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Chapter 1

Introduction

‘The trend of the continuing scaling of process technology, the increase of the resistance per
unit length and the decrease of transistor delay have a growing effect on the dominance of
the interconnect delay over transistor delay. Research on optimal interconnect topology has
been undertaken in the past decades with the aim to provide an accurate and inexpensive
tool for the designer in his quest for performance, area and power optimization. A topology
that supplies low power consumption as well as short delay has been the objective of VLSI
systems developers and for this many mathematical methods have been proposed.

The conventional approach used for optimal interconnect sizing is the Elmore delay[28] ap-
proach. The Elmore delay is a posynomial function of the conductances and capacitances
in the circuit. However, the use of Elmore delay leads to convex optimization problems only
in a few cases. On the other hand, the dominant time constant [3], which is a quasicon-
vex function of the design parameters and uses the maximum eigenvalues of the capacitance
and conductance matrices, can be used to cast convex optimization problems in many cases.
These present a great advantage: they can be optimized very efficiently using recently de-
veloped interior point polynomial methods.

Because the Elmore delay has no useful convex properties (except when the RC circuit
has a tree topology) that can be used for optimization, we chose the dominant time con-
stant as the delay metric in this research. The dominant time constant approach allows
the optimization of topologies others than RC trees, like clock meshes and those including
coupling capacitances. Due to smaller feature sizes the coupling capacitance increases and
as a result we obtain crosstalk between the wires.

This document deals with research based on the dominant time constant approach and
finds a trade-off curve between area, delay and power that provides useful information for
the uniform wire sizing topology (UWS). In this topology, (UWS) all the wires have the
same width and all the repeater have the same size. This topology has been chosen because
the combination of optimal repeater insertion, uniform wire sizing (UWS) and uniform gate
sizing generally yields sufficiently accurate results so that any additional benefit from op-

2



1.1. PREVIOUS WORK 3

timization using non-uniform wire sizing (NUWS) becomes marginal[22]. This is the main
reason why we decided to study UWS instead of NUWS.

This document gives an overview of the results obtained in the past. We investigated
the uniform wire sizing approach with the purpose of providing a function the designer
could use to find optimal values for the design parameters such as the widths of the wires,
repeaters sizes and spaces between wires, such that low power consumption and short delay
is provided as stated before.

The structure of this document is as follows: the second chapter reviews convex functions
and semidefinite programming, followed by some theory and background on the circuit mod-
elling in chapter three, the fourth chapter presents interior point polynomial methods with
the intention of giving an understanding of the process behind the optimization software
used in the research, the fifth chapter contains theory on interpolation methods, which will
provide new trade-off points between area, power and delay based on the data collected
from the simulations. Finally, the sixth chapter will be dedicated mainly to the description
of the uniform wire sizing problem, the approach that is used and the results that have
been obtained.

1.1 Previous work

The conventional approach to interconnect sizing is based on linear RC models and on the
Elmore delay[28] as a measure of signal propagation delay. This approach was introduced
by Rubenstein et Al [29)].

The Elmore delay is used extensively in circuit optimization because it is a posynomial func-
tion of the conductances and capacitances and this allows the use of convex and geometric
programming to optimize the signal propagation delay. The called TILOS approach([30]
was the first of a family of optimization methods that use Elmore delay and are based on
geometric programming.

In 1995, Vandenberghe and Boyd [3] proposed the dominant time constant as an alter-
native measure of delay and they showed that it has several important advantages over
Elmore delay when applied in circuit optimization:

1. A far wider class of circuits can be handled, including circuits with non-grounded
capacitances and resistive networks.

2. The dominant time constant approach can be formulated as a convex problem and
for this kind of problems very efficient interior point polynomial methods have been
developed.

Vandenberghe and Boyd designed and developed a software package called sp [31](Software
for semidefinite programming) with the objective of implementing the methods based on
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the dominant time constant. The software was extensively used but still it presents great
disadvantages, however. One of this is that both, the primal and the dual problem have to
be specified. Furthermore, starting points for the primal as well as for the dual problem
have to be provided.

T.Heijmen and Van Staalduinen [1] used the dominant time constant approach for real
life problems but used a software package called SeDuMi instead of sp[6]. SeDuMi was
developed by Sturm and is currently one of the most widely applied tools for semidefinite
programming. In SeDuMi only the primal problem has to be specified, the software then
finds the solution of the dual problem also. Furthermore, SeDuMi allows to start with a
so called “cold start” (not a feasible point). In that case, it first find a feasible region and
then selects a feasible point within this region.



Chapter 2

Convex Functions and Semidefinite
Programming

2.1 Introduction

This chapter gives an important introduction to the world of convex functions and semidef-
inite programming. This is important due to the fact that the dominant time constant
which is the specific model to study for the delay, is a quasiconvex function of the design
parameters and for being so, allows the use of new efficient developed interior point poly-
nomial methods that provide accurate solutions to the problems in consideration.

Furthermore, our main study is based on the semidefinite programming itself which allows
the formulation of optimization problems and covers theory ranging from linear classical
problems going through square problems to Lorentz cones. For a more detail review of
convexity and semidefinite programming, the user is referred to Vandenberghe [5] and [4].

2.2 Convex Functions

Definition

A function f : R® — R is convex if its domain is a convex set, and if for all =,y €
domain(f):

FO@+ (1= Ny) € Af(e) + (1= N [(y) 1)
Vo< AL

Geometrically, this can be seen as a chord from points z, f(z) to y, f(y) that lies above the

graph of f. f is strictly convex if the strict inequality of (2.1) holds and if z # y. It is
called concave if —f is convex. ‘

An important fact is that for an affine function(linear) we always have equality in (2.1), so

5



2.2. CONVEX FUNCTIONS 6

(%fy)
(x,f(x))

Figure 2.1: Convex Function.

all affine functions are both convex and concave functions and viceversa, because:

f is convex iff g(t) = f(z +vt) is convex

V z € domain(f) AV v € R* A{t|z + tv} € domain(f)

This property is very useful because it can be used to find the convexity of a set by tracing
and restricting the function to a line.

First-Order Conditions

Suppose the function f has a gradient for any point of its domain then f is convex if and
only if its domain is convex, and (using taylor series to describe the function in series terms
and truncating it at O(1)):

fy) > (@) + Vi) (y - =) (2.2)
holds {V z,y | z,y € domain(f)}

This property results very useful to determine the convexity of certain functions through
its local information points.!
Second-Order Conditions

Assuming now that 3Af, that is its Hessian or second derivative exists at each point
V dom(f), which is open; then f is convex if and only if dom(f) is convex and its Hessian

'for a proof of the equation (2.2) please refer to [5].
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is semidefinite positive, that is.
Vif(z) >0 (2.3)

This two conditions allow us to define in a fast way if a given function is convex or not.

Examples

Here there are some examples of convex and concave functions. We start with some functions
on R, with variable z.

e Ezxponential. €** is convex on R, for any a € R.

e Powers. % is convex on R4 when a > 1,V,a <0, and concave for 0 <a <1

Powers of absolute value. |z|P, for p > 1, is convex on R

Logarithm. logz is concave on Ry .

Norms. Every norm on R" is convex.
e Mazx. Function. f(z) = max(zy,---,%,) is convex on R"™

. . . . 2
Quadratic-over-linear function. The function F(x,y) = Ey—, with

domf = RzR. = {(z,y) € R?|y > 0},
is convex.
e Log-sum-exp. The function f(z) = log(e® + --- + €*") is convex on R"

For a detailed review on the functions and some proofs of their convexity please refer to [5].

Jensen’s Inequality and Extensions

The inequality
[0z + (1= 0)y) <0f(x) +(1-0)f(y),

is often called Jensen’s inequality and can be easily extended to convex combinations of more
than two points: if f is convex, z1,--- ,xx € dom fandfy, - ,0 > 0with;+---+0, =
1, then:

FOrzi 4 -+ Oky) < O1f (1) + - 0 fzk).
It can also be extended to infinite sums, integrals, and expected values. If p(z) > 0 on
S C domf, [¢p(z)dx =1,then.

f /S p(z)eds) < /5 f(@)p(e)da

provided that the integrals exist.
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2.3 Quasiconvex functions
Definition

A function f : R™ — R is called quasiconvez (or unimodal) if its domain and all its sublevel
sets

sa = {z € dom f |f(z) < a},

for & € R, are convex.

A function that is both quasiconver and quasiconcave (-quasiconver) is called quasilinear.
A function is quasilinear if its domain, and every level set {z|f(z) = a} is convex.
Properties

Quasiconvexity is a generalization of convexity in some way. i.e A function f is quasiconvez
if and only if domf is convex and for any z,y € domf and 0 < 9 < 1,

f(0z+ (1= 0)y) < maz{f(z), f(y)},

which is called the Jensen’s inequality for quasiconvez functions.

Quasiconvex functions on R

f R — R is quasiconvez if and only if at least one of the following conditions holds:
e fis nondecreasing

e fis nonincreasing

e there is a point ¢ € domf such that for ¢ < ¢ (and t € domf), f is nonincreasing, and
for t > 0 (and ¢t € domf, f is nondecreasing.

The point ¢ can be chosen form its critical points.

First-Order conditions

if f: R"™ — R is differentiable. Then f is quasiconvex if and only if domf is convex and
for all z,y € domf:

fly) < f(2) = Af(@)T(y—2) <0

Second-Order conditions

if f: R™ — R is twice differentiable. If f is quasiconvex then for all z € domf and all
y € R", we have:
yTAf(z) = 0=y A f(z)y > 0

which reduces to:
f(@)=0= f'(z)>0
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for a quasiconvex function on R.

For proofs please refer to [5].

2.4 Cones, primal and dual problems

Cone Definition
The cone linear programming in its standard canonical form:
inf{cTz | Az = b,z € K} (2.4)

where z € R™ is the vector of decision variables, k C R" is a pre-specified convex cone, and
be R™ ce R", A€ R™" are given data. Recall:

RY ={ze€R":z >0}
is defined as a convex cone, and the dual of the cone is R}. In a similar way the set
{(t;x) e R ot > |z)}

is a convex cone in R™, called the second order cone. The dual cone is also the second
order cone in R™1. Tt is self dual.

Important subclasses of colinear programming are linear programiming, semidefinite pro-
gramming, second order cone programming, and a mixture of these.

Primal and dual problems

The primal-dual self-dual embedding technique was first proposed by Ye, Todd and Mizuno
[14] for solving linear programming problems. The advantage of this methods is that al-
lows to take any pre-described interior point as initial feasible solutions for the embedded
problem, and the embedded problem is guaranteed to have an optimal solution which can
be approximated by using any interior point algorithm.?

Consider the following conic optimization problem [8]:

minimize c¢lz
subject to Az =1b (2.5)
x € K,

where ce R™", b€ R™, A € R™" and K C R" is a solid convex cone with its dual cone
defined as
k= {slzTs >0 V¥ zc K}

2This will be discussed in more detail in chapter 4.
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which has an associated dual problem, called
minimize b7y
subject to ATy +s=c (2.6)
s € K,

equations (2.5) and equation (2.6) are the main goal to optimize in the so called ”the self-
dual embedding technique for optimization over self-dual homogeneous cones” which will
be review with more detail in the chapter relevant to interior point polynomial methods.
For now, it is enough to mention that the equations above are optimize over symmetric
cones which are one step before in hierarchy than semidefinite programming, hereby the
importance to review the concepts.

2.5 Semidefinite Programming
Definition

Semidefinite programming (SDP) refers to any optimization problem with any mixture of
(symmetric) matrix and scalar-valued variables which has a linear objective function and
any combination of linear equality or inequality constraints. Usually this constraints are
nonlinear but convex, so a semidefinite programming problem can be cast as a convex op-
timization problems [4].

We consider the problem of minimizing a linear function of a variable z € R™ subject
to a matrix inequality:

minimize Ly

subject to F(z) >0 (2.7)
where
m
F(z)=Fo+ Y z:F,
i=1
The objective function is the vector ¢! € R™ tied to m+1 symmetric matrices Fp, - - - P €
R™* ™. The inequality sign in‘'(2.7) means that the matrices are semidefinite positive, recall:
(Fz,z) >0 VzeR" (2.8)
where

(Fz,z) = trace ((Fz)"z)

also known as the inner product.

