EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

"Digitale koopgoot"
An environment for online decision support systems

Berkers, Teun; Raedts, |.G.J.

Award date:
2003

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/54b4c2a5-8e26-47e4-9329-1e8e96fed8fc

MASTER’S THESIS
“Digitale Koopgoot”
An environment for onliné decision support systems
by

"~ Teun Berkers
Ivo Raedts

“Digitale Koopgoot”

An environment for online decision support systems

Master’s thesis of
Teun Berkers
Ivo Raedts

Institute Technische Universiteit Eindhoven
Coach prof. dr. K.M. van Hee

Period february — november 2003
Company Deloitte

Department Vakdirectoraat Consultancy

Coach dr. ir. C.W. van den Herik

Abstract

Decision support systems are information systems designed to interactively support all phases
of a user’s decision making process. By presenting decision support systems as online
solutions, a new distribution channel of services can be created. In the field of customer-
related services, many services still require an expert to perform tasks that could easily be
automated. As a result one of our objectives is: the design and implementation of one or more
decision support systems. The other objective is: the design and implementation of a technical
architecture that is needed to realize a new distribution channel for online decision support
systems: the “Digitale Koopgoot™. ’

In chapter 2, we have categorized decision support systems into five different types of
systems that are relevant to the Koopgoot: benchmarking tools, case-based reasoning tools,
generic queuing models, decision trees, value calculators. All these types are explained.

 Chapter 3 describes the business objectives of project and presents the functional
requirements for both the online decision support systems and the Koopgoot. Also some use
case scenarios are presented to describe the requirements of the Koopgoot in an informal and

easy understandable way. :

Chapter 4 describes a top-down approach of the logical model of the system. We present a
model of the global system that can be decomposed into numerous subsystems. The
subsystems that exist in the environment will be modelled and described. In order to describe
the communication between the ‘Koopgoot’ and its the subsystems we will describe two
specific scenarios.

In chapter 5 we derive the technical architecture from the technical requirements and the
_environment model, explained in chapter 4. Subsequently we map the functional components
that are described in chapter 4 to the technical components, after which these technical
components are described.

Contents

‘“Digitale Koopgoot™ - 2
An environment for online decision support systems 2
Abstract... 3
Contents 4
List of Figures - - 6
List of Tables : 7
1 Introduction..... evssaeen : 8
1.1 BaCKGIOUNA ciucveierviereiereesieenieiecisicnics e sre ettt st n et 8
1.2 Problem deSCrIPLON. ..ccceerirererteerereireiriiienieieie e ettt ettt sa s 8
1.1 ODJECHVES ..uievereececirierrenrieeencsii sttt b st 9
2 Decision Support Systems 10
2.1 INETOQUCHION .veerreeeeererreeentestestisieesee et eteesesat st eeseeesse e s e b s e s e sss s st e e e anassaessassnanansas 10
2.2 Benchmarkingcccooeieeeererenencneieneniiiiieeere sttt ettt 11
2.3 Case-Based Reasoningccocceirceerviriniiinnineniinitneceseess ettt sneseeenes 12
2.4 Generic QUeuing MOGEIS........cccereerererereiiiiniiiiniininise ettt 14
2.5 DECISION LTEES ..vvrererrrrerreerreeieesrresseseseesseesseesssesssssesssesssessrsssassasssasssssssssssessnessensens 17
2.6 Value CalCUIAtOrScoerveeiiirerrerreneenreenesessesessnssiessenenessessasssasssssssessssssssessasasseses 20
3 Business model ' : 21
3.1 INtTOQUCHION teevvrreieeerrieriesteeeessresecssanessessasssstasassssssnessasssssasssesssnsnasssensssessssssnenens 21
3.2 ODBJECLIVE ceueerneeeereeeeeieneiereeeetstetstsestsrse e sae e sa s s sn e saean s eeeeeseeerraeaaaans 21
3.3 SCOPE vttt ettt ettt b e e bt 22
3.4 Functional requirements for the environmentcoeveeveenennenensvenieniene e 22
3.5 Functional requirements for the SErViCes......covuemviiiiiininiimniieee, 24
3.6 Use case scenarios.......c.ceeeeeruenne reeeheeereseesaesaaesteeate et e e rn e b r e s be s b e b et anesrens 25
4 Logical architectur ' 28
4.1 INOQUCHION c.uvevieiceietteeieeesteseere st besicsaessae s sa s e ne b s e b e s e n e s st s s sr et e s e s sn e baasaaras 28
4.2 ENVIIONIMENT ...oovtirrerreereieniestesseseesereeesscssesssesssessressasssssssasssessessassensessasssessassasses 28
4.3 ‘DE KOOPZOOLcimiierniiirieriiiieniisiiist st b sttt st s 29
4.4 SEIVICE ..cirrierrrerereerriesitereseesstessresssesssesestesssssssssssessssssnssessstasssassssassessstasesssssersesassases 39
4.5 Deloitte ONHNEPAYcoceeveveiieririririeenenecietcnnie ettt e s st sre s an e 41
B8 PSP ettt ettt sb e st st e s R e R s b e e R e e s b e e e a e s R e e na b as 42
47 Koopgoot Managementcoeeruivuruirirrernesenennesiessssssessese et sttt snesssienes 43
4.8 SOUNAIMESS .eeeverrrerreeiiiesererierseeesseeesteseessesstesssessssaaessessssessstesenassassatasessaneessesonsenes 45
4.9 Example scenario I: selecting and starting a non-free Servicecoveevevinencunnnns 48
4.10 Example scenario II: making an online paymentcccoccvvienecivininnniniincninnn, 51
4,117 Class DIGZIam .ceveeeuerreeeeeeerreeecreereneasiessassnnnssssssssnssssssessssons ettt 53

5 Technical architecture

5.1 INITOAUCHION ceveeneeieeeerirrereerreeereestesseeeseesssessaresssae st e sss s entetssan s s as s e ansebs s saseens
5.2 Technical REQUITEIMENLSc.ceeviuruimimrerrereeserieeesitirstsnt sttt
5.3 The three tier structure of the ‘KOOPZOOLcoevirmmmeeersiniiniiiniitnieicitna
5.4 Mapping the logical onto the technical COMPONENLScuvmemssvuiuiusiiinsiisisinsinens
5.5 Web apPPliCAtION. ...c.cvircureiecreiiiereeieier et sttt
5.6 REMOUNE SEIVET...c.ciurieirieieuriiiiissiesissssa st bt a sttt
5.7 SQL SEIVET ..cvevvemiiiriesiriieienisitsieresss e sssss st se et b e
5.8 TWED SEIVICES .vecterrveriveerirreeirerseessesesseeseessacessnssasarassrassaasansstesesstsstsssaa s s sen s s aeanes
6 Conclusions and Recommendations
6.1 Conclusions and Recommendations.......cc.cccevvureermmserseressnicimnninieniieinniennee
Literature
Appendix

A. Some definitions and Lemma’s for Petri nets used

54
54
54
54
57
58
60
63
66

69
69

72
73

74

List of Figures

Figure 2.1. Benchmarking mMOdel.......oveeeiuiiiiiiiiiiniis e, 12
Figure 2.2. Case-Based Reasoning MOGel........oc.vrunmunimiinrmissinesicsninn e, 13
Figure 2.3. Linked qUeUing MOGELS.......cecuvumemruuiminniiminisissssnss st 16
Figure 2.4. Generic QUeUing MOdEl.......covueeureruermiirinniminsinisi s, 16
Figure 2.5. Example Of @ deCISION trEEuvvuuevmeurmscrssinsrinsmisissnssisienssissisisi s, 18
Figure 2.6. Decision tree MOGE]ovurrurueruseesserimninissisis st 18
Figure 2.7. Value Calculation model sesisesusessressrinsssaseartisstsssasnsbnassnaseseiossesasonsene 20
Figure 4.1. Environment MOGeL...........oovvuerieruserssecissinsninesiesisissssssssssesisennecs reeeienenesaneaes 29
Figure 4.2. KoOpgoot With USET INPUL ...ccuevuruiieiiiiitnnirristirisets s 31
Figure 4.3. KOOPZOOt With USET OUIPUL «..c.rvvuemcvesiisinerrirsisssssise st 32
Figure 4.4. Koopgoot With “SUPET PIACE” ...c..cuemmiuimiiiimimii sttt s 33
Figure 4.5. NOt 10ZZEA 1N ouvveiiiiririeieeeeiei e 34
FAGUIE 4.6. REGISLET cuvvviuevirieiriensneserssiens s s e 34
Figure 4.7. Reset password eeestestestetebessertesseae s e tanaeat et et st e e b s e b e e e e et e st e et e Lh s bttt et sa e 35
Figure 4.8. Start SETVICE. . .oviuuiverrneietreieiiersiemiisiscint st rereetrne e 36
Figure 4.9. Increase Credits............. resessastestsseesessesasetesnsstenasaineteestshseserenesassasasaae na b enbesntsnssaseses 37
Figure 4.10. Process payment TESUIL........cueueuruseurinimsinniisinsss sttt st 38
FAigure 4.11. SUDSCIDE ...ucvurermiseneieiiseeeict st 38
Figure 4.12. SerVICECRECK .u.vuivmimrieriiniisiinitsticreicisimas st s 39
Figure 4.13. Service MOGELcuiuriueieeirieisriseiseiercisisne st s 39
Figure 4.14. Deloitte OnlnePay ..ottt s 41
FAGUIE 4.15. PSP .ottt e 42
Figure 4.16. KOOPZOOt MANAZEMENL......vuevmruseieresesesscnsiniansinsssssisistiss st sicasissinesienens rereeaes 43
Figure 4.17. Service Management with user infeTaction........oeeuueresssmsssssmsensensmennnisisiniinsins 44
Figure 4.18. Service Management with “SUPEr Place”.......ocomeuimeisssiseunmnmnnisniiiens 44
Figure 4.19. Simplified behaviour of the KOOPZOOLouuimmrvemmmiemismssiseiseiseicitiisisicinns 45
Figure 4.20. NUMDEIed J00DS ...uevriueenirieesiiesecisisiisisi s 46
Figure 4.21. Workflow (3) ..ccoocrvinecncninenns eeeereeeesesseesssseseeesessssssssssasraneenneeasaseaaaanaeartntessriessas 46
Figure 4.22. WOrKfIow (5) ceovuevenininineieinencninienenisiiisinessnnes eeeeeeteserebeseeseasnnraneesesraananren 47
Figure 4.23. WOrkflow (6)cooocvemeunmioincneencenecniiisicnninnnnns ettt e r b e b a s s snneee 47
Figure 4.24. Flattened model of inCrease Creditsovruiiminienmisisiscniintiiccciiens 48
Figure 4.25. Starting @ SEIVICE...ovommunruereieiserersciscusicst et s 49
Figure 4.26. ONliNe PAYIMENL...c..oiruiuruerrieseiereiseesssstss sttt 51
Figure 4.27. Class model of the KOOPGOOL..........ewuserusresrrmsenscissmmsemiesissiissssssisssi s 53
Figure 5.1. Three tier architecture of the KOOPZOOt........ewwusrusscemmmmrnnssssssssssssssssssssas I 55
Figure 5.2. Technical architecture of the KOOPZOOL.......ccvimurieiminsininciimciiiiiniiiiisiicns 56
Figure 5.3. ASPX teChNOIOZY «..ovuiiiuiriiirmieiriricssisne st e 58
Figure 5.4. Remoting server class model ... 62
Figure 5.5. The datatables of the Activation stored PrOCEAUIEcouvususessiiersisciscininetirenenns 64
Figure 5.6. The create script of the Activation stored procedure..........c.euueene. eeeeere st 65
Figure 5.7. The content of CheCK.aSIXvueuureresercmscniisrirsisisnssisssns sttt 66
Figure 5.8. The code behind the WEb SEIVICEcvviiiiiiiiiniisiic i 67
Figure 6:1. End result of the KOOpZoot - WEICOME PAZE.....ovururmmreseismemimsisiasesinsesinisnnes 69
Figure 6.2. Case based reasoning eXample L.....c.cvmimniiincniis 70
Figure 6.3. Case based reasoning eXample IL.......cocooveenniccncscnsinnne. reeeereeenaeteeaesaeenene 70

List of Tables

Table 3.1. KOOPZOOt REGISIIAtION ...vvirreueianursrirsesseiisnsisiseses sttt 25
Table 3.2. Starting a SErviCecveeeevrrrerenns ST U O SO PO SRRREREON 25
Table 3.3. SUDSCIIDING 10 @ SEIVICE ..ucucueuuiverrrereunrereieseseseseserssis sttt 26
Table 3.4. Increasing the amount Of CIEditsevevererrererieiiii e 26
Table 3.5. AAGING & SETVICE.ccucuvueiiiiiitrircie ettt s 27
Table 4.1. Koopgoot Management aCHOMSuweereuersmssscsirenmnismsssssssesmessrsis s, 43
Table 4.2. Scenario - Starting @ SETVICE.....cvcviruirrrreieninisnes ettt 50
Table 4.3. Scenario — ONlNE PAYMENLc.civvrriveireienieresieseeeiinssit sttt st e 52
Table 5.1. Mapping the normal 10gical COMPONENLSovrurmerimimnmnrsssisssnrrssssii e 57
Table 5.2. Mapping the logical management COMPONENTScwumrrrunmsicscsessmssescncisnnciensisinass 57
Table 5.3. KOOPZOOt WEDPAEESvvevvireietiieritsrers ettt 59
Table 6.1. Some currently active services in the Koopgoot and their technologyc....... 71

1 Introductidn

The master program ‘Computer Science and Engineering’ at the ‘Technische Universiteit
Eindhoven’ is concluded with a graduation period. The study was done in the field of
Information Systems, with architecture of information systems as area of expertise. We have
carried out this graduation study at Deloitte.

1.1 Background

Decision support systems are information systems designed to interactively support all phases
of a user’s decision making process. By presenting decision support systems as online
solutions, a new distribution channel of services can be created. The two main online services
that are currently offered by Deloitte are salary management service and accounting. Since
Deloitte has no official division for online services, a pilot project was initiated. Because the
standard project procedures can be quite time consuming and hinder project progress, a more
clandestine approach was preferred to demonstrate the possibilities of online decision support
systems in a short period of time. To characterize this approach, project secretary Dick van
der Net of Deloitte Rotterdam came up with “de Koopgoot” as working title for the project.
“De Koopgoot” is a nickname of a famous underground shopping mall located in Rotterdam.
The Dutch word “Koopgoot” literally means ‘shopping gutter’, which refers nicely to the
characteristics of our project: a clandestine (underground) approach to realize a new
distribution channel (gutter) to sell services.

