rates for these cases are a = 100 s−1 (l) and a = 400 s−1 (r). The difference
in the mixture fraction profiles between the case without preferential diffusion and with
preferential diffusion is about 2.51% for a = 100 s−1 and about 2.34% for a = 400 s−1.
For the temperature, this difference between a flame without preferential diffusion and with
preferential diffusion is 6.99% for a = 100 s−1, and for a = 400 s−1 this is also 6.36%, but this
seems to be coincidental. The difference in the scalar dissipation rate between a flame without
preferential diffusion and with preferential diffusion is about 22.8% for a = 100 s−1 and about
23.2% for a = 400 s−1. The maximum values of the profiles for the cases without preferential
diffusion have been used as reference value. All these values, and also for a = 200 s−1 and
a = 300 s−1 can be found in appendix C.
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Fig. 3.8: The mixture fraction as a function of the position for two cases, i.e. Lei = 1
and Lei = const with a strain rate of a = 100 s−1 (l) and a = 400 s−1 (r). Solid: no
preferential diffusion; dotted: preferential diffusion.
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Fig. 3.9: The temperature as a function of the mixture fraction for two cases, i.e. Lei = 1
and Lei = const with a strain rate of a = 100 s−1 (l) and a = 400 s−1 (r). Solid: no
preferential diffusion; dotted: preferential diffusion.
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Fig. 3.10: The scalar dissipation rate as a function of the mixture fraction for two cases,
i.e. Lei = 1 and Lei = const with a strain rate of a = 100 s−1 (l) and a = 400 s−1 (r).
Solid: no preferential diffusion; dotted: preferential diffusion.
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3.4 Conclusions

In this chapter, first a flamelet model has been derived that does not include preferential
diffusion, by assuming that Lei = 1. The coordinate transformation discussed in this chapter
has been used to write the conservation equations for species in a quasi-1D form (3.30). As
a result, the spatial coordinate x1 has been replaced by the mixture fraction coordinate Z.
The resulting equation is a function of the mixture fraction Z and the scalar dissipation rate
χ and can be used to construct a 2D flamelet database. This database can be used to find
the flame structure that corresponds to certain values of Z and χ. This will be discussed in
more detail in the next chapter.

Because the assumption that all Lewis numbers are unity is not very realistic, the coordinate
transformation was repeated, only now, the Lei = 1 assumption was not made, resulting in a
flamelet model (3.37) that includes preferential diffusion terms, gathered in P i

⊥.
An alternative approach to include preferential diffusion was introduced by Peters and

Pitsch. They define the mixture fraction as a conserved variable, that obeys a transport
equation that does not include preferential diffusion effects. Instead, the diffusion velocities
of species i are defined as a combination of V D

i and V C , which are the diffusion velocity of
species i and a correction velocity, respectively. The correction velocity V C is used to preserve
mass conservation. The resulting flamelet model also includes a preferential diffusion term,
which shows a great similarity with the preferential diffusion term (3.35) derived in section

3.2.3. Differences are that P i
⊥ contains a summation over all elements, while P i ,alt

⊥ does not.
This is probably caused by the fact that the mixture fraction in section 3.2.3, was defined
as a combination of element mass fractions. The mixture fraction of Peters and Pitsch on
the other hand, is directly defined as a conserved variable, with a transport equation that
does not include preferential diffusion effects. Furthermore, by defining the mixture fraction
Z directly as a conserved variable, equation (3.38), Z will still be a continuously increasing
variable. This may not be always the case when preferential diffusion is included and Z is
based on species mass fractions. However, in the computations presented here, Z was found
to be continuously increasing. If on the other hand, Z is no longer continuously increasing,
it may no longer be used to construct a flamelet database.

In the final section of this chapter, the order of magnitude of P i
⊥ and the effect of preferential

diffusion on the density and the scalar dissipation rate have been calculated using the 1D solver
CHEM1D. This has been done for 4 strain rates, of which only a = 100s−1 and a = 400s−1

were shown, because there was not much difference between these 4 strain rates. Furthermore,
3 different cases for the Lewis numbers have been considered, i.e. Lei = 1, Lei = 1.1 and
Lei = const . As expected, P i

⊥ = 0 for the first two cases, which was also predicted by
equations (3.11) and (3.12). The element mass fractions and the mixture fraction show a
linear dependence for both Lei = 1 and Lei = 1.1. The enthalpy and the mixture fraction
on the other hand, only have a linear dependency for Lei = 1. When the Lewis numbers
are different for all species and not equal to 1, there will be preferential diffusion, leading to
a perturbation of the mixture fraction. In his paper, Peters [14] used the assumption that
all Lewis numbers are equal to 1, which led to a flamelet model that excluded preferential
diffusion effects. It has been shown in this chapter however, that when more realistic values
for Lewis numbers are chosen, the preferential diffusion term for several species can be well
over 10% of the chemical source term. Furthermore, differences can be seen in the mixture
fraction profile, the temperature profile and the profile for the scalar dissipation rate. For
a = 100 s−1, differences in the mixture fraction profiles are about 2.51%, differences in the
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temperature profiles are about 6.99%, and for the scalar dissipation rate these differences are
about 23% between the case with preferential diffusion and without preferential diffusion.
This means that preferential diffusion effects cannot always be neglected. For a = 400 s−1,
differences in the mixture fraction profiles, the temperature and scalar dissipation rate profiles
are about the same as for a = 100 s−1.
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Chapter 4

Diffusion flamelet database

During non-premixed flame calculations, the conservation equation for the mixture fraction,
like (3.9) is solved, and the scalar dissipation rate is computed from equation (3.27). With
the values for Z and χ, the flame structure can then be retrieved from the flamelet database.
Such a diffusion flamelet database can be constructed by solving the 1D flamelet equations
(3.37). If these equations are solved in mixture fraction space, the scalar dissipation rate,
which is a function of spatial coordinates as defined by (3.27), cannot be solved. In order
to close the set of equations, an analytical expression that relates χ only to Z has to be
derived. This will be done in section 4.1. When diffusion flamelets are used to construct a
database, commonly the mixture fraction Z and the stoichiometric value of scalar dissipation
rate χst are used to parameterise a diffusion flame. The flamelet solutions that are stored in
the database, are characterised by χst . During flame calculations, local values for the mixture
fraction and the scalar dissipation rate, i.e. Zl and χl are computed. The local value of the
scalar dissipation rate χl , is generally not the same as its stoichiometric value χst . Therefore,
the same analytical expression that is used as a closure model, will also be used to relate χl

to χst . This will be explained in section 4.2. Using CHEM1D, the scalar dissipation rate
has been calculated numerically as well. This numerical result will be compared with the
theoretical scalar dissipation rate to analyse the accuracy of this approach, which will be
done in section 4.3. Some conclusions will be drawn in section 4.4.

