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Abstract

A process algebra (GenSpect) is introduced as a basis for a set of languages used for modelling
and verification. The given axiomatisation for this algebra is proven to be sound and (relatively)
complete. Some examples are given to demonstrate the application of this algebra, as well as a
number of alphabet axioms for more efficient linearisation.

1 Introduction

To model and verify properties of systems there are numerous languages, but often (if not always)
such languages allow only certain systems and properties, and are not always easy to use. We believe
it would be far more efficient if one could model a system in a framework and have the possibility to
easily verify whatever property the system should have. To do so, a good approach would probably
be choosing a common set of languages, which allows to model systems in such a way that all specific
qualities of the languages can be used efficiently. (We consider it not very likely to find the solution in
a single language, as it has to incorporate every possible aspect of a system and still be easy/efficient
to use.)

Such a set most likely has some high level component language, defining the components of a system
and their interaction. These components (and possibly their interactions as well} are then specified in
for example a Petri-net[7] or some algebraic equations. The languages that are (in some sense) higher
level than another should ideally be translatable to the lower level language(s), adding verification
possibilities of these languages. The other way around would be nice as well, but might not always
be possible.

The process algebra presented in this document is an effort to provide a basic (lower) level language
of a set of languages (including for example Petri-nets and Guarded Command Language[9]) as de-
scribed above. The essence of it lies in the use of multiactions, which is, for example, necessary to
(nicely) model the behaviour of processors in (coloured) Petri-nets.

We will now informally describe the components of our algebra. A multiaction is a bag of actions (pos-
sibly with data) that execute together. We write a multiaction of actions a, b(d) and ¢ as (a,b(d), c)
(or (b(d), a,c) as order has no meaning in bags). Often we write multiactions that consist of only one
action as that action alone (i.e. a(d) instead of (a(d))). We can combine such multiactions with the
common operators - and + to form a sequence of multiactions or a nondeterministic choice between
multiactions respectively. The alternative quantification ) allows processes described by the (possi-
bly infinite) alternative composition {(a{dp)) + {(a(d1)) + ... to be written as ) (a(d)), where D is a
set {do,ds,...}. To select only certain alternatives there is a conditional operator — which deadlocks
unless a condition on data variables is true (e.g. ) ,.n7 < 25 — (a(n)) which can (only) choose to
execute {a(n)) for all natural numbers n smaller than 25). To denote inaction or deadlock we write §.

For parallel composition we have the merge || which interleaves and/or synchronises multiactions.
For example, (a+b) || (c-d) has the same behaviour as (a+b)-c-d+c-((a+b)-d+d-(a+b)+((a,d) +
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(b,d)))+((a,c)+(b,c)) -d. The communication operator I" allows explicit specification of (two or more)
actions that communicate with each other (e.g. a|b — ¢, which means that a and b communicate to c),
besides just being synchronised, which is only possible if two actions have equivalent data parameters.
So I'(gc—d} ({a(n), b, c(n)) + (a(m), c(0))) is the same as (b, d(n))+ (a(m), c(0)) (with m # o). To limit
the behaviour of a process we have a restriction operator V that specifies precisely which multiactions
are allowed with a set of action sequences (e.g. a or bjc|c). If one wishes that in the parallel composition
of a,b and ¢ action a does not execute synchronised with another action and b and ¢ must synchronise,
one can write V(4 yc3(a || b || ¢), which behaves as a - (b,c) + (b,c) -a.

The filter operator Oy prohibits actions in its set parameter H from executing (e.g. 9(,)(a+b-(a,c)),
which behaves as b - §), the hiding operator 71 makes actions in I invisible (e.g. 7(4)({a,b)) becomes
(b)) and the renaming operator p renames actions (e.g. p{a—s}(a) becomes b). The special case of
the empty multiaction () is called a silent step, which we often write as 7. Finally we have process
variables with which we can write equations as X = a - X to denote the process that can do infinitely
many a’s.

Note that the data expressions used with — and as parameters require an additional data algebra.
The specifics of this data algebra, besides those described in the next section, are not relevant in
specifying the process algebra.

In the rest of this document we first describe what we need to know of the data algebra, after which we
give the formal syntax and semantics of our process algebra. Following this we give an axiomatisation
for the given semantics and prove it sound and complete. Finally we give some examples of the use
of the algebra and alphabet axioms to make automated calculation more efficient.

2 Data model

The data expressions we use in our process expressions are conforming some data model. Although
we need not know all details of it, we need to define what we use of it. In specific, we need to know
when a data expression is true or false to be able to define the conditional operator — and we use
boolean expressions in our proof of the completeness of our axiomatisation. The following definitions
specify as much as we need to know about the data algebra.

Definition 2.1. Let D be a set of types and let F be a set of function symbols. Also, let S be function
specifications (i.e. elements of S have the form (F, Dy,...,D,, D), with F € Fand D;,...,D,,D € D)
and V = | Jpcp Vb, with sets Vp of variables of type D. We call (D,F,S,V) a data signature.

Definition 2.2. Let ¥ = (D,F,S,V) be a data signature. The set Tx of data terms over ¥ are
defined as follows (see Section 3 for notation):

Ty =T IF(TE_(,TE)*) |V

Definition 2.3. Let ¥ = (D,F,S, V) be a data signature. Let D be a set of sets, corresponding to
the types in D (i.e. for every D € D there is a set Dyq € D with the elements of type D). Also, let
F be a set of functions on elements of D (i.e. for every function specification (F, Dy,...,Dn,D) € F
there is exactly one Fq € F with Daq,,..., D, Dam € D and Faq : Dpgy X ... X Dpag,, = D).
We call (D, F) a data model for ¥.

Definition 2.4. Let ¥ be a data signature and let M be a data model for . We call a pair (2, M)
a data algebra.

Definition 2.5. Let A= ((D,F,S,V),(D,F)) be a data algebraand v: V — {Jpcp Dm. We call v
a valuation of A, which maps variables to {corresponding) values.



Definition 2.6. Let A = ((D,F,S,V),(D,F)) be a data algebra, v a valuation of A and let
z €V, (F,Dy,...,D,,D) € S. Also, let data terms ¢; be of type D; (for 1 < i < n) and Fpy € F
corresponding to F. We extend the valuation v to valuation ¥ to data terms with the following
definition:

o(z) = v(z)
w(F) Fpm()
T(F(t1,... tn)) Em(@ta),. .., 0(tn))

Definition 2.7. Let £ = (D,F,S,V) be a data signature and D € D. We call a data term d
(described by Tx) well-typed and of type D if, and only if, the following holds:

o ifde Vp,or
o ifd=F, with (F,D) €8.

o if d = F(ty,...,t,), with ¢; well-typed data terms of type D; (for 1 < ¢ < n and D; € D) and
(F,D,,...,D,,D) €S.

In the rest of this document we assume that all data terms are well-typed.

As we are going to use booleans (B), we assume the following on our data model: B € D, By =
{f,t} (with f #t), Bm €D and ~: By — B, V, A, =, 41 Byg X Bog — B, all in F. These
functions (and constants) correspond to the following function symbols: f, t, =, V, A, =, &.
These functions are defined by = f = t, ~¢ = f and (with the first parameter vertically):

v f t Al f Ot = ft e f t
f‘ f fl ff f‘ t f‘ t f
tl ot ot ty f t t| f ¢t t| f ¢t

Definition 2.8. Let A be a data algebra with signature ¥ and valuation v. Let E be a term of
type B in our data model. We say that a data term E over ¥ of type B is true if, and only if, for all
valuations v the following holds: T(E) = ¢. We write this as AF E.

For the rest of this document we assume there is some data algebra 4 = (£, M) (containing booleans
as described above) with valuation v and axiomatisation with relation =4 (with T(t) = o(u) if t =4 u,
for all valuations v).

3 Syntax

For the description of the syntax of GenSpect we use a BNF like notation. We use | to separate
alternatives, [] to specify an optional part and ()* for zero or more occurrences of an expression. As
terminals we use sets, meaning that any element of that set is allowed at that position.

Definition 3.1. Let N4 the set of action names, X the set of process variables, V the set of data
variables and D the set of data types. Also, let Tg be a boolean term. Our process algebra GenSpect
(G) has the following syntax. (T describes variable typings, Lp lists of data terms, Aps (multi)actions,
N “communication action names”, V sets of N (for V), C sets of communication relations (for T'),
IH sets of action names (to be hidden with 7 or filtered with @), R renaming functions (for p), Tp
GenSpect terms and E GenSpect expressions.)



4 4 OPERATIONAL SEMANTICS

T = V:D

Lp == Tp(,Tp)"

A = Na|Na(Lp)

Ay == A{[AGA)])

N == Na(Na)*

Nt = Na|Na (|Na)*

%4 = {N (aN)*}

C = {N* — Nalr (, NT — Najr)*}

IH == {Na(Na)'}

R n= {Ng — Na (Na— Nag)*}

Tp = Am|8|7|Tp+Tp|Tp-Tp|Ts =T | XrTp | Tp || Tp | Tp L Tp | Tp|TP | X | X([LD)) |
(Te) | Vv(Tp) | Tc(Tp) | 81u(Te) | T (TP) | pr(TP)

E = X=Tp|X(T(T))=Tp|E,E

As not all (infix) operators are necessarily enclosed within parentheses (e.g. we may write a - b+ ¢),
terms can be interpreted in different ways (e.g. (a-b)+c or a- (b+ c)). To overcome this problem
we give all infix operators and 3 a binding strength with the meaning that if, for example, - binds
stronger than + we interpret a-b+c as (a-b) +c. The order of the operators (in decreasing strength)
is as follows: -, =, |, I, [, 3=, +. We assume all infix operators are right associative.

Instead of writing the sequence of terms 1,3, ...,tn (e.g. the data terms in an action or the actions
in a multiaction) we often write . The set of all actions A is defined by N4 U {a(t1,t2,...,tn) |a €
NiAneNAL<i<nAt; €Ts}, and the set of all multiactions A is defined by {(@) | @ € 74’}
Although we allow the action a in our syntax, in this document we only talk about that action as
being a(). Similarly we consider expressions X =t as being of the form X() =t. We also write &
instead of the action ().

To be able to reason about terms of our language, we introduce some sets and notations. The
set Vp, with elements z,y, ..., consists of process variables, for which we assume that in terms, that
are substituted for such a process variable, no free variables (i.e. not bound by any operator in the
term) may occur. For the set of GenSpect terms (described by) Tp we have elements t,u,... and
process-closed terms p, g, ... in Tpe (terms that do not have any process variables in them).

Note that this syntax allows one to write sets (R and C) that can contain elements with the same
left hand side (e.g. {a — b,a — c}). This should not be possible as the meaning of these sets are
meant to be functions. Therefore we put the restriction on this syntax that in the sets described by
R and C no left hand side of an element may be the same as the left hand side of another.

Another restriction on C is that left hand sides must be disjoint (i.e. {alb — ¢, d|b — e} is not
allowed as b occurs in both left hand sides). This is to ensure unicity of the communication (see the
semantics later on).

4 Operational Semantics

Now we have a formal syntax, we give meaning to terms by the following semantics.

Definition 4.1. Let T and T’ be some sets. We call F C T x T" a function from T to T" if, and
only if, Vier (Vey wer ((£,21), (t,5) € F = 1 = t5)) holds. The subset of functions in the powerset
of T x T is written as T — T" (ie. T — T' C P(T x T'), with F € T — T" if, and only if, F is a
function from T to T").

Note that we often write a colon (:) instead of €.

Definition 4.2. Let T and T’ be sets and F : T — T’. The domain of F, notation dom(F), is
defined as follows:



dom(F) = {t| Jver ({t,t') € F)}

Definition 4.3. Let T and 7" be sets and F : T — T”. Also, let t € dom(F). We define the function
application, notation F(t) (i.e. F applied to t), as follows:

Ft) =t with (t,t') e F

Definition 4.4. Let T and T" be sets with T C 7Y and F : T — T". The domain extension F+ of F
is defined by:

Ft=FuU{{t,t)|te T At & dom(F)}

We describe the semantics of GenSpect by looking at which actions can be executed by a process and
what (process) the result of such an action is. This is expressed in one of the following definitions,
but first we need to express that the order of actions within a multiaction is irrelevant (e (@, _1?)
and (?, @) are the same). We do this by interpreting them as bags of actions.

Definition 4.5. Let S be a set. A bag B of S is a function S — N, with the meaning that an element
s € S occurs B(s) times in the bag B. We write a bag as [s1, s2,. .., s,], such that an element s € S
occurs B(s) times exactly. We write B(S) to denote the set of all bags of S (i.e. B € B(S)).

Definition 4.6. Let S be a set and let By and B, be bags of S (i.e. By, Bs € B(S)). The joining
operator ®s : B(S) x B(S) — B(S) is defined by (B; ®s Bz)(s) = B1(s) + Ba(s) for all s € S.

Definition 4.7. Let S be some set and B,C € B(S), T C S and s € S. We introduce the intersection
N :B(S) x P(S) — P(S), the bag inclusion C: B(S) x B(S) — B, the element test €: S x B(S) — B
and the size function || : B(S) — N as follows:

sEB = B(s)>0

InT = 0

(sl@esB)NT = BNT if s¢ T
(sJes BYNnT = {s}u(BNT) ifseT
BccC = Vses(B(s) < C(s))

1B| = YuesB)

Note that a bag B € B(S) can be considered to be of the following structure: B =[] or B = [s] @5 C,
with s € § and C € B(S). We usually write @ instead of @, if this cannot lead to any confusion. In
this document we only consider finite bags.

Definition 4.8. We call A= {a(?) | @ € Na A de D—;:} the set of semantic (parameterised)
—
actions (i.e. a(d) €A).

Let t be some syntactic term and v a valuation, which maps variables to some corresponding semantic
values/terms. The interpretation of t will be written as [t]*. The specific value of [t]¥ will be separately
defined for all (needed) forms of t. We mostly write [t] instead of [t]?, as it will be clear which v is
meant. Specifically, we define [E]¥ = T(F) for all terms F in our data model.

Definition 4.9. Let o be a multiaction, with a = (al(a),@(@), e ,an(t—i:)). The interpretation
— — —3
of a multiaction [a] is defined by [{(a1(d1),az(dz),...,an(d

1 = [ea([d]), az([2D). - an (1)

The following three definitions give a generic way to interpret the sets of the operators V,8,T, 7, p,
described by V, IH, C, R in our syntax.
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Definition 4.10. Let S be some syntactic set of terms (i.e. a collection of syntactic terms t,...,t,
separated by commas and enclosed in { and }). The interpretation of S (as a true set) is defined as
follows:

[{tr -t} = {Ita]s -, [ta]}

Definition 4.11. Let #1,t3,...,t, be some terms. The interpretation of #;|ts|... |t, is defined as
follows:

Htllt2| o |tn]] = ”[tl]]’ [[t2]]’ R [[tn]]]

Definition 4.12. Let ¢ and ¢’ be some syntactic terms. The interpretation of — is defined as follows:
[t - ¢} = (L I#'D

In the semantics we use certain functions which are defined below. These functions are for instance
needed to determine whether or not Vy will (dis)allow an action or whether or not an action is hidden
by 7.

Definition 4.13. Let S be a function My — N4 and let a(—c?) €A. Also, let m € B(A). The
function mapping operator e : (Mg — N4) X B(A) — B(A) is defined as follows:

sell _ -0
Se(a(dNom) = [S*a)(d)e(Sem)

Definition 4.14. Let I be a set of action names (i.e. I C N4) and let a(g) €A. Also, let m € B(A).
The hiding function 6 : B(A) x P(N4) — B(A) is defined as follows:

o1 D), -
9([a(i)]@m,1) 0(171,)1) ifael
f(fa(d)]@®m,I) [a(d))®0(m,I) ifagl

i

Definition 4.15. Let a(_d)) €A and m € B(A). The data stripping function p : B(A) — B(Na) is
defined as follows:

w(l) = |
ula(dom) = (o ®um)

For the communication operator we need a somewhat more complex definition. We introduce a
communication function that takes the interpretation of a multiaction and finds all occurrences of left
hand sides in the C parameter of the operator and replaces those occurrences with the corresponding
right hand side. Note that this is only allowed if the data parameters are equal.

Definition 4.16. Let m € B(A) and a € N4. Also, let 7, e e 5; The function x : B(A) ><D_/\,: —
B is true if, and only if, all actions of the multiaction parameter have the given data vector as
parameter, i.e. x is defined as follows:

X(U,—z) = =t — -
x(a(@Nemd) = xm,d) #d=7
x([a(€)&m,d) = f Fd 47

Definition 4.17. Let Ng = {n | n € B(Na) Al < |n|}, a(d) €A, b € Ng and m,n,0 € B(A).
Also let C : Ng — (Na U {7}) with V(4 (c,a)ec(Vnep(n € c)). The communication function v :
B(A) x (Np — (MaU{7})) — B(A) is defined by the following definition:



YmenC) = [a(d)@v(nC) Jpeecclb=puim)Ax(m, d))
7(m @en, C) = ’Y(na C) 3(b,‘r)EC’(b = ,u(m) A X(ma d ))
v(m,C) = m “Jne(m=ndoAIccc({c=(ba) Ve=(b,7)) Ab=pun)A

325 (x(n, d))))

Note that the extra condition on C is required to make v a true function (i.e. y(m,C) is a unique
bag). This is also a restriction on the syntax that was given earlier.

Definition 4.18. Let t € Tp. Also, let D € D, d € Vp and let E be some expression of type D in
which no variables occur that are bound in t. The substitution t[E/d] means t with F substituted for
all free occurrences of d in t.

Definition 4.19. Let X be a process variable and t a term (possibly containing X). A recursive
—_—
specification is a set of equations X (d:D) = t.

Let p and ¢ be terms that do not contain any free variables and let m € B(A). The relation p—-q states
that the process described by p can make a transition by executing a multiaction, with interpretation
m, and will behave as the process described by q after it. The predicate p—— v states that the process
described by p can terminate by executing a multiaction with interpretation m.

Definition 4.20. Let 4 = (X, M) be a data algebra and Dyq € D corresponding to type
D € D. Also, let E be a set of recursive specifications. We define process semantics Sem(A, E) =
(Tp,B(A), —, — V'), with a transition predicate —, taking two processes (from Tp) and an in-
terpretation of an action (from B(A)) as parameters, and a termination predicate — v, taking one
process and an interpretation of an action as parameters, inductively by the following rules.

t u"ou
ul t"ou

m n
t—t’, u—u’

t]| W= || o

tl ut’ || u

u |l tou ||¢

m n
t— v, u—u’

t || wE
u | AW

o)LV, o2/ Ry
- v t-Sht!
t+u—"s v t+u"ot
ut+t-T u+ t—t'
t-= v -
teu—sy tou—st .y
= v N
Ak —— AFD
b—t— v b— ¢
tle/d]= v t iy
_[e/_l—m*___ ceTy le/d]——n: ceTy
Zd:D t— v Ed:D t—t
t— v -y

o v usn

mon

tv— v



t— v -2t
t”_u—m-m. t|_|_u—"-1->t’ | »

-5 Vi u—s v

m n
t—t’, u—u’

mdn_ ,
o tju —u pooy
™ R thu ™ | o
e VIO D) 2 my e VIUAT)
m m m m
RO EN V() v (t) &
t=s -2t
To(t)" IV To(t)" ™K Pre ()
-2 v -2t
——————u(m)N[H] =0 poy ; p(m) N[H] =90
A (t) = v Ou(t)—0u(t")
= v -t
7_I(t)@(m_,[[{]]) v TI(t)o(Tﬂ'{]l)TI(tl)
= v t-2st!

Rlem
pr(®) v

R]em
pr®) A o (t')

— T m
tfe/dl— v
X(2)

te/d)=t X@:D)=teE

R

Xd:D)=teE
) —

X(@) 2t EeTs

e eTy

Table 1: GenSpect Semantics

To be able to compare and calculate with processes, we need to know when two processes are equal
(i.e. have the same behaviour). We use the equality given by the following definition.