1.2 Problem description

Small and Medium Enterprises, individuals, local government and non-profit organizations
often have a need for professional advise when important decisions have to be made or certain
tasks have to be fulfilled. Many of them use various services provided by Deloitte to obtain
this professional advice. Despite the fact that many of these Deloitte clients have a similar
type of problem to be solved, Deloitte can improve in delivering the solution in a more
efficient (innovative) way. Deloitte needs to find a more efficient way to service these clients
by utilizing other media available, like the internet. For this new kind of customer-related
services it’s interesting to look at important differences in the field of operational
management between the service sector and other sectors, like the industrial sector where
most of the production processes are automated. In the field of customer-related services
however, many services still require an expert to perform tasks that could easily be
automated. When a new automated and more efficient type of customer-related services can
be realized, Deloitte can service its clients in a more efficient way and possibly reach a new
group of potential customers that is not using Deloitte services in its current form.

1.1 Objectives

Our study can be split up into two objectives:

1. The design and implementation of a technical architecture that is needed to realize a
new distribution channel for online decision support systems. '
To realize this technical architecture, the functional and technical requirements of the
system have to be formulated. Subsequently, the architecture has to be designed and
implemented, satisfying the requirements.

2. The design and implementation of one or more decision support systems for this
environment. ; :
We will try to determine what type of services could be added to the environment.
Subsequently we will formulate requirements for the services. Based on the .
formulated . requirements, one or more appropriate examples of decision support
systems will be implemented as a proof of concept to the environment.

2 Decision Support Systems
2.1 Introduction

Decision support systems or decision making support systems are information systems
designed to interactively support all phases of a user’s decision making process. The support
that is offered can be direct or indirect and it can be for a single user or group usage.

In this chapter we will briefly present a theoretical basis for decision support and the
architectures that have been proposed to deliver the theory in practice.

Because of the importance to individual, group and organizational success, information
systems research has examined ways to improve support for decision making for the last three
decades. The research has generated a wide variety of information systems to provide the
necessary support. In this period there has been an evolution from simple data access and
basic reporting to a more complex analytical, creative and even artificial intelligent support
for decision making [HW1996]. Much of the research however in the field of decision making
support systems has taken place in various specific disciplines, such as computer science,
" information systems, management science and psychology, resulting in a situation where
researchers and practitioners in one discipline have often been unaware of important
developments in the others. This has resulted in a large variety of independent individual
systems that support decision making in a fragmentary and often incomplete manner
[MFG2003].

We can distinguish a variety of decision support system types. The architecture of a system
that calculates to which subsidies a company is entitled differs from the architecture of a
system that can highlight weaknesses in a production line. The architectures of decision
support systems can differ on many points:

- The way the user input is retrieved. In most cases the user will have to enter all
input and await the result. But in other cases the user will enter only some input
and based on this input, the next input form is presented to the user. When all
required input is collected, the result is presented to the user.

- The type of result that is presented to the user. The results can be presented in
many different forms. It can be an advice, a value or list of values, a comparison
and many more. : :

- The type of calculation that is applied to the user input. Some types of decision
support systems use databases to perform different types of queries, other types of
decision support systems use knowledgebase’s, and other decision support systems
only use calculations or algorithms to generate the results. '

We will try to categorize decision support systems into five different types of systems that are
relevant to the Koopgoot. It is understood that more categories can be named, but our aim is
to provide a framework for online services useful to the Koopgoot. In the Koopgoot, we
distinguish the following five types of decision support systems:

- Benchmarking tools

- Case-based reasoning tools

- Generic queuing models’

- Decision trees

- Value calculators

10

In the following paragraphs, the specified types will be described in detail.

2.2 Benchmarking

In today’s highly competitive and rapidly changing global economy organizations have been
foreed to consider a wide variety of innovative management philosophies and techniques. One
such technique that has been used extensively is benchmarking. Benchmarking can be defined
‘as “... a systematic and continuous measurement process; a process of continuously
measuring and comparing an organisation’s business process against business leaders
anywhere in the world to gain information which will help the organisation to take action to
improve its performance” [LePr1995].-

Although benchmarking in business organisations is a relatively new concept and practice, it
has rapidly gained acceptance worldwide as an instrument of continuous improvement in the
context of total quality management (TQM). In a survey conducted by Voss et al. (1997)
involving a sample of over 600 European manufacturing companies, it is shown that increased
levels of benchmarking use were associated with higher levels of both adopting of best
practices and operational performance. Based on the results of the study, the authors proposed
a relationship model between learning, benchmarking, understanding and performance. In this
model, benchmarking, as part of a learning process of an organization leads in the same time
to: : :
1. an improvement in a company’s understanding of its strengths and weaknesses;

2. higher levels of performance. '

' Benchmarking practices can be generically classified according to the nature of the object of
study of the benchmark into three types of benchmarking:
- process benchmarking: used to compare operations, work practices and business
processes;
- product benchmarking: used to compare products or services;
- strategic benchmarking: used to compare organisational structures, management
practices and business strategies. This type of benchmarking bears some
resemblance to process benchmarking.

It is also interesting to note that in the USA and Europe many organisations exists that
promote the use of benchmarking, such as the International Benchmarking Clearing House or
the European Network for Advanced Performance System (ENAPS), which provide

Pt

benchmarking databases and assistance in identifying partners [CDM2002].

To describe the basic structure of the different types of decision support systems, we will
present a Petri net’ model of the type. The model starts with a user entering his first input
form. To keep the models simple we assume that the user input is correct. Based on the user’s
input a query is generated and executed on a database containing benchmarking data. If the
results are useful, they will be presented to the user. Otherwise, it is explained to the user why
the results are not useful and what can be done to obtain useful results.

! Further reading about the technique of Petri nets: [HSVW2003], [Hee1994], [GV2003]

11

back

show error

error
back [

NOK

(J benchmark

start database

form
 filled .~ OK generate
- resuits

) _ benchmark
execute executed
~ benchmark ™

.

benchmark ~“-.__
database? A
—t)

-

) . benchmark
input_form? OQ———— ——*O——'P —>0 :xlcu::r!

query

generate generated . . execute
query , query
Execute
Benchmark

Figure 2.1. Benchmarking model

2.3 Case-Based Reasoning

In case-based reasoning (CBR), a reasoner remembers previous situations similar to the
current one and uses them to help solve the new problem. Remembered cases are used to
suggest a means of solving a new problem, suggest a means of adapting a solution that
doesn’t quite fit, warn of possible failures and to interpret a situation. [Kolodner1993]

Research by psychologists and cognitive scientists has proven that humans routinely use CBR
in their decision processes. While humans commonly use CBR, they suffer from an inability
to consistently recall the appropriate set of prior cases, distinguish between important and
unimportant features and deal with incomplete and uncertain information in current problems
[Kolodner1991],[AD1998]. It would therefore be useful to consider building CBR systems
which are geared towards aiding the CBR processes of humans.

Case-based reasoning is useful to people who know a lot about a task and domain because it
gives them a way of reusing hard reasoning they have done in the past. It is however equally
useful to those who know little about a task or domain. Finally, case-based reasoning is also
useful when knowledge is incomplete. Logical systems have trouble dealing with this type of
situation because they want to base their answer on what is well known and sound. Case-

12

based reasoning provides a method for dealing with incomplete knowledge: a case-based
reasoner can make assumptions to fill in missing knowledge, based on experience and use this
to start with. Most of the time solutions that are generated this way won’t be optimal but if the
‘reasoner evaluates the proposed solutions correctly this methodology presents a way to
generate answers easily [Kolodner1993].

CBR working in brief ,

In a CBR application, a user enters details about a case (person, job function, problem,

etcetera). Subsequently, the CBR application searches the database for similar cases using an

intelligent algorithm. Every found case is assigned a match value that defines the degree of
similarity to the input case. If a sufficient number of matching cases is found, a list of best

matching cases is presented to the user, together with their most important properties. A user

can select one or more cases from the list and study them in detail.

find cases show cases
start cases case

view) view
start! O ——Oretum? B0 fe——O retum?
. error .
\ report back back
back
generate 4 CIZR
CBR error atabase
database report
NoK 1 generate
cases view .
oK
user input? O ——K)s?:;!s case?Q——> | s 2 @) \?iaei:e!
) filtered . :
A create ™\ . T generate
J: - f . . .
/filtered list list of cases s case view
of cases T
/find cases show cases
ACBR ™, ™, R
database LT
~7
A ! .
“' rrfa‘(ch vaiues
user filtered filtered finked to list cases
input?] —(O—> 3O listof fist of O—— —O—> >0 oy
) query cases! cases? !
generate generated execute calculate sort list and
- query query match values generate results
create filtered list of cases generate cases view

Figure 2.2. Case-Based Reasoning model

Based on the user’s input which describes his case, a query is generated. This query might
filter on some properties. This query is executed on the CBR database after which the number
of remaining cases is considered. If this number is too small it is shown to the user that there
are not enough ‘matching’ cases and suggestions are given to prevent this in the next query. If
an appropriate number of cases is left, for all remaining cases a match value is calculated that

13

indicates the degree of similarity. Subsequently the cases are ranked on their match value,
after which a number of best matching cases are presented to the user in a list, displaying the
most important properties of these cases. The user can select one of these cases, to view that

case in detail.

CBR Example:
A company wants to hire a person for a specific function, but has no idea about the salary

that is common for such a function. In the input form, the user fills in optional case
properties like age, gender, education, function description, branch, area, and so on. If the
input criteria lead to enough similar cases, a list of best matching cases is presented showing
properties like age, function description, salary and match value. If the user selects a case, all
details are shown. Based on the returned results the user should have a good indication of the
appropriate salary for the person they want to take into employment.

2.4 Generic Queuing Models

Consider any system that has a capacity C, representing the maximum rate at which it can
perform work. Assume that R represents the average rate at which work is demanded from
this system. One fundamental law of nature states that if R<C then the system can handle he
demands placed upon it, whereas if R>C then the system capacity is insufficient and all the
unpleasant and catastrophic effects of saturation will be experienced. However, even when
R<C we still experience a different set of unpleasantness that come about because of the

irregularity of the demands. [Kleinrock1975] :

Queues arise from two sources. The first is the unscheduled arrival time of the customers. The
second is the random demand (duration of service) that each customer requires of the system.
The characterization of these two unpredictable quantities (the arrival times and the service
times) and the evaluations of their effect on quening phenomena form the essence of queuing
theory. [Kleinrock1975] . i ’

Briefly, a queuing model is one in which you have a sequence of items (such as people)
arriving at a facility for service. There are a lot of different queuing models, but the
performance characteristics of all models are based on four quantities [EGSMW1998]:
1. The number of items waiting in the system: the number of items currently being
served, as well as those waiting for service.
2. The number of people in the queue: the number of items waiting for service.
3, The waiting time in the system: the interval between when an individual item enters
the system and when it leaves the system. This interval includes the service time.
4. The waiting time in the queue: the time between entering the system and the beginning
of service.

When a model is completely described the following items are described [EGSMW1998]:
1. Arrival process.

The arrival process describes how the times, between the intervals of arriving items, is
distributed. When not much is known of the arrival process, a default distribution will
often be used. This default distribution is a special kind of the exponential distribution:
the Poisson distribution. A Poisson distributed process requires only one parameter to
specify the arrival process: the mean arrival rate. The mean arrival rate describes how
many items arrive on average during a specified period of time.

14

2. Service process.
The service process describes how the time, that the service takes, is distributed. When

not much is. known of the service process, a exponential distribution will again be
used. Again only one parameter to specify the arrival process: the service rate. The
" mean service rate describes how many times a service is completed on average during

a specified period of time.

3. Queue size. ’ A
The limit of the number of items that can wait in the queue.

4. Queue discipline. ,
The quening discipline describes the order in which the items are served. In many
situations the first come, first serve discipline is used. Other situations might use
priorities or other algorithms to describe the order in which the items are served.

5. Time Horizon. ,
The system operates continuously over the specified horizon.

6. Source Population.
The source population describes the number of available items that are eligible to join
the queue. In most situations this number is assumed as infinite.

To facilitate communication among those working on queuing models, D.G. Kendall
proposed a taxonomy based on the following notation:

A/B/s
Where: :
A = arrival distribution
B = service distribution
s = the number of servers

Different letters are used to designate certain distributions. Placed in the A and B position,
they indicate the arrival or the service distribution, respectively. The following conventions
are in general use: ' :

M = exponential distribution
D = deterministic number
G = any distribution

The often used default model consists of a single server queue with exponential arrival
intervals and service times. This is called the M/M/1 model. '

By linking the output of a model to the input of another model, two models can be serialized.
This can be formulated in other words: the output of the first model describes the arrival
process of the second model. In real-life this is also a common situation and a lot of situations
will be based on more than just one model. If production lines are considered, the total
queuing model can consist of multiple sub models. All models of the total queuing model
have their own service distribution properties. The arrival process of a specific model is
described by the output of the preceding processes. Figure 2.3 shows a queuing model
consisting of six queuing models. The performance characteristics can be determined for a
single queuing model and for the total queuing model.

15

Model 4 ——

© Model 2 » Model3 Model 6 |—»

Y

——> Model 1

by

Model 5

Figure 2.3. Linked queuing models

In a decision support model of the type queuing models, a lot of different results can be
wanted. In general the four quantities are determined based on the properties of the queuing
model. The main issue will be how changes to the model will influence the result. It will be
all about the streamlining of the process. A trade-off will often have to be made between costs
and performance. :

The results can be determined on two ways: calculation and simulation. Calculations in
models containing determined distributions will be simpler than calculations of models
containing exponential distribution. But when other distributions are used, which are
described with a mean interval time and a variance, the calculations become more
complicated. In situations consisting of more sub models, the calculations will become even
more complicated. When situations become too complicated, simulations can be a solution.
Some test runs of the system can be done and the results, consisting of the four quantities, can
be averaged over the number of runs. In this case it should be questioned what number of test
runs is required to get a useful result.

simulate
determine model OR
- calculate
start model result

determined view

N J’rasuu

vigw!

|

mode!

start?¢ ——>O—> |) determi results
e ot determined! caiculate ealculaterd present
X pul 4 rasulis resulfs
) present forms etermine '
expertinput presented mode! '
forms / ’
oy : model CLA
‘ determined?] | parfor:n
—)(y— simulation
normat input oetermne ready 10 simulations c3aTe

present forms delermine ; perform performed
e panes o RIS it
input form simulations store results
. . results of
Determine Mode! simulate OR calculate simutation

Figure 2.4. Generic Queuing model

Based on the users input form(s), the model(s), describing the situation are determined. A
normal user will have to answer a lot of questions, before model is determined. Expert users

16

should be able to user other input form(s) than normal users, where they can define the
model(s) by specifying the types and values that define the model. After the model is
determined, the results (the four quantities) have to be determined by . simulation or
calculation. Subsequently the results are presented to the user, who wants to see how certain
“changes to the model affect the results. The user should learn about his queuing situation by
“experimenting with the model so that he can make a better trade-off between performance and

COSts.

