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1 Introduction

A ’frame’ in a Hilbert space H is defined to be a subset V = {φx | x ∈ E} ⊂ H, with E an
index set, such that the span 〈V 〉 of V is dense in H. Mostly, the set E is a subset of Cn
or a group. Starting from a frame V we introduce the frame transform

W : H → CE : f 7→ Wf, where Wf : E→ C : x 7→ (φx, f)H. (1.1)

The underlying master’s thesis is mainly focused on the questions how and when the
above transform defines a unitary map. We succeeded answering these questions in the
most general way by using the theory of functional Hilbert spaces (= theory of reproducing
kernels). The idea of working with these kind of spaces is inspired by the identity∣∣(Wf

)
(x)
∣∣ ≤ ‖ψx‖H‖f‖H. (1.2)

This identity states that if the frame transform defines a unitary map fromH onto a Hilbert
subspace of CE, then point evaluation δx : f 7→ f(x) in the latter space is a continuous
linear functional for all x ∈ E. This means that the Hilbert subspace has a reproducing
kernel K and we denote it by CE

K .
The central observation of this thesis is Theorem 2.3. It states that W defines a unitary

map from H onto the functional Hilbert space CE
K where K is the function of positive

defined by K(x, x′) = (ψx, ψx′)H. This is a new and important result. Since the functional
Hilbert space CE

K is constructed in a rather abstract fashion, we are challenged to find a
more tangible alternative description of this space.

As shown in chapter 4, an alternative description comes within sight in case the frame V
is constructed from a generating function for orthogonal polynomials. The space CE

K then
typically consist of analytic functions on (a subset of) the complex plain. The Bargmann-
transform is a famous illustration of this phenomenon.

In chapter 5 the well-known Laplace and Fourier transforms are looked upon as frame
transforms. Note that the Fourier transform is not a frame transform itself, but with
the aid of Gelfand triples we can construct a frame transform which leads to the Fourier
transform.

Theorem 2.3 can also be used to construct sampling theorems. A famous example of
a sampling theorem concerns the space of functions f ∈ L2(R) for which Ff has support
within (−1, 1). Then

f(x) =
∞∑

n=−∞

f(n)
sin(π(x− n))

π(x− n)
. (1.3)

In chapter 6 a general sampling theorem is proved by a simple argument, which covers most
of the classical cases. As an excursion, we also mention a construction of functional Hilbert
spaces that admit a sampling theorem. In Appendix D an open problem is formulated
which is inspired by these results.
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A special kind of frame transforms is the wavelet transform. In this case V is constructed
from a vector ψ ∈ H and a group representation of a group G in H

Vψ = {Ugψ | g ∈ G}. (1.4)

We denote a wavelet transform by Wψ, where ψ ∈ H is called ”wavelet”. In the last twenty
years a lot has been written about these kind of transformations. In 1985 Grossmann,
Morlet and Paul published a basic paper [GMP] which can be seen as the fundament of the
theory of wavelet transforms. Their main result is that the wavelet transform Wψ defines
a unitary map from a Hilbert space H onto L2(G) for a suitable vector ψ ∈ H, where G is
a locally compact group with a unitary, irreducible and square integrable representation U
of G in H. A square integrable representation is a representation for which a ψ exist such
that

Cψ =
1

‖ψ‖2
H

∫
G

(Ugψ, ψ)H dµG(g) <∞, (1.5)

where µG is a left invariant Haar measure.
The irreducibility condition is a very strong one. However, many representations of

practical interest are not irreducible at all. Therefore it is often suggested, to replace the
condition of irreducibility by the condition that the representation is cyclic, i.e. it has a
cyclic vector, i.e. a vector for which the span of the orbit under U is dense in the Hilbert
space. But no really successful unitarity results were obtained. For a nice survey of some
posed suggestions, see [FM].

Noticeably, our Theorem 2.3 states that Wψ defines a unitary map from 〈Vψ〉 onto
CGK . The conditions we impose on the representation are quite simple: none! Note that
〈Vψ〉 = H if and only if ψ is a cyclic vector.

Although the above solves the unitarity questions, the functional Hilbert space, as men-
tioned before, is not easily characterized. We managed to give an easy to grasp description
of the functional Hilbert space in the case H = L2(S) and G = SoT for an abelian group
S and an arbitrary group T which acts on S. As an example we work out the case S = R2

and T = T so G is the Euclidean motion group. The idea to consider semi-direct products
is not new, several articles have been written on this subject. See for example [FKNP],
[FM].

The final chapter concerns a transformation introduced by Sherman in [S]. Although
this ”Sherman transform” is a frame transform but not a wavelet transform, it has several
resemblances with wavelet transforms. In [S], Sherman poses a key lemma concerning
a singular integral. This singularity however, can be avoided. Moreover, we suggest an
alternative transform which has the advantage that the unitarity relations appear in a
more natural way.
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2 Frame transforms and functional Hilbert spaces

2.1 Introduction

Denote the space of all complex-valued functions on E by CE. We say that a Hilbert space
H consisting of functions on a set E, i.e. a vector subspace of CE, is a functional Hilbert
space, if point evaluation at every point is continuous, i.e.

δx : H → C : f 7→ f(x) (2.6)

is a continuous linear functional on H for all x ∈ E. Then, by the Riesz-representation
theorem, there exists a set {Kx | x ∈ E} with

(Kx, f)H = f(x), (2.7)

for all x ∈ E and f ∈ H. We use the convention that the inner product is linear in the
second entry. It follows that the span of the set {Kx | x ∈ E} is dense in CE

K . Indeed, if
f ∈ H is orthogonal to all Kx then f = 0 on E.

Then define the function K : E × E → C by K(x, x′) = Kx′(x) = (Kx, Kx′)H, for all
x, x′ ∈ E. The function K is called the reproducing kernel. It is obvious that K is a
function of positive type on E, i.e.,

n∑
i=1

n∑
j=1

K(xi, xj)cicj ≥ 0, (2.8)

for all n ∈ N, c1, ..., cn ∈ C, x1, ..., xn ∈ E.
So to every functional Hilbert space there belongs a reproducing kernel, which is a

function of positive type. Conversely, as Aronszajn pointed out in his paper [Ar], a function
K of positive type on a set E, induces uniquely a functional Hilbert space consisting of
functions on E with reproducing kernel K. We will denote this space with CE

K . Without
giving a detailed proof we mention that CE

K can be constructed as follows; start with
K : E × E → C, a function of positive type and define Kx = K(·, x). Take the span
〈{Kx | x ∈ E}〉 and define the inner product on this span as( l∑

i=1

αiKxi ,

n∑
j=1

βjKxj

)
CE
K

=
l∑

i=1

n∑
j=1

αiβjK(xi, xj). (2.9)

This is a pre-Hilbert space. After taking the completion we arrive at the functional Hilbert
space CE

K .
There exists a useful characterization of the elements of CE

K .

Lemma 2.1 Let K be a function of positive type on E and F a complex-valued function
on E. Then the function F belongs to CE

K if and only if there exists a constant γ > 0 such
that ∣∣∣ l∑

j=1

αjF (xj)
∣∣∣2 ≤ γ

l∑
k,j=1

αkαjK(xk, xj), (2.10)
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for all l ∈ N and αj ∈ C, xj ∈ E, 1 ≤ j ≤ l.

Proof: See [Ma, Lemma 1.7, pp.31] or [An, Th. II.1.1].

This lemma enables us to give an expression for the norm of an arbitrary element in
CE
K .

Lemma 2.2 Let F ∈ CE
K. Then

‖F‖2
CE
K

= sup

{∣∣∣ l∑
j=1

αjF (xj)
∣∣∣2( l∑

k,j=1

αkαjK(xk, xj)
)−1

∣∣∣ l ∈ N, αj ∈ C, xj ∈ E, ∥∥∥ l∑
k=1

αkKxk

∥∥∥
CE
K

6= 0

}
. (2.11)

For a detailed discussion of functional Hilbert spaces see [Ar], [An] or [Ma].

2.2 Construction of a frame transform

Starting with some labeled subset V of H, we will construct a functional Hilbert space by
means of a function of positive type on the index set, using the construction as described in
the introduction. Moreover, there exists a natural unitary map from 〈V 〉 to this functional
Hilbert space.

Let H be a Hilbert space. Let E be an index set and

V := {φx | x ∈ E}, (2.12)

be a subset of H. We call the set V a frame. Define the function K : E × E → C of
positive type on E by

K(x, x′) = (φx, φx′)H, (2.13)

for all x, x′ ∈ E. From this function of positive type the space CE
K can be constructed.

The following theorem is the central observation of this thesis.

Theorem 2.3 (Frame Theorem) The map

W : 〈V 〉 → CE
K : f 7→ Wf, where Wf : E→ C : x 7→ (φx, f)H, (2.14)

is a unitary map.

Proof:
Here 〈V 〉 inherits the inner product from H. First we show that Wf ∈ CE

K for
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any element f ∈ 〈V 〉 and that W is bounded (and therefore continuous). If
f ∈ 〈V 〉 then∣∣∣ l∑

j=1

αj
(
Wf

)
(xj)

∣∣∣2 =
∣∣∣ l∑
j=1

αj(φxj , f)H

∣∣∣2 =
∣∣∣( l∑

j=1

αjφxj , f
)
H

∣∣∣2

≤
∥∥∥ l∑
j=1

αjφxj

∥∥∥2

H
‖f‖2

H =
( l∑
k,j=1

αkαjK(xk, xj)
)
‖f‖2

H,

for all l ∈ N, α1, ..., αl ∈ C, and x1, ..., xn ∈ E. So Wf ∈ CE
K by Lemma 2.1

and ‖Wf‖2
CE
K
≤ ‖f‖2

H, by Lemma 2.2. Next we prove that W is an isometry.

Because
(
φx′
)
(x) = K(x, x′), W maps a linear combination

∑
i αiφxi onto the

linear combination
∑

i αiK(·, xi). So W (〈V 〉) = 〈{K(·, x)|x ∈ E}〉. Moreover,
it maps 〈V 〉 isometrically onto 〈{K(·, x)|x ∈ E}〉, because(

W
(∑

i

αiφxi
)
,W
(∑

j

βjφx′j
))

CE
K

=
(∑

i

αiK(·, xi),
∑
j

βjK(·, x′j)
)

CE
K

=
∑
i,j

αiβjK(xi, x
′
j) =

∑
i,j

αiβj(φxi , φx′j)H.

Since 〈V 〉 is dense in 〈V 〉 and W is bounded on 〈V 〉 it follows that W is an
isometry. Furthermore, W [〈V 〉] is dense in CE

K . So W is also surjective and
therefore unitary. �

We will call the unitary mapW a frame transform. In the sequel we will mostly introduce
a frame transform by ’W : 〈V 〉 → CE

K defined by
(
Wf

)
(x) = (φx, f)H for all x ∈ E and

f ∈ 〈V 〉’, instead of writing ’W : 〈V 〉 → CE
K : f 7→ Wf , where Wf : E → C : x 7→

(φx, f)H’. The latter has the advantage that the structure of the objects is more tangible,
but it has the disadvantage that it is a bit lengthy for simple calculations. Therefore the
first phrase will be used when we deal with an explicit example of a frame transform and
the second phrase otherwise.

In most cases we are mainly interested in the case 〈V 〉 = H, i.e. V is total in H. To
get a feeling for what is happening we deal with two illustrating examples.

Example: The special case E = N. Let H be a separable Hilbert space consisting
of functions on the set E = N. Let V = {φm | m ∈ N} consist of an orthonormal basis, so
〈V 〉 = H. Then,

K(m,m′) = (φm, φm′)H = δmm′ , (2.15)

for all m,m′ ∈ N. This means that we just get CN
K = l2(N). The unitary map W gives us

the sequence of expansion coefficients cm of a vector f ∈ H with respect to the orthonormal
basis.
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Example: The special case E = H. Let E = H and V = {m|m ∈ H} = H. The
function of positive type is just the inner product

K(m,m′) = (m,m′)H. (2.16)

This means that CE
K = CH(·,·)H . This is the functional Hilbert representation of an arbitrary

Hilbert space. It is equal to the topological dual space H′, the space of all continuous
linear functions on H.

The functional Hilbert space CE
K is an abstract construction. We are challenged to find

alternative characterizations of these functional Hilbert spaces.
In the literature two major classes of functional Hilbert spaces appear, functional

Hilbert spaces of Bargmann-type and of Sobolev-type. The first type consists of a nullspace
of unbounded operators on L2(E, µ) and the second of the domain of unbounded operators
on L2(E, µ). For Bargmann-type spaces see [B]. For Sobolev-type, see [EG1] and [EG2].
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3 The inverse frame transform

3.1 Inversion using projections

Let H be a Hilbert space and V ⊂ H a subset of H labeled with elements in a set E

V = {φx | x ∈ E}. (3.1)

For the sake of simplicity assume that the span is dense in H.Otherwise, replace H by 〈V 〉.
Consider the unitary frame transform W : H → CE

K : f 7→ Wf , where Wf : E→ C : x 7→
(φx, f)H. We will analyze the inverse W−1 of W .

SupposeH = CI
L is a functional Hilbert space itself, with reproducing kernel L. Set Ṽ =

{WLξ | ξ ∈ I}. Then 〈Ṽ 〉 is dense in CE
K , by unitarity of W . Moreover, (WLξ,WLξ′)CE

K
=

(Lξ, Lξ′)CI
K

= L(ξ, ξ′) for all ξ, ξ′ ∈ I. So if

W̃ : CE
K → CI

L : g 7→ W̃g, where W̃g : I→ E : ξ 7→ (WLξ, g)CE
K
, (3.2)

is the associated frame transform, then(
W̃g
)
(ξ) = (WLξ, g)CE

K
= (Lξ,W

−1g)CI
L

=
(
W−1g

)
(ξ), (3.3)

for all g ∈ CE
K and ξ ∈ I. Hence, W−1 = W̃ is also a frame transform. Note that

(WLξ)(x) = (φx, Lξ)CI
L

= φx(ξ).
Although the second example at the end of section 1 shows that every Hilbert space

can be characterized as a functional Hilbert space, this characterization is not always very
useful. In some cases, like L2(R) or L2(S

1), the Hilbert space H can be regarded as limits
of functional Hilbert spaces. The space L2(S

1) for example, admits a decomposition in
spherical harmonics. This decomposition will be dealt with in section 8.

Definition 3.1 We say that a sequence of functional Hilbert space {CI
Ln
}n∈N converges to

H if

1. each CI
Ln

is a Hilbert subspace of H

2. the projections Pn of H on CI
Ln

satisfy

(a) PnPm = Pmin{n,m}

(b) limn→∞ Pnf → f , for all f ∈ H

Suppose the sequence of functional Hilbert space CI
Ln

converges to H. Define

Vn = {Pnψx | x ∈ E}, (3.4)

and the function Kn : E× E→ C of positive type by

Kn(x, x
′) = (Pnφx,Pφx′)H (3.5)

9



for all n ∈ N and x, x′ ∈ E. By Theorem 2.3 the map Wn : CI
Ln
→ CE

Kn
: f 7→ Wnf ,

where Wnf : E → C : x 7→ (Pnψx, f)H is unitary for all n ∈ N. Note that for the frame
transform Wn the inverse frame transform is given by W−1

n : CE
K → CI

L : g 7→ W−1
n g where

W−1
n g : I→ C : ξ 7→ (WnLn;ξ, g)CE

K
, for all n ∈ N.

Theorem 3.2 The functional Hilbert spaces CE
Kn

converge to CE
K.

Proof:
Let f ∈ CE

Kn
. Then g = W−1

n f ∈ CI
Ln
⊂ H. This means that CE

K 3 Wg =
Wng = f . By the unitarity of Wn and W we also find ‖f‖CE

Kn
= ‖g‖CI

Ln
=

‖g‖H = ‖f‖CE
K
. Therefore, the spaces CE

Kn
are all closed subspaces of CE

K .

Finally, to prove condition 2, we remark that the projection P′n on the space
CE
Kn

is given by P′n = WPnW−1. �

The following theorem gives a formula for the inverse frame transform.

Theorem 3.3

lim
n→∞

W−1
n P′nWf = f, (3.6)

for all f ∈ H.

Proof:
Since P′nWf → Wf we also find by unitarity W−1

n P′nWf = W−1P′nWf → f .
�

3.2 Inversion using Gelfand triples

In this section we mention another method to obtain the inverse W−1.
Assume V is a subset of a vector space labeled by a set E. Equip 〈V 〉 with two inner

products (·, ·)1 and (·, ·)2 such that ‖ · ‖1 ≤ C‖ · ‖2, for some constant C > 0. Denote
the completions of 〈V 〉 under these two norms by H1 and H2. Note that H2 ⊂ H1. Then
by (2.13) we obtain the functional Hilbert spaces CE

K1
and CE

K2
. The question arises how

these two functional Hilbert spaces are related. The answer is straightforward. Since
‖ · ‖1 ≤ C‖ · ‖2, it is obvious that

n∑
i=1

n∑
j=1

αiαjK1(xi, xj) =
n∑
i=1

n∑
j=1

αiαj(φxi , φxj)1 = ‖
n∑
i=1

αiφxi‖2
1

≤ C2‖
n∑
i=1

αiφxi‖2
2 = C2

n∑
i=1

n∑
j=1

αiαjK2(xi, xj),

for all n ∈ N, α1 . . . αn, x1 . . . xn and hence K2 ≥ K1. By Lemma 2.1, it follows that
CE
K1
⊂ CE

K2
and ‖ · ‖CE

K2
≤ C‖ · ‖CE

K1
on CE

K1
by Lemma 2.2.
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We return to the problem of inverting the frame transform. Assume V = {φx | x ∈
E} ⊂ CI for some set I. Define φ̃ξ : E → C by φξ(x) = φx(ξ) for all x ∈ E and ξ ∈ I.
Recall that if H is a functional Hilbert space CI

L for some function L of positive type, then
the inverse W−1 equals the frame transform with respect to Ṽ = {φ̃ξ | ξ ∈ I}. Then in
addition Ṽ ⊂ CE

K . In general L does not exist and Ṽ is not a subset of CE
K . Nevertheless,

the functions φ̃ξ are still well-defined. In the sequel we use Gelfand triples to understand
the role of these functions.

Let R ∈ B(H) such that R−1 exists and is a self-adjoint operator on H. Hence R−1 is
in particular densely defined and closed. Consider the Gelfand triple

H+ ↪→ H ↪→ H−, (3.7)

constructed by this operator R. Recall that ‖ · ‖+ = ‖R−1 · ‖H and ‖ · ‖− = ‖R · ‖H.
Assume that 〈V 〉 is a dense subspace of H+, i.e.

〈{R−1φx | x ∈ E}〉 = H. (3.8)

Since R is bounded, this assumption implies that 〈V 〉 is dense in all the space H+,H and
H− and therefore it makes the assumption 〈V 〉 = H obsolete.

The frame transform W mapsH unitary onto CE
K . Define A ∈ B(CE

K) by A = WRW−1.
Then A induces the Gelfand-triple(

CE
K

)
+
↪→ CE

K ↪→
(
CE
K)−. (3.9)

Note that the frame transform W induces by restriction the unitary map W |H+ : H+ →(
CE
K

)
+

: f 7→ Wf and after extension it induces in the same way a unitary map from H−

onto
(
CE
K

)
−. Next we introduce two other functions of positive type and frame transforms.

Define K− : E× E→ C by

K−(x, x′) = (φx, φx′)+, (3.10)

for all x, x′ ∈ E. Note the opposite signs. By Theorem 2.3, the transform W+ : H+ → CE
K−

defined by(
W+f

)
(x) = (φx, f)+, (3.11)

for all x ∈ E and f ∈ H+, is a unitary map from H+ onto CE
K−

. Equivalently, define
K+ : E × E → C by K+(x, x′) = (φx, φx′)−, for all x, x′ ∈ E. By Theorem 2.3, the
transform W− : H− → CE

K+
defined by

(
W−f

)
(x) = (φx, f)−, for all x ∈ E and f ∈ H−, is

a unitary map from H− onto CE
K+

.

Lemma 3.4 CE
K+

=
(
CE
K

)
+

and CE
K−

=
(
CE
K

)
−.

Proof:
First we show that 〈{Kx | x ∈ E}〉 is dense in both

(
CE
K

)
+

and CE
K+

.
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Since Kx = Wφx and φx ∈ D(R−1), we also have Kx ∈ D(A−1) =
(
CE
K

)
+
.

Moreover, 〈{Kx | x ∈ E}〉 is dense in
(
CE
K

)
+

by unitarity of W |H+ and assump-

tion (3.8).

For the space CE
K+

recall that φx ∈ D(R−1) and hence R−2φx ∈ H− for all
x ∈ E. Moreover, 〈{R−2φx | x ∈ E}〉 is dense in H−. The operator W− maps
R−2φx onto Kx and therefore {Kx | x ∈ E} is a subset of CE

K+
for which the

span is dense in CE
K+

.

Finally we show that the inner products are equal on this dense subspace.

(Kx, Ky)CE
K+

= (R−2φx, R
−2φy)− = (R−1φx, R

−1φy)H

= (WR−1φx,WR−1φy)CE
K

= (A−1Kx, A
−1Ky)CE

K

for all x, y ∈ E. Hence in particular ‖ · ‖CE
K+

= ‖ · ‖(
CE
K

)
+

on 〈{Kx | x ∈ E}〉.

In the same way one can prove that ‖ · ‖CE
K−

= ‖ · ‖(
CE
K

)
−

on 〈{Kx‖ x ∈ E}〉

which is dense in CE
K−

and
(
CE
K

)
−. �

From now on we assume that R is such that H+ is a functional Hilbert space with repro-
ducing kernel L.

Theorem 3.5 The set {φ̃ξ | ξ ∈ I} is contained in CE
K−

. The inverse W |−1
H+

is given by

W |−1
H+

: CE
K− → H+ : F 7→ W |−1

H+
F, where W |−1

H+
F : E→ C : ξ 7→ 〈φ̃ξ, F 〉. (3.12)

Proof:
The first statement is trivial since H+ is a functional Hilbert space and hence
φ̃ξ = WLξ where L is the reproducing kernel of H+.

For the second statement we first show that AK−;x = A−1Kx for all x ∈ E.(
AK−;x

)
(y) = (Ky, AK−;x)CE

K
= (A−1Ky, K−;x)CE

K−

=
(
A−1Ky

)
(x) = (A−1Ky, Kx) = (Ky, A

−1Kx) =
(
A−1Kx

)
(y)

for all x, y ∈ E.

Secondly, we show that A−2WLξ = φ̃ξ for all ξ ∈ I. Denote the reproducing
kernel of H− by L. Note that WLξ ∈ CE

K+
hence A−2WLξ is well-defined.

Then,(
A−2WLξ)(x) = (K−;x, A

−2WLξ)CE
K−

= (AK−;x, A
−1WLξ)CE

K

= (A−1Kx, A
−1WLξ)CE

K
= (WR−1φx,WR−1Lξ)CE

K

= (R−1φx, R
−1Lξ)H = (φx, Lξ)H+ = (W−φx,W−Lξ)CE

K−

= (K−;x, φ̃ξ)CE
K−

= φ̃ξ(x),

12



for all x ∈ E.

Finally, we prove the inversion formula:

f(ξ) = (Lξ, f)H− = (WLξ,Wf)CE
K+

= (A−1WLξ, A
−1Wf)CE

K

= 〈A−2WLξ,Wf〉 = 〈φ̃ξ,Wf〉,

for all f ∈ H+ and ξ ∈ I. �

Let t 7→ Rt be a strongly continuous contraction semi-group such that the generator is
self-adjoint. Then for all t ≥ 0,

• Rt is self-adjoint,

• R−1
t exists and is self-adjoint (and hence densely defined).

