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Summary

For special antenna geometries, it is known that numerical modelling techniques
can produce inaccurate results. Although the numerical calculations were per­
formed within a given numerical accuracy, it turned out that despite an incre­
ment in numerical accuracy, the results may still be wrong and therefore it is
concluded that the modelling approach is not robust. The object of this master
of science graduation project was to investigate accuracy and reliability aspects
of the numerical analysis of wire antenna structures.

This research report begins with a theoretical description of the wire model in
Chapter 2. In this chapter, the derivation of Pocklington's thin-wire equation
is briefly demonstrated. Subsequently, in Chapter 3, the numerical implemen­
tation of the equation with the Moment Method is described.

The computer implementation of the theory is validated, in Chapter 4, against
three available codes, namely NEC2, a Pocklington based code and a Hallen
based code. The validation results gives us insight that the triangle basis and
testing function produces the correct results. The squared cosine function does
not produce the right answer because it did not match the current well at
the end faces of the wire. The results from this chapter acknowledge that the
reference codes are based on the "reduced kernel".

In order to gain insight in the reliability of the numerical implementation, re­
search was performed into the stability and accuracy of the numerical implemen­
tation. This is presented in Chapter 5. The following checks didn't contribute to
earlier findings or weren't providing information without comparing the results
of the two kernels (EK and RK):

• The sorted singular values,
• The derivative of the singular values, non-sorted and sorted,
• The second derivate of the singular values,
• The FFT of the singular values,
• The FFT of the derivative of the singular values,
• The FFT of the current,
• The so-called Picard criterium,
• The so-called Minimum Description Length.

The finally implemented and used stability test determines the percentage of the
number of singular values above a certain threshold. This threshold is chosen
as the mean value of the singular values. If the percentage is more than 50 %,
numerical test show that the solution is found to be stable. This last stability
test gave a good indication of whether the approach is robust or not.
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Chapter 1

Introduction

1.1 Determining input impedances of wire antennas

Designing antennas, one of the important characteristics that should be deter­
mined, is the input impedance. In the past, antenna modelling was based on
experience and trial and error. In 1897 Pocklington present in his article [18],
a differential equation from which the current along a thin wire antenna can
be obtained. Solving Pocklington's equation wasn't numerically implemented,
until appropriate computer resources became available. After this first article
by Pocklington, several other methods were developed, e.g. Hallens equation
[2, 15, 5J as result.

In the 1970's a discussion started about how to solve Pocklington's equation
efficiently [4, 16, 17, 32J. Butler and Wilton came to the conclusion that the
so-called collocation scheme converges badly and therefore they advised to use
Garlerkin's method.

Jones started a more fundamental discussion [11J about which kernel in the
integral equation should be used. The kernel represents the system description
in the differential equation. Tijhuis et al. described in [23], that the reduced
kernel can be derived exactly. Rynne explained in [19, 20], why the so called
"exact kernel" is well-posed. Davies proposes in her article [8J how to calculate
the "exact kernel" efficiently together with an appropriate solution method. Van
Beurden explains in his thesis [25], the reason of the ill-posedness of the "reduced
kernel". His conclusion is that near-field quantities should be determined with
the"exact kernel" to obtain accurate results. Furthermore his derivation of the
"exact kernel" is exact.

At the same time that the issues above were given attention, another discussion
was going on, namely what is the best source model to be used. Tsai [24J gives
an alternative for the widely used delta-gap excitation, namely the frill-source.
This is also explained in Balanis [1, Section 8.3.3, p. 392-395J. In 1995 and
1996, Junker et al. gave an alternative for the two previous source models, the
delta-gap and frill-source [12, 13, 14J. In 2000, Cui presented, in my opinion, a
promising source model in [7J.

7



8 CHAPTER 1. INTRODUCTION

1.2 The scope of this thesis

The input impedance is one of the important parameters while designing an­
tennas. These antennas are placed on complex objects like planes, ships or
vehicles. The analysis of appropriate design parameters is performed by using
several numerical techniques implemented on computers. A number of them
suffer from reliability problems, despite of what the commercial people or the
programmers want you to believe. Therefore, the antenna designers are assisted
by EM-specialists to be able to adequately interpret the results.

During one of the research projects at TNO-FEL, several EM-solvers have been
compared to each other. From this study, it has been concluded that the com­
puter programs don't suffice in all situations, because of several errors in the
numerical implementation [26].

For special antenna geometries, it is known that numerical modelling produces
inaccurate results. Although the numerical calculations are performed within a
given numerical accuracy_ It turned out that despite an increment in numerical
accuracy, the results may still be wrong and therefore it is concluded that
the modelling approach is not robust. The object of this master of science
graduation project was to investigate accuracy and reliability aspects of the
numerical analysis of wire antenna structures.