" Generic Queuing example: A

A manager of a supermarket wants to determine how many cash desks should be open so that
the average time his customers have to wait will less than one minute. To answer this
question, a generic queuing decision support system is used. The first question asked by the
system is whether he wants to specify the model himself (expert mode) or want to let the
system determine the model based on some questions understandable to a user without
knowledge of queuing systems. Since this manager is no queuing expert, he chooses to use
normal mode and answers some questions that are presented to him. When all questions are
answered the model is determined. After the model is determined, the manager can enter the
specific parameters required for the determined model. Subsequently the results are
determined. This can be done by calculation if there is a calculation module implemented for
the determined model. Otherwise a specific number of simulation runs are executed and the
average results are presented. The manager studies the results, which indicate that the
average time his customers have to wait is nearly two minutes. Subsequently the manager can
adjust the number of cash desks and study the outcome again. After trying different numbers
of cash desks, the manager should have an indication how many desks should be opened in
order to keep the average waiting time for his customers below one minute.

2.5 Decision trees

A decision tree is a representation of a decision case that can be used to display and order the
conditions and related actions that are required in the decision making process of the case.
Decision trees can be used to structure complex decisions. A decision tree is a directed acyclic
graph satisfying the following properties: [Wets1998] ' '
- There is exactly one node, called the root, which no edges enter.
- Every node except the root has exactly one entering edge.
- There is a unique path from the root to each node.

In a decision tree, there are two types of nodes: decision nodes and leaves. Decision nodes
specify a test which should be carried out on the value of a feature (user input). Each possible
outcome of the test results in a branch of the decision tree. Leaves are the terminal nodes of
the tree. They specify to which class an instance belongs. In Figure 2.5, an example of a
decision tree is given. The example describes a simplified procedure for selecting potential

locations for a supermarket [Wets1998].

17

Parking (P}

" Dist. to busstation {B)

Dist. to railway station (R}

R<1000m R>=1000m

suited not suited

Figure 2.5. Example of a decision tree

‘The usefulness of decision trees manifests itself in many fields of application: in the
application of procedures, in the verification of completeness, consistency and correctness,
and in the documentation of complex voluminous knowledge.

In the application of procedures, decision trees can help speed up the decision making
process, caused by the fact that decision trees are condition-oriented whereas normal text is
action-oriented. Subsequently, every condition only has to be described once. Furthermore,
decision trees help improving the level of correctness of the decisions. This is related to the
fact that fewer questions have to be answered and the trees can only be interpreted in one
way.

back k¢

. (knowledge \,
base
prepare
2 next step O calculate
;a{t\\

‘OR resuits

2ll data entered result view

complete

/" knowiedge base? Tl
29 -
more
input form! input
needed
generate next
input form
input
input form? Qr———sv process 30 all data entered!
. N complete
input tad
evaluate input proceed to calculations
prepare next step OR complete

Figure 2.6. Decision tree model

18

After the user has completed the input form, a knowledge base is used to determine whether
there is more input needed or not. If more input is needed from the user, the knowledge base
is used to determine what information is needed so that the next input form can be generated.
If no more input is needed, the knowledge base is used to determine or calculate the results.

The user should also be able to perform a what-if analysis that allows the user to roll-back one
or more steps. To keep the model simple we have not modeled the what-if analysis.

Decision Tree example:
A trader wants to import goods from a foreign country. When zmportmg goods from some
countries there are a lot of different kind of taxes (For example: anti-dump taxes) that might
have to be paid. To determine which taxes should be paid, a lot of rules have to be
considered. This might be a complicated and time-consuming process, especially when
different parts of the goods originate from different countries. When an application based on
a decision tree is used, the user only has to answer a sequence of questions relevant to his
situation, to determine the results. No additional paperwork has to be studied: the system will
determine the relevant input that has to be supplied and therefore decrease the chance of
misinterpretation.

19

2.6 Value Calculators |

Value Calculators are the most general category of decision support systems considered in our
outline. With value calculators, users fill in an input form and the result will be calculated
without the use of databases or knowledge bases. The intelligence behind the processing of
the results will only contain algorithms or calculations.

A Return On Investment (ROI) calculator is an good example of a frequently used value
calculator. After the user has entered the input form, a result is generated describing how long
it takes for an investment to pay of.

Back

start l .
, Calculate

Value

result view

Figure 2.7. Value Calculation model

Because value calculators are a very general type, the resulting model is very simple.

20

3 Business model
3.1 Introduction

Deloitte offers a wide range of professional services to its clients. Despite the fact that many
of these clients have similar types of problems to be solved, Deloitte can improve in
delivering the solution in a more efficient (innovative) way. We try to find a more efficient
way to service these clients by utilizing the internet. If a specific category of customer-related
services can be automated, Deloitte can service its clients in a more efficient way and possibly
reach a new group of potent1a1 customers who is not willing to use Deloitte services in its
current form.

We intend to offer a group of services as online decision support systems The services in
question can be either new services or existing traditional services brought to the customers
via the web. Both types of services are highly characterized by customer ‘self-service’.

3.2 Objective

The business objective is to provide an environment for online services that
- - offers better value to (potential) clients;
- services clients more efficiently; -
- positions Deloitte as ‘knowledge powerhouse’ in the market.

More specifically, the introduction of online decision support systems could lead to the
following benefits:

- Higher and faster availability. It is no longer necessary for a client to make an
appointment with a consultant or other expert when he needs professional advice.
Using this new form of online service, it would be possible to obtain the advice almost

~ instantly at any time and at any place, without the help of an expert.

- Lower barrier to acquire service. Users can now just pick a service from the site.

- Better and faster advice. Many services require databases or knowledge bases. An
online decision support system would allow a client to directly interact with the
database and extract useful information in a short period of time. A decision support
system can also lead to a better advice as the result or advice can be based on the
extensive mtelhgence the system can contain.

- Better efficiency. If a traditional service is offered online in the form of a decision
support system, a consultant or advisor will not be required anymore to provide the
advice or solution in most of the cases. His previous vital servicing role will be
reduced to an advisory role: only when a client requires additional advice after using
the online decision support system, the consultant has to be contacted. This could also
result in lower prices for the services, but a more profound view on this matter would
be beyond the scope of this study as defined in paragraph 3.3.

The mentioned benefits should eventually attract new customers who are drawn by the new
type of services but it is beyond the scope of this project to express a balanced opinion on this

subject.

21

Besides looking at the numerous advantages that can be gained by the introduction of online
decision support systems, we also want to pay attention to some disadvantages the
introduction of such a system can have. It is useful to be acquainted with possible difficulties
and issues so they can receive particular attention in the design and implementation phase of

the system.

Possible disadvantages of online decision support systems that have to be considered are:

- Bad advice due to bad input. Because the results of an online decision support system
are based on the input supplied by the user, incorrect input can lead to incorrect
advice. As there is no professional advisor present to assist the user in this process, the
chances of incorrect input are larger compared to a traditional type of service. This
issue should receive special attention during the design and implementation of the
system. Stringent requirements for the user interface in general and the user input in
specific must be formulated to reduce the chance of input errors.

- No specific advice targeted at a client’s unique situation. Not all types of services are
suitable for implementation as decision support system. Some traditional services
provide an advice that is tailored to the client’s specific situation. An online decision
support systemn is unsuitable to solve this type of complex and often unique problems.
We could however turn this disadvantage into an advantage: for this type of services,
the decision support system technique could be used to develop an online version of
the service with limited functionality. The tool can be used as ‘lead generator’ for the
existing traditional service: it will provide a general advice and a reference to the
traditional service if the client has a need for a more specific advice tailored to his own
situation. -

3.3 Scope

This study will focus on the technical architecture that is needed to realize a new distribution
channel for online decision support systems.

3.4 Functional requirements for the environment

The environment that is required to host the online services has to meet the following

renn;famnr\f .
i Liull\dlllvllt .

- Easy and free access

 Users should be able to get access to the portal without delay or human intervention.
Parts of the environment must be accessible to everyone without logging in, other

 parts should only be accessible to authorized users. An easy registration mechanism is

required that allows users to fill in a form and get a login account.

- Customization options
If a user is logged on to the environment, he should be able to customize general site
settings and be able to update his profile.

- Easy navigation »
The services should be presented in an orderly fashion, classified into categories that

22

are useful to the end-user. The following two types of categories should enable easy
navigation through the services:

1. industry-based service navigation.

2. function-based service navigation.
Both navigation options should be available at every place of the environment.
Support for different methods of payment
The environment must support different payment options for a single service. It should
be possible to: '

1. subscribe to a service for a specified period.

2. allow single usage of a service after paymg a specified amount.
Online payment
To implement the payment options described above, it should be possible to make
online payments. Credit cards should at least be supported as an instrument of
payment.
Service preview options
The option to add a preview or demo to a service should be present, to give an
impression of the features of a service. ’
Administrative options
It must be easy for adrmmstrators to add, edit and delete.services, manage users and
manage service subscriptions. ,

23

3.5 Functional requirements for the services |

Services that are to be distributed as online decision support systems should meet the
following requirements:

. Common look and feel

All of the online decision support systems should have the same natural and
convenient look and feel. Because user input is such an important part of a decision
support system, the user interface should be well-organized to avoid confusion and
erroneous input. '

User interface tailored to target group of the service

The user interface of the online decision support system should be aimed at the users
of the system. Comments, contro] labels and explanations must be comprehensible to
the users of system. The end results must also be presented in an understandable way.
Use of intelligence

An online decision support system should use a database, knowledge base, algorithm,
intelligent calculation or a combination of those to provide a professional advice.
Protection of intelligence

The databases, knowledge bases, algorithms or calculations that are used to determine

_ the results, should not be accessible to the users. Because the service is presented

online, security is an important issue. Unprotected client side scripts or applets should
be avoided for non-trivial functionality.

Accessibility

An online decision support system should only be accessible to those who have
obtained the rights to use it.

Single sign-on

To meet the previous requirement, a security mechanism has to be implemented in the
service. However, we do not want to force a user to enter his credentials twice (once
when logging on to the Koopgoot and once when starting the service). The service
security mechanism should be able to check the validity of the started service session
without user interaction. ' '

Fulfill to one of the case types

It should be possible to classify the service as one of the case types that is defined in
chapter two.

24

3.6 Use case scenarios

In this paragraph we present a number of use case scenarios to describe the requirements of
the Koopgoot in an informal and easy understandable way. The use cases describe the
sequence of interactions between actors and the system. We will only describe scenarios for
the main flow through a use case for a number of essential system functions, the use cases in
this paragraph will therefore not all of the behavior required of the system.

3.6.1 Registering to the system

Table 3.1. Koopgoot Registration

Koopgoot Registration
actor: normal user
enter site

select register option
fill in registration form
submit registration form
receive activation mail
activate account

In this scenario a user wants to create an account to obtain login access to the system. The
user selects the “register” option from the Koopgoot welcome page and completes the
registration form, filling in his personal details and e-mail address. If the form is completed
correctly, the system will send an activation mail to the user’s e-mail address that contains a
link the user has to click to activate his account. This procedure will help to prevent the usage
of an illegal e-mail address. . '

3.6.2 Starting a service

Table 3.2. Starting a service

Starting a service

actor: normal user

enter site

log in

select function or industry
select service

select pay for single usage
confirm payment

start using service

25

The second use case describes the required user actions to start a service. After logging in to
. the Koopgoot, a category of services can be selected. The Koopgoot offers two types of
categories: services classified by function and by industry. When a category is selected, the
user can browse the list of services for this category and select a service. In this use case, we
presume the service is not free and the user has no subscription to it. The user chooses to pay
for the selected service and has to confirm the payment. If he has enough credits available, his
balance is decreased and the service is started in a new window.

3.6.3 Subscribing to a service

Table 3.3. Subscribing to a service

Subscribing to a service
actor: normal user

enter site

login

select function or industry
select service

select subscribe option
select desired subscription
confirm payment

The scenario above describes the option to subscribe to a service. When a service has been
selected, the actor can choose to subscribe to the service concerned. One or more subscription
options are presented to define the duration and price of the subscription. If the amount of
credits available is sufficient the user will be subscribed to the service for a period of time set
by the selected subscription option.

3.6.4 Increasing credits

Table 3.4. Increasing the amount of credits

Increasing the amount of credits
actor: normal user

enter site

log in

select increase credits

enter amount

confirm amount

enter credit card details

confirm credit card payment

In order to start non-free services, the user’s amount of credits must be sufficient. To increase
the amount of credits, the ‘increase credits’ option can be selected from any place in the
system, under the condition that the user is logged in. An amount can be entered and
confirmed after which the user is redirected to the external payment service provider site to
complete the credit card payment. :

26

3.6.5 Adding a service

The administrative user is another actor who uses the system. Administrative users use the
same portal to enter the Koopgoot, but have additional features available when logged in.

Table 3.5. Adding a service

Adding a service

actor: administrative user
enter site

log in

select ‘Service management’
select ‘Add new service’
enter service details

select industry or industries
select function

add service

- After logging in, the ‘Service management’ option can be selected. In the ‘Service
management’ screen, a new service can be added by selecting the ‘Add new service’ option.
After entering the service details, the service can be assigned to one or more industries and to
‘a function group. Subsequently the service can be added to the system. In addition to this
scenario, the ‘Service Management’ option also provides functionality to change or delete
services.

27

4 Logical architecture

4.1 Introduction

This chapter describes a top-down approach of the logical model of the system using Petri
nets>. We present a model of the global system that can be decomposed into numerous
subsystems. The description of the logical system will start with a high-level model of the
environment. Subsequently, the subsystems that exist in the environment will be modelled
and described. The subsystems are independent to a large extend; however they must be able
to communicate with one another. The communication between the subsystems will be
described in the last two paragraphs, in which we will introduce two specific scenarios to
illustrate the communication between ‘de Koopgoot® and its services and the communication
that takes place in the event of an online payment.

4.2 Environment

~ The environment for our online decision support systems consists of ‘de Koopgoot’, the
internet portal that can be seen as the interface that enables clients to connect to the online
decision support systems. Furthermore the environment consists of services, representing the -
online decision support systems that can be started, and a Payment Sei'yice Provider (PSP)
that enables clients to pay for the services they want to use. These clients will be referred to as

- ‘users’ in the remaining part of this chapter. Deloitte OnlinePay is needed to communicate
with the - Payment Service Provider. Deloitte OnlinePay presents an interface for the
‘Koopgoot’ to enable online payments. Subsequently, no PSP-specific communication is done
in ‘de Koopgoot’ other than redirecting the client to the PSP-site to begin the payment and
provide the PSP with a return page to which the user is returned when the payment procedure
has ended. We will discuss this in more detail in paragraph 4.10.

