EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Search the semantic web

van der Sluijs, K.A.M.

Award date:
2004

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9ccb1562-aaf1-440c-8b1a-8788206607cf

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

MASTER’S THESIS

Search the Semantic Web

by
K.a.m. van der Sluijs

Supervisors: dr.ir. G.J.P.M. Houben
ir. R.Vdovjak

Eindhoven, August 2004

Preface Search the Semantic Web

Page 2 of 99

10

Search the Semantic Web Preface

1 Preface

This document is the result of my graduation project. The graduation project concludes the
Technical Computer Science course at Technische Universiteit Eindhoven (TU/e), which I
started in 1997. The graduation project was carried out at the Information Systems group of the
Computer Science Department at Technische Universiteit Eindhoven. I would like to thank the
following persons for their contribution and their support to the project:

dr. ir. G.J.P.M. Houben as being my graduation advisor
ir. R.Vdovjak as being my graduation advisor
dr. A.T.M. Aerts as being member of the examination board

Further I would like to thank my fellow graduation students in room 7.45 for the pleasant time
and many interesting discussions.

Finally, I want to thank my girlfriend Krista van Soldt as being my inspiration, motivation and
support.

Eindhoven, August 16, 2004.
Kees van der Sluijs

Page 3 0of 99

Preface Search the Semantic Web

Page 4 of 99

Search the Semantic Web Index

2 Index

1T PIEIACE vttt sttt s e s e e a e e b e s e e e b e b be b s e aneens 3
2 Index....eiinnnn S, ceereesresae e s san s nr s rerreeseresae et ernesasesanenees O
3 Introduction.........cceeevrennee. ceevesrenneresrre e sesnesasbenenseneeas ceeeere e reieerreeeresneeneeaens 9
3.l THE WED ottt b st e s st s st st e s s se st sabe s besanssaessnenesnssenesassnane 9
3.2 WeDb SEArCRING....ceiiiieiereceeecie et 9
3.3 SemAntiC WED ..oovieeeceeeecrreeere et ste st st s re s s sr s b st n s n e ens 11
3.4 Goal and Project StIUCTUIE.....cevueevririeririeriereiriret sttt ese et ss e ne b s 12
4 Problem AeSCIIPHON ..c.evveereererrreceeeerteesieire et be b s e b e sbs e e nsn e e e s eaenes 13
4.1 Metadata search Ceeeeeereeseeeereeereetesreseeeat e ate s eesteeesare s bt e e e Rt s e e R e et e re s nesat s 13
4.2 Path EXPreSSIONS....coccvtererirrrterieeirrccesisreiists et tsb et ete s s e s sessese e s s nebsassenaasesenes 14
4.3 COMPOSILE QUETIES...eveueererrireiiisiiiiisiiseisrestestessteeessees e eassne e s s e snssaesaessnsssasasasansensens 16
4.4 Language ambigUity........cocoviriiinininiiriiinneiesiieereeesisesssesessessssssesasassesens vrerenenens 16
4.5 Performance and Scalabilityc.ccccceveerimveeniiieineneiiiicniennee e 17
5 Related WOTK ...oovevveeievrereeiieeeceeeensescssssesnsneasssesseas s snsenens reereerenese e becstesressneenees 19
5.1 Information retrieval.......cocerervererniniicniienninreneeste e vesssssrnsororaserensisenes 19
5.2 Semantic Web Janguagesccccvcveeriniciiniinniniiniienec et enes 21
5.2.1 HIML ... cevieererrecrereeeereressessessesesesssesessessessasessesnsosassnennessessesssessossessnsnsorsossessosaans 22
522 R ..o ouvicvieeeeeiteeeereeressessesesesesses e sesesssssssnssssessnesesssessesnsssnessesaesunsasssnsnssnses w23
523 RDES....oiititiveeeteeeeeeeeseesesseseiessaesassesseansesessesssesssssnesssssnssssssossessossasnssnsennensesaens 24
524 OWLccvvvinene vrrereeennenenes ceerereeee et teaesaeesesnaeans ceerersresre st nraaenne veeeeenes .25
5.3 Semantic Web tools................. ceererriaeeeteaeneeneas rrerereesreerete e aeies veerereresneaennenesasnnenens 29
5.3.1 QUEST....cocvrreenne revernenenes cerreerereeeres rerereeneeaennes ceeeerer et sne st aens 25
5.3.2 QUIZRDF ...ttt st st s s sra s s eebe b b s b e sas s 27
53.3 OWLIR ..oveitceeeeeeeeteereeesreraeseesesesseseesassesssessessesesessessssanessessssstessessessensessessonssons 28
534 HOWLIR.........oiteereeterereeeeessessesessesseseesaessesaessesssesssessostesssssesssssssssesasssessssssessns 29
5.3.5 FROS ..ottt et s s sse st se e sssessssssesassassnssessssnsnssnsesesasnssssssenserenasnsens 31
6 REQUITEIMNENLS ..veevcreeierecieieeceiie et ss b a b et e s e sr e e s b e e st et ess e tssneren et s ne s enne 33
6.1 QUETIES ..veeveireeerinecnres et caesestn ettt re s b s s b e et s b e et e b e et ensassansesenanes e 33
6.1.1 TEITI QUETIES ...veeveveeriereneerierescnteeseisseesas bbb sas s s e s e e s b anasasbesnanan 33
6.1.2 SEIUCTUTE (UETIES ..veverevererrererresiseetssissiiesnesisteeseensseasneseesnessesesessssssnssesassnsnes 33
6.1.3 ClaSS QUETIES .veuveurenerecrieniirsertesisseisassessesseseasssesaessssssssnsssssesessssnasassassesassassons 34
6.1.4 PrOPEItY QUETIESooeeverevierniriiriiitisiiesesestesest ettt n s se e e ss e e s nasasesrasnssas 34
6.1.5 Path eXPressions....c..vveeierinirenrerieiiieinnieieeesnessesssssssseesseses crerreeerestr e naeenes 35
6.1.6 Union qUETIEscocevuerereiriivnerenn. sebatemesmesheanebsesessbtsessrarabesstesasess as s sabe asestabTebenss 36
6.1.7 INLETSECHION QUETIES ..eveeeruererraireceistesierniietesiesstestesne s ene s e essas s ssassebesnesseaseses 36
6.1.8 Difference QUETIES......cereerererrerceririiiriiiriterer et ss s resnenses 36
6.2 Relaxing or strengthening the qUETYccccovvirimrrerininininieneenn s 36
6.3 Structuring results cerreresaenens veeresrrenees ettt sab e asebes 37
7 Data Structure.......cooeevvereecveinvivecnncnennnes cereeeneeneneas rerrere e reeeresaeesesrasessesnesrasseers 39
7.1 Class and Property tree......coceerereruererersnsiisiesrinessessesnessssassssenaenns verereereessenressessaease 40
7.2 TTCE TIOUES eeivreieeriertreeetrrerrerreesseesseeraessseesesseesaesesaeesasesessaessaesasesossnessnessrasssnassnssnnsesnes 41
7.3 Class and property 10cation table..........cccuvriririniiiininiinieeese e 42
7.4 URI/literal-term indeX.......ccocecvruervenisinmnienincnnesesenennnes veeeseeestressnae e e e e te e e e nnesanas 42
7.5 Triple listS .cccevveerverrennenne reertersensesresreeeesieseeteehee it eerassr s et e R e st e s R e s Rt e bbb e Rt et e b e b e 42

8 Query solving algorithms
8.1 INtrOQUCHION. ...cciverereeereeerertesree e e saeseenssacenessssssnesreesanennasstesane veereeeereetereerens 45
8.2 TEIM UETIES .eeuveuerrereeeniecrinsereeetssestessatenestesesaesas e s e s s e s s s e s sbasbe s nsnsnssssnesobassnens 45
8.3 STUCLUIE QUETIES 1ovveevereereerrreeneeereereesesresiesesnsssesssereessessessesssssessesssesnstesssesesssesassasenns 45

Page 5 of 99

Index Search the Semantic Web

8.4 ClasS QUETIES .eerureeirieieeiieieenteeeetesesat s et e s bt ae b et eeas e es e s e b e sba e e sse e e eatessennesnn s 46
8.5 PIrOPEItY QUETIES ..c.covveuirriieiiieeiiiiiitiitiiice ettt b et st ab b esasnes 46
8.6 Path (UETIES......ccuirueieieiieieeeccteitcte ettt s e st b s 47
8.7 Union queries........... reereeeenae e reeeeneareens reereesreee s et e cerreeeeenn 48
8.8 Intersection queTies.........ccoreeunnee. reerereeeeeres reesteninenreenee ceverenaens vretrrnaeeens veereene 49
8.9 Difference queries............. crereenrenrees eerteeresee e e aebesaaenaeeees verenenaees crereeeeeeen veveeeens 49
9 Result manipulation algorithms
9.1 Relaxing the QUeryccccecveecervcncvircenennnens
9.1.1 Regular MEthOAScoveveeierieiere ettt st e st aes
9.1.2 Subclass and subproperty eXpansionc.ccevevererirrenniesieiniesisees e 51
9.13 SUPETCIASS EXPANSION ..uvvevrrrreerererreesiesinistisiesesiessteresssessssne s ssassssennsessessasssesenes 52
9.14 Instance membership EXPansionceceveriiiieiiiniintinieiee s s sse e seessseneens 52
9.2 Query refinement
9.3 SHUCTUIING TESUILS ..cvvevieiieierieiteierete ettt ettt st b e sn e s e b e st st ens s 54
9.3.1 SOrting QUETY TESUILS ..couveuieeieeeceenrinieiie ettt 54
9.3.2 GIOUPING FESUILS . cuvevererireienreieieereetetsacsie e isst s s b ae s s s be e bs b et s s esenans 55
10 Implementation in SESAME......cccevvieriiiiiiiiiniininiiieti ettt e s 57
10.1 Sesame’s architeCtUre....coouiieeerieeriereieecieiiiee ittt s sse e se s r e e sbeassne s 57
10.2 Sesame’s Web appliCationceevueuererisiniiniiinieieeiet et sb et sanenens 58
103 SNEL ..ottt teteste st e e sbests s e e e et e sesbe s be b b s bt e s s s be b s be st e b e babe s sassasbansaunesens 59
10.3.1 ENVIFONIMENT....ccitiiiiieererireeeeneieiessiesiiessie st stessbessssaseasesssessabesses s nsessaassessseses 59
10.3.2 Architecture........cocouereeriinieieriniennenenens erssasasenasussanessessssasasnesasnsnat rasarssseitnsssasase 60
10.3.3 Compiler rerverreneereeneas creresteeienne cerreseenannaeennes ceereereaeaerte e eseennenens venen. 61
10.3.4 Combining the resulis....... cerreeneenes ceereraeeeeneeaes wrereeereeenaes rrereereereseessessesssessansense 03
11 Implementation in EROS........ococciiieniiiriniiiictccieietere et bes e 65
12 Efficiency and SCalability.......ccccevrerrreerierieneiniiiiiincniieiieieiecere sttt 69
12.1 Implementation in SESAME..........ccoveeiriierisririsinisesieretesresie et s et ssne s enessens 69
12.1.1 Storage overhead.......cecevevereiiiiiiiiiiieiiirce st 69
12.1.2 Query perfOrmanceccoceveriiiiiniiinisitiiniiniter et ettt et st 72
12.2 SNEL’s theoretic framewWorkKccccceereereriiieieenienienininnicniin i sssesssenns 76
12.2.1 Storage overhead.......coeeeeercriiiiiiiinicniiiiie e e
12.2.2 Algorithm performance
12.3 Comparison Sesame versus SNEL’s theoretic frameworkccocovevvveenricinnnnnnnee. 81
12.3.1 Storageoverheato. ettt 81
12.3.2 Query performancecccceeervnvneenen eeeereeraeerbeseerasesaesateteeneetenreessaesbaeeresabeate 81
13 COMCIUSIONS. . etieteeireriteierereeeriesiatesssssseeeseeaesesseesssbb e st sesres st assabasassasassrsssssasnssaanssssassasnses 83
ApPendiCes...........recirrseren e en 8T
A Bibliographycccccccvvvenicncinenninnniinniniiiininnneennennenns
B LiSt Of fIZUIES ...eeeiiiecieeriiieiieie ittt st s
C Terminology............ creererineneenaeas creeverree e eaeaes vrereererananenes cerereesrae et vereereeane crerne
D Abbreviations and acronymsc...cceueue. reereereeeas
E SNEL syntaxc.cceecverivecrcenvennens
Bl Term QUETIES ..coceveveiiuerreeereeeneeseessssnssessesssessesns
E.2 StrUCIUIE QUETIES. .eeevverieueeeeriereeierenteesestsitesssssesseresssssesnesssrssassesassesassessessssassassasessnes 95
E.2.1 Class/Property SEArChcveveereeririieereseseneiteenieienesiesesnessese e essss e sasaesseseas 95
E.2.2 Child SEAICHveeuviteerece ettt s sae s ens e eas st b e b s s 95
E.23 SUDITEE SEAICHevieeieeieieeesiecie ettt ettt e b e bbb st ea b ns 95
E2.4 Parent SEArCHouicueeeeecteetr ettt 96
E.2.5 ANCestor SEarch.......coecieevericeiiiceiiiiiicr eesarearessessinsentesastssntsnes 96

Page 6 of 99

Search the Semantic Web Index

E.3 Class QUETIES ..coveereeeereerneriniesneseeresisnseesnrernesessessesenssaessesaesnasens rerereeserresneasntesaaenans 96
E4 Property QUETIESccooevirermcrurnsinensinnreninesenseneessesseannesens et e s e eee b eae 96
E.5 Path queries.......... Ceeeeerrertesrenreeeeeeeeeeeteetaeereenreen e e be et e b e s At s b e h e RS e R e R e s E e be e baeebae st 97
Es.1 Regular path queries Ceeerreeereeeeaeesrsessaeaeerasrnessnesareeenan e rreeeeerenee 97
E.5.2 Distance path queries........c.coeueeneee cereetet et aaes rererene et eneenes .97

E.6 Union queries............. cerreeenreeresnenaees reerreesneseeenesnennenne reereerrer e steaeeaas crveerenennenns 97
E.7 INMErSECtION QUETIEScevvererrereereerreeseerserrereeseesseseesuesesssstosssssssessessessessnnsnesssessesssssnees 98
E.8 Difference qUETIES.....coecriererereererreereeniiesneeesesnsrensssiestssesasssessessessssssnssssessessessesses 98

F Initial inferred data in Sesame RDFS re€pOSItOrycovveereeerereererreninsinstineisiieececessnesens 99

Page 7 of 99

Index Search the Semantic Web

Page 8 of 99

20

25

30

35

40

45

50

Search the Semantic Web Introduction

3 Introduction

This project centres on creating a search engine for the Semantic Web. In order to place this in
a context this section will first give a short outline of the structure of the current Web and give
a sketch of the implementation of a typical Web search engine. Then we will give an overview
of the ideas behind the Semantic Web, and define the goals for this project.

3.1 The Web

In the past the World Wide Web consisted of a huge collection of mainly static HTML pages.
An HTML page consists of formatted text, which is the content, and links. A link is a
connection from one HTML page to some other file, with no further explicit semantics. This
file can be another HTML page, but may also be some other file. Multimedia files, like video,
images, music, etcetera, can be “embedded” in an HTML page. This means that a Web browser
integrates the file that is referenced by an embedded multimedia link in the page view (so that
the Web browser makes it seem as a part of the page, as part of the content).

Newer standards of HTML also allows for some restricted interaction through the use of
scripting languages like JavaScript, which have limited functionality. Server side scripting
languages like PHP and ASP introduce some richer behavior and allow for two-way
communication (between server and client browser) and an adaptive behavior. Furthermore,
currently most information is contained in databases and HTML pages are generated for
presentation of the information to the user. The retrieval of information from the database may
be triggered by either a specific user request (e.g. Google query results) or some implicit action
by the user (e.g. selecting a news item on Tweakers.net).

The connection between Web pages consists of links. Links between pages do not have any
further explicit semantics than that there is some kind of a connection. Therefore, nothing can
be formally derived from a link. However, informally users tend to almost always use links as
“recommendation”. A link may target any file that can have a URL. If the target is an HTML
page the link can also specify a named start anchor in the target HTML page with use of the ‘#’
sign. If this is the case the browser automatically will show the part of the document starting
with the mamed anchor (especially useful for large documents)-~A URL can-also contain
directives for document generation. The Web server that contains the resource that is identified
by the URL then automatically recognizes these directives and executes the necessary steps.

3.2 Web searching

The currently used Internet search processes are keyword based. User input consists of a string
of characters that denote keywords representing the core of the user’s request for information.
The result consists of a collection of links to documents that contain the keywords of the input.

Page 9 0of 99

55

60

- 65

70

75

Introduction . Search the Semantic Web

Search Engine Architecture

Indexing
Indexing and N .
Web Crawling Sorting processes Buid "i* Index{as)
: F
Retum query Query over
Rasuls
Search the web Querying v
for spurces VRank'” "f)
Supply g
. D;tngr » Summarize Query
Retum S elcstera
URL's

i A
1 | — — Supply Offer formatted
Raturn '
Data. / Data ; Data for Reais Build query

Data Retrieval * Reposolory fram question
{User Interface §]

Ask Queston !
Get Result

Figure 3-1: Model of the common used search engine architecture

Figure 3-1 is a simplified and general model of the architecture of present-day Web search
engines. The rectangles represent the actions that such a system undertakes. The
parallelograms represent data storage. The arrows represent the flow of information and the
caption indicates the data relation between entities. A search engine consists of four main
components and two data structures. The main components are Web Crawling, Indexing,
Querying and the User Interface. The data structures are the data repository and the indices on
the data repository

A Web search engine collects HTML pages and indexes the keywords found in those pages
(with references to the corresponding pages). A search is executed by matching the query
words in the indices. Then these matches are combined in a result list of links to resources that
could contain the searched information. Before the results are presented to the user, the list of
results is sorted on “relevancy”. This is called ranking.

The ranking of a result set can be done in a lot of different ways. Existing algorithms can be
divided in two groups. One group ranks the relevancy of a document for some query by
comparing the contents of the document with the contents of the query. The other group ranks
the relevancy of a document by its importance that is measured indirectly by considering the
link structure as recommendations; thus a link from one Web document ‘X’ to another Web
document ‘Y’ is a recommendation of ‘X’ for “Y’. It is also possible to mix the two algorithm

groups.

Current Web search engines can only exploit document contents and links, which both lack
explicit computer interpretable semantics, because that is just the structure of the current Web.

Page 10 of 99

80

85

90

95

100

105

Search the Semantic Web Introduction

New Web structures like the Semantic Web could provide the search engines with more
information that can be utilized to improve searches.

3.3 Semantic Web

The World Wide Web, as it is, is human-readable and machine-processable, but it is not
machine-interpretable for semantic interpretation or inference. In other words: machines have
“no idea” what the content of Web documents is and are therefore unable to utilize the Web
documents semantic contents.

The Semantic Web was invented to provide for semantic interpretable documents. The
Semantic Web is envisioned to be machine “understandable”, which means that semantic
structures are explicated so that they can be utilized for all kind of purposes.

Pl H {
st Lty
LIt g
351 i i

Logic
Rules/Query=— = |

Signature
* Encryption

XML Schema

Namespaces

Figure 3-2: Berners-Lee Semantic Web Stack

The proposed Semantic Web can be thought of as a stack of extending layers. Figure 3-2 is the
semantic stack as proposed by Berners-Lee, the inventor of both the World Wide Web and the
Semantic Web. The bottom (diagonally-striped)-blocks of the-Semantic Web-depict the
syntactic structure of the Semantic Web at character level. These blocks form the absolute
basis and consist of plain text Unicode and URIs. Unicode defines the available character set
and URIs provides a way to refer to abstract or physical resources. The white blocks (without
pattern) depict the syntactic structure of the Semantic Web at text format level. This syntactic
structure consists of the tag based XML structure, extended with the query languages for that
structure. The dotted part is the semantic structure part, which consist of the RDF metadata
structures and the ontology languages like RDFS and OWL. This part provides for the
definition of resources and concepts and the relation between concepts. These semantic
structures can be utilized by the application of rules or exploited by query facilities (horizontal
striped part). The step after that is denoted by the vertically striped building blocks, which
represent the logic and proofs between processes to convince one process of the correctness of
the assumptions of the other process. The logic and proofs are introduced to enable processes
and users to judge the reliability of results. And the final block is represented as the trusted
Semantic Web, which is reached by the preceding steps extended with the services encryption,
for security, and digital signatures. These last two are facilities that can be applied to the whole
semantic part of the SW Stack. Encryption and signature are stacked on XML and

Page 11 of 99

110

115

120

125

130

135

140

145

150

155

Introduction A Search the Semantic Web

namespaces, because they are built on top of these facilities; an encrypted XML file should still
be valid XML (where tags and content may be (partial) encrypted) and signatures could be
exchanged in XML format. Encryption and signatures should enable determination of the level
that some source of information can be trusted.

Note that the Semantic Web is a vision. It is something that may be established one day. The
Semantic Web is actually the whole stack as displayed in Figure 3-2. Thus far only some of the
building blocks of the Semantic Web have been implemented. RDF and RDFS now exist for
only a few years. OWL is even younger and has only recently been accepted by W3C. If, in the
rest of thesis, we speak about the Semantic Web, we mean the part of the Semantic W eb thatt
yet realized. More specifically, in this thesis we will focus on RDFS.

3.4 Goal and project structure

The goal of this project is to investigate new techniques to improve the search process by
utilizing the Semantic Web. Users should have a query expression power comparable with
database queries, while the language should be kept simple enough to be usable by “regular
users”. The users should not be compelled to have inside knowledge of the data structure or
schema information of the data they search in, yet once they know or discover it they should be
able to take advantage of it.

This thesis will proceed with first giving a problem description in section 4. This problem
description gives an outline of what the problems are that we want to solve in this thesis. Then,
an extensive overview is given on related work in section 5. That section first concentrates on
giving detailed descriptions of the fields that form the basis for this project, namely search
engines and Semantic Web. After that we give an overview of work that is related to this
project, so that one can relate this project to the ongoing research in the field. Section 5 is
particularly useful for them, who are new to the field. They who are experienced in the
concerning fields can safely skip section 5.

Section 6, the requirements, contains specific descriptions of the tasks we want our system to
be able to do. There we distinguish between the types of queries we want to be able to execute
and the query results processing we want the system be able to do. In section 7 we present a
data structure that is able to efficiently accommodate for the requirements. Then, in section 8,
we show that our data structure indeed accommodates for the execution of the queries we
specified in section 6. We do this by giving the corresponding (conceptual) algorithms that use
the data structure of section 7 to solve them. In section 9 we do the same for the results
manipulation tasks.

