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1 Introduction

A ’frame’ in a Hilbert space H is defined to be a subset V = {¢, | x € E} C ‘H, with E an
index set, such that the span (V') of V is dense in ‘H. Mostly, the set E is a subset of C"
or a group. Starting from a frame V' we introduce the frame transform

W:H—C: frsWFf, where Wf:E— C:a+ (¢, f)n (1.1)

The underlying master’s thesis is mainly focused on the questions how and when the
above transform defines a unitary map. We succeeded answering these questions in the
most general way by using the theory of functional Hilbert spaces (= theory of reproducing
kernels). The idea of working with these kind of spaces is inspired by the identity

|(WF)(@)] < llballell £l (1.2)

This identity states that if the frame transform defines a unitary map from H onto a Hilbert
subspace of CE, then point evaluation §, : f +— f(z) in the latter space is a continuous
linear functional for all x € E. This means that the Hilbert subspace has a reproducing
kernel K and we denote it by Ck.

The central observation of this thesis is Theorem 2.3. It states that W defines a unitary
map from H onto the functional Hilbert space Ck where K is the function of positive
defined by K (z,2") = (14,1, )x. This is a new and important result. Since the functional
Hilbert space C% is constructed in a rather abstract fashion, we are challenged to find a
more tangible alternative description of this space.

As shown in chapter 4, an alternative description comes within sight in case the frame V'
is constructed from a generating function for orthogonal polynomials. The space Ck then
typically consist of analytic functions on (a subset of) the complex plain. The Bargmann-
transform is a famous illustration of this phenomenon.

In chapter 5 the well-known Laplace and Fourier transforms are looked upon as frame
transforms. Note that the Fourier transform is not a frame transform itself, but with
the aid of Gelfand triples we can construct a frame transform which leads to the Fourier
transform.

Theorem 2.3 can also be used to construct sampling theorems. A famous example of
a sampling theorem concerns the space of functions f € ILy(R) for which Ff has support
within (—1,1). Then

fl)= 3 fm 2T

n=—oo

(1.3)

m(x —n)

In chapter 6 a general sampling theorem is proved by a simple argument, which covers most
of the classical cases. As an excursion, we also mention a construction of functional Hilbert
spaces that admit a sampling theorem. In Appendix D an open problem is formulated
which is inspired by these results.



A special kind of frame transforms is the wavelet transform. In this case V' is constructed
from a vector v € ‘H and a group representation of a group G in H

Vo ={Uy | g € G}. (1.4)

We denote a wavelet transform by Wy, where ¢ € H is called "wavelet”. In the last twenty
years a lot has been written about these kind of transformations. In 1985 Grossmann,
Morlet and Paul published a basic paper [GMP] which can be seen as the fundament of the
theory of wavelet transforms. Their main result is that the wavelet transform Wy, defines
a unitary map from a Hilbert space H onto Ly(G) for a suitable vector ¢ € H, where G is
a locally compact group with a unitary, irreducible and square integrable representation U
of G in 'H. A square integrable representation is a representation for which a v exist such
that

1
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where p¢ is a left invariant Haar measure.

The irreducibility condition is a very strong one. However, many representations of
practical interest are not irreducible at all. Therefore it is often suggested, to replace the
condition of irreducibility by the condition that the representation is cyclic, i.e. it has a
cyclic vector, i.e. a vector for which the span of the orbit under ¥ is dense in the Hilbert
space. But no really successful unitarity results were obtained. For a nice survey of some
posed suggestions, see [FM]. L

Noticeably, our Theorem 2.3 states that W, defines a unitary map from (V,) onto
C%. The conditions we impose on the representation are quite simple: none! Note that
W = 'H if and only if ¢ is a cyclic vector.

Although the above solves the unitarity questions, the functional Hilbert space, as men-
tioned before, is not easily characterized. We managed to give an easy to grasp description
of the functional Hilbert space in the case H = Ly(S) and G = S x T for an abelian group
S and an arbitrary group 7' which acts on S. As an example we work out the case S = R?
and T = T so G is the Euclidean motion group. The idea to consider semi-direct products
is not new, several articles have been written on this subject. See for example [FKNP],
[FM].

The final chapter concerns a transformation introduced by Sherman in [S]. Although
this ”Sherman transform” is a frame transform but not a wavelet transform, it has several
resemblances with wavelet transforms. In [S], Sherman poses a key lemma concerning
a singular integral. This singularity however, can be avoided. Moreover, we suggest an
alternative transform which has the advantage that the unitarity relations appear in a
more natural way.

Cy /G%wm dpc(g) < oo, (1.5)



2 Frame transforms and functional Hilbert spaces

2.1 Introduction

Denote the space of all complex-valued functions on E by C*. We say that a Hilbert space
H consisting of functions on a set E, i.e. a vector subspace of C¥, is a functional Hilbert
space, if point evaluation at every point is continuous, i.e.

e  H—C: f— f(x) (2.6)

is a continuous linear functional on ‘H for all x € E. Then, by the Riesz-representation
theorem, there exists a set {K, | = € E} with

for all x € E and f € 'H. We use the convention that the inner product is linear in the
second entry. It follows that the span of the set {K, | € E} is dense in C%. Indeed, if
f € H is orthogonal to all K, then f =0 on E.

Then define the function K : E x E — C by K(z,2') = Ky (z) = (K., Ky )y, for all
x,r’ € E. The function K is called the reproducing kernel. It is obvious that K is a
function of positive type on E, i.e.,

>N K(wi,2;)@Ec; > 0, (2.8)

i=1 j=1

foralln e N, ¢1,....,c, € C, x1,....;x, € E.

So to every functional Hilbert space there belongs a reproducing kernel, which is a
function of positive type. Conversely, as Aronszajn pointed out in his paper [Ar], a function
K of positive type on a set E, induces uniquely a functional Hilbert space consisting of
functions on E with reproducing kernel K. We will denote this space with C%. Without
giving a detailed proof we mention that C% can be constructed as follows; start with
K : ExE — C, a function of positive type and define K, = K(-,x). Take the span
({K. | v € E}) and define the inner product on this span as

l n l n
<Zaini>Zﬁijj>cE = ZZ@@K(%,%)~ (2.9)
i=1 j=1 K i=1 j=1
This is a pre-Hilbert space. After taking the completion we arrive at the functional Hilbert
space CF.
There exists a useful characterization of the elements of CE.

Lemma 2.1 Let K be a function of positive type on & and F' a complex-valued function
on E. Then the function F belongs to C% if and only if there exists a constant v > 0 such
that
! ) !
‘ Y aiF(wy)| <) @K (a, ), (2.10)

j=1 k,j=1




forallle Nandoa; €C, z; € E, 1 <5 <.

Proof: See [Ma, Lemma 1.7, pp.31] or [An, Th. IL.1.1].

This lemma enables us to give an expression for the norm of an arbitrary element in
CE..

Lemma 2.2 Let F € C%. Then

-1

2( i Oé_k&jK(xkaxj)>

k,j=1

l
|FIl2 = sup {} > F(z)
j=1

l
’lEN, OéjE(C, IjEE, HZO%K$’“
k=1

0p. 2.11
) "
For a detailed discussion of functional Hilbert spaces see [Ar], [An] or [Ma].

2.2 Construction of a frame transform

Starting with some labeled subset V' of H, we will construct a functional Hilbert space by
means of a function of positive type on the index set, using the construction as described in

the introduction. Moreover, there exists a natural unitary map from (V') to this functional
Hilbert space.
Let 'H be a Hilbert space. Let E be an index set and

V= {¢, | z € E}, (2.12)

be a subset of H. We call the set V a frame. Define the function K : E x E — C of
positive type on E by

K(z,7') = (¢z, oo )Jnt, (2.13)

for all z,2” € E. From this function of positive type the space C% can be constructed.
The following theorem is the central observation of this thesis.

Theorem 2.3 (Frame Theorem) The map
W:WH@%:]‘HW}“, where Wf:E — C:zw— (¢, f)n, (2.14)
1S @ unitary map.

Proof:

Here (V') inherits the inner product from H. First we show that W f € C% for



any element f € (V) and that W is bounded (and therefore continuous). If
f € (V) then

!
‘Zaj Wf ;)
=1

2

S = (S o),

l 9 l
< || D st | A1 = (3 @ik (ons ) ) 11
j=1 k,j=1

foralll € N, ay,...,a; € C, and x1,...,7, € E. So Wf € C% by Lemma 2.1
and |[W |2z < [|f3, by Lemma 2.2. Next we prove that W is an isometry.
K

Because (¢,)(z) = K(z,2'), W maps a linear combination Y, a;¢,, onto the
linear combination ) . a; K (-, x;). So W((V)) = ({K(-,z)|x € E}). Moreover,
it maps (V') isometrically onto ({ K (-, z)|z € E}), because

( Z%%Z Zﬂ]% ) = (;%K('axz‘)725jf(<'a$})>ca
=Y @BK (zi, Zazﬁj Guyr ot 1.
2%

Since (V) is dense in (V) and W is bounded on (V) it follows that W is an
isometry. Furthermore, W[(V')] is dense in CE. So W is also surjective and
therefore unitary. O

We will call the unitary map W a frame transform. In the sequel we will mostly introduce
a frame transform by "W : (V) — C% defined by (W f)(z) = (¢, f)x for all z € E and
f e m’, instead of writing ‘W : m — CY . f— Wf, where Wf:E — C: 2~
(¢u, f)n’- The latter has the advantage that the structure of the objects is more tangible,
but it has the disadvantage that it is a bit lengthy for simple calculations. Therefore the
first phrase will be used when we deal with an explicit example of a frame transform and
the second phrase otherwise.

In most cases we are mainly interested in the case (V) = H, i.e. V is total in H. To
get a feeling for what is happening we deal with two illustrating examples.

Example: The special case E = N. Let H be a separable Hilbert space consisting
of functions on the set E = N. Let V = {¢,, | m € N} consist of an orthonormal basis, so
(V) ="H. Then,

K(ma m/> - (¢m7 ¢m’)H = 5mm’a (215)

for all m, m’ € N. This means that we just get C}\ = I5(N). The unitary map W gives us
the sequence of expansion coefficients ¢, of a vector f € H with respect to the orthonormal
basis.



Example: The special case E=H. Let E=H and V = {m|m € H} = H. The
function of positive type is just the inner product

K(m,m'") = (m,m)x. (2.16)

This means that C% = CZ?_ ., This is the functional Hilbert representation of an arbitrary
Hilbert space. It is equal to the topological dual space H’, the space of all continuous
linear functions on H.

The functional Hilbert space Ck is an abstract construction. We are challenged to find
alternative characterizations of these functional Hilbert spaces.

In the literature two major classes of functional Hilbert spaces appear, functional
Hilbert spaces of Bargmann-type and of Sobolev-type. The first type consists of a nullspace
of unbounded operators on Ly(E, 1) and the second of the domain of unbounded operators
on Ly(E, ). For Bargmann-type spaces see [B]. For Sobolev-type, see [EG1] and [EG2].



3 The inverse frame transform

3.1 Inversion using projections
Let 'H be a Hilbert space and V' C 'H a subset of ‘H labeled with elements in a set E

V=1{¢, | z €E}. (3.1)

For the sake of simplicity assume that the span is dense in H.Otherwise, replace H by (V).
Consider the unitary frame transform W : H — C% : f — W f, where Wf:E — C: 2~
(¢, f)n. We will analyze the inverse W~ of W.

Suppose H = C} is a functional Hilbert space itself, with reproducing kernel L. Set V=
{WLe | € €T}. Then (V) is dense in C%, by unitarity of W. Moreover, (W L, WiLe)ce =
(Lg,Lgl)@( = L(& ) forall £,¢ € 1. Soif

W:CE - CL:g— Wg, where Wg:I[—>IE:£|—>(WL§,g)@IE<, (3.2)
is the associated frame transform, then
(Wg)(€) = (WLe, g)cz. = (Le, W g)ey = (W'g) (€), (3.3)

for all ¢ € C% and & € I. Hence, W' = W is also a frame transform. Note that
(WLe)() = (60 Le)er = 62(6).

Although the second example at the end of section 1 shows that every Hilbert space
can be characterized as a functional Hilbert space, this characterization is not always very
useful. In some cases, like Ly(R) or Ly(S'), the Hilbert space H can be regarded as limits
of functional Hilbert spaces. The space Lo(S!) for example, admits a decomposition in
spherical harmonics. This decomposition will be dealt with in section 8.

Definition 3.1 We say that a sequence of functional Hilbert space {CHLn tnen converges to

H if
1. each CY, is a Hilbert subspace of H

2. the projections P,, of H on CHLH satisfy

(0,) Pan = Pmin{n,m}
(b) lim, .o P, f — f, forall f € H

Suppose the sequence of functional Hilbert space CHLn converges to H. Define
Vo =P, | x € E}, (3.4)
and the function K, : E x E — C of positive type by

Kn(xa lJ) = (]P)n(bz’ ]P)(bx’)ﬁ (35)



for all n € N and z,2' € E. By Theorem 2.3 the map W, : C;, — Ci : f — W,f,
where W, f : E — C : x — (P,1,, f)x is unitary for all n € N. Note that for the frame
transform W, the inverse frame transform is given by W1 : C& — C! : g — W, 1g where

W, lg:T— C: & (WyLng, g)ce , for all n € N.
Theorem 3.2 The functional Hilbert spaces C][E(n converge to Cx..

Proof:
Let f € Ck . Then g = W, 'f € C[ C H. This means that C} > Wg =
W,g = f. By the unitarity of W,, and W we also find HfH@IE( = ||g||@1L =

lgll2 = [ fllce . Therefore, the spaces C% are all closed subspaces of Cl.

Finally, to prove condition 2, we remark that the projection P, on the space
Ck is given by P, = WP, W~ 1. O

The following theorem gives a formula for the inverse frame transform.

Theorem 3.3
lim W, 'P,Wf = f, (3.6)
for all f € H.

Proof:
Since P, W f — W f we also find by unitarity WP/ W f =W P Wf — f.
O

3.2 Inversion using Gelfand triples

In this section we mention another method to obtain the inverse W 1.

Assume V' is a subset of a vector space labeled by a set E. Equip (V) with two inner
products (-,-); and (-,-)2 such that || - ||; < C| - |2, for some constant C' > 0. Denote
the completions of (V') under these two norms by H; and Hsy. Note that Hy C H;. Then
by (2.13) we obtain the functional Hilbert spaces Cf and Cf,. The question arises how
these two functional Hilbert spaces are related. The answer is straightforward. Since
|- 1l: < C|| - ||2, it is obvious that

n

Zz&i&_jfﬁ(ﬂ?i,iﬁj) = Zzaia_j(¢xi7¢xj)l = || Zai(bxi
i—1

=1 j=1 =1 j=1
n n n
< O ) bl =C*) Y aiKa(w, xy),
=1 i=1 j=1

2
1

for all n € Nyay...an,z1...2, and hence Ky > K;. By Lemma 2.1, it follows that
Clk, c Ck, and | - ||(C]E(2 < - ||(Cx%<1 on C, by Lemma 2.2.

10



We return to the problem of inverting the frame transform. Assume V = {¢, | = €
E} ¢ C! for some set I. Define ¢¢ : E — C by ¢¢(z) = ¢,(€) for all z € E and € € T.
Recall that if 7 is a functional Hilbert space C for some function L of positive type, then
the inverse W' equals the frame transform with respect to V = {¢¢ | € € T}. Then in
addition V' C CE. In general L does not exist and V' is not a subset of C%. Nevertheless,
the functions <z~55 are still well-defined. In the sequel we use Gelfand triples to understand
the role of these functions.

Let R € B(H) such that R™! exists and is a self-adjoint operator on H. Hence R™! is
in particular densely defined and closed. Consider the Gelfand triple

Hi —H—H_, (3.7)

constructed by this operator R. Recall that || - || = ||R7' - || and || - |- = ||R - ||»-
Assume that (V') is a dense subspace of H, i.e.

{B'¢, | r € E}) = H. (3.8)

Since R is bounded, this assumption implies that (V) is dense in all the space H,,H and

H_ and therefore it makes the assumption (V') = H obsolete.
The frame transform W maps H unitary onto Ck. Define A € B(C%) by A = WRW L.
Then A induces the Gelfand-triple

(C%), = C& = (Ch)_. 3.9

Note that the frame transform W induces by restriction the unitary map Wiy : Hy —
(C]}E() L f — W f and after extension it induces in the same way a unitary map from H_

onto ((CI}Z{) . Next we introduce two other functions of positive type and frame transforms.
Define K_ : E x E — C by

K_(ZL’,]}/> = (¢r7¢z’)+7 (310)

for all z, 2" € E. Note the opposite signs. By Theorem 2.3, the transform W, : H, — C%
defined by

for all x € E and f € H,, is a unitary map from H, onto C% . Equivalently, define
K, :ExE — Cby Ky(z,2') = (¢g, ¢wr)_, for all x,2" € E. By Theorem 2.3, the
transform W_ : H_ — Cf., defined by (W_f)(z) = (¢s, f)—, for all z € E and f € H_, is
a unitary map from H_ onto C]}E(+.

Lemma 3.4 Cf, = (C%), and Ci._ = (Cf) _.

Proof:
. . . E IE
First we show that ({K, | x € E}) is dense in both ((CK)Jr and Ci, .

11



Since K, = W¢, and ¢, € D(R™"), we also have K, € D(A™") = (Cg),.
Moreover, ({K, | z € E}) is dense in (C) . by unitarity of W3, and assump-
tion (3.8).

For the space CIIE(+ recall that ¢, € D(R™') and hence R 2¢, € H_ for all
r € E. Moreover, ({R72¢, | v € E}) is dense in H_. The operator W_ maps
R7¢, onto K, and therefore {K, | x € E} is a subset of Cf, for which the

. . ]E
span is dense in Cy, .

Finally we show that the inner products are equal on this dense subspace.

(Kza Ky)(C]E = (R72¢x7 R72¢y>f = (Rilgbxa Ril¢y)7—t

Ky
= (WR_lgbx, WR_1¢y)CIE< = (A_leaA_le)@E{
for all z,y € E. Hence in particular || - ||[ce = |/ -y on ({K, |z e E}).
Kt ((CK)+
In the same way one can prove that || - [|cz = || - ”(CE) on ({K,| z € E})
- K] _
which is dense in C};_ and (C§) _. O

From now on we assume that R is such that H, is a functional Hilbert space with repro-
ducing kernel L.

Theorem 3.5 The set {¢¢ | € €1} is contained in C& . The inverse Wmfr is given by
Wi 1 Ck — My F s W F, where Wi F:E—C:&m (de, F).  (3.12)
Proof:

The first statement is trivial since H, is a functional Hilbert space and hence
¢¢ = W L¢ where L is the reproducing kernel of H..

For the second statement we first show that AK ., = A7'K, for all z € E.
(AK,;:E) (y) = (KyvAK*;z)(C% = (AilevK*;w)C}EL
- (Aile) (2) = (AT'K, K,) = (K,, AT'K,) = (A_lKﬂﬁ) ()

for all z,y € E.