The resulting high-level model is displayed in Figure 4.1. The interfaces between the
subsystems are tokens that enter or exit the subsystems via places, which are connected to the
subsystems via place fusion. We have omitted the place labels for the interface places that
connect the Client subsystem to other subsystems as the user interaction arcs are so numerous,
describing all of them at this high level would make the model unnecessarily complex. Of
course, user interaction will be described in more detail at a lower level.

2 Further reading about the technique of Petri nets: [HSVW2003], [Hee19941, [GV2003]

28

Payment
Service
Provider

4 Client

L
7 PUn——
O OTT——
4....-._......

.,
!
7,

-

-

%
SUR— V-

osanmsammene o ponenaasananaiy
B S S~

-
"

P et 0 TTTTRNA. =
P
.

B s =
=

W YR———

PR

M=o e

LY — |

g

4_-.--«.-‘.-

o

Koopgoot

>

Aed
Aed

P

sjiejop JuswW

ynsai jusw

1sanb983(wﬂed

session_details

F.

Deloitte
OnlinePay

Figure 4.1. Environment model

Service

In the next paragraphs, the specific subsystems will be decomposed and described. We will
start with the Koopgoot system and all its underlying subsystems. Subsequently, the Service
subsystem will be covered in paragraph 4.4. The service model will however be bounded to
the functionality that is required to enable single-sign on for a service. This sign on procedure
of a service will be followed by the actual functionality of the service, of which we have
presented a broad outline in chapter 2. '

4.3 ‘De Koopgoot’

In a nutshell, the ‘Koopgoot’ system enables users to browse through lists of categorized
services and select and start one, under the right conditions. A user that is active in ‘de
Koopgoot’ can be either authorized or not authorized. Both types of users have access to
certain public ‘Koopgoot’-features, like browsing the list of services and starting free services
or demo’s. There are however features that are only accessible to authorized users: a user

29

must log on to make payments, use his online credits or view and edit his profile. The
Koopgoot model is build around two general states in which a user can be active in the
system: not logged in and logged in. Later on in the paragraph we will study the two states in
more detail and show that they are in fact a fusion of more states. '

To maintain a well-organized model of the Koopgoot system, we have split up the model into
three separate models, each representing a subset of the complete model. The union of the
three models will therefore be a complete model of the Koopgoot subsystem. The first model
contains the numerous user-input arcs while the second model contains the user-output arcs.
Finally a third model is introduced in which we use a “super place” to model the system’s
exceptional exit flows as an addition to the system’s normal exit flows present in the first two
models.

Finally, the system also includes functionality to manage the content of Koopgoot. A model
~ of the management functionality will be presented in paragraph 4.7.

As the architecture of the Koopgoot is fairly complex, it is interesting to look at the soundness

of the system, to guarantee the absence of deadlock and garbage left behind in the system. We
will attempt to proof that the system is 1-sound in paragraph 4.8.

30

¢ Wwiyuod juswied

Juuyuod uopduosgns
¢uondo uonduosqns

¢)senbal aojaosue)s

¢isenbai soinias0815 RS

¢piomssedmau josaimd

{lomsue)o109s josaimd
iirewa josaimd

i1sanbai uonduosgns

2isanbainobo|

iisenbas jasaimd

Jisanbas 19)s1604

Jojununosoe uaysiBa
Juibo| 1081102

iisanbar asealounpald
Juolissas Jejs

¢1sanbal apjosdabueyo
;ejep ayordabueyo

SIUNOWE ™ PIBA~ 9SERIOURIPDIO

suoisses dos

start
service

session
details!

A4
Reset

start service

3
i

request

\
1
A
1
3

lggged in

—->O—> Subscribe

sub
requested

request
subscription

select
credit increase’

1

A
1
sessiomn,

T

stop

stop

\L(l)

'/() key_info?

Service
Check

=
e
%,
@
8 E €0
0@
a E
>
[
o
(]
8o
23
Ce
£9
h=e s
ho)
mr
(&
—Q
® il
n 2
85
o
e O
Cr
c0
—
>0

Koopgoot
with user input

payment_end? O«

payment_start! (

payment_result?

is?

i

payment_deta

payment_request!

Figure 4.2. Koopgoot with user input

31

session
details!

jojur uawAed C

o uonduosqgns

jsuopdouopduosgns

ipiomssedindu) jasaimd
plou 1amsuejainas jesaimd
juonpsanbjaioas jasaimd
pou” lewa jesaumd
ilrewaindu)jesaimd

iino pabbo)

plo aysibay
Mou 1a)sibau
juioy 1eysibau

o uiboy

jsuoidoayosdabueyd u“‘

jlunowe"asealoulIpald

Reset
Password

logout

start service
request

—)O—) Subscribe

sub
requested

request
subscription

/() key_info?

Service

Process
Payment Result

credit increase
requested

Check \Y

=
A

S

payment_result?

Ao

payment_details?

"~/

payment_request!

||l:.ueu |||||||||
h =33)
g @ y
‘& : % .l\h
g 58 e
r < , s |38
v 2) : P
S 3 i ~ O
N 5 2 2o
w g £
£ —
| 2 /lX
II
N § |
R N |
N s |
- - . L.N mtm n \\\
\\\\\\\ 58 Q.9
....... e . p
7]
1T W
% mvm Lo 8
g 28] | -
R |||||||||| hP . ‘\\‘Qe
||||||||||| 5) T)
......................] <52 .
................... BEE o g
........... 2 vaw
....................... ;
...... m o8
a9 N
5 8% R 2
3 a , 8 :
: - ’ ¥ £
- Y 3
OO
[l -
E
b
S S
o)
o e
s <
o o
£ £
> 3
® @
Q a

32

Reset
password

Register

start

start
session

Start service

y
) started

M\

profile

Subscribe

) 4 Increase
exception stop slop credits
stop session session
stop
Koopgoot

. with exception stop

Figure 4.4. Koopgoot with “super place”

The “super place” in Figure 4.4 does not include the dotted places not logged in and logged
in, as they have a ‘normal exit’ procedure available via the connected stop session transitions.
Note that the model presented in Figure 4.4 is not a complete model of the ‘Koopgoot’
subsystem but only a subset to describe the Koopgoot’s exit procedure.

The two main states of the system, not logged in and logged in can now be described in more

detail. Both places can be seen as a fusion of two more specific states: startview and
serviceview. The startview state represents a state in which an overview of all service

033

categories is presented. To browse the services of a specific category, the user can enter the
serviceview state by selecting an industry of function.

- e W - . - = -

)
] :
.... - ! i
"""""] 1
....... ! 1
_______ | select t
/"" : industry :
o 1 '
not logged in O : 1
. I
1 start service |
S v select .
S P Ve function view :
.. 1 h
----- I .
- 1 |
-.-.\‘. [} i
. : back 1
e o o - ———————— - }
Figure 4.5. Not logged in

The logged in state contains the exact same two states and also has the same transitions
available to switch between them. '

Now that we have presented a model for the Koopgoot system, we will use the next
subparagraphs to describe its subsystems. We will not discuss the other transitions in the:

Koopgoot model and consider them as atomic actions.

4.3.1 Register

The ‘Register’ subsystem contains the functionality that is needed for users to register in order
to get a login account for the Koopgoot. A user is asked to supply personal details including
an e-mail address that is unique to the system, after which an activation e-mail is sent to the
user’s e-mail address. The e-mail contains a link that the user has to click on to activate his

account.

register register register register
ok! nok! userinfo? form!
' —] —_— e
¥) x, ’I . 1
s a : =
1 t H H
: \ back ; H
i ! i
: fi i
5 NOK / |
N H 73
registration H OK i
info stored :. <—<' puét > ye— L —O) start_register?
H in
| generate processed PrOCESs form shown “groy
* l activation key input registration
send and store data form
activation
mail
Register i
~
not_logged_in!

Figure 4.6. Register

34

4.3.2 Reset password

The ‘Reset password’ workflow is described in Figure 4.7.

pwreset pwreset pwreset pwreset pwreset pwreset
inputemaill email? email_nok! secretquestion! secretanswer? secretanswer_nok!
—) H) —"} ™).
X 1 X 1 r
H ! : H H H
1 i] [} t i
1 1 i i 1 1
1 H] i L)
1 H] 1 1 $
1 ¥ 1 1] + !
H H i 1 ! i
; H i H 3 H
i \ process | . \ask secret -\ process ;
H i input | email '\ question question \ answer ; a@nswer
* form shown ! checked \ shown P e 4 checked
start_pw ¢ H :
reset? . ' OK
. i pwreset
show email ! ’ OK L-¥Q inputpassword!
input form NOK NOK e
- show
password
back back form
pwreset
/,—-O newpassword?
‘update
Reset password
password
not_logged_in!

Figure 4.7. Reset password

4.3.3 Start service

The “Start Service’ component (Figure 4.8. Start service) handles the service start procedure.
The component can start two types of services: free services and non-free services. A request
to start a free service will arrive at pin start_free_service_request?. This request does not
require further processing: the free service is started immediately in a new browser session
and the user is returned to his previous state in the Koopgoot.

A request to start a non-free service arrives at the start_service_request? pin. The first
transition that fires will check if the user has a valid subscription to the service. If this is the
case, the system will enter the access granted state. If not, the user has to pay first, to enable
single usage of the service, using his online credits. The online credit balance will be checked

and if there are insufficient credits available, the system will exit the ‘Start service’
t the increase_credits! pin and enter the ‘Increase credits’ subsystem. If the user

component at the in a

has sufficient credits available, he will be prompted to pay for the service. If the user
completes the payment, the access granted state is reached.

From this state, the transition generate session key is fired that generates a random key for the
current session and stores it in the database ServiceAccess table, together with other session-
specific data like the sessionld, serviceld and timestamp. As a result, the state key stored is
reached, enabling transition start service with parameters in new window to fire. This
transition composes the parameters sessionKey and sessionlD that have to be passed to the
service and then redirects the user to the service. As a result, two tokens will leave the
Koopgoot subsystem: one through pin start_service! that will enter the service subsystem at

35

the start_service? pin and one through pin return_logged_in that will return to the logged_in
state.

payment_info! payment_confirm? not logged in!

X Y
| 1
H H return to
' i referer
| i check
i " §| referer not_logged_in
return
i : referer
H /O_!_’ checked
1t 1
start_free_request? O " > T () start_service!
i 1 .
'§lart service in ", X riogged_m
suci;‘scr:?tzon :"new window ‘.l retum to
ecke I 1 refel
H OK rer
start_service_request? O— - “.
H 3
check \ allow aooeN
o 1 show (0
subscription NOK \payment info 5
check \\ Sy : - key stored
. .| -
available '() g —"O_"
credits OK info shown access
oto credit dscrease granieg generaie slart service
gincrease credits and store with params in
NOK key new window
and retum
Start credits
Service checked 3
W/ \J
increase_credits! retumn
logged_in!
- Figure 4.8. Start service

4.3.4 Increase credits -

The Increase Credits component (Figure 4.9. Increase Credits) contains three subsystems that
all access the Payment store. The component is activated via the credit_increase_requested?
pin, that is connected to the Payment Init subsystem. Payment Init initializes a payment and
has two possible paths: '

e Payment Init is started with an amount supplied. A payment record will be created in

the Koopgoot system and a payment request will be sent to the OnlinePay subsystem.

Payment Init is started without any parameters. The user will be prompted to enter an
amount, after which a payment request for this amount will be sent to the OnlinePay
subsystem.
By introducing the case analysis above, the Increase Credit component can be started either

by another subsystem when a specific credit increase is required, or manually by a user who
wants to increase his credits.

WAL

The response from the OnlinePay subsystem to the payment request is handled by the
Payment Start component. The response is processed and linked to the Payment record that
has been created in the Payment Init component, after which the user is redirected to a

specific location at the PSP-site. (In fact, this location is supplied by the response from the
OnlinePay component)

When the payment at the external PSP system is ended, a token will enter the Payment End
subsystem, via its payment_end? pin. Subsequently, the status of the payment concerned is

36

checked. Depending on the status of the payment, the Payment End component is exited or
the page will be refreshed to re-check the status.

fogged_in!
O
aecﬁtihcrease creditincrease
....... logged_in! amountt valid_amount?
- O
= ¢ ?
retum i i
N :
H
i
refresh nt |
goto retum p?:,md‘; Payment End .
url -
ot retum ur! £8Nding) :
paymen|
oyme o i
status
[e
started it i
Payment init [SEdilLincrEas
Payment) requested?
End o [t
~ ~
started? Apayment
ment
e O«— Payment Start
Incfease
. Credits
O 7
e payment H I payment
g details? H / request!
/"' { / 3
Ji creditincrease cmdiﬁné{ease
" started! logged_in! Apayment H amount! valid_amaunt?
- PN Py ; A 5

H requested?

payment (
start!

redirect
to psp
retum.
efror

Payment
Start

%
payment
details?

<
P payment
initialized! requestt

Figure 4.9. Increase Credits

4.3.5 Process Payment Result

Process Payment Result (Figure 4.10) handles the payment result messages that are received
from the OnlinePay subsystem. A payment result arrives at the payment_result? pin and is
linked to an existing payment item in the Payment store. The status of the existing item is
updated and a credit increase will follow if and only if the received status represents a '

successfully completed payment.

37

increase
credits

payment
details
get
Payment payment
details
OK
check status
update NOK
status _’O_’ stop
new status
status checked -
Process
payment
result
s
payment

result?

Figure 4.10. Process payment result

4.3.6 Subscribe

The Subscribe component handles a subscription request for a specified service. It contains
the basic user interaction to determine the desired subscription type and starts the ‘Increase
credits’ subsystem if a user has insufficient credits available for the specified service

subscription. If the amount of credits available is sufficient, the user will be subscribed to the
specified service and his online credits will be decreased.

subscription subscription subscriphen subsnrlpﬂgn

wbmjigtlon subscﬁlptjlun subscription
cptlons‘ request? ophnn axit!

okt confirm?
\I V h C
Y N [
%) X % |
1 H ! return 1 i
\ t \return |/ H
] . 1
‘;' :‘ . subscribed E
s s : ;
k L select check !
k)
1Y \ 4 ~ I3
A \ 4 \ subscribtion - | cregits STeds '
show . \ checked

* 1
subscription —>O-+ o _,Q__, ts;ﬂs:zf\v;il:
options... subscription . ~ Semviee

options subscription OKl

selected

goto credit
increase

Subscribe i

Nt
increase_credits

Figure 4.11. Subscibe

38

4.3.7 Service check

The actual check to see if a service may be started is performed by the Service Check
subsystem located in the Koopgoot. This component is initiated from the outside by the
Service subsystem via the key_info? pin. The data received at the key_info? pin will be
described in the next paragraph (4.4). Transition verify key info will check the validity of the
received data and after this check, a response will be sent back to the service.

verify key [————————O key_info?