Moreover, assume that

• Ht is a functional Hilbert space under the norm ‖ · ‖t = ‖R−1
t · ‖H,

• 〈R−1
t V 〉 is dense in H

for all t > 0. Then each of the operators Rt defines a Gelfand triple, denoted by

Ht ↪→ H ↪→ H−t, (3.13)

for all t > 0.

Lemma 3.6 ‖Rt‖ ≤ ‖Rs‖ for all t > s.

Proof:
Let f ∈ H. Then,

‖Rtf‖H = ‖Rt−sRsf‖H ≤ ‖Rt−s‖‖Rsf‖H ≤ ‖Rsf‖H.

Hence ‖Rt‖ ≤ ‖Rs‖. �

Lemma 3.7 The space Ht is continuous embedded in Hs for all t > s.

Proof:
Let f ∈ Ht. There exist a g ∈ H such that f = Rtg ∈ Rt(H) and hence
f = RsRt−sg ∈ Hs. Moreover,

‖f‖Hs = ‖R−1
s f‖H ≤ ‖R−1

t f‖H = ‖f‖Ht .

Hence the statement follows. �

Now we obtain the following the inversion formula

f = lim
t↓0

Rtf = lim
t↓0

ξ 7→ 〈φ̃ξ,WRtf〉t = lim
t↓0

ξ 7→ 〈φ̃ξ, AtWf〉t. (3.14)

This formula is the generalization of the formula Bargmann gives in his article to invert the
Bargmann transform. We will return to this subject in the Section 4.2. In that section the
assumption (3.8) is equivalent to the assumption that 〈V 〉 = H since in that case RtV = V
for all t > 0.
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4 Frame transforms constructed from generating func-

tions

4.1 An expansion theorem

Since by Theorem (2.3) a frame transform is a unitary map, it maps an orthonormal basis
onto an orthonormal basis. This leads to some nice consequences in case the set V in
(2.12) is constructed from a generating function, since it provides a convenient basis for
the image space. In this section, the image space typically is a functional Hilbert space
consisting of analytic functions. An important result is the following

Theorem 4.1 Let K : E × E → C be a function of positive type and let {gn | n ∈ N} be
an orthonormal set in CE

K. Then
∑

n∈N gn(x)gn(y) is absolutely convergent for all x, y ∈ E.
Moreover, the set {gn | n ∈ N} is a basis for CE

K if and only if

K(x, y) =
∑
n∈N

gn(x)gn(y), (4.1)

for all x, y ∈ E.

Proof:
See [Ma, Lemma 1.11]. �

Let H be a Hilbert space and V = {φx | x ∈ E} a subset of H labeled by a set E.
Define the function K : E × E → C of positive type by K(x, x′) = (φx′ , φx)H for all
x, x′ ∈ E. By Theorem 2.3, the frame transform W : 〈V 〉 → CE

K : f 7→ Wf , where
Wf : E→ C : x 7→ (φx, f)H, is a unitary map.

Suppose {gn | n ∈ N} is an orthonormal basis for H. Then φx can be expanded in this
basis as

φx =
∑
n∈N

an(x)gn, (4.2)

where an(x) = (gn, φx), for all x ∈ E and for all n ∈ N.

Theorem 4.2 (Expansion Theorem) The reproducing kernel K : E × E → C is given
by

K(x, x′) =
∑
n∈N

an(x)an(x
′), (4.3)

for all x, x′ ∈ E, where the sum is absolutely convergent. Moreover, if 〈V 〉 = H then
{an | n ∈ N} is an orthonormal basis for CE

K.

Proof:
It is obvious that

(
Wgn

)
(x) = an(x) for all x ∈ E and n ∈ N. By unitarity of

W it follows that {an | n ∈ N} is an orthonormal basis for CE
K . The rest of the

statement follows by Theorem 4.1. �
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Suppose f ∈ V ⊥ and write f =
∑

n∈N cngn. Then

0 = (ψx, f)H =
∑
n∈N

cnan(x), (4.4)

for all x ∈ E. This implies that 〈V 〉 = H if and only if for all {cn}n∈N ∈ `2(N)(
∀x∈E

∑
n∈N

cnan(x) = 0

)
⇒ ∀n∈Ncn = 0. (4.5)

Theorem 4.2 can be used to construct special frame transforms based on generating func-
tions. As an example we deal with the Bargmann-transform and two transforms based
on generating functions for Laguerre Polynomials and Gegenbauer polynomials. In these
examples E equals C or {z ∈ C | |z| < 1} and the generating function is of the form

φz =
∞∑
n=0

gnz
n. (4.6)

Obviously, the functions z 7→ zn satisfy condition (4.5) and therefore 〈V 〉 = H.

4.2 Bargmann-transform

In this section the Bargmann-transform as an example to the previous sections. Some
proofs, especially the unitarity, will become a lot easier with the aid of the theory developed
so far.

The following two results will be used. The proof is omitted.

• A result due to Cramer: |Hn(x)| < k
√
n2n/2ex

2/2 for all x ∈ R and n ∈ N, where k is
a constant. See [C].

• Mehler’s formula for Hermite polynomials

∞∑
n=0

Hn(x)Hn(y)

n!
(w/2)n = (1− w2)−

1
2 exp

[
2xyw − (x2 + y2)w2

(1− w2)

]
, (4.7)

which is valid for all x, y ∈ R and w ∈ D = {z ∈ C | |z| < 1}. See [MOS, §5.6,
pp.252].

Let H = L2(R). From the theory of special functions it is well-known that the gener-
ating function of the Hermite polynomials is given by

e−z
2+2zx =

∞∑
n=0

Hn(x)

n!
zn, (4.8)
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and the sum converges for all z ∈ C and x ∈ R. Then rewrite this identity as

π−1/4e−z
2/2+

√
2zx−x2/2 =

∞∑
n=0

Hn(x)e
− 1

2
x2√

2nn!
√
π

zn√
n!
. (4.9)

for all z ∈ C and x ∈ R. Define the subset V = {φz | z ∈ C} where

φz(x) = π−1/4e−z
2/2+

√
2zx−x2/2, (4.10)

for almost all x ∈ R and all z ∈ C. Define the function K : C×C→ C of positive type by

K(z, w) =
∞∑
n=0

znwn

n!
= ezw, (4.11)

for all z, w ∈ C. By Theorem 4.2, the frame transform W : H → CC
K defined by(

Wf
)
(z) = π−1/4

∫
R

e−z
2/2+

√
2zx−x2/2f(x) dx, (4.12)

for all z ∈ C and f ∈ L2(R) is a unitary map. Moreover the set {z 7→ zn√
n
| n ∈ N0} is an

orthonormal basis in CC
K , since {gn : x 7→ Hn(x)e−

1
2x

2

√
2nn!

√
π
| n ∈ N0} is an orthonormal basis in

L2(R) . The inner product of the functional Hilbert space is characterized by the integral

(Φ,Ψ)CE
K

=
1

π

∫
C

Φ(z)Ψ(z)e−|z|
2

dz, (4.13)

for all Φ,Ψ ∈ CE
K , since this inner product makes the set {z 7→ zn√

n!
| n ∈ N0} orthonormal.

The functional Hilbert space CC
K is called the Bargmann-space of dimension 1. It will be

denoted by B. The generalization to higher dimensions is straightforward and therefore
we only give the reference [B].

Define the harmonic oscillator operator H on L2(R) by

(
Hf
)
(x) =

1

2

(
(x2 − 1)f(x)− d2

dx2
f(x)

)
, (4.14)

for almost all x ∈ R and all f ∈ D(H) = {f ∈ L2(R) | d2

dx2f ∈ L2(R) ∧Mf ∈ L2(R)},
where

(
Mf)(y) = y2f(y) for all y ∈ R.. The basis elements gn are eigenfunctions of

H with eigenvalue n for all n ∈ N0, i.e. Hgn = ngn for all n ∈ N0. The operator
H is a self-adjoint positive operator and therefore −H is an infinitesimal generator of a
strongly continuous contraction semi-group of self-adjoint operators denoted by t 7→ e−tH .
Obviously, e−tHgn = e−tngn for all t > 0 and n ∈ N0. Denote the inverse of e−tH by etH for
all t > 0.

With the operators e−tH and etH we want to construct a Gelfand triple as in (3.13).
Therefore Ht = e−tH(L2(R)) must be a functional Hilbert space. Strictly speaking,
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Ht ⊂ L2(R). As such, it consists of equivalence classes of measurable functions instead
of functions and cannot be a functional Hilbert space. For this moment we will write [f ]
instead f for elements of L2(R). It turns out that every class [f ] ∈ e−tH(L2(R)) has a
unique continuous representant f̃ . Now Ht is defined to the linear space of this continuous
representants, equipped with the norm ‖h‖Ht = ‖etH [h]‖L2(R). The space Ht is a Hilbert
space of its own right. Moreover, it turns out that Ht is a functional Hilbert space.

Let [f ] ∈ Ht and write [f ] =
∑∞

n=0 cn[gn]. Since [f ] ∈ Ht, ‖etH [f ]‖2
L2(R) =

∑∞
n=0 |cn|2e2tn.

Define the sequence {fN}N∈N of functions on R by

fN(x) =
N∑
n=0

cngn(x) (4.15)

for all x ∈ R and N ∈ N. Then

|fN(x)− fM(x)| ≤
N∑

n=M

|cngn(x)| ≤ k
N∑

n=M

|cn| =
N∑

n=M

|cn|etne−tn

≤ k

√√√√ N∑
n=M

|cn|2e2tn

√√√√ N∑
n=M

e−2tn ≤ k√
1− e−2t

‖f‖Ht (4.16)

for all x ∈ R and N > M ∈ N. Hence fN converges pointwise to a function f̃ on
R. Moreover, it converges uniformly on R . Hence it follows that f̃ is the continuous
representant of the equivalence-class [f ]. Naturally this representant must be unique.
Moreover, by a same estimate as above

|f̃(x)| ≤ k√
1− e−2t

‖etH [f̃ ]‖L2(R) =
k√

1− e−2t
‖f̃‖Ht (4.17)

for all x ∈ R. In the sequel we will not use the notation [f ] for elements in L2(R) anymore.

Lemma 4.3 Let t > 0. The spaceHt = e−tH(L2(R)) with inner product (·, ·)t = (etH ·, etH ·)L2(R)

is the functional Hilbert space with reproducing kernel

Lt(x, y) =
∞∑
n=0

Hn(x)Hn(y)

2nn!
e−x

2/2−y2/2e−2nt = (1−e−4t)−
1
2 exp

[
2xy − 1

2
(x2 + y2) cosh(2t)

sinh(2t)

]
(4.18)

for all x, y ∈ R.

Proof:
From (4.17) it follows thatHt is a functional Hilbert space. The set {e−tngn | n ∈
N} is an orthonormal basis for Ht, hence the statement follows by Theorem 4.1
and Mehlers formula 4.7. �
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By applying the Cauchy-Schwartz inequality one easily obtains the following inequality,

|f(x)|2 ≤ ‖f‖2
Ht‖Lx‖

2
Ht = ‖f‖2

Ht(1− e−4t)−
1
2 exp

[
x2(2− cosh(2t))

sinh(2t)

]
, (4.19)

for all x ∈ R. For all f ∈ Ht and x ∈ R.

Lemma 4.4 Let t ∈ R, then V ⊂ Ht. Moreover,

etHφz = φetz, (4.20)

for all z ∈ C.

Proof:
Let z ∈ C. Then

etHφz = etH
∞∑
n=0

gn
zn√
n!

=
∞∑
n=0

gne
tn zn√

n!
=

∞∑
n=0

gn
(etz)n√
n!

= φetz

This proves the statement. �

The lemma implies that e−tHV is dense in L2(R) since e−tHV = V and V is dense in L2(R).
This proves the final assumption in the Gelfand triple (3.13). Analogous to section 3.2, we
introduce the operator At = W e−tHW .

Corollary 4.5 Let t > 0. The operator At = W e−tHW−1 is given by(
Atf

)
(z) = f(e−tz), (4.21)

for all z ∈ C and f ∈ CC
Kt

.

Proof:
Let f ∈ CC

Kt
. Then(

Atf
)
(z) =

(
W e−tHW−1f)

(
z) = (e−tHW−1f, φz)L2(R) = (W−1f, e−tHφz)L2(R)

= (W−1f, φe−tz)L2(R) =
(
WW−1f

)
(e−tz) = f(e−tz),

for all z ∈ C. �

Since Atf is only a re-scaling of the functions f , it easily follows that

‖f‖2
Bt

= ‖B−1
t f‖2

B =
1

π

∫
C
|f(etz)|2e−|z|2 dz (4.22)

for all f ∈ Bt. Moreover, the reproducing kernel Kt : C× C→ C is given by

Kt(z, w) = ee−2tzw, (4.23)
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for all z, w ∈ C. Hence,

|f(z)| ≤ ‖f‖Bte
− 1

2
e−2t|z|2 , (4.24)

for all z ∈ C and f ∈ Bt. This space also frequently occurs in [B], but is not used in the
context of a Gelfand triple.

We recall that the function φ̃x : C→ C is defined by

φ̃x(z) = φz(x) =
∞∑
n=0

gn(x)
zN√
n!
, (4.25)

for all z ∈ C and x ∈ R.

Lemma 4.6 The functions φ̃x satisfy the following inequality

|φ̃x(z)| ≤ A
√
|z|e−|z|2/2, (4.26)

for some A > 0 which is independent of x ∈ R.

Proof:
Let x ∈ R and z ∈ C. Then,

|φ̃x(z)| = |φz(x)| =
∣∣ ∞∑
n=0

gn(x)
zn√
n!

∣∣ ≤ ∞∑
n=0

∣∣gn(x) zn√
n!

∣∣ ≤ k
∞∑
n=0

|z|n√
n!

∣∣.
The entire function F : R→ C defined by

F (r) =
∞∑
m=0

rm√
m!

e−r
2/2,

for all r ∈ R, has the asymptotic expansion,

F (r) = (8π)1/4
√
r{1− 1

16r2
+O(

1

r4
)}, r →∞.

See [O, Ch. 9, §8, pp. 307-309]. Hence the statement follows. �

Theorem 4.7 Let t > 0 and f ∈ Ht. Then

f(x) = 〈φ̃x,Wf〉 =

∫
C
φ̃x(z)

(
Wf

)
(z)e−|z|

2

dz, (4.27)

for all x ∈ R.
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Proof:
Let f ∈ Ht and t > 0. Then Wf ∈ Bt. Let x ∈ R. By (4.23) and Lemma 4.6,

|f(z)φ̃x(z)| ≤ A
√
|z|e−

1
2
(1+e−2t)|z|2 ,

for all z ∈ C. Therefore the integral in (4.27) is well-defined. Moreover,

∫
C
φ̃x(z)

(
Wf

)
(z)e−|z|

2

dz =

∫
C

lim
N→∞

N∑
n=0

gn(x)
zn√
n!

(
Wf

)
(z)e−|z|

2

dz

= lim
N→∞

N∑
n=0

gn(x)

∫
C

zn√
n!

(
Wf

)
(z)e−|z|

2

dz

= lim
N→∞

N∑
n=0

gn(x)(gn, f)L2(R) = f(x)

Hence the statement follows. �

By (3.14) we obtain that

f = lim
t↓0

e−tHf = lim
t↓0

(
x 7→

∫
C
φ̃x(z)

(
Wf

)
(e−tz)e−|z|

2

dz
)
. (4.28)

for all f ∈ L2(R).

4.3 Laguerre polynomials

In this section a transform introduced by Bargmann in [B] will be dealt with. The image
space frequently occurs in the sequel.

Consider the generalized Laguerre polynomials defined by

L(α)
n (x) =

1

n!
exx−α

(
d

dx

)n
[e−xxn+α], (4.29)

for all α > −1, x > 0 and n ∈ N0. The generalized Laguerre polynomials have the following
generating function

exp[−x(1 + z)/2(1− z)]

(1− z)α+1
= e−x/2

∞∑
n=0

L(α)
n (x)zn, (4.30)

for , α > −1, x > 0 and |z| < 1. For fixed α, the set {gn : x 7→
(

n!
Γ(n+α+1)

) 1
2
e−x/2L

(α)
n | n ∈

N0 is an orthonormal basis in L2((0,∞), xαdx).
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Let α > −1 be fixed and let D = {z ∈ C | |z| < 1} be the unit disc. Set V = {φ(α)
z | z ∈

D} where φ
(α)
z is defined by

φ(α)
z (x) =

exp[−x(1 + z)/2(1− z)]

(1− z)α+1
(4.31)

for all x ∈ (0,∞) and z ∈ D. Define the function K(α) : D ×D → C of positive type by

K(α)(z, w) =
∞∑
n=0

Γ(n+ α+ 1)

n!
(zw)n =

Γ(α+ 1)

(1− zw)α+1
, (4.32)

for all z, w ∈ D. Then by Theorem 2.3 and 4.2 the frame transformWα : L2((0,∞), xαdx) →
CD
K(α) defined by(

Wαf
)
(z) =

∫ ∞

0

exp[−x(1 + z)/2(1− z)]

(1− z)α+1
f(x)xα dx, (4.33)

for all f ∈ L2((0,∞), xαdx), is a unitary map. Moreover, the set {an : z 7→
(

Γ(n+α+1)
n!

) 1
2
zn | n ∈

N0} is an orthonormal basis for CD
K(α) .

If α > 0 there exists a useful characterization of the functional Hilbert space. First we
recall an elementary result. By definition of the beta-function,∫ 1

0

r2m+1(1− r2)α−1dr =
m!Γ(α)

2Γ(α+m+ 1)
, (4.34)

for all α > 0 and m ∈ N0.

Theorem 4.8 The space CD
K(α) consists of all analytic functions f : D → C for which

1

πΓ(α)

∫
D

|f(z)|2(1− |z|2)α−1 dµ(z) <∞. (4.35)

Here dµ stands for the normal Lebesgue measure on C. Moreover,

(f, g)CD
K(α)

=
1

πΓ(α)

∫
D

f(z)g(z)(1− |z|2)α−1 dµ(z), (4.36)

for all f, g ∈ CD
K(α).

Proof:
First, we prove the orthonormality of the set {an | n ∈ N0}. Let n,m ∈ N0.
Then∫
D

an(z)am(z)(1− |z|2)α−1 dµ(z) =

∫ 1

0

∫ 2π

0

rn+m+1ei(m−n)φ(1− |r|2)α−1 dφdr

= 2πδnm

∫ 1

0

rn+m+1ei(m−n)φ(1− |r|2)α−1 dr

= πδnm
Γ(α)m!

Γ(m+ α+ 1)
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where (4.34) was used in the last step. This proves the orthonormality.

Secondly, let f be an analytic function on D. Write f(z) =
∑∞

n=0 cnz
n for all

z ∈ D and define fN by fN(z) =
∑N

n=0 cmz
n for all z ∈ D. Then

1

π

∫
D

|fN(z)|2(1− |z|2)α−1 dµ(z) =
N∑
n=0

Γ(α)m!

Γ(m+ α+ 1)
|cn|2

Hence the integral in (4.35) converges if and only if the sum
∑∞

n=0
Γ(α)m!

Γ(m+α+1)
|cn|2

converges. Moreover, in case of convergence

1

π

∫
D

|f(z)|2(1− |z|2)α−1 dµ(z) =
∞∑
n=0

Γ(α)m!

Γ(m+ α+ 1)
|cn|2 = ‖f‖F0 ,

and therefore the theorem follows. �

In accordance to [B] the space CD
K(α) will be denoted by Fα for α > 0.

Finally, consider α = 0 which leads to the space F0 = CD
K(0) . Note that the assumption

α > 0 is crucial in Theorem 4.8 and therefore the theorem is not applicable to F0. Since
{z 7→ zn | z ∈ N0} is an orthonormal basis for F0, the space consists of all analytic functions
f that can be represented in power series of the form

f(z) =
∞∑
n=0

cnz
n, {cn}n∈N0 ∈ `2(N0). (4.37)

for all z ∈ D.

Lemma 4.9 Let f ∈ F0. Then

‖f‖2
F0

=
1

2π
lim
R↑1

∫ 2π

0

|f(Reiφ)|2dφ. (4.38)

Proof:
Let {cn}n∈N0 ∈ `2(N0) such that f(z) =

∑∞
n=0 cnz

n for all z ∈ D. Since
{z 7→ zn | n ∈ N0} is an orthonormal basis for F0, the norm of f is given by
‖f‖2

F0
=
∑∞

n=0 |cn|2. Moreover

1

2π

∫ 2π

0

|f(Reiφ)|2dφ =
1

2π

∞∑
n=0

∞∑
m=0

cncm

∫ 2π

0

Rn+mei(m−n)φ dφ

=
∞∑
n=0

|an|2R2n

for all 0 < R < 1. Take the limit R ↑ 1 on both sides and the statement follows.
�
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Note that the above proof also shows that F0 consist of all analytic functions on D such
that the limit in (4.38) exists.

The reproducing property of the reproducing kernel can be proved directly from Cauchy’s
integration theorem. By (4.38) the inner product of f, g ∈ F0 is given by

(f, g)F0 = lim
R↑1

1

2π

∫ 2π

0

f(Reiφ)g(Reiφ)dφ

= lim
R↑1

1

2πi

∫ 2π

0

f(Reiφ)g(Reiφ)
iReiφ

Reiφ
dφ

= lim
R↑1

1

2πi

∫
CR

f(w)g(w)
1

w
dw,

where CR = {z ∈ D | |z| = R} for all 0 < R < 1 (with positive direction). Let z ∈ D and

f = K
(0)
z then

(Kz, g)F0 = lim
R↑1

1

2πi

∫
CR

1

1− zw
g(w)

1

w
dw

= lim
R↑1

1

2πi

∫
CR

1

w − zR
g(w) dw

= lim
R↑1

g(Rz) = g(z).

There also exists a characterization of the norm in H0 which is similar to the characteriza-
tion of the norm of Fα as formulated in Theorem 4.8.

Define the Euler operator E on F0 by(
Ef
)
(z) = z

df

dz
(z), (4.39)

for all z ∈ D. It is obvious that the basis elements z 7→ zn are eigenvectors with eigen-
value n for all n ∈ N0. The domain of E can therefore be defined by D(E) = {x 7→∑∞

n=0 cnz
n | {cnn2}n∈N ∈ `2(N0)}.

Theorem 4.10 The space F0 consists of all analytic functions f on D for which

1

π

∫
D

(I + E)f(z)f(z) dµ(z) <∞. (4.40)

Here dµ(z) stands for the normal Lebesgue measure on C. Moreover,

(f, g)F0 =
1

π

∫
D

(I + E)f(z)g(z) dz, (4.41)

for all f, g ∈ F0.
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Proof:
Let f be analytic function on D. Write f(z) =

∑∞
n=0 cnz

n, for all z ∈ D. Define

fN by fN(z) =
∑N

n=0 cnz
n. Then

1

π

∫
D

(I + E)fN(z)fN(z) dµ(z) =
1

π

N∑
n=0

N∑
m=0

cncm

∫
D

(n+ 1)znzm dµ(z)

=
N∑
n=0

∫ 1

0

(2n+ 2)r2n+1 dr =
N∑
n=0

|cn|2.

The theorem follows by a same argument as in Theorem 4.8. �

4.4 Gegenbauer polynomials

4.4.1 Introduction

The Gegenbauer polynomials of order λ are defined by the following generating function

(1− 2xz + z2)−λ =
∞∑
n=0

Cλ
n(x)zn, (4.42)

which is valid for −1 < x < 1, |z| < 1 and λ 6= 0. In this section we consider the
Gegenbauer polynomials of order λ > 0. Apply the operator z d

dz
+ 2λ on both sides to

obtain

2λ(1− xz)

(1− 2xz + z2)λ+1
=

∞∑
n=0

Cλ
n(x)(n+ 2λ)zn, (4.43)

for all −1 < x < 1, |z| < 1 and λ 6= 0.