Secondly, we show that AW L, = ¢5 for all £ € . Denote the reproducing
kernel of H_ by L. Note that WL € Ck i, hence A~ W Le is well-defined.
Then,

(AW Le)(z) = AT WLe)ez = (AK 5, A7'W Le)es
1KI,A Wie)es = (WR™ ¢y, WR™ ' L¢)cs.

R R L = (6, L, = (W6, W Loy,

(K-
(A
(
(Ko, Ge)cz. = e(),

12



for all z € E.

Finally, we prove the inversion formula:
f&) = (Le fn = (Whe, Wf)ez = (AT'W Le, AT'W f)ee
= (APWLe, Wf) = (¢, W),
forall feH, and € € L. O

Let t — R; be a strongly continuous contraction semi-group such that the generator is
self-adjoint. Then for all ¢ > 0,

e R, is self-adjoint,
e R, ! exists and is self-adjoint (and hence densely defined).
Moreover, assume that
e 7, is a functional Hilbert space under the norm || - ||, = ||R; " - ||,
e (R;'V) is dense in H
for all t > 0. Then each of the operators R; defines a Gelfand triple, denoted by

Hy — H — H_y, (3.13)
for all t > 0.
Lemma 3.6 ||R:|| < ||Rs|| for allt > s.

Proof:

Let f € H. Then,
[Reflln = [[Re-sRs fllne < [[Re-sl[| Rs fll3 < ([ Rs fllne
Hence [|R;|| < || Rs]|- O
Lemma 3.7 The space H; is continuous embedded in H, for all t > s.

Proof:
Let f € H;. There exist a ¢ € H such that f = R,g € R;(H) and hence
f=RsR;_sg € Hs. Moreover,

£l = 1R Fllae < IR flle = 1 f -

Hence the statement follows. O

Now we obtain the following the inversion formula
f=lmRef =lUm& s (o, WR ) = lim & (9, AW ). (3.14)

This formula is the generalization of the formula Bargmann gives in his article to invert the
Bargmann transform. We will return to this subject in the Section 4.2. In that section the
assumption (3.8) is equivalent to the assumption that (V') = H since in that case R,V =V
for all t > 0.

13



4 Frame transforms constructed from generating func-
tions

4.1 An expansion theorem

Since by Theorem (2.3) a frame transform is a unitary map, it maps an orthonormal basis
onto an orthonormal basis. This leads to some nice consequences in case the set V' in
(2.12) is constructed from a generating function, since it provides a convenient basis for
the image space. In this section, the image space typically is a functional Hilbert space
consisting of analytic functions. An important result is the following

Theorem 4.1 Let K : E X E — C be a function of positive type and let {g, | n € N} be
an orthonormal set in C. Then' ., .« gn(x)gn(y) is absolutely convergent for all z,y € E.
Moreover, the set {g, | n € N} is a basis for C% if and only if

K(z,9) = gn(2)9a(v), (4.1)

neN
for all z,y € E.
Proof:
See [Ma, Lemma 1.11]. O

Let 'H be a Hilbert space and V = {¢, | * € E} a subset of H labeled by a set E.
Define the function K : E x E — C of positive type by K(x,z') = (¢, ds)n for all
x,r’ € E. By Theorem 2.3, the frame transform W : m — CE . f — WFf, where
Wf:E—C:xw— (¢, f)n, is a unitary map.

Suppose {g, | n € N} is an orthonormal basis for H. Then ¢, can be expanded in this
basis as

b =Y an()gn, (4.2)

neN
where a,(x) = (gn, ¢z), for all z € E and for all n € N.

Theorem 4.2 (Expansion Theorem) The reproducing kernel K : E x E — C is given
by

K(z,2') =) an(x)an(2), (4.3)

for all x,2' € E, where the sum is absolutely convergent. Moreover, if (V) = H then
{@, | n € N} is an orthonormal basis for C%.

Proof:

It is obvious that (Wg,)(z) = an(z) for all z € E and n € N. By unitarity of
W it follows that {@, | n € N} is an orthonormal basis for C%. The rest of the
statement follows by Theorem 4.1. O

14



Suppose f € V+ and write f = Cngn. Then
neN

0= (o, [l =Y Cntin(), (4.4)

neN

for all x € E. This implies that (V') = H if and only if for all {c, }nen € l2(N)

<vmeE > cotn(z) = 0) = Vpencn = 0. (4.5)

neN

Theorem 4.2 can be used to construct special frame transforms based on generating func-
tions. As an example we deal with the Bargmann-transform and two transforms based
on generating functions for Laguerre Polynomials and Gegenbauer polynomials. In these
examples E equals C or {z € C | |2| < 1} and the generating function is of the form

n=0

Obviously, the functions z — 2" satisfy condition (4.5) and therefore (V) = H.

4.2 Bargmann-transform

In this section the Bargmann-transform as an example to the previous sections. Some
proofs, especially the unitarity, will become a lot easier with the aid of the theory developed
so far.

The following two results will be used. The proof is omitted.

e A result due to Cramer: |H,(z)| < ky/n2"2e**/? for all # € R and n € N, where k is
a constant. See [C].

e Mehler’s formula for Hermite polynomials

) H,(z)H,(y) (w/2)" = (1 — w2)*% exp 2J:yw(—1 (_xjﬂ_;)yQ)Uﬂ |

4.7
2.7 (4.7)
which is valid for all z,y € R and w € D = {z € C | |z| < 1}. See [MOS, §5.6,
pp.252].

Let H = Ly(R). From the theory of special functions it is well-known that the gener-
ating function of the Hermite polynomials is given by

e—z2+2zx _ Z Hn('QZ) Zn7 (48)
n.
n=0

15



and the sum converges for all z € C and x € R. Then rewrite this identity as

2 —’n
7T—1/4e—52/2+\/§zx x2 4.9
Z \/Q”n' T Vnl (49)
for all z € C and = € R. Define the subset V = {¢, | z € C} where
(bz(w) — W71/467§2/2+ﬁ2$71‘2/27 (410)

for almost all x € R and all z € C. Define the function K : C x C — C of positive type by

K(z,w) :ZZ C = e, (4.11)

n!
n=0

for all z,w € C. By Theorem 4.2, the frame transform W : H — C% defined by

(Wf) (2) = 7r_1/4/ e_zz/2+‘/§”_$2/2f(x) dux, (4.12)
R

2"

for all z € C and f € Ly(R) is a unitary map. Moreover the set {z = — | n € Ng} is an

1.2
< s . H, 27 .
orthonormal basis in C%, since {g, : x — % | n € Ng} is an orthonormal basis in
nlymT

Lo(R) . The inner product of the functional Hilbert space is characterized by the integral

(@, W)es == / B(2)U(2)e 1 d, (4.13)

™

2n

for all ®, ¥ € C%, since this inner product makes the set {z — = | n € Ng} orthonormal.

The functional Hilbert space C% is called the Bargmann-space of dimension 1. It will be
denoted by B. The generalization to higher dimensions is straightforward and therefore
we only give the reference [B].

Define the harmonic oscillator operator H on Ly(R) by

(0 - V() — 3 1(w)). o

N | —

(Hf)(w) =

for almost all z € R and all f € D(H) = {f € La(R) | dzgf € Ly(R)AMS € Ly(R)},
where (M ) = y*f(y) for all y € R.. The basis elements g, are eigenfunctions of
H with eigenvalue n for all n € Ny, i.e. Hg, = ng, for all n € Ny. The operator
H is a self-adjoint positive operator and therefore —H is an infinitesimal generator of a
strongly continuous contraction semi-group of self-adjoint operators denoted by ¢ + e .
Obviously, e~ g, = e~t"g, for all t > 0 and n € Ny. Denote the inverse of e=** by e'# for
all t > 0.

With the operators e *# and e we want to construct a Gelfand triple as in (3.13).
Therefore H; = e (ILy(R)) must be a functional Hilbert space. Strictly speaking,

tH

16



H; C Ly(R). As such, it consists of equivalence classes of measurable functions instead
of functions and cannot be a functional Hilbert space. For this moment we will write [f]
instead f for elements of Lo(R). It turns out that every class [f] € e (ILy(R)) has a
unique continuous representant f. Now H, is defined to the linear space of this continuous
representants, equipped with the norm [|hlly, = ||e#[h]||L,®). The space H; is a Hilbert
space of its own right. Moreover, it turns out that H; is a functional Hilbert space.

Let [f] € H, and write [f] = 522 calgn]. Since [f] € Mo, [ ]I, ) = 30 leal?e?™.

Define the sequence {fx}nen of functions on R by

= Cognlx (4.15)

n=0

for all z € R and N € N. Then

N N N
\fn(z) = fu(z)] < Z lengn ()] < k Z len] = Z |cn|et”e_t"
n=M n=M n=M

N N
k
< k| D Jealern | S et < B, (1.16)
n=M n=M L—e 2

for all z € R and N > M € N. Hence fy converges pointwise to a function f on
R. Moreover, it converges uniformly on R . Hence it follows that f is the continuous
representant of the equivalence-class [f]. Naturally this representant must be unique.
Moreover, by a same estimate as above

k
ﬁ”et Lf ]HM(R \/7%

for all z € R. In the sequel we will not use the notation [f] for elements in Ly(R) anymore.

f(2)] < ——|fll, (4.17)

Lemma 4.3 Lett > 0. The space Hy = e *H (Ly(R)) with inner product (-, -); = (-, ™), g
is the functional Hilbert space with reproducing kernel

- Hn('r)Hn(y) efx2/27y2/2€72nt 1 2.Ty - %([E2 + yQ) COSh(2t)

L e e 1— —4ty—3
t(2,9) 27n! (L=e) 2 exp sinh(2¢)

n=0

(4.18)
for all x,y € R.

Proof:
From (4.17) it follows that H, is a functional Hilbert space. The set {e~"g, | n €

N} is an orthonormal basis for H;, hence the statement follows by Theorem 4.1
and Mehlers formula 4.7. OJ

17



By applying the Cauchy-Schwartz inequality one easily obtains the following inequality,

P < 1B Nl = 171 (1 = o) exp | 22 (4.19)
for all z € R. For all f € H; and x € R.
Lemma 4.4 Lett € R, then V C 'H;. Moreover,

o, = derz, (4.20)
for all z € C.

Proof:

Let z € C. Then

e tH — ()"
. =e Zgn N Zgn .—;gnm = Pet
This proves the statement. OJ

The lemma implies that eV is dense in Ly(R) since e "4V =V and V is dense in Ly(R).
This proves the final assumption in the Gelfand triple (3.13). Analogous to section 3.2, we
introduce the operator A, = We 2.

Corollary 4.5 Lett > 0. The operator A, = We "W =1 is given by
(4:5)(=) = Fle'2), (4.21)
forall z€ C and f € (C%t

Proof:
Let f € C%,. Then

(Atf><z) = (We_tHW_lf)<z) _( _tHW f gbz)]Lz(]R = (W f e_tH¢z)L2
(Wilfa ¢e—tz>L2(R) - (WW lf)( ) ( )

for all z € C. O

Since A;f is only a re-scaling of the functions f, it easily follows that

_ 1 s
1, = 1B 11 =+ [ 1r(e'2) e s (122)
for all f € %B;. Moreover, the reproducing kernel K; : C x C — C is given by

Ki(z,w) =e : (4.23)

18



for all z,w € C. Hence,

)] < N fllme2e ", (4.24)

for all z € C and f € 9B,. This space also frequently occurs in [B], but is not used in the
context of a Gelfand triple. .
We recall that the function ¢, : C — C is defined by

bu(2) = bal(w) = nz;gnm%, (4.25)

for all z € C and =z € R.

Lemma 4.6 The functions ¢, satisfy the following inequality
|6a(2)] < Ay/[2le” /2, (4.26)
for some A > 0 which is independent of x € R.

Proof:
Let x € R and z € C. Then,

62(2)] = |- (@ izgn f|_2\gn \%g Z

The entire function F': R — C defined by

o0
=3 e
)
= vm!
for all » € R, has the asymptotic expansion,

F(r) = (8m)"*/r{l -

1
16 5 —l—O(ﬁ)}, r — 00.

See [0, Ch. 9, §8, pp. 307-309]. Hence the statement follows. O

Theorem 4.7 Lett >0 and f € H;. Then

f(x) = (s, Wf) = /Céx<z>(Wf)<z>e'Z'2dz, (4.27)

for all z € R.
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Proof:
Let f € Hy and t > 0. Then W f € 9B,. Let x € R. By (4.23) and Lemma 4.6,

1£(2)ha(2)] < Ay/|z]e 2 0He 7,

for all z € C. Therefore the integral in (4.27) is well-defined. Moreover,

/C 0o(2) (W) () dz = / J&E&Zgn

= ]&LH;OZ%@/ %Wf)(z)e—'z'zdz

)(z)e"z‘de

= hm Zgn gn, LQ(R) - f(@

Hence the statement follows. O

By (3.14) we obtain that

f=lime ™ f = hm (z— / ba(2 Y(Wf)(et2)e —leP? dz). (4.28)

t10

for all f € Lo(R).

4.3 Laguerre polynomials

In this section a transform introduced by Bargmann in [B] will be dealt with. The image
space frequently occurs in the sequel.
Consider the generalized Laguerre polynomials defined by

LO)(z) = Lergo (i>n e (4.29)

n! dzx

forall « > —1,2 > 0 and n € Ny. The generalized Laguerre polynomials have the following
generating function

exp[—z(1+ 2)/2(1 — 2)] _ /2 i L) (z)z", (4.30)

(1 — z)att

N[

for ,a > —1,2 > 0 and |2| < 1. For fixed a, the set {g, : z — (#@) e~?/2 () | n e

Np is an orthonormal basis in Ly((0, 00), 2%dx).

20



Let o > —1 be fixed and let D = {z € C| |z] < 1} be the unit disc. Set V = {gb,(za) | z €
D} where qb,(za) is defined by

N exp[—z(1+%)/2(1 — 2)]
o\ () = e (4.31)
for all z € (0,00) and z € D. Define the function K(®) : D x D — C of positive type by
I(n+a+1), _ [(a+1)
(o) — n _ _
K'Yz, w) = nE:D - (zw)" = 1= om)ort” (4.32)

forall z,w € D. Then by Theorem 2.3 and 4.2 the frame transform W, : Ly((0, 00), z%dx) —
C%a) defined by
*exp[—x(1 4 2)/2(1 — 2)] o
(Waf) (2) = / (12 f(z)z® de, (4.33)

0

1
forall f € Ly((0, 00), x*dx), is a unitary map. Moreover, the set {a,, : z — (W) ?n |n e

Np} is an orthonormal basis for C.,,.

If o > 0 there exists a useful characterization of the functional Hilbert space. First we
recall an elementary result. By definition of the beta-function,

/1 7,2m+1(1 . r2)°‘_1dr _ )
0

4.34
20(a+m+1)’ (4:34)
for all @ > 0 and m € Ny.

Theorem 4.8 The space C%Q) consists of all analytic functions f : D — C for which

1 2 2ya—1

— 1— e d ) 4.

i | P = P due) < o (4.35)
Here du stands for the normal Lebesque measure on C. Moreover,

. 1 TN 2\ya—1

(F9)ez,, = =7 [, TEE = ) dp(a), (4.36)
forall f,g € C%a).

Proof:

First, we prove the orthonormality of the set {a, | n € Ng}. Let n,m € Np.

Then

- 1 21 )
/ (D)1 — |22 du(z) = / / Pt Gimm (1 p[2)e-T dgdy
D 0 0

1
= 27r5nm/ prmleim=meq _ jp2)e=t gy
0

I'(a)m!
F'm+a+1)

= Tum
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where (4.34) was used in the last step. This proves the orthonormality.

Secondly, let f be an analytic function on D. Write f(z) =~ ¢,2" for all
z € D and define fx by fn(2) = ZTJLO cmz" for all z € D. Then

N

1 _ oz 1 d . 2
- @R ) = 3 e
Hence the integral in (4.35) converges if and only if the sum » > F(ngj‘_—aﬂ cn)?
converges. Moreover, in case of convergence
LR ) = 3 e )
T Jp = T'(m —l— + 1) e 8o
and therefore the theorem follows. O

In accordance to [B] the space C¥.,) will be denoted by Sa for a > 0.

Finally, consider aw = 0 which leads to the space §o = (O) Note that the assumption
a > 0 is crucial in Theorem 4.8 and therefore the theorem is not applicable to §o. Since
{z + 2" | z € Ny} is an orthonormal basis for Fo, the space consists of all analytic functions
f that can be represented in power series of the form

= Z ann, {Cn}nENo c EQ(NO) (437)
n=0

for all z € D.
Lemma 4.9 Let f € §g. Then

1 2

1£15, = 5 lim i |f(Re')[Pdé. (4.38)

Proof:
Let {cy}nen, € (2(Np) such that f(z) = > 7 c,2" for all z € D. Since
{z +— 2" | n € Ny} is an orthonormal basis for §y, the norm of f is given by

||f||%0 = >, lea*. Moreover

1 2T ] 1 © 2T )
- \f(Re‘d))\quﬁ _ _Zzacm/ Rnerel(mfn)gb d¢

2 2w
0 n=0 m=0 0
[e%s)
— § : |an|2R2n
n=0

for all 0 < R < 1. Take the limit R T 1 on both sides and the statement follows.
O



Note that the above proof also shows that §y consist of all analytic functions on D such
that the limit in (4.38) exists.

The reproducing property of the reproducing kernel can be proved directly from Cauchy’s
integration theorem. By (4.38) the inner product of f, g € § is given by

1 27 ]
fr— 1 JR— 1¢ 1¢
(fa g)@o lérgll o 0 f( € ) (Re )d¢
F(Re)g(Re*) B
- 1%111%/ f(Re?)g(Re )Rl¢d¢
— tim—— [ Flw)g(w)~d
= gy [, Tlotw) v

where Cp = {z € D | |z|] = R} for all 0 < R < 1 (with positive direction). Let z € D and
=K then

.1 1
(K.,9)3, = hm—,/

R 271 Jo, 1 — 20 w

1 1
= lim — d
flerrll 2mi /CR —zR g(w) dw

= limg(Rz) = g(2).