A semidefinite program is a convex optimization problem since it is entirely convex, re-
call from convexity:

if F(y) >0AF(z) >0

FOz+(1—-Ny) = F(@)+(1-NF(@) >0 V 0<A<1
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Figure (2.2) shows a semidefinite program set with a feasible region {z|F(z) > 0} depicted
by the closed region within the lines:

Figure 2.2: Semidefinite program example.

Colloquially speaking the semidefinite programming problem is to move as far as possi-
ble in the —c direction within the feasible region. Specifically for the problem show above
we see that Xop¢ is the optimal point.

Note that the optimal point is on the boundary of the feasible set, this means that the
function evaluated in the point is singular. This also means that there is always an optimal
point on the boundary.

In the example discussed above, we observe that the feasible set is not entirely convex,
it is composed of piecewise algebraic surfaces, which is the general case. The main idea is
as follows. At a point where the boundary is smooth, it is defined locally by some specific
minors of the matrix F'(z) vanishing. Thus the boundary is locally the zero set of some
polynomials in 1, - -,z [4].

From the definition of semidefinite programming given above we can infer that it can be
cast also as a linear problem:

minimize ¢!z

2,
subject to Ax +b6>10 (29)
where the inequality should be read as component wise inequality, if we express Az +b > 0
as F(z) = diag{Az + b) > 0, then we can cast the linear problem (2.9) as a semidefinite
problem and viceversa.

We also observe that the semidefinite program can be used in such a way that many con-
straints can be included by using the concept of linear matrix inequality as long as the
resulting block of matrices remains positive semidefinite.
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Examples.
Quadratically constrained quadratic programming

A convex quadratic constraint (Az + )T (Az +b) — Tz —d < 0,with z € R¥, can be written
as
1 Az +b
>
[ Az +b Tz +d ] 20

we see that the left side of the equation depends linearly on the vector z and that it can be
expressed as

Flx)=Fy+z1F1+ - +x1F, >0

with
_ I b o 0 a; .
FO“':bT d:|a F’L"l:a;F Q]’Z_Z, 7ka
where A = [al, - ,ax]. Be aware that this problem can be rewritten in such a way that it

turns into a semidefinite program. The standard trick here is to include a dummy variable
to make the objective linear and then use Schuur complement to represent the matrices:

minimize t

. I Ao.’E -+ bo
>
subject to [ (Aoz +bo)T Tz +dg+t } >0

I Az +b; )
r > =1 .-

Maximum eigenvalue and matrix norm minimization

If the matrix A(z) depends affinely on z € R* : A(x) = Ao+ A1z1 + - -+ + Agxg, where
A; = A;fr € RP*P | then the problem of minimizing the maximum eigenvalue of the matrix
A(z) can be cast as a semidefinite program:

minimize ¢
subject to tI — A(z) >0

Problems of this type will arise in our study and that is why it is important to mention
them.

2.6 Linear Matrix Inequalities

The most common problem in semidefinite programming (SDP) is the minimization of a
linear function subject to a linear matrix inequality, given by:

minimize CTz

subject to A(z) >0 (2.10)
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where A(z) = Ag+ 2141+ -+ T Am, Ai= A;fr.

The objective or cost function vector C' € R™ and m+1 symmetric matrices Ag, A41,--- , A,, €
R™"._ Where the inequality sign in A(z) > 0 means that A(z) is positive semidefinite.

So, problem (2.10) is called a semidefinite program and A(z) > 0 a linear matriz inequality.
Furthermore, we can handle multiple constraints in SDP by representing them as one big
diagonal matrix. We can also incorporate a wide variety of convex constraints on = by
representing them as LMIs [3].

In particular we can write equation (2.10) as a LMI plus some linear inequalities:

Minimize CTz
S.T. A(z) >0 (2.11)
szng'L, i=1,---,p

which can be rewritten as a SDP if:

Minimize CTz

A(z) 0 (2.12)
S.T. ) >0
0 diag (g1 — ffz,- 90— flz) | =

The matrix in (2.12)is a collection of linear an semidefinite positive constraints. We observe
the importance of being able to include linear constraints (being able to impose inferior and
superior boundaries on the variables).

Finally, we remark the importance of studying semidefinite programming problems because
it has many known applications in engineering and also some very useful problems can be
cast as semidefinite programs as well by applying some transformations into it like the linear
problem, the quadratically constrained quadratic programming problem and many others.
It is worth to mention also that semidefinite programs can be solved very efficiently both
in theory and in practice; specially using the recently developed interior point polynomials
methods which we will discuss in chapter (4) of this report.



Chapter 3

Circuit Models

3.1 Introduction

In this chapter, we give an introduction to circuit related concepts which are necessary
for the modelling within our project In particular we treat RC circuits, Kirchhoff voltage
and current laws, definitions for the switching and short circuit power dissipation, the
interconnect model, which includes the distribution of the capacitances and conductances,
a description of the possible delays to use, and we present a detailed treatment of the time
dominant time constant approach.

3.2 General RC Circuits

Consider a conductance G = 1—11:

—
i(t)

Figure 3.1: Resistor characterized by a current i(t) = Gu(t).

14
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with the voltage and current given by:

v(t) = R i(t)
i(tt) = G v(t)

where R is the resistance, i(t) is the current and v(t) is the voltage.

Now, consider a capacitance C' with current given by:

V() L_C| i(t)

Figure 3.2: Capacitance Characterized by a current i(t) = Cfidit’.

, dv
where C' is called the capacitance and % is the variation of the voltage with respect to time.

Using Kirchhoff’s current law![10] the circuit current can be described by the differential
equation:
dv
O = ~G(u()  ult), (3.1)
where v(t) € R™ is the vector of node voltages, u(t) € R" is the vector of independent volt-
age sources, C' € R™ ™ is the capacitance matrix, and G € R™*" is the conductance matrix.

Consider a circuit with N branches and n + 1 nodes, numbered 0 to n, where node 0
is the ground or reference node (figure(3.3)). We will assume that the capacitance and
resistive networks? are connected.

"The algebraic sum of all the current leaving a gaussian surface ¢ at time ¢ is equal to zero
2The networks obtained by removing all resistors and voltages sources or all capacitors and voltages
respectively
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.oy
1 :' nodel Vi

Y’
i, 2 mnode2 v,

Resistive i W node3 v Capacitive
Network ‘“‘3—C5—"—‘—3— Network

i Cu“ node4 _ v,
i=G(v-w -i=Cdv/dt

i & noden , Vv,

node 0

Figure 3.3: General RC circuit with n + 1 nodes shown as a resistive network, a capacitive
network, and voltage sources [3].

Each branch k consist of a capacitor ¢x > 0, and a conductance g > 0 in series with a
voltage source Uy, (see figure (3.4)

For future use, we note that for this class of circuits C and G [3] have the following well-
known form: fori=1,--- ,n,

Gu = EkeN(i) 9k, Ciu = ZkeN(i) Ck)
where the summations extend over all branches to node 4, and, for 4,5 =1,--- ,n, i # j,
Gy = — ZkeN(i,j) 9k, Cij=— ZkeN(i,j) Ck)

where the summations extend over all branches between nodes i and j.

3.2.1 Kirchhoff’s law

In lumped circuits, the voltage between any two nodes and the current flowing into any
element through a node are well defined and their behavior is given by Kirchhoff’s laws.

Kirchhoff’s 1st Law states that the current flowing into a junction in a circuit (or node)
must equal the current flowing out of the junction. This law is a direct consequence of the
conservation of charge. Since no charge can be lost in the junction, any charge that flows
in must ultimately flow out. Kirchhoff’s 1st Law can be remembered as the rule that uses



3.2. GENERAL RC CIRCUITS 17

Figure 3.4: Orientation of the kth branch current Vi and branch current I in an RC circuit.
Each branch consists of a capacitor ¢; > 0, and a resistor with conductance g, > 0 in series
with an independent voltage source Uy.

nodes to study the flow of current around a circuit.

Kirchhoff’s 2nd Law states that for any closed loop path around a circuit the sum of the
voltage gains and voltage drops equals zero. In the circuit shown (figure(3.4)), there is a
voltage gain for each electron travelling through the voltage source (symbolized by U) and
a voltage drop across the resistor (¢R). Applying Kirchhoft’s law:

dVi
Iy = k= + 96V = Up), k=1,---, N.
Kirchhoff’s 2nd Law is based on the principle of conservation of energy. No energy can be
lost from or gained by the circuit, so the net voltage change must be 0. Kirchhoff’s 2nd
Law can be remembered as the rule that uses loops to study the flow of current around a
circuit.

With the help of Kirchhoff’s laws, specifically its 1st law, we will introduce the reduce
node incidence matriz of a circuit A € R™ where 7 is the number of nodes and N is the
number of branches of a digraph of a given circuit (figure(3.5)).

The reduced node incidence matrix is nothing more than the set of algebraic equations
obtained from applying Kirchhoft’s law

Ai=0 (3.2)
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Figure 3.5: Deduction of a reduced node incidence matrix.

For figure (3.5) we see that we have n = 4 nodes and 16 current branches. We see that from
node 1, for example we have three currents flowing: I5 that enters to node 1 and I, I5 that
go out of node 1. So, because of conservation of energy we can rewrite the equation as:

L-IL+1;=0

In a similar fashion we can write all the ingoing and outgoing currents for node 2. In this
case the currents I, Ig, Iy go out and I5 enters to node 2. We can repeat the same procedure
until we get the whole description of the circuit:

I — Iy Is =
I, —I3 Ig Iy =0
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This set of equations can be rewritten in matricial form as mentioned in equation (3.2) with
i being the vector of the currents and A the so called reduced node incidence matrix

1 2 3 4 5 6 7 89 10 11 12 13 14 15 16 17 18
111 -1 1
2 1 -1 1 1
3 1 -1 1 1
A=i4 1 1 1
5 -1 1
6 -1 1 1
7 -1 1 1
8 -1 1 1

The numbers at the left and at the top have been added to assist the reader and are not
elements of the matrix.

3.3 Analysis of Capacitances and Conductances

We are interested in design problems in which the capacitance matrix C' and the conductance
matrix G depend on some design parameters x € R™. Specifically we assume that the
matrices C and G are affine functions of .

C(.’I)) = Co+z1C1 4+ +x2,,C

G(z) = Go+z1Gr+ - +2mGm (33)

where C; and G; are symmetric.

To obtain a description of the form of equation (3.1), we use the reduced node-incidence ma-
trix introduce before A € R™ (where, n = number of nodes , and B = number of Branches )
and define C and G as:

C = A diag(c) AT

G = A diag(g) AT (3-4)

where C and G are semidefinite positive and ¢ and g contain the description of the capaci-
tance and conductance matrices respectively for a given circuit. The vector elements ¢; and
gr denote the capacitance and the conductance of branch k, respectively, see figure(3.4).
It can also be proved that they are also nonsingular if the matrix capacitive and resistive
subnetwork are connected.

Recall the definition of semidefinite positive:

(CA,A) >0 VYAeR" (3.5)

Where A is the reduced-node incidence matrix described in [10].
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Figure 3.6: Equivalent problem.

3.4 Interconnect Modelling

Figure(3.7) shows a simplified representation of the interconnect capacitor structure. Its
equivalent representation in circuits is given in figure(3.6). This representation has been
used in our method. The three parallel wires have length L. The capacitance to ground of
the wire at the left of figure (3.7) is given by:

C1 (w1, s1) = Cp(w1) + Cgp + Cep(s1) (3.6)

where Cgp and Cgp(s) are the values of Cgp at infinite spacing and at spacing s;, re-
spectively. For the wire segments in the middle holds,

Cz(’ll)2,81,$2) = CB('LUQ) +CEB(S1)+CEB(82) (3.7)
The capacitance to ground for the segment at the right is given by,
C3(w3, s2) = C(ws) + Cgp(s2) + CFp (3.8)

The coupling capacitance Cpc decreases with increasing spacing. The edge-to-bottom ca-
pacitance Cgp also has a spacing-dependent component,

Ces(s) = Cgp + [Cep(s) — Cgpl = Ci + ACEB(s) (3.9)

the sum of Cpc(s) and ACgg(s) is a (nearly) linear function in the reciprocal spacing 1/s.
Let’s define the function

ACE(s) = Crc(s) + ACEgg(s) = Cec(s) + Ceg(s) — Cey (3.10)
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Substrate

Figure 3.7: Interconnect capacitance structure analyzed.