For fixed λ > 0, the set {gn : x 7→
(
n!(λ+n)
Γ(n+2λ)

) 1
2
Cλ
n(x) | n ∈ N0} is an orthonormal basis

in L2((−1, 1), dµ) where,

dµ(x) =
Γ(λ)2

21−2λπ
(1− x2)λ−

1
2 dx. (4.44)

Let λ > 0 be fixed. Set V = {φ(λ)
z | z ∈ D} where φz is defined by

φ(λ)
z (x) =

2λ(1− xz)

(1− 2xz + z2)λ+1
(4.45)

for all z ∈ D and almost all x ∈ (−1, 1). Obviously V ⊂ L2((−1, 1), dµ). Define the
function K(λ) : D ×D → C of positive type by

K(λ)(z, w) =
∞∑
n=0

Γ(n+ 2λ)(n+ 2λ)2

n!(n+ λ)
wnzn (4.46)
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for all z, w ∈ D. By Theorem 2.3 and 4.2 the frame transform Wλ : L2((−1, 1), µ) → CDKλ
defined by

(
Wλf

)
(z) =

Γ(λ)221−2λ

π

∫ 1

−1

2λ(1− xz)

(1− 2xz + z2)λ+1
f(x)(1− x2)λ−

1
2 dx, (4.47)

for all f ∈ L2((−1, 1), µ) and z ∈ D, is unitary. Moreover, the set {an | n ∈ N0} is an
orthonormal basis for CDCD

K(λ)

where an is defined by

an(z) =
(
Wλgn

)
(z) =

(
Γ(n+ 2λ)

n!(n+ λ)

) 1
2

(n+2λ)zn =

(
Γ(n+ 2λ+ 1)

n!

) 1
2

√
n+ 2λ

n+ λ
zn, (4.48)

for all z ∈ D and n ∈ N0. The following theorem characterizes the space CD
K(λ) .

Theorem 4.11 The space CD
K(λ) equals F2λ as a set. Moreover,

‖f‖F2λ
< ‖f‖CD

K(λ)
≤
√

2‖f‖F2λ
, (4.49)

for all f ∈ CD
K(λ).

Proof:

Note that z 7→
(

Γ(n+2λ+1)
n!

) 1
2
zn was an orthonormal basis for F2λ. Now the

statement easily follows by the estimate

1 <
n+ 2λ

n+ λ
≤ 2

for all n ∈ N. �

4.4.2 The semi-group generated by the Euler operator

Define the Euler operator E on CD
K(λ) by

(
Ef
)
(z) = z

df

dz
(z), (4.50)

for all z ∈ D and that z 7→ zn are eigenvectors with eigenvalue n. The domain of E
can therefore be defined as {f =

∑∞
n=0 cnan | {cnn}n∈N0 ∈ `2(N0)}. The following lemma

follows by straightforward calculations.

Lemma 4.12

(f, g)CD
K(λ)

=
(
(E + λ)(E + 2λ)−1f, g

)
F2λ

(4.51)

for all f, g ∈ CD
K(λ).
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Proof:
Obviously E+2λ is a positive operator with the eigenvectors an with eigenvalues
n+2λ. Therefore (E+2λ)−1 is well-defined and has the same set of eigenvectors
an with eigenvalue (n+ 2λ)−1. The operator (E + λ)(E + 2λ)−1 eliminates the

factor
√

n+λ
n+2λ

in (4.48). The theorem follows by Theorem 4.8. �

It is easily seen that −E is a closed dissipative operator and therefore generates a con-
traction semi-group t 7→ e−Et. The (bounded) operator e−Et has eigenvectors an with
eigenvalues e−nt for all n ∈ N0 and t ≥ 0. Let f ∈ CD

K(λ) and write f(z) =
∑∞

n=0 cnz
n for

all z ∈ D. Then,(
e−tEf

)
(z) =

∞∑
n=0

cne
−tnzn = f(e−tz), (4.52)

for all z ∈ D. Hence e−tE is a scaling of the functions in CD
K(λ) . Note that it is crucial that

t > 0, since only then we obtain e−tz ∈ D for all z ∈ D.
From standard theory of evolution equations it follows that

(−E − sI)−1f =

∫ ∞

0

e−ste−tEfdt, (4.53)

for all f ∈ CD
K(λ) . Since CD

K(λ) is a functional Hilbert space, this simplifies to an ordinary
integral(

(−E − sI)−1f
)
(z) =

∫ ∞

0

e−st
(
e−tEf

)
(z)dt =

∫ ∞

0

e−stf(e−tz)dt, (4.54)

for all f ∈ CD
K(λ) and z ∈ D.

Theorem 4.13

(f, g)CD
K(α)

= (f, g)F2λ
+ 2λ

∫ ∞

0

(
e−tEf, e−tEg

)
F2λ

e−4λt dt (4.55)

for all f, g ∈ CD
K(α).

Proof:
Let f, g ∈ CE

K(λ) . Then

(f, g)CD
K(λ)

=
(
(E + λ)(E + 2λ)−1f, g

)
F2λ

=
(
f, g
)

F2λ
− λ
(
(E + 2λ)−1f, g

)
F2λ

=
(
f, g
)

F2λ
+ λ
(
(−E − 2λ)−1f, g

)
F2λ

=
(
f, g
)

F2λ
+ λ
( ∫ ∞

0

e−2λte−tEfdt, g
)

F2λ

=
(
f, g
)

F2λ
+ λ

∫ ∞

0

e−2λt
(
e−tEf, g

)
F2λ

dt.
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For the sake of symmetry use the substitution t′ = t/2 and use the self-
adjointness of e−tE to obtain the statement. �

Using (4.53) one also obtains an alternative formula for the reproducing kernel.

Theorem 4.14 The reproducing kernel K is given by the following integral

K(z, w) = Γ(2λ+ 1)

∫ ∞

0

e−λt
2λ+ e−tzw

(1− e−tzw)2λ+2
dt (4.56)

Proof:
Let w ∈ D. By (4.46),

(
(E + 2λ)−1(E + λ)Kw

)
(z) =

∞∑
n=0

Γ(n+ 2λ+ 1)

n!
wnzn =

Γ(2λ+ 1)

(1− zw)2λ+1

for all z ∈ D. Therefore,

(
(E + λ)Kw

)
(z) =

Γ(2λ+ 1)(2λ+ zw)

(1− zw)2λ+2

for all z ∈ D. The statement now follows by applying (4.53). �
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5 The classical Fourier and Laplace transforms

5.1 The Fourier transform as a frame transform on a Gelfand
triple

In his section the classical Fourier transform on L2(R) is interpreted as a special kind
of frame transform. Of course the function x 7→ eiωx is not an element of L2(R) for all
ω ∈ R. Nevertheless, by making use of a Gelfand triple HI ↪→ L2(R) ↪→ H−I for which
the space H−I does contain this functions, a frame transform can be defined which leads
to the Fourier transform.

In this section the following two result will be used, which we will not prove.

• A result due to Cramer: |Hn(x)| < k
√
n2n/2ex

2/2 for all x ∈ R and n ∈ N, where k is
a constant. See [C].

• Mehler’s formula for Hermite polynomials

∞∑
n=0

Hn(x)Hn(y)

n!
(w/2)n = (1− w2)−

1
2 exp

[
2xyw − (x2 + y2)w2

(1− w2)

]
, (5.1)

which is valid for all x, y ∈ R and w ∈ D = {z ∈ C | |z| < 1}. See [MOS, §5.5, pp.
252].

Define the operator R on L2(R) by

(
Rf
)
(x) =

(
(x2 − d2

dx2
)f
)
(x), (5.2)

for all f ∈ D(R) = {f ∈ L2(R) | d2

dx2f ∈ L2(R)∧Mf ∈ L2(R)}, where
(
Mf)(y) = y2f(y) for

all y ∈ R. It is well-know that this operator has a complete set of eigenvectors {gn | n ∈ N0}
with eigenvalues λn = 2n + 1. Moreover, R is a positive unbounded and self-adjoint
(unbounded) operator, with bounded inverse.

Next, we construct the Gelfand triple

HI(R) ↪→ L2(R) ↪→ H−I(R). (5.3)

Note that the sets { gn
2n+1

| n ∈ N0 }, {gn | n ∈ N0 } and {(2n + 1)gn | n ∈ N0 } are
orthonormal bases for respectively HI(R),L2(R) and H−I(R).

The following theorem is very easily proved by using the Fourier transform on L2(R).
But since our goal is to construct the Fourier transform, it would be sloppy to use it in the
proof. Therefore the proof is somewhat lengthy and uses the result by Cramer.

28



Theorem 5.1 The space HI(R) is a functional Hilbert space with reproducing kernel KI

given by

KI(x, y) =
∞∑
n=0

1

2nn!(2n+ 1)2
√
π
Hn(x)Hn(y)e

−x2/2e−y
2/2, (5.4)

for all x, y ∈ R. Moreover, the sum converges absolutely.

Proof:
Since HI(R) as a set is equal to D(R) and hence a subset of L2(R). Strictly
spoken, its elements are not functions but classes of functions. Therefore it
would be better (but tiresome) to write [h] instead of h for its elements. The
main purpose of this proof is to prove that making those classes is obsolete.
It turns out that every class [h] in HI(R) has a unique analytic representant.
Instead of considering classes, we only consider the analytic representant.

Let f ∈ HI(R). The set { 1
2n+1

gn | n ∈ N0} is an orthonormal basis for HI(R).

Hence f =
∑∞

n=0 angn ∈ HI(R) if and only if

∞∑
n=0

|an|2(2n+ 1)2 <∞.

Define the function fN by fN(x) =
∑N

n=0 angn(x), for all N ∈ N and x ∈ R.
Since

|fN(x)− fM(x)| ≤
N∑

n=M

|angn(x)| ≤

√√√√ N∑
n=M

|an|2(2n+ 1)2

√√√√ N∑
n=M

|gn(x)|2
(2n+ 1)2

≤

√√√√ N∑
n=M

|an|2(2n+ 1)2

√√√√ N∑
n=M

k2

(2n+ 1)2

≤ ‖fN − fM‖I
kπ

2
√

2

for all N > M ∈ N and x ∈ R, the sequence of analytic functions {fN}N∈N
uniformly on R to an analytic function f̃ . By uniform convergence, it is also true
that RfN converges uniformly to Rf̃ . In addition Rf̃ ∈ L2(R) and [f̃ ] = [f ].

By a same estimate as above we obtain

|f(x)| ≤ ‖f‖I
kπ

2
√

2
,

for all x ∈ R. Hence HI is a functional Hilbert space. The rest of the statement
follows by Theorem 4.1 and Mehler’s formula. �
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Define for α ∈ R the vector φα ∈ H−I

φα :=
∞∑
n=0

ingn(α)gn =
∞∑
n=0

ingn(α)

2n+ 1
(2n+ 1)gn. (5.5)

This vector is well-defined because {(2n+1)gn | n ∈ N0} is an orthonormal basis in H−I(R)
and {gn(α)/(2n+ 1)}n∈N0 ∈ `2(N0) for all α ∈ R.

Set V = {φα | α ∈ R}. Define the function K : R× R→ C of positive type by

K(α, β) = (φα, φβ)E =
∞∑
n=1

gn(α)gn(β)

(2n+ 1)2
, (5.6)

for all α, β ∈ R. Obviously K = KI and therefore CR
K = HI(R). By Theorem 2.3, the

frame transform W : 〈V 〉 → HI defined by(
Wf

)
(α) = (φα, f)−I , (5.7)

for all f ∈ H−I(R) and x ∈ R is unitary. With a simple argument it follows that 〈V 〉 = H−I .
To this end let f ∈ V ⊥, then

0 = (φα, f)−I =
∞∑
n=0

ingn(α)

2n+ 1
((2n+ 1)gn, f)−I , (5.8)

for all α. It is obvious that α 7→ (φα, f)−I belongs to HI(R), by the fact that {(2n +
1)gn | n ∈ N0} is an orthonormal basis for H−I(R) and that { gn

2n+1
| n ∈ N} is an orthonor-

mal basis for HI(R). Moreover, (5.8) implies that ((2n+ 1)gn, f)−I = 0 for all n ∈ N and
therefore f = 0.

Since W is a unitary map from H−I(R) onto HI(R) and R a unitary map from HI onto
L2(R) and from L2(R) onto H−I(R) it follows that RWR is a unitary map from L2(R)
onto L2(R). Note that for f =

∑∞
n=0 angn we have

RWRf =
∞∑
n=0

inangn. (5.9)

Hence RWRf equals α 7→ 〈φα, f〉 for all f ∈ HI(R).
Finally we connect the transform RWR to the classical way of introducing the Fourier

transform. Suppose f ∈ HI(R), then f(x) = f(x)(1 + x2) 1
1+x2 for almost all x ∈ R.

By definition Mf ∈ L2(R) and therefore f ∈ L1(R) since f is a product of two L2(R)
functions. Let α ∈ R. Then∫

R
e−iαxf(x) dx, (5.10)
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is well-defined for all f ∈ HI(R). Write f =
∑∞

n=0 angn. Then by Mehler’s formula

1√
2π

∫
R

e−iαxf(x) dx = lim
t→1

1√
(1 + t2)π

∫
R

e
−itαx−t2(x2+α2)

1+t2 f(x) dx (5.11)

= lim
t→1

∫
R

∞∑
n=0

gn(x)gn(α)(it)nf(x) dx (5.12)

= lim
t→1

∞∑
n=0

gn(α)

∫
R
gn(x)(it)

nf(x) dx (5.13)

= lim
t→1

∞∑
n=0

angn(α)(it)n =
∞∑
n=0

angn(α)in = 〈φα, f〉. (5.14)

Hence we can conclude that φα equals x 7→ eiαx in distributional sense. In addition,(
RWRf

)
(α) =

1√
2π

∫
R

e−iαxf(x) dx, (5.15)

for all α ∈ R and f ∈ HI(R).

5.2 The Laplace transform

In this section we interpret the Laplace transform as a frame transform. Let H =
L2((0,∞)) and C+ = {z ∈ C | Re(z) > 0}. Moreover define the set V = {φz ∈
L2((0,∞)) | z ∈ C+} where

φz(t) = e−zt, (5.16)

for almost all t ∈ (0,∞) and all z ∈ C+.

Lemma 5.2 The set V has a dense span in L2((0,∞)).

Proof:
As a consequence of the approximation theorem of Weierstrass, the set of poly-
nomials is dense in L2((0, 1), dx). Suppose f ∈ V ⊥ for some f ∈ L2((0,∞)).
Then in particular

0 =

∫ ∞

0

e−tnf(t) dt =

∫ 1

0

xnf(− log(x))
1

x
dx =

∫ 1

0

xn−1f(− log(x)) dx,

for all n ∈ N. Hence f = 0. �

Define the function K : C+ × C+ → C of positive type by

K(z, w) = (φz, φw)L2((0,∞)) =

∫ ∞

0

e−zte−wtdt =
1

z + w
, (5.17)
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for all z, w ∈ C+.
Since 〈V 〉 = H, the frame transform L : L2((0,∞)) → CC+

K defined by(
Lf
)
(z) = (φz, f)L2((0,∞)) =

∫ ∞

0

e−ztf(t) dt, (5.18)

for all f ∈ L2((0,∞)) and z ∈ C+, is a unitary map. Note that CC+

K consists of analytic
functions. Fix x > 0 and define f̃x by

f̃x(t) =

{
e−txf(t) t > 0

0 t ≤ 0
, (5.19)

for all x ≥ 0 and f ∈ L2((0,∞)). Then it is obvious that for all x > 0 we have f̃x ∈ L1(R)
and

(
F f̃x

)
(y) = 1√

2π

(
Lf
)
(x+iy) for almost all y ∈ R. Next we prove that l.i.m.x↓0f̃x = f̃0.

Let ε > 0. Then take a R > 0 such that∫
R/B0,R

|f̃0(t)|2 dt <
ε

2
. (5.20)

Take x > 0 such that 1− e−xR <
√
ε√

2‖f̃0‖2
. Then we see that

‖f̃x − f0‖2 =

∫
R/B0,R

|(f̃0 − f̃x)(t)|2 dt+

∫
B0,R

|(f̃0 − f̃x)(t)|2 dt

=

∫
R/B0,R

|f̃0(t)(1− e−xt)|2 dt+

∫
B0,R

|f̃0(t)(1− e−xt)|2 dt

≤
∫

R/B0,R

|f̃0(t)|2 dt+ (1− e−xR)2

∫
B0,R

|f̃0(t)|2 dt <
ε

2
+
ε

2
, (5.21)

and the statement is achieved. Since l.i.m.x↓0f̃x = f̃0 we also obtain l.i.m.x↓0F f̃x = F f̃0

and l.i.m.x↓0
(
y 7→

(
Lf
)
(x+ iy)

)
= F f̃0. Note that ‖F f̃0‖L2(R) = ‖f‖L2((0,∞)). As a result

we obtain

(F,G)CC+
K

= lim
x↓0

1

2π

∫
R
F (x+ iy)G(x+ iy) dy, (5.22)

for all F,G ∈ CC+

K . In particular

F (w) = lim
x↓0

1

2π

∫
R

1

x− iy + w
F (x+ iy) dy, (5.23)

for all w ∈ C+ and F ∈ CC+

K .
We now give an alternative proof of (5.23) using the theory of complex functions. Let

F ∈ CC+

K , w ∈ C+ and 0 < x < Re(w). Let R > 0 be sufficiently large, then

F (w + x) =
1

2πi

∫
SI∪SII

1

z − w − x
F (z)dz (5.24)

by the residu Theorem and the fact that F is analytic. The contours are given by S1 =
{z ∈ C | Re(z) = x ∧ | Im(z)| < R} and SII = {z ∈ C | |z − x| = R ∧ Re(z − x) > 0}.
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SII

SI

iR

x+RO x

w

First we prove that the integral over SII vanishes if R tends to infinity for all F ∈ CC+

K

and all x > 0. To this end, we make use of the inequality

|F (z)| = |(φz, f)| ≤ 1

Re(z)
‖f‖2 =

1

Re(z)
‖F‖CC+

K
, (5.25)

for all F = Lf and z ∈ C+, which follows by the Cauchy-Schwartz inequality. Let F ∈ CC+
K .

Parameterizing the contour SII gives

1

2πi

∫
SII

1

z − w − x
F (z)dz =

1

2π

∫ π/2

−π/2

1

Reiφ − w
F (x+Reiφ)Reiφdφ

for all F ∈ CE
K . The integrand can be estimated by

| 1

Reiφ − w
F (x+Reiφ)Reiφ| ≤

‖F‖CC+
K

|Reiφ − w|(x+R cosφ)
, (5.26)

for all x > 0, F , w ∈ C+ R > 0 and φ ∈ [0, 2π).
Let ε > 0.There exists η > 0, R1 > 0 such that |w−R1e

iφ| > R1/2 for all φ ∈ [−π/2, π/2]
and 2η

x
< 2πε

3‖F‖
CC+
K

and 1
x+R1 cos η

< ε
3‖F‖

CC+
K

. For R > R1 the same inequalities are satisfied

and we find∣∣∣∣∣ 1

2π

∫ π/2

−π/2

1

Reiφ − w
F (x+Reiφ)Reiφdφ

∣∣∣∣∣ ≤ 1

2π

∫ π/2

−π/2

∣∣∣∣ 1

Reiφ − w
F (x+Reiφ)Reiφ

∣∣∣∣ dφ
=

1

2π

∫ π/2

−π/2

‖F‖CC+
K

|Reiφ − w|(x+R cosφ)
dφ

≤
∫ −π/2+η

−π/2
| |+

∫ π/2−η

−π/2+η
| |+

∫ π/2

π/2−η
| |

=
‖F‖CC+

K

2π

(
4η

x
+

2(π − 2η)

x+R cos η

)
<

2ε

3
+
ε

3
= ε. (5.27)
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Hence we proved that for all F ∈ CC+

K we have

F (w + x) = lim
R→∞

1

2πi

∫
SI

1

z − x− w
F (z) dz. (5.28)

Parameterizing S1 one finds

F (w + x) =
1

2π

∫
R

1

−iy + x+ w
F (x+ iy) dy. (5.29)

Now let x ↓ 0 and by continuity of F we proved the reproducing property.
Note that the structure of the space CC+

K resembles structure of the space F0. This
resemblance will be clarified by a conformal mapping that relates the two spaces. First
we construct an orthonormal basis in CC+

K . The set {en : x 7→ e−x/2Ln(x) | n ∈ N} is an
orthonormal base in L2(0,∞).

Lemma 5.3 The image of en is given by

(
Wen

)
(z) =

(z − 1
2
)n

(z + 1
2
)n+1

, (5.30)

for all z ∈ C+ and n ∈ N0. Hence, the set {an : z 7→ (z− 1
2
)n

(z+ 1
2
)n+1} is an orthonormal basis for

CC+

K .

Proof:
Let n ∈ N0. Then

(
Wen

)
(z) =

1

n!

∫ ∞

0

e−zxe+x/2
( d
dx

)n
[e−xxn] dx

= 0 +
1

n!
(z − 1

2
)

∫ ∞

0

e−zxe+x/2
( d
dx

)n−1
[e−xxn] dx

= . . . =
1

n!
(z − 1

2
)n
∫ ∞

0

e−zxe+x/2e−xxn dx

=
1

n!
(z − 1

2
)n(−1)n

( d
dz

)n ∫ ∞

0

e−(z+ 1
2
)x dx

=
1

n!
(z − 1

2
)n(−1)n

( d
dz

)n 1

z + 1
2

=
(z − 1

2
)n

(z + 1
2
)n+1

for all z ∈ C+. �

34



Corollary 5.4 For e−zx the following decomposition holds

e−zx =
∞∑
n=0

Ln(x)e
−x/2 (z − 1

2
)n

(z + 1
2
)n+1

, (5.31)

for all z ∈ C+ and x > 0.

One readily verifies that the Möbius transform defined by z 7→ z− 1
2

z+ 1
2

maps C+ onto

D = {z ∈ C | |z| < 1}. Moreover, the inverse is given by z 7→ 1+z
2−2z

. Define the operator

T : CC+

K → CD by

(
Tf
)
(z) =

1

1− z
f

(
1 + z

2− 2z

)
, (5.32)

for all f ∈ CC+

K and z ∈ C+.

Lemma 5.5 The image of the basis element an is given by(
Tan

)
(z) = zn (5.33)

for all z ∈ D and n ∈ N0.

Proof:
Let n ∈ N0. Then

(
Tan

)
(z) =

1

1− z
an

( 1 + z

2− 2z

)
=

1

1− z

(
1
2

1+z
1−z −

1
2

)n(
1
2

+ 1
2

1+z
1−z

)n+1

=
2

1− z

(
1+z
1−z − 1

)n(
1 + 1+z

1−z

)n+1 = 2

(
1 + z − 1 + z)n(

1− z + 1 + z
)n+1 = zn

for all z ∈ D. �

Corollary 5.6 The operator T defines a unitary map from CC+

K onto F0.

Note the resemblance between (5.22) for CC+

K and (4.38).
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6 Sampling Theorems

In the literature sampling theorems are developed to answer a basic question: given a set
H = CE consisting of complex-valued function on a set E, does there exist a subset S  E
such that each function f ∈ H is completely determined by its values on S? A famous
example is the space of square integrable functions on R for which the Fourier-transform
has support in [−a, a] for some fixed a > 0.

6.1 A general sampling theorem

In most of the classical sampling theorems, one construct a space of functions for which
a sampling theorem holds, by means of a transformation between two Hilbert spaces. In
this section we prove a general sampling theorem based on this idea. Theorem 2.3 will be
the key for this theorem.