Definition 4.21. Let G = Sem(A, E) = (Tp,B(A), —,— V), with A a data algebra, E a set
of process expressions and — and — v’ the transition relations on processes Tp with multiactions
B(A), be a process semantics. Also, let t,t',u and v/ be process terms in which process variables may

occur only if they are in E and m € B(A). A bisimulation is a relation B on processes such that if
tBu:

e for all ' and m, t—t' means that there exists a v’ with u—u' and t' Bu'
e for all ' and m, u—>u' means that there exists a t’ with t-25¢ and t'Bu/

e for all m, t-— v means that u— v

e for all m, u— v means that t—

We write the union of all bisimulation relations B as «. To state that two processes p and ¢ are
bisimilar we write G F peog (or just peog).



As the rules in Table 1 are in the path format[1], we have that bisimulation & is a congruence.

5 Axioms

To be able to calculate (more) easily, we introduce the following axiomatisation for the semantics
given in the previous section, which is proved to be sound and complete in the next two sections.
(Note that this axiomatisation does not include recursive process expressions and thus completeness

only considers the semantics without these expressions.)

Definition 5.1. Let t,u € Tp. We can derive t to u, notation G ¢t = u, when this follows from the
rules and axioms below (and those of the data algebra). Usually we just write p = g. The following
rules hold for = (with t,u,v € Tp, z € Vp, D € D, zp,yp € Vp, tq € Tx, T the set of closed data
terms, x a unary process operator, ¢ a binary operator with a data parameter and a process parameter

and o a binary process operator).

t=t
t=u
u=t

t=u

* (t) = +(u)

tq =4 tfi,u =

taou =t ou

t=thu=u

tou=tou

Vpen(Vapevp (Veers (te/zp] = ule/zpl)))

t=v

t=u
tlv/z] = ufv/z]

t=u

t[ED/.’I:D] = u[ED/a:D]

t=u

Voevp (Yot (tv/2] = u[v/z]))

Yep:pt = 2yp:ptlyn/2D)

QOur axiomatisation is the following:

MA1 a = {a)

MA2 7=)

MAS  (@,0)=(b, @)

Al z+y=y+z

A2 z+y+z2)=(x+y)+2
A3 rt+zr=zx

A4 (z+y) - z=z-2+y-2
A5 (z-y)-z=z(y-2)
A6 z+d=z

AT d-z=96

C1 t—mz=c

C?2 f—ax=4

CD1
CD2

VD
Vi
V2
V3
V4
V6

DD
D1
D2
D3

t=u

yp does not occur in ¢

Slao=4
ald =4
Vv(d) =46

Vyv(a) = if p([a]) € [VIU{[l}
Vy(a) =6 if p(le]) € VIV{[}
Vv(z +y)=Vv(z)+ Vv(y)
Vv(z-y) = Vv(z) - Vv(y)

Vv (apP) = 2ap(Vv(p)

On(d) =6

() =a if u(fo]) N[H] =0
On(a) =4 if u(le]) N[H] #0
On(z +vy) = O0u(z) + On(y)



D4 Oy(zy) = Ou(z) - Ou(y)

SUM1 % gpr=< Ds O (Xa.pP) = > 4.p(0u(p))
SUM3 Y ,pp=>4pp+ple/d withee D

SUM4 3 ,p(p+9)=2upP+2apnd TID 7(8)=¢

SUM5 (Y apP) ¥ =24pP ) TI1  7(e)=p with [B] =6([a],])
SUM6 (3 gpP)lLy=2apPly) TI3  7(z+y) =71(z) +11(y)

SUMT  (C4pP)y =X ap(ply) T4 m(x-y) =1i(x) 71(y)

SUMT  z|(3X4.p9) = 2 ap(=l9) TI6  11(X4.pP) = 2 ap(Ti(p)

CcM1 zlly=zly+ylz+zly RD  pr(8)=9$

CM2 al|z=az R1 pr(a) = with [B] = [R] ¢ [a]
CM3  az|y=o(z]y) R3  pr(z+Yy) = pr(z) + pr(Y)
CM4 (z+y)llz=zx|z+yl]= R4 pr(z-y) = pr(z) - Pr(Y)

CM5 az|B=(alB) = Ré PrR(Z4:pP) = 2a.p(PR(P))
CM6 alfzr=(af) -z

CM7T  az|By=(alB)-(z ] y) GD Tc(d) =6

CM8  (z+y)e = oz +ylz Gl Tola) = f with [l = (o, [C])
CM9  z|(y +_:f) =zly -:m[z G3 Tce(z+y)=Tc(z)+Tcy)
CM10 (@)|(b)=(d,b) G4 Tc(z-y)=Tc(z) Tely)

G6  Tc(Xapp)=2apTc(d)
With a,b € A, o, € A, a,86 AU {8}, z,y € Vp and p,q € Ty

Table 2: GenSpect Axioms

When we do wish to use recursive processes, we will (at least) need RDP~ and RSP [2] like principles.
We informally define them as follows.

Definition 5.2. We call a specification guarded if every occurrence of a process variable on the right
hand side of an equation is preceded by at least one action (possibly after substitution).

Definition 5.3. A solution of a specification X (73) =t is a function p € Daq — Tpe such that
—
p(d) = t[p/X] holds, where (X (€))[p/X] = p(€).

Definition 5.4. The Restricted Recursive Definition Principle (RDP) states that every guarded
specification has a solution.

Definition 5.5. The Recursive Specification Principle (RS P) states that every guarded specification
has at most one solution.

6 Soundness of the axioms

The soundness of the axiomatisation in the previous section is stated in the following theorem.
Theorem 6.1. Let p,q € Tpe. The axiomatisation of GenSpect is sound (i.e. G+ p =g = G F peog).

Proof 6.1. In Appendix A the soundness of the axioms given above has been proved (one axiom
per subsection). The structure of each of these proofs is the same, namely:

e A relation R is given for the axiom. For an axiom t = u, the relation R is the minimal relation
that satisfies tRu A pRp A (qRr & rRq) A E, for all p,q,v € Tp and for all instantiations of
process variables in t and u. E is true, unless it is explicitly defined otherwise in the subsection.
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e For each conjunct of the definition of R it is shown that the properties that define a bisimulation
hold.

It is clear that if this is done, R is proven to be a bisimulation relation.

To shorten the proofs and get rid of trivial facts, that would otherwise be repeated in every sub-
section, we do not define R explicitly (as it is always of the form given above) or prove the conjuncts
pRp and gRr & rRq (and E, if it is true). The proofs of these conjuncts are trivial and therefore not
given at all.

When we say a process cannot terminate in any of the subsections, we mean that there is no m for
which — v holds for that process. (So it could very well be that the process can indeed terminate,
but not in one “step”.) o

Note that we should also prove the given rules of ==, but as these are quite straightforward (with, for
example, the symmetry of & and the fact that « is a congruence) they are not given.

7 Completeness

To prove that our axiomatisation is complete (i.e. that whenever two processes p and ¢ are bisimilar we
know that p = q) we introduce basic terms and show that any (process-closed) term can be rewritten
to such a basic term. By doing this, the actual completeness proof only has to consider these basic
terms.

Note that we often say that something holds “by induction”, with which we mean to say that it
follows from the (implicit) induction hypothesis. Also note that we use certain properties of — which,
with induction on booleans, are trivially true and therefore no proof of them is given. The following
properties are used (with b a boolean expression without variable d and % the unary process operators):

bo(z+y)=boz+b—oy b—oz+tcozr=bVc—oz

b—-z)-y=b—(z-y) boc—zr=bAc—=z
Supb—oz=b—odY,pz  x(b—ox)=b—o ()
(b — z)|ly =b— (z]y) z|(b— y) = b — (zly)

b—a)ly=b—(z]y)
We do not allow variable d in b because it would otherwise mean that axiom ) ;. pb—z=b— 3,
is not sound. If d does occur in b we can still apply this axiom to b — ), if we first apply
a-conversion to the summation. We do this implicitly where needed in the following proofs.

7.1 Basic terms

Definition 7.1. Let p,q,r € T, and let a € AU {6}. Also let b be a data term of type B. A basic

—
term p is a term having one of the following forms (we write >, for 3, .p > 4..p, -+ 2od,:D,.» With
n > 0):

_
e Ybh—oa
_> . .
e > b— a-gq, with g a basic term
e g7, with ¢ and r basic terms
Definition 7.2. We call the operators that can occur in basic terms (-, +, —, 3_) basic operators.

Theorem 7.3. Let p,q € Tp.. For each p, which uses only basic operators, there exists a basic term
q with p =gq.



[y

[~}
|
Q
>
S
J
]

Proof 7.3. We use induction on the structure of p:

—

e p= a(g), which means that p=a(d) = (a(?)) =t — (a(?))

e p = @, which means that p=a =t — o.

p =6, which means that p=§ =t — §.
e p=17, which means that p=7= () =t — ().

e p = g+ r, which means that by induction we have basic terms ¢’ and »' with ¢ = ¢’ A7 =7/,
andp=q+r=¢g +7.

e p =g -7, which means that by induction we have basic terms ¢’ and ' with g = ¢' AT =1'. We
now prove that for each basic term s there is a basic term ¢t with ¢ = s - », which means that
there is a basic term p’ with p=g¢q-r = ¢’ -r = p'. By the structure of s:

e > b— a,whichmeansthat s:r =3 b—oa)r=>(b—a)r=3boar=Yb-ar,
or
¢ > b— -, with §' a basic term, which means that s- 7= (3 b - a-§)-r =3 (b —
- —
a-&)y-r=Yboa s -r=>b— a-u, with basic term u = s’ - r by induction, or
e s'4-s”, with s’ and s” basic terms, which means that s-r = (¢'+s")-r = s’ -r+s5" -7 = u+/,
with basic terms u = s’ - r and 4’ = s” - r by induction.

e p =b — g, which means that by induction we have a basic term ¢’ with ¢ = ¢’, and the structure
of ¢’ is:

— — —

e >c— a whichmeansthat p=b -¢g=b—->¢ =b> 3 c—a)=>b—c—oa=
_.,
YbAc— a

= —
e >c— a-r, with r a basic term, which means that p=b—-5g¢=b—o¢' =b - (3 c—
— —
a-ry=Yb—oc—oa-r=>YbAc—a-r

o 7+ 7/, with 7 and r’ basic terms, which means that p=b—-qg=b—¢ =b— (r+7r') =
b—or+b—o 1 =s+ s, with basic terms s = b — 7 and ' = b — ' by induction.

e p=1Y ,p4 which means that by induction we have a basic term ¢’ with ¢ = q’. We now use
induction on ¢’ to prove that there is a basic term = with r = 3", , ¢, from which follows that

there is a basic term 7’ with p= 3", ,9 =>4 pq =7'. If ¢ is of one of the first two forms,
: : 1

>-4.p ¢ is trivially a basic term (as the ), simply becomes part of the 3 of ¢’). In the third
case we have ¢ = s+ s’ with basic terms s and s', which means that >, ,¢' => ;. p(s+5') =
SupS+aps =t+t, withbasictermst =), psand t' =3, s by induction.

]

Lemma 7.4. Let p,q € Tpe. If there are no non-basic operators in p and g, then there is a term
r € T, without non-basic operators, such that 7 = p o g (for some non-basic binary operator o) or
r = %(p) (for some non-basic unary operator %) .

Proof 7.4. By Theorem 7.3 we know that there are basic terms p’ and ¢’ with p = p’ and ¢ =¢'. We
prove, by induction on the number of symbols in p’ and q’, that there is a term 7’ without non-basic
operators, such that ' = p' o ¢’ (or 7’ = %(p’)) and thus 7’ = po g (or ' = x(p)).

o p'|| ¢’, and p’ is of structure
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Z{b—ﬂ» a, which means that = p' || ¢’ = Zb—» ay|Lq Z b-a)|lg= Zb—» ald)=
Yb—a-g¢, or
= . - =

® > b— a-s, with s a basic term, which means that p'|| ¢ = (3b = a-s)| ¢ = 3, (b —

- —

a-s)lgd=3b—(a-s|lgd)=Yb—a (s|¢)=Yboa s withs =s Il ¢ aterm
without non-basic operators by induction, or

e 5+, with s and s’ basic terms, which means that p’ || ¢' = (s+ ') | ¢ =s| ¢+ | d =
t+t, witht =s| ¢’ and t' = &' || ¢’ terms without non-basic operators by induction.

e p'l¢', and

o p = Eb —aAg = Zb’ — @', which means thatp ¢ = Zb — a)l(Zb’ —a) = f((b —
a)l(zb' —a) =TS~ a)l(b' — )= b (al(t — o)) = Tb = b — (ale!) =

Eb Ab — (a|o), with a and o actions or 5 which means that a|o’ is an action or §

o p = Zb —a-sANg = Zb’ - o, w1th s a basic term, Wthh means that p'|¢’ = (Zb —

Zb'—w) Z((b—m s I(Zb' = o)) = S (b = e s)|( — o)) = Tb -
(a s|(b' — o) Zb — b - (as|a) Eb Ab — (ale) - s, with & and o' actions or 4,
which means that ala’ is an action or §

— —
o p=>b—oanrg =3V — o s, with s a basic term, which is symmetrical to the previous

case

o p = i)b —a-sAqg = fb’ — o 8, Wlth s and s basm terms, which means that
Pl = (Zb —a- S)!(Zb’ - o ) Z((b —a IS — of - 8)) = ZE( (b —
a-s)|(t' — o)) = >b— (a- Sl( o - §)) = 3ob -V = (o Sla )= THAY —

(e’ - (sl s’) =Y bAY — (ala’) - t, with o and o' actions or §, which means that o|o/
is an action or 4, and ¢ = s || s’ a term without non-basic operators by induction

e p' = s+, with basic terms s and s’, which means that p’|¢’ = (s+8')|q’ = slg’+5'|¢’ = t+¢'
plq q q )
with ¢ = s|¢’ and t’ = §'|¢’ terms without non-basic operators by induction

e ¢' = s+ ¢, with basic terms s and s/, which is symmetrical to the previous case.

o p' || ¢, which means that p’ || ¢’ =p' || ¢ + ¢ |LP +P|¢ =s+t+u, withs=p'| ¢, t=¢ Ly

and u = p|¢’ terms without non-basic operators by the previous cases.

e Vy(p'), and p’ is of structure

. f_‘:b — «, which means that Vv (p') = Vv(ib — a) = i(vv(b - a)) = ib - Vy(a),

with Vy(a) an action or 6, or

. ib —>'a -8, with s a basic term whlch means that VV(P2= Vv(ib —a-s) = ivv(b —
Zb — Vv (x-s) = Zb ) Vv(s) = > b— Vy(a) - ¢, with Vy(a) an

actlon or 6 and s’ = Vy(s) a term Wlthout non-basic operators by induction, or

e s+s’, with s and s’ basic terms, which means that Vy (p') = Vv (s+s') = Vv (s)+Vy (s') =
t+ t’ with ¢ = Vy(s) and t' = Vy(s') terms without non-basic operators by induction.

71(p'), which is similar to the previous case.
pr(p'), which is similar to the previous case.
Tc(p'), which is similar to the previous case.

Oy (p’), which is similar to the previous case.
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Theorem 7.5. Let p,q € Ty. The elimination theorem states that all non-basic operators ([, |, |,
Vv, I'c, 71 and pgr) can be eliminated. That is, for each term p there exists a term ¢q with p = ¢q and
q does not contain any non-basic operator.

Proof 7.5. With induction on the number of symbols in p:
e pis an action, deadlock or tau, which means there are no non-basic operators in p.

e p = b — ¢, which means that we have a term ¢’ with ¢ = ¢’ which contains no non-basic
operators by induction and thus p = b — g = b — ¢’ does not as well.

e p=gor, with o a basic operator (excluding —), which means that we have terms ¢’ and 7’ with
g = ¢’ and r = 7' which contain no non-basic operators by induction and thus p=gor = ¢ o7’
does not as well.

e p = %(q), with * a non-basic unary operator, which means that we have a term ¢’ with g = ¢’
which contains no non-basic operators by induction and thus p = *(q) = *(¢’) = r, with r a
term without non-basic operators by Lemma 7.4.

e p = gor, with o a non-basic binary operator, which means that we have terms ¢’ and »’ with ¢ = ¢’
and r = v’ which contain no non-basic operators by induction and thus p=gor =¢ o7’ = s,
with s a term without non-basic operators by Lemma 7.4.

Theorem 7.6. Let p, g € T},.. For each p there exists a basic term ¢ with p = q.

Proof 7.6. By Theorem 7.5 we know there exists a r, with p = r, in which no non-basic operators
occur. And Theorem 7.3 states that for such a term there is a basic term ¢ with r = ¢g. Thus, as
p = r = q, there is a basic term for each process-closed term p. ]

7.2 Relative completeness

As proved in [8], the data algebra needs to be complete and have equality on the data and quantifier
elimination to be able to have completeness. This is expressed by the following definitions. (See [8]
pp. 83-85 for the precise details.)

Definition 7.7. Let A be a data algebra. We say that 4 is complete if, and only if, T(t) = 7(u) =
t =4 u (for all closed data terms ¢ and u and all valuations v).

Definition 7.8. Let A be a data algebra. We say that A has equality if, and only if, for every data
type D € D there is a function egp with specification (egp, D, D, B) for which the following holds
(with d and e of type D and for all valuations v):

eqp(d,e) =t if v(d) =T(e)
egp(d,e) = f if o(d) # U(e)

To be able to use this equality we use the following additional axiom:

EQ egp,(di,e1) A...Negp, (dn,en) = a(dy,...,dn) = egp,(d1,e1) A... Aegp, (dn,en) = afe1,... en)
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Definition 7.9. Let .4 be a data algebra. We say that .4 has quantifier elimination if, and only if,
for every process p € T}, and boolean expression b depending on a variable d that does not ocecur in
p, there exists a boolean expression c such that the following axiom holds:

QE Yy pb—p=c—p

Before we can prove completeness we need the following definitions and lemmas. Note that we use
standard predicate calculus (with =,=> A, V,~,V,3) to define, derive and prove. This means we
consider p—g and p = g to be predicates on p and q and will write derivations like p = a4+ a =p = o,
for some p € Tc. For A = E we also just write E if no confusion can arise.

Definition 7.10. Let p,q € Tp.. The bisimulation inclusion — of a bisimulation < is defined by
P=q=p+geg.

Lemma 7.11. We can formulate the definition of — as follows:
P= ¢ =Yoena) (- ¥V = ¢ V) AV (p-5p' = 3y (-3¢ Ap'd)))

Proof 7.11. With the definition of & in the more formal form of peg = VaeB(A)((Pi’ v =
4= VING=> ¥ = p=2 V)N (059" = 3 (q-5¢'AP'22q)) AV (=20 = Ty (p-0p Ap ')
the proof is as follows:

p=g¢
p+geg
VaeBa) (P + 93— vV = -5 V) A (G5 V = p+g-5 V)A

Vor(p+ 49" = 3y (-4 AP'2q)) AV (g-¢" = Ty (p + ¢-=p' Ap'=q')))
Yaeba)(p—= v = - V) A(g— vV = ¢ V) Atruen

Vo (P50 = 3 (g-0q' AP'2q) A (—5p" = 39 (a-4' Ap'=q'))) Atrue)
Vaeb(a)(P—= v = ¢—= V') Atrue) AVp ((p—p = 3y (3-5q' Ap'oq')) Atrue))
Vaeba) (P~ v = ¢~ V) AVp (p-5p’ = 3 (q-20¢' Ap'q')))

(]

Definition 7.12. Let p,q € Tp.. The aziomatic inclusion < of a axiomatic relation = is defined by
PSg=p+g=q.

Lemma 7.13. An axiomatic inclusion < is sound with respect to a bisimulation inclusion — if =
is sound with respect to < (i.e. Vpqo(p =g =poq) = Vo (p<g=p—9)).

Proof 7.13. Trivial. O
Lemma 7.14. Let p,q € Tpe. The relation < is antisymmetric:

P=q=p<gAg<p
Proof 7.14.