1.3 Outline of this thesis

This report starts with a theoretical description of the wire model in Chapter 2.
In this chapter, the derivation of Pocklington's thin-wire equation is briefly
demonstrated. In Chapter 3 the numerical implementation of the equation with
the Method of Moment follows. The obtained numerical code is verified and val­
idated in Chapter 4 for three interesting examples. In Chapter 5 the reliability
of the answers produced by different wire kernels is investigated by addressing
certain parameters. The last chapter, Chapter 6, provides the conclusions and
recommendations.



Chapter 2

Model description

The electromagnetic problem that is solved is located in a homogeneous space
and is a time invariant isotropic medium, in our case free space. In this medium
there is a polarised quantity, defined as a vector, a quantity with a length and
direction. The description is given for now in Cartesian coordinates. A location
in the Cartesian reference frame is given by x = (x, y, z). The unit of time is
denoted by t . For the frequency, f, the following interrelation is used w = 27rf.

The electric and magnetic field vectors, t: and 'H., respectively, are governed by
Maxwell's equations in time domain,

accompanied by the constitutive relations,

V·'])

V·B
p,

o.

0,

:r,
(2.1)

(2.2)

(2.3)

(2.4)

The flux densities are defined as ']) = EOt: and B = /Lo 'H..

To be able to perform our analysis in both time and frequency domain, we
define the Fourier transformation as follows

F(w)

F(t)

00JF(t) exp( -zwt)dt,
-00

00

2~ JF(w)exp(zwt)dw.
-00

(2.5)

(2.6)

By applying Fourier transform on Equation (2.1) and (2.2), Maxwell's equations
in frequency domain are written as:

v x E + zW/LoH

V x H - zWEoE

0,

J.

(2.7)

(2.8)

9



10 CHAPTER 2. MODEL DESCRIPTION

2.1 Helmholtz equations

From Maxwell's equations in frequency domain we take the divergence of Equa­
tion (2.7) and obtain

\7. H = O.

With the aid of Equation (2.9) it is then easily verified that

H = \7 x A.

This combined with Equation (2.7) gives

\7 x E + ZW/-lo \7 x A = O.

(2.9)

(2.10)

(2.11)

From the latter equation the curl operator is removed and a gradient of a scalar
function is added, because the curl of a gradient results in zero. Then we obtain

\7<1>
E = -zw/-loA - --.

ZWEo
(2.12)

As a next step we substitute Equation (2.10) and (2.12) into Equation (2.8).
This yields

\7 x \7 x A - k6 A + \7 <1> = J.

The latter equation combined with the Lorenz gauge:

\7. A = -<1>,

provides us with the Helmholtz equations,

\72A+k6A =-J,

\72<1> + k6<1> = \7 . J,
1

E = - (\7\7. A + k6A).
ZWEo

2.2 EM-interaction on a perfectly conducting object

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

To evaluate the EM-interaction of an arbitrary perfectly conducting object, as
defined in Figure 2.1, the first step is to determine the surface current density
J s. To this end, we first introduce the incident and scattered electric field E i and
E S

, the interior of the object D, the exterior of the object D and the boundary
between them 8D.

From Helmholtz equations, the total electric field and the incident field on a
perfectly electrically conducting (PEG) object are interrelated as follows

. 1 [ 2]51) (r) E (r, w) - E t (r,w) = -- \7<1> (r, w) - koA (r, w)
ZWEo

(2.18)
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I
n

'D f,(r,w)
Figure 2.1: Domain definitions for the derivation of the integral equations.

where,

<II (r, w) - f G (R, w) \l's . J s (r', w) dr',

r'EOD

A(r,w) = f G(R,w)Js (r',w)dr'.

r'E&V

(2.19)

(2.20)

(2.21 )

Both the potential and the vector potential in Equation (2.19) and (2.20) are
calculated by integrals with a convolutional structure over surface current den­
sity J S and the Green's function

G (R ) = exp (-zkoR)
,w 47rR'

where R = Ir - r'l, ko = wJco{lo is the wave number and \lS is the surface
divergence. The prime in the surface divergence indicates that the operator
pertains to r'. The shape function [22J is defined as

rED

rEaD.

r E '0

(2.22)

2.3 Thin-wire equation

Now we define our PEe object as a thin wire, see Figure 2.2, with L the length
and a the radius of the wire. For using the thin-wire equation two constrains
should be fullfilled: a « L and a « A. The thin-wire equation can easily be
derived after defining the current in cylindrical coordinates,

211"

I(z)= !Js(¢,z).uzad¢,

o

(2.23)



12 CHAPTER 2. MODEL DESCRIPTION

\
z=o

Figure 2.2: Wire geometry with incident field.

herein it is observed that the current only exist on the mantle of the wire,
without a current on the end faces. This implies that the term R = Ir - r'l for
r on flD can be written as

Ir - r'I 2 = I(r cos ¢, r sin ¢, z) - (r' cos ¢', r' sin ¢', z') 12

= 2a2 [1 - cos (¢ - ¢')] + Iz - z'J2 (2.24)

= 4a2sin21(¢ - ¢') + Iz - z'I 2
.