In section 10 we describe an implementation of our system on top of an existing RDF database
system. This system has its own data structure and query constructs on that data structure
available. Then, in section 12, we make a performance analysis of both the conceptual data
structure and the concrete implementation in Sesame. In both cases we measure the space
overhead and the time complexity of the queries. Then we make a comparison between the two
based on the measurements and draw some conclusions from this comparison.

Section 11 contains some details about the integration of the implementation, as described in
section 10, in a GUI for browsing RDFS ontologies called EROS. The conclusive section,
section 13, contains a retrospect on the project together with the conclusions that can be drawn.
Tt concludes with a number of recommendations for improvements that can be made during
future work.

Page 12 of 99

160

165

170

175

180

185

190

195

200

Search the Semantic Web Problem description

4 Problem description

This project aims at investigating new techniques to improve the search process by utilizing the
Semantic Web. This section motivates why new techniques in the search engine field are
needed and where the current techniques fall short.

To capture the improvement, compared to current search engines, in a nutshell:

We want to improve the query power of the search engine to the level of (e.g. relational or
object oriented) databases, while at the same time minimizing loss of the simplicity of the
current search engine query languages.

A traditional database has a predefined schema and the users that query over it are supposed to
know that schema. The Semantic Web however, does not have a fixed schema. For the
Semantic Web everybody may define its own schema and may say anything about anything.
This freedom of data modeling is of great use (because the world that is described by the data
is heterogeneous itself), but poses some problems for the query engine that should search these
structures. Furthermore we think the user should not be required to have any prior knowledge
of the schema he searches on, like users are not required to have any prior knowledge of the
data they search on on the Web. Therefore we want to keep it possible to use keywords in
queries, instead of complete URIs. These requirements imply that a one to one translation of a
database query engine is not possible. The intention of this project is to find a compromise

between the two extremes.

The rest of the section gives examples of queries we want to be able to evaluate but cannot be
evaluated by regular keyword based search engines. Further we point out how semantic
information could further be exploited. An example of this is to find results that the user might
also be interested in without these results relating directly to the user query.

Note that the syntax used in the examples is only informal, purely intended for illustration.

4.1 Metadata search

Current search engines enable users to search the full text of Web documents. They do not
enable users to search for specific metadata. Possible meta information on-Web-documents
comprises (for example):

Date of (first) creation
Author

Subject

Language

Document Format
Date of last update

The Web also consists of several kinds of documents. Beside the HTML documents there also
are other document formats like PDF documents or Word documents. But in addition to text
documents other media like video, pictures, sound and executables are also available on the
Web, which all have their own format (MPG, AVI, JPG, PNG, WAV, MP3 to name a few).
These files may have their own set of format specific meta-data. For instance the MP3 ID3v2
tag consist of the following metadata fields:

Page 13 of 99

205

210

215

220

225

230

235

240

245

Problem description Search the Semantic Web

Title

Artist
Album
Year

Genre
Comment
Composer
Orig. Artist
Copyright
URL
Encoded by

The following query cannot be executed on current search engines, but is a question you would
like to be able to ask a search engine:

An example of a metadata query is:

All documents with: Subject {X} A Author {Y}

Where X and Y may be (regular) boolean term expressions, e.g. X may be “Databases” OR
“Hypermedia” and Y may be “Geert-Jan” AND “Houben”.

Somewhat more complex is to allow other than boolean operators, for example ranges or dates.
Consider the following query:

All documents with: Subject (X) A Date {Between(Y,Z)}

Where X may be a (regular) boolean term expression and the date query may contain a range
between two dates Y and Z, e.g. X may be “Databases OR Hypermedia” and Data may be
“Between(1999,2001)”. The query should only return documents dating from between 1999
and 2001. -

Users should also be able to combine severai-queries with boolean operators, e.g. a query like
“return all documents that have author Geert-Jan Houben or subject “HERA”.

4.2 Path expressions

The Semantic Web does not only allow metadata on some document or file but also on the
metadata itself. For example, beside stating who the author of some Web document is, one can
also define some data on the author himself, like the author’s background (industry, university,
etc) or the author’s e-mail address.

The semantics of the Semantic Web can be modeled as a directed labeled graph with data
modeled as nodes and relations between data modeled as directed edges. This graph modeling
is based on the fact that in a RDF triple the object may also function as the subject of another
triple (except for literals). Querying the Semantic Web structure is analogous to querying a
directed graph. This graph structure of the Semantic Web also allows for more complex queries
then a normal metadata query.

RDF triples have the following pattern: <S,p,0>

Page 14 0of 99

250

255

260

265

270

275

280

285

290

295

Search the Sémantic Web Problem description

Queries from section 4.1 can be expressed with such a pattern by defining which parts of the
pattern have to fulfill a condition and which parts of the pattern are variable. Consider the

- query: “return all resources that have author Geert-Jan Houben”. This could be expressed in

pattern by: <?,author,Geert-Jan Houben>.

Now consider the following pattern, which represents a path:
<X0 H pO; Xla plaXZQ' . ')Xi b pi’ Xi+19 o0 -9pn-1>Xn>

The defined path consists of 2n+1 elements. The defined path can be viewed as n triples. The
presented pattern for a path relates to triples by means of the following predicate:
[Vi: 0<j<n : <Xi1, Pjt, X3oPp Ko™ = <Xj1, D1, X > < X,pj,Xj417]

We now consider the category of queries, which we call path queries. A path query is a path
pattern that defines conditions or variables for its components.

An instantiation of such a path query in natural language is:

Return everything with an “author” relation “De Bra” , who has a “faculty” relation, which
has a “part of university” relation “TUE”.

This can be written in a path pattern as follows:
< ?, author, De Bra, faculty, ? , part of university , TUE>

According to the given predicate this comes down to all the combinations of three triples that
respectively fulfill the following triple patterns:

<?, author, De Bra>

<De Bra, faculty, ‘x1°>

<‘x1’, part of university, TUE>

Where ‘x1° is a variable that is used twice as ‘x1’ instead of *?* to express that the values must
coincide.

A problem with the stated definition for the category of path queries is that we want that users
do not need to know the data schema they query on. They, for example, may not know the
structure: “author --> faculty --> university”. To translate this, we define the notion of path
distance. In a Semantic Web graph the path distance between a start and end node is the
number of directed edges that have to be traversed to get from the start node to the end node.
We could then let a user define a maximum distance between two node values instead of
obliging them to know the complete model. If we search for a author “De Bra” who is
somehow connected to “TUE” we could define a maximum distance of , for instance, 3 (larger
values imply that a relation with greater distance is too “vague”). The example path query
could then (in natural language) be:

Give me all resources that have a relation “author” with a value “De Bra” that has a
maximum distance of “3” with some node that has value “TUE”.

As we noted before the Semantic Web can be represented by a directed labeled graph. The
query examples stated before were following the direction of the arcs in the graph. It would

Page 15 0of 99

300

305

310

315

320

325

330

335

340

Problem description Search the Semantic Web

increase the expression power if the query also allows for following arcs in the opposite
direction. This would enable queries like:

Give me all documents that are written by authors that have written something about
“adaptive hypermedia systems”.

4.3 Composite queries

Beside the singular queries that are proposed earlier this section, users often have a more
complicated view of the results that they are looking for. As a group of more complicated
queries we consider composite queries. An instance of composite queries is the group of
queries that fulfill multiple conditions. Queries like

Give me all papers of “De Bra”, but they have to be in PDF format.

Another example are queries that defines several possibilities of which the results should fulfill
at least one, like

Give me all papers that have author “De Bra”, but papers that have subject “Hypermedia”
will also do.

As last example we consider queries that must fulfill some condition, but may not fulfill
another, like

Give me all papers of “De Bra”, but they may not be in postscript format.

4.4 Language ambiguity

A problem for search engines (including current ones) is the ambiguity of natural language and
the existence of several synonyms or denomination for the same concept (possibly even in
different languages). Further, words or names may have multiple correct spellings. Therefore it
is desirable that a search engine offers its users some tools to try to overcome these problems.

An example of this is if a user searches for all resources that have a relation “author” with
value “X”. Then, the search-system should also return the resources that have a relation-
“writer” with value “X”. The search engine should therefore infer that the concept “author” is
equivalent to the concept “writer”. Another example is a search for all “authors™ that have
written something about “search engines”. If the search engine knows (e.g. by user
preferences) that the user also understands Dutch and German you may also want to find
authors that have written about “search engines” in those languages, so also e.g. writers that
have written about “zoekmachines” or “Suchmaschinen”.

Preferably this reasoning should not have to be manually inserted into the search engine.
Inference rules could be generated with help of existing RDF(S) or OWL lexicon graphs and a
number of inference rules on those graphs. Another possibility is to let a group of users define
their own inference rules (possibly on top of existing rules) and share these rules for all users
for possible later use. Note that it is important that users are informed about how the query
results relate to the query.

For the spelling problem users could get informed if some of the terms or URIs in the query
return very few results, while a syntactic variation of the term (with e.g. a 90%
correspondence) does return many more results.

Page 16 of 99

345

350

355

Search the Semantic Web Problem description

4.5 Performance and Scalability

Building a search engine for the (Semantic) Web, one has to take into account the size of the
Web. The Web is vast. The Semantic Web is actually quite new, and therefore by far not
comparable in size with the Web. But even indexing the entire Semantic Web will pose
scalability problems. Therefore a Semantic Web search engine must be scalable. This means
that for designing a search engine it should always be kept in mind what the storage overhead
and time complexity for the several algorithms are. Furthermore it must be kept in mind that
scaling-up also means parallelization. To process Web sized amounts of data one cannot
possibly suffice with one computer, but requires a network of collaborating parallel computers.
To accommodate for this, underlying data structures and data processing algorithms should be
designed so that they can easily be fitted in a parallel environment.

Page 17 of 99

Problem description Search the Semantic Web

355

Page 18 of 99

360

365

370

375

380

385

390

395

Search the Semantic Web Related Work

5 Related Work

Before designing a Semantic Web Search engine it is important to know the current state of the
art in the concerned field(s). This section outlines the findings of a literature study on that state
of the art.

This project is aimed at researching the feasibility of a Semantic Web search engine. This
touches two fields: information (Web) retrieval and Semantic Web. Therefore we will first
look at literature about information retrieval, then at the Semantic Web and conclusively on
existing (retrieval) tools for the Semantic Web.

For the Semantic Web section 5.2 contains a description of the Semantic Web languages from
the lowest syntactic level (RDF) to the highest currently available ontology language (OWL).
The concluding section, section 5.3, contains an overview of some existing tools for the
Semantic Web. Most of the reviewed tools are based on querying, but there is also a Semantic
Web visualization tool.

5.1 Information retrieval

Because we want to design a search engine it is useful to investigate the currently used
techniques for information retrieval and Web retrieval in particular. For general information
retrieval techniques we refer to the book “Modern Information Retrieval” [1]. This section will
discuss the working of the most popular search engine today — Google [2].

The strong points of Google are:

e A very simple intuitive understandable user interface

e Efficiency optimization of both storage needs and the number of computing operations.

e Massive use of parallelism, which enables the speedup of searching, indexing and
querying

e Brute force computing (>20.000 computers), which results in a large number of
indexed pages and quick query evaluation

e The pagerank algorithm measures the importance of pages, which is used for the

-ranking of results.

Figure 5-1 ([2]) shows the high-level Google architecture. The paper mainly deals with three
parts of a search engine: the crawling part, the indexing part and the search part. This paper
leaves out the User Interface.

The Web crawler (or spider) part of a search engine is the link of the system with the Web. The
Web crawler browses the Web in an automated and methodical way to collect data, in order to
enable the search engine to search over it. In order to scale to the enormous amount of data on
the Web, Google has a fast and distributed crawling system. DNS lookups are a major stress
with crawling. Therefore Google maintains a DNS cache so that the crawling of documents do
not always require a DNS lookup. Furthermore to cut down bandwidth usage, their servers are
on distributed locations so that the machines run relative close to the sites they crawl. All
crawled pages are stored (compressed) in a repository.

Page 19 of 99

400

405

410

415

420

425

Related Work Search the Semantic Web

Figure 5-1: High Level Google Architecture

After crawling, the crawled data from the repository is prepared for querying by indexing and
sorting the data. This is done in the indexing part of the search engine. The first part of
indexing data is parsing the Web document. The problem with Web documents is that very
little can be assumed about them and syntax errors in for example HTML are very diverse.
“These [errors] range from typos in HITML tags to kilobytes of zeros in the middle of a tag,
non-ASCII characters, HTML tags nested hundreds deep, and a great variety of other errors
that challenge anyone’s imagination to come up with equally creative ones” [2]. Therefore
Google needed (and implemented) a very robust and flexible parser, which is quick enough to
keep up with the crawling pace.

The Google search engine contains a number of large data structures. The important ones
besides the repository are the document index, the forward index, the inverted index and the
lexicon. The document index maintains information about every Web document known to the
search engine, like current document status and some statistics. After a document is parsed it is
written into the forward index. The forward index (and also the inverted index) is divided in
parts called barrels. Every barrel contains a range of wordIDs. The lexicon contains a list of
words and their corresponding wordIDs. After parsing, if a document contains a word that is
located in some barrel, the documentID is added to that barrel followed by a list of wordIDs
with hit lists (a list of occurrences of a word within a document). The inverted index is similar
to the forward index, only now processed by the sorter. Google maintains two inverted indices.
One inverted index for title or anchor hits and one for full text hits. The smaller title and anchor
hit index is searched first because of the probability of better hits and if there are not enough
results also the full text index is searched (currently Google stops after finding 1000 results).

After indexing and sorting, the data is ready for user queries. When a user query is inserted, the
query is first parsed and the words are converted in wordIDs. After that the short inverted
index is searched for every word. The doclists are scanned until there is a document that

Page 20 of 99

430

435

440

445

450

455

Search the Semantic Web Related Work

matches all the search terms. Following, the rank of the document for the query is computed.
This is repeated until there are enough hits or the end of the short inverted index is reached. If
the end of the short inverted index is reached and there are not enough matches the process is
continued for the full text inverted index.

Google’s distinguishes from other search engines with their ranking algorithm. Ranking is the
art of sorting search results on relevancy. Googles ranking algorithm consists of the
combination of an IR score and a Pagerank score. The IR score is similar to other search
engines’ ranking algorithms. Documents that contain some query word relatively often are
ranked higher than documents that contain these query words less often. Word position (words
in title or at the beginning of a document are considered more important) and word format
(bold words or words in a relatively larger fonts are considered more important) are also taken
in account. These numbers are combined and form the IR score of the document against the
query. The Pagerank of a document is calculated by the link structure. A page is more
important if more important sites link to it. Combined, the IR score and the Pagerank give a
document a weight in relation to the query and decide the position of the document in the
ranking.

To accommodate for the enormous amount of indexed data (estimates indicate about 6000
terabytes of data) and the evaluation of the enormous amount of queries (estimates indicate
over 200 million queries a day) Google must rely on parallelism. Google’s philosophy is to
cluster many cheap computers that are easily replaceable on failure. Therefore the algorithms
and data structure for this parallel cluster are constructed so that failure of one machine has no
impact on indexed data or query evaluation. Estimates indicate a number between 10.000 and
80.000 servers in the cluster. Exact information figures are classified because of competition
considerations.

5.2 Semantic Web languages

Because we want to construct a search engine that uses the Semantic Web, we should have a
look on the available Semantic Web languages. As mentioned before, the Semantic Web is a
vision, something that is still in the making. Therefore, in this section we only treat the
Semantic Web languages that are constructed thus far and for which an implementation exist.

Page 21 of 99

460

465

470

475

480

Related Work Search the Semantic Web

Figure 5-2: Semantic Web languages Pyramid

As Figure 5-2 shows, the current available languages can be viewed as part of a pyramid. The
lowest part of the pyramid consists of a syntax specification. The consecutive top parts are
extensions of its lower parts. They subsequently add data modeling and semantics to its lower
parts until the top part of the pyramid, which enables to create full-blown ontologies.

In this section we will look at the following languages: XML, RDF, RDFS and OWL.

5.2.1 XML

The lowestsyntactic part is XML. XML is basically intended as a syntactical uniform format
language that is platform, user and application independent. Important design goals for XML
were ([6]):

XML shall be straightforwardly usable over the Internet.

XML shall support a wide variety of applications.

It shall be easy to write programs, which process XML documents.

The number of optional features in XML is to be kept to the absolute minimum, ideally
zero.

XML documents should be human-legible and reasonably clear.

e The design of XML shall be formal and concise.

e XML documents shall be easy to create.

XML does not provide for semantics. It only provides a flexible syntax in which almost
anything can be expressed. XML can be seen as the counterpart of a database. Where a
database has a rigid schema that is predefined, XML can be used heterogeneously. The schema

Page 22 of 99

485

490

495

500

505

510

515

520

525

Search the Semantic Web Related Work

within XML may be irregular and only partially defined and is therefore called semi-
structured.

Semi structured data can be characterized as follows ([7]):
e object-like
e schemaless
e self-describing

Here follows a very brief and not complete outline of the syntactic structure (based on [7]):

XML is like HTML. XML uses tags to create structure. However, XML has no fixed set of
tags, no fixed semantics of tags and no fixed structure. The author may freely choose tags.
However every opening tag must have a matching closing tag. Furthermore tag pairs may be
(properly) nested. Tags can contain attributes. Attributes have a unique name, which have a
value (must be quoted). Data may be freely mixed with tags. Usually there is some connection
between data and the tag pair it is enclosed by, but this is not required.

5.2.2 RDF

RDF, or Resource Description Framework, is a metadata language built on the syntax of XML.
RDF is meant to make statements or “descriptions” about resources. The foundation of RDF is
a model for representing named properties and property values. The basic data model of RDF
consists of three object types.

e Resources. All things being described by RDF expressions are called resources. This
may be entire Web pages, a part of a webpage, a collection of webpages, or every other
object that can be uniquely identified (like a printed book). The Resource identifier is
called URI.

e Properties. A property is some kind of relation used to describe a resource.

e Statements. A specific resource together with a named property plus the value of that
property for that resource is an RDF statement.

Every RDF statement is a triple with a subject, predicate and object. The subject is some
resource with an URI (or blank node). The subject may also be a RDF statement, which
provides for nesting in RDF. The predicate defines a property of that resource and the object
defines the value of that property. A predicate is defined by an URI of the property it denotes.
The object may be another resource URI, a blank node, or it may be a literal. A literal can be a
simple string or another primitive datatype defined by XML.

The subject-predicate-object triples can be interpreted as a directed labeled graph. Both subject
and object are nodes and the predicate defines an edge between the nodes and represents the
relation between the nodes. Subject and object are interchangeable. The object of one triple
may be the subject of another and the other way around (except literals, which may only be
used as object of a triple).

The former rules for RDF are enough to express anything about anything. In RDF no other data
modeling commitments are made.

For more information on RDF refer to [8] and [9].

Page 23 of 99

Related Work Search the Semantic Web

5.2.3 RDFS

530 :
RDF properties may be thought of as attributes of resources and in this sense correspond to
traditional attribute-value pairs. RDF properties also represent relationships between resources.
However, even though RDF provides for resource description with help of a graph model it
still is not machine-interpretable. Because anything may be stated about anything a machine
535 still cannot interpret the intended semantics of some relation nor does RDF provide any
mechanisms for describing the relationships between properties and other resources. The good
thing about RDF is that with its data model it abstracts from the used syntax. There is however
still a need for a universal agreement on the semantics of certain terms and the interpretation of
certain statements, so that semantics of statements are machine understandable and graph
540 models are reusable for several sources.

RDFS (S stands for Schema) provides for the missing semantics of RDF. With RDF Schema
one can define particular vocabularies for RDF data and specify the kinds of objects to which
predicates can be applied. RDFS expressions are also valid RDF expressions. Examples of

545 RDFS agreed semantics are properties like subClassOf, domain and range. This extra structure
can be used to define more expressive queries.

RDF graphs (or parts of a graph) are substituted with partially defined semantics. This
approach enables the utilization of semantic relations in the graph model. For example if the

550 query searches for all instances of some class, also all instances of subclasses can be taken into
account.

Here follows an overview of the most important concepts in RDFS:

e Class: RDFS defines the notion of class, which is similar to the class notion of object
555 oriented programming languages. Associated with each class is a set, called the class
extension of the class, which is the set of the instances of the class. Two classes may
have the same set of instances but be different classes. A class may be a member of its
own class extension and may be an instance of itself. The group of resources that are
RDF Schema classes is itself a class. ([10])
560 o subClassOf: RDFS defines subClassOf as.a hierarchical structure between classes. If a
class C is a subclass of a class C', then all instances of C will also be instances of C'.
e Property: Property is a concept of RDF. Within RDFS this concept is extended with
the concept subPropertyOf, Domain and Range.
e SubPropertyOf: RDFS defines subPropertyOf as a hierarchical structure between
565 properties. If a property P is a subproperty of property P', then all pairs of resources
which are related by P are also related by P'.
e Domain: rdfs:domain is an instance of Property that is used to state that any resource
that has a given property is an instance of one or more classes. A triple of the form: P
rdfs:domain C states that resources that have property P are instances of class C.
570 e Range: rdfs:range is an instance of Property that is used to state that the values of a
property are instances of one or more classes. A triple of the form: P rdfs:range C states
that the value of property P of some resource is a instance of class C.

For more (extensive) information about RDFS refer to [10].
575

Page 24 of 99

580

585

590

595

600

605

610

615

Search the Semantic Web Related Work

5.24 OWL

RDFS is an extension of RDF and adds predefined semantics to RDF statements. However, the
number of semantic facilities is quite restricted. Thereby, the facilities that are available are not
powerful enough and in some cases not sufficient. To extend the Web such that it is machine
understandable in the way that machines can robustly reason about it, we need a powerful
language to create and formally describe ontologies.

Several ontology languages have been developed. The most used today is probably
DAMLA+OIL. However, W3C has created a new ontology language based on DAML+OIL,
which is called OWL. OWL is designed as an extension of RDF(S).

In comparison with RDFS, OWL adds more vocabulary for describing properties and classes:
among others, relations between classes (e.g. disjointness), cardinality (e.g. "exactly one"),
equality, richer typing of properties, characteristics of properties (e.g. symmetry), and
enumerated classes. These features enable a precise and formal definition of semantics of
concepts in an ontology.

OWL exists in three “flavors”, where each sublanguage is an extension of its simpler
predecessors, both in what can be legally expressed and in what can be validly concluded.
OWL Lite supports the simplest constraint features and is the easiest to use but misses the
expressive power of its successors. OWL DL supports the maximum expressiveness that is
possible without losing computational completeness and decidability of reasoning systems. The
name is chosen in aligning its correspondence with description logic. OWL Full supports
maximum expressive power and syntactic freedom, but does this at the expense of any
computational guarantees. An example of an OWL Full construct that is not in OWL DL is that
in OWL Full classes can be treated simultaneously as a collection of individuals and as an
individual in its own right, where this is not the case in OWL DL (but is in RDFS).