Info
NOK
Vzﬁ%r:d return errg) sesslon_detalis!
. OK
Service generale
check session_details

Figuré 4.12. ServiceCheck

4.4 Service

The Service subsystem is another part of our proposed environment (Figure 4.1. Environment
model), representing a service that can be started from ‘de Koopgoot’.

user input-output

. (L_’ keys : o 5 i
start_service? known b
- goto HE HEH
get service service N
key stort
key_info! ()———I send to _,O_,, service- i
check /% specific part }
service § T
key_info start I
sent H
OK
5 o
session_details? Q-3 access
) session
waitfor details yoK >
response .
) — service
Service stop

Figure 4.13. Service model

The subsystem is initiated via the start_service? input pin, representing a browser session
pointing to the service location with the correct set of parameters. The transition ger service
key retrieves the service’s unique serviceKey that is stored somewhere in the service
subsystem. After this, the state keys known is reached, where the service has the following

keys available:

39

- serviceKey, required for service authentication;

- sessionKey, taken from passed parameters, required for session authorization;

- serviceld, taken from passed parameters, required for session authorization.
The following transition, send to check, takes these three keys as input and sends them to the
Koopgoot to check their validity. Send to check also produces a token in state key_info sent,
that is one of the two tokens needed to fire transition wait for response. This transition also
needs the response from the Koopgoot system to fire, that will be received from the
session_details? pin. : :

When the wait for response transition is fired, a token will be produced in state
session_details, representing the session_details received from the Koopgoot subsystem. If
session_details contains no valid data, the precondition NOK will be true and the system will
end. If session_details contains valid session data, the give access transition will fire because
its precondition OK will be satisfied. The give access transition is modelled to set global
variables in the service application to guarantee access to all parts of the service.
Subsequently, the actual service will be started. The functionality of this subsystem is beyond
the scope of this chapter, we refer to chapter 2 for an outline of the service functionality we
- have in mind.

40

4.5 Deloitte OnlinePay

In this paragraph we will present a model of the Deloitte OnlinePay system. This external
system has been developed in consultation with the ICTS group of Deloitte and will be used
by the Koopgoot system to communicate with the PSP. It enables Deloitte to use the online
payment functionality for other and future portal applications in a uniform manner.

We will not go into specific details of the OnlinePay component, because they are not
relevant to the Koopgoot itself, but we will only describe the trivial processes of the system
that are important to understand the process of online payment.

payment payment payment
resuit! details! request?
) Y o ?
psp_init! contact psp
return return
payment
result details
A psp request
details sent
stored
store
psp_response? O -~ > payment
. details
result stored
” store psp
psp_result.» (H result
Deloitte OnlinePay

Figure 4.14. Deloitte OnlinePay

When a payment request -containing an amount, user data and return url- is initiated from
Koopgoot, the OnlinePay component will compose and send a payment request to the PSP.
Subsequently, OnlinePay will wait for a confirmation response from the PSP to-confirm that a
payment can take place. A response will be sent to the Koopgoot via the paymeni_details! pin,
including the relevant information for the Koopgoot to start the payment:

e a Syncld which uniquely identifies this payment request, together with

e a RedirectUrl containing an specific url located on the PSP server where the initiated

payment has to be made. '

The second independent workflow in the OnlinePay component handles the incoming
payment result from the PSP on the psp_result? pin: the payment status is stored or updated
and offered to the Koopgoot at the payment_result! pin for further processing. Note that
multiple status changes can take place for a single payment: a payment status can change from
pending to completed, causing the workflow net connected to the psp_result? to run twice.

41

4.6 PSP

In Figure 4.15 we have modelled the trivial workflows for the PSP subsystem, derived from
the specifications supplied by the PSP. These workflows are required to understand the
interaction with the Koopgoot and OnlinePay subsystems. :

' $ i ‘
1] 1 1
\\ make |/
LY HY
AN \‘;E/men}, 7 L 3.() payment_end!
payment "3l W
result return to
return URL
return .
‘new _payment
~ payment oo) payment_start?
.oztyz;nt? T initialized '
retumn
new paynjent
status init
PSP /
N \J V'
psp_result! psp psp_init?
response!

“Figure 4.15. PSP

A user enters the PSP subsystem via the payment_start? pin and starts making his payment
(that has already been initialized). When the payment is finished the user is returned to the
Koopgoot and the payment result is sent to the OnlinePay system. We have modelled these
two actions in parallel as it is not guaranteed that a payment result is received by the
Koopgoot before the user has returned. It is possible that multiple payment result messages
are sent by the PSP for a single payment, caused by payment status changes.

42

4.7 Koopgoot Management

In this paragraph we will present a model of the Koopgoot management functions. To keep
the model well-organized we start the model in the koopgoot management state. This state can
be reached via the not logged in state of the Koopgoot when an administrative user logs in.
The Koopgoot Management model can be exited via a stop session action performed by the
user or by an exception. The start and exit procedure of the management site is equivalent to
- the one presented in Figure 4.4. Koopgoot with “super place”.

In Figure 4.16 the high level model of the Koopgoot management is displayed. In this figure,
we have omitted the place labels for the interface places that connect the management
subsystem to the Client subsystem as the user interaction arcs are so numerous, describing all
of them at this high level would make the model unnecessarily complex. Of course, user
interaction will be described in more detail at a lower level. As the ﬁgure shows, three
subsystems can be started from the koopgoot management state.

various inputs and cutputs
:. f ;‘E 9 C' $:
Y)
1 1

4
1 |1
b [y
LR Y L
ISURR RN
B

\
R
L .
VAN 1 Subscription
VW N ~p{ Management

N N User koopgoot
N
\ “» Management management
\
.
s,
\,
‘\ ‘\ .
R Service

“» Management

Koopgoot Management

Figure 4.16. Koopgoot Management

Table 4.1 describes the actions that can be performed in the subsystems modeled in Figure
4.16. '

Table 4.1. Koopgoot management actions

Service Management
Add services

Edit services

Remove services
User Management
Add users

Edit users

Remove users
Subscription Management
Add subscriptions
Edit subscriptions
Remove subscriptions

43

Because the models of the three specified subsystems have a similar architecture, we will only
describe the model of the Service Management subsystem. To maintain a well-organized
model of the Service Management subsystem, we have split up the model into two separate
ones, each representing a subset of the complete model. The union of the two models will
therefore be a complete model of the Service Management subsystem. The first model, shown
in Figure 4.17 contains the numerous user-input and user-output arcs. A second model
“described in Figure 4.18 uses a “super place” to model the cancel option available to the user.

gement

service_details?
service_detailst
ta_sarvice?
odit_service?
lisi_of_services!

add_service?

list_of_services!

confirm_delste?
service?
service_detalls?
sarvice_details!
add_service_form!

exit?

- service?

1

R— o ¥ [0

e en e) S€lOGE_SEEVIOR_ MBNA

¥l P
Management?

i generats service
1 management

H

screen

3 ; K

sdit service 3 / select service',

edieg % odt form % generate o \

% service edit service floym

. \‘ /
s

confirmation select service

te generate select
service form cvnl'mir:n form form service form Koopgoat
? Management!
generate service exit service
management management
screen
Service Managément
Figure 4.17. Service Management with user interaction
%
c
g
O Management?

generete service
management
screen

service
edited

sarvice

deleted

y Koopgoot
Management!

exit service
management

penerate service ..
managament
screen

Service Management editing servicas

' Figure 4.18. Service Management with “super place”

As shown in Figure 4.17, a user enters the Service Management subsystem via the koopgoot
management? pin and arrives at the service management screen. From here, the user can start
adding a service, start editing a service, start deleting a service or exit the service
management. In the process of adding, editing or deleting a service, a user can decide to
cancel the operation. A cancel action will return the control of the system to the service
management screen state. This is shown in Figure 4.18.

4.8 Soundness

We place the requirement of 1-soundness (definition A.4 on page 74) on our colored
workflow net (definition A.3 on page 74) to eliminate the occurrence of dead-lock and
because it is illegal for a system to be ended and at the same time have some tasks enabled.

Soundness of the Koopgoot

We will try to check the soundness of the net by reducing parts of the net to a particular
pattern or class of nets. First, we analyse the behaviour of the net presented in Figure 4.2: the
net has a begin state that leads to the state not logged in. From this state, the logged in state
can be reached. From both states (logged in and not logged in) the end state of the net can be
reached. All other functionality of the net can be described as loops that begin and end in the
not logged in state or loops that begin and end in the logged in state.

start

start
session

.......
e -

s
s
O T I
- ' 1! '
not logged in __; 1 : t ;]
. e bepat bt
NS -7 4
ST L .
togin Iogout
........
[oozzZ il TN
-
P T
t
1
[

logged inf ~- 1|

““““““““
stop slop
session session

stop

Figure 4.19. Simplified behaviour of the Koopgoot

It is easy to verify that the simplified net in Figure 4.19 ris a state-machine workflow-net
(definition A.5 on page 74). Since any SMWF is sound (lemma A.1 on page 74) it follows
‘immediately that the net in Figure 4.19 is sound.

To verify that the Koopgoot system is sound, we have to show that the simplified net in
Figure 4.19 is a correct reproduction of the Koopgoot model. To do so, we must verify that
every outgoing arc from not logged in and logged in is either part of a loop or an incoming arc
of a named transition in Figure 4.19.

45

Figure 4.20. Numbered loops

1. TItis easy to verify that workflow (1) in Figure 4.20 is a strongly connected state-
machine workflow net (definition A.3 on page 74) by looking at the Register
component described in Figure 4.6. Since any state-machine is sound (lemma A.1 on
page 74) it follows immediately that workflow (1) is sound.

2. Workflow (2) has the same pattern as workflow (1) and is therefore also a strongly

connected state-machine and sound.
3. To analyse workflow (3) and its behaviour inside the Start Service component, we

describe a flattened model of the workflow:

rotogged in

retum
not_tagged in?t

payment_isiot payment_goalirm?

L3 v

start free

f retum to
sarvice referer

check
i referer ot logged_in
return! pe—} ot
H -referer-

\/ checked
i

D S Ssenvice!

7
stadlres stert_free_request? { . 7
serdce §

istart service
requesl subsenption | “I‘n"‘;’"‘ t }retomio 1/
checked | Window ‘ﬁle«" /
v (i —_

stan_sarvice_fReusst?

4 aliovws acopss
NOK & Show

\payment info “,
OK o Shown _teweemeet
s decrease

check
subscripsion

check
avadable

key stored

credits i o genurae tar s
granled 2 B rvice
9‘:';;‘::' aedis | andstore . wilbs params in
oK key nexw window
K aneg zeturn
Start credits :_)
i checked
Service X b
incraase_ryedis! retum
s09gad_int

Figure 4.21. Workflow (3)

46

We can reason that the indicated path in Figure 4.21 is the only possible path because
only transition return to not logged in can fire from the referrer checked state as its
precondition not_logged_in is the only one that can be satisfied. Transition Start
service in new window has a second output arc that can be ignored as it directly exits
the Koopgoot system. The described path is a strongly connected SMWF and therefore
also sound. (lemma A.1)

Workflow (4) starts a free service from the logged in state and returns to that same
state. It has the same pattern as workflow (3): the other precondition (logged in) is
satisfied after the state referrer checked and the Start Service component is exited via
the logged_in pin. Workflow (4) is thereby also sound.

Workflow (5) and workflow (9) describe the two possible paths when a non-free
service is started. Workflow (5) returns to the logged in.state when it exits the Start
Service component.

payment_info! payment_confirm? not_logged in!
T
x

eeeneen(

retum to not
iogged in
not_logged_in

referer
checked

start_free_request? ! stert_service!

i -~ logged_in
start service in =

subscriptio {new window
nchecked

start_service_request?,

) check
logged in subscription

acce:
gmmod generate

and store
key

start service

with params in
new window

and return

increase_credits! logged_int

Figure 4.22. Workflow (5)

It’s not difficult to see that the path through Start Service is a strongly connected
SMWF and thereby sound (lemma A.1). The second outgoing arc of transition “Start
Service with params...” is ignored for our soundness proof as it exits the Koopgoot-
system immediately.

Workflow (6) subscribes a user to a service and returns to the logged in state when it
exits the Subscribe component.

foggad in

Y d subscription subscription
G contrm?

Y
i

% subscription select / check]
% options subscription,’ credits credits

sub
requested subscription
request?

checked
subscribe
to service

request subscription subscription
subscription options selected

golo credit
increase

Subscribe

increase_credits!

F igure 4.23. Workflow (6)

47

Workflow (6) is a strongly connected SMWEF.

7. Workflow (7) starts a subscription and exits the Subscribe component to enter the
Increase Credits component. Subsequently it returns to the logged in state.
It is easy to verify that the path through subscribe is a SMWF (as only the NOK
precondition is satisfied in state credits checked). To verify that the increase
component is also sound, we present a flattened model of the component in Figure
4.24. To come to this flattened model, the communication with the external systems is

ignored.

Figure 4.24. Flattened model of increase credits

Figure 4.24 makes it easy to verify that Increase Credits is also a SMWEF.

8. Workflow (8) enters and exits the Increase Credits component. As we have shown for
workflow (7) the Increase Credits component is a SMWE. Workflow (8) is therefore
also sound. _

9. Workflow (9) tries to start a non-free service but exits the Start Service component to
enter the Increase Credits component. It can easily be derived from Figure 4.22 that
the workflow net through the Start Service component is a SMWEF. This workflow is
followed by the Increase Credits workflow that is also a SMWF (7).

'10. Workflow (10) starts the Change Profile component. This component is a simple state
machine workflow net and therefore sound. . -

4.9 Example scenario I: selecting and starting a non-free service

In this paragraph we will focus on the interaction between “de Koopgoot” and its non-free
services. The environment that is described in this paragraph is a subset of the total
environment described in paragraph 4.2 and consists of “de Koopgoot” which enables users to
select and pay for a service and the services that can be started. A service can be started from
“de Koopgoot” when a user has obtained access rights to the service by either paying a single
fee required for the service or having a valid subscription for the service. We will therefore
start the use-case in state access_granted of the Start Service component that is part of the
Koopgoot subsystem.

48

™

Client

Payment —+—¥ servico_stant
Service | omiew | Koopgoot je—()e— Service
Provider je——{)< —":6";’

S

L sgonbag i

H
-
//

, \ \
/ - H
Deloiife \ \
Onlingbay
/
[

payment_infol payment_confirm?

nol_logged ini

starl_froe

b4

request?

stari_service,
request?

O
increase_croditst

Koopgoot

Figure 4.25. Starting a service

Table 4.2 describes the normal scenario for this use-case: a service is started with valid
parameters. The parameters are successfully checked and service access is granted to the user.

49

Table 4.2. Scenario - Starting a service

Transition

System

generate and store key

start service with
params..

. get service key
send to check

verify key info

generate session
details

wait for response
give access

g0 to service start

Koopgoot, Start Service

- Koopgoot, Start Service

Service
Service

Koopgoot, Service Check

Koopgoot, Service Check

Service-
Service

Service

Generate a random key for the current
session and store it in the Koopgoot database
ServiceAccess table, together with other
session-specific data like the sessionld,
serviceld and timestamp.