The next step is to rewrite Equation (2.18) for the thin wire in cylindrical
coordinates. This provides us with,

and

5v (r) E z (r,w) - E~ (r,w) =

[

L 21r

_1_ Oz JJG (R, w) \7~ . Js (¢', z') ad¢'dz'
2WEO

o 0

L 21r ]

+k6 JJG (R,w) Js (¢', z') . uzad¢'dz' ,
o 0

1
\7s' Js (¢, z) = ~o<pJs,<p (¢, z) + ozJs,z (¢, z).

(2.25)

(2.26)

From Equation (2.23), (2.25) and (2.26) can be extracted two possible solution
approaches. These two will be discussed in the next subsections.

2.3.1 Reduced thin-wire kernel

The exact derivation, as proposed by Tijhuis [23], is to choose the observation
point on the axis and the source point on the mantle of the wire. This yields

2WEO [5v (r) Ez (zuz,w) - E~ (zuz,w)] =
L L

Oz JK R (z - z') ozlI (z') dz' + k6 JK R (z - z') I (z') dz',
o 0

(2.27)
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which is referred to as Pocklington's equation with the "reduced kernel" defined
as

(2.28)

2.3.2 Exact thin-wire kernel

The starting point is still Equation (2.23), (2.25) and (2.26). This is amended
with the arguments from van Beurden [25J. 1;'-Dependence of the integrated
Green's function can be removed by integrating over a full period of 1; because
the Green's function G is a periodic function of 1; - 1;'. To ensure consistence
between the left and right hand side of the equality sign in Equation (2.25),
the E-fields will also be integrated over 1;. The 1;'-integration is now only for
the current density and produces the the current, according to Equation (2.23).
Hence, this gives us Pocklington's equation:

with

'WE. [s,,(r) 1 E.(r,w)d4-1E;(r,W)d</>j

L L

8z JKE (z - z') 8ztI (z') dz' + k6 JK E (z - z') I (z') dz',
o 0

(2.29)

KE (z) (2.30)

(2.31)

known as the "exact kernel". The r mentioned in the left hand side of Equa­
tion (2.29) is given by r = aur (1;) + ZUz = acos(1;)ux + asin(1;)uy+ ZUz , which
denotes a point on the mantle of the wire.



Chapter 3

Numerical implementation

In this chapter the derivation is focussed to the "exact kernel". Hence, the
equation to solve is (2.29), which can be written in operator notation as follows

(3.1)

in which the linear operator L works on I(z) as

L L

LI = azJK E (z - z') az,I (z') dz' + k6 JK E (z - z') I (z') dz' (3.2)

a a

and the known quantity is given by

[ ~ ~ ]
E"~'WEO Sz,(r) [E. (r,w) dq,- [E; (r,w) dq, (3.3)

3.1 Method of Moments solution

The Method of Moments (MoM) [6, Chapter 4] starts by using a finite set of
functions 'ljJi with i = 1, ... , N - 1, called the expansion or basis functions,
which are used to construct an approximation of the current I in N equally
approximated currents as:

N-l

I ~ IN (z) = L ai'IjJi (z),
i=l

(3.4)

(3.5)

where the coefficients {ad are the unknowns to be determined. Substituting
Equation (3.4) into Equation (3.1), and taking in account the linearity of the
operator L, we obtain the following equation:

N-l

LI ~ LIN (z) = L aiL'ljJi (z) ~ E C (z), z E av
i=l

The above equation is an approximation of Equation (3.1). It must be discretised
so that it can be solved by a computer. To do this, a new set of functions Wj

15



16 CHAPTER 3. NUMERICAL IMPLEMENTATION

(3.6)

with j = 1, ... ,N -1, called the testing or weighting functions, is chosen. Then,
taking the inner product of each weighting function with Equation (3.5) results
in a system of linear algebraic equations:

N-l

L Qi (L1/Ji, Wj) = (Ee , Wj), j = 1, ... ,N-l.
i=l

This equation can be written in matrix equation form as

[Z] [1] = [V]

with

denotes the system matrix,

denotes the unknown current vector and

(3.7)

(3.8)

(3.9)

(3.10)

denotes the known Voltage quantities. The subscripts i and j are given by,

i = 1, ... , N - 1/\ j = 1, ... ,N - l.

Finally the inner product is defined as

(I, g) = Jf(z)g*(z)dz,

OD

where the asterisk denotes the complex conjugate of g(z).