Both the function and the coupling capacitance Cgeo can be modelled by linear functions in
1/s. Therefore, for the different contributions to the capacitance the following expressions
are applied

Cg = qguwl = puwl,
ACp = cact = 6l (3:11)
Crpc = Cecé = 'Yé

Consider a given bus composed of one or several wires and repeaters (figure(3.8)). Our
desire is to simulate the behavior of the bus by using 7RC elements to describe each wire.
Figure(3.9) shows a typical 7 RC element, which is used to model the interconnect line. The
mRC element is composed of two grounded capacitances and a resistance between them.
The capacitances are proportional to the width of the element w, the resistance is inversely
proportional to w. All 7RC elements in the circuit have a fixed length 1.

It has been proven for Elmore delay that an optimal approximation method for an inter-
connect line within an error of 3% and less is given by using 3 #RC elements or more, for
a proof please refer to [27).

The driver element has been modelled by an input capacitance c;,d, one signal genera-

tor, a resistance Rgpiyer = 'G",;.l“? = ﬁ and an output capacitance coyutd, where d is the size

of the repeater (figure(3.10)).
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Figure 3.8: Interconnect topology.

We assume that the conductances and the ground capacitances are affine with the width of
the segment w; and the coupling capacitances are affine to the inverse of the space between
the wires s;. In particular, for the case of a TRC' element of length [, without neighbors the
values or 7, ¢; and g; are given by

w;
¢ = (cywi+cy)l (3.13)
1
g = — =ow; (3.14)
T
o = — (3.15)
Ryl ’

where R;, ¢, and ¢y denote the sheet resistance, the unit area bottom capacitance, and the
unit length fringing capacitance, respectively.

3.5 Example

For a topology of 2 wires and 4 nodes with no repeaters figure(3.11), we find the corre-
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Figure 3.9: mRC element represented by two capacitances Cy, = Cy = %(cbw +c¢f) 1 and
1

one resistance R = =

sponding node incidence matrix, as discussed in section (3.2.1).

(1 -1 0 0 1 0 0O 00O0OO0OCO O O O0O0O0O0)
o 1.-1 0 0 1 0o 01000 O O O0O0OO0OO
o 0 1 -1 0 0 1 00100 0O O O0O0OO0CO
A= o o0 o 1 0 O O 10010 O O O0OOOOO
o o 0o 0-1t 0 O OOOO0OC1T -1 0 O0O0O00O0
o 0 0o 0 0-1 0 O0O0OOOGC 1 -1 0100
o 0 0 0O O O0-1 00O0O0OO O 1 -1010
Lo 0 o 0 O O 0O0-10000 O O 100T1)]

The corresponding matrices for the capacitances and the conductances are given by equation(3.3).
If all segments have the same width w, the repeaters the same size d and the spacing is
uniform, we have three independent variables: z; = w,z9 = t = 1/s, and z3 = d. The
capacitance and conductance matrices are then given by

C =Co+ Ciw+ Caot+ Csd (3.16)

G =Gy+Grw+Got+ Gsd (3.17)
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1/gd

— ol @ Lo
+>Q — :_[w ’ I

Figure 3.10: Driver modelled by an input capacitance c;,d, an output capacitance coyed,
one signal generator and a conductance Gdriver R L 1

= Gd'r‘iver - E

The matrices on the right hand side of equation(3.16) are given by,

(@l 0 0 0 0 0 0 0)
02 0 0 0 0 0 0
0 02 0 0 0 0 0
0 0 0o 0 0 0 0

%=y 0 0 0 0w 0 0 of (3.18)

0 0 0 0 020 0 0
0 0 0 0 0 0 20 0

L0 0 0 0 0 0 0 o]

where, ¢ is part of the fringing capacitance (equation(3.11))

(Bl 0 0 0 0 0 0 0)
028 000 0 0 0
0 02 00 0 0 0
. 0 0 0/ 0 0 0 0
“=Y 0 0 0 o0@m 0 0 o0 (3.19)
0 0 0 0 020 0 0
0 0 0 0 0 028 0
L0 0o 000 0 o048,
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Figure 3.11: Two wires four nodes.

3 is the capacitance bottom to ground,

([ (y+0)l 0 0 0 -l 0 0 0 )
0 2(y+ o)l 0 0 0 -2y 0 0
0 0 2(y+d)l 0 0 0 — 2 0

o = 0 0 0 (y+0)l 0 0 0 |

2=y 0 0 0 (y+6)l 0 0 0
0 —941 0 0 0 2(y+6)l 0 0
0 0 —271 0 0 0 2(y+0)l 0

L 0 0 0 -l 0 0 0 (y+6)! J

where ~ is the coupling capacitance and ¢ is the space dependent term of the bottom
capacitance.

cwr 00 0O 000 0)
000 0 000 0
000 0 000 O
000 ¢ 000 0

C3=9 000 0 cw 00 0 (3.20)
000 0 000 0
000 0 000 0O

L 000 0 000 cn )

cin is the input capacitance of the driver and coyt is the output capacitance, per unit length.
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On the other hand, the matrices on the right-hand side of equation(3.17) are given by:

( a —« 0 0 0 0 0 0)
—a 20 —« 0 0 0 0 0
0 —a 20 -« 0 0 0 0
0 0 —« o 0 0 0 0

“1=Y 0 0 0 0 a -a 0 o0f (3.21)

0 0 0 0 —a 2a -« 0
0 0 0 0 0 —a 20 -«

0 0 0 0 0 0 ~a o)

where « is the width dependent capacitance term, see equation(3.15)

4 3\

Gy = s (3.22)

O OO OO OO0
(el el an i e N an B e B o B e}
SO DO O O

OO O OO oo
el e i an B en i e B e B e i en
[ew RN en i an RN an B e B e BN an B an)
(e e B e P e B e B e B o B e

SO oo oo oW

)

\

Gy is the zero matrix because G does not contain constant terms. G is the zero matrix
as the elements of the conductance matrix G are independent of the wire spacing. g is the
load capacitance of the driver(equation(3.14)).

3.6 Delay

We are interested in how fast a change in the input u propagates to the different nodes of
the circuit, and in how this propagation delay varies as a function of the resistances and
capacitances.

Here we will introduce two typical delay measures and the dominant time constant de-
lay.

Solving equation (3.1) for u =0
&l Gt o) =0
e—C— Gt v(_t) =Ch

v(t) = e~ C7" G ty(0)

where v(t) > 0if v(0) > 0, we obtain an expression to calculate the response to a step input
signal.
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3.6.1 Threshold Delay

The measure of the delay at node k is the first time after which vg(¢) increases above a
given threshold level o > 0, i.e.,

Tbres = inf {T] |up(t)] < « for t > T}

and we call the maximum threshold delay to any node the critical threshold delay of the
circuit [3]:

Tthres — max {TEhres ... TSy — dnf (T og(t)]]eo < @ for t > T}

where || - ||oo denotes the infinity norm, defined by ||z||oc = max; |2;|. The critical threshold
delay is the first time after which all node voltages are less than a.

3.6.2 Elmore Delay

The Elmore delay of a linear network is defined to be the first moment of the network
impulse response [12]. The Elmore delay to node k is defined as [3]:

7™ = / ” vg(t) dt. (3.23)
0

which in the case of a ladder (figure(3.12)) it has been shown [11] that it is equal to the
sum, over all the resistors, of that resistance times all its downstream capacitance.

Telmz/ vp(t) dt =Ri(Cr+ - +Cp)+Re(Co+---+Cp)+--+ R, Cp, (3.24)
0

Therefore, we can express the Elmore delay in terms of G, C and v(0) as
9™ = T G~1Cw(0)

where ¢, is the kth unit vector. Thus the vector of Elmore delays is given by the simple
expression RCv(0), where R = G~! is the resistance matrix. We define the critical Elmore
delay as the largest Elmore Delay at any node

Telm = max Telm
AX Lk
For a grounded RC circuit with v(0) > 0 we can express the critical Elmore delay as
7" = |G~ Cu(0)]| o

Note that G1C = RC is element wise nonnegative.
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Rn

Cn _L_

Figure 3.12: RC-Ladder.

3.6.3 Dominant time constant

In [3] it is proposed to use the dominant time constant of the RC circuit as a measure of
the delay:

Let A1,---, An denote the eigenvalues of the circuit, the roots of the characteristic polyno-
mial det(sC + G), which are real and negative since they are also the eigenvalues of the
symmetric negative definite matrix

C3(-CT1G)Ct = ~C3GC
We assume that they are ordered decreasingly as
0>X 2>\,

The largest eigenvalue, \; is called the dominant eigenvalue® or dominant pole of the RC
circuit.
Each node voltage can be represented by

n
v(t) =) age, (3.25)
i=1

3The maximum eigenvalue of a symmetric matrix is convex: the function F(X) = Amax, with dom f =
sm.
F(X) = sup {y" Xy] |lyll2 =1},
i.e., as the pointwise supremum of a family of linear functions of X indexed by y € R™.



3.7. POWER 29

which is a sum of decaying exponentials with rates given by the eigenvalues.

We define the dominant time constant at the kth node as:

1
Tdom _-
k /\p

where p denotes the index of the first nonzero term in (3.25).

in most cases, v contains a term associated with the largest eigenvalue A1, in which case

we have:
1

_/\_1_

The dominant time constant T,?"m measures the asymptotic rate of decay of vy (t).

T]glom —

The dominant time constant can also be expressed in another form that will be more useful
to us:
T = min{T|TG — C >0} (3.26)

Also, the dominant pole which is convex can be expressed as:
A = inf {A\| AC(z) + G(z) > 0},

T4°™ can be seen as a quasiconvex function, because:

T (1) < Thnax <= TmaxG(z) — C(z) >0

and,
{:E,Tdom(x) < Tmax}

and its sublevel sets are convex sets for all T;,... Quasiconvexity can also be expressed as:
TP (6, + (1 - 6)) < max{T%" (z), T%™(z)}
which can be seen as a linear matrix inequality.

In the current research we will be using the time dominant constant approach as a measure
of delay, because of the advantages it presents, like the ability of studying non-tree topolo-
gies and the fact that can always lead to convex problems which are solved very efficiently
by using recently developed interior point polynomial methods [3].

3.7 Power

The voltage source delivers an energy of v Cv which is dissipated half in the resistors dur-
ing a transition from initial voltage 0 to final voltage v and half is stored on the capacitors,
which is called charging. By the reverse process (discharge) the capacitors loose the energy,
which is finally dissipated through the resistors, this is called dissipation power.
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Furthermore, during the switching of a static CMOS gate, a direct path from the power
supply to the ground is temporarily established, resulting in short circuit power dissipation.
For the short circuit power an expression for a single-transition has been obtained from [23]:

Pse = triseVddeeak
(3.27)
%(Vdd - 2VT)?’t'rise
where we assume that the inverter is symmetric: 8, = Bp = B and Vr, = —Vp, = V7.
trise is given by [19)

’ ’ 1 R / 7 1 [
trise = T4 +¢,) + ~2el+r'ldey + 5T e 12

d
where )
o=
¢ = Cind
Cl? = coutd
¢ = cw+cs+yt nominal case (3.28)
= qw+cy+ 2yt worst case
= cw+cy best case
r = R/w
Where ¢ is the sum of bottom, fringe and coupling capacitances of the wires and
g =84 (3.29)
la

where [4 is the transistor length,
B=980x10"%+2x107%d

and (3 is approximated by a linear function that is obtained from a least-squares fit to Pstar
simulation results ([24],[26]). Note that actually Equation(3.27) represents the energy dis-
sipated per cycle. However, we will use the term power dissipation throughout the text.

We take into account that the short circuit power is not a linear function in the design
parameters (d, w, ) and also that the short-circuit power is much smaller than the dissipa-
tion power, Ps. = Psyitcr/10 in most practical situations.

We optimize the switching power and then we add the short circuit power to the opti-
mized result, we use the following parameter values in equation(3.30) corresponding to the
CMOS12 technology [26].

Vg = 12V
Vr = 0.36 V ( CMOS12, average for d = 0.15 — 1um) (3.30)
d = Width of NMOS transistor
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The value for Vi is the average for d which lies between 0.15 and 1pum, where d represents
the inverter size, defined as the width of the NMOS transistor.