Redirect to service with parameters sessionld
and sessionKey

Retrieve unique service key stored in service
Send serviceKey (retrieved), sessionKey
(from parameters) and serviceld (from
parameters) to Koopgoot

Check the validity of the received keys by
querying the Koopgoot database

If the keys are valid, a set of session details
(userld, email, address etcetera) is generated
to return to the service.

Receive and process the session details

If the session details are valid, set global
service variables to allow access to the
service

Go to the welcome page to start using the
service

50

4.10 Example scenario II: making an online payment

In this paragraph we will focus on the interaction between “de Koopgoot” system, the
OnlinePay system and the PSP (Payment Service Provider) system. The environment that is -
described in this paragraph is a subset of the total environment described in paragraph 4.2. We
will start the normal scenario of this use-case with a token that arrives at the Increase Credits
component.

Payment
Service | Peymetlsan | Koopgoot Service
Provider b

N

isanber auked,

Kvg

sifotap”jowied |

Deloitte
OnlinePay
el
/ increase
credits?
> P H Y\ peyment credits
. ! % completed increased
ol i VO O
make i Y
payment payment "] gotoretum = 3
start’ : staws
o payment ment pege {rewm = y| oK
T O | il | va oo | e
O _onook status payment

retum reiurn to
new payment.

yment il retum
pament () 7oL . iaczed) - RL
status

retum payment - payment startt { § send store. vpdate])
request details stalus | check stalus session_psizist

stan)
. payment { \
ps? o+] L] Lol popode
sp_reom,_ P y Koopgoot: ~ /
! increase credits / (Ddome
{
i
{
i

o G e O

ROK =) payment
rodivect | 5 O etais

topsp |

{ O 3 get
S . i) {5 payment casment
H " \ details

O Feymem K payment Srermem T
request! cotas? result?

payment payment payn\s;y‘l
. Tequest . detaiis . result |

payment payment pak‘mum
request? delails! esult!

/
sent
relumn
0[]

payment
detalis

psp_initf

ml';'a'ayr_lmm delals
datats stored Aot
resuil

sire psp
result
Deloitte OnlinePay

Figure 4.26. Online payment

Table 4.2 describes the normal scenario for this use-case: a credit increase request is accepted
after which the Koopgoot requests a payment at OnlinePay. OnlinePay informs PSP about the
payment coming up and sends a response to the Koopgoot, containing an unique ID that is
associated with the payment and a URL the user should be redirected to. Subsequently the
Koopgoot stores the payment information and redirects the user to the PSP. At the PSP the
user performs the actual payment. As a result, the PSP informs OnlinePay about the payment
results and redirects the user to the Koopgoot. OnlinePay stores the results and sends them to

51

the Koopgoot. The Koopgoot stores those results, increases the amount of credits of the user
and as a result the payment is completed successfully.

Table 4.3. Scenario — Online payment

Transition System

send request Koopgoot, Increase Send payment request to OnlinePay
Credits , -

contact PSP OnlinePay Contact the PSP to initiate a new payment

payment init PSP Initialize payment and return new payment

details (syncld, payment URL) to OnlinePay
store payment details OnlinePay Store returned payment details
return payment details ~ OnlinePay Return payment details (syncld, payment

check details

- Store details

redirect to PSP

* make payment

(*) return paymen
result =
store PSP result
return result

update status '
check status

get payment details

- increase credits

in parallel with (*)

return to return URL -

goto return page
check status

OK

Koopgoot, Increase
Credits

Koopgoot, Increase
Credits

Koopgoot, Increase
Credits

PSP

PSP

OnlinePay
Koopgoot, Increase
Credits

Koopgoot, Increase
Credits

Koopgoot, Increase
Credits

Koopgoot, Increase
Credits

Koopgoot, Increase
Credits

PSP

Koopgoot, Increase
Credits
Koopgoot, Increase
Credits
Koopgoot, Increase
Credits

URL) to Koopgoot.

Receive and check OnlinePay response. If
the response is empty, the PSP is
unavailable.

Update Payment table with syncld

Redirect user to PSP payment URL
(received from OnlinePay)

User payment

Return payment results (inlusive syncld) to
OnlinePay

Store returned payment results

Return payment results (syncld) to
Koopgoot. '

Update Payment table with new payment
results

Checks if the payment is completed

Retrieve the payment details from the
database ' :
Increases the amount of credits from the
user

Redirect user to Koopgoot return URL
(provided by Koopgoot) :
Redirects the user to the return page of the
Koopgoot

Checks if the credit increase is completed

The online payment is completed

52

4.11 Class Diagram

We use an adapted version of the class diagram used in [CHS2003] to model the relevant

- Koopgoot classes.

credit

settings

1

increases

0."

payment

- Each visit of a user to the Koopgoot involves a session. A user can make payments in a

session

subsc:nptlon . industry
options 0.’ 0.
1
with selected
0.* o.*
subscription service - function
o 0.r 1 0. 0.1
1
0.*

service access

Figure 4.27. Class model of the Koopgoot

session to increase his Koopgoot-credits. Credits can be used to subscribe to a service (by

selecting a subscription option that defines the period and price) and to enable single usage of

a service. Access control to a service in a specific session is controlled by the service access
class. A service can belong to industries and to a global function group.

53

5 Technical architecture

5.1 Introduction

This chapter will present an overview of the technical architecture of the Koopgoot
environment. We will describe the physical components of the system and the software
techniques that have been used to realize them. Subsequently, we will map the logical
components to the physical ones, to show the link between the logical model and the
architectural design [CHS2003].

5.2 Technical Requirements

The technical architecture has to meet the following non-function requirements:

- Performance — the system’s performance must be at such a level that users experience
no noticeable delays when using the system;

- Scalability — the system or components of the system must be modifiable to fit a
problem area;

- Security — the system must be secured to protect all sensitive information;

- Maintainability — the software system or component must be easy to modify to correct
faults, improve performance, or other attributes, or adapt to a changed environment
[IEEE1990]. :

- - Standardization — the system architecture must fit in w1th existing Deloitte IT-
standards. :

5.3 The three tier structure of the ‘Koopgoot’.

To meet the technical requirements, we will use the three tier architecture®. As the name
indicates, this architecture divides a system into three tiers: the presentation tier, the logical
tier and the data tier. The presentation tier presents the system to the outside world and
communicates with the outside world. The logical tier will provide functions, such as
calculations and communications with other systems in the same environment. The logical tier
serves the presentation tier-and -interacts with the data tier; where the actual database(s),
belonging to the systems are located.

The environment model presented in chapter four can now be mapped onto the three tier
model. The environment contains the following actors:
- Users. The users of the system will use an internet browser and will communicate with
the Koopgoot presentation tier, which is the only tier accessible from the internet.
- Deloitte OnlinePay. This system that handles the PSP communication will
: communicate with the logical tier of the Koopgoot.
- Payment Service Provider. When a Koopgoot user wants to make a payment, the
Koopgoot will have to announce the payment to the PSP before redirecting the user to
the PSP site. When the user has completed the payment, the PSP will report the

3 For detailed information on three tier architectures see [Eckerson1995].

54

payment result to the Koopgoot and redirect the user back to the Koopgoot. For
announcing payments to the PSP and retrieving notifications from the PSP, the

- Koopgoot will use Deloitte OnlinePay. To redirect users from the Koopgoot to the
PSP and visa versa, no direct communication between the Koopgoot and the PSP is
needed. (In fact, the Koopgoot sends a redirect command to the user)

- Services. When a user has been redirected from the Koopgoot to a service, the service
will have to determine if the user has the correct rights to use it. Because the services
are not necessarily hosted in the same environment as the ‘Koopgoot’, they will have
to communicate with the Koopgoot presentation tier.

PSP User | | Services

-
& s i

Fomanm W

B e

Qutside world

Tier 2 : Logical ?
Deloitte] T
thlngpzy «— Koopgoot Logical Tier
Tier 3 : Data

Koopgoot Data Tier

Figure 5.1. Three tier architecture of the Koopgoot

This scheme summarizes the communication between the Koopgoot and the other parties. The
dotted lines indicate communication lines that are not important to the technical architecture
of the Koopgoot. The other lines however have an influence on what kinds of techniques to
use. To decide what techniques to use on which tier, each tier will have to be treaded
distinctly:

- The presentation tier.
The presentation tier communicates with the logical tier, the users and the services.
For the communication between the user and the Koopgoot logical tier, a web
application is needed that presents web pages to the user and deals with the user input.
A web application can only communicate with users and not with services, so besides
the web application, a component is required to communicate with the services.
Because the services should not be restricted to one operating system, we have chosen
to use a XML web service to communicate between the services and the Koopgoot
logical tier. XML web services are discussed in paragraph 5.8.

55

The logical tier.

The logical tier serves the logical tier, interacts with the data tier and communicates
with (the logical tier of) Deloitte OnlinePay. Because we did not want to be restricted
to one communication channel and we did want to be able to use object oriented
references, we have chosen to use .NET Remoting to serve the web application of the
presentation tier and to' communicate with Deloitte OnlinePay. .NET Remoting is
discussed in paragraph 5.6. Because it is relatively easy to put a XML web service on
top of another XML web service, we have chosen to use another XML web service for
the communication with the XML web service of the presentauon tier.

The data tier.

To maintain the system’s data, a SQL Server database will be used.

After walking through all three tiers we come to the following model of the technical
architecture:

PSP Services
A A
Outside world
‘T;er1 Presentation ; §5.8
Web Web
i Service
T:er2 Logical - *
Delpitte Remoting - Web
OnlinePay Server Service
Tier3: Da
r3:Data §57 vy
SQL Server
Database
Figure 5.2. Technical architecture of the Koopgoot

The technical components are covered in the paragraphs indicated in Figure 5.2. Before
covering the technical components, we will map the logical components presented in chapter
four onto the technical architecture that is displayed in Figure 5.2.

56

54 Mapping the logical onto the technical components

Table 5.1. Mapping the normal logical components

Web Application Remoting Server W‘T’b
Services
o3
Technical 5 x -; A e
A £ © 8 g
Components s 2 = = :
x| &l 8 3 & @ g g
ARA g < E| & & =& MEAREE= A
S| S| B x| Bl Sl gl 2l |Blal =21 Q1 Q| & [3)
sl ol Bl x| &l 2|88 % S| 2! §ld| gl E| =)
SIZIQ|& &S| 8|28 2lEl gl 8122 5
. S|l B8l i 3|8 s| 5 S| Bl 8l &l g8 8 ot
Logical sl sl 2|8l &l @ 5 S| =| & 8l o3| .2 3]
Component 2121855558 2 [3|2122 222 | :
omponents ol=E| & 8
P 28| E|3|3|2|&|&|a| |(8|a|alalalala 3
Change profile + +
Increase Credits. + + | +
Login + + +
Logout + +
Register + + + | + +
Reset password ‘ + +
Start service + + + |+ |+
Service check +
Subscribe + + + +

Table 5.1 shows the mapping of the normal logical components onto the technical
components. To keep the table well-organized, we have not shown the SQL database in this -
table and we have considered both web services as one part. All logical components contain
database interaction and most of them interact with more than one table. The Service check is
the only logical component which functionality is located at the (XML) Web Services. The
Web Application and the Remoting Server are divided into sub-components that relate to the
logical components. The sub-components of the Web Application are described in Paragraph

55.

Table 5.2. Mapping the logical management components

Web .
. Remoting Server
Application e g
" “Technical RT8
o o
Components 7] % “
X1 &1 = & 8l vl v -8
172 g:': = ~ 2] - Q <9 .
< s| .© | <9 S|l 8! g1 «
X = 3| = 9ol &1 B @
g 2 ,Q* 8 s =] E 'E ‘7 @B s
. s| 8|8 S| el 2 5181312
Loyl B EREIEIEEIEEE
Components S8l al |a|la|alalalala
User Management + + +
Service Management + +
Subscription Management + + + |+

In Table 5.2 the logical management components are mapped onto the technical components.
For the same reason as before, the SQL database is not shown in the table. The Web Server is

57

also not shown in the table because no management functionality is situated in it. Since the
management functionality relates to other sub-components of the Web Application other
components are shown than in Table 5.1. Despite some of the sub-components of the
Remoting Server do not relate to any management function, we have displayed the same sub-
components as in Table 5.1. This is done to present an overview that shows whether the sub-
components of the Remoting Server host management functionality or not.

5.5 Web application

The goal of the web application is to present the requested pages to the user, using the input
from the user and the remoting server.

5.5.1 Technology

The technology used to realize the web application is the ASP.NET. Typically ASPX pages
contain HTML elements, server side codes and client side codes. When a user request an
APSX page, the server retrieves it from the disk and then sends it to the ASPX engine for
further processing. The ASPX Engine compiles the server side code and generates the page
class file. It then instantiates the class file and executes the instructions to develop the
response object. During the execution stage, the system follows the programmatic instructions
(in the server-side code) to process the data submitted by the user. Finally, the server
transmits the response object to the client. In short, the major steps in processing a request for
an ASPX page are as follows: '

1. The server receives a request for a desired ASPX page.
2. The ASP.NET Engine compiles the page and generates the page class. If the class had
~ already been loaded, it simply provides a thread to the running class instead of
" regenerating the class. During compilation, it may require other code classes, such as
code-behind classes and component classes. These are assembled during this step.
3. The ASP.NET instantiates the class, performs necessary processing, and it generates
the Response object.
4. The Web server then sends the Response ob_]ect to the client.

Compile page Instantiste

{if needed) class the class class
generated instantiated
request? Qr———p :
_ responsel < O;
class
gensrate processed Process

Response object

Major steps in serving an ASPX page

Figure 5.3. ASPX technology

The structure of an ASPX file is similar to HTML pages. Besides normal HTML tags and
contents, ASPX files contain ASPX extensions. The beginning of an ASPX file generally

58

contains links to related files, separated between tags starting with “<%@” and ending with
“g5” The rest of the HTML code contain some parts of code which will be executed at the
‘server before the HTML page is send to the user’s browser. These parts are also separated
" between tags, starting with “< % and ending with “%>"".

The class file that is associated with an ASPX file contains the actions that are performed. A
part of these actions is the “page_Load”, which describes the actions that are performed
before the page is presented to the user. Other parts describe the actions that are executed
when a user performs certain actions. ‘

5.5.2 Webpages of the Koopgoot

The Koopgoot exist of 32 normal ASPX pages and 24 administrative ASPX pages. All these
ASPX pages have their own class files. Furthermore, there are also 4 ASCX files, which
describe custom controls. When certain features like a menu are used at more places its useful
to use a custom control, so that this often used code is located at one place. A list of the more
important pages and their functions is shown below: :

Table 5.3. Koopgoot webpages

Page name : Functionality _

Activation The user account is created based on the registration form. After
that the user is redirected to Log in.