(3.11)

3.2 Calculation of the system matrix

The expansion and weighting functions are chosen to be the same, Wj = 7j;j'

This is referred to as Galerkin's method, which gives better results according
to [4, 17, 32]. Then the vector [V] becomes

(3.12)

(3.13)

when the incident field is absent. The weighting functions are defined on the
domain [Zj-l, Zj+l]' The elements of the system matrix are given by

Zij ~ (L,pi,,pj) = }' [8".7'KE (z - z') 8",pi (z') dz'+

kZ}'KE (z - z') V'i (z') dz'] ,pj (z) dz.
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The wire is divided into smaller segments, where our testing points are chosen
on the end of the segments. The wire is divided in N equally sized segments,
therefore the segment length is ~z = fl. The integration boundaries are given
by

. jL
Zj J~z = N' (3.14)

• A iL ( )
Zi U.J.Z = N' 3.15

Equation (3.13) can be split up into two parts, one with the differentials the
other without, then we get

where

z;; ]' l8.,Z'KE (z - z') 8.,,pi (z') dz'] ,pj (z) dz,

Z[j ~ k6.T [Z'KE(Z - z') ,p;(z') dz'] ,pj (z) dz

The part with the derivatives is rewritten as,

v
=0

.T [Z'KE (z - z') 8.,,pi (z') dZ'] 8.,p, (z) dz,

(3.16)

(3.17)

(3.18)

(3.19)

(3.21)

where it is assumed that 1/Jj (z) vanishes at the integral boundaries.

By performing the transformation of Appendix A, Equation (3.18) and (3.19)
can be written in the following form,

2

~z2 J{KE (~z[m+ sD + K E (~z[m - s])} I (s) ds, (3.20)

o
with

2-8

I (s) = ~ J1/Jo (~(s' + s)) 1/Jo (~(s' - s) ) ds' .

8-2

In Equation (3.21), 1/Jo(z) represent also the partial derivative form of the testing
function.
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3.3 Basis and testing functions

In the previous section there are requirements stated, the first is that basis and
testing functions should be identical (Galerkin's method), the second is that its
value should be zero at the boundaries. From the literature, it is known that
there are four generally expansion functions used in Galerkin's method,

1. Delta functions

1/Ji(Z) = 8(z - Zi) (3.22)i: 8(z - zi)f(z)dz = f(Zi)' (3.23)

Figure 3.1: Delta function

2. Pulse functions

1

(3.24)

Figure 3.2: Pulse function

3. Triangle functions

1

Figure 3.3: Triangle function

4. Trigonometric functions

1

Figure 3.4: Trigonometric func­
tion

{

I IZ-Zil
1/Ji(Z) = 0 - ----xz Iz - zil :s: ~z

Iz - zil > ~z

(3.25)

Iz - zil:S: ~z
Iz - zil > ~z

(3.26)

From these testing functions, only number 3 and 4 comply with the constraints
discussed before.
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For testing the impact of choice of basis and testing functions, we also use an ex-

1

tra function of the following trigonometric form

Figure 3.5: Squared cosine function

{

2 (7r(Z-Zi))
()

cos ~
7/Ji Z = Z

o
Iz - zd :S Llz

Iz - zil > Llz
(3.27)

This squared cosine function was chosen alongside the triangle functions (3) to
study differences.

3.4 Tackling the Green's function singularity

The kernel of the form (exp(-~R) - 1 + 1) / R can be split up into two parts.
The 1/R part which determines the resolution or the segmentation density. With
respect to the resolution of the solution, the remaining term, (exp(-~R) - 1) / R,
is less important.

The "reduced kernel" of Equation (2.28) can be calculated numerically with the
Simpson rule. The 1/R part determines the major part of the solution. This
part can be calculated analytically, but for the "reduced kernel" it is handled
numerically. It is noted that this numerical approach is performed accurately
enough.

The" exact kernel" of Equation (2.31) can also be split up into two parts. The
denominator once again determines the resolution. Here, the denominator has
an analytical solution for the ¢-integrand, an ellipticK function. The z-integrand
of the denominator is calculated numerically with the "quadpack" function
"qaws" , for the logarithmic singularity at the self patches. The remaining parts
of the denominator are integrated with the Simpson rule. The remaining term
is integrated with a 2D Simpson-quadrature rule.

From the literature, it is known that the one over the square root term is the part
of the kernel which determines the resolution of the solution [25]. The maximum
number of samples that produces a correct answer is called the resolution of
the solution. The minimum number of samples that produces a correct answer
depends on the used frequency.

3.5 Source implementation

The source is implemented with the most common form there is, the delta-gap
voltage source. This source is defined as the voltage between the feed points,



20 CHAPTER 3. NUMERICAL IMPLEMENTATION

see Figure 2.2. The electric field in the gap can then be defined as

(3.28)

with Va the applied voltage and Zg the location of the source. The latter equation
is combined with Equation (3.12).

The impedance, Z, can be calculated as follows

Z= Va
I'

9

where 19 represents the current at the feed point, located at Zg.