Chapter 4

Interior Point Polynomial Methods

4.1 Introduction

For the current research we used Jos. F. Sturm’s software SeDuMi which stands for Self-
Dual Minimization Technique [7], SeDuMIi is based on interior point polynomial methods
which also includes the so-called self-dual embedding technique developed by Ye et al. [14].
The purpose of this chapter is just to give an overview of the method, for complete details
the reader is asked to go to [7].

4.2 Primal and Dual Problem

We study cone linear programming problems in the standard canonical form:
inf {c"z |; Az = b,z € K} (4.1)

where z € R”™ is the vector of decision variables, K C R is a convex cone, and b € R",
c € R, A € R™™" are given data. Cone linear programs are non-linear, since X need not
be polyhedral.

Cone linear programming can be cast also as linear programming, semidefinite program-
ming, second order cone programming, and a mixture of these. These subclasses arise by
letting KC in (4.1) be the nonnegative orthant (K = R7), the cone of positive semidefinite
matrices, a Cartesian product of Lorentzs cones, or a symmetric cone, respectively.

The cone of positive semi-definite matrices should be considered as a set of vectors in
R
K? = {vec(X) | X € R** is symmetric positive semi-definite }.

where K% C R" with n = v%. K° is actually a cone in an g—";—vl dimensional subspace of R”.

32
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The Lorentz cone in ®" is defined as

Kl = CEE?R"'.’L}Z

where the superscript ¢’ stands for quadratic.

Non-trivial second order programs involve multiple Lorentz cone (second order consiraints).
Similarly, linear programs involve non-negativity constraints. In these cases, the cone K is
a Cartesian product of so-called primitive symmetric cones.

A mized semidefinite and second order cone optimization problem can be formulated as
a standard cone linear program (4.1) with the following structure:

minimize  (c!)Tz! + ()29 + (c*)Tz°
such that Alal + A%27 4 A%z5 = b (4.3)
xt e %E(l), 1 e K9, % € K¢

where:
e K(l)~ > Denotes the number of nonnegative variables

o K1=K]x - x qu,C(q)— > Is a Cartesian product of K(g) Lorentz cones

e LF=K7x--+x IC,SC(S)— > Is a Cartesian product of £(s) cones of positive semidefinite
matrices.

e And, K = K(I) + K(q) + K(s) denote the number of primitive symmetric constraints.

Associated with (4.1) is a dual problem, viz.
sup {bTy|ATy + 2 = ¢,z € K*} (4.4)
where y € R™ and z € R" are the decision variables, and
K*={ze®"| 2Tz >0 for all z € K} (4.5)

is the dual cone to K.

For mixed semidefinite and second order cone optimization, the dual problem has the fol-
lowing structure [7].

maximize by

such that (AYTy+ 2t =
(AN)Ty + 27 = (4.6)
(As)Ty +25=¢"

et zae ks ekl
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where (K%)* = (K$)* x --- x (IC;*C(S))*. Furthermore, (K*)*K* if we restrict z in definition
(4.5) to a proper lower dimensional Euclidean space to take care of symmetry.
Ki ={z=vec(Z) | Z=2T, 2Tz >0 for all z € K¢}

This requires that ¢ and the rows A are also in this lower dimensional Euclidean space. If
this requirement is given then K is self-dual.

4.3 Primal-Dual Interior Point Method

If we consider the primal-dual pair (4.3),(4.6) of mixed semidefinite and second order cone
programming, then the method we enounce here [7] applies to possibly infeasible problems
using the technique of self-dual embedding, as discussed later on.

A basic iteration of the interior point method consist of finding a searchg direction that
is added to the current iterative solution (z,y, z) with a certain step length ¢ > 0 such that:

(=%, 97, 2%) = (2,9, 2) + 1(6z, Ay, Az). (4.7)
where (z1,y™", 2%) is the next feasible solution.

The search direction (Az, Ay, Az) is implicitly defined by a system of equations, as fol-

lows:
Az + II Az = r

A Az = 0 (4.8)
AT Ay + Az = 0

which depends on 7RC, an invertible n x n block diagol matrix and a vector r € R". In all
usual approaches, the invertible matrix 7RC' is such that

Mrz=z (4.9)

The diagonal blocks II°[k], k = 1,2,-- -, k(s), should also map the V(K}) x (V(K$ +1))/2
Buclidean space of symmetric matrices onto itself, in order to maintain symmetry of the
primal variables z*[k].

The algorithm below outlinbes the basic scheme of a primal-dual interior point method.
The algorithm determines its step length based on a neighbourhood N C %K

4.3.1 Interior Point Method
Algorithm

Step O Initial solution (z,y,2) € K x R™ x K with Az = b and ATy + 2z = ¢ such that
MP(z)/%22) e N.
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Step 1 If 272 < € then STOP.

Step 2 Choose Il and r according to the algorithmic settings. Compute the search direction
(Az, Ay, Az) from (4.8). Then determine a ’large enough’ step length ¢ > 0 such that
MP(z +tAz) 2z + tAz)) e N

step 3 Update
(z,y,2) — (z + tAz,y + tAy, z + tAz)

and return to step 1.

With
MP((2)'22) = M(P(2)!/*2)

by similarity, see Sturm [13]. The above algorithm is thus symmetric in duality.

The choice of A in the Algorithm above is important due that it determines the step
length strategy.

Some well studied neighborhoods are the
No(8) = {weR | llw— pells < Bu, p =LV wi/V}

NG(@) = {’w ERV|w; >0uforallj=1,---,V, pu=S0 wi/V,u> 0}
No— and the N respectively shown above.

SeDuMIi, which is the software used in the present research build by J.F. Sturm uses
a combination of both:

Nwi(0,8) = {we R | dist(w, N5 (0)) < 00p p= Ly wi/V}
and uses the individual benefits[7] from the both neighborhoods seen before.

The distance function has to be in accordance with the centering component of the search
direction.

dist(w,NZ(0) = min {Z(\/uz- — V@) | w e N;o(e)}
=1

Another important algorithmic choice is the definition of IT and r in (4.8), since this deter-
mines the actual search direction!.

This will be discussed in the next section
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Finally, for the large enough expression in step 2 of the algorithm above, Sturm [7] used a

bisection search to approximate the step length t* to the boundary of N7, Assuming that

2Tr = —z72z, the bisection procedure terminates with a ¢ satislying

£ <<ty 1-t<2(1—¢t%).

4.3.2 The Scaling Operator

The NT-scaling was introduced for semidefinite programming by Nesterov and Todd [15],
and derived differently later by Sturm and Zhang [16]. Its generalization to the symmetric
cone setting is straightforward, namely

Il = P(2)"Y2P(P(2)/%z) /2 P(z)~1/2 (4.10)

or equivalently
Il = P(d),

where d € K is implicitly defined by the equation P(d)z = z. An explicit formula for d is
d = P(z'/?)(P(z'/?)z)~1/? (4.11)
where we can easily verify that II7 z = « for the choice of II chosen by J.F. Sturm.

An appeling property of NT scaling is its scale invariance. It holds that I = ITIXK = K for
any power k € . This means that we may locally scale the data (A, b, c) to (AIT'/2, b, TT1/2¢
so that the current primal solution z and dual solution z are mapped onto the same vector
v =112z = O~/2z. The cone K remains invariant under this transformation. This makes
possible to extend the primal-dual from linear programming to semidefinite or symmetric
cone programming,.

4.3.3 Building the Normal Equations
the systemn of equations (4.8) can be reduced to
ATIAT Ay = —Ar (4.12)
by multiplying the last equation of (4.8) by AIl yielding
0= AII(ATAy + Az) = ATTIAT Ay + A(r — Az) = AIAT Ay + Ar (4.13)

Then, from the first equation of (4.8) we get the third equality, finally we use the second
equation AAz = 0 to obtain the desired reduced system (4.12). So from a system of equa-
tions we finally arrive to one equation dependent on the direction Ay. The directions for
Az and Az can be solved by solving Ay and then using it into equations (4.8) to get the
desire direction coordinate.
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Now, there are several ways of solving the system (4.12) when II is symmetric positive
definite. Given a factor ¢ such that IT = ¢¢?, one can solve the system based on QR-
factorization of the matrix ¢ AT. The QR-factorization is preferred for systems within a
range of small to medium sized, however, for most practical cone linear programming prob-
lems, A is a large sparse matrix with considerable more columns than rows. For this kind
of matrices we have much more efficient algorithms like the conjugate gradient method,
conjugate squares and others.

The usual approach is to build the matrix AIIAT and compute its Cholesky factoriza-

tion. In the present case we compute AIIAT using the NT-scaling explained in the section
before, where IT = P(d)>.

4.3.4 Solving the Normal Equations

Once we have the system AITAT | it remains to solve Ay from the normal equations ATIAT Ay =
— Ar or more specifically ATTAT Ay = b. Now, assuming that II is semidefinite positive, as
is the case with the NT scaling, then the basic approach is to compute the LOLT Cholesky
factorization of AILAT. So, we compute a lower triangular matrix L with all-1 diagonal
entries l;; = 1, ¢ =1,---,m and a positive (semi-)definite diagonal matrix © such that
ANIAT = LoLT.

After the Cholesky factors I and © have been computed, one obtains L™!b, §~1(L71b)
and Ay = L~T(©71L71b) by a forward solve, element-wise division, and backward solve,
respectively.

The forward and backward solve procedures may lead to a serious loss of numerical ac-
curacy if maz; ; | li; | is large, say more than 1000. Causes of this happening (L has large
entries) is poor scaling of the problem, and, ill-conditioning in AITAT when the optimum is
approached.

In principle, equation (4.8) can be solved using the pre-conditioned conjugate gradient (P-
CG) method in at most 1+ 2 x nskip iterations in the case of skipping pivots, or 1 + nadd
iterations in the case of adding quantities on the diagonal, where nskip is the number of
skipped pivots and nadd denotes the number of additions to diagonal entries. In any case
it is not recommended to proceed the conjugate gradient process for more than say 25
iterations.

2For a description on exploiting sparsity for the actual problem the reader is referred to section 6.1 from

7
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4.3.5 Initialization, Infeasibility and Embedding

The interior point method is initialized from a cold start, which means that no initial start-
ing point is known. The initial point is a random vector within the interior cone X, which
may or may not satisfy the linear feasibility constraints. The interior point method should
generate either an approximate solution pair, or an approximate Farkas-type dual solution
to certify that no feasible solution pair exists.

Recall:
b— Ax = 0
ATy+z—c = 0 (4.14)
Cla—bTy < 0
and,
reK,yeR™ 2 K* (4.15)

are the optimality conditions for (4.1) and (4.4). On the other hand, the Farkas-type
conditions to certify that there cannot exist (z,y, z) satisfying the equations just mentioned

above are :
Azx =0

ATy +2-c = 0 (4.16)
CTe —bTy+1 = 0

together with
reK,yeR™ e K*

for recent surveys on conic duality.

The cold started interior point method is initialized from a triple (2, y(® 2(0) satisfy-
ing A(P(z(®)1/22(0)) € . One also defines

y(()) _ V(K) + 1
0 V(K)
and then for a given (a;(o),yéo),y(o), z<0)), the initial primal and dual residuals are defined

as
Tp = Klo)(b - Az oy = y(—lo)(ATy(O) + 200 —¢)

4]
after this initialization the self-dual embedding approach is used.

4.3.6 Self-Dual Embedding Technique

In the self-dual technique of ye et al [14], a slack variable 2 is added to (3.16), and initialized
at

@ _ @70
where T ,.(0) _pT,(0) 4 ,(0)
c bt y'Y 2y .’B(O) -1

r, =
g y(()O) 0
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so finally the primal and dual problems (4.1) and (4.4) are embedded into a self-dual opti-
mization problem

min {yO l (wO)xaymyyzO)'Z)} (418)
which satisfy
0 —A b Y 0 'rp
AT 0 —c z |+ ]|z | =yo| 1y (4.19)
T T 0 Zo 20 Tq
iy + iz +rgme = 1, (4.20)
(wo,z) € Ry x K, (yo,y) € RT™, (20,2) € Ry x K (4.21)

now, multiplying both sides of (4.19) with [y”,zT, zo] yields
zT 2 + zoz0 = yo(r;"; + Tgm + 74%0) = Yo (4.22)

now, (méo),x(o),y(()o), z(()o), 2(0) satisfies (4.19) and (4.20) and (4.21) therefore it can be used
to solve (4.18) using a feasible interior point method.