For more (extensive) information about OWL refer to [11].

5.3 Semantic Web tools

‘We studied the intended use of the Semantic Web and the available languages for the Semantic
Web. It is easy to see that, even though the Semantic Web languages are syntactically kept
fairly simple, they are still far too complex for “regular”, non-computer scientists, to manually
handle. Therefore there is a great need for tools that assist users in handling the Semantic Web.
The tools we examined are (in one way or the other) Semantic Web query tools except for one,
which is a GUI for ontologies. We consider a number of query systems that can query
increasingly complex semantic structures. QUEST (section 5.3.1) is able to query syntactic
structures like XML. QuizRDF (section 5.3.2) tries to exploit the RDF model. OWLIR (section
5.3.3) uses semantic annotations to expand queries for keyword based search engines.
HOWLIR (section 5.3.4) is a specialized agent that uses semantic annotations to keep track on
events. The Semantic Web tool section is ended with a iook at EROS (section 5.3.5), an RDFS
visualization tool, which is useful to get an idea of possibilities to create an understandable
GUI for this Semantic Web search project.

5.3.1 QUEST

Page 25 of 99

620

625

630

635

Related Work Search the Semantic Web

The QUEST system is a query system for OHTML [12]. OHTML is an XML-like language
with HTML and OEM references, which in turn can contain other OEM references. The
authors claim that their query language is general enough to also be applicable to XML
documents. They describe their system as: "QUEST is a system for querying hypertext
documents that also embed some object structures. Due to the diversity of the Web, we cannot
expect that documents with object structures will conform to a fixed schema, as in a classical
database. Object structures that show some regularity, but do not follow a strict explicit
schema, are captured by semi structured data model" [12].

OHTML can be represented as a graph, with the objects as vertices and the references as edges.
Therefore it should also be possible to make QUEST applicable for RDF, which also can be
represented as a graph.

Queries in Quest consist mainly of two parts: A graphical query graph part and a constraint
part (see Figure 5-3 for a screenshot). The query graph is matched against the database graph
during the search phase. The constraint part is used to specify constraints for particular
vertices. If some vertex happens to contain some numerical value, the constraint can be used to
restrict the range of the results for that value.

Figure 5-3: Graphical query part of QUEST

Page 26 of 99

640

645

650

655

Search the Semantic Web Related Work

Query evaluation is executed in three phases in QUEST. The first phase is called the search
phase. In this phase the query graph is matched to the database graph in search for similarity
patterns. In the second phase the constraints of the constraint part of the query are used to filter
the found matches. The final phase is the construction phase. The result set is now built from
the result of the filtering process. The result set is in turn a collection of OHTML pages.

QUEST’s strong point is its GUI. The GUI may make users intuitively familiar with graph like
structures of data. The downside is that QUEST is made for OHTML and not for a W3C
standard like RDF, but this could be changed in the future. The contrast with the system we
target for is that QUEST requires users to know the schema information of the data they search
for and we want a system that not specifically requires this knowledge. Further, QUEST’s
evaluation method of first doing the graph pattern matching and then applying constraints can
pose a performance threat for large data sets. However note that, unlike the system we target
for, QUEST is probably not intended for Web sized data sets.

5.3.2 QuizRDF

QuizRDF is a search engine that combines free-text search with a capability to exploit RDF
metadata in searching and browsing ([13]).QuizZRDF indexes Web documents as triples
mapped to a URL. In general, sets of the type <literal,class,property>->URL are produced
during indexing. The literal may be some RDF literal but also a part of the body text of the
indexed document. The class and property part of the triple may be empty.

Figure 5-4: QuizZRDF GUI

Page 27 of 99

660

665

670

675

680

685

Related Work Search the Semantic Web

The user interface of the QuizRDF (see Figure 5-4 for a screenshot) is kept as simple as
possible. Opening the QuizRDF webpage shows a textbox in the center of the user interface,
which works basically the same as current search engines: query terms are entered and if the
search is initiated those terms are searched in the full body text indices. On the right of the
textbox some options are displayed which are pretty straightforward and also common in
regular search engines. A dropdown box located above the search text box makes the
difference with regular search engines. Initially this box contains a list of all resource types
stored in the QuizRDF index. After some keyword search this list is replaced by a compiled list
of the classes to which each document belongs. Selecting a class from this list will filter the
initial results, and result in the documents of the results that are of the selected class. When a
class is selected from a dropdown box two lists are compiled. One contains the list of
superclass of the selected class and the other contains the list of subclasses of the selected
class. Selecting one of the items of these lists will result in filtering the initial results for the
results that are of the selected class or one of the classes in the subtree of the selected class.

The strength of this system is its simplicity. The query system is, like Google, keyword based,
only now with an explicit metadata search. Further it contains the class tree navigation for
filtering resuits. However, it differs with the system that we target in the sense that it does not
increase the expression power of its queries. The system we are interested in should be more a
hybrid between keyword based and database expression power, while QuizRDF clearly
chooses for the keyword based approach.

5.3.3 OWLIR

OWLIR is a SW information retrieval framework that is constructed to solve t he following
difficulties SW information retrieval ([14]):

e Current Web search techniques are not directly suited to indexing and retrieval of
semantic markup

e Current Web search techniques cannot use semantic markup to improve text retrieval

e Likewise, text is not useful during inference

¢ There is no current standard for creating or manipulating documents that contain both
HTML text and semantic markup.

Bapmaniic
Neb Ohsery
Faxt
Quiery

Figure 5-5: Model of OWLIR .

Page 28 of 99

690

695

700

705

710

715

720

725

730

735

Search

the Semantic Web ' Related Work

The proposed franiework, OWLIR, basically works like this (this is modeled in Figure 5-5

([141):
1.
2
3.
4
5.

6.

7.

A Semantic Web query is inserted into the framework

. With help of a local Knowledge base and an inference engine the query is expanded

Following, it is encoded and 'swangled' to form the input of regular Web search engine

. The output of the regular Web search engine is extracted into two parts: text and

semantic markup.

The text that is found is filtered and if needed used to refine the query for the regular
Web search engine

The semantic markup is filtered and merged, with help of the inference engine, into the
knowledge base and is if needed used to refine the semantic markup part of the query.
After the results are judged as sufficient, they are returned to the user

Neither [14] nor the model clarifies what stop criteria is used for both, how “semantic markup”
is encoded to a query for a regular term based Web search engine and how semantic markup is
extracted from query results from a regular search engine. The authors claim (however tested
on a very small test set) that their approach is three to four times better then regular text
searching (measured in mean average precision).

The working of OWLIR is based on the authors’ observation of a typical information retrieval

session
1.
2.

3.
4.

5.

6.

([14]):

A person mentally forms a semantic query.

The person encodes the query as a combination of words and phrases that are thought to
characterize documents that contain information needed to answer the query.

The computer system retrieves a ranked set of documents matching the text query.

The person reviews some of the highly ranked documents, reading and extracting some
of their meaning.

If the semantic query can now be answered, the process terminates with success.
Otherwise,

Some of the newly extracted facts and knowledge are used to reformulate the text
query, and the process is repeated.

_ At time of writing no working prototype of OWLIR was available. Therefore the performance
of this system could not be directly measured. However, some things may be inferred from the

model.

OWLIR is founded on an existing web search engine. A query therefore at least takes

the time of querying the underlying existing Web search engine. OWLIR, however, uses the
results of the underlying Web search engine for query refinement. This triggers a number of
new queries for the Web search engine. Thus a query on the OWLIR system takes at least a
multiplication of the evaluation time of the underlying Web search engine.

OWLIR is again different from the system that we target because it, like QuizZRDF, focuses on
constructing a term based query engine (or uses such an engine as its basis). This in contrast
with our goal of target of constructing a search engine that provides for a database like
expression power.

5.34

HOWLIR

The HOWLIR system ([15]) is an information retrieval agent that keeps track of 'events' in the
university. The HOWLIR system is created to support three basic scenarios:

Page 29 0f 99

Related Work Search the Semantic Web

e Information retrieval (IR) - e.g., identify and rank relevant pages or documents
e Simple question answering (Q&A) - e.g., who is the governor of Alaska
e Complex question answering - e.g., what is the current situation in Algeria

Moviel
&
g
Event Sport 8 AeroText
A N” /
information E’ —> p +, D——l—{—[lt Generate RDF Triples
Talk = ava Markup
% lRDF triples
Trip | Inference with JESS |
Expanded
RDF
Triples +
¥ Must ™~ Free Text
Query / \A - v
User Filter query on | Structured HAIRCUT
In event property i
terface \ Must / Query
not Events

Final Results «— Inference on results Expand Event

Results User LB
Interface Descri nt} on
! Agents
WEB

Figure 5-6: HOWLIR process flow

740 The HOWLIR system works as follows (see Figure 5-6 ([15])): Event information is gathered.
Events are classified following some event categorization. After that semantic information is
automatically generated with the AeroText system and this semantic information (in the form
of RDF triples) is expanded with extra inferred triples and free text by the JESS system. These
triples and free text are then indexed in the regular way, with a triple counted as one term.

745
The user can query the system with a DAML syntax query, with some particular operators like
Must, Maybe and Must Not. The indexed data is then queried using the HAIRCUT information
retrieval system. The result of this query is a set of events. Following, the event description is
expanded, generated with use of Web agents. The results that are gathered are then filtered

750 with help of inference on the results and then presented to the user.

According to the author a prototype of HOWLIR is finished. The ongoing work is on building
a sophisticated inference engine, which can develop an enhanced knowledge base from implicit
and explicit inferences made from the DAMLA+OIL marked up documents ([15]).

755
The HOWLIR system is not intended as a Web search engine, but rather as specialized search
agent. Therefore it is difficult to compare it to a system we target for. What is special about

Page 30 of 99

760

770

775

780

785

Search the Semantic Web Related Work

HOWLIR is that it takes regular text as input, instead of e.g. RDF(S), and then infers the
semantic markup for that input. Further, both the generated DAML/RDF triples and the free
text are stored and indexed for retrieval. This is roughly similar with what we want to do:
searching through both the schema and the free text hidden within the schema data.

5.3.5 EROS

EROS (Explorer for Rdf(s)-based OntologieS [16]) is a GUI for browsing of RDFS-based
ontologies. In principle there are two common solutions for displaying such ontologies: graph-
based solutions and tree based solutions. The advantage of graph-based solutions is that they
clearly depict the internal structure of an ontology. The disadvantage of graph-based solutions
is that the view tends to grow uncontrollably and more difficult to compute with an increasing
number of nodes. Furthermore it is difficult to grasp the hierarchical structure, which is
"hidden" behind the special edges and not reflected by the position of the class nodes. The
advantage of tree-based solutions is that they are intuitively understood, because people are
already used to the tree metaphor. The disadvantage of tree-based solution is that ontology
graphs cannot be mapped to an equivalent tree.

The EROS system tries to combine the good part of both metaphors. The system defines two
major interfaces, the Class Centric Approach (Figure 5-7 left) and the Property Centric
Approach (Figure 5-7 right). For the class centric approach two identical hierarchical class
trees are built, based on the rdfs:subClassOf property. Selecting a class from the left hierarchy
will result in a visualization of all properties of that class that have as object one of the classes
in the hierarchy. This visualization is rendered with an arrow from the selected subject class in
the left tree to the concerning object classes in the right tree view. The property name is
attached to the arrow as a label.

B Light & cameraSeftings A @
@) Arifictallight & 2, country " FineAtPhoto &
a-@ N ActionPhoto &
2

NaturatLight = - &, phi
g 7, pnone GeoPhoto &

@ SunriseLight MumpIeExposure & : -2y flashCompensation ArchitecturePhoto & -
_r universe @ ternaryAction &

@ Sunshine '--v officePhone T
: O A
@4 Dusk /6 "’w %M Abstract e 5 takenFromviewPo 7 Medium &
49 skyLight '*"F Entity @ 5 Settings &
© MoonLight / ask@v Adsfact §- L laksnpmmpmcs “ Technique &
-8 overcast LNlngThlng @ 2 -2 photographedBy . Universe @&
cts T

i@ Night Person & -& includeActor - Apstract @-@

-'5& format

(@ OtherNaturalL Potographer @ 1 | 2, livesAt . Entity @- @
@ Pheto j //‘*m(' Anirmal- @& 2 fax Adefact- @2

@ Macmth%’ water @@ -E, surename “ UvingThing &- &
® o Location @ & -£y depittsTheme . Water @ &
@ FineArtPhoto : OuterSpace g &, office - o wrsmcang [CR=]
9 ActionPhoio - EarthLocatlon E] 25 takenWithSettings . uf pafce -8
& GeoPhoto lirccation (C28 E, keyWords - Earthocation [CXC]

@ ArchitecturePhoto temaryActor & E. madsl Jstocation {62

takenFromViewPoint

Figure 5-7: EROS class centric (left) and property centric (right) approach

For the property centric approach two trees are built. On the left is the hierarchical property
tree, based on the rdfs:subPropertyOf property. On the right is the hierarchical class tree, based
on the rdfs:subClassOf property. Selecting a property will visualize its domain and range
property (rdfs:domain, rdfs:range) if the value of this properties is a class from the class
hierarchy. The rendering is accomplished by an arrow from the selected property to the
concerning classes.

Page 31 of 99

790

795

800

Related Work Search the Semantic Web

S i— =
LivingThing & -2
Person & i
¢ 48 MacroPhoto Photographer @-

: Animal @ @
48 hertalPhoto eler ©-

Location @ &
outerspace & -
e ___taberfronbince EanhLocation & -8

Il oo s sableFlace [ol

: GeoPhoto) depictsTheme {THEME : Universe}, {(PHOTO } takenFromP

Figure 5-8: EROS guery-building mode

This interface also enables users to formulate RQL queries with visual aid (see Figure 5-8).
This is done by letting the user select classes and properties and let him/her be able to type in
constraints for properties. With this information the system generates a RQL query for the user.

EROS is a GUI and not comparable with the system we target for. However, it may serve as a
front end for our system. EROS strength is helping the user to visualize and browse ontologies.
When browsing the ontology a user may be triggered for some information need and the
system we target for could then be the back end that helps the user to satisfy this need. Note
that a problem with making a GUI for browsing web sized ontologies in general is that some
node may have very many connections with other nodes. For instance the class “class” can
have millions of subclasses. So, if one wants a visual front-end system for the search engine,
extra facilities should be built in to accommodate for these 'size' problems. These problems
occur with both discussed metaphors.

Page 32 0f 99

805

810

815

820

825

830

835

840

845

Search the Semantic Web Requirements

6 Requirements

Because of limited time, this project will not aim at the design and implementation of an entire
Web Search Engine. It will focus on the query part of the search engine (and thus not the
crawling and GUI part). It will also focus, at least for the design, on the indexing part because
that part is important for query performance (and as described in section 4.5 we want a scalable
solution). Further, as we explained in section 3.3, the Semantic Web is a vision, and it is only
partially implemented. In this thesis we will therefore constrain ourselves up to the RDFS part
of the Semantic Web.

This section will informally define the queries that the resulting search engine should be able to
solve. The requirements of these queries are based on the problem description in section 4. The
requirements can be divided in two groups, requirements for queries, and requirements for
result manipulation algorithms. Further, as described in section 4.5, we want our search engine
to be scalable to large data sets. Therefore, we want that evaluation of the basic query types be
optimal concerning time complexity, preferable logarithmic.

6.1 Queries

Here we will define a range of queries the system should be able to execute and define some
behaviour we expect from the system at evaluation. We assume that the queried structure is
RDFS, and thus can utilize the class and property constructs. The queries are based on the
problem description as stated in sections 4.1, 4.2 and 4.3. We define the following query types:

Term queries (paragraph 6.1.1)
Structure queries (paragraph 6.1.2)
Class queries (paragraph 6.1.3)
Property queries (paragraph 6.1.4)
Path queries (paragraph 6.1.5)

Union queries (paragraph 6.1.6
Intersection queries (paragraph 6.1.7)
Difference queries (paragraph 6.1.8)

6.1.1 Term queries

As we mentioned at the beginning of section 4 we want to want to construct a compromise
between a keyword based search engine and a database. We think it is crucial to support,
besides more powerful queries, also simple keyword search. Therefore we introduce the notion
of “term” queries. An example of such kind of a query is:

Return all resources that contain term ‘X'

X’ consists of one or several terms. Note that for the queries we define in the rest of section
6.1, we always want to be able to replace URI’s and literals, as existing within RDF(S) triples,
by a term query.

6.1.2 Structure queries

Using RDFS, with its class and property structure, we not only want to be able to search for
data using this structure, but also want to be able to search through these structures themselves.

Page 33 of 99

850

855

860

865

870

875

880

885

Requirements Search the Semantic Web

Therefore we introduce the notion of structure queries. An example of such a structure query
1s:

Return all classes (or properties) that contain term X’

The query for properties is similar. Besides searching for some term in the (semi-) tree we also
want typical tree operations to be executable. Therefore we want to be able to execute the
following class structure queries (again ‘classes’ may be substituted by ‘properties’):

Return all classes that are a child of class ‘X’

Return all classes that belong to the sub-tree of class ‘X’
Return all classes that are a parent of class X’

Return all classes that are ancestor of class ‘X’

6.1.3 Class queries

The class structure in RDFS provides a mechanism for grouping resources into classes. A
query type that naturally goes with this mechanism is query for all instances of some class.

We call this type of queries class queries. An example of a class query is the query of the form:

Return all instances of class ‘X'

But we also want to consider the case that X is not exactly known, like

£

Return all instance of classes ‘X’ that contain the term ‘Y

6.1.4 Property queries

Similar as with classes we want the system to be able to quickly solve queries that involve
properties. Every predicate of an RDF triple is a property. So instead of only querying for
properties (with for instance returning all subject and object pairs with the concerning
property) it would be-more general to query over triples. We call all queries of this type a
property query. Property queries are able to fulfil the metadata queries as mentioned in section
4.1, except for the boolean combination part. The boolean combination part of the queries as
mentioned in section 4.1 can be solved with the query combination primitives as described in
section 6.1.6, 6.1.7 and 6.1.8. Note that queries of type property as described in this section are
more general than the metadata queries. For property queries the subject does not need to be of
type “document” but may be any resource, like for instance another RDF statement.

As already mentioned, we query triples. Triples consist of a subject, predicate, and an object.
We want to be able to query with either one as the unknown factor. So, for example, the
following query should be possible:

Return all triples that have predicate ‘X,

Or

Return all triples that have predicate ‘X’ with object value ‘Y".

Page 34 of 99

890

895

900

905

910

915

920

925

930

935

Search the Semantic Web Requirements

Or

Return all triples that have a subject value ‘X’ and an object value ‘Y’.

Etcetera.

More formally defined, the following property query over triples must be possible:
<S|?,p|?,0 |?>,

where | represents the OR-operator, and ? means variable. For all S, p and O’s, term queries
may be used.

6.1.5 Path expressions

Beside singular queries we also want to be able to pose more difficult queries like path
expressions as described in section 4.2. An example of a path expression is:

Return all instances of class ‘X1’ that have a property ‘Y1’ with an object value of class ‘X2’
that has a property ‘Y2’ with an object value ‘Z’.

A concrete example of such a query is illustrated by the following realistic example:

Return all paintings that are painted by a painter living in the Netherlands.
We define the path query type by the following recursive definition:

Pathy :: <X, l ?, Po | ?, Path,>
Path; o X l ?, Pi | ?, Path;.4 {0 <j< n}
Path, :: X, | ? {n>0}

where | represents the OR-operator, and ? means variable. For all X; and p’s, term queries may
be used.

‘The result of this query is a number of groups consisting of n triples. One group would then be
of the form:

<Xo, Po.X>
<X1, p1.,X2>

<X, pi , Xn1>
<Xp-1, Po-1,X0>

Beside the normal path queries we also want to be able to use the path distance operator
(defined in paragraph 4.2). The definition reads: In a Semantic Web graph the path distance
between a start and end node is the number of directed edges that have to traversed to get from
the start node at the end node. This yield the following path definition (where [d;] denotes a
maximum distance operator):

Page 35 0f 99

940

945

950

955

960

965

970

975

Requirements Search the Semantic Web

Pathy :: <X, | 2, [do] l Po | ?, Path;> {do EN}

Path;:: X; | 2, [d] | p: | ?, Pathn; {0<i<n,dieN}
Path;:: X, | ? , {n>0}

6.1.6 Union queries

In section 4.3 we described composite queries. Those composite queries can be interpreted as
set operators. We distinguish the union, intersection and difference operator. The union
operator is equivalent with the queries (as described in section 4.3) that “define several
possibilities of which the results should fulfill at least one.” The intersection operator is
equivalent with the queries (as described in section 4.3) that fulfill multiple conditions. And the
difference operator is equivalent with the queries (as described in section 4.3) that must fulfill
some condition, but may not fulfill another

All set operators expect two input queries, where the operator applies on the results of the
results of these queries. We want it to be possible that the input query may again be a union,
intersection or a difference query, so that these query types may be nested. This way a union of
three items would be denoted in a way like: Union(Union(x1,x2),x3) or some equivalent form.
Union queries can be defined as:

Return all instances that fulfil one of the following queries.

The result of the union should be all triples that are in the result set of at least one of both
queries. The union operator is similar to the logical OR.

6.1.7 Intersection queries
Intersection queries can be defined as:

Return all instances that fulfil all of the following queries.

The result of the intersection should be all triples that are in the result set of both queries. The
intersection operator is similar to the logical AND.

6.1.8 Difference queries
Difference queries can be defined as:

Return all instances that fulfil queryl, but not fulfil query2.

The result of the difference should be all triples that are in the result set of the first query, but
do not appear in the result set of the second query. The difference operator is similar to the
logical NOT.

6.2 Relaxing or strengthening the query

Because of the unfamiliarity of the users with the data they search and the inability of humans
to formulate queries that precisely fit their information need, we want the SW search engine to
be able to aid users by exploiting the RDFS structure. The algorithm requirements that are
described in this section present some requirements of solutions for the problems described in

Page 36 of 99

980

985

990

995

1000

Search the Semantic Web Requirements

section 4.4.

If some query leads to no or too few results, it is desired that the system relaxes the query
(somewhat) and looks for more results that may be found by using this relaxed query. Because
RDFS contains a logical structure (e.g. class and property constructions) it is preferable for the
system to exploit this structure to determine extra result candidates. The system should relax
the constraint and continue searching until the desired number of results is found, some time
constraint is reached or the expansion possibilities are exhausted.