(3.29)



(4.1)

Chapter 4

Validation of the developed code

Before the stability analyses was started, the newly programmed code for this
thesis has been validated by known working and established codes. Therefore,
the code is compared with three established codes, the first is the NEC2 code
[3] with the "extended kernel flag" turned off, this because this option is not
well documented. The other two codes are Hallen [30] and Pocklington [29]
based codes. All codes are programmed in double precision except for the NEC2
code, which is programmed in single precision. The new code is verified with
three tests. In the first test, the basis functions of the code are squared cosine
functions. For the second test, the basis functions are triangles. In the last test
the basis functions are triangles and the wire radius is chosen much thicker. For
all comparisons of the currents in this chapter, the frequency is chosen to be
f = 100 MHz. For the impedance plots, the frequency is swept from 50 until
150 MHz in steps of 10 MHz. The wire has a length of L = 1.5 m and the
wire radius is equal to a = 1 mm. This is the case for all tests, except the last
one, where the wire radius is equal to a = 5 em. In the results present in this
chapter, EK denotes the "exact kernel" and RK is used to indicate "reduced
kernel". The reference codes are denoted by NEC2, Hal and Pock for the NEC2,
Hallen and Pocklington based codes, respectively. From the NEC manual [3] an
engineering stability criterium is given:

L
N<-

- 2a'

that has been adopted with the analysis.

The term, resonance frequency, is the frequency corresponding with a half wave
length in vacuum or free space. The antenna is in resonance for the frequency
where the imaginary part of the impedance is zero. The frequency of a half-wave
dipole is lower due to the influence of the finite thickness of the wire. This fact
has no influence on the discussions.

4.1 Squared cosine basis and testing functions

In this section, the squared cosine basis and testing function, which can be
found in Equation (3.27), have been implemented. The plots of the current are
given in Figure 4.1 and Figure 4.2, for 22 and 100 samples, respectively.

21
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Figure 4.1: The current of a thin wire with L = 1.5 m and a = 1 mm. Simulated
for f = 100 MHz and N = 22 squared cosine basis functions.

1.2 1.4

Pock ..NEC2 •
Hal tl

I

!
.~

EK-
RK .

-0.006 L-~_~ ~~_~_-'---'

o 0.2 0.4 0.8 0.8
z-axis

-0.001

-0.004

-0.005

-0.002

~ -0.003

Pock ..

0.012

0.01

0.008

~ 0.006

0.004

0.002

0.2 0.4 0.6 0.8
z-axis

EK- NEC2
RK .......... Hal

(a) The real part. (b) The imaginary part.

Figure 4.2: The current of a thin wire with L = 1.5 m and a = 1 mm. Simulated
for f = 100 MHz and N = 100 squared cosine basis functions.
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From the currents, it is clearly observed that the real part of RK and EK values
has the right shape but the wrong value, compared with the reference codes.
The imaginary part of the RK and EK code has the wrong value and shape
with 22 samples. With 100 samples the shape tends to follow the results of the
reference cards. The next discussion is about the impedance plots, which are
depicted for 22 and 100 samples in Figure 4.3 and Figure 4.4, respectively.
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The impedance values of the RK and EK code are correct for the frequencies
below resonance, f = 100 MHz. Above resonance the deviation is the largest
for N = 22. The imaginary part shows too a low value for 22 samples. For
N = 100, the impedance is correct for the frequencies below resonance. This
with an extra note, that the observations made are within the details of the
impedance plots. The details perceived from these plots are less then the ones
perceived in the graphs of the currents.
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4.2 Triangle basis and testing functions

The implementation discussed in this section uses the triangle function from
Equation (3.25) as basis and testing functions. The different solutions of the
currents are compared in Figure 4.5 and Figure 4.6, respectively, and will be
discussed below.
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Figure 4.5: The current of a thin wire with L = 1.5 m and a = 1 mm. Simulated
for f = 100 MHz and N = 22 triangle basis functions.
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Figure 4.6: The current of a thin wire with L = 1.5 m and a = 1 mm. Simulated
for f = 100 MHz and N = 100 triangle basis functions.

Comparing the shape and magnitudes of the results of the developed code with
the ones of NEC2 and the other codes, shows us that the shape and values
are in good agreement for both sample values. Next the impedances plotted in
Figure 4.7 and Figure 4.8 are compared with each other.

The impedance values calculated by the code are the same for 22 samples. The
impedance values in the plots made with 100 samples are more or less the same
as the ones obtained from the reference code, NEC2. We clearly observe that the
NEC2 code gives inaccurate results for the imaginary part of the impedance for
100 samples, when compared to the plots created with 22 samples. The deviation
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between the values of some frequencies is more than 100 %.