Given an interior feasible solution to (4.19)-(4.21), we get the normalized solution

(8,5, 3) = B2 (4.23)
Zo

as an approximate solution to (4.14)-(4.15). In particular we have

b— Az = (yo/%o)Ts
ATg+2—c = (yo/mo)re
Te—bTg < (yo/zo)ry

When yo/zo approaches zero, the residual to (4.14) approaches zero as well.

However, this is not always possible, since the original problem pair can be infeasible.
Therefore, a normalized solution for the problem (4.16) must be found

(Z,9,%2) = -(—J%ﬁ (4.24)

as an approximate solution to (4.16) and (4.15). In particular
— Az = (yors — z0b)/20

ATg+z = (yorc +x0C)/Zo
Tz -vg+1 < Yorg/ 20

and if at the final iteration the residual of (Z,¥,Z) is smaller than the residual of (&, g, 2),
the problem is report as infeasible, providing # and § as a certificate.
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During the interior point process, it can be predicted whether the original problem pair
is infeasible based on the (zg, zp) component of the first order predictor direction.
o 20

feas =

it can be shown that if a complementary solution exists then a':(()o)) g — 0 and z((f’” 2y —
—1, so feas — 1. Conversely, if the problem is strictly infeasible one can show that
feas — —1.

This technique is implemented in SeDuMi, the software used in the current research,
of course there are much other packages available but this one was chosen because of its
simplicity®.

Finally, it is to mention the this chapter as well as the software were taken from J.F.Sturm
[7] which was the result of his PhD. studies at the University of Tilburg.

3you do not need to defined a dual problem due to the self-dual embedding technique or to provide any
feasible starting point due to the cold start procedure



Chapter 5

Interpolation Methods

5.1 Introduction

Interpolations methods are an important part of this research because they provide a valu-
able tool for the designer as they help finding new data points based on the given opti-
mization results that will show the optimal trade-off curve between the design parameters
for some given data without running the simulations again. Here, we will briefly show the
basics of some interpolations methods used in the research and the advantage and accuracy
between them.

5.2 The Interpolating Polynomial

Given n points in the plane, (zg,yx),k = 1,--- ,n, with distinct zj, there is a unique
polynomial in z of degree less than n such that its graph passes through all its points.
This polynomial is called the interpolating polynomial because it exactly reproduces the
given data.

P(wk):yka kzla"'an

The most compact representation of the interpolating polynomial is the lagrange form.

Pa)=Y" (H#k i yk) (5.1)

A T — Ty

where there are n terms in the sum and n — 1 terms in each product, so this expression
defines a polynomial of degree at most n—1. If P(z) is evaluated at x = x, all the products
except the kih are zero. Furthermore, the kh product is equal to one, so the sum is equal
to yx and the interpolation conditions are satisfied [32].

When the polynomial is written with respect to a sole variable z, i.e.

P +a2? +1

41
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then, the polynomial is called monomial and it is said to be using the power form. The
coefficients of an interpolating polynomial using its power form,

P(x)=ciz™ + oz 2+ + 1z +ep

can be computed by solving a system of simultaneous linear equations

n—1 n—2

] ] eom 1 c1 (1

-1 -2

Ty Ty eoxp 1 2 Y2
1 : :

xﬁ‘l x2'2 R A | Cn Un

5.3 Least-Squares method

If we have a set of data equal to the order of a polynomial plus one, we can fit exactly the
given data with a polynomial of degree less than the data set. However, if we have a very
large amount of data we can improve the precision of the fitted curve by using the method
of least squares.

We suppose the simplest case in which we would like to find a linear regression to fit
the data set, say (z;,9i,2;), ¢ =1,--- , N of some design parameters, where z = f(z,y);

The input data can be viewed as a linear system of the form

at+bri+ecpn = =
a+bra+cys = 29
. . (5.2)
at+bry+cyy = zn
which can be rewritten as:
1 Ty Y1 z]
1 z2 a 22
. . b | =1 . . (5.3)
: : c :
1 zny yn ZN

The least-squares method is based on the deviation error of the real data and the given
linear regression, say:

N
n-=Z[y¢—f(a:,y)] i=1,--- N
i=1

now, if we take the square of this deviation, say:

N
R=) (yi—f(z,y)? i=1,-- N
=1
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due that a,b,c are arbitrary parameters, we have to determine them in such a way that
they minimize 2. This can be achieved by taking partial derivatives of R and making them
equal to zero.

: N
R ) S
9 = 29 (zwi — ami — baf — cyiws) = 0 (5.4)
¢ N
%‘f = 2 i (2 — ayi — by - Cyf) =0
which can be rewritten as:
N
i=1Ti i=1 D DR T b | = | zz; (5.5)
N N .
sV D TiY D Vi ¢ ZiYi

Now, we only have to solve the given system by an appropriate method and we will find
the given linear regression

a+bx; + ¢y = z;

Following the methodology described above, we could fit the data not only to a linear
regression but to a given polynomial of order N, say for example

9(z) =ag+ a1z + asz® + - - + anz’
again, the deviation of the given curve is
ri=z—~g(z), i=1,--- N

and the total square of the deviations is
N
R=Y (z—g(x:))%
i=1

now, as before we make the derivatives equal to zero to find the explicit form [20].

N > Yz o Yy ag Y.z
Yoz Zw? Sa? Z:cfv a1 > xiz;

Sl et Tat o eV | | an >Ny

Again the coefficients can be found out by solving the linear system by an appropriate
method, i.e Gauss Jordan Method.
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5.4 Cubic Splines

Really often we found the need to fit a large number of data to a unique smooth curve, but
Newton’s or Lagrange’s interpolation with high order polynomials are not suitable for the
job, due that the error of a unique polynomial tend to grow in a drastic manner when the
order is high. Cubic splines on the other hand is designed for this purpose[20].

In this interpolation, we use a cubic polynomial between each interval of two consecutive
points. A cubic polynomial has four coefficients, therefore it requires four conditions. Two
of them come from the fact that the function must go through the points on the boundaries.
The other two, from the fact that the function must have the condition that its first and
second derivative are continue in each of the given points.

Cubic Splines are piecewise cubic polynomials, that are analogous in a certain to Her-
mite polynomials.

Recall again the data set (5.3) which we will interpolate (every point) with a third de-
gree parametric polynomial of the type

g(s) =a+bs+cs?+esd (5.6)

with z; < & < z;41 and the parameter 0 < s < h; and the interval defined as h; = Tiy1 — Xl

For this we take into account that in order to find the values for a,b,c, e we need to have
four (4) initial conditions at the points:

s=0, and s=h; (5.7)

S0,

fii = a
5.8
fix1 = a+bh;+ Ch,% + €h;~3 ( )
now, to find the other two conditions we find the second derivative of the parametric equa-
tion (5.6)
g'(s) = b+ 2cs+ 3es?

g"(s) = 2c+6es (5.9)

and evaluating at s = 0 and s = h; we get the other two boundary points needed to evaluate
the polynomial.

c = i
(5.10)
e = 9:1”1’_9;,
6h;
allowing us to find also an expression for the constant b, say:
po Jirt—fi (9iy1 + 29; )hi (5.11)

h; 6
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and from this we can rewrite the cubic polynomial like:

firv = fi  9iy1 +29; hils + %

2 gi+1—9;/ 3
8§ 4+ —s
h; 6

5.5 Hermite interpolation using harmonic averages

In a recent book by Cleve Moler [32], it is stated that the monotonic behavior of interpolat-
ing functions can be guaranteed when Hermite interpolation is used with harmonic averages
for the derivatives. Unfortunately, the book does not contain a proof of this statement and
email contact with Moler revealed that he does not know where it is proved, or whether it
has been proved. In this apart, we present a proof of the statement!.

Proof. Let the interval under consideration be subdivided using equally spaced nodes xg, z1, - - -

Using Hermite interpolation with cubic polynomials, we find the following interpolation
polynomial on the interval [Tk, Tx41]

P@) = $(5) fior + H(EEZ) i (T s — MH(E) e (5.12)

where h is the mesh spacing, fr and fr; are the given function values at x; and x4, re-
spectively, and f ,’C, S ,/c +1 are approximations to the derivatives at these nodes. The functions
¢ and ) are given by:

p(t) = 32— 23

P(t) = 3 -2

If the sequence fr—1, fk, [x+1 IS not monotonic, the algorithm requires that we define f,; =0.
Similarly, if the sequence fx, fr+1, fk+2 18 not monotonic, we must define f,’C 41 = 0 in order
to guarantee monotonicity of the interpolant. Of course, it is possible that only one of the
two sequences is not monotonic. In that case, harmonic averaging must be used for the
other sequence. This case will be consider later, first we will assume that the entire se-
quence fr_1, [k, fk+1, fk+2 is monotonic, and without loss of generality we will assume that
the sequence is monotonically increasing. In this case, derivatives are given by harmonic
averages, so we have:

! 1
f[c=1 D

T
2(fk+1—fk+fk—fk—1)

(5.13)
fllc—{—l Y- _i 3 )
2V g1 —J " Sey2—Frt1
Clearly, we have the following inequalities:
0 < fllc < 2(fk+ﬁ)“fk
(5.14)

! 2(fet1)-f
0 < fi1 < a——

1Proof reproduced by request of W. Schilders
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Writing
z = xy, + 0h,

the derivative of the interpolating polynomial is given by:

P (@) =000 - )= L gag oy (1 - 0)1 - 3010

Case1: 0 <8< —:1;
In this case, (1~ 8)(1 — 36) > 0 and 6(36 — 2) < 0. hence, making use of (5.14)

P (@) > 66(1 — )fk-i-lh Fi | +0(30—2) (fk-l—;_fk) :29fk+1h— fe 5

Case 2: % <O< %
Then (1 —0)(1 —-36) <0 and 6(30 — 2) < 0. So that

plz) > 60(1—0)Let=te 4 (3 - 2)2ee1=fi) | (1 _ g)(1 — 30)2feri=f)

= (66%—60+ 2) fk+;l_fk > %fk+;l—fk >0

Case 3: % <6<1
In this case, (1 —0)(1 — 30) < 0 and §(360 — 2) > 0. Thus

P () > 60(1 — )f'““h e o1 0)(1—39)———(f’“+1l fe) _ 91— )f’“+1 J o

The conclusion is that
p(z)>0 Voe 0,1

We now consider the remaining case where the sequence fx_1, fk, fet1, fxr2 iS not mono-

tonic. If neither of the subsequences k=1, fr, fer1 and fi, fes1, fea2 is monotonic, then
the algorithm must define fk = fk 41 = 0, in which case the derivative of the interpolating
function is given by

P (z) = 66(1 )f/c+1h fk

which is of constant sign.

If the sequence fx_1, fx, fi+1 is not monotonic, but the sequence fi, frr1, fr+2 is monotonic
(we shall assume: increasing), then we define f/,/c = 0, so that

p(a) =600 -0 gap oy p
Casca: 0 <8< %

In this case, (30 — 2) < 0, whence

p (z) > 66(1 — )f"“h L +6(36 — 2)_____(f’“+ill fk)_zgfk-i-lh fk
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Case b: % <6<1
Then 6(36 — 2) > 0, so that

p (@) 2 601 - )T 5 g

In the above, all possible cases have been considered, and whence we conclude that P (z) >0
on the entire interval [z, zx41]. This concludes the proof of the monotonicity of the Hermite
interpolant with harmonic averages for the derivative values.

O



Chapter 6

Wire Sizing, area and power
optimization

6.1 Introduction

We collect the results of our simulations in this chapter. We start by discussing the circuit
topology. Then we present optimizations on area and power dissipation, including two
tests with benchmark problems from [3]. Our main contribution is the optimization of
the power dissipation with real life technology parameters. Furthermore, we present Pstar
simulations to show the accuracy of our results and we finalize the chapter with some theory
and simulation results on optimal repeater insertion.

6.2 Uniform Wire Sizing

We define Uniform Wire Sizing (UWS) as wire sizing optimization without tapering (all the
wire segments have the same constant width). We observe from figure(6.1) that UWS has
uniform width w for the wires and also uniform repeater size d. Non uniform wire sizing or
wire tapering (shortly abbreviated by NUWS) is represented in figure(6.2), where clearly
the width of the element varies for the total length of the wire and the size of the repeater
can be equal or different, in figure(6.2) they are the same.

In this section, we describe briefly why uniform wire sizing is our first study case and
then we use it to optimize area, power dissipation and delay.