PSgAgKDp P=q

pHg=qAqg+p=p P=gAp=gq
g=p+qAp+gqg=p P=qAp+p=qAg=p
P=q p=qAp+q=qAqg+q=p
P=qApPSqgAg+p=p
PSgAg<p

Yo

R/ 1 T
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Lemma 7.15. Let p,q,7 € Tp.. The axiomatic inclusion distributes over the alternative composition
as follows:

p+g<r=p<rAg<r

Proof 7.15.
p+g<r p<rAgq<r
p+q+""i"' = p+”‘i’f‘/\q+’f5’;"
ptg+r=rAp+tq+r=r = ptg+r=r
ptq+r=rApt+qt+r=rAp+gt+qtr=r = ptgxr

p+g+r=rAp+p+gt+r=rAg+ptqt+r=r
pt+r=rAg+r=r
PSTAGST

my mwomom

]

Definition 7.16. Let p,q € T, and b a boolean expression. We call b a p-simulation condition of ¢
- — —
if (A}=b) =p = q. (Or, with data, V3 ((AEb(d)) =p(d) = q(d).)

The following lemmas express the relation between simulation conditions and the conditions in basic
terms.

Lemma 7.17. Let b be a boolean expression and p, g € Tp.. The following holds:
bopog=b=p=yg

)
o
Q
[=}
-
-3
ey
3

b—sp=g

Voaen(a)((b = p— v = ¢=5-V) AV (b — p-op' = 3 (-4 Ap'2q)))
Vae]B(A)((b/\p_’ v = q—“—* V) AVpr (b Api*p = 3 (¢->q Ap'eq)))
Voen(a)((b = p—* v = q—* V) AV (b= p—=op’ = 3y (¢—¢' AP/ 24')))
Yoen(a)((b=p— v = q—> VYA (b= Yy (p—=p = 3 (-4 Ap'oq))
VoeB(a)y(®d = (p— v = g— V) AVy (p—>p = 3¢ (q——>q AP =q')))

b = Vaena) (p—> v = ¢=5 V) AVp (p—0p' = 3q' (G—>q' AP =q)))
b=>p=gq

O

Lemma 7.18. Let D a data type and d a variable of that type. Also, let p,q € Tpe. The following
holds:

S app(d) = g =Vap(p(d) = q)
Proof 7.18.

Zd Dp(d) =4q

Yoena)(Cappld)—> v = q——* V) N (g p P() =P = 3y (¢4 Ap'=24)))

Vaenay((3a:p(p(d) = v) = -5 V) AVy (Fap(p(d)—>p) = 39 (¢4 Ap'=q)

WmmAﬂtﬂdD@@%—*/)Vq“*/)Av Vadp@uf—m)va (g—=q' Ap'=q)))
Vaen(a)((Va:p(~(0(d) = V) V g=5 V') AV (Ya. p (~(p(d)p") V 3¢ (g4 Ap'227)))

YaeB(a)(Va:p(—(p(d)— V) V ¢ V) AVy WdDﬁﬂﬁ@—“PqVE @—*qAP*WU»)

%meu@@—*/i%H/MWwW(WW*P¢3@—WAPHUW

Vm%MWp@(Fﬁfﬁwﬁ/MV@M%ﬂpﬁaw—ﬂApHﬂm

Va0 (Vaen(ay (p(d) =5 v = ¢ V) AV (p(d)—p" = ¢ (g4 AP'24))))

Vap(p(d) = 9)

T | 1 1 T
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Lemma 7.19. Let b be a boolean expression and d a vector of data variables. Also, let p,q € Thpe.
The following holds:
— — — —
Lab(d)—=p(d)=2q=V3((d)=p(d)=q)
Proof 7.19.
— — — — — —
23 b(d) = p(d) = q=Vap(b(d) - p(d) = ¢) =Vap(®(d) = p(d) = q)
O
Lemma 7.20. Let b and c be boolean expressions and d and € vectors of data variables. Also, let
P.q € Tp.. The following holds:
>3 b(?) — p(_d)) - g = Vg(b(?) = c(z)), with c(?) a p(j)—simulation of g for all d
Proof 7.20. Trivial with Lemma 7.19. o

Theorem 7.21. Let p,q € Tp.. If data algebra A is complete and has equality and quantifier
elimination, there exists a p-simulation for q.

Proof 7.21. This theorem follows from Theorem 5.26 in [8]. a

We write # : T — N for the number of (process) symbols in a term. Its definition is quite straight-
forward and will therefore not be given in an other way than saying that every symbol (operator or
(in)action) is counted. Note that this does not include data operators or constants.

Lemma 7.22. Let p,q,¢’,7, s € T, and A be complete and have equality and quantifier elimination.
We can split p in smaller (or equally large) pieces if p— ¢ + ¢/, as expressed by the following:

P=g+q =3rs(p=r+sA#r) S#p)N#(s) S#P)Ar=2gAs =)
Proof 7.22. With induction on the structure of p:

o p= _Z_fb — a. Let b and by be a-simulations for ¢ and ¢’ resp. (by Theorem 7.21) and define

pi = fb/\bi — a, with 7 € {1,2}. We need to show that there exist r and s such that (i)
p=r+s, (ii) #(r) < #(@) A #(s) < #(p) and (iii) r = ¢ A s = ¢’. By choosing p; and p,
for r and s, (ii) holds trivially and (iii) holds by Lemma 7.20. We now only need to show that
p = p1+p2. Observe that bA (b V b) is a a-simulation condition for ¢+ ¢’ by Lemma 7.20 and
that by that same Lemma b = b A (b; V b2) and thus b = b; V by.

p

N

SNbh—

e

SbA(B1Vh) —a

£y

Y (OAb)V(BAbL) - a

= —

SHAb = a+3bAb —
P1+p2

I8

o
e p=Y b— «-r, which is similar to the previous case

ep=r+7r
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p=q+q

r+r'=q+4q

rog+d AT 2944

o e(r=s+tAH#() S H#PAH#{E) S #(r)As=ght 2 4)A

orp(r' =+t AN#(S) S #E)A#E) SH#()ANS 298t =2 ¢)

st (T =s+HIAH#H(S) SH#T)A#) SH#(FT)As2gAt =g A
=+ AF(S) SH)ANEE) S #E)NS 2 g At 2 )

Toorpp(r+r =s+t+s +t' A#(s+5) S H#r+r)A#E+) <Hr+r)A
s+ =ght+t' o ¢)

= oplp=s+tAH#(s) SH#P)A#E) S HP)As2ght= ()

oo

4

The following final lemmas describe some additional facts needed for the completeness proof.

Lemma 7.23. Let b and ¢ be boolean expressions and 'd and @ vectors of data variables. Also, let
o, 3 € A. The following holds:

S b(d) = a(d) = T o) = B(F) = V3 (6(d) = 32(c(?) A fa(d)] = [B(F)])
Proof 7.23. This follows from the definition of — . O

Lemma 7.24. Let b and ¢ be boolean expressions and 'd and € vectors of data variables. Also, let
a,B € A and p, g € Tp.. The following holds:

$2b(d) = a(d)-p(d) = Yo () - ﬁ(?_)) Lq(@) 2 V5((d) = 3z (@) A a(d)] =
[BCEN] Ap(d)=q(E))
Proof 7.24. This follows from the definition of — . |

Lemma 7.25. Let b and ¢ be boolean expressions and p € Tp.. The following holds:

= .=
YhAac—p<Yb—p
Proof 7.25.

bAc—p+3b—p
(bAC)Vb—p
bAc)V(bAL)—p
= Zb/\(cV t)—p
Zb/\ t—p

e 4

= Xb—op

liygluglngl

|

O

Theorem 7.26. Let p,q € Tpc and A be complete and have equality and quantifier elimination.
GenSpect is (relatively) complete (i.e. G F pog = G+ p=ygq).

Proof 7. 26 Given peq, we need to show that p = q. As there are basic terms p’ and q’ with
p = p Aq = ¢ (and, because = is sound, p__p A q<—>q ), it is sufficient to show that p’ = ¢’. We
do this by proving that p’ — q = p < q and ¢ = p = ¢’ < p’. From this obviously follows
pog=pod =p =X ENS —>p =P <dNd<p =P =1

We now prove p’ — ¢’ = p’< ¢’ with induction on the number of symbols in p’ and ¢' (with - and
Ywa sequence | of summations blndmg the variables d resp. €, b( d } and ¢(€) boolean expressions

depending on d resp. €, and of d) and B(€) multiactions depending on d resp. €):
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’ e -3 . . .
e p' =3 5b(d) — a(d), which means that by induction on ¢’

* ¢ =% () — B(¥E), which means that V—»(b( ) = 3~(c(_’))AV—»(c(__’) [[a(?)]]
BN because of p = ¢ (by Lemma 7. 23) and therefore p’ = 3 - (d a(?)
Z?Z_g’b(d = a(d) = Yo T b Ae(®) = o(d) = 3 T7b(d)Ac(?)

)< Y€)= B ?)ﬁzqc? —B(€) =4, or

e qd =3 c(_’). — B(€) - r( ) with basic term r, Wthh means that V—»(ﬁb(j)) (as ¢’

cannot terminate) and p’ = § < ¢/, or

-

!

e ¢ = r + 1/, with basic terms r and ', which means that by Lemma 7.22 3, «(p'
s+ ¢ /\#()<#(p)/\#(s) (p)/\s—»r/\sﬁr)andbylnductlonﬂss('i
s+ s /\s<r/\s<r’)=>3“(p = s+ ASSTHTAS S r+7) =2 F 40
s+ As+s'Kr+r)=p <r4+r =¢.

il

o p =5~ b(?) — of d) . r(?), with basic term r, which means that by induction on ¢

= Y = ¢(¥) — B(E), which means that Vg(ﬂb(g)) (as p’ cannot terminate) and
pPr=d<q,or
' = — —
o ¢ =3-c(€)— B(F) - s(€), which means that V= (b(d) = 3e(c(€)) AVz(c(e) =
.__)

[[a(?)]] = [B(E)] Ar(d)=s(€)) because of p’' — ¢’ (by Lemmas 7.24 and 7.23) and by in-
duction we have r(?)_? s(e )/\s(g)—> (€)= r( d)< s(e )/\s(?){ r(?), and therefore

P'=Tgb(d) = a(d)r(d) £ To Tgb(d) = a(d)r(d) = T Tg b(d) Ae(@) -
ofd)-r(d) = Z—’Z—'b(d)/\C( ) = B(€)-r(€) = E?Z—'b(d)/\C( ) — B(E)-
(r(@)+5(2)) = T Dg b(d) Ac(B) = B(7)5(€) < Tp 7 () — B(F)-5(¥) =
Yo c(€)—B(€) s(€) =4, or

e ¢’ = s+ s, with basic terms s and ¢, which means that by Lemma 7.22 3, »(p' =t +t' A
#(t) < #(p )/\#(t’)<#(p)/\t-—>s/\t’-—->s’) and by induction J; ¢/ (p' =t +t' At< sA
t'<s)=>3w(p_t+t'/\t<s+s A'Ks+8)=2po(@ =t+EAt+E<s+8) =

P<s+s =¢.
e p' = r+7/, with basic terms » and 7/, which meansthat p'= ¢’ =r+r'=2 ¢ =r—= ¢ A= ¢ o
r<gArSeETr+rSe =P <.
The proof of ¢ = p’ = ¢’ < p’ is symmetrical to the proof above. O

8 Abstraction

If we want 7 (or ()) to be the “real” silent step, we want to be able to remove 7 where its presence
can not be determined. Our current definition of bisimulation therefore no longer suits us and we
therefore introduce another form of bisimulation.

We use rooted branching bisimulation ., and, as our semantics fits the “RBB cool” format|3], we
know ¢, is a congruence. To be able to give a nice definition we introduce a termination predicate
| and assume that v is a state (but not an allowed process constant) and that it is the only state for
which | holds (i.e. z-=» v now just means that = can make a transition m to v and v’ terminates).

Definition 8.1. Let G = Sem(A,E) = (Tp,B(A),—,— V'), with A a data algebra, F a set
of process expressions and — and — v’ the transition relations on processes Tp with multiactions
B(A), be a process semantics. Also, let ¢,t',u and u' be process terms in which process variables may
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occur only if they are in E and m € B(A). Branching bisimulation &, is the union of all relations B

such that if tBu (with T zero or more m-transitions):

o for all t’ and m, t—t' means that m = [] A t'Bu or there exist 4’ and u” with w B o A
tBu” At/ Bu'

o for all «’ and m, u—"+u’ means that m = || A tBu’ or there exist t' and t” with PAUNTILIN
t"Bu At' Bu'

e t | means that there exists a u’ with uLu’ 1 AtBu/

e u | means that there exists a v’ with tLt’ | At Bu
Definition 8.2. Let G = Sem(A,E) = (Tp,B(A),—,— V'), with A a data algebra, E a set
of process expressions and — and — v’ the transition relations on processes Tp with multiactions
B(A), be a process semantics. Also, let ¢,t’,u and u’ be process terms in which process variables may
occur only if they are in E' and m € B(A). Rooted branching bisimulation <, is defined by to u if,
and only if, te u A rooted (t, u), with rooted(t, u) defined as follows:

o if t-"5¢/, then u-">u/ A t'opuf
o if u-"5u/, then t—nt' At/ o’
o ift |, thenwu|

o ifu),thent|

Now we have this new form of equivalence, we also need a matching (that is sound and complete)
axiomatisation. Fortunately, the axioms given before are still sound, but to make the axiomatisation
(relatively) complete again (i.e. to have axioms that reflect the behaviour of 7) we believe it is suffi-
cient to add the following two axioms, as in [4]. (Note that z, y and z cannot be v').

Tl z-1=12z
T2 z-(t-(y+z)+y)=2z-(y+2)

In Appendix B we have proved the soundness of the new axioms T1 and T2. The other axioms
of G, which have already been proven to be sound with respect to <, do not need to be proven again,
as & C ¢, holds. The structure of the proofs of T1 and T2 is the same as before, but instead of
proving R to be a bisimulation we have proved R to be a branching bisimulation and rooted(t, u) (for
axiom t = u).

When working with abstraction, one might encounter processes of the following form: X =i- X +Y,
where one wishes to hide i. This process can in fact do an infinite amount of #’s, but, after hiding,
these actions should not be observable. One usually wishes to have some form of fairness in which a
infinite sequence of 7’s is not possible. To express this we introduce a fairness rule.

In current algebras, like ACP, there exists rules as “KFAR” and “CFAR”|[2]. Although these rules
basically express the same fairness as we wish to express and fit in our own language, it needs that
the (recursive) specification is linearised (before the application of the abstraction operator 77).

Instead we wish to see if it is possible to first apply the abstraction and afterwards apply some
form of fairness rule to the (possibly, or even probably) reduced specification. The proposition of the
basic idea follows. It is clear that if this rule is suitable, we can extend it to a more general rule (as

“CFAR”).
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Proposition 8.3. Let Y be a guarded recursive specification. The fairness rule we propose is the
following:

Yi'r{i}(Y),X’ éi-X’+Y,X£7'{i}(X')
7 X=1.Y

This rule basically follows from KFAR, as shown in the following derivation:
Y = T{i}(Y),X' =1. X'+YV, X = T{,-}(X')
V=10 (V),7-mn(X) =775 (V), X = 7 (X')
7-X=7.Y

One might wonder why the X is defined as an abstraction of X’ and not just as X =7- X +Y.
The problem with this equation is that, for example, X = 7-a, Y = § is a solution, but with the
abstraction of X’ this is not the case. This does mean, however, that our wish to be able to simply
apply a fair abstraction rule to a abstracted specification is not possible, unless we know that the
variable in question satisfies the conditions of the above rule. Fortunately, this will be the case in
practice, as the abstracted specification is an abstraction of some specification. It should therefore be
save to use this rule as the following, if one knows the occurring 7 is a result of abstraction:

X=717X+4Y
X =71Y

Another method, that is also usable with more complex processes (with data), is the cones and foci
method([6]. This method takes a specification (without silent steps), an implementation (in practice
usually with silent steps) and a mapping from states in the implementation to states in the specifica-
tion, and states that these are bisimilar for all states that satisfy a certain invariant, if that invariant
implies the following matching criteria:

a. The implementation is convergent (i.e. there is a well-founded order on the state, such that after
each silent step the state is smaller than the previous state).

b. If a silent step can occur in the implementation, the mapped state does not change.

c. If a non-silent step can occur in the implementation, than it should also be able to occur in the
specification (i.e. with the same arguments and with the same resulting state).

d. If no silent step can occur in the implementation and a step can occur in the specification, than
that same step should be able to occur in the implementation.

For the precise details see [6]. In the examples we use the steps as indicated in [6] (step 1 corresponds
toa,2tob, 3,5 and 6 to c and 4 to d).

9 Example: Alternating Bit Protocol

In the previous sections we have given a formal definition of a new algebra and proven its axiomati-
sation sound and (relatively) complete. We now have a look at some examples in which we use this
new algebra. The first example is the Alternating Bit Protocol (as in [2]).

Assume we have two processes S and R, that need to communicate over unreliable links K and L.
Process S receives a sequence of data with action r; and the goal is that process R will send that same
data, in the same order as it was received by S, with action s4 (i.e. the protocol should make the
system of S, R, K and L behave like a buffer). When the data of the communication over a link gets
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Figure 1: Alternating Bit Protocol.

corrupted or gets lost, the receiving party will be able to detect this. (These cases are represented by
L)
The Alternating Bit Protocol establishes this goal by adding a bit to the data before transmission by
S and having R send back that bit indicating the success of the transmission, or the inverse of the bit
in case of failure. The moment S receives the correct bit, it knows it can send the next datum, or, in
the case it receives the other bit, it sends the current datum another time.

We assume the existence of some data type D, and a type Bit consisting of 0, 1 and L, for which
we use variable n. Also we assume a data type F that combines these two types (i.e. F contains
tuples of a datum and a bit).

We define a one place buffer B, receiving data with action r; and sending data with s4 as follows:

B=3% 4pri(d)-si(d)- B
Next is the definition of the processes of the Alternating Bit Protocol:

S = §(0)-5(1)-8

S(n:Bit) = Y upri(d)-S(n,d)

S(n:Bit,d:Dy = s(dn)-T(n,d)

T(n:Bit,d:D) = (re(1—n)+re(L))-S(n,d)+rs(n)

R = R(1)-R(0)-R

R@Bit) = (Sapraldn)+7s(L)- ss(n) - Rn) + Typra(d(l - n) - sa(d) - ss(1 — )
K = Yppra(z)(i-ss(z) +i-ss(L))- K

L = Sutony o))+ s6(1) - L

To get the whole system (A), we put processes S, K, L and R in parallel and force communications
on channels 2,3,5 and 6. By hiding all internal actions (i.e. every action but those on channels 1 and
4) we get A;.

Vv(Te(S | K || L| R))
{82|7‘2 — Ca, 33|7”3 — 03,35|7”5 — 05,3617‘6 - 06}
{i,71,84,¢2,c3,C5,C6}

71(A)
{7:) C2,C3,Cs, Cﬁ}

S Qe

Il

We eliminate the complex operators V, I' and || from A using a standard expansion and introducing
A(d: D) and Az(d : D) as we go along.

A = Vv({lc(S|| K| L R))
= Tapri(d)-Vv(Te(S(0,d)-S(1) -S| K| L| R)
= Lapri(d)-A(d)

A(d:D) Vv(I'c(8(0,d)-S(1)- S| K || L || R))

-0

c2(d0) - Vv (To(T(0,d) - S1 - S || (i - s3(d0) +i- s3(L)) - K || L || R))
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ca(d0) - (i - c3(d0) - s4(d) - Vi (T (T(0, d) -
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S(1)- S| K || L | s5(0) - R(0) - R))+

i-e3(L)-es(l) - Vy(Te(T(0,d) - S(1) - S| K || (i~ s6(1) +i- s6(L)) - L || R)))
cg(d0) - (i - c3(d0) - s4(d) - An(d)+

i-cs(L)-es(1) - (i - cs(1) - Vi (o (S(0, d) -
i-co(L) - Vy(To(S(0,d)
Cg(dO) . (’L . Cg(dO) . 84(d) . Ag(d) +1- Cg(.L) . 65(1) . (’L .