There also exists a characterization of the norm in $)o which is similar to the characteriza-
tion of the norm of §, as formulated in Theorem 4.8.
Define the Euler operator £ on §y by

CHICEE IS (1.39)

for all z € D. It is obvious that the basis elements z — 2" are eigenvectors with eigen-
value n for all n € Ny. The domain of £ can therefore be defined by D(E) = {z —

Do n2™ | {enn®tnen € £2(No)

Theorem 4.10 The space §o consists of all analytic functions f on D for which

» [ TFOEIE) duts) < . (4.40)

™

Here du(z) stands for the normal Lebesgue measure on C. Moreover,

()= = | TFEE(e) o= (1.41)

for all f, g € To.
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Proof:
Let f be analytic function on D. Write f(z) = > " ¢,2", for all z € D. Define

fn by fn(z) = ZTZLO cn2™. Then

- /D (I + &) fn(2)fn(z) du(z) = %ZZQ% /D (n+ 1)z"2™ du(z)

T n=0 m=0
N 1 N
= Z/ (2n + 2)r*"t dr = Z lcal?.
n=0"0 n=0
The theorem follows by a same argument as in Theorem 4.8. 0

4.4 Gegenbauer polynomials
4.4.1 Introduction

The Gegenbauer polynomials of order A\ are defined by the following generating function
(1—2xz+2%) 7 =) Ch(z)2", (4.42)
n=0

which is valid for —1 < x < 1, 2] < 1 and A # 0. In this section we consider the
Gegenbauer polynomials of order A\ > 0. Apply the operator zdilz + 2)X on both sides to
obtain

2A1—2z2)
(1 —2zz + 2)M1

i CMx)(n +2N)2", (4.43)

forall -1 <z <1, |z|] <1land XA #0.

1
For fixed A > 0, the set {g,, : z — (%) *CMz) | n e Ny} is an orthonormal basis
in Lo((—1,1),du) where,
L(A)?

du(z) = 21*2/\7r(1 — 22" 2du. (4.44)

Let A > 0 be fixed. Set V = {¢" | z € D} where ¢, is defined by

20(1 — 2%2)

4.4
(1 — 227 + )M+ (4.45)

oM (z) =

for all z € D and almost all z € (—1,1). Obviously V' C La((—1,1),du). Define the
function KW : D x D — C of positive type by

I(n+22)(n+20)?%_,
i+ ) w"z (4.46)

KW (z,w) =

n=0
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for all z,w € D. By Theorem 2.3 and 4.2 the frame transform W) : Ly((—1,1), u) — C¢,
defined by

(Waf)(z) = Fl2)(1— 2> 2 da, (4.47)

[()\)221-2 /1 2A(1 — x2)

T 1 (1 =222 4 22)M1

for all f € Ly((—1,1), 1) and z € D, is unitary. Moreover, the set {a, | n € Ny} is an

orthonormal basis for Cg »  where a, is defined by
KX

0 = (1)) = (T2 o (DD L, g

for all z € D and n € Ny. The following theorem characterizes the space C?

KM
Theorem 4.11 The space C%A) equals Fay as a set. Moreover,
7l < 1flleo,, < VAl (1.49)

for all f € CQ(A).

Proof: )
3

Note that z — <W> z" was an orthonormal basis for §2,. Now the

statement easily follows by the estimate

<n+2)\ <

2
n+\A —

for all n € N. O

4.4.2 The semi-group generated by the Euler operator
Define the Euler operator £ on CQO\) by

(Ef) (2) = z%(z), (4.50)

for all z € D and that z — 2" are eigenvectors with eigenvalue n. The domain of £
can therefore be defined as {f = Y7, chan | {ean}nen, € l2(No)}. The following lemma
follows by straightforward calculations.

Lemma 4.12
(f:9)en = (E+NE+20)7 f9)g, (4.51)

for all f,g € C2

KM
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Proof:

Obviously £+2) is a positive operator with the eigenvectors a,, with eigenvalues
n+2\. Therefore (£+2))"! is well-defined and has the same set of eigenvectors
a, with eigenvalue (n + 2X\)~!. The operator (€ + \)(€ + 2X\)~! eliminates the

factor 4/ ::2’\)\ in (4.48). The theorem follows by Theorem 4.8. O]

It is easily seen that —& is a closed dissipative operator and therefore generates a con-
traction semi-group t — e ‘. The (bounded) operator e ¢! has eigenvectors a, with
eigenvalues e for all n € Ng and ¢t > 0. Let f € C2,) and write f(z) = > " ¢,2" for
all z € D. Then,

o0

(e f)(= Z cne 2" = fe7'2), (4.52)

n=0

for all z € D. Hence e ¢ is a scahng of the functions in C2,,,. Note that it is crucial that

t > 0, since only then we obtain e™'z € D for all z € D.
From standard theory of evolution equations it follows that

(=& —sI)7 ' f = /OO e Ste ™ fdt, (4.53)
0

for all f € C?
integral

(€ =sI)7'f)(z) = /OOO e (e f)(2)dt = /000 e * e ™)dt, (4.54)

for all f € ng and z € D.
Theorem 4.13

KX

KO- Since (Cgm is a functional Hilbert space, this simplifies to an ordinary

(f9en, = (f19)5, +22 / (e fieg), e dt (4.55)
K(a 0
forall f,g € CK(Q)
Proof:
Let f,g € (CK(A) Then
(F)en,, = (E+NE+207.0),,

(

(f.g (8+2)\ Lt g)%
= (f’ )gm )‘< —2)\)" f’ 9)32

( (

f; 9)32/\ )\ / —2)\t —té'fdt g)
_ . —t&
— (f,g)&2A —1—)\/0 e 2)‘t(e t f,g)&%dt.
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For the sake of symmetry use the substitution ¢ = ¢/2 and use the self-

adjointness of e~*¢ to obtain the statement.

Using (4.53) one also obtains an alternative formula for the reproducing kernel.

Theorem 4.14 The reproducing kernel K is given by the following integral

o0 2\ + e W
_ -
K(z,w)F(Q)\—l—l)/O e t(l—e—tzw)2/\+2dt
Proof:
Let w € D. By (4.46),
= I( n—|—2)\+1) . T x+

for all z € D. Therefore,

T(2) + 1)(2A + 20)
(1 _ Zw)2>\+2

(€ + N Kw)(2) =

for all z € D. The statement now follows by applying (4.53).
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5 The classical Fourier and Laplace transforms

5.1 The Fourier transform as a frame transform on a Gelfand
triple

In his section the classical Fourier transform on Ly(R) is interpreted as a special kind
of frame transform. Of course the function z — e“* is not an element of Ly(RR) for all
w € R. Nevertheless, by making use of a Gelfand triple H! — Ly(R) < H~! for which
the space H~! does contain this functions, a frame transform can be defined which leads
to the Fourier transform.

In this section the following two result will be used, which we will not prove.

e A result due to Cramer: |H,(z)| < ky/n2"2e**/? for all # € R and n € N, where k is
a constant. See [C].

e Mehler’s formula for Hermite polynomials

o0

2zyw — (22 + y*)w?
(1 —w?) ’

n!

(w/2)" = (1 — w?®)"2 exp (5.1)

n=0

which is valid for all z,y € R and w € D = {z € C | |2| < 1}. See [MOS, §5.5, pp.
259].

Define the operator R on Ly(R) by

2
(RF) (@) = (2 — o5 f) () (5.2
forall f € D(R) ={f € Lo(R) j—;f € Lo(R)AM f € Lo(R)}, where (M f)(y) = y*f(y) for
all y € R. Tt is well-know that this operator has a complete set of eigenvectors {g, | n € Ny}
with eigenvalues )\, = 2n + 1. Moreover, R is a positive unbounded and self-adjoint
(unbounded) operator, with bounded inverse.
Next, we construct the Gelfand triple

H;(R) — Ly(R) — H_;(R). (5.3)

Note that the sets {3225 | n € No }, {9, | n € Ny } and {(2n + 1)g, | n € Ny } are
orthonormal bases for respectively H;(R), Lo(R) and H_;(R).

The following theorem is very easily proved by using the Fourier transform on Lo (R).
But since our goal is to construct the Fourier transform, it would be sloppy to use it in the

proof. Therefore the proof is somewhat lengthy and uses the result by Cramer.
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Theorem 5.1 The space Hi(R) is a functional Hilbert space with reproducing kernel K’
given by

o)

]. 2 2
KT - H,(x)H,, (y)e * 2e v /? 5.4
(z,y) nZ:O l(2n + 12/ (z)H,(y)e e ; (5.4)

for all z,y € R. Moreover, the sum converges absolutely.

Proof:

Since H!(R) as a set is equal to D(R) and hence a subset of Ly(R). Strictly
spoken, its elements are not functions but classes of functions. Therefore it
would be better (but tiresome) to write [h] instead of h for its elements. The
main purpose of this proof is to prove that making those classes is obsolete.
It turns out that every class [h] in H!(R) has a unique analytic representant.
Instead of considering classes, we only consider the analytic representant.

Let f € H'(R). The set {559 | n € No} is an orthonormal basis for H;(R).
Hence f =" an,g, € H'(R) if and only if

o0

> lan(2n+1)* < oc.

n=0

Define the function fy by fy(z) = ZLO angn(x), for all N € N and = € R.

Since
Y = gn(e
Fv(@) = fur(2)] < _ZMyangn(x)\s Zranr (2n+1)2 _ZM 2n+

k2

N N
< n22 1)2 R —
= Z‘“ [*(2n+1) nzzM(zn+1)2

< ”fN_fM”Iz\/—

for all N > M € N and 2 € R, the sequence of analytic functions {fx}yen
uniformly on R to an analytic function f. By uniform convergence, it is also true
that Rfy converges uniformly to Rf. In addition Rf € Ly(R) and [f] = [f].

By a same estimate as above we obtain

()] < ||f||12’%,

for all x € R. Hence H; is a functional Hilbert space. The rest of the statement
follows by Theorem 4.1 and Mehler’s formula. 0
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Define for oo € R the vector ¢, € H_;

o0 o0

bu= 3 gula)gn = 3 9 (o0 4 1), 5.5
n=0 n=0

This vector is well-defined because {(2n+1)g, | n € Ny} is an orthonormal basis in H_;(R)
and {g,(a)/(2n + 1) }ren, € (2(Np) for all o € R.
Set V = {¢, | @ € R}. Define the function K : R x R — C of positive type by

 9n()gn(8)

K(o, 8) = (6u,00)e = Y 500,

(5.6)

n=1

for all a,3 € R. Obviously K = K and therefore C%¥ = H;(R). By Theorem 2.3, the
frame transform W : (V') — H; defined by

(W) (@) = ($ar f)-1, (5.7)

forall f € H_;(R) and € R is unitary. With a simple argument it follows that (V) = H_;.
To this end let f € V*, then

o0

1"g,(«
0= 60 = D 50 g ) 53)
for all . Tt is obvious that «a +— (¢4, f)_; belongs to H;(R), by the fact that {(2n +
1)gn | n € Ny} is an orthonormal basis for H_7(R) and that {5225 [ n € N} is an orthonor-
mal basis for H;(R). Moreover, (5.8) implies that ((2n + 1)g,, f)—r = 0 for all n € N and
therefore f = 0.

Since W is a unitary map from H_;(R) onto H;(R) and R a unitary map from H; onto
Lo(R) and from Ly(R) onto H_;(R) it follows that RW R is a unitary map from Ly(R)

onto Ly(R). Note that for f ="  a,g, we have

RWRf =) i"angn. (5.9)

n=0

Hence RW RS equals a +— (¢, f) for all f € H!(R).
Finally we connect the transform RW R to the classical way of introducing the Fourier
transform. Suppose f € H'(R), then f(z) = f(z)(1 + 2?)752 for almost all z € R.

By definition M f € Ly(R) and therefore f € Li(R) since f is a product of two Ly(R)
functions. Let v € R. Then

/R =197 £ () dx, (5.10)
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is well-defined for all f € H/(R). Write f = >">°  a,g,. Then by Mehler’s formula

—itaz—t (:c o?
T f(2) de (5.11)

1 —iax o
75 e s = i o
= lim / 3 tnl@)ga(a)(0)" F(z) dz (512)

t—1

— 1imY g.(a) /R on(2) (i) () da (5.13)

t—1 —
= lim ) a,ga(@)(it)" =) anga(@)i" = (da, f).  (5.14)
n=0 n=0

Hence we can conclude that ¢, equals z — €'“* in distributional sense. In addition,

(RWRf)(a = 7 / — f(z) du, (5.15)

for all « € R and f € H/(R).

5.2 The Laplace transform

In this section we interpret the Laplace transform as a frame transform. Let H =
Ly((0,00)) and C* = {z € C | Re(z) > 0}. Moreover define the set V = {¢, €
Ly((0,00)) | z € C*} where

b.(t) = e, (5.16)
for almost all ¢ € (0,00) and all z € C*.
Lemma 5.2 The set V' has a dense span in La((0,00)).

Proof:
As a consequence of the approximation theorem of Weierstrass, the set of poly-

nomials is dense in Ly((0,1),dx). Suppose f € V+ for some f € Ly((0,00)).
Then in particular

0 = /Oooe_t"f(t) dt:/olx"f(—log(x)) édx:/olx"_lf(—log(:v)) dz,

for all n € N. Hence f = 0. [

Define the function K : C* x C* — C of positive type by
1

z+w

K(z,w) = (92, bw)La((0,00)) = / e Fe Mt = , (5.17)
0
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for all z,w € C*.

Since (V) = H, the frame transform £ : Ly((0,00)) — C%" defined by
(L) (2) = (62 Praomey) = / e f (1) dt, (5.18)
0

for all f € ILy((0,00)) and z € C*, is a unitary map. Note that C%" consists of analytic
functions. Fix x > 0 and define f, by

x e @f(t) t>0
fm(t)z{ 0() t;), (5.19)

for all x > 0 and f € LLy((0,00)). Then it is obvious that for all z > 0 we have fa € Li(R)
and (Ff,)(y) = \/%(ﬁf) (x+1y) for almost all y € R. Next we prove that Lim.,of, = fo.
Let € > 0. Then take a R > 0 such that

/ FoP dat < . (5.20)
R/Bo,r 2
Take z > 0 such that 1 — e *# < \/5\@ . Then we see that
ll foll2
I1E=fille = [ 1Ga= EIOF dt+ [ 1Ga- RO de
R/Bo,r Bo,r

= [ Rma—emEa [ han e
R/Bo,r

Bo,r

. . . e €
< [ VbR e [ o a<Ses Gon

Bo.r 2

and the statement is achieved. Since l-i-m-xl()fx = fo we also obtain l.i.m.xw}"fx = J:fo
and Lim., o (y — (L£f)(z +1iy)) = Ffo. Note that || F follL,) = ||f]|lLs(0,00)- As a result
we obtain

T Y A Iy .
(F, G)C%+ = Eﬁ)l%/RF(x +1iy)G(x + iy) dy, (5.22)
for all F,G € C%". In particular
1 1
Flw)=lm— | ——F iy) d 5.23
() =lim 5= [ — - F(a +i9) dy, (5.23)

for all w € C* and F € C%".
We now give an alternative proof of (5.23) using the theory of complex functions. Let
FeC% weCtand 0 <z < Re(w). Let R > 0 be sufficiently large, then

Flw+z)= L/Sus Z;F(z)dz (5.24)

27 —w—2x

by the residu Theorem and the fact that F' is analytic. The contours are given by S; =
{z€C| Re(z) =2 A|Im(z)| < R} and S;;y ={2 € C | |z —z| = RARe(z —x) > 0}.
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First we prove that the integral over Sj; vanishes if R tends to infinity for all F' € (C(Ic(+
and all x > 0. To this end, we make use of the inequality

[F) =12 )l < gz 1]z = 1<Z)|| e (5.25)

( )
for all F = Lf and z € C*, which follows by the Cauchy-Schwartz inequality. Let F' € C%*.
Parameterizing the contour Sy gives

1 1 1?1

— ——F(2)dz =

— : F(z + Re')Re'*d
27 Jg,, 2 —w—x 21 J_p o Rel? —w (x4 Re) Redg

for all F € CE. The integrand can be estimated by

1Pl

F iP) Rei?| < .
(x-|-Re )Re |_ |Rel¢_w|(I+Rcos¢)’

| (5.26)

Rel¢ —w

forallz >0, F, we CT R> 0 and ¢ € [0,27).
Let e > 0.There ex1sts77 >0,R; > Osuchthat |w—Rye?| > Ry/2forall ¢ € [—7/2,7/2]

and —’Z <3 ;ﬁe N and R1 o < . For R > R; the same inequalities are satisfied
cC

3||F|| cCt

and we find

1 /2 1 y ¢d 1 /2 1 ” ” 1
— —F Re'?) Re! < — —F Re'?) Re'
27r/,r/2Re1¢—w (z + Re'”)Re'?dg| < o | | R w (z + Re'”)Re'| do
B 1 /v7r/2 HFH(C%JF d¢
21 ) .o |Re —w|(z + Rcos ¢)
—7/2+n 7/2-n /2
< [ e
—7/2 —7/2+4n m/2—n
_ 1P llegr Ay 2(m —20)
2m xr x4+ Rcosn
2
< Ziio. (5.27)

3 3
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Hence we proved that for all F'€ C%" we have

F(w+z)= lim L/ ;F(z) dz. (5.28)
s

R—o0 271 L2 —w

Parameterizing S one finds

1 1 .
Flw+zx) = o /R —iy+x+wF<x+ly) dy. (5.29)
Now let x | 0 and by continuity of F' we proved the reproducing property.

Note that the structure of the space C‘? resembles structure of the space §o. This
resemblance will be clarified by a conformal mapping that relates the two spaces. First
we construct an orthonormal basis in C%". The set {e, : © — e */2L,(z) | n € N} is an
orthonormal base in L (0, 00).

Lemma 5.3 The image of e, is given by

)

_ 2
(Wen) () = T %)nﬂ, (5.30)
for all z € C* and n € Ny. Hence, the set {a, : z — (z(iili):l} is an orthonormal basis for
c% 2
K .
Proof:
Let n € Ny. Then
1 e —zx tx d n T, n
(Wen)(z) = o e et /2(%) [e™"2"] dx
1 1 o d n—1
— (s —zx Fx/2( —x,..n
O—i—n!(z 2)/0 e e (dx) [e™"2"] dx
1 1 o
= =—(z— —)"/ e 2Tt 207y g
n! 27 Jo
1 1 n n d n > —(z+YHz
= H( —5) (1) (@) /0 TR dy
1 1 dn 1
- — (1) (=
n!(z 2) (=1) (dz) z—l—%
IRNCET L
<Z+ %)n—i—l
for all z € C*. O
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Corollary 5.4 For e ** the following decomposition holds

Z + 1 )nJrl’

for all z € C* and x > 0.

1
One readily verifies that the Mobius transform defined by z +— ;i maps C* onto
2

1+z

D = {z € C| |z| < 1}. Moreover, the inverse is given by z — 55

T:C% — CP by

. Define the operator

(Tf) () = 5 :Zf <21j2zz> , (5.32)

for all f € C% and z € C*.

Lemma 5.5 The image of the basis element a,, is given by
(Ta,)(z) = 2" (5.33)

forall z € D and n € Ny.

Proof:
Let n € Ny. Then
(Tan) () = 1—za"<2—22>_1—z<%+%1 )"H
2 (-1 (Lre—142"
n+1:2 n+1:Z
1—2(1#—%) (1—z+1—|—z)
for all z € D. O

Corollary 5.6 The operator T' defines a unitary map from (C‘]C(+ onto §o.

Note the resemblance between (5.22) for C%" and (4.38).
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6 Sampling Theorems

In the literature sampling theorems are developed to answer a basic question: given a set
H = CF consisting of complex-valued function on a set E, does there exist a subset S ¢ E
such that each function f € H is completely determined by its values on S?7 A famous
example is the space of square integrable functions on R for which the Fourier-transform
has support in [—a, a] for some fixed a > 0.