Alpert [22] has shown that the improvement in delay from wire tapering (NUWSR) com-
pared with wire sizing (UWS) is at most 4% when full buffer insertion is applied for the
Elmore delay model. Based on this fact, we choose uniform wire sizing under the dominant
time constant model which is based on the main characteristics of the capacitances and
conductances matrices of the circuit [3], as discussed in Chapter 3.

The basic idea behind the optimization is to split the wire into k + 1 sections, each section

48
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S e ]
ST e ]

Figure 6.1: Uniform Wire Sizing approach.

into M wRC elements, where k is an even number of repeaters and n is the number of
nodes into each one of the sections and M =n — 1. Note that the dominant time constant
is a quasiconvex function of the design parameters! width, space between the wires and
repeater sizes.

Each one of the mentioned sections has a correspondent dominant time constant T3, ¢ =
1,--- ,k+1. Remember that the time dominant constant is a quasiconvex function of the
parameters and note that the sum of k + 1 quasiconvex functions is not a quasiconvex
function. Tld"m + TSO‘“ 4+ T,fji’l" < Tax, S0 to use the dominant time constant in our
optimization problem we need a reformulation that meets convexity, for this, we reformulate
the problem in a convex way requiring that each Tj < Tpax/(k+1), i=1,---,k+1, like:

Tdom < Thax/(k+1),
Télom S Tmax/(k+1)’ (6 1)
TE® < Thax/(k+1).

1See chapters 2&3 for a treatment on quasiconvex functions and the dominant time constant respectively
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D 0 Wl >
o I s T B

Figure 6.2: Non Uniform Wire Sizing approach.

Equation(6.1) allows to express the constraints on the dominant time constant in our opti-
mization as a convex function.

6.3 Area Optimization(UWS)

6.3.1 Problem Definition

We want to optimize the area of a bus consisting of N wires, k+ 1 sections per wire, n nodes
per section, M = (n—1) TRC elements per section. We assume uniform width w for all the
wires, uniform space s between the wires, same size d for all repeaters in the system and
uniform repeater insertion, using the dominant time constant approach (see figure(6.3)).
Figure(6.4) shows an example of the initial topology to investigate.

This specific problem can be cast as an area optimization problem subject to a constraint
. ot s L2 s . .y .. .
on the dominant titne constant® and some other linear and semidefinite constraints:

e The size d of the repeaters has a minimum and maximum value

*which is a quasiconvex function of the design parameters[3]
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w+s=h

w+s=h

s/2 s/2 s/2 T
d) w a ) |w ) |w, d
sl s sl s sl s sl

Wb

d W, d/ w d‘/ w d \
sl s sl s sl s sl

s72 s/2 s/2

—_—
Wb =N *(w +5s)

Figure 6.3: Topology of the problem to investigate.

e The space s between the wires has a minimum and maximum value

e The width w of each 7RC element has a minimum an maximum value

e The bus width Wg has a length minimum and maximum value

Which leads to the following formulation

minimize
subject to

8 2 Smin
Smaz = S
W 2 Wnin
Wrnaz = W

dmaz 2 d

d_>_dmin
Wg > N x(w+s)

Nklhd+Mi(w + s)]
(Tras/k + 1)G(w, d) — C(w, s,d) > 0

51



6.3. AREA OPTIMIZATION(UWS)

52

Figure 6.4: Interconnect model with 3 wires, 1 repeater per wire and 3 7RC elements per

wire segment.

where

gN&gngi@
3
[y

Smazx
Wnin
Wmaz
dmﬂ',n

dmaz

Wg

area of the repeater

number of sections

number of TRC elements per section

number of wires

space between the wires

width of the mRC element

size of the drivers

length of the 7RC' element

minimum space allowed between two wires
maximum space allowed between two wires
minimum width allowed for the 7 RC element
maximum width allowed for the 7 RC' element
minimum size allowed for the drivers
maximum size allowed for the drivers
maximum bus area length

We observe that the objective function in equation(6.2) is not linear and therefore not a
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semidefinite program because the capacitance matrix contains terms that are inversely pro-
portional to the variable s (the spacing between the wires). However, we can reformulate
the given problem by introducing the new variable ¢ = % we can then either use the for-
mulation of equation(6.2) to find the area of only one wire (that is eliminating the space
dependent term) or reformulate the problem by including a new variable ¢ = w + s, such
that the objective is linear. This formulation was applied by Vanderberghe [3]3:

minimize N ¢

subject to  (Tmaz/k +1)G(w,d) — C(w,t,d) >0
i 2t
t 2 Sman
W > Wmin
Winaz > W (6.3)
dmaz‘ Z d
d 2 dmin

(g—w)t>1

t 1
, >
(1%~w)—°

which is a convex problem in the parameters w, t,d, g.

Because the product of parameters (¢ — w)t > 1 is not linear we have to find a way to
reformulate this term. To this purpose, we can use the following general equivalence rela-
tions

220 zy>1 & x>0, “[i_y”ﬁﬂy
z+y 0 2 (6.4)
& >0, 0 z+y z—y | =20
2 T—Yy T+y

Substituting ¢—w = z and t = y, we can apply (6.4) to equation(6.3) to obtain the following
optimization problem:

3This problem was regarded to compare our method against Vandenberghe’s work. It should not be
considered as a real-life optimization problem
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minimize N ¢
subject to  (Tnaz/k + 1)G(w,d) — Clw, t,d) > 0

Smin
tZSmax
W 2 Wnin
Winag = W
drmaz > d (6.5)
dzdmin

g—w+t 0 2

0 g—~w+t g—w—-t | >0

2 g—w-—t g—w+t

t 1
>
(1%&—w)—°

In this approach we are investigating only one out of the k + 1 sections per wire. This is
allowed because of the symmetry of the problem (the width of the 7 RC' elements, the space
and the repeater sizes are equal). Therefore, we study the behavior of one section and then
extend the results automatically to all the others.

6.3.2 Proposed tests

We have run the following tests to compare our method with other approaches.
1. Comparison against Vanderberghe [3] results, specifically:

(a) Example2.m of [3] -Combined sizing of drivers, repeaters, and wires-

(b) Example5.m of [3] -Combined wire sizing and spacing-
2. Test using parameters from CMOS12 technology

3. Pstar simulations

6.3.3 Example2.m: Combined sizing of drivers, repeaters and wire.

In exercise2.m [3] the combined sizing of drivers, repeaters and wires is investigated using
the dominant time constant approach. This particular example uses M 7RC elements with
capacitances and conductances proportional to the element widths. The input capacitance
of the repeater is affine in d: Cp + cd and the output conductance is linear in d : gd, see
figure(6.5)

We modified the script “exurnple2.m” to use one nRC element?!. The example is designed
for wire sizing using tapering (different values for the width w), different drivers sizes and
one wire[3](no coupling capacitances).

‘Element and segment will be indistinctly used through this document
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Figure 6.5: Example 2 from Boyd and Vanderberghe [3].

The purpose of the comparison against our model is to find differences between UWS and
NUWS and to test our first academical problem before we proceed with a real life problem
in the next section, namely, the optimization of power optimization.

The numerical values in the calculations are those used by Vanderberghe in his example.
Also, a modification to the matrices in our script was necessary because the input and the
load capacitance of the repeater are affine in d — (Cp + ¢)d. Furthermore, we eliminated
coupling and fringing capacitance in the script to make the problem similar.

The parameter values where taken from section 5.2 of [3]:

g=1, Co,=1, ¢=3, a=5 #=01, C=50, =1, L=10, n=2, w; > 2.

On figure(6.6(a)) we see that Vanderberghe’s approach produces smaller area results. This
can be explained by noting that the area is reduced if wire sizing with tapering is used. In
our current approach we use uniform wire sizing instead. The reader can also observe that
the curves get closer to each other as the delay increases (figures(6.6(b),6.6(c),6.6(d))).
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Figure 6.6: Different values for Tdom.
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(a) Tdom=150,500 (b) Tdom=150,1000

N
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Figure 6.7: Wire Topology.
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Figure(6.6) shows that the trade-off curves shown are convex. For very fast propagation,i.e,
for very small values of Tdom, the optimal area from UWS is about two times as large as
from Vandenberghe’s approach. Note, however, that the number of repeaters has not been
optimized in this example (only one repeater was used). For slow propagation, i.e. for large
values of Tdom, the differences between the two approaches decrease. In the case the area
approaches its lower limit which is imposed by the lower bound of the width.

Finally, figure(6.7) presents four solutions of the semidefinite problem: figure(6.3.3) presents
the solutions for T'dom = 150 and Tdom = 500, figure(6.7(b)) presents the solutions for
Tdom = 150 and Tdom = 1000, figure(6.7(c)) presents the solution for Tdom = 150 and
Tdom = 3000, figure(6.7(d)) presents the solutions for Tdom = 150 and Tdom = 5000.

6.3.4 Example5.m: Combined wire sizing and spacing.

We compare Vanderberghe’s example 5 (3] with our research because it shows what is called
“an important advantage of dominant time constant minimization over techniques based on
Elmore delay: the ability to take into account non-grounded capacitors”(3]. This example
includes bottom and coupling capacitances which stays a step before our final objective
which includes also fringing capacitances and repeater sizing. The problem is therefore
to determine the optimal sizes of interconnect wires and the optimal distances between
them(figure(6.8)).

The wires are connected to a voltage source with output conductance G and to a capacitive
load, the problem consists of three wires and six nodes. In our work we have the same
topology and the same values used in the example by Vandenberghe with the exception
that our approach is designed for uniform wire sizing with equal repeater sizes. This allow
us to see differences between the two approaches.

The parameter values® were taken from [3]:
G=100, C;=Cy=C3=10 a=1, B=05+y=2

The distance between the wires is greater than s;; > 1 and the wire widths are less than
wy; < 2.

Figure(6.9) shows the optimal value of Tdom as a function of Wg for the UWS and NUWS
approaches. Clearly, we see that the NUWS approach gives smaller optimal bus widths
than the UWS. Once more,this can be explained by noting that NUWS has an advantage
over UWS when no full buffer insertion is applied. We’ll see more details and comparisons
when we board CMOS12 optimization in a further section.

5This exercise uses arbitrary units
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Figure 6.8: Example 5 from Boyd and Vanderberghe [3].

Figures(6.9(a), 6.9(b), 6.9(c), 6.9(d)) show different ranges for Tdom to try to establish
a behavior for Tdom — oo. Different from figure(6.6), the curves in figure(6.9) do not
converge to a common value as Tdom becomes large.

6.3.5 CMOS12 technology simulations

The data provided by Philips research for the CMOS12 technology was taken from the
design manual, gcorelib [25].

We introduce real life parameters to provide a trade-off curve between area and Tdom
that may be useful for the designer in his quest for area optimization. The introduction of
CMOS12 parameters constitutes the second modification to Vanderberghe’s approach [3].
One of the objectives of this thesis is to focus on the CMOS12 technology.

Table (6.1) gives the parameter values applied in this real life example. the input ca-
pacitance cj, and the output conductance g, both per unit width, were computed using a
linear fit of ¢y and g respectively as a function of d. The data was taken from the gcorelib
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k = 1 — > Buffers in the system

n = 6 — > Nodes per section per wire

M = n-1 — > wRC elements or segments

N = 3 — > Wires

C, = 5x1071 — > Load capacitance (constant) in EFE

Cp = 14.45 x 1018 — > Unit area parallel plate capacitance in MLm

ch = 36.0x 1078 — > Unil length edge-to-bottom capacitance for
infinite spacing, in fn;

cre = 16.31x 10718 — > Unit length spacing-dependent capacitance, in Mf—m

Cec = 24.1x10718 > Unit length coupling capacitance, in Mim

Tsheet = D7 x 1073 — > Sheet Resistance, in -S-q%

Cin = 53x107° — > Input repeater capacitance per unit width, in ';Il;n‘

Couwt = Hx10715 — > Output repeater capacitance per unit width, in LEE

g = 450 x 107 — > Repeater conductance per unit width, in Q;+m

L = 20000 — > Length of the bus, in um

l = L/((k+1)«M) — > length of each 7RC element, in pum

h = 1%92 — > Width factor for the buffers, in um

Table 6.1: Values for the real-life optimization example.

library [25]. The data used in the linear fit is presented in table(6.2)
Figure(6.10) shows the linear fit for the output conductance and the input capacitance.
The result is a rect with the driver size d for the independent term and dependent for the
capacitance and the conductance i.e. Gg = 450 x 107%d + 2.8 x 10~7.