Vv(Te(T(0,d)- S(1) - S || K || L || s5(0) - R(0

cs(0) - (i-¢6(0) - Vi (Te(S(1) - S | K || L || R(0
i c(L)-Vv(Le(S(0,d)-S(1)- S| K || L || R(0)- R)))
cs(0) - (i-¢c6(0) - A'+

i co(L) - e2(d0) - Vi (Co(T(0, d) -

e5(0) - (i - cg(0)+ A'+

i+ eo(L) - c2(d0) - (i - c3(d0) - Vi (To(T(0, d) -

i-c3(L) Vv(Te(T(0,d) - S(1)- S || K || L || ss(
es(0) - (i-ce(0) - A’ +1 - co(L) - ea(d0) - (i - c3(d0

1
0
)

)- R))
¢s(0) - Vv (Tc(T(0,d) - S(1) - S || K || (i~ s6(0 )-)I-Z

)
+4-

SQA)- S| K| LY R)+
SL)-SI K| LI R

ce(1) +i- cs(L)) - A(d))

R(0) - R))))

ca(.L)) - Az(d))

The same calculation can be made for A’, which will result in the following:

>apri(d) - A'(d)

AI
A'(d:D)
AL(d:D)

A,

A(d:D)

Ara(d:D)

e n-n-

-1 - -

- - #

Cz(dl) . (Z . C3(d1) S4(d)

T1(A)

Ya:pT1(d) - T1(Aq)
2 a.pT1(d) - Ar(d)

T1(Aq)

T-(7-7-s4(d) - Tr(A @) +7-T-T- (T THT-T) T
Ar2(d) +7-A-(d)

T (7 s4(d) -

7r(Az2(d))

To(r-7-m(AY+T1-7-7-(7-T+7-7) 11(A2(d)))

T (1-AL 47 Are(d))

And again the same for A..

> apni(d) - AL(d)

Al
Al (d:D)
A2 (d:D)

e n-n-

T (7" 54()

A7p(d) +7- A7(d))

T-(T-Ar +7- Al,(d))

(A(d)))

se(L)) - L | R(0) -
R))+

S)-S | (i - sa(d0) + 13- s3(L)) - K

A3(d))

Now we apply the abstraction operator to obtain A, (and A,(d: D) and A;2(d : D)).

R))

I L || R(0)- R)))

S(1)- S| K| Ll ss(0)- R(0) - R))+

2(d) +4-e3(L) - ¢5(0) - (i - c6(0) +4 - co(1)) - A'(d))
cs(1) - (i-ce(1) - A+i-ce(L) - ca(dl) - (i-ca(dl) +i- ca(L)) -

As one could (or should) have expected, it is clear that this process can do an infinite sequence of
7’s, which corresponds to the transmissions over a link continuously failing. In practice we usually
assume, or know, that this will actually never happen. With the proposed fairness rule from the
previous section we can say the following (implicitly introducing X and Y):

A.(d:D)

T-(7- s4(d) -
T-(X+7.Y)

Ara(d) +7 - A (d))
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=~ .Y

X = 7-54(d) Ara(d)
= (X+7.Y)

7Y = 717X

A (d:D) = 7-X

T S4(d) . A-,-g(d)

And the same for A;o(d:D),A”(d:D) and A,(d:D). This gives us the following specification:

A, = Yapri(d)- A-(d)

Ar(d:D) = 7-s4(d)- Ar2(d)

Arp(d:D) = T1-A]

AL = Supri(d) 44(d)

AL(d:D) = 7-s54(d)- A75(d)
'o(d:D)y = T-A;

With substitution and RSP we can conclude our calculations:

A, = Yapri(d)-A(d)
= Y gpri(d)-T-s4d)- Aro(d)
= Y gpri(d)-sa(d)- A7

AL = Yapri{d) - Ar(d)
= Y gpri(d)-7-s4(d) - A75(d)
= Y4pri(d)-sa(d)-Ar

A, = Yapni(d)-sa(d)- Ay

Ya:pri(d) - sa(d) - As

As we can see, the (abstracted) Alternating Bit Protocol is, under the assumption of the fairness rule,
just the one place buffer B (by RSP).

10 Examples: Petri-nets

The following examples show how we can translate Petri-nets to GenSpect and calculate with the
result. We believe that any Petri-net is easily translatable by writing processors as an alternative
composition of multiactions, based on the input/output relations they describe. Places would be
translated into an alternative composition of all possible combinations of taking and putting tokens
that can occur simultaneously.

10.1 Squares

Assume we have a processor which can take a token with some value n from one place (connected
with a channel ) and (simultaneously) puts a token with value n? in a(nother) place (connected with
a channel 7). We can describe this processor in the following way:

Sqrij = Zn:N Ei (n)lmg (n2) ) Sq'rij

To calculate n? we can now connect two instances of Sqr with a place (Figure 2).
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Figure 2: Square functions connected by a place.

First we define what a place is. Places are basically bags, from or to which connected processors can
take or give values. We describe a place, with an (incoming) channel i and (outgoing) channel j,
as follows (assuming a type Bag of bags over N, and operators ®,0, ® , which add an element to,
remove an element from or check whether or not an element occurs in a bag respectively; note that
these types and operators are just introduced for this example):

Pyj(b: Bag) =3, nput,(n) - Pi(n®b) + 3, nn©b — get (n) - Pij(n©Y)

Note that the definition of a place we use here does not allow tokens to be taken from and added to
it simultaneously, because we want to keep the examples simple. The calculation of n* can now be
described as follows (with C = {putk|put — puty, getllget — geti}, V = {get,, puty, gety, put;} and
[ the empty bag):

DSqry; = Vv (Lo (Sqrik || Peu() || Sqri,5))
If we now calculate with this equation, we get:

DSqr; = DSqTﬁj([])
DSqri;(b: Bag) = Vy(Tc(Sqrik || Peu(b) || Sar,;))
= Y .n(geti(n), puti(n?)) - DSqm(n @ b)+
SN ® b — (geti(n), put( ). DSqri;(nob)

We see that this little system has a structure very similar to that of a place. Certainly if we would
also hide the actions puti and get; (I = {put, get;}):

DSgri;(b: Bag) = TI(DSﬁj ()
= Y .nlgeti(n)) - DSqr] ;(n® ® b)+
2w ©b— (put;(n®)) - DSqr7;(n & b)
= Y .ngetin)- DSqrté(n ®b)+
Yo Nn@b—»put (n?) - DSqr”(neb)

Note that in this specification no n* appears, because squares are put in the bag and are retrieved
from of the bag as some number n. However, one can prove that this specification is equal to the
following:

Xij(b: Bag) = 3,y get;(n) - Xij(n @ b) + 3, xn © b — put,;(n*) - Xi;(n ©b)

We prove that X;;(b) = DSqr;(b?), where [|2 = [] and (n@b)? = n2@b?, by showing that DSqr, - (b%)
is a solution of X;;(b). (We use ~ to denote a step that is justified by what is calculated later. )

-X,J(n@b)—l-ZnNn@b—»put( 4. X (neb)

'DSQTIJ((”@I’) )+ZnN”©b—’PUt( ‘) DSqri;((n©b)?)

n)- DSgri(n*@ b))+, N ©b— put; (n) DSqu(n ob?)

-DSqr”(n ®b2)+ZmNanm—n An? @b — put;(n?) - DSqri;(n? ©b%)
-DSqr”(n S b%) + Y N Ly =12 Am @ b% - put, (m2) DSqr (m o b?)
-DSqr,](n ®b%) +3,.nm ©b* — put;(m?) - DSqr; (mebz)

- DSqri;(n? ®b2)+ZnNn©b2—>put( %) - DSqr}; (nebz)
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10.2 Connected places

Assume we have two places. In standard petri-nets, we can only connect these with a processor.
However, there is no such limitation in GenSpect. So the question rises: What happens if we connect
two places together?

Li /7N x /7N |
[/ N

Figure 3: Two connected places.

Taking the definition of a place like before, we get (with C = {get, |put, — passi} and V =
{put,, passk, get }):

P2 =Vv(Te(Pr(() | Pe; (1))

Now, let us calculate:

p2
P?(a,b: Bag)

P¥([},[)

Vo (Co(Pall) | P (D))

= Y,.nput(n)- P*(n®a,b)+

Yonn © a— passi(n) - PY(noa,n@b)+
En:Nn@)b ——»_g_e_tj(n) -le(a,neb)

It is clear that we almost have the specification of a place again, the only difference being that that
the original bag is now split up in two bags and the possibility to transfer elements from one bag to
the other. After hiding passk, we can prove with the cones and foci method that, P and P? are in
fact bisimilar. '

P} = PZ([L[)

P2 (a,b: Bag) Tipasss} (P (a,))

Zn:N M@.(n) - P? (’I’L b a, b)+
S.nn®a—7-PY(noa,n®db)+
SN @b get (n) P¥(a,nSb)

Let P2 (a,b) be the implementation and P(a Ub), withn @ (aUb)=n@©@aVn @b, the specification.

1. P?(a,b) is convergent; trivial with the smallest well-founded order that satisfies (a,n © b) <
(n ®a,b).

2. n@a= (na)U(ndb), trivial (as (nO©a)U(n ®b) =aUb).
3. n@b=n© (aUb), trivial.

4. FC((a,b)) = ~(n @ a); FC({a,b)) An® (aUb) = n @b, trivial.
5. Trivial.

6. (n®a)Ub=n@ (aUb), trivial. aU (n 6b) =n S (a U ), trivial.
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Figure 4: Three interconnected processors.

inc

10.3 Connected processors

Assume we have three processors: dup, inc and mul. Processor dup receives numbers over one con-
nector and sends the same number to the other two connectors, inc receives a number, increments it
and then sends it, and mul receives two numbers and sends out the multiplication of those numbers.
We connect these processors as shown in Figure 4 and are interested in the behaviour of the resulting
system dim.

The definitions of these processors is as follows:

dup 2R (Taup(Z)|Sdup, (2)[Sdup, (z)) - dup
inc Y 2 k(Tine(Z)|Sinc(z + 1)) - inc
mul 2R 2oy R(Tmuty (B rmat, (¥)|Smut (T * y)) - mul

o

C = {Sdup1 |'rmull y Sdups ]Tinm Sinclrmulz}
v = {Tduplsmul}
dim = Vy(Teldup | inc) mul))

We calculate with dim:
dim Vv (Te(dup || inc || mul))
Vy (Lo (dup || inc || mul))
Vv (Le(dup | (inc || mul))) + Vv (To((inc || mul) || dup)) + Vv (e (dup|(inc || mul)))
§+ Vy(Tc((ine | mul)) || dup) + Vv (Lo ((mul || inc) || dup))+
Vy (Lo ((inc |l mul)) | dup) + Vv (Ce(dup|(ine || mul))) + Vv (T (dup|(mul || inc)))+
Vv (T'¢(dup(inc|mul)))
0+6+6+0+ 0+ Vy (T e(duplinemul))
VV(PC(Z:E:R Zz’:R E:r”:]R Zy:]R(
(Taup(T)|Sdup, (Z)[Sdup, (%)) - dup)|
((rine(z")|Sinc(z’ + 1)) - inc)|
((rmuty (") | muta (¥) [smur (2 * y)) - mul)))
Zz:lR Ez’:]R Ez”:]R Zy:]RI =z’ Az = yA ' +l=2"— (Tdup(x)lsm'lil(x” * y))
Vv ({Tc(dup || inc || mul))
= Y mTaup(@)smu((z + 1) xz)) - dim

fI- -

i 4

As one can see, system dim has the same behaviour as a processor that takes an number = and returns
(z+1)*z.

10.4 Distribution center

The system depicted in Figure 5 represents a distribution center, where orders enter. An order is
represented as a pair (¢, n), where ¢ is a customer identification and n the number of ordered products.
Orders are supposed to result in deliveries. A delivery is a pair (i,n) just like an order. The ord and
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Figure 5: Distribution center.

deliv ports are connected to customers. The ports supord and supdel are connected to suppliers and
represent respectively the ordering and delivery of a standard quantity o (0 < o) of products.

The distribution center consists of two parts, order handling OH and stock handling SH. These
parts interface via two stores representing the economic and actual stock. The actual and economic
stock both contain initially o products. The order handler, upon receiving an order, subtracts the
amount ordered from the economic stock and copies the order to an internal place. If the internal
place contains an order with an amount less than the actual stock, the order is delivered and the
amount ordered subtracted from the actual stock. The stock handler checks whether the economic
stock is less than a (0 < «); if so, a supplier order is issued and the economic stock is incremented
with o products. If a supplier delivery comes in, the actual stock is incremented with o products.

We want to analyse what the behaviour of the distribution center plus a reliable supplier is with
respect to its customers. The reliable supplier S(0) has the behaviour of a place: ordered items will
always eventually be delivered. Its parameter is the number of pending orders.

The GenSpect model of the system DCU is Q(e,0, ¢, []) where Q(n,k,m, X) for n,k,m € N and
X € B(Z x N) is defined by

Q(n:Z,k:N,m:N, X : B(Z x N))
S(k: N)
DC(n:Z,m:N, X :B(Z x N))

v{o'rd,del} (F{supnrdlsi——vr,supdel|so—vr}(Dc(n’ m, X) “ S(k)))

si-S(k+1)+k>0-—s0-Sk—1)

V{ ord,del,supord, supdel} (P{el es—T,alas—7} (F{el eo—T,ala0—T} (
OH(X) || SH || E(n) | A(m))))

> mn e(n,m) - E(m)

Lmna(n,m) - A(m)

V {ordieo, del] a0} (T {p1|pr—rpslpa—r} (Recv | P(X) || Prod))

E(n:Z)
A(n:N)
OH(X : B(Z x N))
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P(X :B(Z x N)) > iz 2snP2(i,8) - P({i,5) © X)+

%i:_’[ Zs:N<i7 S) ©X — p3(i7 S) ' P(<'L’ S) © X)

Recv = oI 2oN 2onzlord (i, s), eo(n,n — s),p1(4,8)) - Recv

Prod = I eN omNT > § — (del(i, s), ao(m, m — s), ps(4, 8)) - Prod
SH = v{supord|es,supdel|as}(Order “ deliv)

order = Y .nn<a-— (es(n,n+0),supord) - order

deliv =

Y onnlas(n,n+ o), supdel) - deliv
The first analysis step is to linearise the above specification.

SH
V{supord|es,supdel|as}(order ” deliv)
{supord|es,supdelias}(OTder ” delzv)
(
(

{supord|es,supdel|as} order U_ delw)+

{supord|es,supdellas} deliv |_|_ OTdCT)+

{supord|es,supdel|as} (07‘der| delw)
YoanT < a— (es(n,n+ ), supord) - V {supord|es, supdel|as} (0Tder || deliv)+
Yoantas(n,n + o), supdel) - V {supord|es, supdellas} (O7der || deliv) + &
= YNt <oa— (es(n,n+o0),supord) - SH + Y, y(as(n,n + o), supdel) - SH

-

OH(X)
= V{Ordleo,dellfW}(F{mIpz—v‘r,pslm—»T}(Rew | P(X) || Prod))
V{ordleo,dellaO}(P{pllpz-—*‘r,palm—»f}(Recv L (P(X) || Prod)+
(P(X) []_Prod + Prod || P(X) + P(X)|Prod) | Recv+
Recv|(P(X) | Prod + Prod| P(X) 4 P(X)|Prod)))
= 404+ + Y N mN™ > SA (1, 8) © X — (del(i, s), ao(m, m — s))-
Y (ordlendutlon) (- palpa—srpalpesr) (P((i ) © X) || Prod || Recv))+
Zi:I ZSZN Zn:Z(ord(i’ 3)? eo(n, n— S)>
V {ordjeo, dellao} (I'(p1 [pa—7,pslpe—r} (Recv || P((i,s) ® X) || Prod)) +6 +6
= DT D eN 2amn™ > SA(1,8) © X — (del(i, s), ao(m,m — s)) - OH((i, s) © X )+
Ei:l' ZS:N Zn:Z(ord(i’ 3)7 CO(TL, n— 5)) . OH((’L’ 3> @ X)

DC(n,m, X)
= v{ord,del,supord,supdel}(F{e|es—»‘r,a|as—»f}(r{e|eo—»‘r,a[a,o—)'r}(OH( ) ” SH ” E(TL) ” A(m))))
= v{ord,del,supord,supdel}(F{e|es—»‘r,a|a,s—-»r}(F{e]eo—vr,a]ao—vr}((OH( IE n)) U_(SH ” A( )))))+
{ord,del, supord,supdel} (F{e[es—vr,a|as—vr} (F{e|eo—>'r,a|ao—>‘r}((OH(X)]A(m)) u_ (SH ” E( )))))+
v{ord,del,supord,supdel} (F{el es—T,alas—T1} (F{e|eo—vr,a|a.o—»‘r} ((S'HIE(T")) U_ ( ( ” A(m)))))+
v{ord,del,su.po'rd,s'u,pdel} (F{e]es—n',a.]as—»‘r} (r{elea—or,a|ao—»‘r}((SH]A(m)) U_ (OH( ) ” E(n)))))
= Zi:l’ Zs:N Zn:Z OTd(i’ S)'
V{o'rci,dezl,s'u,pu:z'rd,su,pdel} (F{e|es—»'r,a|a.s—v‘r}(]-—‘{e]eo-——»r,a[ao—»f}(OH«iv S) @ X) ” SH ” E(TL - S) “ A(m))))+
ZizI Zs:N Zm:N m>sA (7:7 S) © X — del(i’ 8)-
v{ord,del,supord,supdel} (F{eles—»‘r,a|as—>'r}(F{e|eo—>7',a|ao——>'r}(OH((iv S) © X) ” SH “ E(n) ” A(m - 3))))+
(n < @) — supord-
v{o'rd,del,s-u.pt:;r'd,supdel} (F{e|es—>r,a|as—4‘r} (F{eleo—vr,a[ao—vf}(OH(X) ” SH ” E(TL + 0) ” A(m))))+
supdel-
v{ord,del,supord,supdel} (F{eles—»T,a|as-—»T}(F{e|ea—»7,a]ao—>‘r}(OH(X) ” SH “ E(’FL) ” A(m + 0))))
= Zi:l' ES:N En:Z O’I"d(i, 5) ) DC(n —s,m, (7” 3) D X)+
Zi:l' Es:N Zm:Nm >sA <i’ S> © X — del(z, S) : DC(n,m - S <i7 S) S X)+
(n < &) — supord- DC(n+ o,m, X)+
supdel - DC(n,m + 0, X)
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Q(n, k,m, X)
v{ord,del} (F{supordlsi—»r,supdellso—vr} (Dc(na m, X) ” S(k)))

Zi:z Zs:N Zn:Z O’I‘d(i, S) . v{ord,del} (F{supord[si—n',supdeﬂso—vr}(DO(n —8s,m, (ia 3) & X) H S(k)))"‘
ST DN omn M > SA (i, 8) © X — del(i, s)-
5 v{ord,del} (F{supordlsi—»‘r,supdellso—-»'r} (DC(TL, m— s, (Zi .S‘) © X) ” S(k)))+
+
n<o—T- v{o’r‘d,del} (F{supo'rdls‘i—vr,supdellsa-—*‘r} (DC(TL + o, va) “ S(k + 1)))+
k>0—r7- v{ord,del}(r{supord|si-—>'r,supdel|so—»T}(Dc(n, m+ U,X) ” S(k - 1)))
= Zi:l’ ZS:N En:Z OTd(i, S) ' Q(TL - s, k,m, (7’7 S) D X)+
Zi:l’ Z:s:N Em:N m > sA (i’ S) ©X— del(i’ S) ' Q(n’ k,m—s, <i’ S) S X)+
n<a—7-Qnt+ok+1,mX)+
k>0—7-Q(n,k—1,m+o0,X)

Process Q(n, k,m, X) is convergent. A firing of any of these transitions will not disable any action
that could occur before. We may thus assume that k = 0 and that deliv fires whenever k& > 0 would
occur, i.e. when order would fire. Similarly, order will fire whenever n < a would occur. This can only
happen when Recv fires. So when Recv would fire causing n < a, order, deliv will fire immediately
after that; moreover they keep firing until n > a. Modulo branching bisimilarity, DCU corresponds
to R(a, a, []), where R is specified as follows.

Rn:Z,m:N,X:B(ZxN)) = .73 .nord(i,s)-R(n—s+p,m+p,(,s) ®X)+
Yoz ™ > SA(i,8) © X — del(i, s) - R(n,m — s, (i, 8) © X)
where p = max(0, —((n — s — @) + 7))

We then prove the invariants m —n = 37, @ x $* X({¢, s)) and n > a for all reachable states
R(n,m,X). Thus the condition m > s for the firing of Prod becomes redundant. Thus, we can
remove the parameters n, m from the equations and obtain DCU = S([]), where

S(X:BExN) = g, ordli,s) - S(lis) & X)+
(i,8) ® X — del(i,s)- S((i,s) © X)
This the specification of a place. So any order will eventually be delivered.