6.1 A general sampling theorem

In most of the classical sampling theorems, one construct a space of functions for which
a sampling theorem holds, by means of a transformation between two Hilbert spaces. In
this section we prove a general sampling theorem based on this idea. Theorem 2.3 will be
the key for this theorem.

Let H be a separable Hilbert space and V' = {¢, | * € E} a labeled subset of H,
for which (V) = H. Define the function K : E x E — C of positive type by K(z,z') =
(¢, b )3, for all z, 2" € E. By Theorem 2.3, the frame transform W : H — C% : f+— W f,
where Wf:E — C: 2 (¢, )y is unitary.

Theorem 6.1 Let {x,}nen be a sequence such that {¢,, | n € N} is an orthogonal basis
for H. Then,

= 3 fla) A0, (6.1)

neN l’n, J,’n)

for allz € E and f € C%. Moreover,

T g i 6.2)

neN K(ZL‘n, ZEn)
for all f € CE.

Proof:
Since W is unitary, the set {K,, | n € N} is an orthogonal basis for C% and
hence {\/% | n € N} is an orthonormal basis for C% . Let f € C%. Then,

(6.3)

f:ZﬁnKz e \/K (T, ) \/K (T, ) _Zf xn n,xn)

neN

Therefore the second statement follows. For the first statement take the inner
product with K, for all z € E. O

This is a generalization of a theorem by Kramer, where H is forced to be equal to Ly ((a, b))
for some pair a < b. See for example [Ab] or [H].
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6.2 A special subspace of Ly(R)

As a first application of Theorem 6.1 we consider a famous sampling theorem on a space
of analytic functions. Consider Lo((—m,7)). Define the subset V' as

e 7| 2€C} (6.4)

1
V2T
Define the function K : C x C — C of positive type by

Lo : __
K(w,z) = _/ plw(w=2)q , — w, (6.5)

27 m(w —Z)

for all w,z € C and w # z and K(z,z) = 1 for all z € C. Then the frame transform
W : Ly((—7, 7)) — C% defined by

W) = / ¢ f(w (6.6)

for all f € Ly((—m, 7)) and z € C is unitary by Theorem 2.3.

The space C% is easily characterized. Define the space C% = {F|g | F € C%} which is
again a functional Hilbert space by [Ma, Lemma 1.14.] or [Ar, §5]. Let f € Lo((—m, 7)) and
define f € Ly(R) as f on (—,7) and zero outside. Then it is obvious that W fi, = F~'f.
Hence the functional Hilbert space C% is a Hilbert subspace of Ly(R) and it consists of
all functions f for which the Fourier-transformed F f has support in (—m,7) . Note that
those functions are analytic and that they can be extended to entire functions. The space
C% precisely consists of the analytic continuations of these functions. The space C% will
play an important role in the sequel and therefore it will be denoted by the symbol $).

The following Theorem is a direct consequence of Theorem 6.1.

Theorem 6.2 Let f € $. Then

> K ) = 3 ) T, (6.7

nez ne”L

for all z € C and

IFI =" 1F ()l (6.8)

neL

Proof:
The set {a, : w+— \/%e_i“m | n € Z} is an orthonormal basis in Ly((—m,7)).00

The set of normalized Legendre polynomials {z — y/n+ 1P,(z) | n € No} is on

orthonormal basis in Ly((—1,1)), where P,(x) = CZ(x) for all —7 < = < w. Therefore
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{gn : x — n::% P,(x/m) | n € Ny} is on orthonormal basis in Lo((—m, 7)) The function

W

x +— ™% admits the following decomposition with respect to this basis

6t = 3 10+ )y 2y (1) Paa /), (6.9)
2’V w

for all —m < & <7 and w € C, see [MOS, §5.3 pp. 227]. Note that

o0

2 —1)m W\ 2m
o (@) :;W (3) (6.10)

defines an entire function on C, for all n € Ny. By Theorem 4.2, the set

0w [Cn+ 17
Wi Tjn_,_%(ﬁw) | n € No}, (6.11)
is an orthonormal basis in $).

As a result the following decomposition follows,

b Ve ST 612

for all z,y € R.
Next we introduce an operator which is needed in the following section. Let 0 < d < 1.
Then the operator B, defined by

Bar)i) = { G0 LS (619

for almost all x € (—nd, 7d) and all f € Lo((—m, 7)) maps Lo((—m, 7)) into itself. More-
over,

(WBdf)(QZ) = é _ﬂdf(w/d)ei“’x dw:/;ﬂ f(w)ediwz dw
= (Wf)(dz) (6.14)

for all f € Ly((—1,1)) and = € C. Define the operator 7; on $) by
(TiF) (@) = f(da) (6.15)

for all x € C. Then WB,; = T,;W.
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6.3 A space of g-functions

In this section the space &, will be introduced for 0 < ¢ < 1. This space is a functional
Hilbert spaces consisting of analytic functions on a open subset of C containing the interval
(0,00). The norm of an arbitrary function in &, will turn out be

I1fllg = log— Z £ (q™)*q" (6.16)

n=—oo

for all f € &,. Besides a different constant in front of the summation, this is a well-known
expression in the theory of ¢-functions. Moreover, we provide a unitary map from the space
$ from the preceding section onto &,. This map will help us analyzing the space &,. In
particular we provide a sampling theorem for the space &,. For an alternative sampling
theorem for special ¢g-functions, see [Ab].

Let S = {z € C | z < 0} be a cut in the complex plain. Define the log : C/S — C by

log(= / —dw, (6.17)

for all z € C/S. Define 2 by 2® = |z|e'®8% for all z € C/S and 0 < a < 1, where
—7 < arg z < w. The square root 22 will be denoted by /.
Let 0 < ¢ < 1. We recall that $ was the subspace of Ly(R) consisting of the analytic

continuations of functions in Ly(R) for which the Fourier transform has support within
(=, 7). Define the operator A, : § — C%/* by

log z
(Aqf)(z):T (log ) (6.18)

forall fe$H, ze€C/S.

Lemma 6.3 Suppose f € 9. Then A,f), .., € L2((0,00)). Moreover, [|Ayf, . lL>((0.00)) =
log 21 £l

Proof:
Let f € $. Use the substitution z = ¢=* in

1 [ 1 [ log 2 9 1
1og—/ f(2)Pdz = 1og—/ F (=23 _dx
qJ oo q.Jo log ¢ zlog 2

— /OOO (A f) (2)["dz.

This proves the statement. 0
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Denote the space A,(9), endowed with the norm || f{|y = || f|; ., [[L2((0,00)) for all f € Ay(9),
by &,. Recall that § is a functional Hilbert space with reproducing kernel

sin(zZ — w)

K(w,z) = (6.19)

(Z — w)
for all z,w € C.

Theorem 6.4 The space &, is a functional Hilbert space. The reproducing kernel L, of
&, is given by

. log z—1
1 sin T Rgz—logw

log *
LO(w) = LO(w, 2) = ——— (A K 106 ) (w) = — , (6.20
() (w,2) (log%)Q\/%( ! @M ) log%\/i_w(logz—logw) (6.20)

for all w,z € C/S, where K is the reproducing kernel of $. Moreover, @Aq defines a

unitary map from $) onto &,.

Proof:

By Lemma 6.3, the map —

log P
it is surjective by definition. Since $) is complete it easily follows that &, is
also a Hilbert space.

Let z € C/S. Then

T A, defines an isometry from §) onto &,. Moreover,

1 1
<—2Aquogi,Aqf> = =Kz, f)g
q q

\/g(]-og é) log q z log =
1 f(logz>
Wz \log!
= (4N)(2),
for all f € . Hence the statement follows. OJ
Theorem 6.5 Suppose ' € &,. Then
1 S n n
||F||§=10g5 > IF(@) P (6.21)
Moreover,
1 oo
F(z) :mga > F(¢")Len(2)q" (6.22)

for all z € C/S.

40



Proof:
By definition, there exist a f € §) such that F' = A, f.

0 (1 1
171 = [ lAnEReE= [ \f(ljif) as
:1%1/mu@szbg£§Hﬂmﬁﬂ%1§iKAﬁmm%”
7)o q q !

n=—oo n=—oo

This proves the first statement. The second statement easily follows by taking
the inner product of LY with f. O

6.4 Operators on &,
Recall that 7;f € ) for all f € $and 0 < d < 1, where 7 is the operator defined in (6.15).

Lemma 6.6 A,7; = Aq

-

Proof:
Let f € $. Then
1 logzy 1 ./logzy
(Aq%f) (2) = ﬁf<dlog%> - \/Ef<log L1> - (Aq%f) (2),
qd
for all z € C/S. [

Corollary 6.7 Suppose 0 < g < s < 1. Then &, is a Hilbert subspace of &,.

Proof:
log g

Define d = igg; < 1. Then A, = T4A,, since skes = ¢ and Lemma 6.6. It

follows that

®q = Aqﬁ = As,];lf) C Asfj = 657
since 7,9 C . Let f € &, then || f||, = ||f‘<0,oo)||L2((07oo)) =|flls- O

Let 0 < a < 1. Suppose F' = A, f € &,. Then

1 log 2 1 log 2
F(z%) = (A f)Y) = —4=fl—— ) = —=fla—— ) = (A Z.f)(z 6.23
) = (WNE = 2 (5,1) = o eg,1) = (AmNe . 62)
for all z € C/S. Hence z — F(2*) € &,. Define the operator S, on &, by
(SoF)(z) = F(2), (6.24)
for all F' € &, and z € C/S.
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= A7y = S4A,, forall0 <d <1 and 0 < q < 1.

1
d

Lemma 6.8 A
q

Corollary 6.9 Let 0 < ¢ < s < 1 and define a = iggg. The operator a.S, maps &,
unitarily onto Gy.

Proof:
The operator @At is a unitary map from H onto &, for all 0 <t < 1. The
t
statement now follows by the identity oS, = @AS(@AQ)_I. O
s q

6.5 A generalization of Lagrange interpolation

In this section we introduce a general way to construct functional Hilbert spaces of entire
functions together with a sampling formula. This construction covers most of the classical
sampling formulas.

The order A of an entire function ¢ : C — C is defined by

A= inf {u €R | lim max'z‘:ﬂf(’z)‘ — o} . (6.25)
er

r—00

et

If {,u eR | lim, maxal= VN 0} = o, then set A = co. Note that X is the smallest
number such that

M(r) <e™ ™, (6.26)

for any given e as soon as r is sufficiently large, where M (r) stands for the maximum of

|6(2)] on |z[ = 7.

Let ¢ be an entire function of order h < A < h + 1, where h an integer, which has only
simple zeros. Denote the set of zeros by {a, | n € N}. For the sake of simplicity assume
that 0 is not a zero of f. As a result of a theorem by Hadamard [Ah, §5.3, pp. 205-210],

> an| ™ < 0. (6.27)

neN

This result implies in particular that lim,, . ai =0.
For each zero a,, define the function L,, : C — C by

6(2)
Lo, (2) = { Gan) # 7 n (6.28)

¢lan) z=an’
for all z € C. It is clear that the functions L,, are entire functions and satisfy L, (am) =

&' (an)dmn, for all m,n € N.
Let {\, }nn be a sequence of positive real numbers such that

> ! e (6.29)
Anlan|?
neN
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Note that the sequence defined A\, = l|a,|"~? satisfies this equation. In particular this
implies that if h = 2 that the sequence defined by A, = 1 satisfies this equation.

Lemma 6.10 The sum
1
K(z,w):=>_ 1 Lan(2) L, (w) (6.30)

n

neN
1s absolutely convergent for z,w € C.
Proof:

Let z,w € C. If z or w equals a zero a,, the statement is trivial, since Ly, (a,,) =
&' (an)dmn. Now suppose that both are not zeros of f. The summand satisfies

Gl 1 16 1 [é(w)

|z —apl|w —ay] 2|z —an]?  2|w— a,|?

| La,, (2) La, (w)]| =

for all n € N. Tt is sufficient to show that > °° 0@ converges. By (6.27),

n=1 \,|z—an|?
lim,, .o == — 0. Therefore there exists a N € N such that |=| < £ for all
n > N. Hence

|o(2) 5 1 1
—_— <
n:ZNJrl Anlz —anl® T e n:;rl Anlan|? |25 =17
SRVAT L SRR o R
- /\n|an|2 (1_ |i|)2 - )‘n|an|2
n=N+1 an n=N+1

for all M > N. Hence the sum > °° L)‘QP converges. This proves the

n=1 \p|z—an
statement. O

The function K : C x C — C is a function of positive type. Hence it defines the functional
Hilbert space C%. As usual define the functions K, : C — C by K, (z) = K(z,w) for all

z,w € C and note that K, (z) = ¢/§i")Lan(z).

Theorem 6.11 The set {L%Lan | n € N} is an orthonormal basis for C%.
A

Proof:
Let n,m € Nyg. Then by Lemma 2.1 it follows that a,, a,, € C%. Moreover,

(Lan7 Lam)(C% = Lm—(Kan’ Kam) = )\n)\m

¢ (am) @' (an) ¢ (am)9'(an)
AnO.

nYnm

K(ay,ay)

This proves the orthonormality. By Theorem 4.1 it is also a basis. 0
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Note that the set {-L,, | n € N} consists of entire functions. Hence C% has a basis of
Ad

entire functions.

Theorem 6.12 The space C% consists of entire functions.

Proof:

Let f € C%. By the previous theorem, f can be written limit of a sequence
of analytic functions f = lim,, ., f,. Since C% is a functional Hilbert space, f
is also the pointwise limit of the sequence {f,}nen, ie. f(2) = lim, o fn(2)
for all z € C. We will prove that for every z € C there exists a compact
neighborhood U, of z such that the pointwise limit converges uniformly on U.,.
From this the statement follows, since the uniformity implies that f is also
analytic on the interior of U, and z was arbitrary.

Since

1f(z) = ()] < KL = £,

for all z € C and n € N it is sufficient to show that z — [|K,||* is locally
bounded, i.e. for all z € C there exists a compact neighborhood U, and A, > 0
such that K(w,w) < A, for all w € A,.

Let z € C. Separate the cases z = a, for some n € N and z # a, for all
n € N. Start with the last case. Set U, = {w € C | |w —z| < Linfpen |z — anl}-
Note that inf,ey|z — a,| > 0, since the set {a, | n € N} does not have an
accumulation point. Then,

$ WP N ol
= A |w — ap? = |z —anl? |1 = 22EP

o)

1
_ 2 | w=z
— Az —an? (1 - | 2=

an—2z

- 1
2 —_—
max |o(w)| ; WP

IN

> 1
2
{)2 < 4|p(w)| ; Anlz — an?

IN

for all w € U,. Hence, w — K(w,w) is bounded on U,.

Finally, consider the case z = a,, for a certain m € N. Set U, = {w €
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C | |w—z| < 5 infrennzm |2 — an|}

ZAWU}” _ _e)l® 3 Ach(w)|

— Ao|w — ap[? An|w — ap,|?

w)|? > w)|? 1
CETE SR

< max —
wel, )\n|w — (lm|2 Nl n|Z — an|2 (]_ m|>2
|¢(w)|” o)
< — 4 —_—
= e An|w — ap,|? * n_%; Anlz — an|?
[¢(w)? 2 S 1
< —+4 N
S Surmrmhi LD D wem
for all w € U,. Hence, w — K(w,w) is bounded on U.,. O
The following theorem is a sampling theorem for the space C%.
Theorem 6.13 Let f € C%. Then
I£leg = S )P (631
Moreover,
= L, (2)
flz) = flan)— 6.32
&= 3 s e (632
for all z € C.
Proof:

Since {*L,, | n € N} is an orthonormal basis for C%, the function f can be
22

n
decomposed in f =3 C—’%Lan where
AR

1 1
1 A2 A2
Cp = _Lamf C = Kanaf C :—f ap),
()\é )(CK ¢/(a'n)( )(CK ¢I(an) ( )
for all n € N. Hence the statement follows. O

Example: Consider the case ¢(z) = ﬁ for all z € C. Then ¢ is an entire function with
zero’s z = —n for all n € Ny. Moreover ¢'(—n) = (—1)"n! for all n € Ny. Define A\, =1
for all n € Ny.

(6.33)




for all z,w € C, where v is the function defined by 1(z) = % Hence the reproducing
kernel K is given by

P(2) — p(w)
I'(z)(w)(z —w)

K(z,w) = : (6.34)

for all z,w € C and z # w if Im(2) = 0. For z € R we obtain K(z,z) = \FE()\)Z Since

V(z) =", G +n)2 the posrclveness is guaranteed as it must be, moreover the singularities
z = —n of Y’ are also zeros of |r|2 of the same order, therefore they cancel each other. Let
f € C% then
_ 6.35
F (2) —~ (z —l— n)n ( )
for all z € C and z # —n for all n € Ny. Moreover,
2 — |f(=n)|?
||f||<c<}c< = ; T (6.36)
for all f € C%. By the identity I'(2)['(1 — z) = =", we find
L_,.(2) _ 1 _ sinmz ’ (6.37)
F1-z) TEHIA-2)(z+n) w(z+n)
for all n € Ny and z € C/{—n}. Hence L, € Ly(R, ﬁdx) Moreover,
o 1 * sinmx  sinwx
L, (2)L_p(2) =3 dz = dz = dpm, 6.38
/_oo @@ Fr—p /_Ooﬂ(x+n)7r(x+m) ! (6.38)
for all n,m € Ny. Therefore,
91, = [ 1@ s (6.39)
R PA =)

for all f € C%. Hence C% is a Hilbert subspace of Ly (R,
the Gamma- and the ¢-function, see [Te, Ch. 3].

|r(1 T d). For details about

Example: Let a,b € R and a < b. Let w : [a,b] — (0,00) be a measurable function
such that

/b z"w(x) dz < oo, (6.40)
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for all n € Ny. Let {p, | n € Ny} be the orthonormal set in Ly((a,b), w(z) dz) constructed
by the Gramm-Schmidt proces on {z +— z" | n € Ny}. Note that p, is an polynomial of
degree n € Ny. We recall the formula of Christoffel-Darboux

- zn: pe(@)pily) = kkzl pn(y)pnﬂ(x; :Zn(x)pn—&-l(y), (6.41)

for all z,y € [a,b] with x # y and n € Ny, where k, is the coefficient in p,(x) = k2" +. . .,
for all n € Ny. Moreover,

o (@) () — P ()P (). (6.12)

Ky(x,z) = -

for all x € [a,b]. Note that K, is the reproducing kernel of the subspace Pol(n) of
Ls((a,b), w(x) dx) consisting of all polynomials of degree n. See [Te, Ch. 6] for more
details.