A query may also appear to be too general, if e.g. it surpasses some maximum number of
results. The system is then not able to decide how to strengthen the query, because the user
query is probably just not specific enough (i.e. the query does not give hints for more specific
interpretation). But looking at the RDFS structure it may try to make some query strengthening
suggestions (like suitable subclasses for some query class terms). It would be preferable to
make this maximum number of results a customisable variable, or make it relative to the
amount of indexed data (because if the amount of data that is queried over is larger, the
expected number of results is also larger). If we introduce the parameters “minimum number
of results” and “maximum execution time” we want them both to be adaptable.

6.3 Structuring results

If some query execution leads to numerous results (e.g. thousands) it is very unlikely that the
user wants to inspect all of them. Thus the problem is to how to support the user to interpret the
results. The first concern is how to sort these results, so that the results that have the highest
probability to be relevant to the user are on top. Another good possibility would be to look for
similarities between results and use this to group the results based on these similarities.

Page 37 of 99

Requirements Search the Semantic Web

Page 38 of 99

1005

1010

1015

1020

1025

1030

Search the Semantic Web Data structure

7 Data structure

In this, and the following two, sections we present a theoretic framework for our system by
presenting a data structure and the corresponding algorithms that together form a solution for
the requirements. We call our system (data structure plus algorithms) SNEL, which stands for
Search Nearly Everything Language.

We need to design SNEL so that it accommodates for the queries and algorithms as specified
in section 6. As mentioned in section 6.1.1 an important type of queries we want to be able to
evaluate are term queries. To be able to accommodate for this type of query we need to
maintain an alphabetically sorted list of all occurring terms in all the input data, which we
assume are RDF triples. Now we could attach to every term the triples in which it occurs.
However, we want to accommodate for querying over every separate component of the triple.
Therefore we decide not to maintain a list of triples for every term in which they occur, but
rather to maintain a (sorted) list of all URI’s/Literals in which they occur. To quickly retrieve
all triples in which these URI’s/Literals occur we maintain several lists of all triples, each
sorted on one component of the triple. Note that here we choose to explicitly exchange storage
overhead for a faster query evaluation.

To accommodate efficient evaluation of the structural queries we need to keep the two tree
structures in accordance with the class and property structure in RDFS. To efficiently search in
these tree structures we maintain an index on both structures, i.e. a sorted list of all
classes/properties with accompanying references to their appearances in the tree. To
accommodate for the class instance queries we maintain for every class and property, in the
corresponding trees, an instance list. Note that by maintaining the property tree for all
properties together with its instances pairs, the URI to triple list sorted on property is
redundant.

The former considerations lead to the design as depicted Figure 7-1, which contains the data
structure we constructed for SNEL. The sections 7.1 up to 7.5 contain more detailed
descriptions on the various components of the design.

Page 39 of 99

Data structure Search the Semantic Web

“Clas‘s"‘ Tree Class Locaticn Table
— ClassX1 - Lazstiont?
e & - Siiﬁﬁiﬁg & LozalieZ
| — e

\ URIiteral Term Index

—— several su?er classes Tamll - UR-AZ S URIAL..
‘ TembBZ - URMAS 8 Liteak BT
i TemmiES - URMAS & UteshD3
i
(5 e -

Location ID

List of parents | [List of children

List of Instances

“Property” Tree
- Property Localion Table
o Prgerty] - Eocatonyt
59] Prapety2- Locafien2
T | Poopertys - LocafionY3 & LocafienZS
e o I
—— &
. F—'A‘ Triple List Trighe List
Sorted by Subject | Sorted by Object
? : orted by Subject by O
N <sipl 02> <s13pdol>
<s2pi2od <s24p12,02>
oy <s3,p25.082> <s58,p25,032
—>¢ Location 1D T s
List of parents List of children
- Domain || Range || Instance Palrs

Figure 7-1: SW index data structure

7.1 Class and property tree

1035 The main structures in the index data structure are the “class tree” and “property tree”. We
define the terms of “parent” and “child” of a node in the usual way. The tree is based on the
RDFS subclass and subproperty hierarchical structure. This hierarchical structure cannot
directly be translated into a tree, because RDFS allows multiple inheritance. In spite of this a

Page 40 of 99

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

Search the Semantic Web Data structure

class may neither be a subclass of itself nor a subclass of one of its own subclasses, i.e. the
inheritance graph is cycle-free. Note that this restriction is removed from the latest RDFS
specification [10], because of compatibility reasons with OWL. For this thesis we will assume
the constraint, however. If, in the future, this would pose problems the data structure could be
adapted to support for the absence of this restriction. The mentioned translation problem is
solved by copying the node for every subclass or subproperty (child) declaration. Thus, if a
class is declared as subclass of more than one superclass it is separately copied as a subclass
for every of those superclasses.

There is an important implementation issue here that should be taken care of. One way to
implement this tree translation would be to maintain one copy of the specific class and to insert
links to that copy instead of duplicating the information. This implementation prevents update
issues and space overhead. However, this method can bring up a speed issue if the search
engine is implemented to run in parallel on several computers. Then query evaluation may
have to repeatedly switch between several physical machines, because of the distribution of the
data. This would greatly increase the communication overhead and thus slow down query
evaluation. Another way to implement the tree translation would be to duplicate the node for
every appearance in the tree. This would build-in some redundancy and thus introduce some
extra space overhead. It would also introduce an update issue. However, it would eliminate the
extra communication overhead in an implementation on a parallel network. The latter solution
would probably be the most efficient for a Web sized repository, but note that, for this section,
we can abstract from the actual choice for a specific implementation.

7.2 Tree nodes
Every node in both trees stores some information. For the class tree the following properties
are recorded:

Location ID
List of parents
List of children
List of instances

The location ID structure should be.chosen such, that knowing-this-ID enables the system to
instantly retrieve the corresponding node of the tree. A possibility would be to choose the class
/ property identifiers themselves as an ID, but this is not necessary. If another approach is
chosen, the names of the properties/classes should also be included in the node for
identification. The list of a node’s parents and children is maintained to enable traversing the
tree, which will be used later to exploit the RDFS structure for evaluation of queries.
Furthermore, for every node the list of direct instances (not including the instances of its
children) is maintained so that the often-occurring operation of retrieving all the instances of a
class can be executed quickly.

The information that is recorded for the nodes in the property tree is slightly different, namely:

Location ID
List of parents
List of children
Domain

Range

Page 41 of 99

1090

1095

1100

1105

1110

1115

1120

1125

Data structure : Search the Semantic Web

o List of instance pairs

Location ID, list of parents and list of children function similarly to the equally named
counterparts in the class nodes. The domain and range of a property are also stored and may be
used to restrict a search to certain classes. Furthermore the property nodes contain a property
called “list of instance pairs”, which is the counterpart of the class nodes’ “list of instances”. A
property in RDFS can be seen as a directed edge between two nodes. The property instance
then consist of the two nodes. The instance pairs can be sorted in two ways; sorted on subject
or object of the property. It basically does not really matter which sort method is chosen. If
statistic query execution data shows that one of the two is searched over more often that order
can be utilized. We consider maintaining two identical copies of the instance pair list: one
sorted on subject and the other sorted on object. This would be an exchange of space overhead
for faster query evaluation (for certain queries). For the rest of the document we will assume
one instance pair list sorted on subject.

Note that every triple indexed by the system will appear in the property tree exactly once.

7.3 Class and property location tabie

To be able to find specific classes in the class tree a class location table is maintained that
contains a sorted list of all classes, and for all those classes references to the position of the
class in the class tree. Because classes can occur on several places in the class tree there may
be more than one position-coordinate for one class.

~ Similar to the class location table for the classes in the hierarchy, a property location table is

maintained for properties. This property location table is structured similarly to the class
location table.

Note that classes are of type URI or blank node and properties are of type URL.

7.4 URIliteral-term index

Users do not know the exact class and property names, or more generally the specific syntax in
triples, they search (which are typically URIs). They typically only want to have to define

some keywords.that occur in the triples. To accommodate for this an URI/literal term index is
maintained. For this index URIs and literals are broken down into separate terms and are sorted
by term. Every term in the index is accompanied by a list of URIs and Literals that contain the
term. The process of breaking down URI’s and literals in individual terms is left as a separate
concern.

The alternative for breaking down the URIs and literals, but to still provide for term search,
would be to store complete URIs (or literals). Then, instead of a binary search for some term -
do a pattern search in all data. Although this last process can be executed concurrently for
different parts of the class term index (if it would be divided over several physical machines)
this will still lead to a substantial performance downgrade (from order O(Log(|/index]])) to
order O (||lindex|})).

7.5 Triple lists

A URI or literal can occur in several triples and URIs also may represent a property or a class.
To locate in which triples some URI or literal occurs and if some URI is a class or property
four tables can be consulted. To determine if a URI is a class or a property the class and

Page 42 of 99

1130

1135

1140

Search the Semantic Web Data structure

property location tables can be used. To generally look if some URI occurs as the subject or
object of some triple (for properties the property location table is used) two triple lists are
maintained. They are both equal in content but one is sorted on subject (and object is the
second sort key) and one is sorted on object (and subject is the second sort key). Literals only
have to be looked up in the triple list sorted by object because they can only be used as the
object part of a triple.

Note that we have not treated the notion of blank node in our design. W3C mentions in [17]:
“A convention used by some linear representations of an RDF graph to allow several
statements to reference the same unidentified resource is to use a blank node identifier, which
is a local identifier that can be distinguished from all URIs and literals.” We will apply the
same method. A blank node is given an identifier and is further treated similar to an URIL Note
that these two groups are disjoint. Because blank nodes are not really a relevant factor for our
project we will not consider them any further.

Page 43 of 99

Data structure Search the Semantic Web

Page 44 of 99

1145

1150

1155

1160

1165

1170

1175

1180

Search the Semantic Web Query solving algorithms

8 Query solving algorithms

8.1 Introduction

In section 6 we introduced the types of queries we wanted to be able to solve with our system.
In section 7 we introduced the data structure for our system, SNEL, of which we claimed it
enables us to solve these queries. In this section we describe the algorithms that use the data
type described in section 7 to solve the queries mentioned in section 6. In section 12.2 we will
discuss the efficiency of the algorithms presented here.

8.2 Term queries

Term queries are queries of the type:
Return all resources that contain term °X’.

The informal algorithm to solve this query:
1. Search the URI/Literal term index for ‘X’ and return the corresponding URIs/literals.
2. Search the URIs/Literals found in 1 in the following tables (may be executed
concurrently):
1. In the triple list sorted by subject
1. Search for the URIs in the Subject with a binary search and return results
2. In the triple list sorted by object
1. Search for the URIs in the object with a binary search and return resuits
3. In the Property Location Table
1. Search for the URIs as property with a binary search and return the resulting
locations in “location list”
2. For every location in “location list” construct triples from its instance pairs
combined with the corresponding property and return these triples
3. Return all the results found in step 2 to the user.

8.3 Structure queries

We-considered the following five structure queries:

Return all classes that contain term ‘Y’

Return all classes that are a child of class ‘X’

Return all classes that belong to the sub-tree of class ‘X’
Return all classes that are a parent of class ‘X’

Return all classes that are ancestor of class ‘X’

IF NS

The informal algorithm to solve query 1:
1. Search the URI/Literal term index for ‘Y’ and return the corresponding URIs/Literals.
2. Search the URIs/Literals found in 1 in the class location table and return the URIs that
occur in that table as results of the query to the user.

The informal algorithm to solve query 2:
1. Search the URI ‘X’ in the class location table and return a location ID of the class.
2. Look up the ID in the “class” tree and return a list of children that result from the
query to the user.

Page 45 of 99

1185

1190

1195

1200

1205

1210

1215

1220

1225

Query solving algorithms Search the Semantic Web

The informal algorithm to solve query 3:

Search the URI ‘X’ in the class location table and return a location ID of the class.
Look up the ID in the “class” tree and return the list of children.

Create a result list and a todo list and put the result of 2 in both lists.

Select a class from the todo list. Return all its children and add these children to the
todo list and the results list. Remove the selected class from the todo list.

5. Repeat 4 until the todo list is empty.

AN~

The informal algorithm to solve query 4: A
1. Search the URI ‘X’ in the class location table and return a location ID of the class.
2. Look up the ID in the “class” tree and return the list of parents as result of the query to
the user.

The informal algorithm to solve query 5:

Search the URI ‘X’ in the class location table and return a location ID of the class.
Look up the ID in the “Class”’ tree and return the list of parents.

Create a result list and a todo list and put the result of step 2 in both lists.

Select a class from the todo list. Return all its parents and add these parents to the todo
list and the results list. Remove the selected class from the todo list.

5. Repeat step 4 until the todo list is empty.

AW~

8.4 Class queries

For class queries we considered two types of queries, namely:

1. Return all instances of class ‘X’.
2. Return all instance of classes ‘X’ that contain the term Y.

The informal algorithm to solve query 1:
1. Search the URI ‘X’ in the class location table and return a location ID of the class.
2. Look up the ID in the “Class” tree and return the list of instances as result of t the query
to the user.

The informal algorithm to solve query 2:

1. Search the URI/Literal term index for ‘Y’ and return the corresponding URIs/Literals.

2. Search the URIs/Literals found in step 1 in the class location table and return the URIs
that occur in that table in a list called X’..

3. Select a class from ‘X, search its URI in the class location table, return a location ID
of the class and remove the class from the X'

4. Look up the ID in the “class” tree and return the list of instances in a list called
“results”.

5. Repeat step 3 and step 4 until ‘X’ is empty. Then return “results” as result of the query
to the user

8.5 Property queries

For property queries we consider the following type of queries:

Return all resources that fulfil the pattern: <S|?,p|?,0 |?>

Page 46 of 99

1230

1235

1240

1245

1250

1255

1260.

1265

1270

1275

Search the Semantic Web Query solving algorithms

The informal algorithm to solve this query:
1. In case p is known:
1. Search the URI ‘X’ in the property location table and return a location ID of the
class.
2. Look up the ID in the “property” tree and return the list of instance pair as a list
called “results”.
3. Incase S is known
1. Search for the elements in “results” that have the value of S in the subject and
delete the rest of “results”. (Binary search if instance pairs are sorted on subject,
linear search otherwise)
4. In case O is known
1. Search for the elements in “results” that have the value of O in the object and
delete the rest of “results”. (Binary search if instance pairs are sorted on object,
linear search otherwise)
5. Return “results” as results of the query to the user
2. In case p is variable:
1. Incase S is known
1. Search for S in triple list sorted by subject and return the resuliting triples in a list
called “results”
2. Incase O is known
1. Delete all triples in “results” that don’t have O as object
3. Return “results” as results of the query fto the user
2. Incase O is known and S is variable
1. Search for O in triple list sorted by object and return the resulting triples in a list
called “results”
2. Return “results” as results of the query to the user
3. Incase O and S are variable
1. Return the triple list sorted by subject as the results of the query to the user

8.6 Path queries

For path queries we consider the following type of queries:

Pathg :: <Xg | ?, [do] | po | ?, Path;>
Path; : X; |2, [di] |pi |2, Pathisy {0<i<n,deN}
Path; :: X, | ? , {n>0}

The algorithm to solve this query starts with expanding the query through substitution of the
values d; as follows:

1. We have a collection of queries, which we call ‘query-collection’, that initially only

contains the input query.

2. For every d; in the query with some value ‘m’ we create m times the number of queries
in ‘query-collection’, where every query in ‘query-collection’ d;is replaced by ‘7,7 ",
for all n between 1 andm, ISn <m

An example of this algorithm is substitution of some distance operator d, with value ‘3’. This
would create three queries: one with d, substituted by ‘?,?’, one with d, substituted by ‘?,2,2,2°
and one with d, substituted by ‘?,2,2,2,2,?’

Page 47 of 99

1280

1285

1290

1295

1300

1305

1310

1315

1320

Query solving algorithms _ Search the Semantic Web

We now have a collection of queries that are of the form: <Xg|?,...,pi|?,Xi|?,pi+1]7,. ... Xn>. We
solve this query collection as follows:

1. Evaluate every query in the collection (may be done concurrently)
2. Take a union of the results of all those queries (see 8.7 for an algorithm for union of
result sets).

For evaluation of one query we use the following informal algorithm:
1. A query always has a number of 2n+1 constants/variables and can be decomposed into
n property queries parts.
2. Every property query part is numbered according to its occurrence in the query (from
left to right).
3. Evaluate the property query parts (according to algorithm in 8.5). This may be done
concurrently.
4. Next we combine these results as follows:
1. Construct a list called “results”, which initially contains the results of the first
property query part. Mark the first query part as processed. '
Take the results of the query part with the lowest number, which is not yet marked as
“processed” and call it QP. v
3. For every result R in the “results” list:
1. Take the object of the last triple of R
2. Search for R in the subject of all triples in QP
3. The number of triples that have that subject match is called “a”
4. For every match in QP the “results” list is extended with R appended with the
matching triple (which will lead to in total “a” times R new results).
5. The original R is deleted from the “results” list (thus if there are no matches in
QP the “results” list becomes smaller).
Mark the query part that corresponds to QP as processed.
Repeat step 2 to 4 until every query part is processed.
5. Return “results” as the results of the query to the user.

o

A

To perform the given algorithm as efficiently as possible the instance pairs in the property tree
should be sorted on subject. However, if it would be better to sort the instance pairs in the
property-tree on object the algorithm can easily be built to-evaluate from right to-left-instead of
from left to right.

8.7 Union queries .
For union queries we consider the following type of queries:

Return all instances that fulfil one of the following two queries.

The two queries are expected to return triples (instances) as results. The informal algorithm for
the union then is:
1. Construct a result set of triples, called “results”, that is initially empty.
2. For all triples in both result sets do:
1. (Binary) Search to see if the triple is in “results”
2. If'not insert the triple in results (at the right place).
3. Return “results” as the results of the query to the user.

Note that the result of this union is again a set of triples.

Page 48 0f 99

1325

1330

1335

1340

1345

1350

Search the Semantic Web Query solving algorithms

8.8 Intersection queries
For intersection queries we consider the following type of queries:

Return all instances that fulfil both of the following two queries.

The two queries are expected to return triples (instances) as results. The informal algorithm for
the intersection then is:
1. Construct a result set of triples, called “results”, that is initially empty.
2. For all triples in the first result set do:
1. Search to see if the triple is in the second result set. If this is true then:
1. (Binary) Search to see if the triple is in “results”
2. Ifnot insert the triple in results (at the right place).
3. Return “results” as the results of the query to the user.

Note that the result of this intersectioﬁ is again a set of triples.

8.9 Difference queries
For difference queries we consider the following type of queries:

Return all instances that fulfil query1, but not fulfil query2.

The two queries are expected to return triples (instances) as results. The informal algorithm for
the difference then is:
1. Construct a result set of triples, called “results”, that is initially filled with the results
of queryl.
2. For all triples in the result set of query2 do:
1. (Binary) Search to see if the triple is in “results”
2. Ifthis is so delete the triple from “results”.
3. Return “results” as the results of the query to the user.

Note that the result of this difference is again a set of triples.

Page 49 of 99

Query solving algorithms Search the Semantic Web

Page 50 of 99

1355

1360

1365

1370

1375

1380

1385

1390

1395

Search the Semantic Web Result manipulation algorithms

9 Result manipulation algorithms

In section 6 we introduced, besides queries, a number of query expansion and query
strengthening methods, which we want to have in our system (SNEL). In this section we
describe the algorithms that use the data type described in section 7 to execute those methods.
In section 12.2 we will discuss the efficiency of the expansion algorithms presented here.

9.1 Relaxing the query

When a predefined minimum number of results is not found upon evaluation of the query, or
the user explicitly indicates that the number of results is too limited, the query may be relaxed.
The idea behind relaxation is to find extra candidates that do not fulfil the query, but are for
some reason likely to be relevant to the query. The goal for the relaxation is to help the users to
find additional results that they might be interested in, but which are not found as an exact
result for the query, because the query was too strict.

We will discuss some methods to do that in this section. In paragraph 9.1.1 we discuss the
“regular” methods. With “regular methods” we mean methods that only concentrate solely on

the query terms without exploiting the RDFS structure. From paragraph 9.1.2 and on we
discuss methods to relax the query exploiting the RDFS structure.

9.1.1 Regular methods

There are already methods available to relax queries in the state of the art search engines. One
of these methods is to look for small syntactic variations of terms posed in the query. Consider
a class query for some class that contains the term “aabbcedd” (but it works equally for terms
in properties or instances). Now suppose that searching for the term “aabbced” in the class
term index returns no or only a few results. Furthermore suppose there is a term “aabbcdd” in
the class term index that has lots of resulting classes. This term “aabbcdd” only differs one
letter from “aabbced” so maybe the user misspelled the term. So if there are syntactical
variations for some term these may be included in the search. Algorithms for measuring
syntactic closeness are publicly available; think for instance of spell-check systems in word
processors (and especially the correction suggestions).

A common method of query relaxation involves the normalization of terms. This means that
both indexed terms and query terms are brought down to a normal form. Examples of
normalisation are stemming of verbs (“walking” and “walks” are both stemmed to “walk™ for
instance) and the removal of plural forms. Thus declensions are taken into account during
searches so that obvious candidates that fulfil the query conditions are not accidentally missed.

Besides taking small syntactic and semantic variations into account it would also be a good
idea to look at synonyms of terms. People may namely use different terms when they actually
refer to the same thing. This could also be taken into account during the search (unless off
course it is explicitly stated by the user not to do so). So, for example, if somebody searches for
the term “picture” also terms as “image” or “photo” should be found. To support this, the
system could use a synonym dictionary. ‘

9,1.2 Subclass and subproperty expansion

In this and the following paragraphs we focus on RDFS exploitation for query expansion. If a
query contains some class or property expression the RDFS subclass and RDFS subproperty
trees are good candidates to utilize.

Page 51 0f 99

1400

1405

1410

1415

1420

1425

1430

1435

1440

Result manipulation algorithms Search the Semantic Web

Subclasses of some class and subproperties of some property define a special case of the
specific class or property. This relation between classes and subclasses (similar for properties)
is illustrated by the following definition of W3C ([10]): “If a class C is a subclass of a class C’,
then all instances of C will also be instances of C'.”

In our architecture we chose to store only a class’ direct instances. Thus the classes of the
class’ subtree are not computed in advance and included in the class’ instances. This is done so
that a class’ direct instances can be distinguished from its inherited instances. To include the
instances of a class’ subtree we traverse through the tree. The algorithm for including the
instances of the subclasses in class X is an adaptation of the subtree structure query. It becomes
as follows:

1. Create an instances set and a todo set and put the cildren of X initially in the todo set
and keep the instances set initially empty.

2. Select a class from the todo set. Add all its instances to the instances set and add all its
children to the todo set. Remove the selected class from the todo set.

3. Repeat step 2 until the todo set is empty (or some execution time limit is reached).

This algorithm is similar for the property tree.

Because of the stated definition of W3C (If a class C is a subclass of a class C', then all
instances of C will also be instances of C.) subclass and subproperty expansion is a good and
safe way to expand the query results.