4.1 A theoretical model for the scalar dissipation rate

In this section a model describing the scalar dissipation rate for a counterflow configuration
will be derived. Furthermore, a non-combusting system is assumed, meaning the density ρ
and the diffusion constant D are constant.

A stationary counterflow geometry is considered, see figure 3.2. Furthermore, the system
is assumed to be non-combusting, and only the velocity u is a function of both x and y, while
the diffusion coefficient, the mixture fraction and the species mass fractions are a function of
x only. Assuming that the density is constant, the conservation of mass equation (1.6) can
be written as

ρ
du

dx
+ ρ

dv

dy
= 0. (4.1)

Assuming that the velocity in x-direction increases linear with x, i.e. u = Ux, equation (4.1)
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indicates that the strain rate dv
dy

= a = −U . The velocity u then becomes u = −ax. For
the case that all Lewis numbers are unity, the equation for the mixture fraction (3.11) becomes

d

dx
(ρuZ) +

d

dy
(ρvZ) −

d

dx

(

ρD
dZ

dx

)

= 0. (4.2)

This can also be written as

ρu
dZ

dx
+ ρZ

du

dx
+ ρZ

dv

dy
−

d

dx

(

ρD
dZ

dx

)

= 0. (4.3)

Using (4.1) and u = −ax equation (4.3) becomes

−ρax
dZ

dx
−

d

dx

(

ρD
dZ

dx

)

= 0. (4.4)

Note that for a non-combusting system, ρD is constant. Using the continuity equation, the
above equation can be written as

−ρax
dZ

dx
= ρD

d2Z

dx2
, (4.5)

Using the following substitution, f = dZ
dx

, equation (4.5) becomes a first order differential
equation

−
a

D
xdx =

df

f
. (4.6)

The solution of equation (4.6) is

f = f0exp
(

−
a

2D
x2

)

. (4.7)

The solution of the mixture fraction equation can be found by integration of equation (4.7),
resulting in

Z(x) =
1

2

√

2πD

a
f0 erf

(

1

2

√

2a

D
x

)

+ C0, (4.8)

where ’erf’ is known as the error-function. The boundary conditions are Z(x → −∞) = 1
and Z(x→ ∞) = 0. These boundary conditions are used to determine f0 and C0

f0 = −

(
√

2πD

a

)−1

,

C0 =
1

2
.

Equation (4.8) can now be written as

Z(x) =
1

2
erfc

(

1

2

√

2a

D
x

)

, (4.9)
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with erfc the complementary error function, which is defined by erfc(x) = 1 − erf(x). The
inverse of equation (4.9) is

x = 2

(

√

2a

D

)−1

erfc−1 (2Z) . (4.10)

Using equation (4.10) to replace x in equation (4.7) squared, leads to

f2 =

(

dZ

dx

)2

=
a

2πD
exp

(

−2
[

erfc−1 (2Z)
]2
)

. (4.11)

The model for the scalar dissipation rate χm1
can then be written as

χm1
=
a

π
exp

(

−2
[

erfc−1 (2Z)
]2
)

, (4.12)

where erfc−1(x) is the inverse of the complementary error function and not the reciprocal.
Note that (4.12) is accurate only when there is a constant density.

4.2 Using the mixture fraction and the scalar dissipation rate

as parameters

According to (3.37), the species mass fractions Yi depend on the mixture fraction Z and the
scalar dissipation rate χ. This allows for Z and χ to be used to construct a 2D manifold
[16]. In a pre-processing step, flamelets are computed, where equation (4.12) is used as a
closure model to calculate χ. Then, the flame structure is stored in a flamelet database as a
function of Z and χst . Here, χst is the value the scalar dissipation rate has at the surface of
stoichiometric mixture. During flame calculations, only Z and χ need to be calculated [16].
With these two values, equation (4.12) is used again, but now to relate the local value of χ
to its stoichiometric value as follows

χ

χst

=
χm1

χm1 ,st
, (4.13)

where it is assumed that the scalar dissipation rate as described by the analytical model has
the same shape as the actual scalar dissipation rate. Figure 4.1 shows the scalar dissipation
rate as a function of the mixture fraction for an applied strain rate of a = 100 s−1.

Suppose that during flame calculations, the local value that is found for the scalar dissi-
pation rate is the value that is denoted by (Zl , χl ). Equation (4.13) is then used to find
the corresponding stoichiometric value for the scalar dissipation rate, denoted by (Zst , χst).
The stoichiometric value for χ can then be used to identify which flamelet solution from
the flamelet database represents the local flow conditions that arise during flame calculation.
Figure 4.2 shows the mass fractions of several species as a function of the mixture fraction,
for two values of χst , i.e. χst = 4.19 s−1 (l) and χst = 8.52 s−1 (r). Generally, the value of χl

does not match values of χst stored in the flamelet database. If, for instance, the value of χl is
equal to 6.23 s−1, there are two flamelets that closely describe the flamelet that corresponds
to χl = 6.23 s−1. As can be seen in figure 4.2 these are the flamelets that correspond to
χst = 4.19 s−1 (l) and χst = 8.52 s−1 (r), respectively. Because the mixture fraction is also
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known, the flame structures can now be retrieved from the flamelet database for these two
flamelets. By way of interpolation, the correct flame structure can be determined.
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Fig. 4.1: A model for the scalar dissipation rate as defined by (4.12), which is used to
relate the local value of the scalar dissipation rate, (Zl , χl), to its stoichiometric value,
(Zst , χst).
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Fig. 4.2: Species mass fractions for two different values of χst , i.e. χst = 4.19 s− (l) and
χst = 8.52 s− (r). The value of χst is used to identify the flamelet solution from the flamelet
database that represents flow conditions that occur locally during flame calculations. When
the local value of the scalar dissipation rate χl , lies between two values of χst , the flame
structure can be found by using interpolation techniques. Solid: YCH3O; dotted: YHO2