Although we are now convinced that DCU = S([]), we only have given a reasoning why this should
be true. We now prove this by proving the bisimilarity of Q(n, k, m, X) and S(X) with the cones and
foci method, with invariant m —n + ko = Z(i,” ©xS* X((i,s)) of Q and state mapping h defined
by h({n, k,m,X) = (X).

1. Q(n,k,m.,X) is convergent with the smallest well-founded order that satisfies (n < o = (n +

o,k +1,mX) < (n,k,m,X))A(k >0=(nk—1,m+0,X) < (nk,m,X)) (which is well-
founded as in any chain 2 x (o — n) + k decreases and has a lower bound).

2. n<a=hnkmX))=h(n+ok+1,mX)) and k > 0= h({n,k,m, X)) = h({n,k —
1,m+ 0, X)), which is trivially true.

3. true = trueand m > 0A (i,8) ©@ X = (i,s) © X, trivial.

4. n>ark=0Atrue= trueandn > aAk=0A(i,s) @ X = m > 0A (i,s) ©X, trivial with
n2ahk=0=m-a>3, e xsxX((is)=>m>0

5. Trivial, as the action parameters do not depend on m,k,n or X.

6. true = h((n — s,k,m, (i,s) ® X) = ((i,s) ® X)) and (i,s) @ X = h((n — s,k,m,(i,5) © X) =
({1, 8y © X)), trivial.

v{ord,del} (P{supord|si—vr,supdel|so—<>1'}(Dc(n’ m, X) l.l. S(k) + S(k) ”_ DC(nv m, X) + DC(”v m, X)lS(k)))
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11 Example: Guarded Command Language

Given the following multiprogram we wish to determine its termination behaviour by transforming it
to a process algebra expression.

|[ const valy, val. : bool;
var b,c: bool;
| {b=vwaly Ac=wval.}
[ if b — skip
fi

; ci=true

Il

[ if ¢ — skip
fi

7 bi=true
Il
I

First we translate the (global) variables in the following way:
VarB(id : Z,val : B) = 7g(id,val) - VarB(id,val) + _,. 5 55(id,b) - VarB(id,b)
Next we translate the combination of the if and the assignment by process S.
S(idy : I,idy : ) = rp(idy, true) - sp(ids, true)

The full translation then becomes as follows:

P(valy : B,val. : B) = Vy(Tc(VarB(idy,valy) | VarB(idc,vale) || S(idp, id.) || S(ide, ids)))
with V = {} and C = {Fg|rg — 7,38|sg — 7}

Now we can calculate with this expression:

P{valy, val.)
= VyTc(VarB(ids,valy) || VarB(ide,valc) || S(ids, id.) || S(idc, ids)))
= waly=t— 7-Vy(Lc(VarB(idy,valy) || VarB(id.,val.) || sp(idc, true) || S(id., idp)))+
vale =t — 7- Vy(Te(VarB(idy, valy) || VarB(id.,val;) || S(ids, idc) || s5(tds, true)))+
valp =t Aval. =t — 7-Vy(Lc(VarB(ids,valy) || VarB(ide,val.) || sp(ide, true) || sp(idy, true)))
= wvaly— 7 (7- Vy([Tc(VarB(idy, valy) || VarB(id., true) || S(ide, idp)))+
vale — 7+ Vy(Cc(VarB(idy, valy) || VarB(id., val.) || sp(idc,true) || sp(ids, true))))+
val, = 7-(7- Vv (Le(VarB(idy, true) || VarB(id.,val.) || S(idy, id.)))+
valy — 7 - Vy (Lo (VarB(idy, valy) || VarB(id., val.) || sp(idc, true) || sp(ids, true))))+
valpAvale > 7-(1-74+7-7)
= wap—T1-(7-7-THvale -7 (T T+7T-T))+
vale > 7- (1 -7 -THvalp > 7-(T-7+7-7))+
valp Aval, — 7
= waly — 7 (T +val, — 7)+
vale — 7- (T +valy — 7)+
valy Aval, —» 1
valy = 7 (t Vval, - 1)+
val, = 7- (t Vvalg — 1)+
valg Aval, - T
valy — 7+ vale — 7+ valy Aval, — 7
valp Vvalc V (valy Aval) — 7
valyVval, —» 1



As could be expected, the multiprogram only terminates if val, or val. holds (or both). Otherwise
both subprograms deadlock and thus the multiprogram itself as well.

12 Alphabet axioms

As the linearisation of parallel expressions has the tendency to significantly increase the amount of
memory needed to store resulting expressions and often such expressions are enclosed by for instance
restriction operators, one wishes to be able to remove as much of the (sub)expressions as possible
before elimination of parallel operators. To help this process we give a list of alphabet axioms, which
can be used to easily push certain operators deeper into an expression to (partially) effectuate its
behaviour and possibly limiting the increase in memory needed for linearisation.

Definition 12.1. Let p,p’ € Tpc and m € B(A). We define the alphabet a, (p) of a process p by
(p> v = p(m) € ou(p)) A (pop = {p(m)} U au (') € au(p)).

Note that the above definition is in terms of the semantics. This suits us when proving soundness,
but during linearisation one probably wants an axiomatic definition. Although we do not give such
a definition here, we do want to note that in practice it is probably well acceptable to use an over-
approximation for o, (i.e. some &, with V(v (t) C a,(t))), as if the axioms presented below hold for
such an over-approximation, they will certainly hold for «,,.

Definition 12.2. Let a,b € My, v,w € B(N4) and V' C B(N,). We define the set (V) of actions
in a set of bags V as follows:

NV)y={alacvAveV}

Definition 12.3. Let a,b € B(NV4) and V C B(N4). We define the set || (V) of subbags of bags in
set Vbyd(V)={blaeV AbCa}.

Definition 12.4. Let S,T besetsand F': S — T. Also, let s € S and t € T. We define the dom(F)
and rng(F) as follows:

dom(F) = {s|3wer((s,t) € F)}
rng(F) = {t|3ses((s,t) € F)}

Note we write SNT and SUT while we actually mean a (syntactic) set U such that [U] = [S] N [T]
or [U] = [S] U [T] respectively.

With these definitions we have the following alphabet axioms:

VAl Vy(z)=z if a,(z) C[V]

VA2 Vy(z)=6 if [V]na,(z)=10

VA3 Vv (Vvi(z)) = Vvar (z)

VAL Vy(z|ly)=Vv(z || Vv () & (VD V']

CAl To(@) =z if dom([C])N I(aw(z)) =0

CA2 Te(Te(zx)) =Touc(z) if N(dom([C])) NN (dom([C'])) =0 A N(dom([C])) Nnrng([C']) =0
CA3 Tolzlly)=z|Tco(y) i I(dom([ChH)N Y(aw(z)) =0

CA4 Te(zfly)=Tclz | Toly) if N{dom([C])) nrng([C])=0

DAl dg(z) =z if [HInN(aw(z)) =0
DA2  By(z) =

=6 if Voea,(z)(v D [H] #0)
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DA3 a (0 (2)) = Ogrum (x)
DA4  Oy(z || y) =0n(z) || Ou(y)

TAl  7(z) =z i [[]nN(aw(z)) =
TA3  71(7y/(2)) = T10r (2)
TA4  7i(z |ly) = 71(z) | 72 (y)

RAl  pr(z) =z if dom([R]) "N (a(z)) =0

RA2  pr(pr(z)) = prur (z) if dom([R]) Ndom([R']) = B A dom([R]) N rng([R']) =

RA3  pr(pr(2)) = pro(z) if [R"] = {{a,b) | ({a,]) € [R] Aa & (dom([R']) Urng([R])))V
({e,b) € [R] A{a,c) € [R'])V
({a,b) € [R'] Ab & dom([R]))}

RA4  pr(z || y) = pr(z) || PR(Y)

Vel Vy(Teolz
VC2 Fc(Vv(I

;g Vv To(Vvi(z) if V] = (oulymIchoue V]

VD1 Vy(Ou(x)) =
)) 4
) 2

Vv(z) if dom(C)NnY(V) =

(Vv (z))

Vvi(z) if [V']={v|ve[VIAN({v})n[H] =0}
Vvi(z) if V'] ={v|ve [VIAN({v})n[H] =0}
(Vv (2)) o [V']={v|8(v,[I]) € [V]}
pr(Vv:(z)) i [V']={v]|([R]ev) € [V]}
Te(0u(z)) if (M(dom(C))Urng(C))NH =0

6 (z) if N(dom(C))C H

VD2 Vy(0x(z
VD3 0u(Vv(z
VI Vy(ri(z)) =
VR Vy(on(z) =
CDl  8x(Tc(z)) -
CD2 T¢(dg(z)) =
CT1 71{Te(x))
CT2 Te(ri(z))
CRI  pr(Tc(z))
CR2 To(pr(x))

=Te(r(z)) if N (dom(C))Urng(C))NI=10

=711(x) if N(dom(C)) C I

=Tc(pr(z)) if dom(R) Nrng(C) = dom(R) NN (dom(C)) = rng(R) NN (dom(C)) = 0
= pr(z) if N(dom(C)) C dom(R) AN (dom(C)) Nrng(R) =

DT Ou(ri(z)) =71(0u(z)) if I]N[H]=

DR 0Ou(pr(z)) = pr(On/(z)) if [H'] ={v|([R]ev) € [H]}

TR 71(pr(z)) =P r(tr(z)) if[I] = {[R]*(a) |a € [I']}

Table 3: GenSpect Alphabet Axioms
To prove the soundness of these alphabet axioms, we use a different approach as before, except for

the axioms containing a parallel operator. As the operators used in these axioms are all defined in a
similar way, namely:

T C(m) x5 C(m)
— oy C(m p— m
0@)™™ v o)™ o)

If we now wish to prove an axiom O1(...0n(z)...) = Onq1(...On/(z)...), we get the following:

. Ol( .0,(z)...) = v, which means that Oa(...On(z)...)—> v ACi(m1) Am = fi(mi) ...
2% v ACh(mp)Amy_1 = fo(my,) and therefore Cn+1( n)/\ ACn (frr—1(. .- frgr(mn)...)
and m = fi(... fat1(mys)...) and Ony1(... On(z)...)—>

o Etc.

So what really has to be proven is that for each m, such that z—— v Vz—5z’, it holds that C, (m)A

o ACLH(Sf2(- - fa(m))) = Cor (M)A ACng1(fat2(. - far(m))) and Ca(m)A. .. ACL(fo(. .. fu(m))) =
fi(e. . fa(m)) = fasi(.. fn (m)).The proofs for the alphabet axioms are given in Appendix C.
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13 Future work

Although we have introduced a process algebra and have proven its axiomatisation to be sound and
(relatively) complete, it might not be precisely what one wants in practice. Besides the addition of
axioms for recursive specifications and perhaps completeness proofs for these specifications as well as
for the use of (rooted) branching bisimulation, we consider the addition of the empty process e (or
skip) a desired step, as it is a quite natural and practical building block. Unfortunately, this will
require all soundness and completeness proofs to be rewritten. Another highly preferred addition is
that of time. Here, a choice will have to be made between relative and absolute time, and should only
require additions to the already given proofs. Also, one will have to think about the exact meaning
of a multiaction in a timed algebra.

Of course, for this algebra to be really of practical use, a number of tools will have to be written,
such as a lineariser, a state space generator and tools to convert higher level modelling languages to
equivalent algebraic specifications.



35

A Soundness proofs

The structure of each of these proofs is the same, namely:

e A relation R is given for the axiom. For an axiom t = u, the relation R is the minimal relation
that satisfies tRu A pRp A (qRr < rRq) A E, for all p,q,7 € Tp. and for all instantiations of
process variables in ¢ and u. E is true, unless it is explicitly defined otherwise in the subsection.

e For each conjunct of the definition of R it is shown that the properties that define a bisimulation

hold.

It is clear that if this is done, R is proven to be a bisimulation relation.

To shorten the proofs and get rid of trivial facts, that would otherwise be repeated in every sub-
section, we do not define R explicitly (as it is always of the form given above) or prove the conjuncts
pRp and qRr & rRq (and E, if it is true). The proofs of these conjuncts are trivial and therefore not
given at all.

When we say a process cannot terminate in any of the subsections, we mean that there is no m for
which = v holds for that process. (So it could very well be that the process can indeed terminate,
but not in one “step”.)

Al MAl a={a)
la]

¢ a5 v, which means that m = [a] and (a)—> v’

{a)-"4 v, which is the same as the previous case

a—"%p, which is not possible

{(a)"p, which is not possible

A2 MA2 7= )
This proof is similar to that of axiom MA2 with m = |].

A3 MA3 (T, 5)=(b,d)

Both (E’,?) and (_b),—d') cannot do any transition. They can only terminate with [[(E',‘l;)]] and
_—

[(v,7a)] resp., which are equal.

A4 Al z+y=y+z
e p+ g v, which means that

e p= v, which means that g + p— v/, or

e ¢-=s v, which means that g + p—> v/
o g+ p—=5 v, symmetrical to the prove above
e p+qg—=r, which means that

e p"r, which means that ¢ + p—r, with rRr, or

o ¢-r, which means that ¢ + p—r, with rRr

o g+ p=sr, symmetrical to the prove above
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A5 A2 z4+(y+2)=(z+y) +2
e p+(q+7)—= v, which means that
e p= v, which means that p+¢— v and (p + q) + r—= v, or
o ¢+ v, which means that

e ¢ v, which means that p + g— v and (p +q) +r—= v/, or
e =5/, which means that (p + q) + p—= v’

p+q+ T2, symmetrical to the prove above

p + (g + )5, which means that

e p-=5r', which means that p 4+ g—' and (p + q) + r—=r', with r'Rr/, or
o ¢+ r—"5r', which means that
e g—>r’, which means that p + ¢—>r' and (p + g) +r—>7’, with r'Rr’, or

o 721/ which means that (p + q) 4+ r——r', with 'Ry’
e (p+4q)+ r—=r/, symmetrical to the prove above

A6 A3 z+z==x

p + p—> v, which means that p— v’

p—= ¢, which means that p + p—> v

o p+p-5p', which means that p-—-p’, with p’ Rp’

p—-p’, which means that p 4+ p—p’, with p’Rp’

AT A4 (z+vy)-z=z-2+y-2
e (p+g)-r-"5 v, which is not possible
e p-r+4q-r— v, which means that
e p-r— /, which is not possible, or
e q-r- v, which is not possible
e (p+q)-r-"5r', which means that
e p+q¢—5 v Ar' =r, which means that
e p—= , which means that p- r——r and p- r + q - r——r, with 7'Rr, or
e ¢ v, which means that ¢ - r—=r and p- r + q - r—=r, with +'Rr, or
e p+q—5¢ At =q -r which means that

o p4¢, which means that p-r—=¢' -rand p-r +q-r—5q' -7, with 7’Rq’ - 7, or
e ¢—4¢', which means that ¢- r—¢' -r and p-r + q-r—=¢' -7, with #’'Rq' - 7

sp-r+gq- r—=r', which means that

e p-r—"5r', which means that

o p= V Ar' =7, which means that p + g—= v and (p + q) - r—r, with r'Rr, or
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o p-"5p' At = p' -7, which means that p+ g—>p’ and (p+q) - rZ5p’ - r, with ' Rp’ - T,
or

o ¢- 57, which means that
e ¢ v Ar/ =r, which means that p+q¢— v and (p+ q) - r-=57, with ~'Rr, or
e ¢-5¢' At = ¢ -7, which means that p+q—>q and (p+4q)-r-Zoq - r, with r'Rq’ - 7
A8 A5 (z-y)-z=z-(y-2)
e (p-gq)-r—=s v, which is not possible
e p-(g-7)-2 v, which is not possible
e (p-q) 7=, which means that

e p-g— v, which is not possible
e p-g—5q A7 =¢ - r, which means that
® p—5 v Aq = q, which means that p- (g-7) g7, with "Rq -7, or
e p—5p' Aq' =p' - q, which means that p- (¢ )-"sp’ - (g - 7), with P'R(p’ - q) - 7

A9 A6 z4+d6=z

e p+ 6= v, which means that p—> v
e p— v, which means that p + §—» v

o p+ 6-"5p', which means that p—p’, with p’Rp’

p—5p', which means that p + §-">p/, with p’Rp’

A10 A7 d-z=94

Both 6 - p and § cannot terminate or do any transition.

All Cl1 t—-z=1zx

e t— p-= v, which means that p-™ v’
m . m
e p—> v/, which means that t —» p— v
e t— pp/, which means that p——>p’, with p'Rp’

e p-sp/, which means that ¢ — p-">p’, with p’Rp’

Al12 (C2 f—z=$

Both f — p and ¢ cannot terminate or make any transition.
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Al13 SUM1 S,pr==z

Note that p cannot contain d as it is a substitution for z.
o ¥,.pp2 v, which means that 3..pple/d]-— v and p— v/
e p-™ , which means that 3,.pple/d]—— v and ¥_,.p p— v
e 3, pp—>p', which means that 3e.pple/d)—p' and p—>p', with p' Rp’

o p-2p, which means that 3..pple/d)—p' and 341 p—5p’, with p'Rp’

Ald4 SUM3 S ,pp=Y.pp+ple/d witheec D
Assuming e € D. .

o 3,.pp ', which means that Yy, p + ple/d)-— v

o 3 ,.pp+ple/d"= v, which means that

o Capp— v, or

e ple/d]—> v, which means that SupP— v
o ¥ ,.pp—>p, which means that 3, pp + ple/d]=-p', with p'Rp’
e > .pP + ple/d|—>p', which means that

¢ Zd:D pﬂ)pl, with P’Rpl, or
e ple/d]—>p’, which means that 3., p—=p, with p’ Rp'

A15 SUM4 3 uplp+a)=2apP+2and
e 34 p(P+g)—> v, which means that 3e.p((ple/d] + qle/d)= v') and
o ple/d]-=» v, which means Yy, p- v and 3y.p P+ Y og.p I Vs OF
e gle/d]=> v, which means 3 ;. p - v and > y.p P+ L ap g v
o Y ,pP+ > 4pd— v, which means that
o ¥, pPp— v, which means that 3..p(ple/d]— v') and ple/d)+gle/d)—> v and 3_,.p(p+

) ¥, or
¢ Q™ , which means that 3..p(gle/d]"> v) and ple/d) + gle/d|= v and 3 g.p(P +
9=
e 3 ,.p(P+q)—>p, which means that 3..p((ple/d] + gle/d]))"p') and

o ple/d]-"5p’, which means 3", p p—=p’ and Y_g.p P+ Lg.p 9——p', With p'Rp’, or
o dle/d-Topf, which means . g9 and Sgpp+ Tp -8, with B
© > upP+2ap g-"sp', which means that
e Y ,.pp—p', which means that 3..p(ple/d)-">p’) and ple/d] + gle/d)-"=p' and 3_ ;. p(p+
gq)—>p', with p'Rp’, or
o ¥,.pd—=p', which means that 3..p(qle/d]-—>p’) and ple/d] + gqle/d)=5p’ and 4. p(p +
g)-p', with p'Rp’
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A16 SUM5 (Y ,pp) v=.p® y)

Note that g cannot contain d as it is a substitution for Y.
* Both (3_,pp)-gand 3", ,(p- q) cannot terminate
¢ (X 4pP) g7, which means that

® > upP—> v Ar = g, which means that 3..p(ple/d]-=> v) and ple/d) - qle/d)-"+q and
> a:p(P- 9)—>q, with 7Rq, or

® 3. pP—=p' Ar = p'-q, which means that Je:p(ple/d]—>p’) and ple/d)- g[e/d]-">p' - q and
2 ap(P-q)—>p - q, with rRp’ - ¢

* > 4.p(p-q)"5r, which means that 3,.p((ple/d] - gle/d]))=5r) and

e ple/d-= v Ar = g, which means that > 4pP—= v and (X 4.pP) - g—>q, with rRz, or
e ple/d)-=5r' Ar = r'.q, which means that > 4p P—>r and (X4.pP)-q—>7'-q, withrRr' -q