9.1.3 Superclass expansion

If the subclass and subproperty expansion method still results in too few results a
generalisation of the class and property query parts may be executed by examining its
superclass(es). For instance, consider a search for images on animals of the class “painting”.
One may then also be interested in images of the class “art”, which is for instance the
superclass of “painting”. And next, if there are still not enough results, also the children of the
superclass, in this case “art”, may be included in the search, such that classes as “photograph”,
“drawing”, etcetera are also included (depending on the specific class structure).

The superclass / subclass-examining algorithm is very similar to the algorithm noted in the
previous paragraph and will not be repeated here.

Superclass expansion will return extra results that are in someway related to results that do
precisely fulfil the query. However, the superclass may be a too large abstraction of its subclass
and then produce some unwanted too general solutions. Therefore the superclass expansion
method will expand the query results with possible valuable candidates, but the value of these
additions is more uncertain than those of the subclass / subproperty expansion method.

9.1.4 Instance membership expansion

Another form of query relaxation we introduce here is the utilization of instance memberships.
This part of query expansion is only applicable for classes (not for properties, because
properties have instance pairs, which are unlikely to occur in the identical subject-object
composition for another property). If we find a few, but not enough, instances that fulfil some
query conditions we may analyse the results to try to find new results candidates. We try to
utilize the possibility that some resource may be the instance of several classes at the same
time.

Page 52 of 99

1445

1450

1455

1460

1465

1470

1475

1480

1485

Search the Semantic Web Result manipulation algorithms

There are cases where this might add valuable results. For instance if the query is about the
class “actors” that fulfil some conditions and some instances that are found are also instance of
the class “director”. We then may add a search for resources of the class “director” that fulfil
the other conditions as a query expansion. Note that this method is highly speculative.
Consider for instance the same query about the class “actors” of which an instance is also
instance of the class “American president”. If we now add a search for resources of the class
“American president” that fulfil the other conditions this may deliver a number of unwanted
results.

We do this with using the following algorithm:
1. Take some instance ‘a’ that is instance of class ‘X’.
2. Look up ‘a’ in the triple list sorted by subject.
3. Search the resulting triples for type definitions.
4. If type definitions are found that are not already known do the following for all new
classes:
1. Look up the object of the new type definition in the class location table
2. Return the list of instances of the found class as alternatives for ‘a’
3. Optionally return the instances of the subtree as extra alternatives for ‘a’.
5. Repeat 1-4 for some other instance, or stop if there are no other instances, the number
of results is satisfactorily or some execution time limit is reached.

Instance membership expansion will return extra results that might be related to the results that
precisely fulfil the query. This method is however more speculative than superclass expansion
method. In many cases this search does not have to come up with desired results and should
therefore be used as the last query expansion option after the subclass / subproperty and the
superclass method.

9.2 Query refinement

In many cases the user’s query is just not specific enough to find the results that the user
actually expects. The query should then be refined to express what the user really wants; this
cannot be decided by the system itself (it doesn’t know what the user wants). The system can
however return some suggestions for refinement.

If some class is too general, i.e. has too many instances (including its subtree instances), the
query engine may return its children as possible replacement for the concerning class. These
are good suggestions because the subclass relation of a class implies it is more specialised than
its parent. If, for instance, one searches for a “vehicle” with some properties and this returns
too many results, the search engine could suggest to restrict to “sports car” if it is a subclass of
“vehicle”. The former works similar for properties.

If some term in the query is polysemous (word with several meanings), the system may suggest
some terms that indicate the intended use of the concerning word. An example of a polysemous
word is “bug”, which may indicate a beetle, a programming error or the verb “to annoy”.
Searching with the term “bug” may lead to results that use the term in any of these contexts. So
for “bug” additional query terms like “pesticide”, “language” or “irritating” may be used to
select the appropriate context.

Page 53 of 99

1490

1495

1500

1505

1510

1515

1520

1525

1530

Result manipulation algorithms ' Search the Semantic Web

9.3 Structuring results

In this section we discuss two subjects related to structuring results. In paragraph 9.3.1 we
discuss the sorting of query results. We discuss how to rank them, the techniques that are often
used, and how to involve the Semantic Web. In paragraph 9.3.2 we discuss the grouping of
results. Grouping is similar to sorting results, as it is ranking with a different granularity. We
will discuss some criteria that could be taken into account for grouping.

9.3.1 Sorting query results

If the query delivers many results something must be done to present those numerous results to
the user. An important issue is sorting the results. The first results must be of the best quality as
these are the results that the user is most likely to inspect.

There currently are basically two types of algorithms for sorting query results on Web pages.
The first type is to judge the importance of some document for a certain query by analysing

quantity and position of the query terms in the candidate document results. This type takes

heuristics into account like the number of occurrences of query terms and the positioning of
those terms. The second type is using the link structure to assign importance values to pages.
As mentioned earlier in section 3.2, the main idea of this type is that a link from one page X to
a page Y means that page X thinks page Y is important in some way. The importance of some
page is then measured by looking at the number of important incoming links it has. Besides the
two mentioned types there are also some less used types. The sorting can for instance also be
fine-tuned by counting how many people will inspect some resource if it is returned in the top
ranked pages. If this is almost never the case, the system may conclude that the document is
possibly too highly ranked and this may be corrected. Also other user statistics could be used in
the same manner.

The sorting problem is a complex problem and we will discuss it only briefly here. The system
we are targeting should use a ranking system that uses a combination of the techniques
discussed before. Semantic Web pages are full of references to other Semantic Web pages.
These references could be used similar as the links in Web pages. We could measure
importance of, say class definitions (instead of e.g. complete SW files), by the number of times
they are referred to by triples of important resources. References in Semantic Web pages often
refer to-apart of a page and not-only to whole.pages-as is often the case with HTML pages. In
this way the importance of part of pages can be computed. Furthermore if some important SW
page (or part of a page) claims to be an instance of some class it may receive a special
importance for some specific term (instead of a global importance only). In this way a term can
have several importance values for different terms. An example for this is if you have some
SW annotated page about some well known painter and it is mentioned on the page that one of
the hobbies of the painter is “drinking beer”, then the page may be an authority for the term
painting because it has important “paint” references, but it is less important for “beer”, because
not many important incoming links are “beer” references. '

For path queries the distance operator could be involved for ranking. Results with a lower
distance can be ranked higher (because the relation between nodes is higher) than results with a
higher distance.

The ranking methods described above are based on query results that are exact matches for the
query. In earlier sections we also described finding solutions that are not exactly conformed to
the query but are estimates that almost fulfil the query. Because estimates are not as good
results as exact results, we will rank estimate results lower than exact results: the “closer” the

Page 54 of 99

1535

1540

1545

1550

1555

1560

1565

1570

1575

Search the Semantic Web Result manipulation algorithms

estimate, the higher the ranking. For example if extra results are found through the superclass
expansion method these are ranked higher that the extra results that are found through the
instance membership expansion method.

9.3.2 Grouping results

Another (additional) possibility, besides ranking, is to group results so that results that are
somehow related to each other are collected together in one group. The question is what the
selection criteria should be for a result to belong to one group instead of another.

What the final grouping method we will use in our system will look like will be kept for later
concern and not be treated in this thesis. Here we will mention some criteria that could be
taken into account for grouping.

A good candidate for grouping would be to utilize class and property instances. We could
group these instances on the class or property they belong to. If a user decides that some class
(similar for properties) is not what he was looking for, he may disregard the entire class. In this
way sub-groups may be formed as well. For instance if the result set was expanded by the
subclass / subproperty expansion method or the superclass expansion method on some class,
these extra results might be visualized as offspring of that class. A possible example of how to
implement this is the blended browsing and querying in EROS ([16]).

Not all resources have to be defined as being instances of classes or properties. How do we
group those results? A possibility is to look at special keyword combinations. A special
keyword in some document is a term that is relatively rare in the complete collection of all
indexed resource, but appears relative frequently in the specific document. In query results
there are normally subsets that are about a corresponding subject. Collections of documents
that handle a specific subject often have a set of special keywords in common. A collection of
document with a corresponding set of special keywords may be grouped together.

The last grouping criterion mentioned here is grouping on physical location. Normally if some
website domain handles some subject at least a part of its sub domain also treats the same
subject. Therefore a search may produce a relative large number of results from one domain.
These results can then be grouped together based on the domain they belong to.

A remaining problem is the sort order in which to return the groups (including a possible rest
group). We somehow want to include sorting to decide which group to show fist, so that highly
ranked result are not in the group that is visualized the last (which the users may not be willing
to inspect anymore). We could return groups on basis of the highest ranked result only. But this
could lead to unwanted results like some group with a lot of high ranked results being placed
after a group with one very highly ranked results and further only very low-ranked results.
Suppose ranking values vary between lower bound Y and upper bound X. We could define

“some threshold between Y and X above which results are considered to be high ranked. Then

we could sum all high ranked results per group and assign this value as the group ranking.
Then the groups could be sorted on this group ranking.

Page 55 of 99

Result manipulation algorithms Search the Semantic Web

Page 56 of 99

Search the Semantic Web Implementation in Sesame

10 Implementation in Sesame

In the previous sections we showed our ideas for implementing SNEL as proposed with a data
structure (section 7) and its corresponding query evaluation algorithms (section 8). For our

1580 implementation, however, we chose to implement SNEL’s query-part on top of an existing
RDF(s) database system, namely Sesame ([18]). We chose to implement our system on an
existing system because of two reasons. The first reason is the time constraint, of about 9
months, for this project is not sufficient to implement a complete system. The second reason is
we are interested in a case study using an off the shelf engine, so we can analyse its

1585 performance in comparison with our design. In section 12 we look at the feasibility of this
solution by making the comparison between the theoretic framework and the actual
implementation on top of Sesame.

10.1 Sesame’s architecture
Sesame is a system that allows storage and querying of RDF(s) data.

clientt client?2 client3

I N

[HTTP Protocol Handler] [SOAP Protocol HandlerJ

\/

Request Router

el i ™~

[Admin Module] [Query Module] (Expon Modu!e}

I B

Repository Abstraction Layer

Sesame

e e ottt e e

Reposttory

1590 —

Figure 10-1: Sesame's architecture

Figure 10-1 ([18]) is an overview of Sesame’s architecture. The first thing one probably notices
is the modularity of the design. Sesame is independent of repository. This means that different
storage modules (e.g. databases) may be used, as long as translation of operation primitives

1595 that are used by Sesame (protocol handler) are integrated in the Repository Abstraction Layer.
Current storage modules that can be handled are the PostgreSQL, MySQL and Oracle 9i
databases and the in-memory module implemented in Sesame itself.

Page 57 of 99

1600

1605

1610

1615

1620

1625

1630

1635

Implementation in Sesame Search the Semantic Web

RDF is defined as a model and is actually independent of its chosen encoding, even if this is
usually XML encoding. Therefore, to allow for different encodings Sesame stores the data on
a structure level, i.e. it stores triples instead of XML data. This way other encodings can be
allowed by adding compilers for the specific encodings. Current allowed encodings are XML,
N3 and N-triples. These encodings can also be used as return format for queries (besides the
special query results return format in HTML tables).

The query module let the user query the data in the repository. Again things are modular here.
A variety of query languages may be implemented and added to the system. The current
available query languages are RQL, RDQL and Sesame’s own SeRQL.

Repasitory | Repository
Parser —pi Quiery Oplinsizer : - Primitive - Abstraction
Query Translation Layer
Optimized
Query Model Query Mode! W%ﬁ’;s

Figure 10-2: Sesame query evaluation

Figure 10-2 is an overview of how query evaluation in Sesame works. RDF can be interpreted
as a graph model. To query this graph model Sesame parses the query, stated in its particular
query language, and translates this in a partial graph model, the so-called query model. This
partial graph model can be used as a pattern, which must be matched within the graph model of
the stored data in the repository. Before matching the graph model is first optimized and
transformed into an equivalent model that can be evaluated faster than the original query
model. These optimizations mainly consist of a set of heuristics for query subclause move-
around ([18]). Then, this optimized query model is matched with the graph model in the
repository.

Sesame is repository independent. This means that some repository may store the RDF data
model as it wishes as long as it provides an interface for certain query primitives. The query
model is then translated into a set of those query primitives. The query results that are provided
by the repository are then combined by Sesame’s query engine. Sesame was designed-this way.
(instead of trusting the repository for solving the entire query) to keep the dependence on the
repository as low as possible.

The last aspect of Sesame that we will discuss here is its API. Sesame’s API is also designed
modular. For some protocol to integrate in Sesame, a handler for that protocol has to be
integrated in Sesame’s request router. In this way Sesame is accessible from different
protocols. The only protocol handler that is implemented currently is the HTTP protocol.
However, a SOAP protocol handler is in the making.

10.2 Sesame’s Web application

Figure 10-3 is a screenshot of Sesame’s Web application that ships with their server. This Web
application is built such that it utilizes all of Sesame’s functionality. The login screen (no
screenshot included) lets the user select a repository to work with and optionally log-in if this
is necessary for the selected repository. After that the GUI as shown in Figure 10-3 is
displayed. The user is shown the permitted action on the right of the menu at the top of the
screen. Users may have two different rights: Read rights and Modify rights. These rights may

Page 58 0of 99

1640

1645

1650

1655

1660

Search the Semantic Web Implementation in Sesame

also be defined for anonymous users. If a user has read rights it can select a query language in
which it wants to query the data in the selected repository or it can select “Extract” to extract
all data or “Explore” to browse through the data. If a user has modify rights some modifying
actions can be undertaken. These modifying actions are administrative actions of adding and
removing RDF(s) data to the repository.

For Sesame’s SeRQL query language two interfaces have been created: one for HTML output,
the so called SeRQL select queries, and one for RDF output, which are called SeRQL construct
queries. This project will only deal with the latter, because construct queries returns results in
RDF format. This for instance facilitates querying the results of a query or combining several
query results.

| Evaluate a SeRQL-c
4 Your quety: "
5 Construct *

1 |From ipivy
q {Where Y like "*cellular*"]

onstruct query

| ROF serialization: |N-Triples ¥l

coPyight @2091-2008 Aduna BV .

] <http://uwwe, cogsci.pri edu/~wm/ pt#102411769> <hvtp://wwe.cogsci.princeton.edu/~vn/schema/wordForm> "cellular phone” .,

i <http://www.cogsci.pri edu/~wn/ pt#102411769> <http://wwu.cogsci.princeton.edu/~wn/schema/wordForm> "cellular telephone™ .
<http://wws.cogsci.princeton.edu/~un/concept#104325292> <http://vvw.cogsci. princeton.eduw/~wn/schema/wordForm> "intercellular substance” .|
4 <hrep://wwe, cogsei,princeton,edu/~wn/ concept#105272068> <http: //vww.cogaci.princeton. edu/ ~wn/schema/wordform> "acellular slime mold” . f
<http://www.cogsci.princeton.edu/~vn/concept#109272462> <htrp: //vww.cogsci.princeton. edu/~vn/schema/wordForm> "cellular slime mold” .

] <http://www.cogsei.princeton. edu/~un/ concept#109693894> <http: //vvw.cogsci.princeton.edu/~vn/schewa/wordForm> "cellular division™ .

4 <http://www.cogsci.princeton, edu/~wn/ concept#110123663> <http://wuw.cogsci.princeton.edu/~vn/schema/wordForm> "cellularicy” .

4 <htep://vww.cogsci.princeton. edu/~vn/concept#110123782> <htrp: //www.cogsci.princeton, edu/ ~wn/schema/wordFoxm> "hypercellularity” .

4 <http://www.cogsci, princeton, edu/~vn/concept#110123886> <http://vww.cogsci.pr inceton.edu/~wn/schema/wor@Form> "hypocellularity” .

i <http://wuw.cogsci.pri edu/~un/ #300318757> <http://wuw.cogsci.princeton,edu/~wn/schema/wordForm> "cellular®” .
<http://vwuw.cogsci, princeton, edu/~vn/concept#300319611> <http: //www.cogsci.princeton.edu/~wn/schema/wordForm> "multicellular™ .

i <http://vwv.cogsci,princeton.edu/~wn/concept#300319722> <http: //vwu.cogsci.princeton.edu/~wn/schema/wordForm> "acellular” .
<http://www,cogsci.princeton, edu/~wn/concept#300318722> <http: //wvw.cogsci.princeton.edu/~wn/schema/wordForm> "noncellular® .

4 <http://www,cogsci.princeton. edu/~vn/concept#302538318> <http: //wvw.cogsci.princeton.edw/ ~un/schems/wordForm> "cellular™ .

i <http://wuw,cogsci.princeton.edu/~yn/concept#302538441> <hvep: //wuw.cogsci.princeton.edu/~wn/ schema/wordForm> “extracellular” .

4 <http://www.cogsci.princeton. edu/~un/concept#302538596> <hrtp://wuw.cogsei.princeton. edu/~vn/schems/wordForm> "intercellular” .

f <http://vow.cogsci.princeton.edu/~vn/concept#302538687> <htrp: //weu.cogsci.princeton,edu/~wn/schema/wordForm> Tintracellular” .

i <http://vww.cogsci.princeton. edu/~vn/concept#302617584> <hrep: //vww.cogsci.princeton,edu/~vn/schema/wordForm> "unicellular” .

Figure 10-3: Screenshot of Sesame's Web application.

For more information on Sesame, Sesame’s Web application, or Sesame’s query language
SeRQL refer to [18], [19] and http://www.openrdf.org.

10.3 SNEL

We implement our system of queries in Sesame as a new query language. We name this system
SNEL, just like the theoretic framework, but will refer to it as the SNEL implementation in
Sesame. To implement SNEL we modify and add functionality to Sesame’s Server and the
Web application.

10.3.1 Environment

The Sesame server is implemented as a Java servlet application. Sesame should work on any
Java servlet container that supports Servlet 2.2 and JSP 1.1 specifications, but is specifically
tested on Apache’s Tomcat 3.x or higher.

Page 59 of 99

1665

1670

1675

Implementation in Sesame Search the Semantic Web

The used development environment is:

Operating system Windows XP Professional
Servlet container / Jakarta Tomcat 5.0.18
Web server
RDF query engine Sesame 1.0
Database MySQL 4.0.17
Compiler Java 2 SDK, version 1.4.2
Code Editor Textpad 4.7

JBuilder Enterprise 9.0
Web browser Opera 7.21

Internet Explorer 6.0

10.3.2 Architecture

SeROL-C |—» Form Submit {—)
Web page

e e

Query
Evaluation

Return N
Results formatted g Coﬁrgéml;\g
RDF page Results to User

Format Results
to ROF Sarviet query rasulis

Figure 10-4: Current query evaluation schema

Figure 10-4 is an overview of the SeRQL-C query evaluation schema. It shows the steps that
are taken from posting the query until showing the query results to the user. The SNEL query
engine should do evaluation roughly in the same way. We observe that some query constructs
of SNEL can be transformed into an equivalent SeRQL query. Furthermore the other query
constructs of SNEL can be translated into a number of SeRQL query parts of which the results
should be combined in some way. Therefore, instead of building a query engine from scratch,
we build SNEL on top of the SeRQL-C query language. We will translate the easy SNEL
constructs to an equivalent SeRQL-C query and then send that SeRQL-C to the “Construct
Query Servlet” for further evaluation. For the more complex SNEL constructs we construct a
number of SeRQL-C constructs and intercept the result of that query. If all SeRQL-C queries
are then evaluated the results are combined in the applicable way and then returned to the user.
Figure 10-5 gives an outline of the proposed query schema.

Page 60 of 99

1680

1685

1690

Search the Semantic Web Implementation in Sesame

Compilation to |
equivalent
SeROL query(s)
'"""‘B TR
el]
SNEL Fom Submit Ean;:leagon AT
Web page WS

Construct Daizhase
Query Serviet queries

Return) ‘_‘_-_ =
Formatted C;’;‘lsb::gg . =19 |
Results Bes
{—
Format Resulis Databasa
1o RDF Sarviet guery resufts

Retumn
| Combination
Result

Combine
SeRCL query
rasulis

Figure 10-5: SNEL query evaluation schema

10.3.3 Compiler

The compiler that translates SNEL queries is generated by a compiler generation package
called ANTLR (for more information see [20]). “ANTRL is a language tool that provides a
framework for constructing recognizers, compilers, and translators from grammatical
descriptions containing Java, C++, or C# actions”. In order to generate a compiler ANTLR
takes three types of grammars as input, namely for the parser, lexer and tree-parser. Those
grammars should be defined in an extended BNF (Backus Naur Form) notation. This eBNF
notation should define the syntax of the language that is to be compiled and is used to generate
a parser (or lexer) for the defined language. If some language construct is recognized by the
parser, Java statements may be added to execute some actions. These actions could for instance
be creating a translation based on the language construct that was found.

Grammar rules are translated into procedures during constructionrof the compiler. For these
procedures input and output parameters may be defined. Furthermore, a grammar rule may
contain references to some other grammar rules. The Java statements that are imbedded in the
grammar may also refer to the language constructs they are associated with.

Page 61 0f 99

1695

1700

1705

1710

1715

1720

Implementation in Sesame Search the Semantic Web

Figure 10-6 is an example of a grammar for class queries. The “class query” recognizer
“classq” is called with an input parameter of type int (why is not relevant here) and it returns a
string. The capital letter word QCLASS refers to detection of the class keyword together with a
left square bracket. If a class operator is encountered, already a SeRQL query part can be
generated (the out+="...” statement). Next, the term that is enclosed by the class operator is
parsed with help of other parser rules, namely the “term”, “url” and “regularq” parser rules that
refer to a abbreviated URI, a complete URL and a term respectively (their grammar is left out
here). The class query syntax should be ended with a RSQBR (right square bracket). This

recognizer translates the SNEL query
Class[value]

into:

_Construct DISTINCT *

From {X}<rdf:type>{<value>}
Or:

Class[Term[value]]

To:

Construct DISTINCT *

From {X}<rdf:type>{Y}
Where Y like “*value*”

Page 62 of 99

1725

1730

1735

1740

1745

Search the Semantic Web Implementation in Sesame

Equivalent SeRQL-C Construc

Term[value] Construct DISTINCT *

From {X}p{Y}
Where (X like “*value*”) OR (p like “*value*”) OR (Y like
“*yalue*”)

Structurefclass,child, value] Construct DISTINCT *
From {X}<serql:directSubClassOf>{Y}

Where Y = value

Class[value] Construct DISTINCT *
From {X}<rdfitype>{<value>}
Property[?,valuel,value2] Construct DISTINCT *

From {X}p{Y}
Where (p = valuel) AND (Y = value 2)

Path[valuel,[2],value2,?,value3] | Construct DISTINCT *
From {<valuel>} PO {<value2>} P2 {<value3>}

|

Construct DISTINCT *
From {<valuel>} PO {X0} P1 {<value2>} P2 {<value3>}

Table 10-1: Some typical translations from SNEL to SeRQL-C

For some typical translations of SNEL constructs to equivalent SeRQL-C constructs see Table
10-1. For a description of the complete SNEL syntax see appendix B. Note that the SNEL Path
construct is translated into (in this case) two SeRQL-C queries, of which the results should be
united later on. Union, Intersection and Difference queries in SNEL are translated by
translating their subqueries and later combining the results (thus there is no direct translation
from those SNEL constructs to a SeRQL-C construct).