Let H be a separable Hilbert space and V = {φx | x ∈ E} a labeled subset of H,
for which 〈V 〉 = H. Define the function K : E × E → C of positive type by K(x, x′) =
(φx, φx′)H, for all x, x′ ∈ E. By Theorem 2.3, the frame transform W : H → CE

K : f 7→ Wf ,
where Wf : E→ C : x 7→ (φx, f)H is unitary.

Theorem 6.1 Let {xn}n∈N be a sequence such that {φxn | n ∈ N} is an orthogonal basis
for H. Then,

f(x) =
∑
n∈N

f(xn)
K(x, xn)

K(xn, xn)
, (6.1)

for all x ∈ E and f ∈ CE
K. Moreover,

‖f‖2 =
∑
n∈N

|f(xn)|2

K(xn, xn)
, (6.2)

for all f ∈ CE
K.

Proof:
Since W is unitary, the set {Kxn | n ∈ N} is an orthogonal basis for CE

K and
hence { Kxn√

K(xn,xn)
| n ∈ N} is an orthonormal basis for CE

K . Let f ∈ CE
K . Then,

f =
∑
n∈N

βnKxn =
∑
n∈N

(Kxn , f)CE
K√

K(xn, xn)

Kxn√
K(xn, xn)

=
∑
n∈N

f(xn)
Kxn

K(xn, xn)
. (6.3)

Therefore the second statement follows. For the first statement take the inner
product with Kx for all x ∈ E. �

This is a generalization of a theorem by Kramer, where H is forced to be equal to L2((a, b))
for some pair a < b. See for example [Ab] or [H].
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6.2 A special subspace of L2(R)

As a first application of Theorem 6.1 we consider a famous sampling theorem on a space
of analytic functions. Consider L2((−π, π)). Define the subset V as

V = {ω 7→ 1√
2π

e−iωz | z ∈ C} (6.4)

Define the function K : C× C→ C of positive type by

K(w, z) =
1

2π

∫ π

−π
eiω(w−z)dω =

sin π(w − z)

π(w − z)
, (6.5)

for all w, z ∈ C and w 6= z and K(z, z) = 1 for all z ∈ C. Then the frame transform
W : L2((−π, π)) → CC

K defined by

(
Wf

)
(z) =

1√
2π

∫ π

−π
eiωzf(ω) dω (6.6)

for all f ∈ L2((−π, π)) and z ∈ C is unitary by Theorem 2.3.
The space CC

K is easily characterized. Define the space CR
K = {F |R | F ∈ CC

K} which is
again a functional Hilbert space by [Ma, Lemma 1.14.] or [Ar, §5]. Let f ∈ L2((−π, π)) and
define f̃ ∈ L2(R) as f on (−π, π) and zero outside. Then it is obvious that Wf|R = F−1f .
Hence the functional Hilbert space CR

K is a Hilbert subspace of L2(R) and it consists of
all functions f for which the Fourier-transformed Ff has support in (−π, π) . Note that
those functions are analytic and that they can be extended to entire functions. The space
CC
K precisely consists of the analytic continuations of these functions. The space CC

K will
play an important role in the sequel and therefore it will be denoted by the symbol H.

The following Theorem is a direct consequence of Theorem 6.1.

Theorem 6.2 Let f ∈ H. Then

f(z) =
∑
n∈Z

f(n)K(z, n) =
∑
n∈Z

f(n)
sin π(z − n)

π(z − n)
, (6.7)

for all z ∈ C and

‖f‖ =
∑
n∈Z

|f(n)|2. (6.8)

Proof:
The set {an : ω 7→ 1√

2π
e−iωn | n ∈ Z} is an orthonormal basis in L2((−π, π)).�

The set of normalized Legendre polynomials {x 7→
√
n+ 1

2
Pn(x) | n ∈ N0} is on

orthonormal basis in L2((−1, 1)), where Pn(x) = C
1
2
n (x) for all −π < x < π. Therefore
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{gn : x 7→
√

n+ 1
2

π
Pn(x/π) | n ∈ N0} is on orthonormal basis in L2((−π, π)) The function

x 7→ eiωx admits the following decomposition with respect to this basis

eiωx =
∞∑
n=0

in(n+
1

2
)

√
2

ω
Jn+ 1

2
(πω)Pn(x/π), (6.9)

for all −π < x < π and ω ∈ C, see [MOS, §5.3 pp. 227]. Note that√
2

ω
Jn+ 1

2
(ω) =

∞∑
m=0

(−1)m

m!Γ(m+ 11
2
)

(ω
2

)2m

, (6.10)

defines an entire function on C, for all n ∈ N0. By Theorem 4.2, the set

{
ω 7→ in

√
(2n+ 1)π

ω
Jn+ 1

2
(πω) | n ∈ N0

}
, (6.11)

is an orthonormal basis in H.
As a result the following decomposition follows,

sin π(x− y)

π(x− y)
=

∞∑
n=0

π(2n+ 1)
√
xy

Jn+ 1
2
(πx)Jn+ 1

2
(πy) (6.12)

for all x, y ∈ R.
Next we introduce an operator which is needed in the following section. Let 0 < d < 1.

Then the operator Bd defined by

(
Bdf

)
(ω) =

{
1
d
f(ω/d) if ω ∈ (−πd, πd)

0 if ω /∈ (−πd, πd) , (6.13)

for almost all x ∈ (−πd, πd) and all f ∈ L2((−π, π)) maps L2((−π, π)) into itself. More-
over, (

WBdf
)
(x) =

1

d

∫ πd

−πd
f(ω/d)eiωx dω =

∫ π

−π
f(ω)ediωx dω

=
(
Wf

)
(dx) (6.14)

for all f ∈ L2((−1, 1)) and x ∈ C. Define the operator Td on H by(
TdF

)
(x) = f(dx), (6.15)

for all x ∈ C. Then WBd = TdW .
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6.3 A space of q-functions

In this section the space Gq will be introduced for 0 < q < 1. This space is a functional
Hilbert spaces consisting of analytic functions on a open subset of C containing the interval
(0,∞). The norm of an arbitrary function in Gq will turn out be

‖f‖q = log
1

q

∞∑
n=−∞

|f(qn)|2qn (6.16)

for all f ∈ Gq. Besides a different constant in front of the summation, this is a well-known
expression in the theory of q-functions. Moreover, we provide a unitary map from the space
H from the preceding section onto Gq. This map will help us analyzing the space Gq. In
particular we provide a sampling theorem for the space Gq. For an alternative sampling
theorem for special q-functions, see [Ab].

Let S = {x ∈ C | x < 0} be a cut in the complex plain. Define the log : C/S → C by

log(z) =

∫ z

1

1

w
dw, (6.17)

for all z ∈ C/S. Define zα by zα = |z|αei arg zα, for all z ∈ C/S and 0 < α < 1, where

−π < arg z < π. The square root z
1
2 will be denoted by

√
z.

Let 0 < q < 1. We recall that H was the subspace of L2(R) consisting of the analytic
continuations of functions in L2(R) for which the Fourier transform has support within
(−π, π). Define the operator Aq : H → CC/S by

(
Aqf

)
(z) =

1√
z
f

(
log z

log 1
q

)
(6.18)

for all f ∈ H, z ∈ C/S.

Lemma 6.3 Suppose f ∈ H. Then Aqf|(0,∞)
∈ L2((0,∞)). Moreover, ‖Aqf|(0,∞)

‖L2((0,∞)) =√
log 1

q
‖f‖H.

Proof:
Let f ∈ H. Use the substitution z = q−x in

log
1

q

∫ ∞

−∞
|f(x)|2dx = log

1

q

∫ ∞

0

∣∣f ( log z

log 1
q

)∣∣2 1

z log 1
q

dx

=

∫ ∞

0

∣∣(Aqf)(z)∣∣2dz.
This proves the statement. �
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Denote the space Aq(H), endowed with the norm ‖f‖q = ‖f|(0,∞)
‖L2((0,∞)) for all f ∈ Aq(H),

by Gq. Recall that H is a functional Hilbert space with reproducing kernel

K(w, z) =
sin π(z − w)

π(z − w)
, (6.19)

for all z, w ∈ C.

Theorem 6.4 The space Gq is a functional Hilbert space. The reproducing kernel Lq of
Gq is given by

L(q)
z (w) = L(q)(w, z) =

1

(log 1
q
)2
√
z

(
AqK log z

log 1
q

)
(w) =

sin π log z−logw

log 1
q

log 1
q

√
zw(log z − logw)

, (6.20)

for all w, z ∈ C/S, where K is the reproducing kernel of H. Moreover, 1
log 1

q

Aq defines a

unitary map from H onto Gq.

Proof:
By Lemma 6.3, the map 1

log 1
q

Aq defines an isometry from H onto Gq. Moreover,

it is surjective by definition. Since H is complete it easily follows that Gq is
also a Hilbert space.

Let z ∈ C/S. Then(
1√

z(log 1
q
)2
AqK log z

log 1
q

, Aqf

)
q

=
1√
z
(K log z

log 1
q

, f)H

=
1√
z
f
( log z

log 1
q

)
=

(
Aqf)(z),

for all f ∈ H. Hence the statement follows. �

Theorem 6.5 Suppose F ∈ Gq. Then

‖F‖2
q = log

1

q

∞∑
n=−∞

|F (qn)|2qn. (6.21)

Moreover,

F (z) = log
1

q

∞∑
n=−∞

F (qn)Lqn(z)q
n (6.22)

for all z ∈ C/S.
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Proof:
By definition, there exist a f ∈ H such that F = Aqf .

‖F‖2
q =

∫ ∞

0

∣∣(Aqf)(z)∣∣2dz =

∫ ∞

0

∣∣∣f ( log z

log 1
q

)∣∣∣2 1

z
dz

= log
1

q

∫ ∞

−∞
|f(x)|2dx = log

1

q

∞∑
n=−∞

|f(n)|2 = log
1

q

∞∑
n=−∞

∣∣(Aqf)(qn)∣∣2qn
This proves the first statement. The second statement easily follows by taking
the inner product of L

(q)
z with f . �

6.4 Operators on Gq

Recall that Tdf ∈ H for all f ∈ H and 0 < d < 1, where Td is the operator defined in (6.15).

Lemma 6.6 AqTd = A
q

1
d
.

Proof:
Let f ∈ H. Then(

AqTdf
)
(z) =

1√
z
f
(
d
log z

log 1
q

)
=

1√
z
f
( log z

log 1

q
1
d

)
=
(
A
q

1
d
f
)
(z),

for all z ∈ C/S. �

Corollary 6.7 Suppose 0 < q < s < 1. Then Gq is a Hilbert subspace of Gs.

Proof:
Define d = log s

log q
< 1. Then Aq = TdAs, since s

log q
log s = q and Lemma 6.6. It

follows that

Gq = AqH = AsTdH ⊂ AsH = Gs,

since TdH ⊂ H. Let f ∈ Gq, then ‖f‖q = ‖f|(0,∞)
‖L2((0,∞)) = ‖f‖s. �

Let 0 < α < 1. Suppose F = Aqf ∈ Gq. Then

F (zα) =
(
Aqf

)
(zα) =

1√
z
f
( log zα

log 1
q

)
=

1√
z
f
(
α

log z

log 1
q

)
=
(
AqTαf

)
(z) (6.23)

for all z ∈ C/S. Hence z 7→ F (zα) ∈ Gq. Define the operator Sα on Gq by(
SαF

)
(z) = F (zα), (6.24)

for all F ∈ Gq and z ∈ C/S.
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Lemma 6.8 A
q

1
d

= AqTd = SdAq, for all 0 < d < 1 and 0 < q < 1.

Corollary 6.9 Let 0 < q < s < 1 and define α = log q
log s

. The operator αSα maps Gq

unitarily onto Gs.

Proof:
The operator 1

log 1
t

At is a unitary map from H onto Gt, for all 0 < t < 1. The

statement now follows by the identity αSα = 1
log 1

s

As
(

1
log 1

q

Aq
)−1

. �

6.5 A generalization of Lagrange interpolation

In this section we introduce a general way to construct functional Hilbert spaces of entire
functions together with a sampling formula. This construction covers most of the classical
sampling formulas.

The order λ of an entire function φ : C→ C is defined by

λ = inf

{
µ ∈ R | lim

r→∞

max|z|=r |f(z)|
erµ

= 0

}
. (6.25)

If
{
µ ∈ R | limr→∞

max|z|=r |f(z)|
er
µ = 0

}
= ∅, then set λ = ∞. Note that λ is the smallest

number such that

M(r) ≤ er
λ+ε

, (6.26)

for any given ε as soon as r is sufficiently large, where M(r) stands for the maximum of
|φ(z)| on |z| = r.

Let φ be an entire function of order h ≤ λ ≤ h+ 1, where h an integer, which has only
simple zeros. Denote the set of zeros by {an | n ∈ N}. For the sake of simplicity assume
that 0 is not a zero of f . As a result of a theorem by Hadamard [Ah, §5.3, pp. 205-210],∑

n∈N

|an|−h <∞. (6.27)

This result implies in particular that limn→∞
1
an

= 0.
For each zero an define the function Lan : C→ C by

Lan(z) =

{
φ(z)

(z−an)
z 6= an

φ′(an) z = an
, (6.28)

for all z ∈ C. It is clear that the functions Lan are entire functions and satisfy Lan(am) =
φ′(an)δmn, for all m,n ∈ N.

Let {λn}nN be a sequence of positive real numbers such that∑
n∈N

1

λn|an|2
<∞. (6.29)
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Note that the sequence defined λn = |an|h−2 satisfies this equation. In particular this
implies that if h = 2 that the sequence defined by λn = 1 satisfies this equation.

Lemma 6.10 The sum

K(z, w) :=
∑
n∈N

1

λn
Lan(z)Lan(w) (6.30)

is absolutely convergent for z, w ∈ C.

Proof:
Let z, w ∈ C. If z or w equals a zero am the statement is trivial, since Lan(am) =
φ′(an)δmn. Now suppose that both are not zeros of f . The summand satisfies

|Lan(z)Lan(w)| = |φ(z)||φ(w)|
|z − an||w − an|

≤ 1

2

|φ(z)|2

|z − an|2
+

1

2

|φ(w)|2

|w − an|2

for all n ∈ N. It is sufficient to show that
∑∞

n=1
|φ(z)|2

λn|z−an|2 converges. By (6.27),

limn→∞
1
an
→ 0. Therefore there exists a N ∈ N such that | z

an
| < 1

2
for all

n > N . Hence

M∑
n=N+1

|φ(z)|2

λn|z − an|2
≤ |φ(z)|2

M∑
n=N+1

1

λn|an|2
1

| z
an
− 1|2

≤ |φ(z)|2
M∑

n=N+1

1

λn|an|2
1

(1− | z
an
|)2

≤ |φ(z)|2
M∑

n=N+1

4

λn|an|2

for all M > N . Hence the sum
∑∞

n=1
|φ(z)|2

λn|z−an|2 converges. This proves the
statement. �

The function K : C×C→ C is a function of positive type. Hence it defines the functional
Hilbert space CC

K . As usual define the functions Kw : C → C by Kw(z) = K(z, w) for all

z, w ∈ C and note that Kan(z) = φ′(an)
λn

Lan(z).

Theorem 6.11 The set { 1

λ
1
2
n

Lan | n ∈ N} is an orthonormal basis for CC
K.

Proof:
Let n,m ∈ N0. Then by Lemma 2.1 it follows that an, am ∈ CC

K . Moreover,

(Lan , Lam)CC
K

=
λnλm

φ′(am)φ′(an)
(Kan , Kam) =

λnλm

φ′(am)φ′(an)
K(an, am)

= λnδnm

This proves the orthonormality. By Theorem 4.1 it is also a basis. �
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Note that the set { 1

λ
1
2
n

Lan | n ∈ N} consists of entire functions. Hence CC
K has a basis of

entire functions.

Theorem 6.12 The space CC
K consists of entire functions.

Proof:
Let f ∈ CC

K . By the previous theorem, f can be written limit of a sequence
of analytic functions f = limn→∞ fn. Since CC

K is a functional Hilbert space, f
is also the pointwise limit of the sequence {fn}n∈N, i.e. f(z) = limn→∞ fn(z)
for all z ∈ C. We will prove that for every z ∈ C there exists a compact
neighborhood Uz of z such that the pointwise limit converges uniformly on Uz.
From this the statement follows, since the uniformity implies that f is also
analytic on the interior of Uz and z was arbitrary.

Since

|f(z)− fn(z)| ≤ ‖Kz‖‖fn − f‖,

for all z ∈ C and n ∈ N it is sufficient to show that z 7→ ‖Kz‖2 is locally
bounded, i.e. for all z ∈ C there exists a compact neighborhood Uz and Az > 0
such that K(w,w) < Az for all w ∈ Az.
Let z ∈ C. Separate the cases z = an for some n ∈ N and z 6= an for all
n ∈ N. Start with the last case. Set Uz = {w ∈ C | |w− z| ≤ 1

2
infn∈N |z− an|}.

Note that infn∈N |z − an| > 0, since the set {an | n ∈ N} does not have an
accumulation point. Then,

∞∑
n=1

|φ(w)|2

λn|w − an|2
=

∞∑
n=1

|φ(w)|2

λn|z − an|2
1

|1− w−z
an−z |

2

≤
∞∑
n=1

|φ(w)|2

λn|z − an|2
1

(1−
∣∣ w−z
an−z

∣∣)2
≤ 4|φ(w)|2

∞∑
n=1

1

λn|z − an|2

≤ max
w∈Uz

|φ(w)|2
∞∑
n=1

1

λn|z − an|2

for all w ∈ Uz. Hence, w 7→ K(w,w) is bounded on Uz.

Finally, consider the case z = am for a certain m ∈ N. Set Uz = {w ∈
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C | |w − z| ≤ 1
2
infn∈N,n6=m |z − an|}.

∞∑
n=1

|φ(w)|2

λn|w − an|2
=

|φ(w)|2

λn|w − am|2
+

∞∑
n=,n6=m

|φ(w)|2

λn|w − an|2

≤ max
w∈Uz

|φ(w)|2

λn|w − am|2
+

∞∑
n=1,n6=m

|φ(w)|2

λn|z − an|2
1

(1−
∣∣ w−z
z−an

∣∣)2

≤ max
w∈Uz

|φ(w)|2

λn|w − am|2
+ 4

∞∑
n=1,n6=m

|φ(w)|2

λn|z − an|2

≤ max
w∈Uz

|φ(w)|2

λn|w − am|2
+ 4 max

w∈Uz
|φ(w)|2

∞∑
n=1,n6=m

1

λn|z − an|2

for all w ∈ Uz. Hence, w 7→ K(w,w) is bounded on Uz. �

The following theorem is a sampling theorem for the space CC
K .

Theorem 6.13 Let f ∈ CC
K. Then

‖f‖CC
K

=
∞∑
n=1

|f(an)|2
λn

|φ′(an)|2
. (6.31)

Moreover,

f(z) =
∞∑
n=1

f(an)
Lan(z)

φ′(an)
(6.32)

for all z ∈ C.

Proof:
Since { 1

λ
1
2
n

Lan | n ∈ N} is an orthonormal basis for CC
K , the function f can be

decomposed in f =
∑

n∈N
cn

λ
1
2
n

Lan where

cn = (
1

λ
1
2
n

Lan , f)CC
K

=
λ

1
2
n

φ′(an)
(Kan , f)CC

K
=

λ
1
2
n

φ′(an)
f(an),

for all n ∈ N. Hence the statement follows. �

Example: Consider the case φ(z) = 1
Γ(z)

for all z ∈ C. Then φ is an entire function with

zero’s z = −n for all n ∈ N0. Moreover φ′(−n) = (−1)nn! for all n ∈ N0. Define λn = 1
for all n ∈ N0.

∞∑
n=0

1

(z + n)(w + n)
=

1

z − w

∞∑
n=0

1

w + n
− 1

z + n
=
ψ(z)− ψ(w)

z − w
, (6.33)
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for all z, w ∈ C, where ψ is the function defined by ψ(z) = Γ(z)
Γ′(z)

. Hence the reproducing
kernel K is given by

K(z, w) =
ψ(z)− ψ(w)

Γ(z)Γ(w)(z − w)
, (6.34)

for all z, w ∈ C and z 6= w if Im(z) = 0. For z ∈ R we obtain K(z, z) = ψ′(z)
|Γ(z)|2 . Since

ψ′(z) =
∑∞

n=0
1

(z+n)2
the positiveness is guaranteed as it must be, moreover the singularities

z = −n of ψ′ are also zeros of 1
|Γ|2 of the same order, therefore they cancel each other. Let

f ∈ CC
K then

f(z) =
1

Γ(z)

∞∑
n=0

(−1)nf(−n)

(z + n)n!
, (6.35)

for all z ∈ C and z 6= −n for all n ∈ N0. Moreover,

‖f‖2
CC
K

=
∞∑
n=0

|f(−n)|2

n!2
, (6.36)

for all f ∈ CC
K . By the identity Γ(z)Γ(1− z) = π

sinπz
, we find

L−n(z)

Γ(1− z)
=

1

Γ(z)Γ(1− z)(z + n)
=

sin πz

π(z + n)
, (6.37)

for all n ∈ N0 and z ∈ C/{−n}. Hence Ln ∈ L2(R, 1
Γ(1−x)dx). Moreover,∫ ∞

−∞
L−n(x)L−m(x)

1

|Γ(1− x)|2
dx =

∫ ∞

−∞

sin πx

π(x+ n)

sin πx

π(x+m)
dx = δnm, (6.38)

for all n,m ∈ N0. Therefore,

‖f‖2
CC
K

=

∫ ∞

−∞
|f(x)|2 1

|Γ(1− x)|2
dx, (6.39)

for all f ∈ CC
K . Hence CC

K is a Hilbert subspace of L2(R, 1
|Γ(1−x)|2 dx). For details about

the Gamma- and the ψ-function, see [Te, Ch. 3].

Example: Let a, b ∈ R and a < b. Let w : [a, b] → (0,∞) be a measurable function
such that∫ b

a

xnw(x) dx <∞, (6.40)
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for all n ∈ N0. Let {pn | n ∈ N0} be the orthonormal set in L2((a, b), w(x) dx) constructed
by the Gramm-Schmidt proces on {x 7→ xn | n ∈ N0}. Note that pn is an polynomial of
degree n ∈ N0. We recall the formula of Christoffel-Darboux

Kn(x, y) =
n∑
k=0

pk(x)pk(y) =
kn
kn+1

pn(y)pn+1(x)− pn(x)pn+1(y)

x− y
, (6.41)

for all x, y ∈ [a, b] with x 6= y and n ∈ N0, where kn is the coefficient in pn(x) = knx
n+ . . .,

for all n ∈ N0. Moreover,

Kn(x, x) =
kn
kn+1

(
pn(x)p

′
n+1(x)− p′n(x)pn+1(x)

)
, (6.42)

for all x ∈ [a, b]. Note that Kn is the reproducing kernel of the subspace Pol(n) of
L2((a, b), w(x) dx) consisting of all polynomials of degree n. See [Te, Ch. 6] for more
details.