4.3 Thick wire, L = 1.5 ill and a = 5 em

In this section, the results of the "reduced kernel" for a badly configured wire
will be shown. For this example is chosen, a wire with a length of 1.5 m, a
radius of 5 cm which and divided into 100 segments. This is in agreement
with Equation (4.1). For such a wire, it is observed that numerical errors are
introduced to the solution. The simulation is carried out for f = 100 MHz, and
the calculated current is shown in Figure 4.9. The basis functions used here are
triangles.
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Figure 4.9: The current of a thick wire with L = 1.5 m and a = 5 cm. Simulated
for f = 100 MHz and N = 100 triangle basis functions.

The results in Figure 4.9 show us that the Hallen code, NEC2 and RK code
give rise to "oscillating" effects in the current near the end-faces of the wire
and the feeding point. This is off course an unwanted effect.
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From the basis and testing functions considered in this study the triangle basis
and testing function produces the most accurate results for the currents and
the impedances. The squared cosine functions fail to follow the shape of the
current accurately enough. Especially at the end faces of the wire where the
current has a square root behaviour [8J and [21, Theorem 3.2J. Hence, the cal­
culated currents by using squared cosine functions are incorrect. The results of
Section 4.3 acknowledge that reference codes that were used are based on the
"reduced kernel".



Chapter 5

Stability research

The comment about the resonance frequency, fr, of the previous chapter is still
valid.

In this chapter the triangle function is used for the basis and testing function to
obtain the current in all configurations studied. The stability research started
for a wire with a length L = 0.5 m and a radius of a = 5 mm. The current is
depicted in Figure 5.1 for f = 300 MHz and N = 128 segments. 128 Segments
result in an unstable solution, according to Equation (4.1).

The demands of a stable computational model are that the current does not
give rise to oscillating effects at the source or end faces of the wire, furthermore
the impedance should be a good estimate of the physical one. The stability of
the computational model lies within the system matrix, Z. This is due to one
reason; the current is the unknown and the source matrix is known, the source
matrix is, for practical purposes stable enough. Therefore, to obtain the stability
of the model, we have the choice from a limited set of matrix operations: the
determinant, condition number and the singular values. These operations are
all related quantities.

In some figures, the horizontal axes has the following title, N[#], this represent
the array index of the value of the vertical axes.

In the imaginary part of the current, the values around the source parts oscillate
in the "reduced kernel" (RK) case. This is not due to a bad condition number,
which is approximately 800 for the EK and 400 for the RK. A condition number
lower than the inverse of the machine precision is an indication that the matrix
can be inverted easily. A downside of the condition number is that it changes
when the length, radius and number of segments changes, and indicates only
whether the matrix becomes singular or not.

Another matrix parameter to investigate is the sorted singular values, from
largest to lowest value, depicted in Figure 5.2.

The shapes and magnitudes of the singular values are different for the EK in
comparison to the RK. Therefore, conclusions attributed to the sorted singular
values from only one kernel cannot be easily drawn without comparing them
to the ones of the other kernel. This also complies with the plots of Figure 5.3.
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The examples plotted in Figure 5.3 were ideas to obtain stability information
via the matrix.

The derivative of the singular values is determined at position n, s'[nJ = s[n +
1J - s[n - 1J and a special trick for s[OJ and the last value. The second order
derivative is determined by s"[nJ = s[n + 1J - 2s[nJ + s[n - 1J. The FFT of the
singular values is created by doing a FFT operation on the complete array of
the singular values.
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Figure 5.3: The singular value operations on a wire with L = 0.5 m and a =
5 mm for f = 300 MHz and 128 segments.

One operation that gives us a good estimate whether the solution is robust
or not, is the spatial Fourier transform of the current, depicted in Figure 5.4.
These results do not contribute to earlier findings, because it shows that there
are higher order frequencies in the current solution.

In this study indications are that the best estimate is obtained by determining
the percentage of the number of singular values above a certain threshold. This
threshold is chosen as the mean value of the singular values. If more than 50 %
of the singular values lie above the threshold, the solution is found to be stable.
An extra advantage is that this exercise has a more or less physical representa­
tion. It represents the number of participating "sources" to the solution. This
assumption is tested for 3 configurations.
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0.5 m and a = 5 mm for f = 300 MHz and 128 segments.

5.1 Wire, L = 0.5 m and a = 5 mm

In this section, a selection of tests performed on a wire with the following
dimensions L = 0.5 m, a = 5 mm and f = 300 MHz will be discussed. Within
these tests the number of segments is increased from 8 until 1024. The results
are depicted in Figure 5.5. It is observed that the impedance is wrong beyond
256 segments.

According to Figure 5.5(d), the results become unstable for 128 segments and
almost unstable for 64 segments. Figure 5.6 confirms this finding.

5.2 Thin wire, L = 50 m and a = 1 mm

An interesting configuration to use as a test case is an extremely thin wire.
This wire has the following dimensions, a length of 50 m, a radius of 1 mm and
f = 3 MHz. The calculations with Equation (4.1), show that the results become
unstable when the number of segments becomes larger then 25000 segments. In
this configuration the segment number starts at 8 and ends with 1024, therefore
the results remain stable. The results are presented in Figure 5.7.