AT SUM6 (X .pp)llyv=Y4.p@ly)

Note that g cannot contain d as it is a substitution for y.

e Both (3_,.pp)|Lgand 3, r(p|l g) cannot terminate

o (34pP) L g—-r, which means that

. Zd:DPﬂ) v  Ar = q, which means that 3e:D(p[e/d]—"l> v) and ple/d) []_q[e/d]—-—m-»q and
> a.p(pl @), with rRgq, or

®> D pop Ar = P’ || g, which means that He:D(p[e/d]Lp”)/\p’ = p"” and ple/d] H_q[e/d]ﬂ»p” I
g and 3, p(p|L9)—>p" || g, with rRp" ||

e ¥ .p(Pllg)">r, which means that 3..p(ple/d] || gle/d]==r') Ar = 2 and

e ple/d-=s v A1’ = g, which means that > 4pP— v and (> app) lLg—>q, with rRq, or

e ple/d|—p' AT’ = p' || q, which means that >upP—p' and (Cup?) La—=p" || g, with
TRy || q

A.18 SUM7 (Zd:D p)|y = Zd:D(ply)

Note that ¢ cannot contain d as it is a substitution for y.

e (X 4.pP)lg= v, which means that ", ,, = vV A" v Am = m/®n and HC:D(p[e/d]ﬂ; V)
and ple/d)\gle/d]= v and 32,5 (plg)" v

¢ > 4.p(plg)— v, which means that 3..p(ple/d]|q[e/d]— v} and p[e/d]i VAGs VvV Am =
m'@nand 34.pp— v and (X4 pp)lg— v

* (Zd:D P)|<11’7‘, which means that

. Ed_,Dpi V ANg"s¢' Am =m'@nAr = ¢, which means that He;D(p[e/d]ﬁ v') and
ple/d]lqle/d) ¢ and 3 .p(plg)—>¢', with rR¢', or
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. Zd:Dp—"l’»p' Ag— v Am =m'®@nAr = p/, which means that Bezp(p[e/d]i)p’) and
ple/dllgle/d]=>p' and ¥y p(plg)—=p', with rRp’, or

e Sup pap Ag-Sog' Am=m/@nAr=p | ¢, which means that He:D(p[e/d]i-»p’) and
ple/d)lqle/d)-"p' || ¢ and Fy.p(pla)—>p' || ¢', with rRp' || ¢

. Ed:p(p|q)—m—>r, which means that 3..p(ple/d]|gle/d]—=r') AT =1’ and
¢ p[e/d]_m_l) VAgeg Am = m' @nAr = ¢, which means that 3, ,p— v and
(Ed:D p)lqﬂ’qla with TRq,, or

. p[e/d]—nl’ep’/\q-l» v Am = m'@nAr’ = p', which means that 3", n p—p’ and (3 .p p)lg-—p,
with rRp/, or

. p[e/d]in-i»p’ Ag—g Am =m'®&@nAr’ =9 | ¢, which means that Zd:Dpﬂrp’ and
(CapPla—p || ¢, with rRp' || ¢'

A19 SUMT z|(C.pq) = >ap(zle)
This proof is symmetrical to the proof of axiom SUMT.

A20 CM1 zl|ly=zlly+ylz+zly
We define E as p || ¢Rq || p (for all p,q € Tyc).

e p| ¢ v, which means thatpi)\//\qi» VAm=n®n and plg— v and pllg+qllp+
ple— v

e pllg+q| p+plg— v, which means that

e p}l ¢ v, which is not possible, or

e q| p—> v, which is not possible, or

e p|¢—™ v, which means that p— v /\qi» VAm=nén andp| ¢— v
e p || ¢=>r, which means that

e p—+ v AT = g, which means that p | ¢—gand pllg+qlp + plg—"+g, with rRg, or
e ¢— ¥ At = p, which means that ¢ |p—pandpla+qglp + p|lg—p, with rRp, or

o p-™sp! AT =p/ || ¢, which means that p | ¢-=p' || g and p| g+ q|Lp+plg—¢" || ¢, with
rRp' || ¢, or

e ¢s¢' At =p || ¢/, which means that ¢ | p"¢’ || p and p|Lg +q [P +plg—¢ || p, with
TRq || p
epllg+allp+ plqﬂw, which means that

*p U_q—’—n—w, which means that
o p— v AT = g, which means that p || g—q, with rRg, or
e p7p' Ar =9 || g, which means that p | g—=p' || g, with rRp’ || ¢, or

e q|| p-">r, which means that
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e ¢-=s v AT =p, which means that p || ¢—sp, with rRp, or
e ¢-"5¢' AT =¢' || p, which means that p || ¢">p || ¢, with 7Rp || ¢/, or

i P|q£>r, which means that

o p—p' Ag=g' Am =n@n' Ar =p || ¢, which means that p || ¢g—=p' || ¢, with
TRy’ || ¢, or

e p- vV Ag=>¢' Am =n@n' Ar = ¢, which means that p || g—>¢’, with rRq/, or

¢ p-p' Aq=o V Am=n@n' Ar = p’, which means that p || g—=p’, with »Rp’

e p || ¢ v/, which means that p—— /Aqi» VAm=n®n and q || p—> v
e q || p— v, which is symmetrical to the proof above
e p || ¢—r, which means that

o p=5 v AT = g, which means that ¢ || p—¢, with rRg, or
o ¢ v A7 = p, which means that ¢ || p—p, with rRp, or

p-2p’ Ar =p' || q, which means that q || p—q || p', with rRq || p’, or

¢-=5¢’ Ar =p || ¢, which means that ¢ || p——¢' || p, with rRq’ || p, or

P2 vV Agtog' Am=n®n' Ar =q', which means that q | p—¢’, with 7R/, or

p—op' Ag— v Am =n@®n' Ar = p, which means that g || p—p', with rRp’, or

p-'bp’/\qi»q’/\m =n@n' Ar = p' || ¢/, which means that ¢ || p——¢' || p’, with rRg’ || P/,
or

e q || p-Zsr, which is symmetrical to the proof above

A21 CM2 alz=azx

e Both a| p and a-p can not terminate
e a| p=sp/, which means that "> v Ap’ = p and a-p—p, with p'Rp

o a-p-=p', which means that a—= v Ap’ = p and a | p—>p, with p'Rp

A.22 OM3 az|y=c(z|vy)

e Both ap| ¢ and a:(p || g) can not terminate

o op| ¢-=¢', which means that a-p-"5p'A¢’ = p' || gand o= v Ap' = pand a-(p || 9)">p || g,
with ¢'Rp || ¢

o a-(p || g)-=¢', which means that a—> v’ A¢' =p || g and ap-Tp and a-p| ¢—>p || g, with
qRp|q
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A23 CM4 (z+y)llz=cz| 2+yl 2
e (p+q)| 7 can not terminate
e p| 7+ q| 7 can not terminate as
e p| r can not terminate and
e g|[/ r can not terminate
o (p+gq) | r——>r', which means that
¢ p+q—= v Ar’ =r, which means that
e p™= v, which means that p|| r—r and p||.r + q || r—>r, with r'Rr, or
e ¢ v, whichi means that g | r~—»r and p|| r + ¢ [Lri)r, with r'Rr, or
e p+qg-2+¢ Ar' =g || r, which means that
e p75¢’, which means that p|[ 7——¢' || 7 and p[ = +q[ 72+¢ || v, with Rq’ || 7, or
o ¢-5¢', which means that ¢|| "¢’ || r and p Lr+gq | 7-Zsq || r, with #'Rq’ || r
e p| 7 +gq| r-">7', which means that

e p| =57/, which means that
o p=5 ¢ Ar' =r, which means that p + ¢g— v and (p + q) || r—r, with r'Rr, or
e p5p’ Ar! = p’ || r, which means that p + g—=p’ and (p + ¢) || r—=p’ || r, with
p
rRp' || r, or
e g| r—=>', which means that
o ¢ v Ar' =r, which means that p + ¢ v and (p + q) | r—r, with 7'Rr, or
o ¢-5¢' A7 = ¢ || 7, which means that p4+¢—-¢’ and (p+q) || r—=¢' || r, with 'Rq’ || r

A24 CM5 az|B=(a|B) -z
¢ Both a-p|B and («|B) - p cannot terminate

e a-p|3-C+p', which means that ap"SpABS v Am = n@n' and a—s v Ap' = p and
a|B-" v and (a|B) - p—=p, with p'Rp
o (a|B) - p—-p', which means that a|8- v Ap' = p and a-"> \//\,BLI» JAmMm=n®n' and

a-p—-p and a-p|B">p, with p' Rp

A25 CM6 oalfz=(f) z

Proof is symmetrical to the proof of axiom CM5.

A26 CM7 az|By=(alB) (z]y)
e Both ap|B-q and (@|B) - (p || ¢) cannot terminate
o a-p|B-¢—-r, which means that a-p—n—>p'/\ﬁ-q-'ll—>q'/\m =n@n'Ar=9p' || ¢ and a—s VA =p
and 8" v A¢' =g and |- v and (a|B) - (p || 9)—p | ¢, with rRp | q

e (a|B)- (p || g)">r, which means that a|3— v Ar =p | gand a— .//\,B—"—,» VAm=non
and a-p—p and B-g¢——q and o-p|B-g—=p || g, with rRp || g
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A27 CM8 (z+vy)|z=r=z|z+ylz
e (p+4q)|r-"5 v, which means p + g— v Ar vAm=n®dn' and
e p—" v, which means plr—> v and plr + gq|r-== v, or
e g v, which means g|r-= v and p|r + gdr= v
e p|r + g|r—== v, which means that

e p|r= v, which means p—=> VAT Am = n®n’ and p+g-— v and (p+q)jr—> v,
or

e glr™ v, which means ¢ v A" v Am =n®n’ and p+¢—"> v and (p+q)r" v
e (p+ q)|r—5r', which means that
e p+qg-" VvV Arlsgd Am=ndn Ar' =q', which means that
e p—» v, which means that pjr—=¢ and p|r + q|r——+q’, which 7'Rq’, or
e ¢ v, which means that glr—q' and p|r + glr—¢’, which r'Rq’, or
e ptgHgd AtV Am=n®n' Ar’ = ¢, which means that
o p—sp' Ag’ = p', which means that p|r——p’ and p|r + q|r-"=p', which r'Rp', or
e ¢—p' A¢ = p’, which means that qlr—=p’ and p|r + g|r-—p’, which r'Rp’, or
o p+g-—p Ar-log Am=n@n’ At =p | ¢, which means that

e p—p" Ap’ = p”, which means that p|r-"sp” || 7' and p|r + g|r"p’ || +, which

" Rp" || ¢, or
e g——p" Ap' = p", which means that glr—sp” || ' and p|r + q|r">p’ || +, which
T/Rp" || ql

® p|r + g|r—>r', which means that
o p|r-"sp' Ar' = p’, which means that

e p5 Vv Arlsg Am=nd®n Ap = ¢, which means p + ¢ v and (p + ¢)jr2o¢’,
with v Rq’, or

e p-g ATV Am=n®n Ap = ¢, which means p + ¢——¢’ and (p + ¢)|r—¢/,
with " R¢’, or

o p—5p" Ar=5¢'Am = n@n’/Ap’ = p" || ¢, which means p+¢——p" and (p-+q)|r-"=p” ||
¢, with 7'Rp” || ¢

e glr=5p Ar' =p’, which is symmetrical to the previous

A28 CM9 z|(y+2) =zly+ x|z
Proof is symmetrical to the proof of CM8.
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A.30 CD1 fla=6

Both 8| and é cannot terminate or make any transition.

A31 CD2 alf=9¢

Both |6 and & cannot terminate or make any transition.

A32 VD Vy(6) =46

Both Vv (6) and § cannot terminate or make any transition.

A33 V1 Vy(a)=a if u(ad) € [VIU{l}
Assuming p([o]) € [VIU {{}}:

o Vi ()2 v, which means that a—" v’

e o™ , which means that Vy ()" v

Both Vy(a) and a cannot do any transition.

A34 V2 Vy(a)=6 if p(fe]) € IVIVL]

Assuming p([e]) € [V] U {{1}, both Vy(a) and § cannot terminate or make any transition.

A35 V3 Vy(z+y)=Vy(z)+Vv(y)

o Vvip+ q)—m—> v, which means that p 4 = v Ap(m) € [VIU{[]} and

o p-=s v, which means that Vv (p)—— v and Vv (p) + Vv (g)== v, or
o ¢ v, which means that Vv (q)— v and Vv (p) + Vv (g v

e Vy(p) + Vy(g9)—> v/, which means that

e Vy(p)-2 v, which means that p— v A p(m) € [V]U{[]} and p+ ¢ v and Vy(p+

q)— v, or

e Vy ()= v, which means that ¢— v A p(m) € [V]U{[]} and p+ g v and Vy(p+

9V

e Vv (p+ g)—>r, which means that p + g Apu(m) € [VIU{}Ar =2 and

o p-™p' Ar! = p/, which means that Vy (p)——p’ and Vv (p) + Vv (g)-=-p', with rRp’, or

o ¢ A7’ = ¢, which means that Vv (q) ¢ and Vy(p) + Vv (q)2+¢', with rRq

e Vv (p) + Vy(g)—>r, which means that

o Vy(p)-2op' Ar = p/, which means that p—p” Ap(m) € [V]JU{[]} Ap' = p” and pHg—op”

and Vy(p+ Q)—T—n—>p”, with rRp", or

o Vv(q)=+¢' AT = ¢, which means that g—=q" Au(m) € [VJU{[}}A¢g’ =¢" and p+a—=q"

and Vy(p + q)—q", with rRq"
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A36 V4 Vy(z -y)=Vy(z) Vv(y)
Both Vv (p - ¢) and Vy(p) - Vv (g) cannot terminate.
* Vv (p-g—>r), which means that p- g"r' A u(m) € [V]U{[]} Ar = Vy (') and

e p— V A7 = g, which means that Vy(p)-=» v and Vv (p) - Vv(g)=+Vv(q), with
rRVv(q), or '

e p-p'Ar' = p'-q, which means that Vv (p)—Vy (p') and Vy (p)-Vv ()= Vv (')-Vv(g),
with rRVy (p’ - q)

o Vv (p) - Vv(g)-Zsr, which means that

o Vy(p)-"s v Ar = Vy(q), which means that p"= v Au(m) € [V]U{[]} and p-¢—>¢ and
Vv(p- q)—Vv(g), with rRVy(g), or

o Vv(p)-"5p Ar =p' - Vv (q), which means that p-—=p” A u(m) € [V]U{]} AP = Vv (")
and p- g—-p" - q and Vy(p - 9)—=Vv (9" - q), with TRV (p" - q)

A37 V6 V(T .pp) = ap(Vvip)

e Vv(>up p)= v, which means that Ed:Dpﬂ v Ap(m) € [V]U{[}} and 3e.p(ple/d]-= V)
and Vy (ple/d])— v and 34 (Vv (p)) = v

. Zd:D(Vv(p))i» v, which means that 3.p (Vv (ple/d])—= v') and ple/d] v Au(m) € [V]U
{[]} a‘nd ch:Dpﬂ> ‘/ a'nd VV(Zd:Dp)L /

e Vv(>up p)i)p', which means that Zd:Dpi"—»p’ A p(m) € [V]U {]} and Ee:D(p[e/ﬂLp')
and Vv (ple/d))—>p' and 34 (Vv (p))—>p', with p' Ry’

. Ed:D(Vv(p))ﬂp’, which means that Ee;p(vv(p[e/d])i)p’) and ple/d] l»p’/\p(m) e [VIu{l}
and > ,.p p—-p' and Vv(zd:Dp)l»p', with p'Rp

A.38 DD 0y(6) =6

Both 9 (6) and 4 cannot terminate or make any transition.

A.39 D1 dg(e)=a i w(la))N[H] =10

Both 8y (a) and o can only terminate (with ol

A.40 D2 Ox(a)=46 if u([e])N[H] #0

Both 0y (@) and d cannot terminate or make any transition.

A.41 D3 8y(z+y)=0y(z)+0u(y)

Proof is similar to the proof of axiom V3.

A.42 D4 0Oy(z-y)=0y(z) - Ou(y)

Proof is similar to the proof of axiom V4.
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A.43 D6 0x(>,pp) = 4p(0u(D))

Proof is similar to the proof of axiom V6.

Ad44 TID 7(6) =6

Both 77(8) and 6 cannot terminate or make any transition.

A45 TI1 7{a)=p8 with [8] =6([c], )

Both 77() and S can only terminate (with 0(%1))_

A46 TI3 m(z+y)=T7(z)+1(y)

Proof is similar to the proof of axiom V3.

AA4T TI4 7(z-y)=7(z) 1Y)

Proof is similar to the proof of axiom V4.

A.48 TI6 TI(Zd;DP)iEd:D(TI(p))

Proof is similar to the proof of axiom V6.

A.49 RD pR(é) =4
Both pgr(d) and § cannot terminate or make any transition.

A.50 Rl prl(a)=0 with|[B]=[R]e[c]
Alelol)

Te
-—

Both pr(c) and S can only terminate (with i

A.51 R3 pr(z+vy) = pr(z) + pr(y)

Proof is similar to the proof of axiom V3.

A.52 R4 pr(z-y) = pr(z) - prY)

Proof is similar to the proof of axiom V4.

A.53 R6 pr(>.pp) = 4p(or(P))

Proof is similar to the proof of axiom V6.

A54 GD To(8)=6

Both pr(6) and 6 cannot terminate or make any transition.

A.55 G1 Tela)=p with [B] =[], [C])

Process I'c(a) can only terminate with ¥([e], [C]) and 3 only with [5], which are equal according to
the condition of the axiom.
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A.56 G3 To(z+y)=Tc(z)+Toly)

Proof is similar to the proof of axiom V3.

A57 G4 Te(z-y)=Telz)-Toly)

Proof is similar to the proof of axiom V4.

A58 G6 To(X,pp) = >,p(Tc®)

Proof is similar to the proof of axiom V6.

B Soundness proofs of 7 axioms

The structure of the following proofs is the same as before, except for the fact that we prove R to be
a branching bisimulation and rooted(t,u) (for axiom t = u).

Bl Tl z-7=1z
We define F as TRV

e p-TRp
e p-7 |, which is not possible
e p |, which means that p = v/, which is not possible
e p-T5p’, which means that
e p vV Ap' =7, with p’Rv, or
o p—p Ap/ =p" - 7, with p'Rp”, or
. pl)p', which means that p. 7—=p’ - 7, with p'Rp’ - T
e rooted(p - T,p), which is similar to the previous case
e TRY
e 7 |, which is not possible
e v |, which means that T—L vl
o 7p, which means that p = v' Am =[], with pRv’

o v5p, which is not possible

B2 T2 z-(1-(y+2)+y) =z-(y+2)
We define E as 7 (g + 1) + gRq + r for all ¢,r € Tpe.

ep-(t-(g+r)+gRp-(g+T)
e p-(7-(g+r)+4q) ], which is not possible
e p-(g+r) |, which is not possible
e p-(7-(g+7)+q)"5r', which means that
o p= v Ar' =71.(q+r) + g, which means that p- (g + r)-+q +r, with ' Rg+r, or
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o pnp' AP =9 (r-(g+7)+ g), which means that p- (g + r)—=p' - (g +r), with
rRp’ - (¢ + ), or

e p-(g+7)—r', which means that

e p v A1’ = g+ r, which means thatp-(v'-(q+r)+q)—’1‘—>r-(q+r)+q, with
Rt (q+7)+q,or

. p—"—lap’/\r’ =p'-(q +r), which means that p- (7 - (g+7) +q)—7—"—>p’- (T-(g+7)+aq),
with r'Rp’ - (7 (¢ +7) + q), or

o rooted(p-(7-{q+ 1) +q),p- (g+7)), which is similar to the previous case
e 7-(g+r)+qRg+r

7- (g +7) + g |, which is not possible

g+ |, which is not possible

7+ (g + 1) + ¢—>p, which means that
o 7-(q+r)sp, which means that
e 7= v Ap = q+r, which means that m = {] and pRg +r, or
o 759/, which is not possible, or

e ¢—p, which means that ¢ + r——p, with pRz

e g+ r—»p, which means that 7 - (g + r)—ﬂ—>q + r=5p, with pRp

C Soundness proofs of alphabet axioms

To prove the soundness of these alphabet axioms, we use a different approach as before, except for
the axioms containing a parallel operator. As the operators used in these axioms are all defined in a
similar way, namely:

5 v C(m) g Cc(m)
o)™ v o)X o(z")

If we now wish to prove an axiom O;(...Op(z)...) = Ont1(...On(z)...), we get the following:

o 01(...0n(z)...) 2+ v, which means that Oz(...On(z)...) =% v ACi1(m1) Am = fi(m4) ...
225  ACy (Mp) AMp—1 = fn(my) and therefore Cpy1(mn)A. .. ACw (far—1(- - - fat1(ma)...))
and m = f(... fay1(myn)...) and Opy1(...Ops () .. )= V

¢ Etc.