Let N ∈ N and set φ = pN . Let {ak | k = 1, . . . , N} be the set of zeros of pN . By the
formula of Christoffel-Darboux we obtain

Lak(x) =
pN(x)

x− ak
=

kN+1

kNpN+1(ak)
K(x, ak), (6.43)

for all x ∈ [a, b] and k = 1, . . . , N . Therefore,∫ b

a

Lak(x)Lal(x)w(x) dx =

(
kN+1

kNpN+1(ak)

)2

(Kak , Kal) =

(
kN+1

kNpN+1(ak)

)2

K(ak, al)

= −p
′
N(ak)kN+1

kNpN+1(ak)
δkl, (6.44)

for all k, l = 1, . . . , N . Set

λk = −p
′
N(ak)kN+1

kNpN+1(ak)
> 0, (6.45)

for k = 1, . . . , N . It follows that { 1
λk
Lak | k = 1, . . . N} is an orthonormal set for the

Hilbert subspace Pol(N − 1) of L2((a, b), w(x) dx) consisting of all polynomials of degree
≤ N − 1, and hence

N∑
k=1

1

λk
Lak(x)Lak(y) = KN−1(x, y), (6.46)

for all x, y ∈ [a, b].
The following two identities are thus obtained,

p(x) =
n∑
k=1

pN(x)p(ak)

p′N(ak)(x− ak)
, (6.47)
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for all x ∈ [a, b] and p ∈ Pol(N − 1).

(p, q)Pol(N−1) =

∫ b

a

p(x)q(x)w(x)dx =
N∑
k=1

1

λk|p′N(ak)|2
p(ak)q(ak), (6.48)

for all p, q ∈ Pol(N−1). By substitution of p(x) = xk and q(x) = xl for k, l = 0, 1, . . . , N−1
in (6.48), it follows that∫ b

a

p(x)w(x)dx =
N∑
k=1

1

λk|p′N(ak)|2
p(ak), (6.49)

for all p ∈ Pol(2N − 2). Moreover, if r ∈ Pol(N − 1) and q = pN then (6.49) also holds
for p = qr, since both terms vanish. Therefore, (6.49) holds for all p ∈ Pol(2N − 1). This
result is known as Gaussian integration.
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7 Wavelet transforms

7.1 Construction of V using group representations

From now on we will assume E to be a group G. Furthermore, we assume the group to
have a representation on H, i.e. a map R : G→ B(H) : g 7→ Rg, which satisfies

RgRh = Rgh ∀g,h∈G, (7.1)

Re = I (7.2)

where e is the identity element of G. Here B(H) is the linear space of all bounded operators
from H into H. Given a vector ψ ∈ H we can construct the set V in (2.12) as follows

Vψ = {Rgψ | g ∈ G}. (7.3)

We will call ψ a (generating) wavelet. Starting with such a set Vψ we can construct a

functional Hilbert subspace CGK and a unitary map Wψ between 〈Vψ〉 and this functional
Hilbert space, as described in Section 2. The unitary map Wψ will be called the wavelet
transform.

We state the following consequence of Theorem 2.3.

Theorem 7.1 Let R be a representation of a group G in a Hilbert space H. Let ψ ∈ H.
Define the function K : G×G→ C of positive type by

K(g, g′) = (Rgψ,Rg′ψ)H. (7.4)

Define the set Vψ by

Vψ = {Rgψ | g ∈ G}. (7.5)

Then the wavelet transform Wψ : 〈Vψ〉 → CGK defined by(
Wψf

)
(g) = (Rgψ, f)H, (7.6)

is a unitary map.

Of course, the wavelet transform Wψ could be defined on the entire space H, but then the

unitarity is lost in the case 〈Vψ〉 6= H. For a vector f ⊥ Vψ we then get Wψf = 0.

Usually we are interested in the case 〈V 〉 = H. If 〈Vψ〉 = H for some ψ ∈ H, we
call ψ a cyclic vector or a cyclic wavelet and the representation is called a cyclic
representation if a cyclic wavelet exists.

Theorem 7.2 Let R be a representation of a group G in a Hilbert space H. Let ψ be a
cyclic wavelet. Define a function K : G×G→ C of positive type by

K(g, g′) = (Rgψ,Rg′ψ)H. (7.7)

The wavelet transform Wψ : H → CGK defined by(
Wψf

)
(g) = (Rgψ, f)H, (7.8)

is a unitary map.
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It is obvious that Wψ can be defined as a unitary map on the entire space H if and only if
R is cyclic and ψ is a cyclic wavelet.

Note that up till now there are no restrictions have been imposed on the Hilbert space
H, the group G or the representation R. In particular, there are no topological conditions
on G and R. There is even no topology on G.

7.2 Unitary representations

The kind of representations, which have our special interest, are unitary representa-
tions, i.e. representations R for which the Rg are unitary for all g ∈ G. These kind
of representations have some nice properties. We will use the symbol U instead of R to
indicate that a representation is unitary.

The function of positive type, from which the functional Hilbert space is constructed,
is given by K(g, h) = (Ugψ,Uhψ)H. Because the representation is unitary this simplifies to

K(g, h) = (Ugψ,Uhψ)H = (ψ,Ug−1hψ)H =: F (g−1h), (7.9)

for all g, h ∈ G. In abstract harmonic analysis, the function F : G → C is said to be of
positive type if

n∑
i=1

n∑
j=1

F (g−1
i gj)cjci ≥ 0, (7.10)

for all n ∈ N, c1, ...., cn ∈ C and g1, ..., gn ∈ G. Note that not all function of positive type
can be written as K(g, h) = F (g−1h) for all g, h ∈ G, for some function F : G → C of
positive type. A necessary and sufficient condition is that K(hg1, hg2) = K(g1, g2) for all
h, g1, g2 ∈ G.

Thus if U is a unitary representation of G in a Hilbert space H and ψ ∈ H, then
F : G → C defined by F (g) = (ψ,Ugψ)H is of positive type. The following theorem is a
converse.

Let F : G → C be of positive type and define K : G×G → C by K(g, h) = F (g−1h).
Let g ∈ G. Define ULg : CGK → CG by(

ULg f
)
(h) = f(g−1h), (7.11)

for all f ∈ CGK and g, h ∈ G.

Theorem 7.3 Let G be a group and F : G → C be a function of positive type. Define
K(g, h) = F (h−1g) for all g, h ∈ G. Then UL : G → B(CGK) : g 7→ ULg is a unitary
representation of G in CGK. Moreover, F (g) = (F,ULg F )CGK for all g ∈ G.

Proof:
Let f ∈ CGK . The unitarity of ULh easily follows from Lemma 2.2 and the fact
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that K(hg1, hg2) = K(g1, g2) for all g1, g2, h ∈ G:

‖f‖2
CE
K

= sup
l∈N, αj∈C, gj∈G

{∣∣∣ l∑
j=1

αjf(gj)
∣∣∣2( l∑

k,j=1

αkαjK(gk, gj)
)−1
}
.

= sup
l∈N, αj∈C, gj∈G

{∣∣∣ l∑
j=1

αjf(h−1gj)
∣∣∣2( l∑

k,j=1

αkαjK(h−1gk, h
−1gj)

)−1
}
.

= sup
l∈N, αj∈C, gj∈G

{∣∣∣ l∑
j=1

αjf(h−1gj)
∣∣∣2( l∑

k,j=1

αkαjK(gk, gj)
)−1
}
,

for all h ∈ G. Therefore ULh f ∈ CGK and ‖ULh f‖CGK = ‖f‖CGK . Moreover

(F,ULg F )CGK = (Ke,ULg Ke)CGK = Ke(g
−1) = F (g),

for all g ∈ G. �

The representation UL is called the left regular representation. Note the intertwining
relation ULg Wψ = WψUg.

Corollary 7.4 Let G be a group and F : G → C a function of positive type. Define the
function K : G × G → C of positive type by K(g, h) = F (h−1g) for all g, h ∈ G. Let H
be a Hilbert space, which is unitarily equivalent to CGK. Then there exist a ψ ∈ H and a
unitary representation U of G in H such that

F (g) = (Ugψ, ψ)H, (7.12)

for all g ∈ G.

Proof:
By assumption, there exist a unitary map T from H to CGK . The element
ψ = T −1F and the unitary representation defined by Ug = T −1ULg T for all
g ∈ G do the trick. �

7.3 Topological conditions

Some elementary topological conditions which can be posed on the representation R, are
straightforwardly transferred to the wavelet transform.

Let R be a bounded representation, i.e. a representation for which the map g 7→
‖Rg‖ is a bounded function. Define ‖R‖ = supg∈G ‖Rg‖. Let f ∈ 〈Vψ〉. Then,∣∣(Wψf

)
(g)
∣∣ = |(Rgψ, f)H| = ‖Rgψ‖H‖f‖H ≤ ‖R‖‖ψ‖H‖f‖H, (7.13)
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for all g ∈ G. Hence, the wavelet transform Wψf for an arbitrary f ∈ H is bounded on G.
Also the reproducing kernel is bounded on G×G. A unitary representation is an example
of a bounded representation.

Assume G is a topological group, i.e. a group on which a topology is defined,
such that the group operations, multiplication and inversion, are continuous. Let R be
a continuous representation, i.e. a representation for which Rgf → Rhf whenever
g → h, for all h ∈ G and f ∈ H. Let f ∈ H. Then Wψf is a continuous function on G.
Indeed, if g → h then

|
(
Wψf

)
(g)−

(
Wψf

)
(h)| = |((Rg −Rh)ψ, f)H| ≤ ‖(Rg −Rh)ψ‖H‖f‖H → 0. (7.14)

Also the reproducing kernel is a continuous function on G×G.
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8 Cyclic representations

Because of Theorem 7.2 the cyclic representations have our special attention. But it is not
often straightforward to see whether a representation is cyclic or not. And even if so, one
still has to find a cyclic vector. In this section we pose provide criteria for cyclic vectors.
Moreover, we work out an example which deals with diffusion on a sphere. For this case
we managed, to find an interesting cyclic vector, with the aid of Theorem 8.5.

8.1 Orthogonal sums of functional Hilbert spaces

In this section we analyze the orthogonal direct sum of functional Hilbert spaces. The
sequel is based on a part of the article by Aronszajn [Ar, part I, 6]. Theorem 8.1 and
Corollary 8.2 are due to Aronszajn.

Let {Hn}n∈N be a sequence of Hilbert spaces. Then define the orthogonal direct
sum of the sequence as the Hilbert space

∞⊕
n=1

Hn =

{
a ∈

∞∏
n=1

Hn |
∞∑
n=1

‖an‖2
Hn <∞

}
, (8.1)

with the inner product

(a, b)⊕ =
∞∑
n=1

(an, bn)Hn . (8.2)

Theorem 8.1 Let K : E × E → C and L : E × E → C be two functions of positive type.
Then

CE
K+L = {f1 + f2 | f1 ∈ CE

K , f2 ∈ CE
L} = CE

K + CE
L. (8.3)

Furthermore, if CE
K ∩ CE

L = {0} then

‖f1 + f2‖2
CE
K+L

= ‖f1‖2
CE
K

+ ‖f2‖2
CE
L
. (8.4)

Hence it follows that CE
K ⊥ CE

L in CE
K+L and ‖f‖CE

K
= ‖f‖CE

K+L
for all f ∈ CE

K.

Define the Hilbert space CE
K ⊕ CE

L as the Cartesian product CE
K × CE

L with the inner
product defined by

((f1, g1), (f2, g2))⊕ = (f1, f2)CE
K

+ (g1, g2)CE
L
, (8.5)

for all pairs (f1, g1), (f2, g2) ∈ CE
K ⊕ CE

L. It is obvious that CE
K ⊕ CE

L with the above inner
product is a Hilbert space.

The following theorem is a direct consequence of Theorem 8.1.
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Corollary 8.2 Assume CE
K ∩ CE

L = {0}. Then the map defined by

(f1, f2) 7→ f1 + f2, (8.6)

is a unitary map from CE
K ⊕ CE

L onto CE
K+L.

This idea is easily generalized to an infinite sum of functions of positive type. Define the
Hilbert space

⊕∞
n=1CE

Kn
as in (8.1) and (8.2).

Let {Kn}n∈N be a sequence of functions of positive type on a set E such that

∞∑
n=1

Kn(x, x) <∞, (8.7)

for all x ∈ E. Then by the estimate

|Kn(x, y)| = |(Kn;x, Kn;y)CE
Kn
| ≤ ‖Kn;x‖CE

Kn
‖Kn;y‖CE

Kn

≤ 1

2
‖Kn;x‖2

CE
Kn

+
1

2
‖Kn;y‖2

CE
Kn

=
1

2
Kn(x, x) +

1

2
Kn(y, y) (8.8)

for all x, y ∈ E and n ∈ N , the sum

K⊕(x, y) :=
∞∑
n=1

Kn(x, y), (8.9)

converges absolutely on E × E. As a result K⊕ is a function of positive type, since Kn is
a function of positive type for all n ∈ N. Moreover, (8.7) implies that (K1;x, K2;x, . . .) ∈
⊕∞
n=1CE

Kn
since

N∑
n=0

‖Kn;x‖2
CE
Kn

=
N∑
n=0

Kn(x, x) ≤
∞∑
n=0

Kn(x, x) <∞ (8.10)

for all N ∈ N.
Furthermore, the sequence

∑∞
n=1 fn(x) converges absolutely for all (f1, f2, . . .) ∈

⊕∞
n=1CE

Kn

and x ∈ E. Indeed, let f = (f1, f2, . . .) ∈
⊕∞

n=1CE
Kn

and x ∈ E, then

N∑
n=1

|fn(x)| =
N∑
n=1

|(Kn;x, fn)CE
K
| ≤ 1

2

N∑
n=1

{
‖Kn;x‖2

CE
K

+ ‖fn‖2
CE
K

}
≤ 1

2

∞∑
n=1

{
Kn(x, x)CE

K
+ ‖fn‖2

CE
K

}
<∞, (8.11)

for all N ∈ N. Hence
∑∞

n=1 |fn(x)| <∞.
Now we are ready for the following theorem.
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Theorem 8.3 Let {Kn}n∈N be a sequence of functions of positive type on a set E such
that

∞∑
n=1

Kn(x, x) <∞, (8.12)

for all x ∈ E. Define for x ∈ E the vector ψx ∈
⊕∞

n=1CE
Kn

as

ψx = (K1;x, K2;x, . . .). (8.13)

Then the map Φ : 〈{ψx | x ∈ E〉 → CE∑∞
n=1Kn

defined by

[
Φ(f1, f2, . . .)

]
(x) =

∞∑
n=1

fn(x), (8.14)

is unitary.

Proof:
Since

(
Φf
)
(x) = (ψx, f)⊕ for all f ∈

⊕∞
n=1CE

Kn
and by Theorem 2.3 it follows

that Φ is a unitary mapping onto the functional Hilbert space of function on
the set E with reproducing kernel

(ψx, ψy)⊕ =
∞∑
n=1

(Kn;x, Kn;y)CE
Kn

=
∞∑
n=1

Kn(x, y)

for all x, y ∈ E. Hence the statement follows. �

As in the case of the sum of two functional Hilbert spaces we search for a condition such
that 〈{ψx | x ∈ E〉 =

⊕∞
n=1CE

Kn
. In that case Φ is a unitary map from

⊕∞
n=1CE

Kn
onto

CE∑∞
n=1Kn

.

Theorem 8.4 The following statements are equivalent

1. 〈{ψx | x ∈ E〉 =
⊕∞

n=1CE
Kn

2. ∀x ∈ E [
∑∞

m=1 fm(x) = 0] =⇒ f = 0.

3. CE
Kn
∩ CE∑∞

m=1,m6=nKn
= {0}, for all n ∈ N.

Proof:
1 ⇔ 2 This statement easily follows from (ψx, f)⊕ = 0 ⇔

∑∞
n=1 fn(x) = 0, for all

f = (f1, f2, . . .) ∈
⊕∞

n=1CE
Kn

.

2 ⇒ 3.
Let n ∈ N and f ∈ CE

Kn
∩ CE∑∞

m=1,m6=nKm
. Since the map Φ is surjective in
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Theorem 8.3, one can write f = fn =
∑∞

m=1,m 6=n fm, where fm ∈ CE
Km

for all

m ∈ N. Define the element g ∈
⊕∞

m=1CE
Km

by

g = (f1, f2, . . . , fn−1,−fn, fn+1, . . . )

Then obviously

∀x ∈ E

[
∞∑
m=1

(gm, Km;x) = 0

]
,

hence g = 0 and f = 0.

3 ⇐ 2.
First we mention that CE

Kn
⊥ CE

Km
for m 6= n in CE∑∞

n=1Kn
. If m 6= n, f1 ∈ CE

Kn

and f2 ∈ CE
K2

, then f2 ∈ CE∑
l=1,l6=nKl

by Theorem 8.1. By assumption and

Theorem 8.1 it follows that (f1, f2)CE
K⊕

= 0. Hence CE
Kn
⊥ CE

Km
.

Secondly, let (f1, f2, . . .) ∈
⊕∞

n=1CE
Kn

satisfy
∑∞

n=1 fn(x) = 0, for all x ∈ E.
Then

∞∑
n=1

‖fn‖2
CE
K⊕

=
∞∑
n=1

‖fn‖2
CE
Kn

<∞,

so
∑∞

n=1 fn exists. Since CE
K⊕

s a functional Hilbert space it follows that

( ∞∑
n=1

fn
)
(x) =

∞∑
n=1

fn(x) = 0

for all x ∈ E. �

Now no longer assume that
∑∞

n=1Kn(x, x) < ∞. In this case we need a mollifying
sequence as in the following theorem.

Theorem 8.5 Let E be a set. Let {Kn}n∈N be a sequence of functions of positive type on
E and {λn}n∈N a sequence such that

1. ∀ n ∈ N : λn > 0

2. supn λn <∞.

Then
⊕∞

n=1CE
λnKn

is a dense subspace of
⊕∞

n=1CE
Kn

. If in addition the sequences satisfy
the conditions

3. ∀ x ∈ E :
∑∞

n=1 λnKn(x, x) <∞

4. ∀ n ∈ N : CE
λnKn

∩ CE∑∞
m=1,m6=n λmKm

= {0}.
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Then

ψx = (λ1K1;x, λ2K2;x, . . .) ∈
∞⊕
n=1

CE
Kn (8.15)

for all x ∈ E. Furthermore

〈{ψx | x ∈ E}〉 =
∞⊕
n=1

CE
Kn . (8.16)

Proof:
Assume the first two conditions are satisfied.

First, we remark that from the definition it straightforwardly follows that
CE
Kn

= CE
λnKn

as a set and (f, g)CE
Kn

= λn(f, g)CE
λnKn

for all n ∈ N and

f, g ∈ CE
Kn

.

Secondly, write ‖ · ‖λ⊕ for the norm of
⊕∞

n=1CGλnKn . Let f = (f1, f2, . . .) ∈⊕∞
n=1CE

λnKn
. Then, it follows by

∞∑
n=1

‖fn‖2
⊕ =

∞∑
n=1

(fn, fn)CE
Kn

=
∞∑
n=1

λn(fn, fn)CE
λnKn

≤ sup
n
λn

∞∑
n=1

‖fn‖2
CE
λKn

= sup
n
λn‖f‖λ⊕,

that
⊕∞

n=1CE
λnKn

⊂
⊕∞

n=1CE
Kn

.

Finally, the set

{f ∈
∞⊕
n=1

CE
Kn | ∃N ∈ N ∀n > N [fn = 0]}

is dense in
⊕∞

n=1CE
Kn

and contained in
⊕∞

n=1CE
λnKn

. Hence
⊕∞

n=1CE
λnKn

is
dense in

⊕∞
n=1CE

Kn
.

Now assume in addition that the last two condition are satisfied.

Because ψx ∈
⊕∞

n=1CE
λnKn

by (8.10) we have in particular ψx ∈
⊕∞

n=1CE
Kn

for
all x ∈ E. Then by Theorem 8.3 and Theorem 8.4, the set 〈{ψx | x ∈ E} is dense
in
⊕∞

n=1CE
λnKn

. Moreover, because ‖ · ‖⊕ ≤ supn λn‖ · ‖λ⊕ and
⊕∞

n=1CE
λnKn

is
dense in

⊕∞
n=1CE

Kn
, it follows that 〈{ψx | x ∈ E}〉 is dense in

⊕∞
n=1CE

Kn
�

It straightforwardly follows that

(f, ψx)H =
∞∑
n=1

λnfn(x), (8.17)

for all x ∈ E, which will turn out to be a useful identity.
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8.2 An example: diffusion on a sphere

We now deal with an example concerning the problem of diffusion on a sphere. For a
detailed discussion about some statements which we do not prove, see for example [Mu,
Ch. 3].

Let Sq−1 for q ≥ 3 be the unit sphere in Rq and G = SO(q) the special orthogonal
matrix group. Let the group SO(q) act on Sq−1 in the usual way, (A, x) = Ax. The group
acts transitively on Sq−1, i.e. for all x, y ∈ Sq−1 there exists an A ∈ SO(q) such that
x = Ay.

LetH be the Hilbert space L2(S
q−1). Define the representation U : SO(q) → B(L2(S

q−1)) :
A 7→ UA where UA is defined by(

UAf
)
(x) = f(A−1x), (8.18)

for all A ∈ SO(q), f ∈ L2(S
q−1) and almost all x ∈ Sq−1.

First, it is well-known that the space L2(S
q−1) decomposes in L2(S

q−1) ∼=
⊕∞

n=1CS
q−1

Kn

where CSq−1

Kn
is the functional Hilbert space of all spherical harmonic polynomials of order

n. The reproducing kernel is given by

Kn;x =
q + 2n− 2

q − 2
C
q/2−1
N ((·, x)2), (8.19)

for all x ∈ Sq−1, where C
q/2−1
N are the Gegenbauer polynomials. Since

‖Kn;x‖2
L2(Sq) =

q + 2n− 2

q − 2
C
q/2−1
N ((x, x)2) =

q + 2n− 2

q − 2
C
q/2−1
N (1) =

q + 2n− 2

q − 2
, (8.20)

for all x ∈ Sq−1, it is straightforward to see that this orthogonal sum satisfies the condition
of Theorem 8.5 for some sequence {λn}n∈N.

Secondly, we have to choose a sequence {λn} n∈N. Let t > 0. Then it is obvious that
λn = e−tn(n+q−2) defines a sequence that satisfies the conditions in Theorem 8.5. Define for
all x ∈ Sq−1

ψx =
∞∑
n=1

e−tn(n+q−2)Kn;x. (8.21)

Then ψx ∈ L2(S
q−1) by Theorem 8.5. Fix y ∈ Sq−1. Then,

UAψy = ψAy, (8.22)

for all A ∈ SO(q) by (8.19). Finally, by the transitivity of the action of the group we get
by Theorem 8.5

〈{UAψy | A ∈ SO(q)}〉 = 〈{ψx | x ∈ Sq−1}〉 = L2(S
q−1). (8.23)

Hence ψy is a cyclic vector for all y ∈ Sq−1 and U is a cyclic representation.
It is straightforward to see that the stabilizer group y of Hy = {A ∈ SO(q) | Ay = y}

can be identified with SO(q− 1). Moreover, if Ay = y the UAψy = ψy. The quotient space
SO(q)/Hy is homeomorphic to Sq−1. Moreover, let t : Sq−1 → SO(q) be a map such that
t(b)y = b. Such a map exist by transitivity of the action of SO(q) on Sq−1.
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Theorem 8.6 Define the function K : Sq−1 × Sq−1 → C of positive type by

K(b, b′) = (Ut(b)ψy,Ut(b′)ψy)H. (8.24)

Then the frame transform Wψa : L2(S
q−1) → CSq−1

K defined by(
Wψf

)
(b) = (Ut(b)ψy, f)L2(Sq−1) = (ψb, f)L2(Sq−1), (8.25)

for all f ∈ L2(S
q−1) and b ∈ Sq−1 is a unitary map.