;
dashed: YH2O2
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4.3 Evaluation of the scalar dissipation rate model, using a

numerical analysis

During the derivation of χm1
, the system was assumed to be non-combusting. Therefore,

two non-combusting solutions has been calculated with CHEM1D, and the computed scalar
dissipation rate χc will be compared with the modeled scalar dissipation rate χm1

. The first
is a non-combusting solution of a non-premixed system, where the density at the fuel side
differs from the density at the oxidiser side. This can be seen in figure 4.3 (r). This figure
shows that there is still a relatively large difference with the model, because the density is
not completely constant. In order to have (almost) equal densities at both sides, oxidiser
has been added to the fuel side, and vice versa. This resulted in the following composition:
YCH4

= 0.61, YO2
= 0.19, YN2

= 0.20 at the fuel side, and YCH4
= 0.59, YO2

= 0.21, YN2
= 0.20

at the oxidiser side of the flame. Because the left-side composition is not exactly the same
as the right-side composition, it is still possible to use the mixture fraction Z to describe the
system. This does imply that the value of Zst will be different from the one used throughout
this report. However, this is not of importance here, because only the influence of the density
is studied here. This can be seen in figure 4.3 (l), where the scalar dissipation rate computed
with CHEM1D χc , nicely matches the modeled scalar dissipation rate χm1

as expected.
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Fig. 4.3: Scalar dissipation rate for two non-reacting gas flows, with a constant density
(l), and a non-constant density (r). The mixture that has a constant density has a different
composition than the non-premixed flames used throughout this report, meaning that Zst

will have a different value. However, this is not of importance here, because only the
influence of the density is shown here.

The assumption that the density is constant, is not valid for a combustion system. This will
result in larger differences between χm1

and χc . In figures 4.4 and 4.5, a comparison between
χm1

and the one computed with CHEM1D χc , can be seen. Both the computed scalar
dissipation rate χc and the modeled scalar dissipation rate χm1

have been scaled according to
equation 4.13, making both equal to 1 at Zst . Two strain rates are shown, i.e. a = 100 s−1 and
a = 400 s−1. The theoretical scalar dissipation rate is symmetrical with respect to Z = 0.5,
whereas the scalar dissipation rate computed with CHEM1D is not. This is caused by the
difference in density at the oxidiser side and at the fuel side of the flame. As can be seen,
the maximum, relative differences, i.e. (χc − χm1

)/χm1
, are not very large for Lei = 1. For

a = 100 s−1 this difference is about 8.3%, while for a = 400 s−1 it is about 7.8%. These
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differences become larger when more realistic Lewis numbers are used, i.e. Lei = const , i.e.
15.6% for a = 100 s−1 and 18.5% for a = 400 s−1. The other values can be seen in table 4.1.

To account for variable density effects, the following theoretical scalar dissipation rate can
be used [17]

χm2
=
aox

4π

3
(
√

ρox

ρ
+ 1
)2

2
√

ρox

ρ
+ 1

exp
(

−2
[

erfc−1 (2Z)
]2
)

. (4.14)

Note that for this model, there is a dependence on the density ρ. Analogous to (4.12),
equation (4.14) can be used to relate the local value of the scalar dissipation rate to its
stoichiometric value as follows

χ

χst

=
χm2

χm2 ,st
, (4.15)

where ρst is local the density at the stoichiometric mixture fraction. In figure 4.6, χm2
has

been compared with χm1
and χc . As can be seen, the second model for the scalar dissipation

rate, χm2
is better than the first model, χm1

for the case that Lei = const . In appendix F,
the relative maximum difference between χm1

and χc , and between χm2
and χc can be found.

Note that in order to evaluate equation (4.15), the profile of the density has to be known.
However, it was stated that during the computation of flamelets in Z-space, χ is used as
an independent parameter, which seems not to be possible when (4.15) is used, because the
density profile is not known. The density profiles were obtained by computing flamelets with
CHEM1D. While this is not the way to do it, it does give an idea of the accuracy of equation
(4.15). If however, equation (4.15) is used in combination with (3.37) to compute flamelets,
then the density has to be computed by other means, which would be very interesting to
study.

4.4 Conclusions

When diffusion flamelets are used to model diffusion flames, the characteristic parameters
are the mixture fraction Z and the scalar dissipation rate at stoichiometric value χst . During
complex flame calculations, the local values Zl and χl are used in equation (4.12) to find
the stoichiometric value for χ. This stoichiometric value can then be used to find the cor-
rect flamelet in the database. After that, using Z, the composition of the mixture can be
determined. Using CHEM1D, it has been shown in this chapter that there is a significant dif-
ference between the numerical and theoretical values of χst . This is because it was assumed
that the density is constant, while this is clearly not the case when combustion is taking
place. By using equation (4.12), it is assumed that χ and χst have the same dependence as
χm1

and χm1 ,st . It has been shown that this is reasonable for the case that Lei = 1, however,
for Lei = const this is not the case. Differences between these profiles have been shown to
be about 15% for an applied strain of a = 100 s−1 and about 18% for an applied strain of
a = 400 s−1. The local value of the scalar dissipation rate χl , is related to its stoichiometric
value by way of an analytical model. Differences between the modeled stoichiometric scalar
dissipation rate χm1

and the scalar dissipation rate as computed with CHEM1D χc have been
shown to be up to 18%. This can also lead to inaccurate results when this value for χst is
used as a lookup parameter in the diffusion flamelet method. It would therefore be interesting
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Fig. 4.4: Comparison of the modeled scalar dissipation rate χm1
and the scalar dissipation

rate as computed with CHEM1D for Lei = 1. The two strain rates are a = 100 s−1 (l)
and a = 400 s−1 (r). Solid: model (4.12); dotted: CHEM1D.
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Fig. 4.5: Comparison of the modeled scalar dissipation rate χm1
and the scalar dissipation

rate as computed with CHEM1D for Lei = const . The two strain rates are a = 100 s−1

(l) and a = 400 s−1 (r). Solid: model (4.12); dotted: CHEM1D.