Consider an example with three wires N = 3, one repeater(k = 1), six nodes(n = 6) and
M =5 7RC elements. Figure(6.11(a)) shows the dominant time constant as a function of
the area, figure(6.11(b)) shows Tdom as a function of the bus area, (figure(6.11(c))) shows
Tdom as a function of the dissipation power and (figure(6.11(d))) shows two solutions for
the problem( T' = Tdom(max) and T' = Tdom(min)).

Notice that the curves are convex and that each point represents a solution of the op-
timization problem for a given value of Tdom. Figure(6.11(d)) shows wires representing
solutions for the minimum and the maximum dominant time constant for the circuit, re-
spectively.

The power dissipation can be separated into switching power and short-circuit power (see
section 2.1.2), figure(6.12(a)) shows the switching power, figure(6.12(b)) the short circuit
power, figure(6.12(c)) the total power and figure(6.12(d)) the total area. Observe that ev-
ery point of the graphic is a solution of the optimization problem. In particular, we have a
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d Gdrive'r X 10_4 Gin X 10—15
0.26 1.35 1.40
0.58 2.71 2.72
1.17 5.15 5.27
2.34 10.39 10.60
3.51 15.62 16.30
4.68 20.87 21.80
5.85 26.11 27.40
7.02 31.34 33.90
8.19 36.63 39.40
9.36 41.84 46.00

10.53 46.94 51.00
14.04 62.89 72.60
17.55 78.12 93.80
21.06 94.34 110.00

Table 6.2: Values for input capacitance and load conductance.

GO Vs. d (size of the driver) X0 Cin Vs. d (size of the drivers}
T v + T T

/ ¥ = 5.30-015'% - 2.1e-015
¥ = 0.00045% + 2.86-007 1ob

0.008} 4
8
& o.ooef — Orig. data R [13

e

a.00a} / T
e A4
0.002}F //
0
% s 0 s 20 25 o s m I 20
a d (size of the drivers)
(a) Gariver = 450 x 107 %d 4 2.8 x 1077 (b) Cin =5.3 x 1071%d — 2.1 x 10713

Figure 6.10: Linear fit of driver dependent conductance and capacitance.
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Area Optimization for n = 6 nodes ,N = 3 wires ,k = 1 repeaters .
power dissipation is given in Joules per cycle and Tdom is given in seconds.

The
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monotonically decreasing bijective function f(T%, ) < f (T}‘;gm) where ¢ < i+ 1.

Figure(6.13) shows the total power and the time dominant constant as a function of the
total width of the bus Wi as defined by the equation (6.5).

Trade off curve between Area, Power and Tdom Trado off curve between Area, Power and Tdom

Short Circult Power

(a) Total Power vs. Tdom vs. Wh (b) Short Circuit Power vs. Tdom vs. Wb

Figure 6.13: Dominant time constant vs. power vs. area width.

We see from figure(6.13(a)) that for a small value of Wp (that is small width and space
between the wires) and a small Tdom value the power reaches its maximum. This result
agrees completely with the theory because when the space between the wires is small then
the coupling increases. Also the switching power increases because the total capacitance
that is observed by the repeaters increases if the wire spacing is reduced. Because of this,
the rise time trise in equation(3.27) increases.

On the other hand, we can determine an optimal value for the size of the repeater d by
bounding the width of the bus Wp (we specify bounds for the width of the wire w and the
space between them s) and by choosing an expected Tdom in the simulation.

Example:

Define a simulation with N = 3,k = 1,n = 6, M = 5, Wmaz = 2, Smas = 1, Ws = 3(2+1) =9
to find the following results:

Wb -> 9.000000
Tdom-> 1.38e-009 w-> 1.95 t-> 1 d-> 21.0 power-> 8.64e-012 area —> 178160.138647
Tdom-> 3.69e-009 w-> 0.52 t-> 1 d-> 8.2 power-> 5.69e-012 area -> 91613.847982
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Tdom-> 6.01e-009
Tdom-> 8.32e-009
Tdom-> 1.06e-008
Tdom-> 1.29e-008
Tdom-> 1.52e-008
Tdom-> 1.75e-008
Tdom-> 1.98e-008
Tdom-> 2.21e-008

w->
w—>
w->
w—>
w->
w->
w->
w—>

O O O OO O O OO

.32 t—>
.32 t->
.32 t—>
.32 t->
.32 t->
.32 t—>
.32 t-—>
.32 t->

Figure(6.14) depicts the results.
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Figure 6.14: Normalized power, area vs. Tdom (W, =

9).

By sacrificing a small percentage 10% of the total possible delay, we greatly reduce power
77% (see rows number 1 and 2 of the data shown above). Observe that according to the
data, the repeater width (d = 8.2) to obtain a power of 5.69 x 1072 agrees most closely to
the size of the “IVX7” repeater (see table(6.3)).

Names | IVX0 | IVX05 | IVX1|IVX2| IVX3| IVX4| IVX5
Stizes 0.26 0.58 1.17 2.34 3.51 4.68 5.85
Names | IVX6| IVXTIIVX8|IVX9|IVX12{IVX15|IVX18
Sizes 7.02 3.19 9.36 | 10.53 14.04 17.55 21.06

Table 6.3: Driver size.
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We show solutions marked as (a) and (b) in figure(6.15). This result allows the designer
to play with the driver sizes and the delay of the topology according to the requirements
defined for its circuitry.

Solutions to given values

(b)

Figure 6.15: Solutions shown in figure(6.14).

To obtain new data for the power dissipation without running the simulation again, we use
an interpolation method (see chapter(5)). The procedure is the following: First we run the
simulation, then we use the resulting values for Tdom, Wy and the power dissipation to
generate new values for the variables by using interpolation, see figure(6.16).

In our case we use cubic spline interpolation which uses a cubic polynomial to fit every
pair of points (chapter(5)). This allows a transparent use of the results of the investigation
for the designer without needing technical details of the simulation itself which permits
mobility and efficiency for finding new data values

To measure the accuracy of the results we run the simulation with points in between the
points used to construct the interpolation curve. The results from simulation and interpola-
tion are then compared. Figure(6.16) shows the curves for the original data and for the in-
terpolated data. The figures match well with an error of max(abs(z—zfit)) = 3.2561 x 107,
where z is the original data and zfit the interpolated data. The accuracy of the solutions is
increased if the number of points is also increased. See for example table(6.4)

We observe that the error decreases when the number of the data points increases but be-
cause splines interpolation uses a third degree polynomial® between every two points, we

5See Chapter 5 for details on interpolation methods
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Figure 6.16: Cubic splines interpolation of the power.

see that even when the number of the sample is small, the error between the sample and
the original data is of the order O(x10~?) which is very good indeed.

6.3.6 Pstar Simulations

In order to verify the accuracy of the optimization results with the dominant time constant
approach, we performed circuit simulations with the PSTAR circuit simulator [24]. To this
purpose, a script is used that writes to a file the circuit topology that was created within
our main file in Matlab. This file allows us to run the Pstar simulations and to calculate
the power dissipation for further comparison with our script.

No. data | max(error)

10 6.508e — 005
15 6.4219¢ — 005
20 3.2561e — 005
30 8.2709e — 007

Table 6.4: Interpolation error as a function of the number of data points
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We ran a Pstar simulation for a fixed Tdom = 4.0859 x 107%s and a linear space for
the width of the bus Wp between 1.92um and 21um. The result is compared with our
semidefinite optimization(Figure(6.17)).

o 10™? ' ‘Pstar Vs. ISimulation
7.5T 4
7 -
6.5 * Pstar results B
6} ~ Simutation results p

Total Power

35 t t 1 L L L L i L

Figure 6.17: Comparison of our SDP approach and power dissipation computed from Pstar
simulation.

We observe in figure (6.17) that the results agree very well. The margin error was less than
1%. This result shows that our model is sufficiently accurate.

6.4 Power optimization

6.4.1 Problem definition

The voltage source delivers an energy of v Cv during a transition from initial voltage 0 to
final voltage o, half of this energy is dissipated in the resistors and the other half is stored in
the capacitors, this process is called charging. During the next transition from voltage v to
0 the reverse process takes place, the capacitors are discharged and the energy is dissipated
in the resistors.

For a fixed clock rate and a fixed probability of transition, the average dissipated power is
proportional to:

9C(x) = S x4 (07 C;0)

which is a linear function of the design parameters z = (w, t,d). We can optimize the power
dissipation subject to constraints on the dominant time constant and parameter bounds by
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solving the following SDP:

minimize  v? x C(w,t,d) *

subject to (Tmam/(k ))G(w d) - C(w,t,d) >0
1

>t

Smin

t2 Smaz
W > Winin
Wmaz = W
Amaz > d

d Z dmin

b1 >0
lv—}/\,ﬁ—w -

where the last constraint of (6.6) is a bound on the bus width Wy < N(w + s), and v is
the vector of node voltages.

The expression for the bound on area in equation (6.6) can be replaced by an equivalent
constraint by using the approach of[3]. This constraint is expressed as (see [3] for details)
or equation(6.4):

LR —w) > 1
t—}-v—y\,ﬁ’-—w 0 2
t—}—v—véﬂ—w t—%ﬂ—}—w >0
2 t—F+w t+5EF—-w

This constraint is of the hyperbolic type and also semidefinite positive and can be repre-
sented as a linear matrix inequality.

We see that the expression of the power dissipation only includes the switching power.
For the short-circuit power a suboptimal value is computed from the design parameter val-
ues that are obtained from the optimization of the switching power, as was discussed in
section(3.7).

The switching power is linear with respect to the parameters w, t and d. We use the optimal
values to compute short-circuit power, which is a suboptimal value. Short-circuit power is
not included in the optimization because it is a nonlinear function of the design parameters.

6.4.2 Short Circuit Power Vs. Switching power

We start by showing the differences between switching power and short circuit power: as
discussed in chapter(3), the short circuit power in most practical situations is about 10%
of the switching power.

Figure(6.18(a)) shows that the switching power is dominant for k£ = 10 repeaters. When



6.4, POWER OPTIMIZATION

el Switching Power Va. Short Cireuit 10" Switching Power Vs. Short Circut
1 T T T T + T ~7 T
Y
\
14 4
it |
\ i
\“ 12 L Short Circut
i Switching |
o8 | J |
\ ! \
B .
! \
| P71 ‘g LY y
& \
\ |
\ 08§, A\
04l \ \ \ Swilching
\ ~. i
04 N e ————
N .
N
ozt . h
2 ~ Short Circuit \
Y, 02]
1 2 3 [ 5 ] 7 a 9 [ 05 1 15 2 25 3 38 4 45 s
Toom 10 Tdom

(a) 10 repeaters (b) 20 repeaters

Figure 6.18: Short circuit power Vs. Switching power, L = 200mm.

the number of repeaters is increased to k = 20 (figure(6.18(b))), the short circuit power
becomes dominant for very fast lines. The length of the bus has been increased to 200mm,
which shows that for longer lines switching power becomes dominant Figure(6.19(a)) and
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Figure 6.19: Short circuit power Vs. Switching power, L = 20mm.

figure(6.19(b)) show the results for £ = 10 and k = 20 repeaters, respectively. This confirms
that the short circuit power is dominant for very fast circuits and short lines (20mm).
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6.4.3 Finding the optimal repeater size for a desired performance

One of the most important results of this research is that the approach allows the designer to
identify the optimal driver size for a given set of parameters with some desired performance.

i.e. Consider a topology four wires (N = 4) with n = 10 nodes and M = 9 7RC ele-
ments, with k = 2 repeaters and a length of L = 20mm. The minimum spacing between
the wires was set to 1um to avoid Miller’s effect on the lines. The maximum width for the
wires was set to Sum.
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Figure 6.20: Power in 2D and 3D.

Figure(6.20(a)) shows a 2D plot of the total power dissipation, including both switching
and short circuit power as a function of the dominant time constant. From this figure we
observe that the delay is a convex function of the power. Short signal delay correspond to
high performance dissipation.