The choice λn = e−tn(n+q−2) was not without reason. The spherical harmonic polynomials
of order n are the eigenvectors of the Laplace-Beltrami operator 4S with eigenvalue n(n+
q − 2). Therefore the functions of the form (t, x) 7→ e−tn(n+q−2)pn(x) with pn a spherical
harmonic polynomial of order n are solutions of the evolution equation

ut = −4Su. (8.26)

Let f ∈ L2(S). With (8.17) it follows that

(
Wψyf

)
(b) = (ψb, f)L2(Sq−1) =

∞∑
n=1

e−tn(n+q−2)
(
Pnf

)
(b), (8.27)

where Pn stands for the projection operator corresponding to the space of all spherical
harmonic polynomials of order n. So we could interpret the above wavelet transform as
the solution at time t and point t(b)y = b of the evolution equation (8.26) with initial
condition u(0, ·) = f(·).
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9 Irreducible representations

From now on we do pose a topological condition on G. Recall that a topological group
is a group on which a topology is defined, such that the group operations, multiplication
and inversion, are continuous. We always assume the topology to be Hausdorff. Moreover,
we always assume the group G to be a locally compact group, i.e. a topological group,
in which every group element has a compact neighborhood.

It is well-known that every locally compact group G has a Haar measure, which we
denote by µG. A Haar measure on G is a Radon measure on G which is left invariant, i.e.
µG(gE) = µG(E) for all g ∈ G and Borel sets E. It is unique op to a positive constant.

We call a representation R of a group G in a Hilbert space H irreducible if the only
closed subspaces of H which are invariant under all Rg for all g ∈ G are H and {0}. An
irreducible representation is in particular cyclic and every nonzero vector is cyclic. Indeed,
for every nonzero ψ ∈ H the set 〈Vψ〉 is a subspace which is invariant under all Rg with

g ∈ G and it is not empty, so 〈Vψ〉 = H.
The representation R is called square integrable if there exist a ψ ∈ H with ψ 6= 0

and

Cψ :=
1

(ψ, ψ)H

∫
G

∣∣(Rgψ, ψ)H
∣∣2dµG(g) <∞. (9.1)

If the group representation is unitary, irreducible and square integrable, then the func-
tional Hilbert space will always be a closed subspace of L2(G), whenever the wavelet ψ ∈ H
satisfies (9.1). This was first shown by Grossman, Morlet and Paul [GMP] in 1985. In
this report we will give a new proof of this theorem. For our proof we need an extension
of Schur’s lemma, which is presented in Appendix A. Moreover, we need a lemma which
is valid for all bounded representations. Hence, let R be a bounded representation of a
group G in a Hilbert space H. Let ψ ∈ H. First define the linear map Wψ as

Wψ = Wψ|D , (9.2)

where D = {f ∈ H | Wψf ∈ L2(G)}.
Lemma 9.1 The wavelet transform Wψ : D → L2(G) is a closed operator.

Proof:
Let f1, f2, . . . ∈ D, f ∈ H and assume fn → f in H and Wψfn → Φ, for some
Φ ∈ L2(G). Then we have to show that f ∈ D and Wψf = Φ. The group G is
locally compact, therefore it is sufficient to show that for any compact Ω ⊂ G∫

Ω

|Wψf − Φ|2 dµG = 0 ,

to conclude that Wψf = Φ.
Note that by boundedness of the representation∣∣(Wψf

)
(g)−

(
Wψfn

)
(g)
∣∣ = |(Rgψ, f − fn)H| ≤ ‖R‖‖ψ‖H‖f − fn‖H,
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for all g ∈ G and n ∈ N.
Now the statement follows from∫

Ω

|Wψf − Φ|2 dµG(g)

≤ 2

∫
Ω

|Wψf −Wψfn|2 dµG + 2

∫
Ω

|Φ−Wψfn|2 dµG

≤ 2µ(Ω) sup
g∈G

∣∣(Wψf
)
(g)−

(
Wψfn

)
(g)
∣∣2 + 2

∫
Ω

|Φ−Wψfn|2 dµG

≤ 2µ(Ω)‖R‖2‖ψ‖2
H‖fn − f‖2

H + ‖Φ−Wψfn‖2

for all n ∈ N. As fn → f and Wψfn → Φ it follows that Wψf = Φ on Ω.
Therefore f ∈ D and Wψf = Φ. �

The left regular representation L of G on L2(G) is defined by

Lhf(g) = f(h−1g), (9.3)

for all h ∈ G, f ∈ L2(G) and almost every g ∈ G.
We now prove a theorem by Morlet, Grossmann and Paul.

Theorem 9.2 Let U be an irreducible, unitary and square integrable representation of a
locally compact group G on a Hilbert space H. Let ψ ∈ H such that (9.1) holds. Then
Wψf ∈ L2(G) for all f ∈ H and the wavelet transform is a linear isometry (up to a
constant) from the Hilbert space H onto a closed subspace CGK of L2(G, dµ):

‖Wψf‖2
L2(G) = Cψ‖f‖2

H. (9.4)

Here, the space CGK is the functional Hilbert space with reproducing kernel

Kψ(g, g′) =
1

Cψ
(Ugψ,Ug′ψ), (9.5)

for all g, g′ ∈ G.

Proof:
The domain D of operator Wψ : D → L2(G) is by definition the set of all f ∈ H
for which Wψf ∈ L2(G). By assumption ψ ∈ D. Moreover, it follows by the
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left-invariance of dµG that the span Sψ = 〈{Ugψ | g ∈ G}〉 of the orbit of ψ, is
a subspace of D, since for any η = Uhψ, we have

∫
G

∣∣(Wψη
)
(g)
∣∣2 dµG(g) =

∫
G

|(Ugψ,Uhψ)|2 dµG(g)

=

∫
G

|(Uh−1gψ, ψ)|2 dµG(g)

=

∫
G

|(Ugψ, ψ)|2 dµG(g)

= Cψ|(ψ, ψ)|2 = Cψ|(Uhψ,Uhψ)|2 <∞.

Obviously Sψ is invariant under U and since U was assumed to be irreducible,
this space is dense in H. By Lemma 9.1 operator Wψ is closed, since a unitary
representation is bounded. So, Wψ is a closed densely defined operator and
therefore the operator W∗

ψWψ is self-adjoint, by a theorem of J. von Neumann
(see [Y, Theorem VII.3.2]).

It is obvious that(
WψUhf

)
(g) = (Ugψ,Uhf)H = (Uh−1Ugψ, f)H = (Uh−1gψ, f)H,

for all g, h ∈ G and f ∈ H. Therefore, if f ∈ D then Uhf ∈ D and WψUhf =
LhWψf . Hence WψUh = LhWψ. For the adjoint operator the same is true. If
Φ ∈ D(W∗

ψ), f ∈ D(Wψ) and h ∈ G

(LhΦ,Wψf)L2(G) = (Φ,Lh−1Wψf)L2(G) = (Φ,WψUh−1f)L2(G)

= (W∗
ψΦ,Uh−1f)H = (UhW∗

ψΦ, f)H.

So for all Φ ∈ D(W∗
ψ) we have LhΦ ∈ D(W∗

ψ) and furthermore W∗
ψLh = UhW∗

ψ.
In particular W∗

ψWψUg = UgW∗
ψWψ for all g ∈ G and D(W∗

ψWψ) is invariant
under U .
By the topological version of Schur’s lemma, Theorem A.1, it now follows that
there is a c ∈ C such that W∗

ψWψ = cI on D(W∗
ψWψ). But because W∗

ψWψ is
closed and bounded on D(W∗

ψWψ) we can conclude from the closed graph theo-
rem thatW∗

ψWψ = c I on the entire Hilbert spaceH. In particularD(Wψ) = H.
From ‖Wψψ‖2 = Cψ‖ψ‖2 it follows that c = Cψ. �
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10 A representation of a semi-direct product SoT on

L2(S)

In this section we will work out the wavelet construction for the special case H = L2(S, µS)
with S some locally compact abelian group. Here µS is a Haar measure. Given a locally
compact group T we will define a natural unitary representation (not necessarily irre-
ducible) of the semi-direct product S o T on L2(S). From this unitary representation a
wavelet transform and a corresponding functional Hilbert space can be constructed for a
suitable choice of ψ ∈ L2(S).

10.1 Introduction

We first recall the notion of the semi-direct product of two groups. We also mention some
elementary topics from harmonic analysis.

Definition 10.1 Let S and T be groups and let τ : T → Aut(S) be a group homomorphism.
The semi-direct product S oτ T is defined to be the group with underlying set S × T
and group operation

(s, t)(s′, t′) = (sτ(t)s′, tt′), (10.1)

for all (s, t), (s′, t′) ∈ S × T .

From now on we only consider a group G which is a semidirect product G = (S,+) o
(T, ·) for some locally compact group T , a locally compact abelian group S and a group
homomorphism τ : T → Aut(S) such that

(s, t) 7→ τ(t)s (10.2)

is a continuous map from S o T onto S. Since S and T are locally compact, G is also
locally compact. Note that S̃ = {(s, e2) ∈ G | s ∈ S} and T̃ = {(e1, t) ∈ G | t ∈ T} are
closed subgroups of G.

Let µT , µS, µG be Haar measures of resp. T, S,G. There exists a relation which relates
these Haar measures. To this end, we need the notion of modular function.

Definition 10.2 Let H be a locally compact group and µ a Haar measure on H. Then for
each h ∈ H

µh(E) = µ(Eh), E ∈ Bor (H), (10.3)

defines a Haar measure, where Bor (H) is the set of Borel sets. Because all Haar measures
are equal up to a constant, there exists for all h ∈ H a ∆H(h) > 0 such that

µh = ∆H(h)µ. (10.4)

The function ∆H : h 7→ ∆H(h) on H is called the modular function. The modular
function is a continuous homomorphism from H into (R+, ·).
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Now T̃ = {(e, t) ∈ G | t ∈ T} is subgroup of G and it has a Haar measure µT̃ corresponding
to µT . Starting from µS, µT , the Haar measure µG can be chosen such that∫

G

f(g) dµG(g) =

∫
S

{∫
T

f(s, t)ρ−1(t) dµT (t)

}
dµS(s), (10.5)

for all f ∈ L1(G). Furthermore,∫
S

f(τ(t)−1s) dµS(s) = ρ(t)

∫
S

f(s) dµS(s), (10.6)

for all t ∈ T and f ∈ L1(S). Here

ρ(t) =
∆T̃ (e, t)

∆G(e, t)
, (10.7)

for all t ∈ T . It follows that ρ is continuous and strictly positive. For further details, we
refer to [RS, (8.1.12) and (8.1.10)] .

In the case S = Rn we simply get ρ(t) = | det τ(t)|, which can easily be proved by the
transform of variables formula.

We define in a natural way a representation of the semi-direct product SoT in L2(S).
Define U : G→ B(L2(S)) : (s, t) 7→ U(s,t) as follows

U(s,t)f = TsPtf, (10.8)

where(
Ts1f

)
(s2) = f(s2 − s1), (10.9)

for all s1 ∈ S and almost all s2 ∈ S, and(
Ptf
)
(s) = ρ−

1
2 (t)f(τ(t)−1s), (10.10)

for all t ∈ T and almost all s ∈ S.
Note that Ptf ∈ L1(S) ∩ L2(S) for all t ∈ T , if f ∈ L1(S) ∩ L2(S). It is easily verified

that U is a unitary representation. Moreover, we will prove that it is cyclic. In general
this representation need not to be irreducible.

10.2 The wavelet transform

We recall that, with the use of the unitary representation U , for any ψ ∈ H we now can
define the unitary map Wψ : 〈Vψ〉 → CGK as formulated in Theorem 7.1. In this section
present another description of the wavelet transform, making use of Fourier transform
for abelian groups. Let f ∈ L2(S) and Ŝ be the dual group of S. Then Ŝ exists of all
continuous homomorphisms of S into the circle group. The define the Fourier transform
as (

Ff
)
(γ) =

∫
S

f(s)〈s, γ〉dµS(s), (10.11)
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for all γ ∈ Ŝ and f ∈ L1(S) ∩ L2(S), where 〈·, ·〉 stands for the dual pairing, 〈s, γ〉 = γ(s)
for all s ∈ S and γ ∈ Ŝ. This defines, after extension, a unitary map from L2(S) onto
L2(Ŝ, dµŜ(γ)) where the left Haar measure µŜ(γ) related to µS. The inversion is given by(

F−1F
)
(s) =

∫
Ŝ

F (γ)〈s, γ〉dµŜ(γ), (10.12)

for all F ∈ L1(Ŝ) ∩ L2(Ŝ). For a detailed discussion of the Fourier transform on locally
compact abelian groups, see for example [Fo].

Lemma 10.3 Let ψ ∈ L1(S) ∩ L2(S). Then,
(
Wψf

)
(·, t) ∈ L2(S) for all f ∈ L2(S) and

t ∈ T .

Proof:
Let f ∈ L2(S) and t ∈ T . Then

(TsPtψ, f)L2(S) =

∫
S

(Ptψ)(s′ − s)f(s′)dµS(s
′),

for all s. So we arrive at a convolution. A convolution of a L1 function with a
L2 function is again a L2 function. See [Fo, Proposition 2.39]). �

This means that for all elements Φ of our functional Hilbert space CGK , the function
Φ(·, t) will be in L2(S) for fixed t ∈ T . Hence, the Fourier transform of Φ(·, t) is well-
defined.

Now use Fourier transform and Plancherel to get a different presentation of the wavelet
transform of an arbitrary function f ∈ L2(S)(

Wψf
)
(s, t) = (TsPtψ, f)L2(S) = (FTsPtψ,Ff)L2(Ŝ)

= (〈s, ·〉FPtψ,Ff)L2(Ŝ) =
(
F−1

[
FPtψFf

] )
(s), (10.13)

for all s ∈ S and t ∈ T . We notice that Ff ∈ L2(Ŝ) and FPtψ ∈ L∞(Ŝ) for all t ∈ T . Hence
FPtψFf ∈ L2(Ŝ) and

(
Wψf

)
(·, t) ∈ L2(S) for all t ∈ T . Moreover, since FPtψFf ∈ L1(Ŝ)

we get
(
Wψf

)
(·, t) ∈ C0(S) for all t ∈ T and f ∈ L2(S). With C0(S) we denote the space

of continuous functions on S which vanish at infinity.

Lemma 10.4 Let ψ ∈ L2(S). Suppose

µŜ

(
{γ ∈ Ŝ | ∀t ∈ T

[(
FPtψ

)
(γ) = 0

]
}
)

= 0.

Then ψ is a cyclic vector.

Proof:
Note that the measure does not depend on the representant. Let f ∈ V ⊥

ψ . Then

Wψf = 0 by the remark after Theorem 7.1. Hence, FPtψFf = 0 for all t ∈ T ,
by (10.13). Therefore, Ff = 0 by the assumption. �
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Corollary 10.5 Let ψ ∈ L2(S). If Fψ 6= 0 a.e., then ψ is a cyclic vector. Moreover, if S
is metrizable then the representation U is cyclic.

Proof:
The first statement follows immediately from Lemma 10.4.
If the group S is metrizable, then Ŝ is σ-compact by [RS, Thm. 4.2.7]. There-
fore, there exists a ψ ∈ L2(S) such that Fψ > 0, by the σ-compactness of Ŝ.
The conclusion now follows from the first statement. �

10.3 Alternative description of CSoT
K for admissible wavelets

In this section we will derive an integral expression for the functional Hilbert space CSoT
K

for a special kind of wavelets. These wavelets will be called admissible.

Definition 10.6 Let ψ ∈ L1(S) ∩ L2(S). Define Mψ : Ŝ → [0,∞) ∪ {∞} as

Mψ(γ) =

∫
T

∣∣(FPtψ)(γ)∣∣2
ρ(t)

dµT (t). (10.14)

We note that FPtψ ∈ C0(Ŝ) for all t ∈ T , so Mψ can be defined pointwise.

Definition 10.7 We call ψ ∈ L1(S) ∩ L2(S) an admissible wavelet iff

0 < Mψ <∞ a.e.

Theorem 10.8 Assume that T is compact and let ψ ∈ L1(S)∩L2(S) be admissible. Then
Mψ ∈ L1(Ŝ).

Proof:
For all t ∈ T the operator FPt is unitary from L2(S) onto L2(Ŝ) we get∫

Ŝ

|FPtψ|2

ρ(t)
(γ)dµŜ(γ) =

∫
Ŝ

|FPtψ|2 (γ)dµŜ(γ) = ‖ψ‖2
L2(S),

for all t ∈ T . Hence,

∫
Ŝ

∫
T

|FPtψ|2

ρ(t)
(γ) dµT (t)dµŜ(γ) =

∫
T

‖ψ‖2
L2(S)dµT (t) = |T |‖ψ‖2

L2(S),

by changing the order of integration. �

In this section we will assume that ψ ∈ L1(S) ∩ L2(S) an admissible wavelet. All the
admissible wavelets are cyclic, so lead to a unitary map from the entire space L2(S) onto
CSoT
K by Theorem 7.1. This is shown in the following lemma.
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Lemma 10.9 Every admissible wavelet is a cyclic wavelet, i.e. 〈Vψ〉 = L2(S).

Proof:
If f ∈ L2(S), then with (10.13) we get

f ∈ 〈Vψ〉⊥ ⇔
(
∀t ∈ T

[
|FPtψFf |2 = 0 a.e. on S

])
. (10.15)

Let f ∈ 〈Vψ〉⊥. Then

Mψ|Ff |2 =

∫
T

∣∣FPtψFf ∣∣2
ρ(t)

dµT (t) = 0 a.e. on Ŝ.

Because ψ is an admissible wavelet, the function Mψ > 0 a.e.. Hence |Ff |2 = 0
a.e. and therefore f = 0. �

Using the function Mψ we can also give an expression for W−1
ψ .

Lemma 10.10 Let ψ ∈ L1(S) ∩ L2(S) be an admissible wavelet. Let f ∈ L2(S). Then

f = W−1
ψ Φ = F−1

(∫
T

F [Φ(·, t)]FPtψ M−1
ψ ρ−1(t) dµT (t)

)
, (10.16)

where Φ = Wψf ∈ CSoT
K

Proof:
We recall that 0 < Mψ < ∞ a.e. on Ŝ, hence also 0 < M

− 1
2

ψ < ∞ a.e. on Ŝ.
The lemma now easily follows from (10.13) since

F−1
(∫

T

F [Φ(·, t)]FPtψ M−1
ψ ρ−1(t) dµT (t)

)
= F−1

(
M−1

ψ

∫
T

Ff |FPtψ|2ρ−1(t) dµT (t)
)

= F−1
(
M−1

ψ MψFf
)

= f. �

We are now able to give an alternative description of the norm of CSoT
K using (10.13)

and the previous lemma.

Theorem 10.11 If Φ ∈ CSoT
K then M

− 1
2

ψ F [Φ(·, t)] ∈ L2(Ŝ) for almost every t ∈ T . More-
over,

‖Φ‖2
CSoT
K

=

∫
Ŝ

∫
T

∣∣F [Φ(·, t)](γ)
∣∣2 M−1

ψ (γ)ρ−1(t) dµT (t)dµŜ(γ). (10.17)

67



Proof:
Let Φ ∈ CSoT

K . Then there exists a function f ∈ L2(S) such that Wψf = Φ.

(Φ,Φ)2
CSoT
K

= (f,W−1
ψ Φ)L2(S) = (Ff,FW−1

ψ Φ)L2(S)

=

∫
Ŝ

Ff(γ)

∫
T

F [Φ(·, t)](γ)
(
FPtψ

)
(γ) M−1

ψ (γ)ρ−1(t) dµT (t)dµŜ(γ)

=

∫
Ŝ

∫
T

F [Φ(·, t)](γ)Ff(γ)
(
FPtψ

)
(γ) M−1

ψ (γ)ρ−1(t) dµT (t)dµŜ(γ)

=

∫
Ŝ

∫
T

F [Φ(·, t)](γ)F [Φ(·, t)](γ) M−1
ψ (γ)ρ−1(t) dµT (t)dµŜ(γ)

Therefore,∫
Ŝ

∫
T

∣∣F [Φ(·, t)](γ)
∣∣2 M−1

ψ ρ−1(t) dµT (t)dµŜ(γ) = ‖Φ‖2
CSoT
K

.

The integrand is positive, so by changing the order of integration we find in
particular∫

Ŝ

|MψF [Φ(·, t)]|2 dµŜ(γ) <∞,

for almost all t ∈ T . Therefore M
− 1

2
ψ F [Φ(·, t)] ∈ L2(Ŝ) for almost all t ∈ T . �

Because of Lemma 10.11 and (10.5) we can define the linear operator TMψ
: CSoT

K →
L2(S o T ) by(

TMψ
Φ
)
(s, t) =

(
F−1[M

− 1
2

ψ F [Φ(·, t)]]
)

(s), (10.18)

for almost all (s, t) ∈ S o T .
We summarize the previous in the following theorem.

Theorem 10.12 Let ψ ∈ L1(S) ∩ L2(S) be an admissible wavelet. Then the wavelet
transform Wψ defined by(

Wψf
)
(s, t) = (TsPtψ, f)L2(S), f ∈ L2(S), (s, t) ∈ S o T, (10.19)

is a unitary map from L2(S) onto CSoT
K . Here, CSoT

K is the functional Hilbert space with
reproducing kernel

K(g, h) = (Ugψ,Uhψ)L2(S) = (Uh−1gψ, ψ)L2(S), (10.20)

for all g, h ∈ S o T . The inner product on CSoT
K can be written as

(Φ,Ψ)CSoT
K

= (TMψ
Φ, TMψ

Ψ)L2(SoT ), (10.21)

for all Φ,Ψ ∈ CSoT
K .
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Corollary 10.13 If Mψ = 1 on Ŝ, then CSoT
K is a closed subspace of L2(S o T ).

By Lemma 10.11, our functional Hilbert space is a closed subspace of

H(S, µS)⊗ L2(T, ρ
−1µT ), (10.22)

where

H(S, µS) = {f ∈ L2(S, µS) | M
− 1

2
ψ Ff ∈ L2(Ŝ)}. (10.23)

The inner product on H(S, µS) is defined by

(f, g)H(S,µs) = (M
− 1

2
ψ Ff,M− 1

2
ψ Fg)L2(Ŝ) (10.24)

We recall that H(S, µS) is a vector subspace of L2(S), because of Lemma 10.3. Hence we
always arrive at a kind of Sobolev space on S. Now denote the inner product on H(S, µS)⊗
L2(T, ρ

−1µT ) by (·, ·)⊗. It follows from Lemma 10.11 that (·, ·)⊗|CSoT
K

= (·, ·)CSoT
K

.

Theorem 10.14 CSoT
K is a closed subspace of H(S, µS) ⊗ L2(T, ρ

−1µT ). The operator
Φ 7→ [g 7→ (K(·, g),Φ)⊗] is the projection operator from H(S, µS) ⊗ L2(T, ρ

−1µT ) onto
CSoT
K .

Proof:
It is obvious that CSoT

K is a closed subspace of H(S, µS) ⊗ L2(T, ρ
−1µT ). Let

Φ ∈ H(S, µS)⊗ L2(T, ρ
−1µT ). Then it can be written as

Φ = Φ1 + Φ2,

with Φ1 ∈ CSoT
K and Φ2 ∈ (CSoT

K )⊥. Then for all g ∈ S o T

(K(·, g),Φ)⊗ = (K(·, g),Φ1)⊗ + (K(·, g),Φ2)⊗ = Φ1(g)

Therefore Φ is mapped to Φ1. �
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11 L2(R2) and the Euclidean motion group

11.1 The wavelet transform

We now will work the previous section out in detail for a more explicit example. The circle
group T is defined by the set

T = {z | z ∈ C |z| = 1}, (11.25)

with complex multiplication. The group T has the following group homomorphism τ : T→
Aut(R2)

τ : z 7→ Rz, (11.26)

with

Rz =

(
cos θ − sin θ
sin θ cos θ

)
, θ = arg z. (11.27)

Using this automorphism we can define the semi-direct product R2oT. The group product
of R2 o T is given by

(x, z1)(y, z2) = (x+Rz1y, z1z2). (11.28)

for all (x, z1), (y, z2) ∈ R2oT. The group R2oT is called the Euclidean motion group.
We normalize the Haar measure on R2 such that [0, 1]2 has measure 1

2π
. We normalize

the Haar measure on T such that T has total measure one. Then we normalize the Haar
measure of R2 o T such that it is equal to the product measure µR2 × µT. Since T is
compact, ρ(z) = 1 for all z ∈ T.