Applied strain ∆χ/χm1 ,st

a = 100 s−1 0.083763
a = 200 s−1 0.080739
a = 300 s−1 0.078856
a = 400 s−1 0.077568

Applied strain ∆χ/χm1 ,st

a = 100 s−1 0.074339
a = 200 s−1 0.073816
a = 300 s−1 0.072095
a = 400 s−1 0.070869

Applied strain ∆χ/χm1 ,st

a = 100 s−1 0.156102
a = 200 s−1 0.170330
a = 300 s−1 0.180136
a = 400 s−1 0.184809

Table 4.1: The maximum difference between the model for the scalar dissipation rate
and the scalar dissipation rate computed with CHEM1D for Lei = 1 (l), Lei = 1.1 (c) and
Lei = const (r).
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Fig. 4.6: Comparison of 2 models for the scalar dissipation rate, i.e. χm1
and χm2

, and
the scalar dissipation rate as computed with CHEM1D for Lei = const . The two strain
rates are a = 100 s−1 (l) and a = 400 s−1 (r). Thick solid: model 1 (4.12); thin solid:
model 2 (4.14); dotted: CHEM1D.

to investigate the magnitude of the errors that arise in the flame structure when the value of
χst is not predicted accurately. If however, an improved model for χm that also takes density
effects that arise in a non-combusting system, is included, the model becomes more accurate.
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Chapter 5

Conclusions and recommendations

5.1 Conclusions

This report serves as a starting point in the development of a reduction technique that is based
on a diffusion flamelet model, analogous to the Flamelet Generated Manifolds or Phase-Space
Intrinsic Low-Dimensional Manifolds methods for (partially) premixed flames. Ultimately, a
systematic reduction method based on a unified flamelet model, applicable to both premixed
and non-premixed flames, may be developed. The goal of the report is to study the diffusion
flamelet model, and the underlying assumptions, as introduced by Peters. Both the flamelet
model itself and the way a diffusion flamelet database is used is studied in this report.

The first step is to study and compare the existing reduction techniques. Therefore, a
brief overview has been given of various reduction methods in chapter 2. It can be concluded
that there are reduction methods that can be applied to both premixed and non-premixed
flames, like the Conventional Reduction Method and the Intrinsic Low-Dimensional Manifolds
method. However, these reduced mechanisms are based on chemistry only, which may lead
to inaccuracies in colder flame regions. Other methods like the Flamelet Generated Mani-
folds method and the Phase-Space Intrinsic Low-Dimensional Manifolds method, based on a
premixed flamelet model, overcome this problem. With the FGM method, a manifold is con-
structed by solving premixed flamelets, which include convection and diffusion, and storing
the solutions in a database. With the PS-ILDM method, a time-scale analysis is applied to
the reactive-diffusive system, which is derived from premixed flamelet equations. Including
convection and diffusion in the manifolds gives more accurate results for (partially) premixed
flames. However, their applicability to diffusion flames remains questionable.

Therefore, a reduction technique based on a diffusion flamelet model should be developed,
analogous to the FGM method. Before such a new reduction method can be developed,
an initial study into a diffusion flamelet model has been done in chapter 3. The diffusion
flamelet model that was studied, was first introduced by Peters [14], and it was assumed
that Lei = 1. This means that preferential diffusion effects are neglected. To evaluate the
effect of this assumption, the flamelet model was extended to include preferential diffusion.
When for this model, Lei = 1 is chosen, this model reduces to Peters’ original flamelet
model. If Lei = const , where Lei 6= Lek, is chosen, the mixture fraction as defined in the
flamelet model that includes preferential diffusion is no longer guaranteed to be continuously
increasing. Therefore, another diffusion flamelet model, developed by Peters and Pitsch, was
presented. It was shown that this alternative flamelet model, which also includes preferential
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diffusion, has great similarities with the preferential diffusion flamelet model that was derived
in this report. For the preferential diffusion flamelet model derived in this report, the order
of magnitude of the preferential diffusion terms has been calculated and compared to the
order of magnitude of the chemical source terms. It was shown that the preferential diffusion
terms for several species can be about 20% of the chemical source terms. By comparing the
profiles of the mixture fraction, the temperature and the scalar dissipation rate for Lei = 1
with the profiles for Lei = const , the effect of preferential diffusion can be further quantified.
The differences for the mixture fraction profile have been shown to be 2.51% for a = 100 s−1

and 2.34% for a = 400 s−1. For the temperature, this difference is 6.99% for a = 100 s−1

and 6.36% for a = 400 s−1, and for the scalar dissipation rate this difference is 22.8% for
a = 100 s−1, and for a = 400 s−1 this is 23.2%.

When diffusion flamelets are used to construct a flamelet library, commonly the mixture
fraction and the stoichiometric value of the scalar dissipation rate are used as lookup pa-
rameters. During complex flame calculations, only the conservation equation for the mixture
fraction is solved. The scalar dissipation rate is calculated with equation (3.27). The local
value of χ will most likely not be the stoichiometric value, which means that the local value
of χ first has to be related to its stoichiometric value. This can be achieved by using an
analytical model, where χ is expressed as a function of Z. In chapter 4, such a model for
the scalar dissipation rate was derived, where it was assumed that the profile of the scalar
dissipation rate as computed with CHEM1D has the same shape as the profile of the modeled
scalar dissipation rate. It has been shown that this is reasonable for the case that Lei = 1.
However, for Lei = const this is not the case. Differences between these profiles have been
shown to be about 15% for an applied strain of a = 100 s−1 and about 18% for an applied
strain of a = 400 s−1.

Using an analytical expression to relate the local value of the scalar dissipation rate to
its stoichiometric value, combined with the Lei = 1 assumption can lead to errors in the
flamelet database. During flame calculations, a flamelet database is used to retrieve the flame
structure, where χst is used as a lookup parameter in the diffusion flamelet method. It would
therefore be interesting to investigate the magnitude of the errors that arise in the flame
structure when the value of χst is not accurately predicted.