Again, as in section(6.3.5), we first determine the optimal repeater size d. To this pur-
pose, we run the optimization for various values of Tdom:

Wb -> 36.000000

Tdom-> 1.03e-009 w-> 8.92e-001 d-> 1.45e+001 power-> 5.785431e-012
Tdom-> 1.42e-009 w-> 5.87e-001 d-> 9.61e+000 power-> 4.678380e-012
Tdom-> 1.81e-009 w-> 4.38e-001 4d-> 7.17e+000 power-> 4.205846e-012
Tdom-> 2.20e-009 w-> 3.49e-001 d-> 5.71e+000 power-> 3.947200e-012
Tdom—> 2.59e-009 w-> 3.20e-001 d-> 4.31e+000 power-> 3.774120e-012



6.5. REPEATER INSERTION 73

Tdom-> 2.97e-009 w-> 3.20e-001 d-> 3.29e+000 power-> 3.682266e~012
Tdom~> 3.36e-009 w~> 3.20e-001 d—> 2.67e+000 power-> 3.631177e-012
Tdom-> 3.75e-009 w~> 3.20e-001 d-> 2.25e+000 power-> 3.598455e-012

From the optimization results we conclude that a bound of 1.81 x 107%s for Tdom gives
sufficient reduction in power dissipation. Notice that in this example we used large upper
bounds on the wire width w (wWmez = 5um) and on the wire spacing s (Smaz = 4um).
This configuration corresponds to relatively low power dissipation, see figure(6.20(b)) for
Wpg = 36um. However, the dominant time constant is less than 2ns.

The solution for Tdom = 1.81 x 10~%s gives an optimal value for d of 7.17um. Using
table(6.3) shows that this value corresponds most closely to the “IVX6” repeater, with
d = T7.02um.

6.4.4 Finding the optimal wire size for some fixed repeater size

From the previous section before we obtained as a result that the repeater "/VX6” was
optimal for some desired performance (T'dom < 2ns). Using the corresponding repeaters
size d = 7.02um, the optimization was run again with the following results:

Wb -> 36.000000

Tdom-> 1.412623e-009 w—> 1.402899 d-> 7.020000 power-> 5.2425396e-012
Tdom-> 1.412635e-009 w-> 1.394097 d-> 7.020000 power-> 5.232853e-012
Tdom-> 1.976566e-009 w—> 0.371871 d-> 7.020000 power-> 4.1183836e-012
Tdom-> 1.982424e-009 w-> 0.369683 d-> 7.020000 power—> 4.116594e-012
Tdom—-> 1.988283e-009 w-> 0.367523 d-> 7.020000 power-> 4.114383e-012
Tdom-> 1.994141e-009 w-> 0.365391 d-> 7.020000 power-> 4.112203e-012

These results show that a wire width w = 0.365391um gives a minimal value of the power
dissipation, while Tdom is less than 2ns.

Furthermore, we can set any of the parameter in the simulation to a fix value and this
allows to define a subproblem for one or several of the parameters that we are regarding.
This example shows the flexibility that the designer has to play with the tool according to
his experience and current design limitations.

6.5 Repeater Insertion

Work on repeater insertion has been undertaken by Bakoglu [9] and more recently Garcea
et al. [17], who proposed an approach for finding the optimal values for the repeater size
and the critical distance between the repeaters in the interconnect line. In this approach
(figure(6.21)) the wire width is not optimized. Both the resistance and the conductance
of the wire have a constant value per unit length. We use the resulting equations to ap-
proximate the number of repeaters we should include into our script in order to work with
optimal repeater insertion.
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Figure 6.21: Garcea’s model for an interconnect line

The delay of the circuit model of figure(6.21) is given by:

T

Where
Rtr =
R =
Cp
CL
C =

(k+1) bRy (Cp+C+CL) + R(aC +bCL)]

(k+1) [bro(co + ¢p) + b(ZE + reod)l + arcl?]

o
d

rl
cpd
cod
cl

74

6.7)

k and ! denote the number of repeaters and the length of a wire element between two re-
peaters, respectively; a,b depend on the switching model that is used.

Taking the partial derivative of Equation(6.7) with respect to the length [ and the re-
peater size d and setting them to zero[17] the following relations for the critical length and

width of the wire are found:

lcrit =

dopt

by
aT;

roc
TCO

(6.8)
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Cp = Cin
Cp = Cout
ro = 1l/g
r = R,

C = Cp

a = 0.39
b = 0.69

Table 6.5: Equivalence of parameters (Garcea’s approach Vs. Ours)

Where
70 = 7o(co+¢p)
T = TC

Equations (6.8) provide the optimal length and the optimal driver size for a given technology.
In our case we are interested in evaluating the CMOS12 technology parameters [26]. We
evaluate(6.8) using parameter values that make Garcea’s approach and ours equivalent.
Table(6.5) lists the parameter values that we use in our model for this purpose.

Plugging in the values for the CMOS12 technology we find the following results for a total
wire length of L = (k+1) x [ = 20 mm,

lerit = 7.01180 mm
dopt = 10.30980 um
k L/leis — 1 =1.85232

Il

Next, we round k = 1.85232 to an integer (k = 2) number of repeaters and use this value
in our script to run our simulations.

Wb -> 40.000000

Tdom—> 8.07e-010 w~> 1.36 d-> 21.00 power-> 10.10e-012
Tdom-> 1.31e-009 w-> 0.67 d-> 10.90 power-> 6.40e-012
Tdom-> 1.32e-009 w-> 0.67 d-> 10.75 power—-> 6.36e-012
Tdom—> 1.34e-009 w-> 0.66 d-> 10.60 power-> 6.32e-012
Tdom—-> 1.35e-009 w-> 0.65 d-> 10.46 power-> 6.27e-012
Tdom-> 1.36e-009 w-> 0.64 d-> 10.32 power-> 6.23e-012 *x*1
Tdom-> 1.45e-009 w-> 0.59 d-> 9.56 power—> 6.02e-012
Tdom—> 1.65e-009 w-> 0.50 d-> 8.15 power-> 5.64e-012
Tdom-> 3.8%e-008 w-> 0.32 d-> 0.32 power-> 4.36e-012

Figure (6.22) shows the resulting minimum power dissipation as a function of the domi-
nant time constant for k = 3. The delay computed with Equation(6.7), with { = l.; and
d = dopt, equals 1.36 ns. Setting Tyom, to this value results in a optimal power dissipation
of 6.23 PJ per cycle. This solution has been marked on the curve in Fig. (6.22), together
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with the solutions for the smallest and largest possible values of Ty,m for the given bus
width. Compared with the solution for minimum delay, the solution for Tyoy, = 1.36 ns
corresponds to an increase of 59% in delay and a reduction of power dissipation of 68%.

The work reported in [17] helps to make a first estimation of the optimal number of re-
peaters that is to be inserted. A detailed comparison of their optimization approach and
ours will be done in the future.



Chapter 7

Conclusions

A circuit optimization approach has been presented based on semidefinite programming.
The approach is based on the time dominant constant, which is a quasiconvex function of
the design parameters. In semidefinite programming a linear function is optimized sub-
ject to linear matrix inequality (LMI) constraints. Such an LMI constraint requires that
a matrix, which is affine with the optimization parameters, is positive semidefinite. Scalar
linear inequality constraints form a subclass of LMI constraints. We have formulated sev-
eral primal semidefinite problems for the optimization of power dissipation and area with
constraints on the width of the bus as well as with linear constraints on the optimization
parameters. The problems were reformulated in order to fulfill the requirements of convex-
ity and semidefinite positiveness.

The current work is based on the research of Vandenberghe and Boyd [3]. Their work
has been extended by using real life parameters corresponding to the CMOS12 technology.
Also, a suboptimal approximation for the short circuit power dissipation was included. Fur-
thermore, we developed an interpolation model that can be used to find trade-offs between
power dissipation, time dominant constant and maximum bus width. This model allows to
draw a 3D graph relating the mentioned parameters. In Vandenberghe’s and Boyd’s work
models were presented for the mRC wire elements and for the repeaters [3]. The repeater
model has been made more realistic in this work. Vandenberghe and Boyd used a repeater
with constant input capacitance. In our approach the input capacitance, the output capac-
itance, and the load conductance are all dependent on the repeater size d. This allows the
computation of the power dissipation to be more accurate, which was one of the objectives
of the research.

Several scripts have been implemented in Matlab in order to control the full and precise
formulation of the problem. For example: we have a script for creating the reduced node
incidence matrix, one to calculate the conductance and capacitance matrices, one that com-
putes the linear, hyperbolic and semidefinite positive constraints and that calls SeDuMi,
one to generate the graphics, one to create a Pstar circuit description file and many other
small utilities including scripts to save graphics and interpolating functions.

77
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"The Self Dual Minimization/Optimization over self-dual homogeneous cones (SeDuMi) soft-
ware [6] is the optimization tool used throughout this work. This tool, created by Sturm,
has proved itself as it allows one to solve a great variety of problems, including semidefinite
problems, by just defining the primal objective and its respective constraints. In contrast
with other software, there is no need to specify the dual problem, which sometimes may
be harsh. Furthermore, there is no need to define an initial starting point. Instead, the
software starts from a random point and the algorithm then finds a feasible point by itself.
These characteristics make SeDuMi a valuable tool for solving our optimization problem.
Specifically, we have used SeDuMi as a semidefinite positive programming tool and we also
took advantage of its capability of including linear and semidefinite constraints.

Thanks to SeDuMi and the semidefinite problem definition, it was possible to determine the
minimum power dissipation and the optimum values for our optimization parameters. For
example, for a topology with three parallel wires, we can reduce the power dissipation with
77% at the cost of a relatively small increase of 10% of the total delay. To this purpose,
first the optimal repeater size is determined, then a matching repeater is selected from a
library. This approach proofs to be valuable for a chip designer in his quest for low power,
high performance topologies.

The method also allows the designer to construct suboptimal problems by fixing a given
optimization variable and finding the optimal results for the other variables. In the previous
paragraph we discussed that the repeater was selected which is closest to the optimum value
for the repeater size d with respect to power dissipation. As a next step, the wire width
could be optimized by setting the repeater size to a fixed value and running the simulation
script again. This exercise can be repeated for different parameters, such as the spacing or
the wire width, depending on the specific needs of the designer.

An important result of this work is that our approach allows the designer to investigate
a low power, high performance topology by interchanging the optimization parameters.
This constitutes an important result of our research. Also, the researcher can make use of
the script to find a cubic splines interpolation for the trade-off curve between power dissi-
pation, Tdom and bus width to find values in between those found by simulation. This can
be regarded as an extra feature for the designer.

In addition, we proved the accuracy of our results through comparison against Pstar, which
is a Spice-like full-numerical circuit simulator [24]. First, we created a circuit description of
our model that could be run by Pstar. The results are then compared against the results
from our model. The error is less than 1%, which shows that our model is valid and accurate.

Further, we investigated an approach called uniform wire sizing (UWS) where we assumed
uniform width w for all wires, uniform spacing s between the wires and the same size for
all the repeaters d. This is in contrast with the method of wire tapering, also called non-
uniform wire sizing (NUWS), were the width of the element varies over the length of the
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wire. Alpert(22] has proved that the benefits from NUWS when full repeater insertion is
applied are minimal. However, we observed a large difference in the results from the UWS
and NUWS approaches when repeater insertion was not optimized. We did an exercise with
the equations provided by Garcea [17] for repeater insertion and we observed an increase in
the quality of the results. This suggest that the time dominant constant approach can be
further improved by including the optimization of the repeater insertion.



Chapter 8

Future Work

We propose for future work a benchmarking against the work by Garcea et al. [17]. Specif-
ically, it would be useful to derive an Elmore delay model that includes the wire width
dependent term for the mRC' element, the division of the bottom capacitance into fringing
and bottom capacitances, and also includes coupling capacitance. Such a model could be
analyzed analytically and compared against the model applied in [1 7).

It is also proposed to do an initial comparison against Bakoglu’s work [9]. This com-
parison should include the equations that provide the optimal number of repeaters that are
inserted in the given topology.

Finally, we would like to propose to take into account the inductance effect in the opti-
mization method. Inductance is becoming more important with faster onchip rise times
and longer wire lengths. For very-deep submicron (VDSM) designs inductance cannot be
neglected and the distributed RC model is no longer accurate for this kind of designs. An
RC model as compared to an RLC model creates errors of up to 30% in the total propaga-
tion delay of a repeater system [33]. Therefore, it becomes necessary to find new approaches
to delay analysis and optimization for the next generation of chip design.
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