The Euclidean motion groups has the unitary representation U : R2 oT→ B(L2(R2) :
(y, z) 7→ U(y,z) where U(y,z) ∈ B(L2(R2) is defined by(

U(y,z)f
)
(x) =

(
TyPzf

)
(x) = f(R−1

z (x− y))), (11.29)

with (
Tyf
)
(x) = f(x− y),

(
Pzf

)
(x) = f(R−1

z x), (11.30)

for all y ∈ R2, z ∈ T, f ∈ L2(R2) and almost every x ∈ R2. By Corollary 10.5, the
representation is cyclic. But it is not irreducible.

Theorem 11.15 The representation U is reducible

Proof:
Let S be the Hilbert subspace of L2(R2) consisting of all f ∈ L2(R) such that(
Ff
)
(ω) = 0 for almost all ω ∈ R2/B0,1. Let f ∈ S and (y, z) ∈ R2 oT. Then(
FU(y,z)f

)
(ω) = ei(ω,y)

(
Ff
)
(R−1

z y) = 0

for almost all ω ∈ R2/B0,1. Hence U(y,z)f ∈ S for all (y, z) ∈ R2 o T and S is
an invariant subspace of L2(R). �
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We consider the wavelet transform using the representation U , as above, of the group
G = R2oT in the Hilbert space L2(R2). The wavelet transform Wψ : L2(R2) → CR2oT

K for
cyclic wavelets is defined by(

Wψf
)
(y, z) =

(
TyPzψ, f

)
L2(R2)

, (11.31)

for all f ∈ L2(R2) and (y, z) ∈ R2 o T.

11.2 Admissible wavelets

First we mention the method involving admissible wavelets. We recall that ψ ∈ L1(R2) ∩
L2(R2) is called admissible if

0 < Mψ <∞ a.e.

where

Mψ(ω) =

∫
T

∣∣(FPzψ)(ω)
∣∣2 dµT(z). (11.32)

We can reformulate Theorem 10.12 as follows.

Theorem 11.16 Let ψ ∈ L1(R2) ∩ L2(R2) be an admissible wavelet. Then Wψ defined by(
Wψf

)
(x, z) = (TxPzψ, f)L2(R2), f ∈ L2(R2), (x, z) ∈ R2 o T, (11.33)

is a unitary map from L2(R2) onto CR2oT
K . Here, CR2oT

K is the functional Hilbert space with
reproducing kernel

K(g, h) = (Ugψ,Uhψ)L2(R2), (11.34)

for all g, h ∈ R2 o T. The inner product on CR2oT
K can be written as

(Φ,Ψ)CR2oT
K

= (TMψ
Φ, TMψ

Ψ)L2(R2oT), (11.35)

for all Φ,Ψ ∈ CR2oT
K .

We now analyse the function Mψ, defined in (11.32) a little further. First we mention
that T is a compact group, so Mψ ∈ L1(R2) by Theorem 10.8. Define for m ∈ Z the
function ηm : [0, 2π) → C by ηm(φ) = eimφ. Because L2(R2) w L2(S

1) ⊗ L2((0,∞), r dr),
we can write all ψ ∈ L2(R2) in the following way

ψ(r cosφ, r sinφ) =
∞∑

m=−∞

ηm(φ)⊗ χm(r), (11.36)
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for almost all r ∈ (0,∞) and φ ∈ [0, 2π), where χm ∈ L2((0,∞), r dr) for all m ∈ Z. For
the Fourier transform we can write in polar coordinates(

F [ηm ⊗ χm]
)
(ρ, φω) = imeimϕ

∫ ∞

0

rχm(r)Jm(ρr) dr (11.37)

for all ρ ∈ [0,∞) and ϕ ∈ [0, 2π), where Jm is the m-th order Bessel function of the first
kind. See for example [FH, Ch. II]. (The length of the interval [0, 1] is 1√

2π
.)

Now Mψ is easily calculated.

(
Pzψ

)
(r, φ) =

∞∑
m=−∞

eim(φ−arg z)χm(r), (11.38)

for all r ∈ (0,∞) and φ ∈ [0, 2π). Hence,

(
FPzψ

)
(ρ, ϕ) =

∞∑
m=−∞

imeim(ϕ−arg z)

∫ ∞

0

rχm(r)Jm(ρr)dr, (11.39)

for all ρ ∈ [0,∞) and ϕ ∈ [0, 2π). Hence Mψ is given by,

Mψ(ω) =
∞∑

m=−∞

|χ̃m(|ω|)|2, (11.40)

for all ω ∈ R2, where χ̃m defined by χ̃m(ρ) =
∫∞

0
rχm(r)Jm(ρr)dr for all ρ ∈ (0,∞) and

m ∈ Z. Thus, the above sum completely determines the inner product. Furthermore, Mψ

only depends on the radius. We have the following relation between a chosen wavelet ψ
and Mψ∫

R2

Mψ(ω) dω = ‖ψ‖2
L2
. (11.41)

This implies that M−1
ψ is unbounded. Because Mψ only depends on the radius, there exists

a function M̃ψ : (0,∞) → (0,∞) such that

Mψ(ω) = M̃ψ(|ω|), (11.42)

for almost all ω ∈ R2. Then M̃ψ ∈ L1((0,∞), r dr).
We end this subsection with the remark, that ψ 7→Mψ is not injective; several different

wavelets ψ can lead to the same Mψ. If ψ1 and ψ2 are different admissible wavelets with
the property Mψ1 = Mψ2 , then their corresponding functional Hilbert space are different
closed subspaces of the same Hilbert space H(R2)⊗ L2(T) as defined in (10.22).
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11.3 Generalized admissible wavelets

In this section we introduce the notion of a generalized wavelet transform. The aim is to
use a Gelfand triple

H1 ↪→ L2(R2) ↪→ H−1, (11.43)

to define a transform WΨ : H1 → CR2oT by(
WΨφ

)
(x, z) = 〈Ψ,U(x,z)−1φ〉, (11.44)

for all φ ∈ H1, (x, z) ∈ R2 o T and a special choice of Ψ ∈ H−1. For a suitable choice of
the Gelfand triple and the generalized wavelet Ψ ∈ H−1, we will prove that W defines an
isometry from H1, but now equipped with the L2-norm, onto L2(R2 o T). Therefore, it
has a closure W which is an isometry from L2(R2) onto L2(R2 o T).

Consider the Gelfand triples H2k,2(R2) ↪→ L2(R2) ↪→ H−2k,2(R2), as introduced in
appendix B. Since H2k,2(R2) ⊂ L2(R2) we can restrict the representation U to H2k,2.
Because of the special structure of H2k,2(R2), this representation is again unitary.

Lemma 11.17 The operators Ug and Dk commute for all k ∈ N and g ∈ R2 o T

Proof:
Since the laplace operator 4 commutes with translations and rotations, the
lemma follows. �

Corollary 11.18 The restriction g 7→ Ug |
H2k,2(R2)

defines a unitary representation on

H2k,2(R2), which will also be denoted by U

Proof:
Let φ ∈ H2k,2(R2) and g ∈ R2 o T. Then

‖Ugφ‖H2k,2(R2) = ‖DkUgφ‖L2(R2) = ‖UgDkφ‖L2(R2) = ‖Dkφ‖L2(R2) = ‖ φ‖H2k,2(R2),

which proves the statement. �

Define T̃x, P̃z ∈ B(H−2k,2(R2) by

〈T̃xΨ, φ〉H−2k,2(R2) = 〈Ψ, T−xφ〉H−2k,2(R2) (11.45)

and

〈P̃zΨ, φ〉H−2k,2(R2) = 〈Ψ,Pz−1φ〉H−2k,2(R2) (11.46)

for all Ψ ∈ H−2k,2(R2), φ ∈ H2k,2(R2), z ∈ T and x ∈ R2. Moreover define the representa-
tion Ũ : R2 o T→ B(H−2k,2(R2)) : g 7→ Ũg by

〈ŨgF, φ〉 = 〈F,Ug−1φ〉, (11.47)
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for all F ∈ H−2k,2(R2), φ ∈ H2k,2(R2) and g ∈ R2 o T. It follows from the fact that
H−2k,2(R2) is the anti-dual (and not the dual) of H2k,2(R2) that this indeed is a repre-
sentation. Moreover, this representation is again unitary. With this representation and a
wavelet Ψ ∈ H−2k,2(R2) we can define a wavelet transform on H−2k,2(R2). But we restrict
the set of allowed wavelets.

Definition 11.19 Let k ∈ N and Ψ ∈ H−2k,2(R2). Then Ψ is called an admissible
generalized wavelet if there exists a measurable complex-valued function ψ such that

1. ω 7→ ψ(ω)
1+|ω|2k is contained in L1(R2) ∩ L2(R2).

2.
∫

T

∣∣ψ(R−1
z ω)

∣∣2dµT(z) = 1 for almost all ω ∈ R2.

3. 〈Ψ, φ〉 =
∫

R2 ψ(ω)
(
Fφ
)
(ω)dω, for all φ ∈ H2k,2(R2).

For a admissible generalized wavelet define the wavelet transform WΨ : H−2k,2(R2) →
CR2oT
K by(

WΨF
)
(y, z) = (TyPzΨ, F )H−2k,2(R2), (11.48)

for all F ∈ H−2k,2 and y ∈ R2.

Theorem 11.20 The map DkWΨDk : L2(R2) → L2(R2 o T) defined by(
DkWΨDkf

)
(x, z) = Dk

((
WΨDkf

)
(·, z)

)
(x), (11.49)

for all (x, z) ∈ R2 o T and f ∈ L2(R2), is well-defined and an isometry.

Proof:
Rewrite

(
WΨDkf

)
(y, z) as(

WΨDkf
)
(x, z) = (Ũ(x,z)Ψ, Dkf)H−2k,2(R2) = (D−1

k Ũ(x,z)Ψ, f)L2(R2)

= (U(x,z)D
−1
k Ψ, f)L2(R2) = F−1

(
FPzD−1

k ΨFf
)
(x)

= F−1
(
PzFD−1

k ΨFf
)
(x)

for all (x, z) ∈ R2 o T. Since

(FD−1
k Ψ, f)L2(R2) = (D−1

k Ψ,F∗f)L2(R2) = 〈Ψ, D−1
k F

∗f〉 =

∫
R2

ψ(ω)

1 + |ω|2k
f(ω) dω,

for all f ∈ L2(R2), it follows that
(
FD−1

k Ψ
)
(ω) = ψ(ω)

1+|ω|2k for almost all ω ∈ R2.

Since ω 7→ ψ(ω)
1+|ω|2k ∈ L1(R2) we obtain that WΨDkf(·, z) ∈ L2(R2) for all
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f ∈ L2(R2) and z ∈ T. Moreover,∫
T

∫
R2

∣∣(1 + |ω|2k)
(
F
(
WΨDkf

)
(·, z)

)
(ω)
∣∣2 dωdµT(z)

=

∫
R2

∫
T
|Pzψ(ω)Ff(ω)|2 dµT(z)dω

=

∫
R2

|Ff(ω)|2 dω = ‖f‖2
L2(R2),

and thereforeWΨDkf(·, z) ∈ H2k,2(R2) for almost all z ∈ T and ‖DkWΨDkf‖L2(R2oT) =
‖f‖L2(R2). �

Note that in the proof it is crucial that Dk and the representations U and Ũ commute. We
call the transform DkWΨDk a generalized wavelet transform.

Theorem 11.21 The unitary transform DkWΨDk as formulated in Theorem 11.20 is the
closure of the operator W : D(Dk) → L2(R2 o T) defined by(

Wf
)
(g) = 〈ŨgΨ, f〉 = 〈Ψ,Ug−1f〉, (11.50)

for all f ∈ D(Dk).

Proof:
Let g = (x, z) ∈ R2 o T. Then (x, z)−1 = (R−1

z x, z). Let f ∈ D(Dk) then,

〈Ψ,Ug−1f〉 =

∫
R2

ψ(ω)ei(ω,Rzx)2Ff(R−1
z ω) dω

=

∫
R2

ψ(R−1
z ω)ei(ω,x)2Ff(ω) dω

= Dk

∫
R2

ψ(R−1
z ω)

1 + |ω|2k
ei(ω,x)2Ff(ω) dω = F−1

(
PzFD−1

k ΨFf
)
(x),

which proves the statement �

11.4 An example of an admissible generalized wavelet

As an example of an admissible generalized wavelet we analyze the function defined by the
pointwise limit

ψ(x1, x2) =
∞∑
m=0

zm√
m!

e−
1
2
|z|2 , (11.51)
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where z = x1 + ix2, which is based on the article [KHV]. Although the sum does converge
uniformly on compacta, this function is not contained in L2(R2). But we will prove that
the function on H4,2(R2) defined by

Tψφ = lim
N→∞

∫
R2

N∑
n=0

ψm(x)φ(x) dx, (11.52)

where ψm(x1, x2) = (x1+ix2)m√
m!

e−
1
2
(x2

1+x2
2), is a continuous linear functional and hence it has

a representant Ψ in H−4,2(R2). Moreover, it turns out to be an admissible generalized
wavelet. To prove this statement, we need some asymptotics.

The entire function defined by

F (r) =
∞∑
m=0

rm√
m!

e−r
2/2, (11.53)

for all r ∈ R, has the asymptotic expansion,

F (r) = (8π)1/4
√
r{1− 1

16r2
+O(

1

r4
)}, r →∞. (11.54)

See [O, 2.Ch. 9, §8, pp. 307-309]. From this expansion and the continuity of ψ it easily
follows that there exists a constant A such that

|ψ(x)| < A(1 +
√
|x|), (11.55)

for all x ∈ R2. Moreover, since F (r) converges uniformly on every finite interval, we also
find that ψ converges uniformly on compacta.

It is clear that the functions ψm are eigenvectors of the Fourier transform with eigen-
values (−i)m for all m ∈ N ∪ {0}. Hence, we can rewrite (11.52) into,

Tψφ = lim
N→∞

∫
R2

N∑
m=0

ψm(x)φ(x) dx = lim
N→∞

∫
R2

N∑
m=0

(−i)mψm(ω)Fφ(ω)) dx

= lim
N→∞

∫
R2

N∑
m=0

ψm(Ri−1ω)√
1 + |ω|4

√
1 + |ω|4Fφ(ω) dx, (11.56)

for all φ ∈ H4,2. It is now obvious that ω 7→
∑N

m=0
ψm(R−1

i ω)√
1+|ω|4

converges in the mean to

ω 7→ ψ(R−1
i ω)√

1+|ω|4
in L2(R2). Hence,

Tψφ =

∫
R2

ψ(R−iω)Fφ(ω) dω, (11.57)
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for all φ ∈ H4,2(R2) and Tψ has a representant Ψ ∈ H−4,2(R2). We now only need to verify
the integral condition in definition 11.19.∫

T

∣∣ψ(R−1
iz ω)

∣∣2dµT(z) =

∫
T

∣∣ψ(R−1
z ω)

∣∣2dµT(z)

=
1

2π

∞∑
m=0

∞∑
m′=0

∫ 2π

0

ei(m′−m)θ z
mzm

′

√
m!m′!

e−|z|
2

dθ

=
∞∑
m=0

|z|2m

m!
e−|z|

2

= 1, (11.58)

for all ω ∈ R2. Hence, Ψ related to Tψ is an admissible generalized wavelet and we can
apply Theorem 11.20 and its Corollary 11.21.
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12 A transform by Sherman revisited

12.1 Preliminaries

Let q ≥ 2. In this section we consider the space L2(S
q−1) with inner product

(f, g)q =
1

σq−1

∫
Sq−1

f(ξ)g(ξ) dσq−1(ξ), (12.59)

for all f, g ∈ L2(S
q−1).

Denote the space of all harmonic polynomials of degree n on Rq by HarmPol(Rq, n),
the space of all homogeneous polynomials of degree N by HomPol(Rq, n) and the space of
all harmonic homogeneous polynomials of degree n on Rq by HarmHomPol(Rq, n) for all
n ∈ N0. Let Hq,n be the subspace of L2(S

q−1) consisting of all p ∈ HarmHomPol(Rq, n)
restricted to Sq−1, named spherical harmonics of degree n, for all n ∈ N0. It is well-
known that L2(S

q−1) ' ⊕∞
n=0Hq,n. The spaces Hq,n are all functional Hilbert spaces. The

corresponding reproducing kernels are denoted by Qq
n and can be expressed in suitable

normalized Gegenbauer polynomials as follows

Qq
n(s, s

′) =
q + 2n− 2

n− 2
Cq/2−1
n ((s, s′)), (12.60)

for all s, s′ ∈ Sq−1. For a polynomial p ∈ Pol(Rq) we define the operator p(D) : Pol(Rq) →
Pol(Rq) by p( ∂

∂x1
, . . . , ∂

∂xn
). For each spherical harmonic pn of degree n there exists a

homogeneous harmonic polynomial p̃n such that p̃n|Sq−1 = pn. Moreover,

(pn, rn)q =
Γ(1

2
q)

2nΓ(n+ 1
2
q)

(
p̃n(D)r̃n

)
(0), (12.61)

for all pn, rn ∈ Hq,n.
The space Pol(Sq−1, n) =

∑n
k=0Hq,n has the reproducing kernel

Rq
n(s, s

′) =
n∑
k=0

Qq
k(s, s

′), (12.62)

for all s, s′ ∈ Sq−1. This space consist of all harmonic polynomials on Rq of degree ≤ n
restricted to Sq−1.

12.2 The transform by Sherman

In [S], Sherman introduces a transform on L2(S
q−1) which he regards as a Fourier transform

on a sphere. For the inverse he provides a formula where a singular integral is involved.
Our aim is to approach the same transform from the theory developed in this report so far.
As a result we will show that the singularity in the formule for the inverse can be avoided.
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Moreover, an alternative transform is considered, for which a simple Parseval identity is
valid. Note that in [S] no such identity is present.

Let a ∈ Sq−1 and define B = {b ∈ Sq−1 |(a, b) = 0}. Let n ∈ N0. Construct the set Vn
by

Vn = {en,b : s 7→ (a− ib, s)n | b ∈ B}. (12.63)

The elements en,b are spherical harmonics of order n for all n ∈ N and b ∈ B. In Theorem
12.23 we will prove that Vn is total in Hq,n. Define the function of positive type Kn by

Kn(b, b
′) = (en,b, en,b′)q =

Γ(1
2
q)

2nΓ(n+ 1
2
q)

(
ẽn,b(D)ẽn,b′

)
(0)

= . . . =
Γ(1

2
q)n!

2nΓ(n+ 1
2
q)

(1 + (b, b′))n, (12.64)

for all b, b′ ∈ B. By Theorem 2.3, the frame transform Wn : Hq,n → CBKn defined by(
Wnf

)
(b) = (en,b, f)q, (12.65)

for all f ∈ Hq,n, b ∈ B is unitary. Obviously, Wn maps spherical harmonics of order n onto
polynomial onB with degree at most n. Moreover, since dim(Hq,n) = dim(HomPol(Rq−1), n)+
dim(HomPol(Rq−1, n − 1)) = dim(Pol(Sq−2, n)), it follows that the space CBKn consists of
all polynomials on B with degree at most n. Note that CBKn coincides with Pol(Sq−2, n) as a
vector space, but the norm on the both spaces is different (although topological equivalent).
They are related by a transform.

Define the constants αn,k,q by

αn,k,q =

∫ 1

−1

(1 + t)nQ
q−3
2

k (t)(1− t2)q/2−2 dt, (12.66)

for all 0 ≤ k ≤ n. Then, the linear map Φ : CBKn → Pol(B, n) defined by

(
Φf
)
(b) =

( n∑
k=0

α−1
n,k,qQ

q−3
2

k (b, ·), f
)
Pol(B,n)

, (12.67)

for all f ∈ CBKn maps the reproducing kernel Kn onto Rn. Therefore the inner product on
CBKn is given by

(f, g)CBKn
= (Φf, g)Pol(B,n), (12.68)

for all f, g ∈ CBKn .
Define ẽn,s ∈ Pol(B, n) by ẽn,s(b) = en,b(s), for all n ∈ N0, b ∈ B and S ∈ Sq−1. As a

result we obtain the following identities,

fn(s) = (Qq/2−1
n (s, ·), fn)Hq,n = (ẽn,s,Wnfn)CBKn

= (Φ(ẽn,s),Wnfn)Pol(B,n), (12.69)
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for all fn ∈ Hq,n, s ∈ Sq−1 and n ∈ N0. Moreover,

Qq/2−1
n (s, s′) = (Φ(ẽn,s), ẽn,s′)Pol(B,n), (12.70)

for all s, s′ ∈ Sq−1, f ∈ Hq,n and n ∈ N0. The second identity is to be regarded as the
analogon of key Lemma 3.9 as formulated in the article by Sherman. The singularity of
the function e∗n,b introduced by Sherman, does not occur in Φ(ẽn,s).

Finally, define the reproducing kernel K by

K(b, n, b′, n′) = δnn′Kn(b, b
′), (12.71)

for all b, b′ ∈ B and n, n′ ∈ N. Then the frame transform W : H → CB×N
K defined by(

Wf
)
(b, n) =

(
Wnfn

)
(b) where f =

∑∞
n=0 fn and fk ∈ Hk for all k ∈ N, is unitary.

Summarizing we get the following relations(
Wf

)
(b, n) =

1

σq−1

∫
Sq−1

en,b(s)f(s) dσq−1(s), (12.72)

for all f ∈ L2(S
q−1), b ∈ B and n ∈ N0. Moreover,

f(s) = l.i.m.N→∞
1

σ2
q−2

N∑
n=0

∫
B

(
Φẽn,s

)
(b)
(
Wf

)
(b, n) dσq−2(b) (12.73)

for f ∈ L2(S
q−1) and almost all s ∈ Sq−1. Moreover, we also find the Parseval identity

‖f‖2
L2(Sq−1) =

∞∑
n=0

‖Wnfn‖2
CBKn

(12.74)

for all f =
∑∞

n=0 fn in L2(S
q−1. Note that in [S] such a result is not mentioned. But as

long as CBKn is not characterized in a more tangible way, this identity remains unpractical.

12.3 An application of Theorem 9.2

In this section we consider the transform in an abstract fashion. It provides a nice illus-
tration of Theorem 9.2, by Grossmann, Morlet and Paul.

For the sake of simplicity let a = (1, 0, . . . , 0). Define Ja,q = {A ∈ SO(q) | Aa =

a} =

{(
1 0

0 Ã

)
| Ã ∈ SO(q − 1)

}
. Then Ja,q can be identified with SO(q − 1) and

Sq−1 ' SO(q)/Ja,q.

The representation U q : SO(q) → B(L2(S
q−1)) : A 7→ U (q)

A defined by
(
U qAf

)
(x) =

f(A−1x) for all f ∈ L2(S
q−1), for all A ∈ SO(q) and almost all x ∈ Sq−1, is unitary.

Moreover, the restriction of U onto Hq,n is irreducible for all n ∈ N. Note that(
U qAen,b

)
(s) = en,b(A

−1s) = (a− ib, A−1s)n = (a− iAb, s)n = en,Ab(s), (12.75)
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for all s ∈ Sq−1, b ∈ B, n ∈ N0 and A ∈ Ja,q.
Fix n ∈ N. The subrepresentation U q|Ja,q is no longer irreducible, but Hq,n decomposes

in Hq,n = ⊕n
j=1Hj

q,n such that U q|Ja,q is irreducible if restricted to Hj
q,n. Denote Pjq,n as the

projection operator from Hq,n into Hj
q,n. For a detailed discussion of this space Hj

q,n see
[Mu, §11].