5.2 Recommendations

In this section, recommendations for future research will be given. First, recommendations
will be given on how to further test the diffusion flamelet model that was developed by Peters,
which was presented in chapter 3. This will be done in section 5.2.1. After that, in section
5.2.2, recommendations will be given on how a reduction method that is based on a diffusion
flamelet model may be developed. There are several directions that can be followed, and they
will be discussed briefly. And finally, a general outline and initial ideas on how to develop a
unified flamelet theory will be given in section 5.2.3.

5.2.1 Further testing of the diffusion flamelet model

In order to get a more complete overview of the accuracy of the existing, standard diffusion
flamelet model, several additional tests need to be done. As mentioned in chapter 3, it
would be interesting to calculate the order of magnitude of the tangential transport Ri

‖ and
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tangential preferential diffusion P i
‖ , and compare them with the chemical source terms or

with the preferential diffusion terms P i
⊥. This can be tested by using a 2D flame geometry. It

would be also interesting to apply the coordinate transformation of De Goey and Ten Thije
Boonkkamp [6] to derive a diffusion flamelet model, and to see if there is a difference between
the tangential terms of that flamelet model compared to the tangential terms of the flamelet
model derived by Peters.

Deriving a diffusion flamelet model that is based on the coordinate transformation of De
Goey and Ten Thije Boonkkamp will now be briefly discussed. First a kinematic equation,
like (2.4), for the mixture fraction will be introduced as follows

dZ

dt
≡
∂Z

∂t
+ uf · ∇Z = 0, (5.1)

which means that a point on a Z = const surface stays on this surface for all t, and
describes the movement of the flame. Furthermore, the velocity SC is introduced ac-
cording to uf = u + SCn. Here, u is the local fluid velocity and uf is the velocity
of flame-surface, see figure 5.1 for a schematic representation of a curvilinear coordinate
system attached to iso-surfaces of a non-premixed flame. The local normal vector is defined as

n = −
∇Z

|∇Z|
, (5.2)

directed to the oxidiser side of the flame. The velocity SC will be very similar to the burning
velocity SL of premixed flames, at least its definition. The physical interpretation of this
velocity is still unclear for diffusion flames and has to be studied in detail. With the definition
of the consumption velocity SC , equation (5.1) can be written as

∂Z

∂t
+ u · ∇Z = SC |∇Z|, (5.3)

which is similar to the so-called G-equation. The next step is to introduce a coordinate trans-
formation that describes the flamelet equations in a flame adapted coordinate system, with
spatial coordinates, that is locally orthogonal, and with the axes adapted to the iso-surfaces of
Z as in figure 5.1. The main difference with the approach that Peters followed is that Peters
attaches the coordinate system only to the surface of the stoichiometric mixture fraction. This
means that the coordinate system is only orthogonal at the surface of stoichiometric mixture.
The equations that describe conservation of mass, species mass fractions and enthalpy are
given by the set of equations (2.7)-(2.9). It is likely that the tangential terms Ri

‖ and P i
‖ , as

defined in this report are different from the tangential terms of equations (2.7)-(2.9), and it
would be interesting to evaluate these terms, using a 2D flame geometry. The 1D flamelet
equations can be computed with CHEM1D and compared for both coordinate transformations
as well.

The continuity equation can be written such that all perturbations from 1D flame behaviour
are gathered in the so-called stretch-rate K on the r.h.s. of the equation, and curvature effects
are represented by the flame-surface σ. The next step would be to introduce a conservation
equation for the scalar variable Z, which is similar to the conservation equation for the mixture
fraction as introduced by Peters and Pitsch. Combining the rearranged continuity equation,
the kinematic and the conservation equations for Z, a quasi-1D equation for the mixture
fraction can be found. Assuming a flat 1D flame with no curvature, i.e. K = 0 and σ = 1,
leads to a set of 1D non-premixed flamelet equations.
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Fig. 5.1: Curvilinear coordinate system attached to a non-premixed flame

The mixture fraction for the diffusion flamelet model that was derived in section 3.2.3,
is no longer guaranteed to be always continuously increasing. Therefore, another diffusion
flamelet model has to be used to construct a diffusion flamelet database. Such a model was
developed by Peters and Pitsch, and has been briefly discussed in this report. However, a
more extensive study of that diffusion flamelet model has to be done as well. For that model,
the mixture fraction has been directly defined as a conserved variable. While this ensures
that the mixture fraction is continuously increasing, the mixture fraction is no longer coupled
with the local composition.

Although the order of magnitude of the preferential diffusion effects has been calculated, it
remains to be seen what the effect of preferential diffusion is, when a diffusion flamelet model
is used to construct a diffusion flamelet database according to Peters [16]. An interesting test
case would be to construct two diffusion flamelet databases, one with preferential diffusion
effects and one without. To construct these diffusion flamelet databases, different flamelets can
be solved with CHEM1D for a counterflow diffusion flame geometry. These diffusion flamelet
databases can then be used to retrieve the flame structure during complex flame computations,
using Z and χst as lookup parameters. The results generated with the database that includes
preferential diffusion will likely differ from the results generated with the database that does
not contain preferential diffusion effects.

For the scalar dissipation rate, several assumptions have been made. One of these assump-
tions is that the scalar dissipation profile as computed with CHEM1D can be described by a
profile that corresponds to an analytical model. This assumption has been tested in chapter 4
of this report. Furthermore, by relating the local value of the scalar dissipation rate χl to the
stoichiometric value by using the same analytical model, it is also assumed that the profiles of
the scalar dissipation rate of complex 3D flame structures, can be described by this model as
well. The validity of this assumption can be tested by doing complex 3D flame computations.
The profile of the scalar dissipation rate can then be extracted by reconstructing flamelets
from the 3D computations. After identifying iso-surfaces of the mixture fraction, Z is known
as a function of the position. The scalar dissipation rate, which is defined by equation (3.27),
can now be determined and compared to the profile of the modeled scalar dissipation rate.