So what really has to be proven is that for each m, such that z—= v V z—-z’, it holds that Cn(m) A
o ACH(f2(o - fa(m))) = Cu(mIA. . ACni1(frya(. .. far(m))) and Co(m)A.. . ACL(fa(. .. fa(m))) =
[ fa(m)) = fria(... far(m)).

Lemma C.1. Let v € B(NV4). Also, let S C Ny. The following holds:
vNS=N{v})nS

Proof C.1. Induction on the structure of v. Case v = [|:
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Ins

{def. N}
0

{ calculus }
0ns

{ def. N}
N{IHns

Case v = [a] ® w:

(dl@w)ns
= {def. N}
wnS ifagsS
{alU(wnS) ifae S
= { induction hypothesis }
N({w}h)ns§ ifags
{a}{U (/1\[(?0}3)( n.s) ifae S
({a} UN({uw}))n S fags
({a} UN({u})) n({a}uS) facs$
{ calculus }
({a} uN({w})) NS
{ def. V' }
N({le]@ow}hnS

I

]

Lemma C.2. Let Ng = {n|n € B(VWa)A1l < |n|} and C: Ng — (NaU{7}). Also, let N'(dom(C))N
rng(C) = 0 and m,n € B(A). The following holds:

y(m @n, C) =v(m&~v(n,C),C)

Proof C.2. Induction on the length of n and by the cases of . Case |n| = 0:

v(m &n,C)
= {n=[}
Y(m @ [],C)
= { def. v}
’y(m@’y([],C),C)
= {n=[}
v(m ®~(n,C),C)

—

Case |n| > 0 and 3 o(n =n' @ 0 A I ayec(b = u(n') A Iz g x(n', d)))):

y(men,C)
-
= { take n’ and o with n = n' ® 0 A J(payec(b = p(n') A Iz px(n', 4)))) }
ymédn' ®o,C)
-
= { take (b,a) € C with b= u(n') A3z g(x(n', d)))), def. v }
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eS|

AL[ LIABE

—

[a{(d)] @ v(m@0,C)
= { induction hypothesis }
[a(d)] ® 7(m ©7(0,C),C)
{ .N'(do_r)n(C)) Nrng(C) =0, a € rng(C) }
Y(m & [e(d)] ®7(o,C),C)
= {def. yand a }
Ym®y(n' ®0,C),C)
= {def. n’ and 0 }
vY(m e 7(n, €),C)

- . .
Case |n| > 0 and 3nr o(n = 7' ® 0 A J(pmyec(b = p(n') A3z p(x(n', d)))), which is similar to the
previous case.

Case [n| > 0 and ~3pr o(n =n' @0 AJeec((c = (b,a) Ve = (b, 7)) Ab = pu(n') A3z gx(n, _d)))))

y(m&n,C) .
= {3 o(n=n"®0oAIcc((c=(ba) Ve=(b,7)) Ab=p(n') Ad5 _g(x(r', d)))), def. v }
Y(m & v(n,C),C)

C.1 VAl Vy(z)=z if a(z) C[V]

u(m) € V]
{al®) S V] )

p(m) € o (z) V u(m) € [V]
{ def. a, }

true V p(m) € [V]
{ identity V }

true

1]

C.2 VA2 Vy(z)=6 f[V]Ina,(z)=0

p(m) € [V]
{ def. a, }

p(m) € VI A p(m) € eu(2)
{ calculus }

u(m) € (IV] N (2))
{VInau() =0)

false

i

C.3 VA3 Vv(VVI (LE)) = Vanl(x)

u(m) € [V] A p(m) € [V']
{ calculus }
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pim) e (VIn[v'])
{ def. N}
p(im) e [VnVv']

Ca VAL Vvlz|y)=Vv(z | Vv(y) & $(V)C V'

We define E as Vy (p)RVv (Vv (p)) (for all p € Tp,c). The proof for this part is the same as the proof
of axiom VA3, as V Cy(V)and thus VNV' =V,

o Vv(p|l 99— v, which means that p || g— v Au(m) € [VJU{[]} and p-2+ v Ag- v Am =
n®oand o €| (V) and Vy:(g)—>= v and therefore p || Vv (q)— v and Vy(p || Vv(q))— v’

e Vv(p || Vv/(g))=> v, which means that p || Vy/(g)— v A u(m) € [V]U {} and p-> v A
Vyi(g)—=v Am =n@o and ¢ v A p(o) € [V']U{{]} and therefore p || ¢ v and
Vv(p | 9= v

o Vy(p || q)p', which means that p || ¢=p" A p' = Vv (5") A u(m) € [V] U{]}} and

¢ p™ V' Ap" = g, which means that p || Vv+(q)->Vv-(g) and Vv (p | Vv+(¢))=Vv(Vv(2)),
with p’RVv (Vv (q)), or

e ¢ v Ap” = p, which means that Vy:(g)— v and p | Vv/(g)—>p and Vy(p |
Vv:(9))—=Vv(p), with p'RVv (p), or

o pIp” Ap” = p" || g, which means that p | Vy/(g)—=p" || Vv/(¢g) and Vy(p |
Vvi(9) Vv (" || Vvi(g)), with p’RVy (p" || Vv(q)), or

o ¢-™5¢' Ap" =p| ¢, which means that Vv:(q)"=Vv:(¢') and p || Vv(g9)-p || Vv(¢')
and Vv (p || Vv/(q)) Vv (p || Vv:(¢), with ' RVv(p || Vv (q')), or

o p—p™ A q—é—>q’ Am=ndoAp’ =p” | ¢, which means that Vv (q)—-Vv(q') and

p || Vvi(@)-5p" || Vvi(¢') and Vv (p || Vv (9))=Vv (" || Vv:(¢)), with p'RVy (p" |
Vvi(q)), or

e p Vv Ag-5gd Am =n@oAp” = ¢, which means that Vy/(g)~—Vy(¢') and p ||
Vv(g9)">Vvi(¢) and Vv (p || Vv(9))-=Vv(Vv(¢)), with p’RVv(Vv:(¢)), or

e pp" Ag-2+V Am = n®oAp" = p”, which means that Vy.(g)—— v and p |
Vy+(q)-">p" and Vv (p || Vv:(g))—= Vv (p"), with p'RVv (p")

o Vv (o || Vv+(@))5p), which means that p || Vv:(9)Zp" Ap = Vv (p") A u(m) € [V] U {}
and

o p = v Ap” = Vyi(g), which means that p | ¢—¢ and Vy(p || ¢)—>Vv(q), with
p'RVvy(g), or

Vv ()= v Ap" = p, which means that ¢-" v A u(m) € [V'JU{[]} and p || ¢—>p and
Vv (p || 9= Vv(p), with p'RVv (p), or

p-Zsp™ Ap” = p" || Vv (q), which means that p || g—>p™ || g and Vv (p || 9)——Vv (p" ||
q), with p’ RVv (" || q), or

Vvl(q)i»q’ Ap" =p| ¢, which means that g2+¢" Ag' = Vvi(q") Ap(m) € [V]U {h
and p || ¢=>p || ¢ and Vv (p || 9)=Vv(p || ¢"), with P’ RVv(p || ¢"), or

p=op" AVyi(g)-¢ Am =n@oAp” =p" | ¢, which means that ¢——¢" A ¢’ =
Vvi(q") A ulo) € [V]U{{]} and p || ¢">p" || ¢" and Vv (p || ¢)—=Vv(p" || ¢"), with
p/va(p//I ” qll), or
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o p= VAV (g)—¢' Am = n@oAp” = ¢, which means that g—¢"'Ag' = Vv (¢")Au(o) €
[V]u{(} and p || ¢¢" and Vv (p || 9) Vv ("), with p'RVv (¢"), or

o p-p" AV (q)—= v Am = n®oAp" = p", which means that - v Aulo) € V' 1u{{]}

and p || g-p"" and Vv (p || g)"=Vv (p™), with p’RVy(p")

CAl To(z) =z if dom([CT)N U (o () =10

v(m, [C]) =m
{ def. v} .
~Inom=n®oA3cecc((c=(b,a) Ve=(b,7)) Ab=p(n) Az 5(x(n, d))))
{ u(n) €l (av(2)) }
=3no(m=nd®oA false)
{ calculus }
- false
{ calculus }

true

CA2 Teo(Te(z)) = Toue(z)  if N(dom([C])) N N (dom([C])) = 6 A
N (dom([C])) Nrng([C]) =0

Induction on the length of m and by the cases of v (with C’). Case |m| = 0:

i

]

]

v(y(m, [C']), [C]) = v(m,[C U C'])
{Im|=0}

oy, D, [C]) = (L. [ v C')
{ def. v}

I=1
{refl. =}

true

Case |m| > 0 and 3, o(m =n @0 A Jjpayec (b = p(n) A BQEB(X(% E)))))

¥(y(m, [[CI]])v [[C]]) = vy(m, IIC U C/]]) -
{ take n and o with m =n® oAy ayecr (b = p(n) A3z g (x(n, d WM}
1(¥(n ®0,[C']), [C]) =v(n® o, [CUC])
{ def. «, def. nand o }
Y(a(d)] & +(0, [C'D), [CD) = [a(d)] @ (0, [CU C)
{ a € rng(C), N(dom([C])) N rng(IC"]) = 0}
[a(d)] ® v(v(o, [C']. [C]) = [a(d)] @ v(0, [CUC])
{ induction hypothesis }
a(d)] @ (0, [cuC] = [a(d)] @7(0,[CUCT)
{refl. =}

true
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Case [m| > 0 and 3, ,(m = n® 0 A Jjp ryec: (b = p(n) A Elgeﬁ(x(n,j)))), which is similar to the
previous case.

Case |m| >0 and =3, o(m=n® oA Jeecr((c= (b,a) Vc = (b,7)) Ab = u(n) A 328 K(n, —2))))

Y(v(m, [C'D), [C]) = y(m, [C U CT) -
= { "Fnolm=ndoA3cc:((c=(bya)Vc=(b,T)) Ab=p p(n) A3z plx(n, d)))), def. v }
7(m, [C]) = ~(m, [CUC'])

Again induction on m (with C). Case 3, o(m =n® oA I yec(b = u(n) A 3zpx(n, d)))):

1(m, [C]) = (m, [CUCT) .
= { take n and o with m =n® 0 A Jjp ayec(b = p(n) A ngﬁ(x(n, )}
Y(n®o,[C]) =v(ndo,[CUCT)

{ def. v,def. nand o, c€ [C]=ce[CUC] }
[a(d)] ® (0, [C]) =[a(d)] & (o, [CLUC)

_{_} induction hypothesis } .
la(d)] @7(o, [CUCT) = [a(d)] ®7(o,[CUCT)

{refl. =}

true

Case Jno(m=n@ oA Jpneclb=p(n) Adz 5Kx(n, 7)))), which is similar to the previous case.

7(m, [C]) = v(m, [CUCT) .
{ _‘an,o(m =n®oA ElcEC((c = (bv a) Ve= <b’ T)) Ab= ( ) aieﬁ(X(n’ Q)))’
“Fno(m=n®oAdec((c=(ba)Ve=(b,7)) Ab=pu(n) Adz_gx(n, d)))), def. v}
{refl. =}

true

C.7 CA3 Te(z|ly)==zIToly) ¢ ${dom([C]))N Y (eu(z)) =10

o T'c(p || 9= v, which means thatp | g=== v Am = v(n, [C]) and p—= v A¢-= V' An = 0@’

and therefore Fc(q)v((i’Lc]]) v andp | Tc(g )oeW(o °D v, with m = v(n, [C]) = y(o® ', [C]) =
0®7(d',[C]) as 4 ({0}) CU(ow(p)) and thus § (dom([C]))N § ({0} =0

o p||Tel)> v, Wthh means that p—= v AT'¢(q)—> v Am = n®o and q—> v No' = (o, [C]
and therefore p || ¢°23 % v and Telp || )7 7(n@ [P Vywithm =n®o=n&(,[C]) =
Y(n® 0, [C]) as § ({n}) C¥ (0w (p))

o Tc(p || 9—>p', which means that p || g—p” Am =~(n, [C]) Ap' = Tc(p”’) and

e p—+ vV Ap” =qand therefore p || Telg)-"+T'c(q), with p'RT¢(q) and m = v(n, [C]) = n
as § ({n}) S (av(p)), 0

¢ g— v Ap” =p and therefore Fc(q)‘Y(n

)/ and 2|l Fc(q)v(——> p, with p' Rp, or

o p——p"” Ap” = p" || q and therefore p || To(q)——p" || Tc(q), with p’Rp" | Tc(q) and
m=7(n,[C]) = n as §({n}) C¥(cw(p)), or
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o ¢—g' Ap" = p | ¢ and therefore Fc(q)’Y(n’—»Mn)I‘c(q’) and p || Fc(q)'Y('-l—’[[—(E]])p | Te(d),
with p'Rp || Tc(g'), or

o p-2p" Ng=2sg' An=0®0d Ap” =p" || ¢’ and therefore Fc(q)v((i?]])l"c(q') and p ||

Fc(q)oeqﬂcﬂ)p,,, | Tc(q'), with o’ Rp™ || Te(q’) and m = y(n,repC) = y(o ® o', [C]) =
o® (0, [C]) as U ({o}) CU(av(p)), or
e p- VA q—ol—vq’ An = o0® 0 Ap" = ¢ and therefore Fc(q)V(cﬂ—?n)Fc(q') and p ||
To(q) P ('), with p/RTo(g) and m = 4(n, repC) = 7(0®', [C]) = 0@1(d', [C])
as | ({0}) C¥(c(p)), or
N p_o)p////\q_o_'_) JAn = O@OI/\p" - p/// and therefore Pc(q)‘Y(O_/_,_ﬂf]l) / andp ” Fc(q)oﬂh(i',)l[c]l)p///,
with p’Rp” and m = v(n, [C]) = y(0 ® ', [C]) = 0 ® 7(', [C]) as § ({o}) Sl (o (p))

e p| Tc(g)-—>p', which is similar to the previous case

C.8 CA4 To(z|ly)=To(z | Tely)) i N(dom([C)) Nrng([C]) =0

With (implicit use of) Lemma C.2, the soundness proof of the axiom becomes similar to the proof of
axiom VAA4.

C.9 DAl Oy(z)=z if [H]NN(a(z))=0

p(m)N[H] =0
{ Lemma C.1 }
N{pm)Hn[H] =0
{ {n(m)} € av(z), [H] NN (0w(2)) =0 }

true

(il

C.10 DA2 0y(z) =08 if Veca,(m)(vN[H] # 0)

p(m)N[H] =0
= { def. a,, VuEau(z)(v n HH]] # @) }
false

C.11 DA3 (91-[(8}1/(%)) ﬁaHqu(.'I})

pm)N[H] =0 A p(m)N[H] =10
{ set calculus }

(u(m) N [H]) U (p(m) N [H']) =0
{ set calculus }

wm) N ([HJV[H']) = 0
{def. U}

pm)N([HUHT) =0

f
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C.12 DA4 Oy(z || y) = 0Ou(z) || Ou(y)

* 0u(p || 9)-= v, which means that p || ¢-= v Ap(m)N[H] = 0 and p-="+ v Ag-* v Am = n@o
and therefore 8y (p)—— v' A 0y (g9)—>> v and 8y (p) || Bx(q)=s v

* 91(p) || Ou(g)— v, which means that 8y (p)—= v A Bk (g)—> v Am = n@ o and p- v A
g v Ap(n) N [H] = 0 A p(o) N [H] = 0 and therefore p ¢ v and O (p || ¢)— v

* Ou(p |l 9)—p', which means that p || ¢-"5p" Ap' = 8 (p”) A u(m) N [H] = @ and

e p v Ap” = q and therefore 85 (p)—=» v and Ou(p) || On(g)—-0xg(q), with p'Rox(q),
or

* -7 v Ap" = p and therefore g (q)—= v and Or (D) || Or(g)—8u (p), with p' ROk (p),
or

* p=p"" Ap" = p" || g and therefore Opr(p)-">0(p") and Ou(p) || On(a)-"+0u (") |
9r(q), with p'RO (p") || Ou(g), or

» g—>¢' Ap"” = p| ¢ and therefore 8 (q)">0x(q’) and O (p) || Fx(q)—0u(p) | Or(q),
with p’ ROy (p) || 8u(¢'), or

o p—op" Ag—g'Am = n@oAp” = p" || ¢’ and therefore Dy ()-8 (p") ABg (q)—= g (')
and 9y (p) || Ou(q)—0u (»") || Ou(q'), with p' ROk (p") || 8u(q'), or

e p vV Ag-gd Am=n@®oAp" = ¢ and therefore On(p)— v A 3u(g)—>-8y(q') and
du(p) |l O (q)—0u(q'), with p’ROx(q’), or

° pr///

NG Vv Am=n@oAp’ =p” and therefore O (p) =0 (") NOx(g)—= v and
On(p) || Or(g)~—>0m(p"), with p'ROy (p")

o 9y(p) || Ou(q)-—+p', which is similar to the previous case

C.13 TAl 7(z)=z if [I]NnN(a(z)) =0

We prove §(m, [I]) = m with induction on the structure of m. Case m = []:

(0, [1)
= {def 6}

{

Case m = [a(—z)] ®n

6(la(d)] & n, [1])

= idef. 8, a¢[I]}
[a(d)] @ O(n, [1])

= { induction hypothesis }
a(d) @n
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C.14 TA3 7'[(7’[/(.’1,')) = T[U[/(.’L')
We prove 8(8(m, [I']), [I]) = 6(m, [I U I']) with induction on the structure of m. Case m = [|:

o(o([, LI'D, 11D
{def. 0}

I

I

{def. 6}
o(l, [T VI

Case m = [a(z)] ® n:

8(6(la(d)] @ n, [I'D), 111)

=  {def. 0}
8(6(n, [1D), 11D if a €[]
8(la(d) @6(n, [I'D, 1)) fadll]
= {def 0)
8(6(n, [I']), 1) if a € [I']
8(6(n, [I'D, L) fagI'lnacll]

() @86, II'),[1)  FagINragll]

= { calculus }
6(0(n, [I'D. 11D ifac[llvaecll]
a(d)] @60, (I, 1] faegllTragll]

= { calculus }
9(«9&7)1, 'n. un ifae[Iul]

() @60, D).  HagllUl]
= { induction hypothesis }

8(n, [TV I') ifac[Iul]
a(d)]@6m,[Tul])  ifagIul]
= {def 0}

8(la(d)) @ n, [T UI'))

C.15 TA4 7i(z || y) = mi(x) || 72(y)

This proof is similar to the proof of axiom DA4.