Edit Profile The user can edit his profile and submit the changes. The user

can also start changing his password, his secret question or his e-
mail address. ’

Increase Credits The user can enter the amount that he wishes to increase his
credits with. When this amount is.submitted by the user, the user
is redirected to the PSP. '

Login When a user is not logged in he can log in, register, contact or go

to a service list. When a user is logged in he can see a list of
subscribed services and his amount of credits left. He can
directly start a subscribed service, contact go to a service list, g0
to the profile page or go to the credit increase page. To the last
three things will be referred as * general’ things.

Log out The user is logged out and redirected to Log in.
~Register Fill in the registration form and submit it.
Reset Password When the user is logged in he can reset his password, by

entering his current password once, entering his new password
twice and confirming the action. When a user is not logged in,
he can reset his password, by entering the answer of the secret
question, entering his new password twice and confirming the
action. ’

Start Service If the service is free or the user is subscribed to the service, the
service starts immediately in a new window. If the service is not
free and a user is not subscribed to it, the costs for single usage '
of the services and the user’s current amount of credits
displayed. If the user has enough credits left he can chose

59

between paying for usage of the service, after which the service
starts in a new window, and canceling the start of the service. If
the user’s amount of credits is insufficient he is redirected to the
Increase Credits page on which the amount of credits needed to
pay for the service is already filled in.

Subscribe Here all subscription options to the selected service are
presented to the user. The user can select one of those options or
cancel subscribing to the service. When the user has selected a
subscription option, after which the costs for the selected
subscription and the user’s current amount of credits displayed.
From here the user can subscribe to the service, cancel to
subscription or be redirected to the Increase Credits page.

User Management The user can chose between adding a new user, editing a current
user or deleting a current user.
Service Management The user can chose between adding a new service, editing a

service or deleting a service.
Subscription Management . The user can chose between adding a new subscription, editing a
subscription or deleting a subscription.

5.6 Remoting Server

The goal of the remoting server is to serve the web application, using the database, modifying
the database and communicating with the remoting server of Deloitte OnlinePay.

5.6.1 Technology .

NET Remoting is a technology that allows objects to be used remotely over a network. It is
comparable it with XML Web Services, which are explained in Paragraph 5.8. However,
unlike Web Services, the communication is not cross-platform as both the client and the
server must be implemented in .NET. The main advantage of NET Remoting over XML Web
Services is performance. .NET Remoting can be configured to transfer data using a binary
format, while XML Web Services are restricted to XML and SOAP communication. In terms
of performance, .NET Remoting provides the fastest communication using the TCP channel
and the binary formatter.

In NET remoting, the remote object is implemented in a class that derives from
System.MarshalByRefObject. The MarshalByRefObject class provides the core foundation for
enabling remote access of objects across application domains. A remote object is confined to
the application domain where it is created. In .NET remoting, a client doesn't call the methods
directly; instead a proxy object is used to invoke methods on the remote object. Every public
method that we define in the remote object class is available to be called from clients.

The remoting infrastructure allows two distinct types of remote objects to be created:
1. Client-activated objects - A client-activated object is a server-side object whose
creation and destruction is controlled by the client application. An instance of the
remote object is created when the client calls the new operator on the server object.

60

2. Server-activated objects - A server-activated object's lifetime is managed by the
remote server. The server-activated objects are created when the client invokes a
method on the proxy. There are two types of server activated objects:

1. Single call - Single-call objects handle a single request coming from a client.

- 'When the client calls a method on a single call object, the object constructs itself,
performs the action the method calls for, and destroys the object. No state is held
between calls, and each call is called on a new object instance.

2. Singleton - Singleton objects are stateful objects, meaning that they can be used to
retain state across multiple method calls. An instance of a singleton object serves
multiple clients, allowing those to share data among themselves.

NET remoting objects are objects and can be treated as such. As a result, you can use object

references to remoted objects.

5.6.2 Implementation

5.6.3 Object oriented class model of the classes at the remoting server

The class model of the remoting server is shown in Figure 5.4. The model correspondents to a
large extend to the class diagram design presented in paragraph 4.11. All classes inherit from
a new class “DABasis” that contains basic functionality needed.

61

UserDetails

[+UserlD : int
+Email : string
[+Namae : sting
[+Address : string
+PostalCode : string
+City : string
+Country : string
+Phone : string -
+Fax : string
+Keepinformed : bool|
+Language!D : int
+BranchiD : int

DABasis::DAUser

++GetSecretQuestion(in UserlD : int) : string

J+CountLogins(n UserlD :int) : int

+DAUser(}

+GetiD(n email : string) : int

+GetDetails(in UserlD : int) : UserDetails

+Add{in userdetails : UserDetails, out errormsg : string) : int

+EditProfile(in UserD : int, in Name : string, in Address : string, in ...) : bool
+EditSettings{in UseriD : int, in LanguagelD : int, in ...} : bool

+Remove(in UserD : int, out ErrorMsg : string} : booi

[+Exists(in Email : string) : bool

+Authenticate(in email : string, in password : string, out user : UserDetalls) bool|
+Cl fi(n UserD :int, in il : string) : bool

+ChangePassword(in UseriD : int, in NewPassword : string) : boo!
+CheckPassword(in UserlD : int, in PwToCheck : string) : bool
+CheckSecretQuestion(in UseriD : int, in SecretAnswer : string) : boot
+GetlastloginDetails(in UseriD : int) : SglDataReader
+Getlist() : SqiDataReader

+GetLevel(dn UserD :int) :int

+SetSecretQuestion(}
+SetSecretAnswer()

+Setlevel(in UserlD : int, in Level . int) : bool

DABasis::DAAccountRequest

[+DAAccountRequest)

+Add(in user : UserDetails, in activationcode : string) : bool

+Exists(in Email : string) : bool

*Exnsts(nEma string, in ActivationCode : string) : bool
Email Asinng,mamvaﬂoncode string) : int

DABasis::DASubscription

+DASubscription)
+GetDetails(in ServicelD : int, in UserlD : int) : SqiDataReader
+GetDetails(in Subscription!D : int) : SqlDataReader
|+Getlist(in UseriD : int) : SqiDataReader
+GetList(in sortonuser : bool, in ServicelD : int, in UseriD : int) : SqlDataReader,
+IsValid(in ServicelD : int, in UseriD : int) : bool
l+GetListValid(in ServicelD : int) : SqiDataReader
+Add(in ServicelD : int, in UserD : int, in Months : int) : bool
+Edit(in SubscriptionlD : int, in Months : int) : bool
+Remove(in SubscriptiontD : int) : bool
+GetOptionDetails(in OptiontD : int) : SgiDataReader

]

DABasis::DACall

[+Insert(in UserlD : int, in ServicelD : int, in Subject : string, in Description : string) : bool|

T

DABasis::DALog

+DALog(

+Add(in success : bool, in action : string, in info : string) : int
+AddCreditMutation(in Amount : int, in Detalls : int, out ErrorMsg : string) : mt
+AddCreditMutation(in ServicelD : int, in Amount : int, in Details : int, out ErroriMsg : string) : int

l+AddServiceLog(in ServicelD : int, in Success : bool, in Action : string) : int

DABasis::DASession

|+Start(in IPAddress : string, in ASPXSessioniD : string, in UserAgent : string) : int

+DASession()

+End(in SessioniD : int) : boot
+SetUser(in SessioniD : int, in UseriD : int) : bool
¢GansmteKey(m SessioniD : int) : string

ID ; int) : string
J
— AV4
DABasis:DAUtility Data Access Tier:DABasis
HFConnectionString : string
(*DAUtility) WFCurrentContext : HttpContext
*CreatePasswordHash(m Password : string, in Salt : string) : stnng “DABasis(
+G) : $qiD eader luGete L - Sl
l+GenerateRandom(in bytesize : int) : string +UseriD(: int ‘
+GenerateRandomText(in size : inf) : string it .) - bool
ingToCl y Stri ing : string) : string /\‘
1
DABasis::DAServiceGroup
-FTable : string
{ -FKey : string
- - i Table : string
DABasis:DACredit +DAServiceGroup(in Table : string, in Key : string, in ServiceGroup : string)
+GetName(n GroupiD : int) : string
*DACredit) +GetlList() : SglDataReader
-Change(in UseriD : double, in Amount : double) : double +GetlistOther() : Sqipat:Rsader Grouptd
+Increase(in UseriD : int, in Amount : double) : doubie nt, in : int) : bool
+Decrease(in UserlD : int, in Amount : double) : double :m;z:glﬁs"eﬁxglp t"::] Igrf;:rgl'bint;n")bc:?m
+Get(in UseriD : int) : double - \ bl N N
+GetString(in UserlD : int) : string +GetServicesList(in GrouplD : int) : SqlDataReader
+GetincreaseOptionList() : SqiDataReader AN
OpticnDetaiis(in OptioniD : int) : SqiDataReader] 7
—————————— [DAService Group::DAIndustry; DA ServiceGroup::DAFunction

L
DABasis::DAService

+DAlIndustry() ” +DAFunction()

+DAService()

+Edit(in service : ServiceDetails) : bool
+Remove(in ServicelD : int) : bool
+GetDetails(in ServicelD : int) : ServiceDetails
l+Getlist() : SqlDataReader
+Getlis (in Count : int) : SqlD o

A iptionOption(in i

‘in'mnll‘) < int, out
Optionlist(n D :int) : Sqilx
+GetSubscriptionOptionCount(in ServicelD : int) : int

+Add(in name : string, in description : string, in active : bool, in url : string, in demourl : string, in costs : doubie) : int|

D : mt in price : double, in months : int, out errormsg : string) : int
g : string) : bool

+GetStats(inout services : int, inout active : int, inout free : int, inout cheap : int, inout avg : int, inout expensive : int)|

ServiceDetails

+ServicelD : int

1 +Name : string

! o -~ -Y*Description : string
+Location : string
+DemoLocation : string
{+imageLocation : string
+Active : bool

+Costs : double

Figure 5.4. Remoting server class model

62

5.7 SQL Server

“The goal of the SQL Server is to manage all Koopgoot related data and to present this data to
the remoting server and the web service. The remoting server and the web service can be seen
as users from the database. A database, called KoopgootDB runs on the SQL Server. Besides
data tables, the database also exists of views on the database and stored procedures. In this
paragraph stored procedures, which are powerful methods that can be executed on a SQL
Server database are treated. We will also show the database model of the Koopgoot.

5.7.1 Stored Procedures

Stored Procedures are methods that can be executed on a SQL Server database. By putting
pieces of SQL code into a stored procedure, reusable code can be created. When you want to
update the code or modify it for use in another application, all you have to do is make the
change in one place. That means more maintainable code and less time trying to track down
problems. The code. in stored procedures is written in SQL Server's dialect of SQL, called
Transact SQL (T-SQL). Stored procedures are as flexible as many programming languages
thanks to T-SQL's flow control, parameters, and output functionality.

One way to look at stored procedures is to categorize them as either precompiled queries or as
parameterized queries. Normal SQL statements that are executed are parsed before SQL
Server can execute it. However, by creating a stored procedure, queries will run more quickly
because SQL Server determines the execution plan at the time the stored procedure is created
and stores that information along with the procedure.

Stored procedures allow you to do much more than store precompiled versions of static
queries. Parameters can be added to a stored procedure, which results in more flexibility. Just
like the parameters of a method in a normal programming language, the parameters can then
be manipulated within the stored procedure.

Besides retrieving data, stored procedures are often used to manipulate data. In fact, in certain
organizations, programmers do not have direct access to database tables. Instead, they do all
of their interacting with the database through stored procedures. Because the normal update
command is not allowed, the chance of programming errors damaging the database decreases.

5.7.2 Example - “Activation” stored procedure

In the Koopgoot, all data manipulation is done by stored procedlires. To demonstrate the use
of the stored procedures, we have presented an example of a stored procedure that is used in

the Koopgoot.

When a new user registers to the Koopgoot he receives an activation mail. The link that
activates his account actually calls the stored procedure, called Activation. This stored
procedure manipulates four tables. These tables are shown below.

63

requestiD -4 HUserlD

it Email { 4 Email k IndustryID
1 Password 1 {Password | FunctionID
A salt 1 IName - LanguageID
1l Name : 4 §Address | KeepInformed
Address { fPostalCode . m—
PostalCode City A
City 1 i Country
Country Phone
Phone 1 HFax
4 Fax Level
CompanyMame 1 1 CompanyName i
IndustryID PasswordQuestion : 1 credits
LanguagelD Passwordanswer ; L ;
ActivationCode 1 154t
KeepInformed 14
PasswordQuestion

Passwordanswer

Figure 5.5. The datatables of the Activation stored procedure

This is actually the create script that creates the stored procedure, called Activation. All
variables in a stored procedure are indicated by the “@” sign. When the stored procedure is
called, two parameters are supplied, the @Email, containing the users e-mail address and a
corresponding @Activationcode. The output parameter is @userID, which is a unique number
corresponding to the newly created user. '

Just like in a normal programming language, two variables are declared: LanguagelD and
IndustryID. The next line contains the statement BEGIN TRANSACTION. All actions between
this line and TRANSMIT TRANSACTION will be performed ‘in one transaction’, meaning that
~ during this transaction no other activities take place at the database. If one action in this
transaction results causes an error, all other actions will be undone.

The first SQL query in the transition inserts a record to the Users table. The values for the
various tables are retrieved from the Accountrequest table and the unique userID
corresponding to the newly created user is placed in the output variable. The following
INSERT query inserts a record in the Credit table using the newly retieved @userID.
Subsequently a SELECT query fills the two local variables. These variables are used in the
next INSERT query, where a record is inserted in the UserSetzings table. The last query in the '
transition deletes the ‘accountrequest’ from the AccountRequest table.

64

CREATE PROCEDURE dbo.Activering

(
@ActivationCode nvarchar (255),

@Email nvarchar(255),
@userID int OUTPUT

AS
DECLARE @IndustryID INT
DECLARE @LanguageID INT

BEGIN TRANSACTION

INSERT INTO Users ([Email], [Password], [Name], Address, PostalCode,
City, Country, Phone, Fax, CompanyName, PasswordQuestion, PasswordAnswer,
Salt)

(
SELECT [Emaill], [Password], [Name], = Address, PostalCode, City,

Country, Phone, Fax, CompanyName, PasswordQuestion, PasswordAnswer, Salt
FROM AccountRequest]
WHERE (ActivationCode = @ActivationCode) AND ([Email] = @Email)

)
SET @userID = SCOPE_IDENTITY()

INSERT INTO Credit (UserID, Credits)
VALUES (@userID , 0)

SELECT @IndustryID = IndustryID, @LanguageID = LanguagelD
FROM AccountRequest)
WHERE (ActivationCode = @ActivationCode) AND ([Email] = @Email)

INSERT INTO UserSettings (UserID, IndustryID, LanguagelD,

KeepInformed)
VALUES (@userID , @IndustryID, @LanguageID, 0)

DELETE AccountRequest .)
WHERE (ActivationCode = @ActivationCode) AND ([Email] = @Email)

COMMIT TRANSACTION
RETURN
GO

Figure 5.6. The create script of the Activation stored procedure

65

5.8 Web Services

~ To enable user validation for the services we have used XML Web Services. Because services
contact the web services for user validation purposes, a second goal for the web services is to
register these contacting services as started.