Let N € N and set ¢ = py. Let {ax | k =1,..., N} be the set of zeros of py. By the
formula of Christoffel-Darboux we obtain

pN@) _ kEni1
r—ar  knpyii(ag)

for all x € [a,b] and k = 1,..., N. Therefore,

[t ar = (e Y e, )= () K

L, (z) = K(z,ay), (6.43)

kEnpnia( knpnii(
k
pN<ak) N+1(S o, (6.44)
Enpnii(ak)
forall k,l=1,...,N. Set
p3v<ak)kN+1
A= ————"F—7—— >0, 6.45
g Enpnii(ak) (6.45)

for k = 1,...,N. It follows that {/\—lkLak | Kk = 1,...N} is an orthonormal set for the
Hilbert subspace Pol(IN — 1) of Ly((a,b), w(z) dz) consisting of all polynomials of degree
< N — 1, and hence

Z% (1) = Kn-1(a.y), (6.46)

for all z,y € [a, b].
The following two identities are thus obtained,

n

pn(2)p(ar)
— py(aw) (@ — ar)’

p(r) = (6.47)
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for all = € [a,b] and p € Pol(N — 1).

N

(9, @por—t) = / p(a(mw(@)de =3 —— ep(analar). (6.48)

— Ailpiy (ax

for all p, ¢ € Pol(N—1). By substitution of p(z) = z* and ¢(z) = 2! for k,1 = 0,1,..., N—1
n (6.48), it follows that

b
/a dx—ZAk

for all p € Pol(2N — 2). Moreover, if r € Pol(N — 1) and ¢ = py then (6.49) also holds
for p = qr, since both terms vanish. Therefore, (6.49) holds for all p € Pol(2N — 1). This
result is known as Gaussian integration.

6.49
’pN ak ‘227 @k) ( )
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7 Wavelet transforms

7.1 Construction of V using group representations

From now on we will assume E to be a group G. Furthermore, we assume the group to
have a representation on H, i.e. amap R : G — B(H) : g — R,, which satisfies

Rth = Rgh vgﬁeg, (7.1)
R, = I (7.2)

where e is the identity element of G. Here B(H) is the linear space of all bounded operators
from H into H. Given a vector ¢ € ‘H we can construct the set V' in (2.12) as follows

Vo ={Rg¥ | g€ G} (7.3)

We will call ¢ a (generating) wavelet. Starting with such a set V;, we can construct a
functional Hilbert subspace C% and a unitary map W, between W and this functional
Hilbert space, as described in Section 2. The unitary map Wy, will be called the wavelet
transform.

We state the following consequence of Theorem 2.3.

Theorem 7.1 Let R be a representation of a group G in a Hilbert space H. Let ¢ € H.
Define the function K : G x G — C of positive type by

K(9,9") = (Rgt), Ry ) ). (7.4)
Define the set V,, by

Ve = {Ry | g € G}. (7.5)
Then the wavelet transform Wy, : (V) — C$ defined by

(Wuf)(9) = (Retb, i, (7.6)

1S @ unitary map.

Of course, the wavelet transform W, could be defined on the entire space H, but then the

unitarity is lost in the case (Vy;) # H. For a vector f L V,, we then get Wy, f = 0.
Usually we are interested in the case (V) = H. If (V) = H for some ¢ € H, we
call ¢ a cyclic vector or a cyclic wavelet and the representation is called a cyclic

representation if a cyclic wavelet exists.

Theorem 7.2 Let R be a representation of a group G in a Hilbert space H. Let 1 be a
cyclic wavelet. Define a function K : G x G — C of positive type by

K(g,9") = (Rgt), Ry ) ). (7.7)
The wavelet transform Wy : H — C% defined by
(Wof)(9) = Ry, fln, (7.8)

15 @ unitary map.
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It is obvious that Wy, can be defined as a unitary map on the entire space H if and only if
R is cyclic and v is a cyclic wavelet.

Note that up till now there are no restrictions have been imposed on the Hilbert space
‘H, the group G or the representation R. In particular, there are no topological conditions
on G and R. There is even no topology on G.

7.2 Unitary representations

The kind of representations, which have our special interest, are unitary representa-
tions, i.e. representations R for which the R, are unitary for all ¢ € G. These kind
of representations have some nice properties. We will use the symbol U instead of R to
indicate that a representation is unitary.

The function of positive type, from which the functional Hilbert space is constructed,
is given by K (g, h) = (Uyt),Un))3. Because the representation is unitary this simplifies to

K(g,h) = Uy, Up)r = (¢, Uyg-1n80)e =2 F(g7"h), (7.9)

for all g,h € G. In abstract harmonic analysis, the function F' : G — C is said to be of
positive type if

D Flg g >0, (7.10)

i=1 j=1

forallm e N, ¢,....,c, € Cand gy, ..., 9, € G. Note that not all function of positive type
can be written as K(g,h) = F(g'h) for all g,h € G, for some function F' : G — C of
positive type. A necessary and sufficient condition is that K (hgy, hgs) = K (g1, g2) for all
hv 91,92 € G.

Thus if U is a unitary representation of G in a Hilbert space H and v € H, then
F : G — C defined by F(g) = (¢,Uy1)4 is of positive type. The following theorem is a
converse.

Let F': G — C be of positive type and define K : G x G — C by K(g,h) = F(g'h).
Let g € G. Define U} : C§ — C“ by

Uy f)(h) = f(g'h), (7.11)
for all f € C¢ and g,h € G.
Theorem 7.3 Let G be a group and F : G — C be a function of positive type. Define
K(g,h) = F(h™'g) for all g.h € G. Then U" : G — B(C%) : g — U} is a unitary
representation of G in C§. Moreover, F(g) = (F, UgLF)(Cg forall g € G.

Proof:
Let f € C§. The unitarity of UL easily follows from Lemma 2.2 and the fact
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that K (hgi, hge) = K(g1,92) for all g1,92,h € G:

) -1
IfI% = sup XMJ%<§)WJ%%) .
leEN, OszC, ngG k=1
-1
= sup Zaj (h=1g)) (Z ara; K(h™ lgkah_lgj)> .
lEN, ajG(C, ngG k=1
-1
= sup aj h 19 ( Oék(l/ gkag > )
leN, a;€C, g;eCG { Z j ] k;l ! ’

for all h € G. Therefore UL f € C% and Hu,ffHCg = [|fllcg. Moreover
(FUVF)eg = (Ko UV K )eg = Ko(g™) = F(9),
for all g € G. O

The representation U’ is called the left regular representation. Note the intertwining
relation U Wy = Wyld,.

Corollary 7.4 Let G be a group and F : G — C a function of positive type. Define the
function K : G x G — C of positive type by K(g,h) = F(h™tg) for all g,h € G. Let H
be a Hilbert space, which is unitarily equivalent to C§. Then there exist a ¢ € H and a
unitary representation U of G in H such that

F(g) = U, ), (7.12)
forall g € G.

Proof:

By assumption, there exist a unitary map 7 from H to C%. The element
tp = T7'F and the unitary representation defined by U, = T *11/{;’7 for all
g € G do the trick. H

7.3 Topological conditions

Some elementary topological conditions which can be posed on the representation R, are
straightforwardly transferred to the wavelet transform.

Let R be a bounded representation, i.e. a representation for which the map g
Ry is a bounded function. Define |R|| = sup,eq [|Ry[l. Let f € (V). Then,

|(Wuf)(@)] = (R, Fal = IR llaell fllae < RN el £l (7.13)
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for all g € G. Hence, the wavelet transform W, f for an arbitrary f € H is bounded on G.
Also the reproducing kernel is bounded on G x G. A unitary representation is an example
of a bounded representation.

Assume G is a topological group, i.e. a group on which a topology is defined,
such that the group operations, multiplication and inversion, are continuous. Let R be
a continuous representation, i.e. a representation for which R,f — R,f whenever
g — h, forall h € G and f € H. Let f € H. Then Wy f is a continuous function on G.
Indeed, if g — h then

[(Wyf)(9) = (W f) ()] = 1((Ry = Ru)¥, fnl < (R — Ru)®llwel fllz — 0. (7.14)

Also the reproducing kernel is a continuous function on G x G.
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8 Cyclic representations

Because of Theorem 7.2 the cyclic representations have our special attention. But it is not
often straightforward to see whether a representation is cyclic or not. And even if so, one
still has to find a cyclic vector. In this section we pose provide criteria for cyclic vectors.
Moreover, we work out an example which deals with diffusion on a sphere. For this case
we managed, to find an interesting cyclic vector, with the aid of Theorem 8.5.

8.1 Orthogonal sums of functional Hilbert spaces

In this section we analyze the orthogonal direct sum of functional Hilbert spaces. The
sequel is based on a part of the article by Aronszajn [Ar, part I, 6]. Theorem 8.1 and
Corollary 8.2 are due to Aronszajn.

Let {H,}nen be a sequence of Hilbert spaces. Then define the orthogonal direct
sum of the sequence as the Hilbert space

PH. = {a e [[Hnl D llan
n=1 n=1 n=1

with the inner product

Ho < OO} : (8.1)

[e.e]

(a’ b)@ = Z(ana bn)Hn- (8.2)

n=1

Theorem 8.1 Let K :EXE — C and L : E X E — C be two functions of positive type.
Then

Ciyr={fi+fo| L eCk, fo€Ci}=Ck +CE. (8.3)
Furthermore, if C% N CE = {0} then
It fllzs | =112 + el 5.4)

Hence it follows that C} L C} in Cf,, and [fllce = ”f”@]%JrL for all f € CE.

Define the Hilbert space C% @ C¥ as the Cartesian product CE x C¥ with the inner
product defined by

((f1,91); (f2, 92))e = (1. f2) ez + (91, 92)cz (8.5)

for all pairs (f1, 1), (f2, 92) € Ci & CE. Tt is obvious that C% @ C¥ with the above inner
product is a Hilbert space.
The following theorem is a direct consequence of Theorem 8.1.
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Corollary 8.2 Assume C% NCE = {0}. Then the map defined by

(f1, f2) = f1+ fo, (8.6)

is a unitary map from Ci & C} onto Cf .

This idea is easily generalized to an infinite sum of functions of positive type. Define the
Hilbert space @;-, C% asin (8.1) and (8.2).
Let { K, }nen be a sequence of functions of positive type on a set E such that

ZKn(x,x) < 00, (8.7)

for all z € E. Then by the estimate

Ka@ )| = (Koo Kades, | < 1 Kosslles, | Koles,
1

SKa(,2) + 5 Kal,1) (5.9

1
2 2
< §HKH;~’EHCIIE(TL + §||Kn;y||<c§(n =3

for all z,y € E and n € N, the sum

= Z K,(x,y), (8.9)

converges absolutely on E x E. As a result Ky is a function of positive type, since K, is
a function of positive type for all n € N. Moreover, (8.7) implies that (K.,, Koy, ...) €
> Ck. since

N 0o
Z ||Kn,x||éE Z K IL‘ 1’ < Z (810)
n=0 n=0

for all N € N.
Furthermore, the sequence Y >, f.(2) converges absolutely for all (f1, f>,...) € @, Ci
and = € E. Indeed, let f = (f1, f2,...) € @, , Ck and z € E, then

LI CIATIE 3 {1l + 15l }
< —Z{ (e, @) + 1l < oo (8.11)

for all N € N. Hence > 7 |fu(x)] < o0.
Now we are ready for the following theorem.
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Theorem 8.3 Let { K, }nen be a sequence of functions of positive type on a set E such
that

iKn(x,x) < 00, (8.12)

for all x € E. Define for x € E the vector ¢, € @, (C}E(n as
¢x = (Kl;zaKQ;xw-->- (813)

Then the map ® : ({1, | © € E) — (C]%;L.O:IKn defined by

[©(f1, far- )] (@) = ful2), (8.14)

18 unitary.

Proof:

Since (®f)(z) = Vs, f)e for all f € @, Ck and by Theorem 2.3 it follows
that ® is a unitary mapping onto the functional Hilbert space of function on
the set E with reproducing kernel

(%, %)@ = Z(Kn;za Kn;y)@%{n = Z Kn(xa y)
n=1 n=1
for all z,y € E. Hence the statement follows. O

As in the case of the sum of two functional Hilbert spaces we search for a condition such
that ({¢, | z € E) = @, ,Ck . In that case ® is a unitary map from @, Ck onto
Cs

ne1 K

Theorem 8.4 The following statements are equivalent

1. ({4, |z € E) = D, Ck,
2. ¥z e ED " | fu(z) =0 = f=0.

3. Ck, NCiw = {0}, for alln € N.

m=1m#n Kn
Proof:
1 < 2 This statement easily follows from (¢, f)e =0 < > "2 fu(z) = 0, for all

f=(ffo ) €Br CIIEQL'
2= 3.

Let n € N and f € Ck NC%

5 K Since the map @ is surjective in
m=1m#n "*M
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Theorem 8.3, one can write f = f, = Z;’::Lm 4 fm, where f, € Cl  for all
m € N. Define the element g € @,-_; Ci. by

g = (f17f27'"afn*17_fn7fn+1>'")

Then obviously

Z(gma Kmﬂ:) = O] )
m=1

hence g =0 and f = 0.

Ve e E

3 <= 2.
First we mention that Ci L Ci for m # n in C]%oo_l k. Em#n, fi € Ck
and fo € C}E{Q, then fy € (C]EZH o K0 by Theorem 8.1. By assumption and

Theorem 8.1 it follows that (f1, f2) = 0. Hence Cj L C .

(C]E
Ko

Secondly, let (f1, fa,...) € @, Ck, satisfy > >° | fu(xz) = 0, for all z € E.
Then

o0 o0
Do fallty, =DMl <o
n=1 n=1

S0 > o | fn exists. Since (C]IE(@ s a functional Hilbert space it follows that

(D fa)@) =2 falw) =0

for all z € E. O

Now no longer assume that » ~ K,(z,z) < co. In this case we need a mollifying
sequence as in the following theorem.

Theorem 8.5 Let E be a set. Let {K,}nen be a sequence of functions of positive type on
E and {\,}nen a sequence such that

1.VneN: X\, >0
2. sup,, A\, < 00.

Then @, CIEnKn is a dense subspace of €O, , (C]IE(n. If in addition the sequences satisfy
the conditions

3Nz eR: Y0 AMKy(r,x) <o

4. VneN: C} . NChx Aok, = 107

m=1,m#n
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Then
Ye = (MK, MoK, ...) € @HCE, (8.15)
for all x € E. Furthermore i
{¢. | = €E}) = PCE, . (8.16)
n=1

Proof:

Assume the first two conditions are satisfied.

First, we remark that from the definition it straightforwardly follows that
Ck = Ck x as a set and (f,g)@%n = )‘"(f’g)@inxn for all n € N and

f.geCk .

Secondly, write || - [|xg for the norm of @, C§ . . Let f = (fi,f,...) €
@D, CX x . Then, it follows by

DoflE = D (U fades, ZA (For ez,
n=1 n=1

< sup)\ ZHf"HCE n —SUPA £l e

n=1

Finally, the set

{fe@PCE, | 3N eNVR> N [f, =0]}

n=1
is dense in o@”zlﬁ Ck, and contained in @, CY ;. Hence @, C}  is
dense in @, Ck .

Now assume in addition that the last two condition are satisfied.

Because ¢, € @, C} ;. by (8.10) we have in particular ¥, € @, , Ci for
all z € E. Then by Theorem 8.3 and Theorem 8.4, the set ({¢, | € E} is dense
in @, C} ;. Moreover, because | - |l < sup, A - ||xe and @, C} , s
dense in @, , C% , it follows that ({¢, | € E}) is dense in @~ Ci O

It straightforwardly follows that

for all x € E, which will turn out to be a useful identity.
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8.2 An example: diffusion on a sphere

We now deal with an example concerning the problem of diffusion on a sphere. For a
detailed discussion about some statements which we do not prove, see for example [Mu,
Ch. 3].

Let S9! for ¢ > 3 be the unit sphere in R? and G = SO(q) the special orthogonal
matrix group. Let the group SO(q) act on S9~! in the usual way, (A, z) = Ax. The group
acts transitively on S9! ie. for all x,y € S?! there exists an A € SO(q) such that
r = Ay.

Let H be the Hilbert space Ly(S77!). Define the representation U : SO(q) — B(Ly(S771)) :
A +— Uy where Uy is defined by

(Uaf)(x) = f(A ), (8.18)
for all A € SO(q), f € Ly(S971) and almost all z € S971.
First, it is well-known that the space Ly(S%!) decomposes in Ly(S971) = @2, CF
where Cffn_l is the functional Hilbert space of all spherical harmonic polynomials of order
n. The reproducing kernel is given by

q+2n—2 492
Kz = q_—QC% ((,7)2), (8.19)

for all z € S9!, where C’]q\,/z_1 are the Gegenbauer polynomials. Since

q+2n—2 2-1 q—|—2n—2 2-1 q—|—2n—2

q—2
for all z € S971, it is straightforward to see that this orthogonal sum satisfies the condition
of Theorem 8.5 for some sequence {\, }nen-
Secondly, we have to choose a sequence {\,} nen. Let t > 0. Then it is obvious that
A\, = e~ ("+4=2) defines a sequence that satisfies the conditions in Theorem 8.5. Define for

o I 50y = , (8.20)

all z € S9!
¢x = Z e_tn(n+q_2)Kn;x- (821)
n=1

Then v, € Ly(S77!) by Theorem 8.5. Fix y € S77!. Then,

uA¢y = ¢Ay7 (822)

for all A € SO(q) by (8.19). Finally, by the transitivity of the action of the group we get
by Theorem 8.5

{Uay | A€ SO(@)}) = ({¥u | @ € S1}) = La(S77). (8.23)

Hence 1, is a cyclic vector for all y € S9! and U is a cyclic representation.

It is straightforward to see that the stabilizer group y of H, = {A € SO(q) | Ay =y}
can be identified with SO(q —1). Moreover, if Ay =y the Ua1p, = 1,. The quotient space
SO(q)/H, is homeomorphic to S7~!. Moreover, let ¢ : S7~! — SO(q) be a map such that
t(b)y = b. Such a map exist by transitivity of the action of SO(q) on S9!
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Theorem 8.6 Define the function K : S9=! x S9=1 — C of positive type by

K(b,0') = (Usytys Usr) ¥y ) - (8.24)
Then the frame transform Wy, : Ly(S771) — Cf(‘H defined by
(W f)(0) = Unwyty, FLarse—y = (Wb, [La(sat), (8.25)

for all f € Ly(S9™1) and b € S9! is a unitary map.

The choice )\, = e "("*9=2) wag not without reason. The spherical harmonic polynomials
of order n are the eigenvectors of the Laplace-Beltrami operator Ag with eigenvalue n(n +
q — 2). Therefore the functions of the form (¢,z) — e~™"*+1=2)p (z) with p, a spherical
harmonic polynomial of order n are solutions of the evolution equation

uy = —Agu. (8.26)

Let f € Ly(S). With (8.17) it follows that

o0

(W, £)(0) = (tho, fryso-ry = Y _ e ™72 (B, f) (b), (8.27)

n=1

where P, stands for the projection operator corresponding to the space of all spherical
harmonic polynomials of order n. So we could interpret the above wavelet transform as
the solution at time ¢ and point ¢(b)y = b of the evolution equation (8.26) with initial
condition u(0,-) = f(-).
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9 Irreducible representations

From now on we do pose a topological condition on G. Recall that a topological group
is a group on which a topology is defined, such that the group operations, multiplication
and inversion, are continuous. We always assume the topology to be Hausdorff. Moreover,
we always assume the group G to be a locally compact group, i.e. a topological group,
in which every group element has a compact neighborhood.