When diffusion flamelets are used to construct a database, using an analytical expression
to relate the local value of the scalar dissipation rate to its stoichiometric value may lead to
inaccurate results. This still has to be tested, which can be done by constructing a flamelet
database using the diffusion counterflow geometry. The mixture fraction and the stoichiomet-
ric value of the scalar dissipation rate are used as lookup variables. If it is shown that there
are significant inaccuracies, then an improved model for the scalar dissipation rate should be
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used. One of the improvements could be to include density variations in the model. Such
a model is already available, i.e. equation (4.14), but this model has not been thoroughly
tested in this report.

5.2.2 Development of a reduction method based on a diffusion flamelet

model

When a reduction technique is developed based on diffusion flamelets, the goal is to capture
multiple time-scales in the manifold. Traditionally the scalar dissipation rate has been used
in the diffusion flamelet approach [16]. The question is whether the scalar dissipation rate is
a suitable controlling variable when a reduced mechanism is constructed. When species mass
fractions are used to include more time-scales in the manifold, the dimension of the manifold
can be increased, whereas this is not straightforward when the stoichiometric value of the
scalar dissipation rate is used to parameterise a diffusion flamelet database. To this end, a
comparison of a database using Z and χst has to be made with a database using Z and Ycv ,
where Ycv can be a species mass fraction or a linear combination of species mass fractions.

The reduction technique that will be based on a diffusion flamelet model, describing the
inner structure of a diffusion flame, will have its roots in the flamelet approach. The imple-
mentation on the other hand, which is to include multiple time-scales, is similar to reduction
techniques, as is the case with FGM and PS-ILDM. Therefore, it may be better to use species
mass fractions, or linear combinations of species mass fractions, as lookup parameters instead
of χst . When species mass fractions are used as a lookup parameter, it has to be ensured that
flamelet solutions are uniquely parameterised.

The next step would be the developmednt of a systematic reduction technique analogous
to the Flamelet Generated Manifolds method or the Phase-Space Intrinsic Low-Dimensional
Manifolds method for diffusion flames. Like the FGM method, a diffusion flamelet model can
be used to compute a whole range of different flamelets, which can then be stored as a diffusion
flamelet manifold. These flamelets can be parameterised by the mixture fraction, and species
mass fractions may be used as additional controlling variables. Another possibility would be
the development of a reduction method analogous to the PS-ILDM method, which can be
done by using the existing, standard non-premixed flamelet model of Peters, or by deriving a
new non-premixed flamelet model by applying the coordinate transformation of De Goey and
Ten Thije Boonkkamp [6]. The choice of which non-premixed flamelet model will be used,
can be based on the outcome of the additional study of the non-premixed flamelet models as
outlined in section 5.2.1. The construction of the manifold can then be done by performing
a time-scale analysis of the reactive-diffusive system, analogous to the PS-ILDM method.

5.2.3 Development of a unified flamelet theory

When a reduction technique that is based on a non-premixed flamelet models has been derived
and tested, a reduction method based on a unified flamelet model may be developed. First
a unified flamelet model has to be derived, after which a unified reduction technique

can be developed.
The idea behind a unified flamelet model is that the same equations that describe premixed

flamelets can be used to describe diffusion flamelets. Furthermore, the idea is that differences
between premixed and non-premixed systems may only lead to different boundary conditions.
If that is the case, a so-called unified reduction technique can be developed analogous to
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either the FGM method or PS-ILDM method. It cannot yet be said which approach should
be followed. This unified reduction method could be used to construct a manifold that
encompasses both premixed and non-premixed compositions. There are applications, where
during complex flame calculations, the complete range between premixed and non-premixed
compositions are encountered. The manifold found with the unified reduction technique can
then be used to retrieve the local composition. The so-called triple flame, as described in [22]
would be a suitable configuration to test the unified reduction technique, because this flame
contains both regions that can be considered a premixed flame, as well as regions that are
more like diffusion flames.
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List of symbols

Roman

a strain rate s−1

ajk number of elements j in species k -
C0 integration constant -
cp specific heat J kg−1 K−1

cpi
partial specific heat J kg−1 K−1

D binary mass diffusion coefficient m2 s−1

D diffusion coefficient m2 s−1

Dim mixture-average diffusion coefficient m2 s−1

f substitution variable m−1

g gravitational acceleration m s−2

h enthalpy density J kg−1

hi enthalpy density of species i J kg−1

h∗i enthalpy density of formation J kg−1

I unit tensor -
J Jacobian s−1

K stretch rate s−1

Lei Lewis number -
LeZ mixture fraction Lewis number -
M̄ mean molar mass kg mol−1

Mi molar mass of species i kg mol−1

m mass burning rate kg m−2 s−1

Nr number of reactions -
Ns number of species -
Nss number of steady-state species -
n normal vector -
n molar concentration mol m−3

ni molar concentration of species i mol m−3

P stress tensor kg m−1 s−2

P i preferential diffusion term kg m−3 s−1

P i ,alt alternative preferential diffusion term kg m−3 s−1

p hydrostatic pressure Pa
pi partial pressure Pa
Qi transport of species i along the flame surface kg m−3 s−1

Qh transport of enthalpy along the flame surface J m−3 s−1

q heat flux J m−2 s−1
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R universal gas constant J mol−1 K−1

Ri transport tangent to flame surface kg m−3 s−1

rj reaction rate mol m−3 s−1

SC consumption velocity m s−1

SL burning velocity m s−1

s arc length m
T temperature K
t time s
u average flow velocity m s−1

uf local velocity of the flame surface m s−1

ui particular velocity of species i m s−1

u velocity in x-direction m s−1

Vi diffusion velocity of species i m s−1

V C diffusion correction velocity m s−1

V D
i species diffusion velocity m s−1

v velocity in y-direction m s−1

w velocity in z-direction m s−1

wjk mass fraction of elements j in species k -
Xi species mole fraction -
x space coordinate m
Y progress variable -
Yi species mass fraction -
y space coordinate m
Z mixture fraction -
Z∗ unscaled mixture fraction mol kg−1