10.3.4 Combining the results

If a translation of some SNEL query produces more than one SeRQL-C query the results of
those queries should be combined in some way. This is the case for SNELs Path, Union,
Intersection and Difference queries.

This combination of query results is implemented with the help of Sesame primitives (as
opposed to implementing the union, intersection and difference operators for arbitrary RDF
documents). The implementation uses a temporary Sesame repository (can be a bottleneck,
depending on the number of results of the subqueries). Sesame offers basically two
modifications actions on its repositories: adding and deleting triples. Furthermore, Sesame only
stores unique triples, and deletion of a triple that is not in the repository leads to a skip.

Uniting a number of query results is then done as follows: add all triples of all the results (note
that results of SeRQL-C queries are by definition triples) to the temporary repository. After
that extracting the entire temporary repository gives the result of the union. A difference query
on two queries is implemented as follows: add all triples of the results of the first query to the
temporary repository and delete all triples of the second query. Then extract the contents of the
temporary repository, which is the result of the difference query. The intersection query is a bit
harder. This query can be defined in terms of a union and some difference queries. If we
denote a union between two sets by the infix operator ‘U’ and a difference between two sets by
the infix operator ‘-’, then we can compute intersection(ANB) by (AUB)-(A-B)-(B-A).

Page 63 of 99

Implementation in Sesame Search the Semantic Web

Page 64 of 99

1750

1755

1760

1765

1770

1775

1780

Search the Semantic Web Implementation in EROS

11 Implementation in EROS

This chapter gives a brief description of integrating the SNEL query engine (the Sesame
implementation) in the ontology browser EROS. This briefness is because of two reasons:
1. Implementation is not yet completed and it will only be continued after the end of this
project.
2. Implementation is rather straightforward and therefore only the biggest issues will be
mentioned.

EROS has been described in section 5.3.5. Figure 11-1 shows a screenshot of EROS in query-
building mode. In this mode an RQL query can be built with help of the ontology browser. If a
class or property is selected in the browser the bottom panes can be used to formulate a query
based on the selected part.

S Esplorer for RDFS-based Orite

””sy Photographer @ |

GraphedBy Animai §-@ |

Water §-@

. ——— Location @&
OuterSpace @ :

—_— . H
- — IghenFromPiscs EarthLocation -2
2G] ArchitecturePhoto s ®

tornancArtinn

Figure 11-1: EROS query-building mode

A problem is that RQL queries are difficult for inexperienced users. Further this query builder
obliges the user to build a query in three parts. Therefore, because of its simplicity and its

_special focus on RDFS data we wanted to add support for SNEL to EROS (as an alternative for
RQL). Furthermore, the connection between Sesame and EROS, which was not yet functional,
should be implemented.

For the implementation we want to use the Sesame server as a repository and query engine for
the data. Therefore we can also use the implemented SNEL system (as described in section 10)
that is integrated in Sesame. We adapted Sesame a bit such that the SNEL query engine is also
available in the Sesame API. This is done by letting the API create an HTTP session, sending
the corresponding parameters and returning the results of the query (similarly to Sesame’s
methods for its queries).

Next we constructed the GUI to let the user set up a connection with a Sesame server. Figure
11-2 shows a screenshot of the connection dialog. In this dialog an URL to the SNEL server
(Sesame server extended with the SNEL system) and the repository to browse or query over
must be defined. And optionally, if this is necessary for read access on the according
repository, a username and password can be defined.

Page 65 0of 99

1785

1790

1795

1800

Implementation in EROS Search the Semantic Web

The repository name may be entered manually, but the available repositories (with read access)
on the defined SNEL server with the corresponding username and password can also be
automatically detected by clicking the “Fill Repository” button. The connection with the server
may take a long time, especially if the URL is wrong. Therefore, the connection with the SNEL
server is executed in a separate thread so that the GUI does not lock up. This is not trivial in
Java’s GUI component (called Swing). Swing is namely inherently threadless.

Connection Details

Figure 11-2: EROS - Connection Dialog

After the SNEL connection details are filled in, and the “Ok” button is pressed EROS retrieves
the schema information from the defined repository for browsing (not yet implemented).

ﬁ ntnlug
@ kbriernary: Actor kh:ternary: Actor Q
€ photoSettings hote:Seftings kG2
3 photo:Photo i photo:Photo €3
43 photo: AerielPhoto o b S > photo: Technioue €
: L ongExposure &

€ shoto:FineArtPhoto Y’
£3 photo:ActionPhoto \

€ photo:GeoPhoto

£3 photo:ArchitecturePhoto 3, ~ hotorde]
o photo: Technigue \, \\

Figure 11-3: EROS explorer

Figure 11-3 shows a screenshot of the altered EROS explorer screen. In the SNEL Query text
box a SNEL query can be entered, which can be executed by clicking the “Execute Query”
button. This will open a results window, where the results of the query are displayed in
RDF/XML format. This functionality is implemented. Sending the query to the server and
waiting for the results is again implemented in a separate thread, so that the GUI does not lock

up.

Page 66 of 99

1805

Search the Semantic Web Implementation in EROS

What yet has to be implemented is user assistance to (semi) automatically generate queries by
performing some actions in the ontology browser and the option to switch between SNEL and
(the already implemented) RQL mode. An example for automatic query generation would be to
enable the user to perform a right click on a class in the browser and select “retrieve instances”
to generate a class query that retrieves all instances for the selected class.

Page 67 of 99

Implementation in EROS Search the Semantic Web

Page 68 0f 99

Search the Semantic Web Efficiency and scalability

12 Efficiency and scalability

In this section we make an efficiency and scalability analysis of both the SNEL
implementation in Sesame (section 12.1) and of SNEL’s theoretic framework (section 12.2)
and we compare the two in section 12.3. We will look at two factors: space overhead and the
query evaluation time complexity. Note that if we refer to Sesame we mean the SNEL

1815 implementation in Sesame and if we refer to SNEL we refer to SNEL’s theoretic framework.

1810

12.1 Implementation in Sesame

The best way to store and query RDFS data in Sesame is by using a DBMS. The other option,
in memory, is only viable if the amount of data does not exceed several dozens of MB.
According to the makers of Sesame MySQL is the fastest DBMS for evaluation of their
queries. Therefore the MySQL database is used for the efﬁciency analysis.

12.1.1 Storage overhead

i- addedtriples F allinferred allnewtriples class triples ,_ rawtriples

B id int11) EEid int(11)), subject int(11) by id int(11)][0 subject int(11) EZid int(11)

2 subject int(11) BB subject int(11) 4, predicate int(11) ;}Z; predicate int(11) subjNs int(11)

EE predicate int(11) FE predicate int(11) 21, object int(11)), object int(11) 8 subjLname varchar(255)

8 object int(11) BBl object int(11) EZid int(11) 2 id int(11) 22 predns int(11)

EE explick tinyin(4) EE explicit tinyint(4) B8 explick tinyint(4) 8 explicit tinyint(4) prediname warchar(255)
F sub B subject objNs int{11)

stffediniples subject predicate_object idk subfect

newgroundedtriples afhewinjples subject il ¥ triples_subject ik gob]lname varchar(255)
infarred instanceof QJ id int(11) F alewtnples predicate_ick ¥ tnipfes oredicate_ick B objlang varchar(16)
B int(11) C;& inst int(11) : afhewirioles object idk F triples_ obyject idk EE objlabelKey varchar(16)
B subject int(11) "z"@ class int(11) B-¥ irioks subject predicate idk | IR objLabel blob
2 predicate int(11) E’? nstanceck, olass_ ok subclassof namespaces ¥ jples_subject object ik
object int(11) T, sub int(1d) 3, id int(11) EF irjples_predicate_object idk proper_instanceof
EE explicit tinyint(4) L repinfo (2L, super int(11) prefix varchar(16) S = - C, inst int(11)
=, infokey varchar(255) ¥ subclassol super_idk name blob o "_‘d—s” propertyol 2, class int(11)
liter als l%infovalue varchar(255) % userDefined tinyint(4) B sub int(11) B proper_instanceof class_idk
24, id int(11) subpropertyof 22 export tinyint(4) 2}, super in(11)
E - = - ¥ direct_suboropertyof super idk triples
datatype int(11) resources L.P‘}& sub int(11) prefix ~ newtrip
%Ianguage varchar(16) —)‘; id in(11) C}z super int(11} %id int(11)
=5 labelkey warchar(16) & namespace int(11) F subpropentyof super_iok depend . range subject int(11)
= (1) 1%, Property ini(11) ate i
% label bleb % locainame varchar(255) 5 int(, property @ predicate int(11)
Sterak fabeley ik Hamespace domain @depl int(11) [g, class 'nt(_u) object int(11)
;31‘; property int(11) dep2 int(11) range_cliss ick BB explicit tinyink(4)
. direct_subclassof expirediriples :2;2 class int(12) dlapend id dapl depZ ick
.;E}& sub int(11) i d int(11) 7@. Comain, Do itk ¥ depend depd okpZ ik _ groundedtriples
R 33 super-int{11) = ‘{}!& id int(11)
kF direct subclascof supes. idk

Figure 12-1: Sesame Database layout for RDFS data

1820
Figure 12-1 depicts the tables that are created by Sesame in a MySQL database for a new

RDFS repository. This is basically the ER-diagram without the relations. Relations are left out
because the data has too many dependencies to properly display within one picture.

1825 Note that a lot of tables maintain a list of triples, namely: addedtriples, allinfered, allnewtriples,
triples, rawtriples, newtriples and inferred. However, only one table is really used to constantly
maintain the list of all triples (namely “triples™). The others are used for administrative
purposes only and act as intermediate tables for adding new triples to the repository.

1830 The creation of a new Sesame RDFS repository automatically fills the database with 120
triples that form the framework of the RDFS data model (the 120 triples are displayed in N-
triple notation in appendix F). To measure the space overhead in Sesame, the repository is
filled with a variable amount of data and we observe what this means for the size of the

Page 69 of 99

1835

1840

1845

1850

1855

1860

1865

1870

Efficiency and scalability Search the Semantic Web

database. The statistics that these measurements produce also tell something about the data that
is indexed. For instance, if there is not much schema information in the new inserted data this
will add less data to the database than if there is much schema information. Schema
information is namely duplicated for several tables like the class and property table, but also
for inferring new data by using this schema information.

We create our test data with an RDFS generator that generates schema information and the
accompanying instantiations. These data are alternately uploaded into Sesame and measured
for a number of statistics. Table 12-1 contains the different configurations for the data we
uploaded. Table 12-2 then contains the space overhead Sesame uses for the concerning
configurations. Table 12-4, finally, contains the execution time for typical SNEL queries over
the different repository configurations.

Number of branches 3 3 3 3 0
per node

Depth of the classiree| 2 3 4 4 5 6 6 6 8 0
Instances per class 25 25 25 25 25 25 50 500 1 0
Number of properties | 3 3 3 3 3 3 3 3 5 0
/ class

Instances per 25 25 25 25 25 25 50 500 1 0
property

Total number of 332 776|1.664|4.439] 13.430; 40.403) 76.803] 732.003] 502.435 473.589
triples

Table 12-1: repository configurations

Table 12-1 contains the repository configurations as we created with the RDFS generator. The
configuration parameters all are obvious by their name (the first column). We refer to the
different configurations with letters, as stated in the second row. For configuration A to F we
only play with the parameters “number of branches per node” and “depth of the classtree” and
look at what influence the variation of these parameters have. After that we look at the effect of
increasing the instance information (G and H), thus having relatively little schema informatien-
and lot of instantiations. For configuration I we look at the effect of much schema information
and only little instantiations. Conclusively, for configuration J, we used a schema-less
configuration; not a generated file but an RDF dump of the wordnet lexical database ([24]).

Table 12-2 contains the results of the repository storage overhead measurements. The table
contains for every MySQL table, which Sesame maintains for its data repository, the number
of rows that are generated by Sesame per repository configuration (Table 12-1). The results for
the following DB tables are left out of the measurements table because they are always empty:
addedtriples, allinferred, allnewtriples, expiredtriples, groundedtriples, inferred,
newgroundedtriples, newtriples and rawtriples. This is because those tables are only used as
administrative tables for the addition of new data. The results of repinfo table are also left out

‘because this table only contains the constant repository info. For all tables it is intuitively clear

what information it holds considering its name, except maybe the “depend” table. Sesame uses
this table to keep track of all dependencies between statements, e.g. statement B was derived
from statement A, etc. This information is used to determine which sets of statements have to
be removed together.

Page 70 of 99

Search the Semantic Web

Efficiency and scalability

Note the results for column J. Five additional classes were found, even though we declared the
wordnet database has no schema information. These classes were inferred by Sesame. In the

wordnet file statements of the following type are made:<b:Noun rdf:about="&a;100001740"/>.
Sesame then infers that Noun is a class and that a:100001740 is of type Noun.

1875
Col
7
t : e e
Triples 120 604/ 1388 3.164] 8.532] 28.620] 95.202) 181.727] 1.921.177] 1.143.353] 573.383
Resources 30; 117} 233 465 1.190 3539 10.586 19.686 183.486 152.947 99.681
Literals 0 v 0 0 0l 0 0 0 0 0 222.240
Class 13 16 20 28 53 134 377 377 377, 21.859 18
Subclassof 31 39 55 95 213 699 2.400 2.400 2.400] 211.204 41
Direct subclassof 12 15 19 27| 52 133 376 376 376 21.858 17
Property 14 23 35 59 134 377| 1.106 1.106] 1.106 109.239 18
Subpropertyof 15 24 36 60j 135 378 1.107] 1.107 1.107 109.240 19
Direct_subpropertyof 1 1 1 1 1 1 1 1 1 1 1
Domain 9 18 30 54 129 372 1.101 1.101 1.101 109.234) 9
Range 17 29 53 128 371 1.100 1100, 1.100 109.233 8
Instanceof 571 281 713 1.777, 4.927 17.725 62.194) 121.419 1.369.469 495.217 199.359
proper_instanceof 28 115 231 463 1.188 3.537] 10.584 19.684] 365.484 174.791 99.679
Depend 120 2435 6.467, 16.219 45.244] 163.261 581.707| 1.112.307} 11.027.107| 7.689.645 1.745.251

3 4 4 4 4 4 4 4 4 4 5

Table 12-2: Sesame space overhead

In Table 12-2 we compare file size-with DB-size-and total number-of table rows with number
of triples in DB. These quantities are not comparable just like that. The problem with file size
and DB size is that the RDFS file size suffers from the XML syntax overhead, while the

1880

database optimizes the required triples storage overhead. However, we assume that the
differences in storage are a constant factor. The comparison between total number of table

rows with the number of triples in DB suffers a similar problem. The problem there is that not
every table row contains the same amount of information and cannot be directly compared.
However again, we assume the differences are constant in respect with the number of triples in

1885

storage. Thus the relative difference is still comparable, and the measurements do give a

reasonable estimate of the order of space overhead compared to the input. The two discussed
ratios, R; and R, are displayed in Figure 12-2 and Figure 12-3.

Database rows

Number of input triples

Figure 12-2: Ratio R,

Database size

File size

Figure 12-3: Ratio R,

Page 71 of 99

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

Efficiency and scalability Search the Semantic Web

The RDFS generation tool creates repositories with schema information and instantiations of
that schema information (as opposed to stand alone rdf data, not related to rdfs schema data).
We note that R; is, in this case, always about 1.6 times larger than R;. The factor difference
between these two ratios is caused by the tables that grow the most are kept down in size by
using references to data (i.e. with integers), instead of repetition of the entire data. The
references point to the Resources table in which the complete URI’s and literals are
maintained, together with a reference ID. Storing the data in this smart way may save quite
some space overhead. Note that for the schema-less repository the ratio factor difference is
much smaller, a factor 1,2. This is because of less (smart stored) schema overhead.

If we look at the two ratios (R; and R,) we notice that both grow (even though only
logarithmic, not linear) with an increase of the complexity of the schema data, especially the
depth of the class tree. This is caused by Sesame pre-computing the closure of the RDFS class
and property tree, amongst other inference, and store the result as extra triples in the database.

As our test data repositories like F, G and H have quite reasonable parameters, which we also
expect to find in arbitrary SW data, the repository may need to maintain up to 10 or 12 times
the amount of input data as space overhead.

12.1.2 Query performance

We first take a look at the time it takes to compile a SNEL query into an equivalent SeRQL-C
query (or several). It appears that almost every SNEL query compiles within a millisecond,
except for path queries with several distance parameters with larger (>5) values, e.g. for a path
query that was compiled using two distance parameters with the respectively values 6 and 5
(this compiles into 30 SeRQL-queries) the compilation time was 23 milliseconds. In any case,
query compilations takes insignificant time compared with the SeRQL-C query evaluation
time.

Table 12-3 is an overview of translations from typical SNEL queries to equivalent SeRQL-C
queries. And then from those SeRQL-C queries to the MySQL queries that are executed by
Sesame to solve those SeRQL-C queries. The table gives a good idea of what Sesame does
internally. Most translation results are exactly what one would expect. What immediately
attracts attention, though, in the MySQL queries that Sesame produces, is that the “like”
operator is evaluated by Sesame, not MySQL. The problem is that Sesame first executes all
MySQL queries and only then execute the final processing on basis of the results of the
MySQL queries. This means that a SeRQL query with a “like” statement for some variable will
retrieve all possible values of that variable and then filter out the ones that not fulfil the like
operator.

An exampile to illustrate the problem is the SeRQL-C query:

Construct *
From {X0} P1 {X1} P2 {X2} P3 {X3}
Where (X0 like "*term*")

Suppose that this “term” does not appear in the database. An immediate conclusion that can
then be drawn is that the result of the whole SeRQL-C query is the empty set. Sesame,
however, first computes all the results for “{X0} P1 {X1} P2 {X2} P3 {X3}”, which even
with a repository that contains 25 statements (and the 120 initial RDFS framework triples)

Page 72 of 99

Search the Semantic Web

Efficiency and scalability

results in approximately 5700 MySQL queries and approximately the same number of results,
that have to be filtered by the Sesame query engine.

Term[term]

uery

Construct DISTINCT *
From {X}p{Y}

Where (X like "*term*" OR p like
"¥term*" QR Y like "*term*")

r2.namespace, r2.localname, r3.id, r3.namespace,
r3.localname

FROM ftriples t, resources rl, resources r2, resources
13

WHERE t.subject =rl.id AND t.predicate = r2.id
AND t.object > 0 AND t.object =r3.id

SELECT rl.id, rl.namespace, rl.localname, r2.id,
r2.namespace, r2.locainame, 1.id, dt.id,
dt.namespace, dt.localname, 1.language, 1.label
FROM triples t, resources rl, resources 12, literals 1,
resources dt

WHERE t.subject =rl.id AND t.predicate = 12.id
AND t.object <0 AND t.object = 1.id AND

Where Y=<uritclass>

l.datatype = dt.id
Structure[child,u ri#tclas. S] Construct DISTINCT * SELECT id
From {X}<sergl:directSubClassOf>{Y} FROM resources

‘WHERE namespace = 2 AND localname = 'class’

SELECT rl.id, rl.namespace, rl.localname
FROM direct_subclassof t, resources 11
WHERE t.sub =rl.id AND t.super = 16

Class[uri#class]

Construct DISTINCT *
From {X}<rdf:itype>{< urificlass >}

SELECT id
FROM resources
WHERE namespace = 1 AND localname = "type'

SELECT id
FROM resources
WHERE namespace = 2 AND localname = 'class'

SELECT rl.id, rl.namespace, rl.localname
FROM triples t, resources rl
WHERE t.subject = r1.id AND t.predicate = 1 AND

Where (p=<prop>) AND (Y like *0b*")]

t.object=16
Prope ? uritiorop. Term|obi Construct DISTINCT * SELECT id
perty[?,urifiprop, [od/1] From {X}p{Y} FROM resources

WHERE namespace = 4 AND localname = 'prop'

SELECT rl.id, rl.namespace, rl.localname, r3.id,
r3.namespace, r3.localname

FROM triples t, resources rl, resources 13
WHERE t.subject = rl.id AND t.predicate = 42
AND t.object >0 AND t.object=r3.id

SELECT rl.id, rl.namespace, rl.localname, Lid,
dt.id, dt.namespace, dt.localname, 1.language, 1.1abel
FROM triples t, resources r1, literals 1, resources dt
WHERE t.subject =rl.id AND t.predicate = 42
AND t.object < 0 AND t.object = 1.id AND
1.datatype = dt.id

Path[term[x0],[3],term[x3]]

Construct *

From {X0} P1 {X3}

Where (X0 like "*x0*") AND (X3 like
u*x3 *u)

Construct *

From {X0} P1 {X1} P2 {X3}

Where (X0 like "x0*") AND (X3 iike
n*x3*")

Construct *

From {X0} P1 {X1} P2 {X2} P3 {X3}
Where (X0 like "*x0*") AND (X3 like
n*x3*n)

If the repository is empty this triggers 3955 simple
SQL queries

With 25 triples this triggers 5683 simple SQL
queries.

99,99% of the queries are of the form:

SELECT r.namespace, r.localname
FROM resources r
WHERE r.id = 15

The important queries are of the form:

SELECT 12.predicate, t0.predicate, t2.object,
t1.predicate, t0.object, t0.subject, tl.object
FROM triples t0, triples t1, triples t2

WHERE tl.subject = t0.object AND t2.subject =
t1.object

Table 12-3: Query translations in Sesame from SNEL— SeRQL—~> MySQL

Page 73 0of 99

1940

1945

1950

Term[term)

Efficiency and scalability Search the Semantic Web

The number of MySQL queries that will be generated by Sesame grows linearly with the
number of paths of length (in this case) 3. This, while the number of queries could be reduced
to only a fraction by first evaluating the “like” operators. The reason that Sesame does not do
this is probably because their data structure does not permit this just like that. The tables that
are used to evaluate the path query contain only references to the data, not the data themselves.
Thus applying the database facility for pattern matching in those tables is not possible. For
longer path queries, however, evaluation could be done more efficiently by first evaluate
solutions for parts of the path, and then join these sub-solutions.

Note that Sesame’s like operator is only an extra facility and certainly not intended to be used
as often as we do.