It is well-known that every locally compact group G has a Haar measure, which we
denote by ug. A Haar measure on G is a Radon measure on GG which is left invariant, i.e.
uc(gE) = pg(E) for all g € G and Borel sets E. It is unique op to a positive constant.

We call a representation R of a group G in a Hilbert space H irreducible if the only
closed subspaces of ‘H which are invariant under all R, for all g € G are H and {0}. An
irreducible representation is in particular cyclic and every nonzero vector is cyclic. Indeed,
for every nonzero ¢ € H the set (V) is a subspace which is invariant under all R, with
g € G and it is not empty, so W =H.

The representation R is called square integrable if there exist a ) € ‘H with ¢ # 0
and

1

Coi= o | R v dola) < . (9.1)

(¥,

If the group representation is unitary, irreducible and square integrable, then the func-
tional Hilbert space will always be a closed subspace of Ly(G), whenever the wavelet ¢ € H
satisfies (9.1). This was first shown by Grossman, Morlet and Paul [GMP] in 1985. In
this report we will give a new proof of this theorem. For our proof we need an extension
of Schur’s lemma, which is presented in Appendix A. Moreover, we need a lemma which
is valid for all bounded representations. Hence, let R be a bounded representation of a
group G in a Hilbert space H. Let ¢ € H. First define the linear map Wy, as

Wy = Wylp, (9.2)
where D= {f e H | Wy f € Ly(G)}.

Lemma 9.1 The wavelet transform Wy, : D — Ly(G) is a closed operator.

Proof:

Let fi, fa,... € D, f € H and assume f, — f in H and W, f, — @, for some
¢ € Ly(G). Then we have to show that f € D and Wy, f = ®. The group G is
locally compact, therefore it is sufficient to show that for any compact Q C G

/|W¢f—<1>|2 dpG =0,
Q

to conclude that W, f = ®.
Note that by boundedness of the representation

|(Wof)(9) = Wy ta)(@)] = [(Rets £ — fa)rel < RNl f = Fallres
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for all g € G and n € N.
Now the statement follows from

[Wer = of duclo)
Q

< 2/ W f — Wi ful? duc + 2/ ® — Woful? duic
Q Q

< 20(@) sup | (W, ) (0) = (W) o) +2 / B Woful? duc
Q

< 2u(QRIPII I3 fo = FI7 + 12 = Wy ful

for all n € N. As f, — f and W, f, — @ it follows that Wy f = ® on Q.
Therefore f € D and W, f = ®. O

The left regular representation £ of G on Ly(G) is defined by

Lyf(g) = f(h'g), (93)

for all h € G, f € Ly(G) and almost every g € G.
We now prove a theorem by Morlet, Grossmann and Paul.

Theorem 9.2 Let U be an irreducible, unitary and square integrable representation of a
locally compact group G on a Hilbert space H. Let v € H such that (9.1) holds. Then
Wyf € Lao(G) for all f € H and the wavelet transform is a linear isometry (up to a
constant) from the Hilbert space H onto a closed subspace C$ of Ly(G, dp):

Wy fIIE ) = Cull F1I3- (9.4)
Here, the space C% is the functional Hilbert space with reproducing kernel

1
K¢(g7g/) = O_¢<Ug¢7ug’¢)a (95)

forall g,9 € G.

Proof:
The domain D of operator W, : D — Ly(G) is by definition the set of all f € H
for which W, f € Ly(G). By assumption ¢ € D. Moreover, it follows by the
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left-invariance of dp that the span Sy, = ({Uy¢ | g € G}) of the orbit of ¥, is
a subspace of D, since for any n = Uy, we have

L)@ anats) = [ 100t dscts)
“ G
= [1th .00 dnct)
G

- / Uy, ) duc(o)

= Oyl ) = Ol Uhto, Ut < .

Obviously Sy is invariant under U/ and since U was assumed to be irreducible,
this space is dense in ‘H. By Lemma 9.1 operator W, is closed, since a unitary
representation is bounded. So, W, is a closed densely defined operator and
therefore the operator WjW,, is self-adjoint, by a theorem of J. von Neumann
(see [Y, Theorem VII.3.2]).

It is obvious that

Wyt ) (9) = Uy, Un f)r = Un—1Ugth, [ = Un-140, [,

for all g,h € G and f € ‘H. Therefore, if f € D then Uy f € D and Wylhy f =
LWy f. Hence Wyldy, = L)V, For the adjoint operator the same is true. If
® e DWj), f € DOWy) and h € G

(Lh® Wy ) = (D, Li- Wy L) = (@, Weldy-1 fLac)
W@, Up-1 f)n = UW,®, [

So for all @ € D(W;)) we have £;,® € D(W,)) and furthermore Wy L, = U, WV;).
In particular WyWyld, = U W Wy, for all g € G and D(W; W) is invariant
under U.

By the topological version of Schur’s lemma, Theorem A.1, it now follows that
there is a ¢ € C such that W;W, = cI on D(W;W,). But because W;W,, is
closed and bounded on D(W;W,;,) we can conclude from the closed graph theo-
rem that W)W, = c I on the entire Hilbert space H. In particular D(Wy) = H.
From [[Wy||? = Cyljv||* it follows that ¢ = Cy. O

62



10 A representation of a semi-direct product S x7 on

Ly (S)

In this section we will work out the wavelet construction for the special case H = Lo(S, i)
with S some locally compact abelian group. Here ug is a Haar measure. Given a locally
compact group T we will define a natural unitary representation (not necessarily irre-
ducible) of the semi-direct product S x 7" on Ly(S). From this unitary representation a

wavelet transform and a corresponding functional Hilbert space can be constructed for a
suitable choice of ¥ € Ly(S).

10.1 Introduction

We first recall the notion of the semi-direct product of two groups. We also mention some
elementary topics from harmonic analysis.

Definition 10.1 Let S and T be groups and let 7 : T — Aut(S) be a group homomorphism.
The semai-direct product S x,. T is defined to be the group with underlying set S x T
and group operation

(s,8)(s',t) = (sT(t)s, tt'), (10.1)
for all (s,t),(s',t') € S xT.

From now on we only consider a group G which is a semidirect product G = (S,+) x
(T, -) for some locally compact group 7', a locally compact abelian group S and a group
homomorphism 7 : 7' — Aut(S) such that

(s,t) = 7(t)s (10.2)

is a continuous map from S x 71" onto S. Since S and T are locally compact, G is also
locally compact. Note that S = {(s,e;) € G | s € S} and T = {(ey,t) € G | t € T} are
closed subgroups of G.

Let pur, s, i be Haar measures of resp. TS, G. There exists a relation which relates
these Haar measures. To this end, we need the notion of modular function.

Definition 10.2 Let H be a locally compact group and p a Haar measure on H. Then for
each h € H

un(E) = w(EL), E € Bor (H), (10.3)

defines a Haar measure, where Bor (H) is the set of Borel sets. Because all Haar measures
are equal up to a constant, there exists for allh € H a Ag(h) > 0 such that

wn = A (h)p. (10.4)

The function Ay : h — Ag(h) on H is called the modular function. The modular
function is a continuous homomorphism from H into (R, -).
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Now T' = {(e,t) € G | t € T} is subgroup of G and it has a Haar measure 17 corresponding
to pr. Starting from pg, pr, the Haar measure pg can be chosen such that

/ £(9) duclo / { / F(s, 007 (1) dun(t >}dus<s>, (10.5)

for all f € L;(G). Furthermore,

/ f(r(t)""s) dus(s / f(s) dps(s (10.6)

for all t € T and f € L,(S). Here

. Af(e, t)
p(t) = Ao(e D)

(10.7)

for all t € T. Tt follows that p is continuous and strictly positive. For further details, we
refer to [RS, (8.1.12) and (8.1.10)] .

In the case S = R"™ we simply get p(t) = |det 7(¢)|, which can easily be proved by the
transform of variables formula.

We define in a natural way a representation of the semi-direct product S x 7" in Ly (.5).
Define U : G — B(ILo(S)) : (s,t) = U(sy) as follows

U f = TP f, (10.8)
where

(Zoif) (s2) = f(s2 = 1), (10.9)
for all s; € S and almost all s, € S, and

(Pef)(s) = p2 (1) F(7 () "), (10.10)

for all t € T and almost all s € S.

Note that Pf € Li(S) NLa(S) for all t € T, if f € Ly(S) NLy(S). It is easily verified
that U is a unitary representation. Moreover, we will prove that it is cyclic. In general
this representation need not to be irreducible.

10.2 The wavelet transform

We recall that, with the use of the unitary representation U, for any v € 'H we now can
define the unitary map Wy, : W — C% as formulated in Theorem 7.1. In this section
present another description of the wavelet transform, making use of Fourier transform
for abelian groups. Let f € Ly(S) and S be the dual group of S. Then S exists of all
continuous homomorphisms of S into the circle group. The define the Fourier transform
as

- / £(5) 0 70 dpas (s), (10.11)
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for all v € S and f € L (S) NLy(S), where (-, ) stands for the dual pairing, (s,7) = 7(s)

for all s € S and v € S. This defines, after extension, a unitary map from Ly (S) onto
Lo (S, dpg(y)) where the left Haar measure pug(7y) related to pg. The inversion is given by

(FF)(s) = / F()(s,7)dug(7), (10.12)

S

N N

for all F' € Li(S) NLy(S). For a detailed discussion of the Fourier transform on locally
compact abelian groups, see for example [Fo].

Lemma 10.3 Let ¢ € L;(S) NLy(S). Then, (Wwf)(~,t) € Ly(S) for all f € Lo(S) and
tefT.

Proof:
Let f € Ly(S) and t € T. Then

(TP, flias) = / Pr) (5 — ) F()dus(s),

S

for all s. So we arrive at a convolution. A convolution of a IL; function with a
L, function is again a Ly function. See [Fo, Proposition 2.39]). O

This means that for all elements ® of our functional Hilbert space C%, the function
(-, ¢) will be in Ly(S) for fixed ¢t € T. Hence, the Fourier transform of ®(-,¢) is well-
defined.

Now use Fourier transform and Plancherel to get a different presentation of the wavelet
transform of an arbitrary function f € ILy(.S)

(W’ll)f) (Sat) = (Zptwa f)]L2(S) = (f,]teptwaff)Lz(S)
= (s, )FP, Ffrys = (FH[FPOFF] ) (s), (10.13)

A A

forall s € Sandt € T. We notice that Ff € Lo(S) and FPup € Loo(S) forallt € T Hence
FPWF[ € Lo(S) and (Wi f) (-, t) € Lo(S) for all ¢t € T. Moreover, since FPapF f € Ly (S)
we get (Wyf)(-,t) € Co(S) for all t € T and f € Ly(S). With Co(S) we denote the space

of continuous functions on S which vanish at infinity.

Lemma 10.4 Let ¢ € Ly(S). Suppose

us({r € 8| vt e T[(FPw)(y) = 0]}) =0,

Then 1 1s a cyclic vector.

Proof:
Note that the measure does not depend on the representant. Let f € qu. Then

Wy f = 0 by the remark after Theorem 7.1. Hence, FPwFf =0forallt €T,
by (10.13). Therefore, Ff = 0 by the assumption. O
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Corollary 10.5 Let ¢ € Ly(S). If Fip # 0 a.e., then v is a cyclic vector. Moreover, if S
1s metrizable then the representation U s cyclic.

Proof:

The first statement follows immediately from Lemma 10.4.

If the group S is metrizable, then S is o-compact by [RS, Thm. 4.2.7]. There-
fore, there exists a ¥ € Ly(S) such that Fip > 0, by the o-compactness of S.
The conclusion now follows from the first statement. OJ

10.3 Alternative description of (C}%”T for admissible wavelets

In this section we will derive an integral expression for the functional Hilbert space (C?T
for a special kind of wavelets. These wavelets will be called admissible.

Definition 10.6 Let ¢ € Ly(S) N1Ly(S). Define M, : S — [0,00) U {oo} as

o) = [ W der (1) (10.14)

~

We note that FPu) € Co(S) for all t € T', so My, can be defined pointwise.
Definition 10.7 We call ¢ € L,(S) NLy(S) an admissible wavelet iff
0< My <oo ae.

Theorem 10.8 Assume that T is compact and let ¢ € Ly (S)NLy(S) be admissible. Then

~

M¢ S ]Ll(S)

Proof:
For all t € T the operator F7P; is unitary from Ly(S) onto Ly(S) we get

FPu|? 2 2
[ R aug) = [[1FPwl (s = 101,15,

for all ¢ € T'. Hence,

FP? , ,
//' p@)' () dur(t)dus () = / 10125y dpr(t) =TI 12, o).

by changing the order of integration. |

In this section we will assume that ¢ € L;(S5) N Ly(S) an admissible wavelet. All the
admissible wavelets are cyclic, so lead to a unitary map from the entire space Ly(S) onto
Cf(XT by Theorem 7.1. This is shown in the following lemma.
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Lemma 10.9 Every admissible wavelet is a cyclic wavelet, i.e. (Vi) = Lo(S).

Proof:
If f € Ly(S), then with (10.13) we get

fevy)t < (‘v’t € T[|m}"f|2 =0 a.e. on SD (10.15)

Let f € (V,)*. Then

) FPOFf|
Myl 71 :/T} ng !

Because 1 is an admissible wavelet, the function M, > 0 a.e.. Hence |Ff|* =0
a.e. and therefore f = 0. OJ

dpr(t) =0 ae. on S.

Using the function My we can also give an expression for W L

Lemma 10.10 Let ¢ € Ly(S) NLa(S) be an admissible wavelet. Let f € Lo(S). Then
f=wW,'®= f—1</ FIO(, )| FPap My p (1) duT(t)), (10.16)
T

where ® = W, f € C3*T

Proof: X ) R
We recall that 0 < M, < oo a.e. on S, hence also 0 < M;i < o0 a.e. on S.
The lemma now easily follows from (10.13) since

P [ FC0FP M) ()

=F Myt | FFIFPPe () d
(" [ 1 17PwPo ) durtt)
= F N (M MyFf) = f. O

We are now able to give an alternative description of the norm of C3>*" using (10.13)
and the previous lemma.

_1 .
Theorem 10.11 If & € C3>*" then M, ? Fl®(-,t)] € La(S) for almost everyt € T. More-

over,

12[[Eser I/S/T\f[@(wt)](v)\2 MG )p () dur(t)dpg(7). (10.17)
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Proof:
Let ® € C5*T. Then there exists a function f € Ly(S) such that Wy f = ®.

(@0 r = (£ D)) = (FLIWS D)y
S / FIB( 0100 (FPb) () My ()0~ (1) dpr(t)dpag()
= [ [ FRCOFFEFPw) () M ()™ 0) durt)g ()
= [ [ FRCOFREAI M ()™ 0) dur(t)dg(

Therefore,

/S/T |Flo(, 1)) ()| M 7 (t) dur(t)dug(v) = Hq)”éfgﬁ-

The integrand is positive, so by changing the order of integration we find in
particular

[ AR 0P dus(r) < e,

for almost all ¢ € T'. Therefore M, > F[®(-,t)] € Ly(S) for almost all t € T. O

Because of Lemma 10.11 and (10.5) we can define the linear operator Ty, : cr —
Ly(S x T) by
1
(TchI)) (S7t) = (F_I[MIZJ ’ F[@(,t)]]) (8)7 (1018)

for almost all (s,t) € S x T.
We summarize the previous in the following theorem.

Theorem 10.12 Let ¢ € L;(S) N Lay(S) be an admissible wavelet. Then the wavelet
transform Wy, defined by

(Wyf)(s,t) = (TP, Fliasy, [ €La(S), (s,t) €S xT, (10.19)

is a unitary map from Lo(S) onto (Cf{qT. Here, Cf{”T 1s the functional Hilbert space with
reproducing kernel

K(g,h) = Uy, Un)Lo(s) = Un—140,9)Ly(5) (10.20)

SxT
CK

for all g,h € S xT. The inner product on can be written as

(®, W) g = (Tar, ®, Tas, W), (ssr), (10.21)

for all ®, ¥ € C3*T.
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Corollary 10.13 If My, =1 on S, then C*" s a closed subspace of Lop(S x T).
By Lemma 10.11, our functional Hilbert space is a closed subspace of
H(S, us) ® Lo (T, p~" i), (10.22)
where
H(S, pis) = {f € La(S,us) | M, *Ff € La(8)}. (10.23)

The inner product on H(S, ug) is defined by

_1 _1
(fs 9r(s 1) = (M¢ *FfM,y 27:9)]@(5’) (10.24)

We recall that H(S, ug) is a vector subspace of Ly (S), because of Lemma 10.3. Hence we
always arrive at a kind of Sobolev space on S. Now denote the inner product on H(S, us) ®
Lo(T, p~*ur) by (+,+)g. It follows from Lemma 10.11 that (-, ')®’ijT = (- ')Ci”'

Theorem 10.14 C3*" is a closed subspace of H(S, us) @ Lo(T, p~'ur). The operator

S — [g — (K(-,9),P)s] is the projection operator from H(S, us) @ Lo(T, p~tur) onto
c,

Proof:
It is obvious that C3>*7 is a closed subspace of H(S, us) ® Lo(T, p~ 7). Let
O € H(S, us) @ Lo(T, p~'pur). Then it can be written as

O =) + Dy,
with ®; € C3*" and @, € (C37*7)*. Then forall g€ S x T
(K(’g)’ (I)>® = (K(ag)a (I)l)@) + (K('7g)7q)2)® = q)l(g)

Therefore ® is mapped to P;. 0
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11 IL,(R?*) and the Euclidean motion group

11.1 The wavelet transform

We now will work the previous section out in detail for a more explicit example. The circle
group T is defined by the set

T={z]|2z€eClz| =1}, (11.25)

with complex multiplication. The group T has the following group homomorphism 7 : T —
Aut(R?)

T: 2z R, (11.26)
with
cosf —sinf
R, = <sin0 030 > : 0 = arg z. (11.27)

Using this automorphism we can define the semi-direct product R? x T. The group product
of R? x T is given by

(2, 21)(y, 22) = (x + R.yy, 2120). (11.28)

for all (z, 21), (y, 22) € R* x T. The group R? x T is called the Euclidean motion group.
We normalize the Haar measure on R? such that [0, 1]? has measure 5~. We normalize

the Haar measure on T such that T has total measure one. Then we no2r7;nalize the Haar
measure of R? x T such that it is equal to the product measure g2 x pp. Since T is
compact, p(z) = 1 for all z € T.