5.8.1 Technology

XML Web services can be seen as methods that are offered over the web. XML Web services
are built on the common infrastructure of the HTTP protocol and SOAP formatting, which
uses XML. These are public standards, and can be used with current Web infrastructures
without worrying about additional proxy or firewall issues. XML Web services are accessible
using URLs, HTTP, and XML. The advantages of using XML Web services are ease of use,
inbuilt security, and its use of standard protocols which allow operation between computers
running different operating systems communicating across the internet. ~

Web services are a stateless programming model, which means each incoming request is
handled independently. In addition, each time a client invokes an ASP.NET Web service, a
new object is created to service the request. The object is destroyed after the method call

completes.

XML Web services are implemented in classes that derive from the
System. Web.Services.WebService class. The WebMethod attribute is used to expose methods
as Web services, so they can be invoked by sending HTTP requests using SOAP. The XML
Web service receives the SOAP request, executes the method, and sends the results in the
form of a SOAP response to the client.

582 Implementaﬁon

To validate their users, services have to communicate to the Web service which is situated at
the presentation tier. The file that is called from the services is check.asmx. This file contains
only one rule: -

l <%@ WebService Language="c#" Codebehind="Check.asmx.cs" Class="ServiceCheck.Check" %>

Figure 5.7. The content of check.asmx

As you can see it only contains a link to the code and it defines the programming language
used in the code. The code behind the Check.asmx file is located in the Check.asmx.cs file,
which is shown in Figure 5.8. '

66

using System;

using System.Collections;
using System.ComponentModel;
using System.Data;

using System.Diagnostics;
using System.Web; .

using System.Web.Services;

namespace ServiceCheck

{
[WebService (Namespace="KoopgootPublicServiceCheck")]

public class Check : System.Web.Services.WebService
{ .
public Check())
{// This call is required by the ASP.NET Web Services Designer
InitializeComponent();

} : <
B #region, Component Designer generated code

[WebMethod]
public bool SessionIsValid(int SessionID, string SessionKey, string ServiceKey)

{ .
return PublicKoopgootFunctions.SessionIsvalid(SessionID, SessionKey,

ServiceKey);
}

[webMethod] .
public - SessionDetails GetSessionDetails({int ~SessionID, string SessionKey,

string ServiceKey)

{ .
return PublicKoopgootFunctions.GetSessionDetails(SessionID, SessionKey,

ServiceKey) ;

}

Figure 5.8. The code behind the web service

At first some classes providing basic .NET methods are included by the using statements.
Also the System.Web.Services.WebService class is included, where all classes that implement
web services derive from. There are two methods in this file, which are exposed as web
services:

1. SessionIsValid - This method only returns whether the user which is visiting the
service should be granted access to the service. To invoke this method, three
parameters are required, which are an integer called sessionID, a string called
SessionKey and a string called ServiceKey. This function only returns a Boolean value
to the service indicating whether the user should be granted access to the service or
not. To obtain this result another method from another class is envoked.

2. GetSessionDetails — This method returns more details about the user that is accessing
the service. Off course on of these details states whether the user should be granted
access to the service or not. Other details vary from the name of the user to the
IPadress of the user and the ASPXSessionID. These details can for example be used by
the services to make present the services more personnel to the user.

The class PublicKoopgootFunctions, which contains the methods GerSessionDetails and
SessionlsValid consists of three main parts. One parts describes the class SessionDetails.
Another part is the method SessionlsValid. This method simply invokes the GezSessionDetails
method and returns is ValidSession property, which is a part of the results from the
GetSessionDetails method. The third part is the GetSessionDetails method itself, which

67

actually communicates with the XML Web service of the logical tier, to return the session
details.

The XML Web service of the logical tier is partially a copy of the XML Web service of the
presentation tier. The main difference is in the GetSessionDetails method that is situated in
one of the class files of the XML Web service of the logical tier. This method uses the same
input and output variables, but the main difference is in retrieving the results. Where the XML
Web service of the presentatlon tier uses the XML Web service of the logical tier to retrieve
the results, the XML Web service of the logical tier uses the SQL Server Database to retrieve
the results. Apart from retrieving the results the XML Web service of the logical tier also
invokes a stored procedure of the SQL Server Database that registers that the user has
accessed the service.

68

6 Conclusions and Recommendations

6.1 Conclusions and Recommendations

In chapter one we set the follow objectives:
1. The design and implementation of a technical architecture that is needed to realize a
new distribution channel of online decision support systems.
2. The design and implementation of one or more decision support systems for this
environment.

The first objective has been realized. The technical architecture is in place and it is our belief
that all functional requirements set in chapter three, paragraph four and technical requirements
set in chapter five paragraph two have been met. In chapter four we have studied one
important aspect of the system: soundness. Naturally, soundness is not the only important
property of a system but it is an import requirement to place on a system, as explained in
chapter four.

Google «

'Deloitte.

& Branche %] Vakgebied [T] Nieuw

Ontine diensten beschikbaarin - Online diensten i N ;. feuzne sorsprang 2dvseny
de volgende branches: ds volgende vakgebieden: ~

S.maidres therxersSdecdts.

vischtwootd eee
Interactieve tool om voor alfe T
typen samengestelde
producten de oorsprong te
bepalen, op basis van de
samenstelling van de

en
het land van bestemming. i

> Security > Legal > Privacy

Copyright @ 2305 by’ Delotte Tosche Tokmatsw. ANl s 268/,

&) 0one I D Internet

Figure 6.1. End result of the Koopgoot - welcome page

The environment is now ready for extensive testing by a representative group of target users.
The test can bring potential problems or flaws to the surface, which can be eliminated or
added in future versions of the Koopgoot. This would not mean the logical and technical
architecture have been inadequate: the development of an information system is an elaborate
process that requires recurrent user feedback to improve the system.

69

The second objective —to design and implement one or more decision support systems
according to the techniques described in chapter two- as proof of concept for the environment
has also been realized. We have realized an online service that is designed using the technique
of case based reasoning as discussed in chapter two, paragraph three. The service provides
salary indication and uses a database of job functions that is exclusively available to Deloitte.
The user is interested in the details of a specific function and enters all relevant information
about it. The system calculates and returns a list of matching functions. The user can choose a
specific function from the list and look at it in detail.

Deloitte

& Touche

Aboutus Careers S es Industries Pres: m e-ibrary. Events Contactus

U bevindt zich in: Nederland > Online Services > HBO Demo

Bedrijfsspecifiek gedeelte .

[] uatienaliteit Moederbearif Hederland R

[Totaal aantsl werknemers

Branche BANK-, VERZEKERINGSWEZEN EN ZAKELNKE DIENSTVERLENING v
Branche {Csdsatailesrd) Adviesbureau ‘“;,‘

Persoonsspecifiek gedesite

Functic Zaksliks Dienstveriening v
Functie (Gedetailesrd) Consuttant v
Leeflid

Ciploma

[T] Dienstjaren
[Ervaringsjaren
[Gestacht

Beloningspecifiek gedeelte N
] Bedrijfsauto iHee Vv

A Voer zoekactie uit 2 Bestaands Zoekopdracht inladenaa Zoekopdracht Opslasn

Figure 6.2. Case based reasoning example I

Services - - Industies .. PressRoom. . edibrary - Events . Contactus
0 bevindt zich in: Hederfand > Online Services > {30 Dema

Salaris Yergeliking
Gemiddeldes over lijst van [Matches

Gemiddek Brute Jaarsalaris © 35500 EUR

Kideld Towaal Jas! i5 fincl. & 3 37635 EUR
Gemiddelt Tolaal Masndsalaris 3081 EUR
Percentage in bezit van bedrifsavtc 32%
Hest liaiches

Geslachtl ecftijd’ FUREhE .~ - . Erviaren- - Totasl Salaris Auto- - Match %
Consutant Adviesburess wo 4 €30833 el 100% .
Consutant Adyviesbureau Wwo 2 €47331 el 0% i
Consuzant AgvE WO 1 €24248 Wel 92:98%
Gongulant Advizsbureat WO 5 £ 44511 el..... B852.%.. -
Consuitant Adviestuceau wo 3 €43912 wel 3688%
Consultant Adviesbureau wo 3 €27008 Geen 31% :
Consultant Adviesbureay WO o €35644 Wel 3%
Censuttant Adviestureay Wo 0 €35385 el 31 %
Consuitant Adviesbureau wo 0 €39044 Vel 81 %
Consutant Adviesburesu WO 1 €42678 Geen 31%
Consutant Adviesbureas WO 3 €4375% el 1% -
Belastingadviseus Agdviestureau WO 4 €2203¢ ‘el 3085%

terug nd - . - 73 . [

Figure 6.3. Case based reasoning example II

Besides the case based reasoning tool, a number of other services is already active in the
Koopgoot:

70

Table 6.1. Some currently active services in the Koopgoot and their technology

Technology Service
benchmarking tools generic benchmarking tool, used
: for: local authority benchmark,

taxi benchmark, consumer
business benchmark among
others

case based reasoning tools salary indication tool, tool can
be adapted for use with other
databases

-queuing models) performance analysis for
business processes

decision trees various Wisdom* applications

value calculators various HRM tools for pension
advice, golden handshake
calculators among others

The services currently active in the Koopgoot show that:
- the intelligence of traditional services can be re-used for new online decision support
- systems; :
- the environment enables developers to fully develop decision support systems in a
short period of time by providing a framework that lays down service functionality
and criteria as described in chapter two and three. '

* Wisdom™ is a software tool to develop and consult knowledge based systems, developéd by Deloitte.

71

Literature

[AD1998]

~ [AHT2002]
[CHS2003]

[Dijk2002]

[Eckerson1995]
[EGSMW1998]
[GV2003]

[Hee1994]

[HSVW2003]

[HW1996]

[IEEE1990]

[Kleinrock1975]
[Kolodner1991]
[Kolodner1993]
[MFG2003]
[Mors1993]
[SKS1997]

- [Wets1998]

Albert A. Angehrn and Soumitra Dutta, Case-Base Decision Support
CACM 41(5), 1998, p157-165

Aalst, W. van der, Hee, K. van, Toorn, R. van der: Component-based
Software Architectures: a Framework Based on Inheritance of
Behavior. Science of Computer Programming, Vol. 42 (2002) 129-171
Chaudron, M., Hee, K. van, Use Cases as Workflows. Business Process
Management, International Conference, BPM 2003, Eindhoven, The
Netherlands, June 26-27, 2003, Proceedings. p.88-103

Dijk, A. van, Online Services based on Waiting Line Models, Deloitte
& Touche, first draft

Eckerson, Wayne W. "Three Tier Client/Server Architecture: Achieving
Scalability, Performance, and Efficiency in Client Server Applications."
Open Information Systems 10, 1 (January 1995): 3(20)

Eppen, Gary D., Gould, F.J., Schmidt, Charles P., Moore, Jeffrey H.,
Weatherford, Larry R., “Introductory management science”, Queuing,
p.573-604

Girault, C., Valk, R., Petri Nets for Systems Engineering — A Guide to
Modeling, Verification and Applications, Springer, 2003, chapters 9-11,
25.

Hee, K. van: Information Systems Engineering: A Formal Approach.
Cambridge University Press (1994)

Hee, K. van, Sidorova, N., Voorhoeve, M., Woude, J. van der,
Architecture of Information Systems using the theory of Petri nets,
Lecure notes 2M310, Department of Computing Science, Technische
Universiteit Eindhoven, 2003

Holsapple, C.W., Whinston, A.B., Decision Support Systems: A
knowledge-based approach, ITP New York, 1996

Institute of Electrical and Electronics Engineers. IEEE Standard
Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries. New York, NY, 1990.

Kleinrock, Leonard, Queueing systems Wiley-Interscience, London,
1975

Kolodner, J.L. Improving human decision making through case-based
decision aiding. Al Mag. (Summer 1991), p52-68

Kolodner, J.L. Case-based Reasoning. Morgan Kaufman, 1993

Mora, M., Forgionne, G.A., Gupta J.N.D., Decision Making Support
Systems —~ Achievements and Challenges for the New Decade, IGP,
2003

Mors, N.P.M., Beslissingstabellen, Lansa, 1993, Chapter 1.
Silberschatz, A., Korth, H.F., Sudarshan, S., Database System
Concepts, McGraw-Hill International Editions, 1997, chapter 1-3

Wets, G., Decision tables in knowledge-based systems : adding
knowledge discovery and fuzzy concepts to the decision table
formalism, 1998, Thesis TU Eindhoven, p.1-2, 46-47

72

‘Appendix

73

A. Some definitions and Lemma’s for Petri nets used

Definitions and lemma’s taken from [HSVW2003}:

Definition A.1 (path). Let N= (P, T, F)bea Petri net, and let nj, e € (P U T). An
undirected path C from a node n; 10 a node 1y, is a sequence (N, N2..., Mk) where nj € (P U
T), forj=1,.... k such that for every i with 1 <1 < k, we have either (1 nis1) € F or (ni+1, ni)
¢ F. The path is directed if (n;, ni+1) € F for all suitable i.

Definition A.2 (state machine) . Let N=(P, T, F)bea Petri net. N is a state machine (SM)
lff .

WeT:“t‘SlA‘t'\Sl.

State machines are equivalent to finite automata.

Definitiop A3 (Workﬂow net). A Petrinetisa WE-net (Workflow net) if and only if:

. N has two special places: i and f. Place iis an initial place: i = & and fis a final place:
f=a |

- Ifweadda closing transition z fo N that connects place fwith i (i.e., i = {f} and t" = {i}),
then the resulting Petri net is strongly connected. : ‘

Definition A.4 (soundness). A WF net is k-sound iff for every marking M reachable from
“marking i* there exists a firing sequence leading from marking M to marking f k Formally:

VM (G ——M)=> M —— ")
A WF-net is sound iff for every natural k, it is k-sound.

Definition A.5 (SMWF). N is a State Machine Workflow net (SM WF) iff N is a Workflow net
and a state machine. - ' - o

Lemma A.l. Any SMWF is a sound workflow net.

Proof. For the proof of this lemma we refer to [HSVW2003, p.12].

74

	Abstract
	Contents
	List of figures
	List of tables
	1. Introduction
	2. Decision support systems
	3. Business model
	4. Logical architecture
	5. Technical architecture
	6. Conclusions and recommendations
	Literature
	Appendix