Execution time (ms)

16 1.387 15502 1.055.686 174.918 141.531

Structurelsubtree. class] 15 16 16 16 16 15 16 16 1.658 1.488 1.142
Class[class] 8 15 16 15 15 18 79 109 504 74.220 266
15 78 125 235 764 3.074 23.422) 33.037| 1.839.360| 287.416; 372.869

Property[?,,term[obj]]

Pathterm([x1]./3],term[x3]]

1438 7.745 20608 51.819 138.913 499.833 2.388.119 > 7*10% >77108 >7*109 > 7*10%

1955

1960

1965

1970

1975

Table 12-4: Query execution time versus triples in the Repository

Table 12-4 (execution time table) contains measurements of the execution time for various
SNEL queries for a certain repository size. We chose the queries such that the number of
results per repository of some size is roughly equal. This is to enable the Sesame server to rule
out communication overhead with MySQL (although on the same computer) as much as
possible.

Note the outcome for the path queries for the repositories G to J. Sesame has a built in time-out
that queries may not run longer than one hour. If we remove the time-out, query evaluation will
not stop after an hour, but seems to go on for an indefinite amount of time. Looking only at
repository sizes and the former results we expected the path query for repository G to evaluate
on a timescale of about 4 hours. During our tests, however, it went on for more then 8 days
(7*10% ms)-and still was not finished. During all that time memory usage was maximal and
processor utilization was minimal (only a few percent). The question is if the system got in
some kind of livelock (e.g. by a bug in Sesame, Tomcat or MySQL) or that the query
evaluation was still running. If the latter is the case continues paging from and to hard drive
instead of RAM usage could be the cause. If we estimate disk access 1000 times slower than
RAM access, the computation could get in order of 1000 times slower, which means more than
5 months of query evaluation instead of 4 hours. Repositories H to J would then perform even
much worse. Whatever the problem eventually turns out to be, we can conclude that
performance of path queries is very slow for larger data sets.

Even though it is difficult to depend on the measurements only for derivation of a function for
the execution time, given the repository size, it is possible to make estimates by combining the
results with the SeRQL to MySQL translations in Table 12-3 (translation table).

We will use the following variables:

Page 74 of 99

1980

1985

1990

(=
N
\O
W

2000

2005

2010

2015

Search the Semantic Web Efficiency and scalability

e SC: Number of (sub) class declarations (so classes that appear X time in the tree count
for X)

e URI: Number of URI‘s.

e N: Number of triples

Table 12-5: Sesame query evaluation variables

The first thing we notice for all query types is that Sesame first solves the query in the
database, which results in number of results. But those results only contain references to URI’s
and literals, and not the URI’s and literals themselves. This is because of the smart way of
storing the data, as explained in the former paragraph. However, although this solution saves a
considerable amount of space overhead, it will take a lookup of every reference that is in the
results in the resource table. Call the results R and the resources table T. Then the overhead for
every query in Sesame has a time complexity of: O3* || R || *Log(ITlh=0lJ R" *Log(]| T|))
time. We will not further consider this time complex1ty for the rest of the queries, but only the
core query solving time complexity.

Term queries in Sesame are evaluated by first retrieving all triples in the database. This takes at
least O(N). Then those triples are pattern matched for the term, which again costs ON). This
sums to execution time O2*(N) = O(N). This also approximately appears in the query
execution time table, taking into account that the first results are somewhat distorted by the
overhead cost.

The structure queries in Sesame are, according the execution time table, evaluated in a
logarithmic time scale. This also appears from the translation table. The class is first sought in
the resources table, which takes Olog(URI) time. This roughly equals Olog(3*N) = Olog(N).
Next the class is looked up in the direct _subclassof table which takes Olog(SC) time. This

sums up to O3*log(N) + Olog(SC) =Olog(SC*N) time.

The class queries in Sesame are, according the execution time table, also evaluated in a
logarithmic time scale. This also appears from the translation table. The “type” and “class”

URISs are looked up in the resource table, which costs O2*log(URI)=Olog(N) time. Then the
triple table is sought for the found predicate and object ID’s, which takes Olog(N) time. This
all accumulates to roughly O3*log(N)= Olog(N) time.

The property queries in Sesame are solved similar to the class queries, and thus also ina
logarithmic time scale. In our property query, however, we used a term sub query. Therefore
the execution is not on a logarithmic time scale. First all the triples with the property “prop”
are retrieved, call these results R, which then are in linear time filtered for the concerning term.

The resulting time complexity is O3*log(N)+O || R || = Olog(N)+ H R" ={ " R" is largest
factor}=O||R||.

For the path queries we already explained that the use of term queries here had a dramatic
effect on the performance. The execution time takes place, according the execution time table,
on an exponential time scale. As we mentioned earlier this time is spent by querying for all
possible paths in the database of the specific length and then a resource lookup for every result.
In the example query this means it first searches all paths of length 3. So apparently, the

Page 75 of 99

2020

2025

2030

2035

2040

2045

2050

Efficiency and scalability Search the Semantic Web

number of paths of length 3 grows on an exponential time scale in accordance with the amount
of data in the repository.

12.2 SNEL'’s theoretic framework

In this paragraph we will analyse the efficiency in space overhead of SNEL’s theoretic
framework as defined in section 7 and the query performance as defined in section 8.

12.2.1 Storage overhead
We will express the storage overhead with use of a number of variables.

The following variables are of influence:

e SC: Number of (sub) class declarations (so classes that appear X time in the tree count
for X)
CI: Number of class instances (for the instance lists in the class tree)

C: Number of distinct Classes
AvoTerm: Average number of term: per URL ite;

AvgTerm: Average number of terms RI/Litera

URLi: Number of URI/Literal ‘s.

Trm: Number of distinct terms

N: Number of triples

SP: Number of (sub) properties declarations (so properties that appear X time in the
tree count for X)

e P: Number of distinct Properties

Table 12-6: SNEL repository variables

Now we count the space overhead used by the data structure we proposed in Figure 7-1 for
every separate part.

Class Tree:
SC (the tree) + 2 * SC (all parents + children) + CI (instances)

Class Location Tabie:
C (class list) + SC (all appearances of classes)

URI/Literal Index:
AvgTerm * URLi

Sorted triple lists:
2*N

Property Tree: *
N (#instance pairs + property tree) + 2 * SP (list of parents and children)

* We neglect domain and range as insignificant

Property Location Table:
P (property list) + SP (all appearances of properties)

Page 76 of 99

2055

2060

2065

2070

2075

2080

2085

2090

2095

Search the Semantic Web Efficiency and scalability

For the complete data structure we now accumulate all the parts:
4*SC+CI +C +AvgTerm * URLi+3*N +3 *SP +P

We determine the following relations between the variables:

o SC>C
e SP=»%N
e SP>P

Then the complete data structure has an upper bound size:
5*SC+CI + AvgTerm * URLi +4%* N

12.2.2 Algorithm performance

We measure the algorithm performance of the SNEL system by giving a short performance
analysis of the algorithms described in section 8 and 9. The performance analysis is given in
terms of the variables that were used in section 12.2.1. We use the ‘|’ sign to denote parallel
operations.

Note that that the following performance analyses are quite straightforward to compute. It is
mostly summing the different algorithmic parts, which mostly contain search functions over
lists. Regarding that the sorting of the data structure is known beforehand, the performance of
the several steps can be written down straight away. The reading of this section may be safely
skipped, but mind that its conclusions are used in the performance comparison between the
SNEL theoretic framework and the SNEL implementation in Sesame.

12.2.2.1 Term queries

Searching the term in the URU/literal term index has time complexity OLog(Trm). Call the
results of this search TR. Next the results of this search are searched in the corresponding
tables for subject, property and object. This, then, has time complexity

O| TR || *(Log(N)|Log(N)[Log(P)).

This results in:
OLog(Trm)+|| TR || *(Log(N)|Log(N)|Log(P))= O | TR || *Log(N)

12.2.2.2 Structure queries

For structure queries we considered five types of queries, namely:
Return all classes that contain term ‘Y’

Return all classes that are a child of class ‘X’
Return all classes that belong to the sub-tree of class ‘X’
Return all classes that are a parent of class ‘X’

Return all classes that are ancestor of class ‘X’

RIS R

Performance query 1:
OLog(Trm)+OLog(C)= OLog(C*Trm)

Performance query 2:
OLog(C)

Performance query 3:
OLog(C) + # Results (number of descendants)={#Results is dominant factor}=0O#Results

Page 77 of 99

2100

2105

2110

2115

2120

2125

2130

2135

2140

Efficiency and scalability Search the Semantic Web

Performance query 4:
OLog(C)

Performance query 5:
OLog(C) + # Results (number of ancestors) ={#Results is dominant factor}=O#Results

12.2.2.3 Class queries
For class queries we considered two types of queries, namely:

1. Return all instances of class ‘X'
2. Return all instance of classes ‘X’ that contain the term ‘Y.

Performance query 1:
OLog(C)

Performance query 2:

OLog(Trm) + Log(N)=OLog(Trm*N)

The results of term part of query 2 result in a number of classes ‘X’.
These results can further be processed in parallel:

O ([Log(C)) 11 (For instance if X contains two statements, this gives: O (Log(C) | Log(C))

Which results in:
OLog(Trm) + Log(N) + (|[Log(C))XI=OLog(Trm*N*C)

12.2.2.4 Property queries

For property queries we considered queries of type <S|?,p|?,0|?>. Intermediate results are
consequently called Ri:

Performance <S,p,0>:
OLog(P)+ Log(||R1]|)+Log(||R2||)=OLog(P* | R1 | * || R2]})

Performance <S,p,?>:
OLog(P)+ Log([| R1|)= OLog(®* || k1))

Performance <S,?,0>:
OLog(N)+Log(||R1 [[)= OLogN* [[R1{))

Performance <S,?,7>:

OLog(N)

Performance <?,p,0>:
OLog(P)+ |R1[|={||R1]| is dominant factor} =O | R1]|)

Performance <?,p,?>:
OLog(P)

Page 78 0f 99

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

Search the Semantic Web Efficiency and scalability

Performance <?,7,0>:

OLog(N)

Performance <?,2,7>:
OConstant

Now consider a property query that contains a term query for a variable. We consider two
strategies to solve these queries, which are equivalent in terms of global strategies as in 8, but
do differ in specific implementation. Especially concerning their performance.

Strategyl:
First the term query part is solved in OLog(Trm) time. Call the result of this part TRi. The
property query is executed for every result of this term query. This results in a time complexity

multiplication of the concerning property query with a factor 0) “ TRi " .

Example: the property query <term([1],term[2],term[3]> has time complexity
of w1 |+ TR T3 .

Strategy2:
First the property query part is solved with the term query variable, e.g. <S,p,term[1]> is first
evaluated as <S,p,?>. Call the result of this part PR. This result is then linearly searched for the

term query (or queries). This adds a time complexity 0] " PR]]

The two strategies can be considerable more efficient than the other in different circumstances.
Therefore we define a final strategy using both strategies.

Final strategy:

We first compute an estimated value of the variables TRi and PR. For the term queries we look
up the term in the URU/literal term index and return only the number of results. This takes
OLog(Trm) time complexity. For the property queries we estimate the number of results after
evaluating one constant (maximal OLog(N) time complexity), and if there are no constants we
immediately know-the number-of results (namely N). Up to here this-cost a logarithmic time
complexity. Now if || TRI || *|| TR2 | * | TR3 || < [|PR || we execute Strategy1 and else we
execute Strategy2. Now we conclude as time complexity for term queries in a property query,
in terms of time complexity of a non-term property query, which have time complexity, say,

OPQ:
OJ((L TR)* PQ, PQ + ||PR|)

12.2.2.5 Path expressions

For path expressions we consider the distance substitution and the query decomposition into
property queries to be on an constant time scale. Then we have expressions of the form:
<Xo, po,Xs>

<Xi, p1.,X2>

< XI H pi JXi+1>

< Xn-l b pn-l aXn>

Page 79 of 99

2195

2200

2215

2220

2225

2230

Efficiency and scalability Search the Semantic Web

All those queries can be evaluated separately and parallel as property queries in a logarithmic
timescale.

We call the results of subquery i Ri. We call the intermediate end result Re. The performance
then is:

Oi*([|Re|| *Log([[Ri)

12.2.2.6 Set operations
The set operations all have the same time complexity, namely for two result sets R1 and R2:

O (||r1|+|[R2[tog([|R1]|+ R2]})

12.2.2.7 Subclass and Subproperty Expansion
The performance is similar to the performance of the structure subtree query.

O#Results

12.2.2.8 Superclass expansion
Superclass expansion has constant performance.

Superclass expansion plus expansion by computing the subtree of the superclass has
performance:

O#Results

12.2.2.9 Instance membership expansion

The performance of the instance membership expansion depends on the number of results that
are found thus far. Call the results of the form <a,p,0> R. The performance of computing
instance membership expansion then is:

Look op instance relation (<a,rdf:type,?>):
O Log(P)+ Log(||R1)= O Log®*||R1[})

Find alternatives for <a,p,0>, namely <?,p,0> with ? one of the found classes
R2.
Compute <?,p,0> and call the resuits R4:

O Log(P)+ ||R3]|={||R3]| is dominant}= O ||R3||

Parallel with computing <?,p,0> compute all instances for every class in R2 and call the
results RS:

O [|R2]/* Log(C)

Note that R4 is sorted. For every subject of RS search if it matches with a subject in R4:
O [R5 *Log([|[R4])

Page 80 of 99

2235

2240

2245

2250

2255

2260

2265

2270

2275

Search the Semantic Web Efficiency and scalability

This all accumulates to:
O [|R[|*(Log®)+ Log([|R1|)+ (|R3]| | |R2]|* Log(O))+ [|Rs || *Log([|R4]}))=
O [|R]|*(Log®* | R1])y+ (| R3] | |R2]|* Log(C))+ [|RS | *Log([|R4]))

12.3 Comparison Sesame versus SNEL’s theoretic framework

In this section we try to compare the efficiency of our implementation in Sesame versus an
implementation with our own data model.

12.3.1 Storagé overhead

In section 12.2.1 we accumulated the following term for the space overhead for the SNEL data
model:

5*SC+CI + AvgTerm * URLi +4%* N

We will consider repository G of Table 12-2 as a typical repository configuration of some Web
repository. Then, we can derive the following estimates:

SC as insignificant (less than 1% of the data)

CI as 50% of the data

AvgTerm (arbitrarily) as 5

URLi as %N

This yields less than 8%4*N, which is also 8% times the amount of input data. This is better than
Sesame, which we estimate (based on Table 12-2, Ratio Ry) on about 12 times the input data.
Note that the SNEL figure is only an estimate, and that the implementation might give rise to
extra space overhead. The difference between SNEL and Sesame is in the generation and
maintenance of the inferred triples. In Sesame this results in a considerable larger number of
triples in the database. Further, Sesame needs to maintain the depend table for update reasons.
As for our own data type, we could use a lightweight (i.e. fast) compression algorithm to
further reduce storage with approximately factor 3 by using a compression library like zlib
(which is used by Google).

12.3.2 Query performance

If we compare query performance of Sesame with SNEL we see that for structure, class and
property queries both perform in a logarithmic time scale in relation with the amount of data in
the repository. SNEL is however faster because the Sesame results consist of references to the
resources instead of the resources themselves, and therefore every reference in the result set
has to be looked up in the resource table. This factor is going to play a role only for queries
over considerable large data sets.

The biggest difference, however, lies in term queries, and especially term queries in longer
path expressions. Where SNEL solves term queries in logarithmic time scale Sesame performs
on a linear time scale. And where SNEL solves path queries on a time scale that is a product
function of the query path length and the number of intermediate results, Sesame needs a
timescale of two times the number of possible paths of the given query path length in the entire
data repository. This number of possible paths in the entire data repository is equal to the sum
of all values in the adjacency matrix of the data repository raised to the power of the query
path. Furthermore, Sesame lacks internal support for set operations like union, intersection and
difference. The work-around implementation is certainly not optimal.

Page 81 of 99

2280

2285

2290

Efficiency and scalability Search the Semantic Web

For implementation of a search engine that is available for a large user base the current
architecture of Sesame is not very suitable. Sesame is clearly not built for evaluating
specialized queries, with high use of term (sub) queries, over a very large amount of data.
Further, Sesame has no facilities (yet) for data and query distribution by setting up a parallel
network. The Sesame developers are making a distributed implementation for in-memory
repositories. However, this will most likely not solve all problems we pointed out in our
context of a SW search engine. We have to keep in mind though that Sesame has a different
target than SNEL. Another important point for us is that Sesame does not offer support to store
extra data, like the source (origin) of the triples, or a weight factor for sorting purposes. Extra
functionality like set operations or aggregate and mathematical functions are viable for future
releases, but also not yet implemented. These, again, are functionalities we desire for future
implementation of SNEL, but likely are not within the target of Sesame. The conclusion from
this, also based on our experiences with the software, is that Sesame is a very promising
storage and retrieval framework, but is not intended, or equipped, to be used as the basis of a
Web search engine.

Page 82 of 99

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

Search the Semantic Web Conclusions

13 Conclusions

The goal of this project was to investigate new techniques to improve the web search process
by utilizing the Semantic Web. We already noted early on in the introduction that the Semantic
Web was merely a vision, and is only partially implemented yet. We decided to focus on the
existing standard RDF(S). We started with a problem description in which we outlined
desirable types of queries we are not able to pose with current search engines. We also showed
that these query types are inherently linked to the use of metadata. The main idea of the new
types of queries we want to be able to pose, is that we want to bring together the best of both
the worlds of keyword based search and database search. We want the expressive power
similar to that of databases and we want the simplicity of keyword based search engines. We
also investigated the possibilities to increase the recall and precision of results by utilizing
semantic structures and utilizing this same structure for a better sorting and grouping of the
results.

We did a literature study to investigate the current state of the art in the fields of web

information retrieval and the Semantic Web. This qmdy prgvided a basis for the ideas we

VIVIL IVULLIV VAL QLI LW bWl viv ¥ 42220 Dvere ViIevts € Vaalo 2V 22

suggested later for realizing solutions for the problems we had identified earlier. Then we
formulated more concrete requirements for the queries, and query relaxation and strengthening
methods, of the system we wanted to design. We proposed a data structure that is able to
efficiently handle the necessary algorithms for fulfilment of the requirements. Then we
presented algorithms for solving the defined queries, and query relaxation and strengthening
methods, using the proposed data structure. Note that the presented algorithms are tailored
specially to the specific queries. The several algorithms have quite some correspondences,
however. Therefore it would be a good idea to, for the future, identify primitive actions that
may be used by several (e.g. also new or user customized) algorithms. These actions could then
be grouped in procedures that algorithms may use. An example of such a primitive could be
“Search URI/Literal ‘X’ within all triples”, which could then be implemented by distributing a
binary search for ‘X’ to the several triple tables (sorted on subject and object, and the property
tree), and uniting the results of those distributed searches.

Finally we made an implementation of our queries in an existing SW query engine. For this
implementation we used Sesame’s query primitives and its data storage. We called our Sesame
module “SNEL” and implemented SNEL in such a way, that a remote application, like EROS,
may access SNEL query functionality through the Sesame server.

Because Sesame does not use our data structure, which is specifically tailored to our needs, we
expected the implementation in Sesame to be inherently less efficient than an implementation
that uses our defined data type. We made an efficiency and scalability analysis for both
systems and found that, even though its efficiency is quite reasonable, Sesame is not suited to
serve as a basis for a full-featured search engine. It especially lacks efficiency for keyword
based queries and inflexibility for customizing to our specialized needs (like accommodation
for large scale query and data distribution). Therefore, if a concrete implementation for a
Semantic Web search engine that is scalable for web sized data is to be made, SNEL’s
theoretic framework should be elaborated.

The query system we suggested for the Semantic Web is only a part of a search engine. In this
project we did not spend time on the crawling part of a search engine nor to the GUI of a
search engine. The former can probably be implemented pretty similarly to the web crawlers
for current search engines. The latter, the GUI, is a bigger problem. One issue is how to present

Page 83 of 99

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

Conclusions Search the Semantic Web

the query language; another is how to present the query results to the user. The SNEL query
language is pretty simple to use, but nevertheless users still may need some tool support to
formulate their queries. Building in SNEL support in EROS may be a first step in development
of such a GUL

For the future, the data structure should be extended to accommodate for the facilities of
sorting and grouping of the results. In the URI/Literal term index, for instance, a weight value
could be attached to the URIs that contains some term. These weights could be used to sort the
results, possibly in combination with some other heuristics. Furthermore the RDF triples could
be extended with their originating source URI. This could be used to judge the relevancy of
some RDF information source or an entire domain of RDF information sources.

In addition to these extensions, the data structure should be adapted so that it supports a large
degree of parallelism. On the highest abstraction level this adaptation should leave the data
structure as it is. But underneath this abstraction there may be need for some mechanisms on
the low level for e.g.: data duplication, algorithms for dividing data over several physical
locations and computers, algorithms for combining results of queries to several machines,
caching mechanisms for frequently asked queries (and their results), etcetera. The query
algorithms should also be adapted to a high degree of parallelism. Some user query can for
instance be divided into a number of subqueries that could be divided over several machines.

Another recommendation is the extensions of the path queries so that they support branching
and reified statements. This functionality is quite straightforward to implement. The only
worry is how to allow for branching and reified statements without compromising to simplicity
and intuitive clarity of the SNEL query language. Because of time limitations we left out this
part.

Another nice feature for extending the path queries would be path queries of arbitrary length
along one transitive property. Consider, for instance, a “boss_of” relation. Examples of triples
that have that property are <X, boss_of,Y> and <Y, boss_of,Z>. Now we want the feature of
queries like: “return all bosses of Z” or “return all subordinates of X”. The functionality is
similar with the structural subtree and ancestors queries for the class and property hierarchy,
however now for arbitrary properties.

Another thing that we left out due to time limitations was exploiting the domain and range
constraints on properties. These constraints are explicitly given and it should be possible to
exploit this extra information somehow. This information might possibly be used to improve
evaluation speed, for instance by restricting the search to the instances of the concerning
classes. Another possibility is that some SNEL query construct could be expanded or added
that enable users to integrate this RDFES part into the queries. :

A future adaptation could also include other typical database constructs like mathematical

- operations, aggregate functions and nesting of queries. Those functions do not really have a

link with the Semantic Web structure and are quite straightforward to implement, but do add
some user functionality. A concern is how those constructs can be fitted in the query language
without compromising the simplicity, so that they are also available for the average user.

The last recommendation for the query language is to provide a query construct that is fuzzier
than the distance operator in path queries. Such a query construct, which we for instance can
call “link”, should be able to find all connections between some keywords. For instance the

Page 84 of 99

2395

2400

Search the Semantic Web Conclusions

query “Link[kees,tue]” should find all paths between “kees” and “tue”, with disregard of arc
direction in the RDF graph, and with some threshold for the maximum length of the path or the
maximum execution time. A result for this query could be, for instance, the path:

Kees van der Sluijs <- author <- Search the Semantic Web thesis -> ownership -> IS -> part of -> TUe

The issues mentioned in this section are collected in Table 13-1. For every issue that should be
treated we attached a priority between 1 (highest) and 3 (lowest). The choice of priorities is
maybe disputable, but gives our view of what we think are the most important (and what we
consider less urgent) issues to be handled.