The Euclidean motion groups has the unitary representation U : R* x T — B(ILy(R?) :
(y, 2) — Uy, ) where Uy, .y € B(Ly(R?) is defined by

(Ut ) (@) = (T,P.f) (2) = f(RI (z — ), (11.29)
with
(T,f)(x) = flz—y), (P.f)(z)= f(R'z), (11.30)

for all y € R? 2 € T, f € Ly(R?) and almost every z € R% By Corollary 10.5, the
representation is cyclic. But it is not irreducible.

Theorem 11.15 The representation U is reducible

Proof:
Let S be the Hilbert subspace of Ly(R?) consisting of all f € Ly(R) such that
(Ff)(w) =0 for almost all w € R?/By;. Let f € S and (y,z) € R? x T. Then

(FUiy) ) (w) = U (FF)(RITy) =0

for almost all w € R?/By ;. Hence U, f € S for all (y,2) € R* x T and S is
an invariant subspace of Ly(R). O
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We consider the wavelet transform using the representation U, as above, of the group
2
G =R? x T in the Hilbert space Ly(R?). The wavelet transform Wy, : Ly(R?) — Cx T for
cyclic wavelets is defined by

(Wof)(y,2) = (TP, ), oy (11.31)

for all f € Ly(R?) and (y, z) € R* x T.

11.2 Admissible wavelets

First we mention the method involving admissible wavelets. We recall that ¢ € L;(R?) N
Ly (R?) is called admissible if

0< My < oo ae.

where
- / (FP) @) dyun(). (11.32)
We can reformulate Theorem 10.12 as follows.
Theorem 11.16 Let ¢ € L1(R?) NLy(R?) be an admissible wavelet. Then W, defined by
(Wyf)(z,2) = (TP, ey, f€La(R?), (z,2) e R*% T, (11.33)

is a unitary map from Lo (R?) onto (Cﬂf(2 “T Here, (Cﬂé2 “T is the functional Hilbert space with
reproducing kernel

K(g,h) = Ugt), Unt)Ls(2), (11.34)
for all g,h € R?> x T. The inner product on Cﬂfs “T can be written as

(‘h@@;ﬁw = (T, @, Tary V) Ly r2 0T) (11.35)

2
for all &,V € Cx ",

We now analyse the function M, defined in (11.32) a little further. First we mention
that T is a compact group, so M, € L;(R?) by Theorem 10.8. Define for m € Z the
function 7, : [0,27) — C by n,,(¢) = €™?. Because Ly(R?) = Ly(S1) ® Ly((0, 00), 7 dr),
we can write all 1) € Ly(R?) in the following way

W(rcos ¢, rsing) = Z N (0) @ Xm(7), (11.36)

m=—0Q
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for almost all r € (0,00) and ¢ € [0, 27), where y,, € L2((0,00),r dr) for all m € Z. For
the Fourier transform we can write in polar coordinates

(]:[nm ® Xm])(p, by) = ime™? /000 X (1) I (pr) dr (11.37)

for all p € [0,00) and ¢ € [0,27), where J,, is the m-th order Bessel function of the first
kind. See for example [FH, Ch. II]. (The length of the interval [0, 1] is \/LQ?)
Now M), is easily calculated.

[e.e]

(Pw)(r,g) = Y &m@ ey, (r), (11.38)

m=—0Q

for all € (0,00) and ¢ € [0,27). Hence,

(}"pzw) (107 90) — Z imeim(ﬂofargz) /00 TXm(T)Jm(pT)dT, (11_39)

0

m=—0Q

for all p € [0,00) and ¢ € [0,27). Hence My, is given by,

My(w)= > [Xm(lw], (11.40)

m=—00

for all w € R?, where X, defined by Xm(p) = [ rXm (1) Jm(pr)dr for all p € (0,00) and
m € Z. Thus, the above sum completely determines the inner product. Furthermore, M,

only depends on the radius. We have the following relation between a chosen wavelet
and My,

M) do = 1, (1141

This implies that M, !is unbounded. Because M, only depends on the radius, there exists
a function My, : (0, 00) — (0, 00) such that

My(w) = My(|w]), (11.42)

for almost all w € R?. Then M, € L;((0,00),7 dr).

We end this subsection with the remark, that ¢ — M, is not injective; several different
wavelets 1) can lead to the same M. If ¢y and 1), are different admissible wavelets with
the property My, = M,y,, then their corresponding functional Hilbert space are different
closed subspaces of the same Hilbert space H(R?) ® Ly(T) as defined in (10.22).
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11.3 Generalized admissible wavelets

In this section we introduce the notion of a generalized wavelet transform. The aim is to
use a Gelfand triple

Hy — Lo(R?) — H_y, (11.43)
to define a transform 2y : H; — CR*~T by

(m‘l/¢) ('7772) = <lpvu(a:,z)—1¢>> (11.44)

for all ¢ € Hy, (z,2) € R? x T and a special choice of ¥ € H_;. For a suitable choice of
the Gelfand triple and the generalized wavelet W € H_;, we will prove that 20 defines an
isometry from H;, but now equipped with the Lo-norm, onto Ly(R? x T). Therefore, it
has a closure 25 which is an isometry from Ly(R?) onto Ly(R? x T).

Consider the Gelfand triples H?*?(R?) — LL,(R?) — H2%%(R?), as introduced in
appendix B. Since H*?(R?) C LLy(R?) we can restrict the representation U to H?2.
Because of the special structure of H**2(IR?), this representation is again unitary.

Lemma 11.17 The operators U, and Dy, commute for all k € N and g € R? x T

Proof:
Since the laplace operator A commutes with translations and rotations, the
lemma follows. O

Corollary 11.18 The restriction g — U, defines a unitary representation on

9l pr2k.2 (w2)
H?*2(R?), which will also be denoted by U

Proof:
Let ¢ € H*2(R?) and g € R? x T. Then

U\ w2 w2y = ([ DilhydllLywz) = (U DidllLywz) = |1 Dkdll, ey = || @l mevz@e),
which proves the statement. [
Define 7,, P, € B(H 2*?(R?) by
(T, )y snoez) = (U, To) 2w (e (11.45)
and
(P, §) owz(ge) = (¥, Po19) fr-on2(g2) (11.46)

for all W € H?**(R?), ¢ € H*?*(R?), z € T and = € R®. Moreover define the representa-
tion U : R? x T — B(H *?*(R?)) : g — U, by

(U F,¢) = (F.Uy19), (11.47)
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for all FF € H %*2(R?), ¢ € H**?(R?) and g € R?* x T. It follows from the fact that
H~2%2(R?) is the anti-dual (and not the dual) of H?*2(R?) that this indeed is a repre-

sentation. Moreover, this representation is again unitary. With this representation and a
wavelet U € H2*2(R?) we can define a wavelet transform on H~2*2(R?). But we restrict
the set of allowed wavelets.

Definition 11.19 Let k € N and ¥V € H ?*?(R?). Then VU is called an admissible
generalized wavelet if there exists a measurable complex-valued function v such that

1. wre % is contained in L;(R?) N Ly(R?).
2. [, }1/J(Rz_1w)‘2d,uqy(z) =1 for almost all w € R2.
3. (U, 0) = [ ¥(w)(Fo)(w)dw, for all ¢ € H*2(R?).

For a admissible generalized wavelet define the wavelet transform Wy : H2*2?(R?) —
Ci " by

(W F)(y, 2) = (L,P. U, F) y-2r2(82), (11.48)
for all ' € H=?*2 and y € R2.
Theorem 11.20 The map DyWy Dy, : Lo(R?) — Ly(R? x T) defined by

(DiWaDyf) (w, 2) = Dp(Wa Dif ) (-, 2)) (@), (11.49)
for all (z,2) € R2 X T and f € Ly(R?), is well-defined and an isometry.

Proof:

Rewrite (Wy Dy f)(y, z) as

(W\I/Dkf)(% Z) = (Z;{(x,z)qj; Dkf)H*%’?(]R?) = (Dgld@;,z)\lf, f)m(u&?)
= (u(z,z)Dk_lqjaf)]M(R% :F_l(fPZDlv_quFf)(x)
= F Y(P.FD,'UFf)(z)

for all (x,2) € R? x T. Since

— — 5k — k w
(FDL'Y, fLyeey = (D0, FF ey = (¥, DV Ff) = g ﬁf(w) dw,

for all f € Ly(IR?), it follows that (FD, ') (w) = L) for almost all w € R2,

14 |w|?k

Since w — L& € L;(R2) we obtain that Wy Dy f(-,2) € Lo(R2) for all

14|w|2k
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f € Ly(R?) and z € T. Moreover,
/T - [(1+ ‘W‘%)(}—(VV‘I/Dkf)(',Z))(u))‘2 dwdpir(2)

[ [ PEEEs o dua
/ FF@) dw = 11112,z
RQ

and therefore Wy Dy f (-, z) € H*?(R?) for almost all z € T and || Dy Wy Dy, f|1,®2 1) =
1/ llLa(re)- O

Note that in the proof it is crucial that Dy, and the representations ¢ and U commute. We
call the transform D,Wy D, a generalized wavelet transform.

Theorem 11.21 The unitary transform Dy Wy Dy as formulated in Theorem 11.20 is the
closure of the operator 20 : D(Dy,) — Lo(R? x T) defined by

(W) (9) = Us ¥, f) = (U, Uy f), (11.50)
for all f € D(Dy).

Proof:
Let g = (v,2) € R* x T. Then (x,2)"! = (R;'x,%). Let f € D(Dy) then,

(WUrf) = | W (W)@t Ff(Rw) dw
= [ Y(RIw)e“ R Ff(w) dw
R2
V(R w) (D 1y
= D T\ 7 G(wia)2 — 1 D1y
8 . 1+]w]2ke Fflw)dw=F (732.7: A ff)(:v),
which proves the statement O

11.4 An example of an admissible generalized wavelet

As an example of an admissible generalized wavelet we analyze the function defined by the
pointwise limit

[e's)
z
xlva E
m=0

m!

m

e 2l (11.51)
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where z = 1 + iz, which is based on the article [KHV]. Although the sum does converge
uniformly on compacta, this function is not contained in Ly(R?). But we will prove that
the function on H*?(R?) defined by

N
Ty6= lim / 2 vale)ole) (11.52)

(o tizy)™ o~ (et a3)
Vml
a representant ¥ in H~%%(R?). Moreover, it turns out to be an admissible generalized

wavelet. To prove this statement, we need some asymptotics.
The entire function defined by

where ¥, (z1, 12) = , is a continuous linear functional and hence it has

_ - " —r2/2
= e , 11.53
mZ::O = (11.53)
for all » € R, has the asymptotic expansion,
F(r) = 8m)Y*/r{l - — + O( )} r— 00. (11.54)

162

See [O, 2.Ch. 9, §8, pp. 307-309]. From this expansion and the continuity of ¢ it easily
follows that there exists a constant A such that

[ (2)] < AL+ /]z]), (11.55)

for all z € R%. Moreover, since F(r) converges uniformly on every finite interval, we also
find that ¢ converges uniformly on compacta.

It is clear that the functions v, are eigenvectors of the Fourier transform with eigen-
values (—1)™ for all m € NU{0}. Hence, we can rewrite (11.52) into,

1o = Jim [ zzwm ) de = Jim / ) ) F() d

— lim Zwm (F 1) V1 + (Wi Fo(w (11.56)

v Jea g T el

Y (R w)

—0" ivr

for all ¢ € H*2. It is now obvious that w — SV converges in the mean to

— % in Ly(R?). Hence,

Typ = /}R2 Y(R_jw)Fo(w) dw, (11.57)
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for all ¢ € H**(R?) and T has a representant ¥ € H~*?(R?). We now only need to verify
the integral condition in definition 11.19.

/T|1/J(Ri_zlw)}2d,uqr(z) = /T‘@/)(Rz_lw)fd,uqy(z)
I [ 2
-3 /O si(m’—m)o

m=0m/=0

/
m=m
zZ

& 2m
=y B et 1, (11.58)
— m!

for all w € R?. Hence, ¥ related to T is an admissible generalized wavelet and we can
apply Theorem 11.20 and its Corollary 11.21.
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12 A transform by Sherman revisited

12.1 Preliminaries

Let ¢ > 2. In this section we consider the space Ly(S?"!) with inner product

p— / F(©)g(€) dog_1(8), (12.59)

for all f,g € Ly(S971).

Denote the space of all harmonic polynomials of degree n on R? by HarmPol(R?,n),
the space of all homogeneous polynomials of degree N by HomPol(R?, n) and the space of
all harmonic homogeneous polynomials of degree n on R? by HarmHomPol(R?, n) for all
n € No. Let H,, be the subspace of Ly(S97!) consisting of all p € HarmHomPol(R?, n)
restricted to S9!, named spherical harmonics of degree n, for all n € Ny. It is well-
known that Lo(S971) >~ @2 H,,. The spaces H,, are all functional Hilbert spaces. The
corresponding reproducing kernels are denoted by Q¢ and can be expressed in suitable
normalized Gegenbauer polynomials as follows

2n — 2
Qi(s, ) = L Zcn (s, ), (12.60)
n —
for all 5,5’ € S77!. For a polynomial p € Pol(R?) we define the operator p(D) : Pol(R?) —
Pol(R?) by p(a%l, s %). For each spherical harmonic p, of degree m there exists a
homogeneous harmonic polynomial p,, such that p,|s«-1 = p,. Moreover,
I'(39)
ns I'n ————— (Pn(D)7,)(0), 12.61
o= 0 15 PO (1261

for all p,,, 7, € Hyn-
The space Pol(S971,n) = >"}'_, H,» has the reproducing kernel

Ri(s,s") ZQk s,5") (12.62)

for all s,s’ € S?°!. This space consist of all harmonic polynomials on R? of degree < n
restricted to S971.

12.2 The transform by Sherman

In [S], Sherman introduces a transform on Ly(S9!') which he regards as a Fourier transform
on a sphere. For the inverse he provides a formula where a singular integral is involved.
Our aim is to approach the same transform from the theory developed in this report so far.
As a result we will show that the singularity in the formule for the inverse can be avoided.
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Moreover, an alternative transform is considered, for which a simple Parseval identity is
valid. Note that in [S] no such identity is present.

Let a € S9! and define B = {b € S ! |(a,b) = 0}. Let n € Ny. Construct the set V;,
by

Vio=Aenp:s— (a—ib,s)" | b€ B}. (12.63)

The elements e,, ;, are spherical harmonics of order n for all n € N and b € B. In Theorem
12.23 we will prove that V,, is total in H,,. Define the function of positive type K, by

Kn(b, b’) = (671,117 en,b’)q = %(én,b(l))én,b’)(o)
F(%q)n!

= mu + (b, 1)), (12.64)

for all b,0’ € B. By Theorem 2.3, the frame transform W, : H,,, — Cﬁn defined by

(Wof)(B) = (enps oy (12.65)

for all f € H,,,b € B is unitary. Obviously, W,, maps spherical harmonics of order n onto
polynomial on B with degree at most n. Moreover, since dim(H,,,) = dim(HomPol(R?™'), n)+
dim(HomPol(R?™!, n — 1)) = dim(Pol(S?2,n)), it follows that the space C% consists of
all polynomials on B with degree at most n. Note that C7coincides with Pol(S72,n) as a
vector space, but the norm on the both spaces is different (although topological equivalent).
They are related by a transform.

Define the constants a,, ;4 by

1 q—3
O kg = / (14+6)"Q,2 (t)(1 — )72 dt, (12.66)

1

for all 0 < k < n. Then, the linear map ® : Cf — Pol(B,n) defined by

(@f) () = (Z%k,qQ? (55 f) bty (12.67)
k=0

for all f € Cﬁn maps the reproducing kernel K,, onto R,,. Therefore the inner product on
Cﬁn is given by

(f7 g)(Cﬁn = (CI)f, g)POl(B,n); (1268)

for all f,g € Cﬁn.
Define €, € Pol(B,n) by €,(b) = e,4(s), for alln € Ng, b € B and S € S97'. As a
result we obtain the following identities,

fn(S) = (Q%ﬂil(s) ‘)7 fn)Hq,n == (én,sa ann)(cgn = (CI)(én,s)a ann)Pol(B,n)a (1269)
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for all f,, € Hyn, s € ST ! and n € Ny. Moreover,

Q%/2_1($7 S/) = (cb(én,s)a én,s’)Pol(B,n)7 (1270)

for all s,s' € ST', f € H,, and n € Ny. The second identity is to be regarded as the
analogon of key Lemma 3.9 as formulated in the article by Sherman. The singularity of
the function ej, , introduced by Sherman, does not occur in ®(é,,s).

Finally, define the reproducing kernel K by

K(b,n,b',n") = 0 K, (b, V'), (12.71)

for all b,/ € B and n,n’ € N. Then the frame transform W : H — CE*N defined by
(Wf) (b,n) = (ann)(b) where f = Y7 f, and fy € Hj, for all £ € N, is unitary.

Summarizing we get the following relations

(W) (b,n) = /Sq1 enp(s)f(s) dog-1(s), (12.72)

Og—1

for all f € Ly(S77 '), b € B and n € Ny. Moreover,

F(5) = Limy e 3 /B (@2,2) () (W 1) (b,1) doy_s(b) (12.73)

O-q72 n=0

for f € Ly(S97!') and almost all s € S7~!. Moreover, we also find the Parseval identity

I 0y = D IWafulley (12.74)
n=0

for all f =737 f, in Ly(S9 . Note that in [S] such a result is not mentioned. But as
long as (Cﬁn is not characterized in a more tangible way, this identity remains unpractical.

12.3 An application of Theorem 9.2

In this section we consider the transform in an abstract fashion. It provides a nice illus-
tration of Theorem 9.2, by Grossmann, Morlet and Paul.
For the sake of simplicity let a = (1,0,...,0). Define J,, = {A € SO(q) | Aa =

a} = {( (1) % ) | Ae SO(q — 1)} Then J,, can be identified with SO(¢ — 1) and

S~ SO(q)/ Jay.

The representation U7 : SO(q) — B(ILy(S771)) : A — Z/{IE\Q) defined by (U4f)(z) =
f(A7 z) for all f € Ly(S971), for all A € SO(g) and almost all z € S97!, is unitary.
Moreover, the restriction of & onto H,,, is irreducible for all n € N. Note that

(Udens)(s) = enp(A™'s) = (a —ib, A7's)" = (a — iAb,s)" = en a(s), (12.75)
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for all s € S7' b e B,n € Ny and A € J,,.

Fix n € N. The subrepresentation U4?|;, , is no longer irreducible, but H,, decomposes
inHypn = @?:17'@,” such that U], , is irreducible if restricted to Hg’n. Denote IP’{M as the
projection operator from H,,, into H; . For a detailed discussion of this space H}, see
[Mu, §11].

Now fix b € B = {(0,&,-1) | &1 € S ?}. Apparently, the representation 9|,  is
cyclic with respect to ‘H,,, since the span of

f/n = {Llfflemb | A€ Ja,q} = {€n714b | Ae Ja,q} = {emb/ | b e B} = Vn, (12.76)

is dense in H,, and hence e, is a cyclic vector. Note that for all A € J,, with the
property Ab = b we have Uf%e,, = e,p. These elements form a subgroup of Ja,q and will
be denoted by J, ;.. Note that J,,/Jap, can be identified with S92 'We will replace the
index set J, , by S7? in a moment.