Zj element mass fraction -
z space coordinate m

Greek

βj specific stoichiometric factor of element j mol kg−1

β
′

jk stoichiometric factor of element j in species k -

Θ vector containing source terms of Yi and ψi -
λ heat conductivity J K−1 m−1 s−1

λi eigenvalue s−1

µ dynamic viscosity kg m−1 s−1

ν kinematic viscosity m2 s−1

νij stoichiometric coefficient -
ρ mass density kg m−3

ρi mass density of species i kg m−3

σ surface m2

τ viscous stress tensor Pa
χ scalar dissipation rate s−1

ψi diffusive flux of species i kg m−2 s−1

ψh diffusive flux of enthalpy J kg−1 m−1

Ω vector containing Yi, h, ψi and ψh -
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ω̇i chemical source term kg m−3 s−1

Subscripts

⊥ perpendicular direction
‖ tangential direction
b burnt
c value computed with CHEM1D
co correction
cv controlling variable
fu fuel
h enthalpy based
i species index
j element index
k species index
l local value from detailed computation
m mixture index
max maximum value
m1 model 1
m2 model 2
ox oxidiser
pd preferential diffusion
r reaction index
ss steady state
st stoichiometric
u unburnt
x x-component
y y-component
z z-component
η tangential component

Superscripts

0 initial state
˜ scaled quantity
∗ reference state
¯ mean quantity
alt alternative model
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Appendix A

Species Lewis numbers for the case

that Lei = const

Species Lei Species Lei

CH4 0.7796 H 0.1750
CH3 0.9671 O2 1.0796
CH3O 1.2858 O 0.6992
CH2O 1.2649 OH 0.7148
HCO 1.2568 HO2 1.0663
CO2 1.3354 H2O 0.8226
CO 1.0880 H2O2 1.0693
H2 0.2988 N2 N.A.∗

Table A.1: Species Lewis numbers for Lei = const .
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Appendix B

Individual contributions of ω̇i, P i

⊥
and the diffusion term

B.1 Le i = 1

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
C

H
4
,

˙̃ ω
C

H
4
,
P̃

C
H

4
[k

g
m

−
3

s−
1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
C

H
3
,

˙̃ ω
C

H
3
,
P̃

C
H

3
[k

g
m

−
3

s−
1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
C

H
3
O
,

˙̃ ω
C

H
3
O
,
P̃

C
H

3
O

[k
g

m
−

3
s−

1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
C

H
2
O
,

˙̃ ω
C

H
2
O
,
P̃

C
H

2
O

[k
g

m
−

3
s−

1
]

Fig. B.1: Source term, diffusion term and preferential diffusion term for CH4 (tl), CH3

(tr), CH3O (bl) and CH2O (br) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = 1 and a = 100 s−1. All terms are scaled with ω̇i,max . Solid:
scaled chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion
term.
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Fig. B.2: Source term, diffusion term and preferential diffusion term for HCO (tl), CO2

(tr), CO (bl) and H2 (br) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = 1 and a = 100 s−1. All terms are scaled with ω̇i,max . Solid:
scaled chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion
term.

62



0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
H
,

˙̃ ω
H
,
P̃

H
[k

g
m

−
3

s−
1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
O

2
,

˙̃ ω
O

2
,
P̃

O
2

[k
g

m
−

3
s−

1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
O
,

˙̃ ω
O
,
P̃

O
[k

g
m

−
3

s−
1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
O

H
,

˙̃ ω
O

H
,
P̃

O
H

[k
g

m
−

3
s−

1
]

Fig. B.3: Source term, diffusion term and preferential diffusion term for H (tl), O2 (tr),
O (bl) and OH (br) as a function of the mixture fraction Z in a non-premixed counterflow
flame with Lei = 1 and a = 100 s−1. All terms are scaled with ω̇i,max . Solid: scaled
chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion term.
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Fig. B.4: Source term, diffusion term and preferential diffusion term for HO2 (tl), H2O
(tr), H2O2 (bl) and N2 (br) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = 1 and a = 100 s−1. All terms are scaled with ω̇i,max . Note

that for N2 the following equation was used:
∑Ns

k 6=N2
YkVk = −YN2

VN2
. Solid: scaled

chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion term.
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B.2 Le i = 1.1
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Fig. B.5: Source term, diffusion term and preferential diffusion term for CH4 (tl), CH3

(tr), CH3O (bl) and CH2O (br) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = 1.1 and a = 100 s−1. All terms are scaled with ω̇i,max . Solid:
scaled chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion
term.
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Fig. B.6: Source term, diffusion term and preferential diffusion term for HCO (tl), CO2

(tr), CO (bl) and H2 (br) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = 1.1 and a = 100 s−1. All terms are scaled with ω̇i,max . Solid:
scaled chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion
term.

66



0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
H
,

˙̃ ω
H
,
P̃

H
[k

g
m

−
3

s−
1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
O

2
,

˙̃ ω
O

2
,
P̃

O
2

[k
g

m
−

3
s−

1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
O
,

˙̃ ω
O
,
P̃

O
[k

g
m

−
3

s−
1
]

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

Z [-]

D
O

H
,

˙̃ ω
O

H
,
P̃

O
H

[k
g

m
−

3
s−

1
]

Fig. B.7: Source term, diffusion term and preferential diffusion term for H (tl), O2 (tr),
O (bl) and OH (br) as a function of the mixture fraction Z in a non-premixed counterflow
flame with Lei = 1.1 and a = 100 s−1. All terms are scaled with ω̇i,max . Solid: scaled
chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion term.
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Fig. B.8: Source term, diffusion term and preferential diffusion term for HO2 (tl), H2O
(tr), H2O2 (bl) and N2 (br) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = 1.1 and a = 100 s−1. All terms are scaled with ω̇i,max .