After observing the pictures more closely, three phenomena are observed. The
first observation is that the results produced by the "reduced kernel" con­
cur with the results of the"exact kernel". The second observation is that the
impedance values, plotted in Figure 5.7(a) and Figure 5.7(b) are within a 5 %
error margin of each other and the results from Balanis [1, Section 7.3.2J. From
the results of Figure 5.7(d) the next observation is made. Every computed seg­
ment number produces stable results. This is also found for the current which
is depicted in Figure 5.8.
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5.3 Thick wire, L = 0.5 m and a = 1.5 em

The last configuration studied is a thick wire configuration, where the calcu­
lation for the "reduced kernel" should becomes unstable for N is more than
17 segments, according to Equation (4.1). The calculation for this wire is per­
formed for 300 MHz, with L = 0.5 m, the wire radius a = 1.5 cm. The results
are presented in Figure 5.9.

\/

\ .. ", i
\ /

',l,c----~'00--­

N [~l

J 1&+12

§ 1&+10

.~ 1&+06

~ 1&+06

U OOסס,

.,==-------~-,
00

20

! '
~ ·10

-20

-00

~,

-00 '---- ---J

10 100
Nil]

::h...L-Jl
100"·_·· \

E 60 \,

! ~t \
10 ,00 1000

Nil}

El(~ AK--· .. --

(a) The real part of the
impedance.

(b) The imaginary part
of the impedance.

(c) The condition num­
ber.

',L,---~,oo---~.....J
N[#]

EK-

'\ \. I'·."I' 1

\: I

0.01 '------~100----'

N(I}

(d) The percentage of
participating "sources".

(e) The singular values
(EK).

(f) The singular values
(RK).

Figure 5.9: Results of a wire with L = 0.5 m and a = 1.5 cm for f = 300 MHz.

The real part of the impedance, Figure 5.9(a), deviates extremely for 128 seg­
ments with respect to EK. For 64 segments the imaginary part of the impedance
of the RK starts to deviate from the EK, see Figure 5.9(b). The condition
number does not reach the threshold value. The percentage of participating
"sources" of Figure 5.9(d) indicates that 32 segments produces results that are
just stable and 64 segments give unstable results. This is confirmed by the plots
of the currents shown by Figure 5.10.

5.4 Conclusions

After comparing the stability plots with the calculated currents to the point
where they become unstable, it may be concluded that the used stability cri­
terium obtained of the singular values is a good estimate for that stability.
Another observation is that Equation (4.1) provides a stricter stability factor,
compared with the plotted values of stability criterium. Equation (4.1) is a
factor 2 stricter compared to the plotted values, for example Figure 5.9(d).
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During this research an extra stability criterium, for which the results are not
shown here, was carried out; the so-called Picard criterium. This operation
shows if the obtained system matrix represents a physical existing solution.
If so, the solution can be enhanced by regularisation. The Picard criterium is
performed in all three cases and gave as a conclusion that all results from the
RK and EK still represent a physically correct solution after regularisation.

Another test performed was the so-called Minimum Description Length (MDL),
which indicates how many sources there are in a noisy environment. In our
case there was no noise, so all sources participated to the solution and further
implication of the MDL was cancelled.

More information of the Picard criterium and Minimum Description Length is
described in Appendix B.1 and B.2, respectively.



Chapter 6

Conclusions and recommendations

6.1 Conclusions

Our goal was to investigate accuracy and reliability aspects of the numerical
analysis of wire antenna structures. To achieve this, the integration of the 1/R
term of the kernel should be calculated accurately, especially for the parts where
the function has a logarithmic singularity. The integration of the 1/R term, in
the new code, is handled with special care. The remaining term can be easily
integrated numerically. Another important finding is that the basis and test­
ing functions, which do not follow the current accurately enough in its physical
behaviour, produce erroneous results as explained in Chapter 4. The basis func­
tions for the currents at least should have a square-root like behaviour near the
endpoints of the wire.

In Chapter 5, it is stated that the instabilities, "oscillation", of the "reduced
kernel" are not caused by numerical inaccuracies, but by using an inferior the­
oretical model or incorrect discretisation of the integral equation. This result
confirms suggestions made in [9, 10, 33, 31]. The condition number of the system
matrix gives some sort of indication. In the case of the first oscillation effects,
the condition number remained below the machine precision of the computer.

Our stability research shows that it is possible to determine a quantity that
indicates the existence of a robust solution. This is possible by using the singular
values of the system matrix. The following checks didn't contribute to earlier
findings or weren't providing information without comparing the results of the
two kernels (EK and RK):

• The sorted singular values,
• The derivative of the singular values, non-sorted and sorted,
• The second derivate of the singular values,
• The FFT of the singular values and derivative of the singular values,
• The FFT of the current,
• The so-called Picard criterium,
• The so-called Minimum Description Length.