Now fix b ∈ B = {(0, ξq−1) | ξq−1 ∈ Sq−2}. Apparently, the representation U q|Ja,q is
cyclic with respect to Hq,n, since the span of

Ṽn = {U qAen,b | A ∈ Ja,q} = {en,Ab | A ∈ Ja,q} = {en,b′ | b′ ∈ B} = Vn, (12.76)

is dense in Hq,n and hence en,b is a cyclic vector. Note that for all A ∈ Ja,q with the
property Ab = b we have U qAen,b = en,b. These elements form a subgroup of Ja,q and will
be denoted by Ja,b,q. Note that Ja,q/Ja,b,q can be identified with Sq−2. We will replace the
index set Ja,q by Sq−2 in a moment.

Define for j = 1, . . . , n the function K̃j
n of positive type byKj

n(A,A
′) = (UAen,b,UA′en,b)HJq,n

and the wavelet transform W̃ j
n : Hj

q,n → CJa,q
K̃j
n

by(
W̃ j
nf
)
(A) = (U qAP

j
nen,b, f)Hjq,n , (12.77)

for all f ∈ Hj
n and A ∈ Ja,q, which is unitary by Theorem 2.3. Since U q|Ja,q restricted

to Hj
q,n is unitary irreducible and trivially square integrable, the functional Hilbert space

CJa,q
Kj
n

is a closed subspace of L2(Ja,q) by Theorem 9.2, (the inner products are equal up to

a constant). Note that W̃ j
nf is constant along the orbits of Ja,b,q acting on Ja,q.

As mentioned earlier we replace Ja,q by Ja,q/Ja,b,q, which we immediately identify by
Sq−2. Define the unitary wavelet transform W j

n : Hj
q,n → CSq−2

Kj
n

by(
W j
nf
)
(ξq−1) = (Pjnen,(0,ξq−1), f)Hjq,n , (12.78)

for all f ∈ Hj
n and ξq−1 ∈ Sq−2. Since W̃ j

n maps Hj
g,n unitary onto a closed subspace of

L2(Ja,q) and W̃ j
nf is constant along the orbits of Ja,b,q acting on Ja,q for all f ∈ Hj

q,n, we

obtain that the functional Hilbert space CSq−2

Kj
n

is a closed subspace of L2(S
q−2) (up to a

constant) .
An important observation now is that the map W j

n intertwines the representation
U q|Ja,q : Ja,q → B(Hj

q,n) : A 7→ U qA|Hjq,n and the representation U q−1 : SO(q − 1) →

B(CSq−1

Kj
n

) : Ã 7→ U q−1

Ã
|CSq−1

K
j
n

, i.e. WnU qA|Hjq,n = U q−1

Ã
Wn for all A =

(
1 0

0 Ã

)
and

Ã ∈ SO(q − 1). Indeed,(
W j
nU

q
A|Hjq,nf

)
(ξq−1) = (Pjnen,(0,ξq−1),U qA|Hjq,nf)Hjq,n = (U qA−1|Hjq,nP

j
nen,(0,ξq−1), f)Hjq,n

= (PjnU
q
A−1en,(0,ξq−1), f)Hjq,n = (Pjnen,A−1(0,ξq−1), f)Hjq,n

= (Pjnen,(0,Ã−1ξq−1), f)Hjq,n =
(
U q−1

Ã
Wnf

)
(ξq−1), (12.79)
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for all ξq−1 ∈ Sq−1, f ∈ Hj
q,n and for all A =

(
1 0

0 Ã

)
and Ã ∈ SO(q − 1). Since the

restriction of U q|Ja,q : Ja,q → Hj
q,n is irreducible and unitary and moreover W j

n is unitary,

the representation U q−1 : SO(q − 1) → CSq−1

Kj
n

is also irreducible and unitary. Therefore

CSq−2

Kj
n

is exactly the space Hq−1,k for some k ∈ N. Since dimHj
q,n = dimHq−1,j (see [Mu,

§11]) and all the dimensions of Hq−1,k differ for k ∈ N, it must be the case that k = j.
Summarizing, we can conclude that W j

n is a unitary map (up to a constant) from Hj
q,n

into Hq−1,j. I.e. there exist a cjq,n > 0 such that

(f, g)Hjq,n = cjq,n(W
j
nf,W

j
ng)Hq−1,j

, (12.80)

for all f, g ∈ Hj
q,n. Naturally, the numbers cjq,n are related to the coefficients αn,k,q in

(12.66).
From the transformW j

n we can built the transformWn onHq,n, and finally the transform
W on L2(S

q−1).

12.4 An approach using a special orthonormal basis

First we give a summary of the most important result in §10 and §11 of [Mu]. Note that
we use some different conventions. Let q ≥ 3 and consider the coefficient Bj

n(t) of the
expansion

(t+ is
√

1− t2)n =
n∑
j=0

Bj
n(t)C

q−3
2

j (s), (12.81)

for all s, t ∈ (−1, 1). By the classical orthogonality relations, the formula of Rodriguez and
integral representation for the Gegenbauer polynomials, one obtains

Bj
n(t) = aj,n,q(1− t2)j/2C

q+2j−3
2

n−j (t), (12.82)

for all t ∈ [−1, 1] and some constant aj,n,q. For fixed j ∈ N the functions {Bj
n(q; t) | n ≥ j}

are orthogonal in the following way∫ 1

−1

Bj
n(q; t)B

j
m(q; t)(1− t2)

q−3
2 dt = 0, (12.83)

if n 6= m. Let Ajn = i−jβn,j,qB
j
n, where βn,j,q is chosen such that∫ 1

−1

Ajn(q; t)A
j
m(q; t)(1− t2)

q−3
2 dt = δnm, (12.84)

for n,m ≥ j. The factors i−j make the function Ajn real-valued. The functions Ajn are the
building blocks for orthonormal basis for the space Hq,n. Use the following coordinates for
elements on the sphere Sq−1

ξq = (t;
√

1− t2ξq−1), (12.85)

where ξq−1 ∈ Sq−2 and t ∈ [−1, 1]. The following is the key result of §11 in [Mu].
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Theorem 12.22 If for m = 0, 1, . . . , n orthonormal bases {Ym,j | j = 1, . . . , N(q− 1,m)}
for Hq−1,m are given then

{(t;
√

1− t2ξq−1) 7→ Amn (q; t)Ym,j(ξq−1) | j = 1, 2 . . . N(q−1,m) m = 0, 1, . . . n}, (12.86)

is an orthonormal basis of Hq,n.

The set {(x, y) 7→ (x + iy)n, (x, y) 7→ (x − iy)n} is an orthonormal basis for H2,n. From
this basis we can construct by induction a basis for Hq,n for all q ≥ 3 and n ∈ N0.

Now we proceed by defining a wavelet transform on L2(S
q−1). The group SO(q − 2)

has a natural action on Sq−2 and therefore it has the natural action on Sq−1 given by

A(t;
√

1− t2ξq−1) = (t,
√

1− t2Aξq−1), (12.87)

for all A ∈ SO(q− 1), ξq−1 ∈ Sq−2 and t ∈ [−1, 1]. Let U (q) : SO(q− 1) → B(L2(S
q−1)) be

the representation induced by this action. Define U (q,n) : SO(q − 1) → Hq,n by U (q,n)
A f =

U (q)
A f , for all A ∈ SO(q − 1) and f ∈ Hq,n. Next we search for cyclic wavelets for the

representations U (q,n). Let ψn ∈ L2(S
q−1) and write

ψn =
n∑

m=0

N(q−1,m)∑
j=0

αmjA
m
n Ym,j, (12.88)

where the function Ym,j and Amn are defined as above. A useful criteria for the coefficients
αmj such that ψn is a cyclic wavelet is the following.

Theorem 12.23 Let n ∈ N. If there exists α̃m and b ∈ Sq−2 such that

αmj = α̃mYm,j(b) (12.89)

for all j = 1, 2, . . . , N(q − 1,m) and m = 0, 1 . . . , n then ψ defined by (12.88) simplifies to

ψn(t;
√

1− t2ξq−1) =
n∑

m=0

α̃mA
m
n (t)Q

q−3
2

m (b, ξq−1), (12.90)

for all (t;
√

1− t2ξq−1) ∈ Sq−1. Moreover, if α̃m 6= 0 for all m = 0, 1, . . . n then ψ is a
cyclic wavelet for U (q,n).

Proof:
First note that

ψn =
n∑

m=0

N(q−1,m)∑
j=0

αmjA
m
n Ym,j =

n∑
m=0

α̃mA
m
n

N(q−1,m)∑
j=0

Ym,j(b)Ym,j =
n∑

m=0

α̃mA
m
n Q

q−3
2

m (b, ·).
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Moreover,
(
U (q,n)
A ψn

)
(t;
√

1− t2ξq−1) = α̃mA
m
n (t)Q

q−3
2

m (Ab, ξq−1) for all (t;
√

1− t2ξq−1) ∈
Sq−1 and A ∈ SO(q − 1). Let f ∈ Hq,n and write

f =
n∑

m=0

N(q−1,m)∑
j=0

βmjA
m
n Ym,j.

Then

(U (q,n)
A ψn, f) =

n∑
m=0

N(q−1,m)∑
j=0

α̃mβmjYm,j(Ab),

for all A ∈ SO(q−2). Assume now that f ∈ {U (q,n)
A ψ | A ∈ SO(q−1)}⊥. Since

{Ym,j | j = 1, 2 . . . N(q − 1,m) m = 0, 1, . . . n} is an orthonormal basis for
Pol(Sq−2, n) and by the transitivity of the action of SO(q − 1) on Sq−2, it now
follows that α̃mβmj = 0 for all j = 0, 1, . . . , N(q − 1,m) and m = 0, 1, . . . n.
Therefore βmj = 0 for all j = 0, 1, . . . , N(q−1,m) and m = 0, 1, . . . n and hence
f = 0. �

Note that the procedure of the Section 12.3 holds for any wavelet ψ which satisfies all the
condition of Lemma 12.23. Therefore their associated transforms all isometrically (up to
a constant) map Hj

q,n onto Hq−1,n. These constants however can differ.
Lemma 12.23 proves that the set {en,b | b ∈ B} introduced by Sherman, has a dense

span in Hq,n for all n ∈ N0. Moreover, the function K of positive type ie represented by

Kn(b, b) =
n∑
k=0

|βk,n,q|−2Q
q−3
2

k (b, b′), (12.91)

for all b, b′ ∈ B. Hence we see that |βn,k,q|−2 = αn,k,q.
Next we introduce a different transform based on a cyclic wavelet which satisfies the

condition of Lemma 12.23 in a trivial way. Let n ∈ N0. Let φn,b ∈ Hn,q be defined by

φb,n(t;
√

1− t2ξq−1) =
n∑

m=0

Amn (t)Q
q−3
2

m ((b, ξq−1)), (12.92)

for all t ∈ [−1, 1], ξq−1 ∈ Sq−2 and b ∈ Sq−2. By Theorem 12.23 the set {φn,b | b ∈ Sq−2}
has dense span in Hq,n. Since

(φb,n, φb′,n)Hn,q =
n∑

m=0

Q
q−3
2

m ((b, b′)) = R(b, b′), (12.93)

for all b, b′ ∈ Sq−1 and by Theorem 2.3, it follows that the frame transform defined by(
W̃nf

)
(b) = (φb,n, f)Hn,q (12.94)
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for all b ∈ Sq−2 and f ∈ Hq,n is a unitary map from Hq,n onto Pol(Sq−2, b). Now define

φ̃n,s by φ̃n,s(b) =
(
W̃nQ

q−1
3

n,s

)
(b) = φn,b(s). Then(

W−1
n F

)
(s) = (φ̃n,s, F )Pol(Sq−2,n), (12.95)

for all s ∈ Sq−1 and F ∈ Pol(Sq−2, n).
Finally, define the functionK of positive type on Sq−2×N0 byK(b, n, b′, n′) = Kn(b, b

′)δnn′
for all n, n′ ∈ N0 and b, b′ ∈ Sq−1.

Theorem 12.24 The transform W̃ : L2(S
q−1) → CS

q−2×N0
K defined by(

W̃f
)
(b, n) = (φ̃n,b, f)L2(Sq−1) (12.96)

is unitary. The inverse is defined by

f(s) = l.i.m.N→∞

N∑
n=0

(φ̃n,s, W̃nf)Pol(Sq−2,n), (12.97)

for almost all s ∈ Sq−1 and all f ∈ L2(S
q−1) where fn is the projection of f on Hq,n for all

n ∈ N0. Moreover,

‖f‖2
L2(Sq−1) =

∞∑
n=0

‖Wnfn‖2
Pol(Sq−2,n), (12.98)

for all f ∈ L2(S
q−1), where fn is the projection of f on Hq,n.

Question: Does there exist a more tangible expression for the function φn,b?
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A Schur’s lemma

Schur’s lemma is mostly known for the special case of irreducible representations U on
finite dimensional spaces or irreducible representations of compact groups. In these cases
the proof is straightforward. The main idea is that if A has an eigen-value, then the
eigen space is invariant under Ug, which follows by the assumption UgA = AUg, and by
irreducibility of U it then follows that Eλ = Eλ = H. Nevertheless, Schur’s lemma has
serious consequences such as the orthogonality relations by Weyl for compact groups. We
will give a generalization of this theorem which is applied in Theorem 9.2 and which is
formulated as an exercise in [D, vol.V, pp.21].

Theorem A.1 (Schur’s Lemma) Let G be a group and let g 7→ Ug be a unitary irre-
ducible representation of G in a Hilbert space H. If A is a closed operator on H such
that

UgAf = AUgf for all g ∈ G , f ∈ D(A) ,

then A = cI for some c ∈ C .

Proof:
First we will prove the theorem for a self-adjoint bounded operator A. Note
that D(A) = H. It follows from the spectral theorem for self-adjoint operators
that A is in the norm closure of the linear span V of all orthogonal projections P
commuting with all the bounded operators commuting with A. In particular Ug
is a bounded operator commuting with A and therefore every P ∈ V commutes
with Ug. Therefore the space on which P projects (which is closed since it equals
the N (I−P )) is invariant under Ug. But U was supposed to be irreducible and
therefore this space equals H or {0}, i.e. P = 0 or P = I. Since A is within
the span of such P , we have that A = cI, for some constant c ∈ C.

Assume now that A ∈ B(H). By unitarity of Ug

(f1, A
∗Ugf2)H = (Ug−1Af1, f2)H = (AUg−1f1, f2)H = (f1,UgA∗f2)H,

for all g ∈ G and f1, f2 ∈ H. Therefore, Ug commutes with A∗ and thus with
A+ A∗ and i(A− A∗) (which are both self-adjoint) for all g ∈ G. Hence there
exists c1, c2 ∈ C such that

A =
A+ A∗

2
+
A− A∗

2
=
A+ A∗

2
+

i(A− A∗)

2i
= c1I +

c2
i
I

and thus the result follows for any bounded operator A on a Hilbert space A.

Finally, let A be any closed operator commuting with U . The domain D(A)
is invariant under U , therefore by the irreducibility of U it follows that D(A)
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is dense in H. Since A is closed and densely defined, the adjoint A∗ is well-
defined. Moreover, A∗Ug = UgA∗ for all g ∈ G by a same argument as in the
case A ∈ B(H). By closedness of A, the domain D(A) is a Hilbert space (say
DA ) equipped with inner product

(f1, f2)A = (f1, f2)H + (Af1, Af2)H = (f1, (I + A∗A)f2)H,

for all f1, f2 ∈ DA.

Define the representation Ũ : g 7→ Ũg of G in DA by Ũgf = Ugf , for all f ∈ DA

and g ∈ G. Since U is unitary and Ug commutes with A for all g ∈ G, it follows
that Ũ is unitary. Moreover, Ũ is irreducible. Indeed, if V is a non-trivial closed
subspace of DA and f1 ∈ V with f1 6= 0. Let f2 ∈ V ⊥, then

0 = (f2, Ũgf1)A = (f2, (1 + A∗A)Ugf1)H = (f2,Ug(1 + A∗A)f1)H,

for all g ∈ G. Hence f2 = 0 by the irreducibility of U . Thus V = DA.

Obviously, the operator Ã : DA → H given by Ãf = Af is a bounded operator
and satisfies ÃŨg = UgÃ for all g ∈ G. Moreover, Ã∗Ug = ŨgÃ∗ for all g ∈ G
by a same argument as in the case A ∈ B(H). As a result the operator Ã∗Ã :
DA → DA is a bounded operator on the Hilbert space DA commuting with Ũg
for all g ∈ G. As a result we have by the preceding that Ã∗Ã = dI, but then
we have (Ãf, Ãf)H = d(f, f)A and therefore

1

d
(Af,Af)H = (f, f)H + (Af,Af)H ⇔ (Af,Af)H = |c|2(f, f)H,

for all f ∈ DA, with |c|2 = d/(1 − d). Now A is a closed operator, D(A) is
dense in H and A is bounded. Hence D(A) = H and A ∈ B(H). As a result
A is is equal to cI by the previous part of the proof for some c ∈ C, with
|c|2 = d/(1− d). �

See [Ta, Prop. 0.4.5] for a more general version of the Schur’s Lemma.

87



B Gelfand triples

Let H be a complex Hilbert space and R an unbounded, positive and self-adjoint operator
on H, for which the inverse R−1 ∈ B(H). Note that the boundedness of R−1 implies that
D(R−1) = H and hence D(R) = R−1(H).

Define the space HI as the linear space D(R) equipped with the inner product (f, g)I =
(Rf,Rg)H for all f, g ∈ H. Since R is closed and R−1 is bounded, HI is a Hilbert
space. Next define the Hilbert space H−I as the completion of H equipped with the
norm (f, g)−I = (R−1f,R−1g)H.

The operator R onH induces the map R̃ : HI → H by R̃f = Rf for all f ∈ HI = D(R).
Since ‖R̃f‖H = ‖f‖I for all f ∈ HI , the map R̃ is on isometry. By boundedness of R−1, it
follows that R̃ is also surjective and hence a unitary map.

Define Ř : D(R) → H−I by Řf = Rf for all f ∈ D(R). Since ‖Řf‖−I = ‖f‖H for all
f ∈ D(R), the map Ř is closable and its extension is an isometry. Since R(D(R)) = H
and H is dense in H−I the closure is also surjective, hence a unitary map. Write ˜̃R for the
closure of Ř.

Hence the following triple is obtained

HI R̃
↪→ H

˜̃R
↪→ H−I . (B.1)

A triple of this type is called a Gelfand triple.

It follows by the Riesz representation theorem and the unitarity of R̃ and ˜̃R that the
space H−I is naturally isomorphic to the anti-dual space of HI under the pairing

〈F, f〉 = ( ˜̃R
−1

F, R̃f)H (B.2)

for all F ∈ H−I and f ∈ HI . Note that by the selfadjoint-ness of R

〈F, f〉 = (F, f)H (B.3)

if F ∈ H for all f ∈ HI . In this paper R, R̃ and ˜̃R are all denoted by the same symbol R.
From the context it is clear which operator is meant by this symbol.

Example: Let k ∈ N. Then it is well-known that the operator Dk = 1 + |4|k with
domain H2k,2(R2) is an unbounded, positive and self-adjoint operator on L2(R2) with
bounded inverse. Define the Gelfand triple

H2k,2(R2) ↪→ L2(R2) ↪→ H−2k,2(R2). (B.4)

For a detailed discussion of these spaces, see [Y, §I.10, pp.56].

C An open problem

C.1 Introduction

Let Ω be an open connected subset of C and denote the space of all analytic functions on
Ω by A(Ω) . Let Z = {an | n ∈ N} be a countable set of points in Ω and w : Z → (0,∞)
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a positive valued function on N. Finally, let H ⊂ A(Ω) consist of all f ∈ A(Ω) with∑
n∈N

|f(an)|2w(an) <∞. (C.1)

Consider the questions: Under what conditions

1. is H a pre-Hilbert space under the inner-product (·, ·) : H×H → C defined by

(f, g)H =
∑
n∈N

f(an)g(an)w(n), (C.2)

for all f, g ∈ H?

2. is H a Hilbert space, i.e. is H complete?

3. is H a functional Hilbert space?

If H is a pre-Hilbert space, but not a Hilbert space,

4. can we characterize the completion of H?

This is still a challenging open problem. We will make some remarks about it.
The space H is a pre-Hilbert space if and only f(an) = 0 for all n ∈ N implies f = 0.

A sufficient condition is that the set Z = {an | n ∈ N} has an accumulation point in Ω,
since the set of zeros of an analytic function has no accumulation points. In case Ω = C,
another sufficient condition is that

∞∑
n=1

|an|−1−h = ∞, (C.3)

for some h ∈ N, but then the space A(Ω) must at least be restricted to the subspace of
entire function of order λ < h+ 1.

The choice of Ω is troublesome. For example, replace Ω by a subset Ω1 ⊂ Ω such that
{an | n ∈ N} is still contained in Ω1. How are the two spaces A(Ω) and A(Ω1) related?

Note that if the space H is indeed a Hilbert space, then it straightforwardly follows
that point-evaluation on elements of Z is continuous. Hence there exist Kan ∈ H such that

f(an) = (Kan , f)H, (C.4)

for all f ∈ H. Moreover, the set {Kan | n ∈ N} is total in H.
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C.2 q-functions

A challenging example concerns the special q-functions, as mentioned in Section 6.3. Con-
sider the space A(C) consisting of analytic functions on C and let 0 < q < 1. Define
Z = {qn | n ∈ N0} and w : Z → (0,∞) by w(qn) = qn. Condition (C.1) is now given by

∞∑
n=0

|f(qn)|2qn <∞, (C.5)

and H is the set of all element of A(C) which satisfy (C.5). Since Z has accumulation
point it is clear that H now is pre-Hilbert space.

This example is a nice illustration that the set Ω (which we have chosen to be C), must
contain the point 0. If for example Ω was chosen to be the open unit disk around z = 1,
denoted by D1,1. Then g : D1,1 → C given by

g(z) = sin π
log z

log q
, (C.6)

for all z ∈ D1,1 defines an analytic function on D1,1, which is zero on all elements of Z.
Therefore it satisfies condition (C.5) and belongs to H, but has norm equal to zero. Hence
H fails to be a pre-Hilbert space.

Although the space H is a pre-Hilbert space, it is not a Hilbert space. For example,
consider the sequence {fn ∈ H}n∈N defined by

fn(z) =
n∏
k=1

z − qk

1− qk
, (C.7)

for all n ∈ N and z ∈ C. Since there exists a N ∈ N such that | z−qk
1−qk | ≤

min(qk,1−qk)
1−qk ≤ 1

for all k ≥ N and z ∈ (0, 1), we obtain |fn(z)| ≤ |fN(z)| ≤ maxz∈[0,1] |fN(z)| =: A for all
z ∈ (0, 1) and n ≥ N . Moreover, fn(q

k) = 0 for all 1 ≤ k ≤ n and fn(1) = 1. Now

‖fn− fm‖2
H =

∞∑
k=min(n,m)+1

|fn(qk)− fm(qk)|2qk ≤ 4A2

∞∑
k=min(n,m)+1

qk = 4A2 q
min(n,m)+1

1− q
,

(C.8)

for all n,m ≥ N . Hence {fn}n∈N is a Cauchy sequence. But it does not have a limit in
H. Indeed, if f ∈ H is the limit of {fn}n∈N, then f(qk) = 0 for all k ∈ N and f(1) = 1.
Therefore f is non-zero and the set of zeros has an accumulation point. Hence f is not
analytic.
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