Define for j = 1,...,n the function K7 of positive type by K7 (A, A') = (Unenp, Unenp)n

N Ja.
and the wavelet transform W} : H}  — Cmf by

(Wif)(A) = UsPens, P (12.77)

for all f € H! and A € J,,, which is unitary by Theorem 2.3. Since U?|,, , restricted
to Hé,n is unitary irreducible and trivially square integrable, the functional Hilbert space

Ci?iq is a closed subspace of Ly(J,4) by Theorem 9.2, (the inner products are equal up to
a constant). Note that W7 f is constant along the orbits of Japq acting on Jg .

As mentioned earlier we replace J, , by Ju 4/ Jape, Which we immediately identify by
S92, Define the unitary wavelet transform W7 : HJ = — Cng by

(Waf) (€a-1) = Phenogen)s g, (12.78)

for all f € HJ and &1 € S72. Since WJ maps HZ, unitary onto a closed subspace of
Ly(J,,) and W/ f is constant along the orbits of J, 4, acting on J,, for all f € H,,, we
obtain that the functional Hilbert space Cf{qf is a closed subspace of Ly(S772) (up to a

constant) .

An important observation now is that the map W/ intertwines the representation
U, + Jag — B(HY,) + A Uilys  and the representation Y¢! : SO(¢ — 1) —
1 ~ 1 ) 1 10
B<C}q<2 ) A e UG |(Cf51, ie. WRUZJH;” = UTW, for all A = (O i and

A€ SO(q—1). Indeed,

(ertugllﬁé,nf) (fq*1> = (szen,((],ﬁqfﬂaug’Hgﬂnf>Hgm = (Z/{Z—l ‘Héyn]p%en,(o,qulﬁ f>Hg7n
= (PUienoé0) g, = Bhena-10g1 i,
= (Pien,(o,ﬁflgq,l)a f)Hg,n = (U%_Ian) (fq—l)a (12.79)
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Lo
0 A

is irreducible and unitary and moreover W is unitary,

for all {,; € ST°1, fGH

s

and for all A = ( ) and A € SO(q — 1). Since the

restriction of U9, : Jaoq — HI,

the representation Ut . SO(q -1) — Cf:;l is also irreducible and unitary. Therefore

CS is exactly the space Hy_1x for some k € N. Since dim M/, = dimHy_1; (see [Mu,
§11]) and all the dimensions of H,_;;, differ for k¥ € N, it must be the case that k& = j.

Summarizing, we can conclude that W7 is a unitary map (up to a constant) from Hgm
into H,—1 ;. Le. there exist a ¢}, > 0 such that

(925, = Con Wi f Wi H, 15 (12.80)

for all f,g € H},. Naturally, the numbers ¢}, are related to the coefficients a4 in
(12.66).

From the transform W7 we can built the transform W,, on H,,,, and finally the transform
W on Ly(S771).

12.4 An approach using a special orthonormal basis

First we give a summary of the most important result in §10 and §11 of [Mu]. Note that
we use some different conventions. Let ¢ > 3 and consider the coefficient BJ(t) of the
expansion

(t 4 isvV1 — 2)" ZBJ T (12.81)

for all s,t € (—1,1). By the classical orthogonality relations, the formula of Rodriguez and
integral representation for the Gegenbauer polynomials, one obtains

. 9\ /9 g+2j—3
BI(t) = (1 — %)/ C,_ 2 (b), (12.82)

for all t € [—1,1] and some constant a;, ,. For fixed j € N the functions {BJ(¢;t) | n > j}
are orthogonal in the following way

1
| BlansL@on-» a—o (12.83)
-1
if n #m. Let AJ, =173, ;,BJ, where (3, ;, is chosen such that
1
/ AL @A (@)1 =) dt = by, (12.84)
-1

for n,m > j. The factors i~/ make the function A7 real-valued. The functions A’ are the
building blocks for orthonormal basis for the space H,,. Use the following coordinates for
elements on the sphere S7°!

§= (V1 =126,), (12.85)

where £, ; € S92 and ¢ € [—1,1]. The following is the key result of §11 in [Mu].
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Theorem 12.22 If form =0,1,...,n orthonormal bases {Y,,; | j=1,...,N(¢g—1,m)}
for Hy—1,m are given then

{t; VI =12,1) — AT(q;t) Y (§=1) | 7=1,2...N(g—1,m) m=0,1,...n}, (12.86)
is an orthonormal basis of Hy,,.

The set {(z,y) — (z +iy)", (x,y) — (z —iy)"} is an orthonormal basis for Hs,. From
this basis we can construct by induction a basis for H,,, for all ¢ > 3 and n € Nj.

Now we proceed by defining a wavelet transform on Ly(S97!). The group SO(q — 2)
has a natural action on S972 and therefore it has the natural action on S9! given by

A(VT = B) = (0,71~ BAE, ), (12.87)

forall A€ SO(q—1), &1 € S 2and t € [-1,1]. Let UD : SO(q— 1) — B(Ly(S971)) be
the representation induced by this action. Define (@™ : SO(q — 1) — H,,, by Lliq’n) f=

L{X") f, forall A € SO(¢—1) and f € H,,. Next we search for cyclic wavelets for the
representations U@™. Let v, € Ly(S97!) and write

n N(g—1,m)

Z Z Qg AT (12.88)

where the function Y,, ; and A" are defined as above. A useful criteria for the coefficients
Qpj such that ¢, is a cyclic wavelet is the following.

Theorem 12.23 Let n € N. If there exists a,, and b € S772 such that

Qmj = Qi Yom (D) (12.89)

forallj=1,2,... N(g—1,m) andm =0,1...,n then ¢ defined by (12.88) simplifies to
- 4=3
Un(t VT, ) = S an AT (@0 (6, ), (12.90)
m=0

for all (t;v/1 —12¢,1) € S9t. Moreover, if &, # 0 for allm = 0,1,...n then ¢ is a

cyclic wavelet for U@,

Proof:
First note that

n N(g—1,m) n N(g—1,m) n

Z Z U A Y =Y G AT > Vo (0o = Y @ AL Qu? (b,-).
m=0

j=0 m=0
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q—3
Moreover, (L{ng’n)wn) (V1 — 128,1) = QAT () Qn? (Ab, &, 1) for all (t;v/1 —126,1) €
S and A € SO(q —1). Let f € H,,, and write

n N(g—1,m)

f= Z Z B AT Y 5.

Then

(uf{qm)@bn? f) = aﬁmjym,j(Ab)a

m=0 7=0

for all A € SO(q—2). Assume now that f € {U'"™y | A € SO(q—1)}*. Since
{Yo,17=12...N(g—1,m) m=0,1,... n} is an orthonormal basis for
Pol(5772,n) and by the transitivity of the action of SO(q — 1) on S972, it now
follows that &,,3,; = 0 for all j = 0,1,...,N(¢—1,m) and m = 0,1,...n
Therefore 3,,; =0forall j =0,1,..., N(¢g—1,m) and m = 0,1, ...n and hence
f=0. 0

Note that the procedure of the Section 12.3 holds for any wavelet 1) which satisfies all the
condition of Lemma 12.23. Therefore their associated transforms all isometrically (up to
a constant) map Hg}n onto H,—1,. These constants however can differ.

Lemma 12.23 proves that the set {e,, | b € B} introduced by Sherman, has a dense
span in H,, for all n € Ny. Moreover, the function K of positive type ie represented by

n

Ka(6,8) = 3 [Brnal Q07 (0,1), (12.91)

k=0

for all b, € B. Hence we see that |3, k4|72 = Qg
Next we introduce a different transform based on a cyclic wavelet which satisfies the
condition of Lemma 12.23 in a trivial way. Let n € Ny. Let ¢, € H,,, be defined by

Dot VI — P, 1) = 3 ATQn ((b,€,1)), (12.92)

for all t € [-1,1], {1 € ST 2 and b € S72. By Theorem 12.23 the set {¢,, | b € ST}
has dense span in H,,. Since

(‘bb,na ¢b/ Hn,q Z Qm b b/ (b, b/), (1293)

for all b0’ € ST and by Theorem 2.3, it follows that the frame transform defined by
(W) (0) = (S0 g (12.94)
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for all b € S7% and f € H,, is a unitary map from H,,, onto Pol(S?2 b). Now define
~ ~ ~ q—1 P
¢n,s by ¢n,s(b) = (WnQn?S )(b) = ¢n7b(5)- Then

(Wn_lF) (S> - (an,s’ F)POI(S‘?*Q,n)y (1295)

for all s € S9! and F € Pol(S972,n).
Finally, define the function K of positive type on S72x Ny by K (b, n,b',n') = K,,(b,0")0nn
for all n,n’ € Ny and b, b’ € S971.

Theorem 12.24 The transform W : Ly(S471) — Cf;dXNO defined by

(WF)(0.1) = (Gnp, flrase (12.96)

1s unitary. The inverse is defined by

N
F(5) =1imn oo Y (Dnss Waf Jpol(sa—2.n), (12.97)
n=0

for almost all s € ST and all f € Ly(STY) where f,, is the projection of f on Hy,,, for all
n € Ny. Moreover,

||f||]%2(5q*1) = Z ||ann||12;>01(5q727n); (1298)
n=0

for all f € Ly(S971), where f,, is the projection of f on Hyp.

Question: Does there exist a more tangible expression for the function ¢y, ?
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A Schur’s lemma

Schur’s lemma is mostly known for the special case of irreducible representations & on
finite dimensional spaces or irreducible representations of compact groups. In these cases
the proof is straightforward. The main idea is that if A has an eigen-value, then the
eigen space is invariant under U,, which follows by the assumption U,A = AlU,, and by
irreducibility of U it then follows that Ey = E\ = H. Nevertheless, Schur’s lemma has
serious consequences such as the orthogonality relations by Weyl for compact groups. We
will give a generalization of this theorem which is applied in Theorem 9.2 and which is
formulated as an exercise in [D, vol.V, pp.21].

Theorem A.1 (Schur’s Lemma) Let G be a group and let g — U, be a unitary irre-
ducible representation of G in a Hilbert space H. If A is a closed operator on 'H such
that

UASf = AU, f forallge G ,feD(A),

then A = cl for some c € C .

Proof:

First we will prove the theorem for a self-adjoint bounded operator A. Note
that D(A) = H. It follows from the spectral theorem for self-adjoint operators
that A is in the norm closure of the linear span V' of all orthogonal projections P
commuting with all the bounded operators commuting with A. In particular i,
is a bounded operator commuting with A and therefore every P € V commutes
with U,. Therefore the space on which P projects (which is closed since it equals
the N'(I — P)) is invariant under ,. But U/ was supposed to be irreducible and
therefore this space equals ‘H or {0}, i.e. P =0 or P = I. Since A is within
the span of such P, we have that A = ¢, for some constant ¢ € C.

Assume now that A € B(H). By unitarity of U,

(f1, AU fo)n = Uy Afr, fo)u = (AlUg—1 f1, f2)n = (f1,UgA" f2)n,

for all g € G and f1, fo € H. Therefore, U, commutes with A* and thus with
A+ A* and i(A — A*) (which are both self-adjoint) for all g € G. Hence there
exists ¢q, co € C such that

At A-A ALA (A A

A —
2 + 2 2 21

=l + 2T
i
and thus the result follows for any bounded operator A on a Hilbert space A.

Finally, let A be any closed operator commuting with &. The domain D(A)
is invariant under U, therefore by the irreducibility of U it follows that D(A)
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is dense in ‘H. Since A is closed and densely defined, the adjoint A* is well-
defined. Moreover, A*U, = U,A* for all g € G by a same argument as in the
case A € B(H). By closedness of A, the domain D(A) is a Hilbert space (say
Dy ) equipped with inner product

(fi, f2)a = (f1, fo)n + (A, Afa)w = (fi, (L + A% A) fo)n,
for all fi, fo € Dy4.

Define the representation U : g — Z/?g of G in D4 by Z/?gf =U,f, forall f € Dy
and g € G. Since U is unitary and U, commutes with A for all g € G, it follows
that U is unitary. Moreover, U is irreducible. Indeed, if V is a non-trivial closed
subspace of Dy and f; € V with f; # 0. Let f € V4, then

0= (fo,Uyfr)a = (fo, (L + A AUy f1)3 = (fo, Uy (1 + A A) f1),

for all g € G. Hence f; = 0 by the irreducibility of . Thus V = D,4.

Obviously, the operator A:Dy — Hgiven by Af = Af is a bounded operator
and satisfies AZ/{ U, A for all g € G. Moreover, A* U, = Z/{ A* for all geG
by a same argument as in the case A € B(H). As a result the operator A*A :
Dy — Da is a bounded operator on the Hilbert space D4 commuting with Z/{
for all ¢ € G. As a result we have by the preceding that A*A = dI, but then
we have (Af, Af)y = d(f, )4 and therefore

1

AL AP = (f, Fln+ (Af, Af ) & (Af, Af)n = e (f, Fns
for all f € D4, with |c|* = d/(1 — d). Now A is a closed operator, D(A) is
dense in ‘H and A is bounded. Hence D(A) = H and A € B(H). As a result
A is is equal to ¢l by the previous part of the proof for some ¢ € C, with
lc|> =d/(1 —d). O

See [Ta, Prop. 0.4.5] for a more general version of the Schur’s Lemma.
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B Gelfand triples

Let 'H be a complex Hilbert space and R an unbounded, positive and self-adjoint operator
on ‘H, for which the inverse R~! € B(H). Note that the boundedness of R~* implies that
D(R™') = H and hence D(R) = R™'(H).

Define the space H; as the linear space D(R) equipped with the inner product (f, g); =
(Rf,Rg)y for all f,g € H. Since R is closed and R™! is bounded, H; is a Hilbert
space. Next define the Hilbert space H_; as the completion of H equipped with the
norm (f,g)-1 = (R~ f, R"1g)n. . .

The operator R on H induces the map R : Hy — H by Rf = Rf forall f € H; = D(R).
Since ||Rf|l» = ||f||; for all f € H;, the map R is on isometry. By boundedness of R, it
follows that R is also surjective and hence a unitary map.

Define R : D(R) — H_; by Rf = Rf for all f € D(R). Since ||Rf|—; = ||f||3 for all
f € D(R), the map R is closable and its extension is an isometry. Since R(D(R)) = H

and H is dense in H_; the closure is also surjective, hence a unitary map. Write R for the
closure of R.
Hence the following triple is obtained

H! [ H I T (B.1)
A triple of this type is called a Gelfand triple.

It follows by the Riesz representation theorem and the unitarity of R and R that the
space H_y is naturally isomorphic to the anti-dual space of H; under the pairing

~—1 ~
for all FF € H_; and f € H;. Note that by the selfadjoint-ness of R

if F'e M for all f € H'. In this paper R, R and R are all denoted by the same symbol R.
From the context it is clear which operator is meant by this symbol.

Example: Let & € N. Then it is well-known that the operator Dy = 1 + |A|* with
domain H?2(R?) is an unbounded, positive and self-adjoint operator on L,(R?) with
bounded inverse. Define the Gelfand triple

H*2(R?) < Ly(R?) «— H~*2(R?). (B.4)
For a detailed discussion of these spaces, see [Y, §1.10, pp.56].

C An open problem

C.1 Introduction

Let 2 be an open connected subset of C and denote the space of all analytic functions on
Q by A(Q) . Let Z = {a, | n € N} be a countable set of points in Q2 and w : Z — (0, c0)
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a positive valued function on N. Finally, let H C A(Q2) consist of all f € A(2) with

> 1 f(an)Pw(an) < oo (C.1)

neN
Consider the questions: Under what conditions

1. is H a pre-Hilbert space under the inner-product (-,-) : H x H — C defined by

(frg)n =Y Flan)glan)w(n), (C.2)

neN
for all f,g € H?
2. is ‘H a Hilbert space, i.e. is H complete?
3. is ‘H a functional Hilbert space?
If 'H is a pre-Hilbert space, but not a Hilbert space,
4. can we characterize the completion of H?

This is still a challenging open problem. We will make some remarks about it.

The space H is a pre-Hilbert space if and only f(a,) = 0 for all n € N implies f = 0.
A sufficient condition is that the set Z = {a, | n € N} has an accumulation point in (2,
since the set of zeros of an analytic function has no accumulation points. In case 2 = C,
another sufficient condition is that

[e.9]

Z |an| " = o0, (C.3)

n=1

for some h € N, but then the space A(£2) must at least be restricted to the subspace of
entire function of order A < h + 1.
The choice of €2 is troublesome. For example, replace €2 by a subset 2; C €2 such that
{a, | n € N} is still contained in §2;. How are the two spaces A(Q2) and A(€);) related?
Note that if the space H is indeed a Hilbert space, then it straightforwardly follows
that point-evaluation on elements of Z is continuous. Hence there exist K, € H such that

F(an) = (Kap ). (C.4)

for all f € ‘H. Moreover, the set {K,, | n € N} is total in H.
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C.2 g¢-functions

A challenging example concerns the special g-functions, as mentioned in Section 6.3. Con-
sider the space A(C) consisting of analytic functions on C and let 0 < ¢ < 1. Define
Z={q"|neNy}and w:Z — (0,00) by w(q™) = ¢". Condition (C.1) is now given by

D IF @) Pg < oo, (C.5)
n=0
and H is the set of all element of A(C) which satisfy (C.5). Since Z has accumulation
point it is clear that H now is pre-Hilbert space.
This example is a nice illustration that the set © (which we have chosen to be C), must
contain the point 0. If for example {2 was chosen to be the open unit disk around z = 1,
denoted by Dy ;. Then g : Dy ; — C given by

, (C.6)

for all z € D;; defines an analytic function on D, ;, which is zero on all elements of Z.
Therefore it satisfies condition (C.5) and belongs to H, but has norm equal to zero. Hence
‘H fails to be a pre-Hilbert space.

Although the space H is a pre-Hilbert space, it is not a Hilbert space. For example,
consider the sequence {f, € H},en defined by

n

fn<z) = H

k=1

I\

k
q
et (C.7)

—_

> T
for all K > N and z € (0,1), we obtain |f,(2)| < [fn(2)| < max.coq|fn(2)| =: A for all
z € (0,1) and n > N. Moreover, f,(¢*) =0 for all 1 <k <n and f,(1) = 1. Now

for all n € N and z € C. Since there exists a N € N such that \’f:g:| < min(qf’qlk_qk) <1

[e.e] [e.e]

o= Fulde= >0 ald) = fuld)Pe" <442 > =42l ——

k=min(n,m)+1 k=min(n,m)+1

for all n,m > N. Hence {f,}nen is a Cauchy sequence. But it does not have a limit in
H. Indeed, if f € H is the limit of {f,}nen, then f(¢*) = 0 for all £ € N and f(1) = 1.
Therefore f is non-zero and the set of zeros has an accumulation point. Hence f is not
analytic.
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