C.16 RAl pr(z) =z if dom([R]) NN (ow(z)) =0

We prove [R] e m = m with induction on the structure of m. Case m = 0

[R] e
= { def. o}
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[[R]* (a)(d)) @ ([R] o m)
{ induction hypothesis }
[[R]*(a)(d)] @ n
{agdom([R]) }
[a(d)] @ n

C.17 RA2 pr(pr(z)) = pror(z) if dom([R]) N dom([R]) = 0 A dom([R]) N
rng([R]) =0 i

This is a special case of axiom RA3, as we have the following:

{(@8) | ({a,b) € [R} A & (dom([RT) Urng(IRT) V ((e,) € [R] A (0,6} € [R])V
((a,b) € [R] Ab & dom([R]))}
{ dom([R]) N dom([R']) = O A dom([R]) nrng([R']) =0 }
{{a,b) | ({a,b) € [R] Atrue) V falseV ({(a,b) € [R'] Atrue)}
{ calculus }
{(a,b) | (a,b) € [R] V (a,]) € [RT]}
= { calculus }

[RUR]

C.18 RA3 prlpr(z)) = pre(z) o [R'] = {(a,b) | ({a,b) € [R]Aa & (dom([RT)U
rng([RT))) v (e, b) € [R] A (a,c) € [R]) V ({a,b) € [RT A b ¢& dom([R]))}

We prove [R] o ([R'] ® m) = [R"] e m with induction on the structure of m. Case m = [|:

[R] e ([R]e])
= { def. o}

0
= { def. o}

[R"] e
Case m = [a(?)] en:

[R] * (R * ([a(d)} &)
= { def. o} .
[[RI* ([RT* (a))(d)] @ ([R] » ([R'] o n))
= { induction hypothesis }
[[RI* ([RT* (@) (d)] @ ([R"] * n)
= { case inalysis [R]*(a) }
[[R]*(a)(d)] & ([R"] e ) if a ¢ dom(R')
[RIT(IRT* (@) (d)]® ([R"] en)  if a € dom(R')
= { case analysis [R]* ([R']*(a)) }

[[R]*(a)(d)] @ ([R"] e ) if a ¢ dom(R')
[IRT*(@)(d) & (IR} o n) if @ € dom(R') A [R]*(a) & dom(R)

[[RI* (R (@)(d)] @ ([R"] o) if a € dom(R') A[R']*(a) € dom(R)
{ def. R" }

]
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IR"]*(a)(d)] @ ([R"] o n> if a ¢ dom(R))
RTOEa o) ec dom(R') A [R]*(a) ¢ dom(R)
[[R"]* (a)(d)] & ([R"] e n) if a € dom(R') A[R']*(a) € dom(R)
= { case elimination }
[[R"]* (a)(d)] & ([R"] * m)
{ def. o }

[R] e (le(d)}@n)

C.19 RA4 pr(z | v) = pr(z) || Pr(Y)

This proof is similar to the proof of axiom DA4.

C.20 VC1 Vy(Te(x)) = Vv(ve(Vvi(z)) if [V]={vew]|(v[C])owe [V]}
We prove p(v(m, [C])) € [VIU{(1} = (D) € [V']U{[} (as (P =Q A P) = (P = Q)) by induction
on the length of m and by the cases of 7. Case |m| = 0:

w(y([, [CD) € VI {1}

=  { right zero =}

true
= {ud=10}
w() € VTuA{ll}

Case [m| > 0 and Jpo(m =1 ® 0 A I ayec(b = p(n) A3z 5 (x(n, 4))):

u(y(m, [C])) € [VIUA{[l} .
= { take n and o with m = n® 0 AJ(payec(b = p(n) A3z px(n, d W)}
py(n®o,[C])) € [VIU{[l} .
{ Eke (b,a) € C with b = p(n) A3 _5(x(n, d)))), def v }
wlla(d)] @ (o, [C]) € [VIUA[}}
{ def. p}
[a] ® u(v(o, [C])) € [VIVA{[}}
{ calculus }
o] ® u(v(o, [CD) € {v]v e [V]}
{ calculus }
[a] ® u(v(o,[C])) € {le] ®v | [e] @ v € [V]}
= { calculus }
wy(o, [CD) € {v | [d]@v € [V]}
= {idem. A }
u(v(0,[C]) € {v | la]@v € [VI} A p(v(o,[CD) € {v | la] ®v € [V]}
=  { induction hypothesis }
u(7(0,[CD) € {v | [l @v € [VI} Au(o) € {v@w | 1(v, [Cl) @ w e {v' | [o] @' € [VI}} UA{ll}

{ calculus }

il

#
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(u(v(o,[CD)) e {v]la]®v e [VI} Ap(o) € {v@w | 7(v,[C]) Bw e {v' | ) @ € [V]}})V
(u(v(o, [C])) € {v | [al ®v € [V]} A p(o) € {[1})
= { calculus, p(o) e {[}=0=}
(h(v(o,[ICN) e {v|la]@ve [V} An(o) e {vow |y [C]) @we {v' |[d] v € [V]}})V
(v, ICD) e {v | la)@v e [V} Ao =)
{ caleulus, u(v([,[C]) =11 }
(u(v(0,[CD)) e {v|la]@v e [V} Apuo) € {vow|v(v[Cl) ®we {v|[a]®v € [V]}})V
(la] € [VIno=1)
{ calculus }
(u(v(0,[C]) e {v|a]®v e [V} Aplo) e {vdw ]| v(v,[C]) ®w e {v' | [l ®v" € [V}})V
(u(o) e {v' [ [a] @' € [V]} Ao =)
{ calculus }
(v, IC) e{v|al@ve [V} Au() € {vew |y [C])dwe {v]|[a]®v € [VI}}V
(o) e{vew | [C) ewe {V|[dav e[V]}}ro=])
{ calculus }
(v, ICD) e{vifal@ve [VI}V(uo) e{vaw |y [Chdwe {v|[a]®v' € [VI}} Ao=]))A
(uo) e {vow[v(v[C]) ®w € {v'|[a] @' € [V]}}V
(k@) efvew v [C) dwe {V|[a]ov' e [V]}}Aro=]))
= { weakening }
plo)e{vew|[yw[Chewe {v|[a & € [V]}}v
(o) e{vew |1 [Cl dwe {v |[a]ov € [V]}}ro=])
{PV(PAQ)=P}
plo) e {vew |y [Cl)ewe {v|[a &V € [V]}}
{ calculus }
plo) e{vow| o] @v(v,[C]) ®w € {[a] @' | [a] @0 € [V]}}
=  { calculus, def. yand a }
4(0) € (v w | (u(n) ©v,[C) @w e (o' | € [V]})
= { calculus }
() © (o) € {(n) B v ®w | (u(n) © v, [C]) B w € [V])
= { calculus, def. p}
k(n®0) € [v@w | 1(v, [C]) @ w € [V]}
{ def. n,oand V' }
u(m) € V']
=  { weakening }

p(m) € [VTU{[}

Case |m| > 0 and 3 o(m =n@ oA Jpryec(d = u(n) A Egeﬁ(x(n,j)))), which is similar to the
previous case. .
Case |m| >0 and ~3, ,(m=n® oA 3eec((c = (b,a) Ve = (b, 7)) Ab=p(n) NIz 5(x(n, d)))):

p(y(m, [C])) € VIV LD} o
= { 3noe(m=n®oAIecc((c=(ba) Ve=(b,7)) Ab=p(n) A3 _5(x(n, d)))), def. v}
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e [Viv{l}
= {[VlclVl}
p(m) € VU {1}

C.21 VC2 T¢(Vy(z)) = Vv(z) if dom(C)N (V) =

p(m) € [V]
= {def |}
$({u(m)}) c4(V)
= {dom(C)N{(V)=0}
dom(C)n Y ({u(m)}) =0
=  { calculus }
~3no(m=n®0Adeo((c=(ba) Ve= (b)) Ab= pu(n) Adz 5 (x(n, D))
=  {def v}
(m, [C]) =m

C.22 VDl Vy(9u(z)) = 8u(Vv(z))
u(m) O [H] =0 A p(m) € [V] U {[}

= { comm. A}

p(m) € [VIU{} A p(m)n[H] =

C.23 VD2 Vy(8u(z)) = Vyi(z) i [V']={v]ve[V]AN{v})N[H]

p(m) N[H] =0 Ap(m) € [VIU{[l}
{ Lemma C.1 }

N{u(mH) N[H] =0 A p(m) € [VIU{[l}
{ calculus }

p(m) € {v|ve[VIAN({v}) N[H] =0} U{[]}
{def. V'}

w(m) € [V]U{[l}

il

C.24 VD3 aH(Vv(:I:)) = Vvl(:L‘) if I[V’]] = {’U I v E HV]] /\N({’U}) N [[H]]

This proof is similar to the proof of axiom VD2.

C.25 VT Vy(r(z)) =71(Vv(z)) o [V]=A{v|6([I]) € [V]}
p(0(m, 11])) € V] u{l}}

{ calculus }

pO(m, D) € {v |ve [V} UL}

{ calculus }

w(8(m, [11)) € {6(v, [11) | 6(v, [1]) € [V} U D}

{ calculus }

i

= 0}

-
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p(m) € {v | 6(v,[1]) € VIV {[}
{ def. V' }

w(m) e [V']u {1}

C.26 VR Vy(pr(z)) = pr(Vv:(z)) o [V']={v|([R]ev) € [V]}
#([R) em) e [V U{[}

{ calculus }
#([R]em) e {v|velVI}U{}
{ calculus }
W([R] sm) € {[R] o | ([R] +v) € [VI} U{[}
{ calculus }
wm) € {v| ([R] ev) € [V]} U{[]}
{def. V' }
p(m) € [VTU{[l}

il

C.27 CD1 8y(T¢(z)) = Tc(Br(z)) if W(dom(C))Urng(CY))NH =0

We prove u(y(m, [C])) N H = 0 = u(m) N H = @ by induction on the length of m and by the cases of
~. Case |m| = 0:

r(LICP)NH =0
= { def. v}
whnH =10

Case [ml >0 and 31':,,::*(777/ =n@doA a(b,a)EC(b = /..L(TL) A ':JE'GB(X(na ‘E)))))

u(r(m, [CD)) N H =0 .
{ take n and o with m =n® 0 A Iy ayec(b = p(n) A3z px(n, d)))) }
porn@o,[C)NH=10 .
{ Eke (b,a) € C with b= p(n) A5 p(x(n, d)))), def. v }
p(la(d)@v(o [CD)NH =0
{ Lemma C.1 }
N({(a(d)) &0, [} N H =0
= {def. N}
({a} UN{u(v(o, [CHN) N H =0

= { Lemma C.1, calculus }

{a} N H =0 Au(+(o,[C)) N H =0
= { induction hypothesis }
{a}nH=0Apu(0)nH=90

{aerng(C)}
plo)NH =10

{ u(n) € dom(C) }

Iit

i
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pmYNH =0Au(lo)NH =10
{ Lemma C.1, calculus }

un®o)NH =10

= {def. nand o}
pm)NnH =10

Case |m| > 0 and 3no(m = n @0 A I ryec(d = pu(n) A ngﬁ(x(n,j)))), which is similar to the
previous case.

Case [m| >0 and -3, ,(m =n® oA Jecc((c= (b,a) Ve = (b,7)) Ab= pu(n) A 35 5 (x(n, _d)))))

poy(m,[C)NH =0 o
= { ~Fnom=n@®0A3cc(lc=(ba) Ve=(b,7)) Ab= p(n) A3z 5(x(n, d)))), def. v}
pm)NH =0

C.28 CD2 T¢(0y(z)) =0g(z) if N(dom(C))C H

pm)NH =10
= { Lemma C.1}
N{p(m)h)nH =0
= {N(dom(C))CH}
N({p(m)}) NN (dom(C)) = 0 .
=  {-d.m=n®oAIec((c=(ba)Ve= (b)) Ab=p(n) A3z _5(x(n, d)))), def. v}
y(m, IIC]]) =m

C.29 CT1 71(Telz)) =Tolrr(z)) if (N(dom(C))Urng(C))NIT =10

We prove 8(y(m, [C]), [I]) = v(6(m, [1]), [C]) by induction on the length of m and by the cases of v.
Case |m| =0:

o(v(IL[CD- 11D)
{ def. yand 0}

0
= {def. yand 8}

~6([, D), [CD

I

Case |m| > 0 and 3, ,(m =n®0A 3 ayec(b = p(n) A3z 5x(n Tf))))

6(y(m, [CT), 1) -
{ take n and o with m =n @0 A 3payec(b= p(n) Az 5(x(n, 4)))) }
o(r(n ® 0, [C]), [1]) ~
{iake (b,a) € C with b = u(n) A 33 g(x(n, d)))), def. v }
6(la( d)] & v(o, [C]), [])
ia € rng(C) }
[a(d)] @ 6(v(o, [C]), LI])
{ induction hypothesis }
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()] @ ~(6(0, 1), [C])

= { def. a and v }
v(ne 6o, [I]),[C])

= {nedom(C)}
Y(6(n ® o, [I]), [C])

= { def. nand 0 }

v(6(m, [1]), [C])

Case [m| > 0 and 3, o(m = n @ 0 A Jjp ryec(b = p(n) A 33EB(X("’_‘{))))’ which is similar to the
previous case.

Case |m| >0 and I, o(m=n® oA 3cec((c = (b,a) Ve = (b, 7)) Ab= u(n) A H—dveﬁ(x(n,a))))):

O((m, [C1), 1) .
{=Fno(m=n®oAIccc((c=(ba)Ve=(b,T)) ANb=pu(n)A 323 (x(n, d)))), def. v }
o(m, [1])
{8(m,[1]) € m, def. 7 }
v(6(m, [I]), [C])

C.30 COT2 To(r(x)) = 7(z) if N(dom(C)) C I
m, [1]), [C]) = 6(m, [1])

= {def v} .
~Fno(0(m, [I]) = n® 0 A eec((c = (b,a) Ve = (b,7)) Ab= pu(n) ATz 5 (x(n, 4))))
= {6mU)n[]=0}
true

C.31 CR1 pg(Tc(x)) = Tolpr(z)) i dom(R) Nrng(C) = @ A dom(R) N
N(dom(C)) = 0 Arng(R) NN (dom(C)) =0

We prove [R] e y(m, [C]) = ~([R] ® m,[C]) by induction on the length of m and by the cases of .
Case |m| = 0:

[R] «~(0,[CD)

= {def. yand e }
l

= {def. yand e }

v([R] « [, [C])

Case jm| > 0 and 3po(m =n @ 0 A J(payec(b = p(n) A3z 5 x(n, d M)

[R] & v(m, [C])

{ take n and o with m = n® 0 A Jpayec(b = p(n) A3z 5(x(n, d)))) }
[F] +1(n o, [C]) .

{ take (b,a) € C with b = u(n) A3z p(x(n, d)))), def. v }
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Ldd AhLXANT 2V AN

[B]  (fa(d)) @ 1(0, [C1))
ia erng(C) }

[a(d)) @ ([R] ® (o, [C]))

= { induction hypothesis }
[a(d)] @ ¥([R] »0,[C])

= { def. a and v }

v(n ® ([R] ¢ 0), [C])
{ne€dom(C) }

Y([E] e (n®0),[C])

= {def. nand o}
v([R]) o m, [C])

Case |m| > 0 and 3, o(m = n @ o AJpryec(b = p(n) A BQEﬁ(x(n,ﬁ)))), which is similar to the
previous case.

Case |m| > 0 and 3, os(m =n® o AJeec((c = (b,a) Ve = (b,7)) Ab = p(n) Adz 5 (x(n, _d)))))
[Rlen(mIC) . .
{im| >_0)==> Ja, d,n(m =la(d)] ®n), takesuch a, d and n }
[R] + 1(le(d)) @, [C]) .
{ ﬁHn,i,—()m =n®oAJecc((c=(ba)Ve=(b,T)) Ab=pn)A Bgeﬁ(x(n, d)))), def. v}
[R] e (la( d)]} @ 7(n, [C]))
= { def. :)}
([RI* (a)(d)] & ([R] »v(n, [C]))
= { induEEion hypothesis }
[[R]*(a)(d)] ®([R] » n, [C]) -
{-Tnom=n®oAIecc((c=(ba) Ve=(b,T)) Ab=p(n) A 3763(x(n, ),
rng(R)_r: N(dom(C)) =0, def. v}
YR (@)(d)] & ([R] o n), [C])
= { def. o L
v([R] » ([a(d)} ® 1), [C])
{def. a, d and n }
Y([R] e m, [C])

]

I

C.32 g’R2 Tc(pr(z)) = pr(z) if N(dom(C)) S dom(R)AN (dom(C))Nrng(R) =

We proof y([R] e m, [C]) = [R] e m with induction on the structure of m. Case m = ||

Y[Rl <[, ICD)
{ def. e and vy }

0
= {def. o}

[R] e ]
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Case m = [a(.(_f)] ®n:

¥([R] » (la(d)] @), [C])
= { def. bullet }
Y([[R)*(@)(d)] @ ([R] » n), [C])
{ ﬂR]]+_(§1) € rng(R) V [R]*(a) € dom(R), def. gamma }
[[R]* ()(d)] @ ¥([R] * n, [C])
{ induction hypothesis }
[[R]* (a)(d)) ® ([R] » n)
{ def. o}
[R] e ((a(d)]@®n)

i

C.33 DT 81.[(’7’[(27)) = T](@H(x)) Zf [[I]] N [[H]] = @
We proof pu(6(m, [I]))N[H] = 8 = p(m)N[H'] = @ with induction on the structure of m. Case m = ||

#O(, D) NH] =0
= { def. 6}

s)N[HT =0
Case m = [a(?)] ®n:

w(O(a(d) @n, [1]) N [H] =0
{def. 6}
(6, [11) N [H] = 0 i acll]
p(la(d)) @ 0(n, [1])) N [H] =0 if a & [1]
{ def. p, Lemma C.1 and def. V' }
#(O(n, 1) N[H] =0 if a €[]
p(la(d) N[H] =0Ap(6(n, [I])) N [H] =0 if a & [1]
{ induction hypothesis }
u(n) N [H] = 0 ifacl]
#la(d)) N[H] = 0Ap(n)N[H] =0 if a & {I]
= {eel]=>u(a(d)n[H] =0}
u(la(@N N IHI=0Apm) N[H] =D Fac[l]
plla(d)) N[H]=0Apn) N [H] =0 if a & [I]
= { case elimination }
w(la(d)) NIH] = 0 A u(n) N [H] =0
= { def. p, Lemma C.1 and def. V' }
ula(d) @n) N [H] =0

C.34 DR Ou(pr(z)) = pr(0n/(z)) i [H']={v|([R]ev) € [H]}
We proof p([R] em) N [H] =8 = u(m) n[H'] = @ with induction on the structure of m. Case m = |)

w([Rle)N[H] =0
= { def. o, Lemma C.1 and def. NV }
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p=20
=  {def N and LemmaC.1}
p)N[HT=10

Case m = [a(z)] @ n:

w(IR] s (ja(d)] @ m) N [H] =0
{ def. o }_)
p([[R]* (@)(d)) @ ([Rl em)) N [H] =0
{ def. o, Lemma C.1 and def. NV }
w([RIT (@) ()N [H] =0 A u([R)en) N [H] = 0
{ induction hypothesis }
p(([RIH (@)(d))N[H] =0 Ap(n)N[H'] =0
{ def. p and N, calculus }
[RI*(a) ¢ [H] Ap(r)N[H') =0
{def. H'}
ag [H]Aum)N[H] =0
{ def. p and N, calculus }
pla(dN[H]=0Apn)N[H] =0
{ Lemma C.1 and def. N }
u(la(d)) @n) N [H] =0

M

i

i

C.35 TR 7i(pr(z)) = pr(rr(z)) #I] ={[R]"(a)|ec [I']}
We proof §([R] e m, [I]) = [R] e 8(m, [I']) with induction on the structure of m. Case m = 0

o([R] =), [1])
= { def. e and 6 }

0
= { def. eand 6}

[R] «6(([, [I'D)

Case m = [a(j)] ®n:

o(IR] « (la(d)] @ n), [1])
{def. o}
O([[R]* (a)(d)] @ ([R] » ), [1])
= {def. 6}
6([R] o, [1]) if [RI*(a) € [1]
[RI*(@)(d) @ 6([Rlsn,[I)) i [R]*(a) & 1]
= { induction hypothesis }
[R] « 6(n, [1]) if [RI*(a) € 1]

[RI* (@)(d)) @ ([Rl«0(n, [1])  if [RI*(a) ¢ [1]
= {[R]*(a) € [I] = a € [I'], def, o }
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[R] » 6(n, [1]) if ac[I']
[R] » ([a( @) ® 8(n, [1])) if [R]*(a) & 1]
= {def. 8, [R]*(a) € [I] =a & [I'] }

[R] o 6(n, ﬂﬂl) if a € [I']
[R] ¢ 6([a( d)] @ n, [1]) if a ¢ [I']
= { def. 6}

[R]  6(la(d)] @ n, [I'])
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