"dapt"data structure for concrete support of parallelization.

Branching in path queries.

Build data structure query primitives.

Build in grouping and sorting facilities in data structure.

Build in the “link” operator.

Build in Web crawler

Domain and range support.

Maintain for every triple its origin..

Mathematical and aggregate functions.

Path queries of arbitrary length along one transitive property.

Support nesting of queries.

Y I\C) S [0 NCF FUCY [\SY (V] [0 [N JUN FUN

Workout GUI.

Table 13-1: SNEL extension agenda

Page 85 of 99

Conclusions Search the Semantic Web

Page 86 of 99

2405

2410

2415

2420

2425

2430

2435

2440

2445

Search the Semantic Web Appendices

Appendices

A Bibliography

[1]
[2]
[3]
[4]

[5]
(6]
[7]
[8]
(9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. Baeza-Yates, B. Neto (1999), Modern Information Retrieval, Addison-Wesley.

S. Brin, L. Page (1998), The Anatomy of a Large-Scale Hypertextual Web Search Engine,
in Proceedings of the seventh international conference on World Wide Web 7, ACM, pp.
107 - 117.

T. Berners-Lee (2000), Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web, HarperBusiness '

T. Berners-Lee, J. Hendler, O. Lassila (2001), The Semantic Web: A new form of Web
content that is meaningful to computers will unleash a revolution of new possibilities, in
Scientific American, May 2001 issue.

B. Berendt, A. Hotho, G. Stumme (2002), Towards Semantzc Web Mining, in
Proceedings 1st International Semantic Web Conference, Springer, pp. 264-278.

T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler (4 February 2004), Extensible Markup
Language (XML) 1.0 (Third Edition), W3C Recommendation.

J. Paredaens (2003), Databases 111, Lecture Notes,
http://win-www.ruca.ua.ac.be/u/adrem/courses/DB3/DBIII.02-03.pdf.

O. Lassila, R. Swick, (22 February 1999), Resource Description Framework (RDF)
model and syntax specification, W3C Recommendation.

P. Champin (2001), RDF tutorial,
http://www710.univ-lyon1.fr/~champin/rdf-tutorial/rdf-tutorial.pdf.

D. Brickley, R.Guha (23 January 2003), RDF vocabulary description language 1.0: RDF
Schema, W3C Working Draft.

M. Smith, C. Welty, D. McGuinness (18 August 2003), OWL Web Ontology Language
Guide, W3C Candidate Recommendation.

Z. Bar-Yossef, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv (1999), Querying Semantically
Tagged Documents on the World-Wide Web, in Proceedings of the Fourth Workshop on
Next Generation Information Technologies and Systems, Springer-Verlag, pp. 2-19

J. Davies, R. Weeks, U. Krohn (2002), QuizRDF: Search Technology for the Semantic

- Web, in WWW2002 workshop on RDF & Semantic Web Applications, 11th International

WWW Conference WWW2002, pp. 50-59

J. Mayfield, T. Finin (2003), Information Retrieval on the Semantic Web: Integrating
inference and retrieval, in Proceedings of the SIGIR 2003 Semantic Web Workshop,
ACM

U. Shah, T. Finin, A. Joshi, R. Scott Cost, J. Mayfield (2002), Information Retrieval on
the Semantic Web, 10th International Conference on Information and Knowledge
Management.

R. Vdovjak, P. Barna, G.J. Houben (2003), EROS: A User Interface for the Semantic
Web, in SCI 2003, 7th World Multiconference on Systemics, Cybernetics and
Informatics, pp. 485-490.

G. Klyne, J. Caroll (5 September 2003), Resource Description Framework
(RDF):Concepts and Abstract Syntax, W3C Working Draft.

J. Broekstra, A. Kampman, F. van Harmelen (2002), Sesame: A generic architecture for
storing and querying rdf and rdf schema, in The Semantic Web - ISWC 2002, volume
2342 of Lecture Notes in Computer Science, Springer, pp. 54-68.

Page 87 of 99

2450

2455

2460

Appendices Search the Semantic Web

[19] J. Broekstra, A. Kampman (2003), SeRQL: A Second Generation RDF Query Language,
in SWAD-Europe Workshop on Semantic Web Storage and Retrieval - Position Papers,
SWAD-Europe.

[20] T.Parr, ANTLR: Another Tool for Language Recognition, http://www.antlr.org.

[21] B. Shidlovsky, E. Bertino (1996), 4 graph-theoretic approach to indexing in Object-
Oriented databases, in Proceedings of the Twelfth International Conference on Data
Engineering, IEEE Computer Society, pp. 230-237.

[22] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, G.J. Houben (2003), Towards Distributed
RDF Querying with Sesame (Draft), Internal Document.

[23] Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/Main Page

[24] Wordnet, A lexical database for the English language,
http://www.cogsci.princeton.edu/~wn/

Page 88 of 99

2465

2470

2475

2480

2485

Search the Semantic Web

Appendices

B List of figures

Figure 3-1: Model of the common used search engine architecture

10

11

Figure 3-2: Berners-Lee Semantic Web Stack
Figure 5-1: High Level Google Architecture

20

Figure 5-2: Semantic Web languages Pyramid

22

Figure 5-3: Graphical query part of QUEST

26

Figure 5-4: QuizRDF GUI

27

Figure 5-5: Model of OWLIR

28

Figure 5-6: HOWLIR process flow

30

Figure 5-7: EROS class ceniric (left) and property centric (right) approach
Figure 5-8: EROS query-building mode

31

32

Figure 7-1: SW index data structure

40

Figure 10-1: Sesame's architecture

57

Figure 10-2: Sesame query evaluation

58

Figure 10-3: Screenshot of Sesame's Web application

59

60

Figure 10-4: Current query evaluation schema
Figure 10-5: SNEL query evaluation schema

61

Figure 10-6: Grammar fragment for compiling class queries

62

65

Figure 11-1: EROS query-building mode
Figure 11-2: EROS - Connection Dialog

66

Figure 11-3: EROS explorer

66

Figure 12-1: Sesame Database layout for RDFS data

69

Figure 12-2: Ratio R;

71

Figure 12-3: Ratio R;

71

Page 89 of 99

Appendices Search the Semantic Web

Page 90 of 99

Search the Semantic Web Appendices

C Terminology

Page 91 of 99

Appendices Search the Semantic Web

Page 92 of 99

Search the Semantic Web ‘Appendices

D Abbreviations and acronyms

Page 93 of 99

Appendices Search the Semantic Web

Page 94 of 99

2495

2500

2505

2510

2515

2520

2525

Search the Semantic Web Appendices

E SNEL syntax

E.1 Term queries

Return all resources that contain term ‘Y’

Syntax: Term[a,X]

X is of type term (may also be several terms seperated by white space. The a parameter is
optional and indicates in which part of the triple (subject/predicate/object) the term must
appear. The default value for a is '0', which means in may appear in any part of the triple. The
values '1',”2' and '3' respectivally indicate to only search in the subject, predicate or object.
Example query: Term[1,course]

E.2 Structure queries.

E.2.1 Class/property search

Return all classes/properties that contain term ‘X'

Syntax: Structure[Class|Property,Z]

This enables to search the class respectivally property tree. Z is of type URI (and should later
become of type set of URIs and determines the URIs that are declared as classes. This structure
query type may be used in conjunction with Term structure, i.e. Structure[Class|Property,

Term[X]] finds all classes respectivily property declarations that contain the requested term.

Example query: Structure[Class,Term[Course]]

E.2.2 Child search

- Return.all direct children of class/property ‘Z’.

Syntax: Structure[Class|Property,child,Z]

Z should be of type class (or property). This query will then return all the "children" direct
subclasses of Z. Again, this type of query may be used in conjunction with the Term structure.

Example query:
Structure[Class,child,http://www.student.tue.nl/E/~K. A M.v.d.Sluijs/kees.rdfs#subklasse11]

E.2.3 Subtree search
Return all children or descendants of class/property ‘Z’.

Syntax: Structure[Class|Property,subtree,Z]

Page 95 of 99

2530

2535

2540

2545

2550

2555

2560

2565

Appendices Search the Semantic Web

Z should be of type class (or property). This query will then return Z and all subclasses of Z
including the subclasses of its subclasses, etc. Again, this type of query may be used in
conjunction with the Term structure.

Example query:

Structure[Class,subtree,http://www.student.tue.nl/E/~K.A . M.v.d.Sluijs/kees.rdfs#subklasse11]

E.2.4 Parent search
Return all classes of which class/property ‘Z’ is a direct sub class/property.

Syntax: Structure[Class|Property,parent,Z]

Z should be of type class (or property). This query will then return the direct parent class(es) of
Z. This type of query may be used in conjunction with the Term structure.

Example query: _
Structure[Class,parent,http://www.student.tue.nl/E/~K.A.M.v.d.Sluijs/kees.rdfs#subklasse11]

E.2.5 Ancestor search
Return all classes of which class/property ‘Z’ is a descendant.

Syntax: Structure[Class|Property,ancestors,Z]

Z should be of type class (or property). This query will then return Z and all classes that
contain Z in its subtree. This type of query may be used in conjunction with the Term structure.

Example query:
Structure[ancestors,http://www.student.tue.nl/E/~K.A.M.v.d.Sluijs/kees.rdfs#subklassel 1]

E.3 Class queries

Return all instances of class ‘X'
Return all instance of classes ‘X’ that contain the term ‘Y.

Syntax: Class|Z]

Z should be of type class. This query will then return the instances of Z (thus: <?,rdf:type,Z>).
Instead of Z also the Term construct may be used.

Example query: Class[Term[Course]]

E.4 Property queries

Return all instance pairs that have property ‘X',
Return all instances that have property ‘X’ with object value ‘Y.
Return all instances that are the object value from a property ‘X’ with subject ‘Y.

Syntax: Property| X|e, ple, Yle]

Page 96 of 99

2570

2575

2580

2585

2590

Search the Semantic Web Appendices

X stands for the subject of a property, p for the property name and Y for the object of the
property. Leaving one of those empty means it is variable. In all three cases also the Term
construct may be used.

Example query: Property[, Term[type], Term[Course]]

E.5 Path queries

E.5.1 Regular path queries

Return all instances of class ‘X1’ that have a property ‘Y1’ with an object value of class ‘X2’
that has a property ‘Y2’ with an object value ‘Z".

Syntax: Path[X; &, (pi |&, Xi &)1 (>1)

X stands for a node of the RDF graph and p for a property relation between nodes. The path

constructor enables users to define path queries of arbitrary length. Leaving some position
empty (which e.g. leads to two consecutive commas) the position is used as a variable. In all
position also the Term construct may be used. Note that a path query with three elements is

equal to property query.

Example query: Path[,serq!:directSubClassOf, serql:directSubClassOf term[subklasse]]

E.5.2 Distance path queries

Return all instances of class ‘X1’ that have some property with an object value ‘Y’ at a
distance of at most two property-object values.

Syntax: Path[Xj |e, (pile| [(exact,)? int] , X; [g)*] (i>1,int>0)

This query type is similar with the first path query type. The difference is that, instead of some

2595 -property relationship , the user-may-define the-maximum distance between two nodes in terms

2600

2605

of connecting properties. For instance the query:

Path[term[geertjan],[3],term[tue]] :

This query indicates that the distince of some result node that contains the term "geertjan"
should be at most three property-object relations from the term "tue". The following fictive
subject-property-object chain would thus be found: geertjan-worksat-IS-subsectionof-
computerscience-facultyof-tue. The following chain would also be found: geertjan-worskat-
tue, because "tue" is also at at most three property-object relations from " geertjan" (namely 1).
If the optional exact directive is used before the distance parameter the query will compute the
exact distance instead of the maximum distance.

Example query: Path[term[geertjan],[exact,2],term[computer science]]

E.6 Union queries
Return all instances that fulfil one of the following queries.

Syntax: Union[query; (; queryi)*]

Page 97 of 99

2610

2615

2620

2625

2630

2635

Appendices Search the Semantic Web

Unites the results of the specified set of queries. The result of the union is the set of all triples
that occur in one of the resultset of the specified queries.

Example query: Union[Path[term[geertjan],[2],term[computer science]],term[computer
science],term[course]]

E.7 Intersection queries
Return all instances that fulfil all of the following queries.

Syntax: Intersect[queryl , query2].

Intersects the result of the two specified queries. The result of the intersections is the set of
triples that occur both in the resultset of the first query and in the resultset of the second query.

Example query: Intersect[Path[term[IS],[2],term[tue]],term[science]]

E.8 Difference queries
Return all instances that fulfil query1, but not fulfil the second query.

Syntax: Difference[queryl , query2].
Takes the difference of the two specified queries. The result of the difference is the set of
triples that occur in the resultset of the first query, but do not occur in the resultset of the

second query.

Example query: Difference[Path[term[geertjan],[exact,3],term[tue]],term[worksat]]

Page 98 of 99

Search the Semantic Web

Appendices

F Initial inferred data in Sesame RDFS repository
The following triples are initially in a newly created Sesame RDFS repository:

<rdf:type> <rdf:type> <rdf:Property> .

<rdf:type> <rdfitype> <rdfs:Resource> .
<rdf:type> <rdfs:subPropertyOf> <rdf:type> .
<rdfitype> <rdfs:range> <rdfs:Class> .
<rdf:Property> <rdf:type> <rdfs:Resource> .
<rdf:Property> <rdf:type> <rdfs:Class> .
<rdf:Property> <rdfs:subClassOf> <rdf:Property> .
<rdf:Property> <rdfs:subClassOf> <rdfs:Resource> .
<rdf:XMLLiteral> <rdf:type> <rdfs:Resource> .
<rdf:XMLLiteral> <rdf:type> <rdfs:Class> .
<rdf:XMLLiteral> <rdf:type> <rdfs:Datatype> .

<rdf:XMLLiteral> <rdfs:subClassOf> <rdf: XML Literal> .
<rdf:XMLLiteral> <rdfs:subClassOf> <rdfs:Resource> .

<rdf:XMLLiteral> <rdfs:subClassOf> <rdfs:Literal> .
<rdf:subject> <rdfitype> <rdf:Property>.
<rdf:subject> <rdf:type> <rdfs:Resource> .
<rdf:subject> <rdfs:subPropertyOf> <rdf:subject> .
<rdf:subject> <rdfs:domain> <rdf:Statement> .

<rdfpredicate> <rdfitype> <rdf:Property>.

<rdfipredicate> <rdf:type> <rdfs:Resource> .
<rdf:predicate> <rdfs:subPropertyOf> <rdf:predicate> .
<rdf:predicate> <rdfs:domain> <rdf:Statement> .
<rdf:object> <rdf:type> <rdf:Property> .
<rdfiobject> <rdf:type> <rdfs:Resource> .
<rdf:object> <rdfs:subPropertyOf> <rdf:object> .
<rdfiobject> <rdfs:domain> <rdf:Statement> .
<rdf:Statement> <rdf:type> <rdfs:Resource> .
<rdf:Statement> <rdf:type> <rdfs:Class> .
<rdf:Statement> <rdfs:subClassOf> <rdf:Statement> .
<rdf:Statement> <rdfs:subClassOf> <rdfs:Resource> .
<rdf:Alt> <rdf'type> <rdfs:Resource> .
<rdf:Alt> <rdfitype> <rdfs:Class> .

<rdf:Alt> <rdfs:subClassOf> <rdf:Alt> .
<rdf:Alt> <rdfs:subClassOf> <rdfs:Resource> .
<rdf:Alt> <rdfs:subClassOf> <rdfs:Container> .
<rdf:Bag> <rdf:type> <rdfs:Resource> .
<rdf:Bag> <rdf:itype> <rdfs:Class> .

<rdf:Bag> <rdfs:subClassOf> <rdf:Bag> .
<rdf:Bag> <rdfs;subClassOf> <rdfs:Resource> .
<rdf:Bag> <rdfs:subClassOf> <rdfs:Container> .
<rdf:Seq><rdfitype><rdfs:Resource> .
<rdf:Seq> <rdfitype> <rdfs:Class> .

<rdf:Seq> <rdfs:subClassOf> <rdf:Seq> .
<rdf:Seq> <rdfs:subClassOf> <rdfs:Resource> .
<rdf:Seq> <rdfs:subClassOf> <rdfs:Container> .
<rdf:List> <rdf:type> <rdfs:Resource> .
<rdfiList> <rdf:type> <rdfs:Class> .

<rdf:List> <rdfs:subClassOf> <rdf:List> .
<rdfiList> <rdfs:subClassOf> <rdfs:Resource> .
<rdf:first> <rdf:type> <rdf:Property> .
<rdf:first> <rdf:type> <rdfs:Resource> .
<rdf:first> <rdfs:subPropertyOf> <rdf:first> .
<rdf:first> <rdfs:domain> <rdf:List> .

<rdfirest> <rdf:type> <rdf:Property> .

<rdfirest> <rdf:type> <rdfs:Resource> .
<rdfirest> <rdfs:subPropertyOf> <rdfirest> .
<rdfirest> <rdfs:domain> <rdf:List> .

<rdfirest> <rdfs:range> <rdf:List> .

<rdfinil> <rdf:type> <rdfiList> .

<rdf:nil> <rdfitype> <rdfs:Resource> .
<rdfs:Resource> <rdf:type> <rdfs:Resource> .
<rdfs:Resource> <rdfitype> <rdfs:Class> .
<rdfs:Resource> <rdfs:subClassOf> <rdfs:Resource> .

<rdfs:Class> <rdf:type> <rdfs:Resource> .

<rdfs:Class> <rdf:type> <rdfs:Class> .

<rdfs:Class> <rdfs:subClassOf> <rdfs:Resource> .
<rdfs:Class> <rdfs:subClassOf> <rdfs:Class> .
<rdfs:Literal> <rdf:type> <rdfs:Resource> .

<rdfs:Literal> <rdf:type> <rdfs:Class> .

<rdfs:Literal> <rdfs:subClassOf> <rdfs:Resource> .
<rdfs:Literal> <rdfs:subClassOf> <rdfs:Literal> .
<rdfs:subClassOf> <rdfitype> <rdf:Property> .
<rdfs:subClassOf> <rdf:type> <rdfs:Resource> .
<rdfs:subClassOf> <rdfs:subPropertyOf> <rdfs:subClassOf> .
<rdfs:subClassOf> <rdfs:domain> <rdfs:Class> .
<rdfs:subClassOf> <rdfs:range> <rdfs:Class> .
<rdfs:subPropertyOf> <rdf:type> <rdf:Property> .
<rdfs:subPropertyOf> <rdf:type> <rdfs:Resource> .
<rdfs:subPropertyOf> <rdfs:subPropertyOf> <rdfs:subPropertyOf> .
<rdfs:subPropertyOf> <rdfs:domain> <rdf:Property> .
<rdfs:subPropertyOf> <rdfs:range> <rdf:Property> .
<rdfs:domain> <rdfitype> <rdf:Property> .

<rdfs:domain> <rdf:type> <rdfs:Resource> .
<rdfs:domain> <rdfs:subPropertyOf> <rdfs:domain> .
<rdfs:domain> <rdfs:domain> <rdf:Property>.
<rdfs:domain> <rdfs:range> <rdfs:Class> .

<rdfs:range> <rdf:type> <rdf:Property> .

<rdfs:range> <rdf:type> <rdfs:Resource> .

<rdfs:range> <rdfs:subPropertyOf> <rdfs:range> .
<rdfs:range> <rdfs:domain> <rdf:Property> .

<rdfs:range> <rdfs:range> <rdfs:Class> .

<rdfs:comment> <rdf:type> <rdf:Property> .
<rdfs:comment> <rdf:type> <rdfs:Resource> .
<rdfs:comment> <rdfs:subPropertyOf> <rdfs:comment> .
<rdfs:comment> <rdfs:range> <rdfs:Literal> .

<rdfs:label> <rdf:type> <rdf:Property> .

<rdfs:label> <rdfitype> <rdfs:Resource> .

<rdfs:label> <rdfs:subPropertyOf> <rdfs:label> .
<rdfs:label> <rdfs:range> <rdfs:Literal> .
<rdfs:isDefinedBy> <rdf:type> <rdf:Property> .
<rdfs:isDefinedBy> <rdf:type> <rdfs:Resource> .
<rdfs:isDefinedBy> <rdfs:subPropertyOf> <rdfs:isDefinedBy> .
<rdfs:isDefinedBy> <rdfs:subPropertyOf> <rdfs:seeAlso> .
<rdfs:seeAlso> <rdf:type> <rdf:Preperty> .

<rdfs:seeAlso> <rdf:type> <rdfs:Resource> .
<rdfs:seeAlso> <rdfs:subPropertyOf> <rdfs:seeAlso> .
<rdfs:Datatype> <rdfitype> <rdfs:Resource> .
<rdfs:Datatype> <rdf'type> <rdfs:Class> .

<rdfs:Datatype> <rdfs:subClassOf> <rdfs:Resource> .
<rdfs:Datatype> <rdfs:subClassOf> <rdfs:Class> .
<rdfs:Datatype> <rdfs:subClassOf> <rdfs:Datatype> .
<rdfs:Container> <rdf:type> <rdfs:Resource>.
<rdfs:Container> <rdf:type> <rdfs:Class> .
<rdfs:Container> <rdfs:subClassOf> <rdfs:Resource> .
<rdfs:Container> <rdfs:subClassOf> <rdfs:Container> .
<rdfs:ContainerMembershipProperty> <rdf:type> <rdfs:Resource> .
<rdfs:ContainerMembershipProperty> <rdf:type> <rdfs:Class> .

<rdfs:ContainerMembershipProperty> <rdfs:subClassOf> <rdf:Property> .
<rdfs:ContainerMembershipProperty> <rdfs:subClassOf> <rdfs:Resource> .

<rdfs:ContainerMembershipProperty> <rdfs:subClassOf>
<rdfs:ContainerMembershipProperty> .

With rdf: = http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs: = http://www.w3.0rg/2000/01/rdf-schema#

Page 99 of 99

	1 Preface
	2 Index
	3 Introduction
	4 Problem description
	5 Related Work
	6 Requirements
	7 Data structure
	8 Query solving algorithms
	9 Result manipulation algorithms
	10 Implementation in Sesame
	11 Implementation in EROS
	12 Efficiency and scalability
	13 Conclusions
	Appendix A Bibliography
	Appendix B List of figures
	Appendix C Terminology
	Appendix D Abbreviations and acronyms
	Appendix E SNEL syntax
	Appendix F Initial inferred data in Sesame RDFS repository