The stability test we used determines the percentage of the number of singular
values above a certain threshold. This threshold is chosen as the mean value of
the singular values. If the percentage is more than 50 %, the solution is found
to be stable.
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Our stability test made use of singular values. From this rose the question:
"What is the physical representation of the singular values?" Possible answer:
"The number of participating "sources" to the solution and the interaction
between each other."

6.2 Recommendations

From the previous chapters we know that the basis and testing functions should
be chosen consistently with physics. In our case, triangle test and basis functions
seem to be appropriate functions. However, there are more options such as
parabolic and cosine. Which basis and testing function match the square-root
behaviour of the current at the end faces of the wire best and makes it possible
that the z-integrand of the 1/R-term is a tabulated function, remains still a
question to be answered. Probably, only the triangle and parabolic functions
give a tabulated answer. A good idea is given in an article of Jones [11].

By choosing a better threshold value, the stability test can be improved. Sub­
sequently, it should be proven that the stability test is valid for 3D-wire geome­
tries.

From the correct answer on the question what the physical representation of
the singular values is, we can provide a better threshold value. For the time
being a good alternative will be the point of inflection of the sorted singular
values.

To enhance the research in the stability area, there should be investigated what
the best source matrix representation is. This was outside the scope and is
briefly mentioned in the introduction. There it is also stated that the most
promising source model is described in an article of Cui and Chew [7].
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Variables transformation

The double integral of Equation (A.2) will be transformed into an easy integral
of the basis or testing function and an integral with the kernel function [8] .

.T[TKE (z - Z'),pi (z') d:!1,pj (z) dz,

i = 1, ... ,N - 1/\ j = 1, ... , N - 1.

First the integration interval will be written in full, we readily obtain

U+l)Llz [(i+l)LlZ 1J J K E (z - z') 7fJo (~~ - i) dz' 7fJo (~z - j) dz.
(j-l)Llz (i-l)Llz

(A.I)

(A.2)

Next we create three new variables x = lz - j, x' = t.z - i and m = i - j.
Then the integral can be written as

t>z') [} Ke(t>z[x - x' - mJ) <Po (x') dx'] <Po (x) dx, (A.3)

The next transformation will transfer the 2D integral into a ID integral. There­
fore we introduce two new variables s = x - x' and s' = x + x'. The integral in
(A.3) becomes

2 2-8

~~z2JJKE (~z[s - mJ)7fJo (~(s' - S))7fJO (~(s' + S)) ds'ds
o 8-2

o 8+2

+ ~~z2JJK E (~z[s - mJ) 7fJo (~(S' - s))7fJO (~(S' + s)) ds'ds.
-2 -8-2

(A.4)

39



40 APPENDIX A. VARIABLES TRANSFORMATION

For the lower integral we change into s = -s and obtain,

2 2-8

}~z2JJKE (~z[s - m]) 1/;0 (}(s' - s))1/;o (}(s' + s)) ds'ds
o 8-2

2 2-8

+ }~z2JJKE (~z[-s - m]) 1/;0 (}(s' + s)) 1/;0 (}(s' - s)) ds'ds (A.5)
o 8-2

2

= ~z2J{KE (~z[m + s]) + KE (~z[m - s])}')' (s) ds,
o

with
2-8

')' (s) = } J1/;0 (} (s' + s)) 1/;0 (} (s' - s)) ds '. (A.6)
8-2
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Matrix operations

B.1 Picard criterion

Consider the following system of equations that must be solved:

Ax = b. (B.1)

Where A is matrix and x and b are vectors. The quantities A and b are known,
then the solution can be determined by taking the inverse of the matrix A. One
way to obtain this inverse is to use Singular Value Decomposition tool (SVD).

The SVD routine provides three quantities namely, a matrix U and V Hand
diagonal matrix :E. The matrix A is decomposed as follows:

(B.2)

The matrices U and V H are composed of the normalised eigenvectors of the
matrix A. The matrix :E contains the eigenvalues of the matrix A.

In case the discrete Picard criterion ensures us if there exist a physical mean­
ingfull solution.

Picard criterion The exact singular value decomposition coefficients lufbl
on the average decay to zero faster then the singular values (Ti.

Where Ui is the i-th row of matrix U. This is also described in [28, Section
4.3.1J.

B.2 Minimum Description Length (MDL)

The MDL is performed on the singular values Si of the matrix A. Where A is
an n x n matrix. The MDL equation is defined as:

(

n )
1 '" 2n-p u Si

i=p+l 1
MDL(p) = (n-p)Nlog n +-p(2n-p)log(N)+2Iog(N) (B.3)

TI s;/(n-p ) 2
i=p+l

The rank r is determined as the value of p EO, 1"" ,n -1 for which the MDL
is minimised. An extensive explanation is given in [27, Section 4.1O.2.3J.
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