Note that for N2 the following equation was used:
∑Ns

k 6=N2
YkVk = −YN2

VN2
. Solid: scaled

chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion term.
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B.3 Le i = const
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Fig. B.9: Source term, diffusion term and preferential diffusion term for CH4 (tl), CH3

(tr), CH3O (bl) and CH2O (br) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = const and a = 100 s−1. All terms are scaled with ω̇i,max .
Solid: scaled chemical source term; dash-dotted: diffusion term; dotted: preferential dif-
fusion term.
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Fig. B.10: Source term, diffusion term and preferential diffusion term for HCO (tl), CO2

(tr), CO (bl) and H2 (br) as a function of the mixture fraction Z in a non-premixed coun-
terflow flame with Lei = const and a = 100 s−1. All terms are scaled with ω̇i,max . Solid:
scaled chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion
term.
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Fig. B.11: Source term, diffusion term and preferential diffusion term for H (tl), O2 (tr),
O (bl) and OH (br) as a function of the mixture fraction Z in a non-premixed counterflow
flame with Lei = const and a = 100 s−1. All terms are scaled with ω̇i,max . Solid: scaled
chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion term.
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Fig. B.12: Source term, diffusion term and preferential diffusion term for HO2 (tl), H2O
(tr), H2O2 (bl) and N2 (br) as a function of the mixture fraction Z in a non-premixed
counterflow flame with Lei = const and a = 100 s−1. All terms are scaled with ω̇i,max .

Note that for N2 the following equation was used:
∑Ns

k 6=N2
YkVk = −YN2

VN2
. Solid: scaled

chemical source term; dash-dotted: diffusion term; dotted: preferential diffusion term.
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Appendix C

Ratios between various quantities

for Lei = 1 and Lei = const

Applied strain ∆maxZ / Zmax x-position

a = 100 s−1 0.0251 0.1400
a = 200 s−1 0.0252 0.0980
a = 300 s−1 0.0248 0.0790
a = 400 s−1 0.0234 0.0670

Table C.1: The relative maximum difference between the mixture fraction profiles for
Lei = 1 and Lei = const .

Applied strain ∆maxT / Tmax Z value

a = 100 s−1 0.0699 0.0170
a = 200 s−1 0.0671 0.0200
a = 300 s−1 0.0682 0.0150
a = 400 s−1 0.0636 0.0140

Table C.2: The relative maximum difference between the temperature profiles for Lei = 1
and Lei = const .

Applied strain ∆maxχ / χmax Z value

a = 100 s−1 0.2276 0.5000
a = 200 s−1 0.2278 0.5000
a = 300 s−1 0.2289 0.5000
a = 400 s−1 0.2318 0.5000

Table C.3: The relative maximum difference between the scalar dissipation profiles for
Lei = 1 and Lei = const .

∗ Here, the reference state is the Lei = 1 case.
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Appendix D

Element mass fractions and

enthalpy

D.1 Le i = 1
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Fig. D.1: Element mass fractions and enthalpy for Lei = 1. Shown here are carbon (tl),
hydrogen (tr), oxygen (bl), which are scaled according to (3.48) and the enthalpy (br),
scaled according to (3.47). The dotted line represents the case that the element mass
fractions and the enthalpy are linearly dependent on the mixture fraction.
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D.2 Le i = 1.1
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Fig. D.2: Element mass fractions and enthalpy for Lei = 1.1. Shown here are carbon
(tl), hydrogen (tr), oxygen (bl), which are scaled according to (3.48) and the enthalpy
(br), scaled according to (3.47). The dotted line represents the case that the element mass
fractions and the enthalpy are linearly dependent on the mixture fraction.
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D.3 Le i = const
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Fig. D.3: Element mass fractions and enthalpy for Lei = const . Shown here are carbon
(tl), hydrogen (tr), oxygen (bl), which are scaled according to (3.48) and the enthalpy
(br), scaled according to (3.47). The dotted line represents the case that the element mass
fractions and the enthalpy are linearly dependent on the mixture fraction.
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Appendix E

Ratio between P i

⊥
and ω̇i ,max

Species P i
⊥/ω̇i ,max Species P i

⊥/ω̇i ,max

CH4 0.0508 H 0.0800
CH3 0.0520 O2 0.0001
CH3O 0.0946 O 0.0113
CH2O 0.0547 OH 0.0177
HCO 0.0449 HO2 0.0002
CO2 0.1825 H2O 0.1141
CO 0.1422 H2O2 0.0001
H2 0.0061 N2 N.A.∗

Species P i
⊥/ω̇i ,max Species P i

⊥/ω̇i ,max

CH4 0.0797 H 0.0744
CH3 0.0849 O2 0.0019
CH3O 0.2002 O 0.0006
CH2O 0.0887 OH 0.0033
HCO 0.0551 HO2 0.0013
CO2 0.2146 H2O 0.0766
CO 0.1367 H2O2 0.0011
H2 0.0097 N2 N.A.∗

Table E.1: Ratio of the preferential diffusion term and the chemical source term of each
species for a strain rate of a = 100 s−1 (l) and a = 400 s−1 (r).

∗ Because nitrogen is in abundance, N2 was not considered.
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Appendix F

Ratio between between 2 models for

χ and χ computed with CHEM1D

Applied strain ∆χmax / χm1 ∆χ / χm2

a = 100 s−1 0.083763 0.157567
a = 200 s−1 0.080739 0.155588
a = 300 s−1 0.078856 0.154051
a = 400 s−1 0.077568 0.152512

Table F.1: The relative maximum difference between the 2 models the for the scalar
dissipation rate, χm1 and χm2 , and the scalar dissipation rate computed with CHEM1D
for Lei = 1.

Applied strain ∆χmax / χm1 ∆χ / χm2

a = 100 s−1 0.074339 0.153934
a = 200 s−1 0.073816 0.151866
a = 300 s−1 0.072095 0.150141
a = 400 s−1 0.070869 0.148776

Table F.2: The relative maximum difference between the 2 models the for the scalar
dissipation rate, χm1 and χm2 , and the scalar dissipation rate computed with CHEM1D
for Lei = 1.1.

Applied strain ∆χmax / χm1 ∆χ / χm2

a = 100 s−1 0.156102 0.038920
a = 200 s−1 0.170330 0.071991
a = 300 s−1 0.180136 0.074510
a = 400 s−1 0.184809 0.076265

Table F.3: The relative maximum difference between the 2 models the for the scalar
dissipation rate, χm1 and χm2 , and the scalar dissipation rate computed with CHEM1D
for Lei = const (r).
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