EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Transaction integrity in the ING financial services architecture

van Geenen, J.L.

Award date:
2004

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/baeec896-f5c2-47df-903d-2a14cee87232

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computing Science

MASTER’S THESIS
Transaction integrity in the ING Financial Services
Architecture.
by

J.L. van Geenen

Supervisors: Prof. dr. ir. I.F. Groote
J. Miedema MIM
ir. AJ. Mooij

Eindhoven, August 2004

Preface

In this thesis we study how to guarantee distributed transaction integrity in the ING Finan-
cial Services Architecture (IFSA). IFSA is a service based information-technology archi-
tecture recently introduced at ING, a multinational financial institution, headquartered in
Amsterdam, the Netherlands.

Chapter 1 introduces the business context and gradually defines the exact problem state-
ment. We also discuss the possible solutions to the problem statement and make a founded
choice for a particular solution to be worked out in the subsequent chapters.

In chapter 2 we present a communication protocol as a solution to the problem statement
given in chapter 1. We also provide directions for implementation and operation of the
protocol.

The protocol is formally verified in two steps: first we verify a simplified version of the
protocol in chapter 3. In chapter 4 we generalize the results from chapter 3 such that they
apply to protocol as presented in chapter 2.

The main findings in this thesis are presented in chapter 5. Section 5.1 gives a management
summary, section 5.2 gives a technical summary and section 5.3 provides directions for
further research and development concerning distributed transaction integrity in IFSA.

Appendices A and B have been included only for reference: they are not meant to be read
from beginning to end. We link to (sections) of the appendices in the sequel.

Table 1 indicates the intended readership of all sections of this thesis. A ‘“+’ indicates
‘suitable’, a ‘- indicates ‘unsuitable’.

Chapter | Sections Managers | IT-professionals | Computing
Scientists
1 upto 1.1.2 + + +
1.12upto 1.3.2.2 - + +
1322 - - +
133 - + +
2 all - + +
3 all - - +
4 all - - +
5 5.1 + + +
52 - + +
5.3 + + +
A all - + +
B all - - +

Table 1: Intended readership

We advise readers to read all the sections suitable for them in the order in which they appear
in this thesis.

Acknowledgements

People at ING

I would like to thank the following people (formerly) at ING for helping me find and define
a graduation project and for the opportunities offered: Ivo van Geenen, Kees Buis, Evert
Himmelreich, Ruud Goudriaan, Raymond Bolten, Dirk Brouwer, Marco Doeland, Rob
Moes, Jan Miedema and Dorien Jongeneel.

I'would like to thank Rob Moes, Jan Miedema and all people at the former OPS&IT/ NSI/
ECS/ ALS department at ING for helping me to find my way at ING. I would like to thank
Jan Miedema, Rudy Wouters and Rob Moes for the valuable input they provided, and for
their time and energy spent on this project.

People at the Technische Universiteit Eindhoven

I'want to thank Jan-Friso Groote for all his time and energy spent on my graduation project
and for bringing me into contact with the right people at the Technische Universiteit Eind-
hoven, the Centrum voor Wiskunde en Informatica in Amsterdam, and the Laboratory for
Quality Software in Eindhoven.

I would like to thank Arjan Mooij for the meticulous precision with which he reviewed my
work, and for his countless hints, contributions and support. I realize that my project must
have cost you an enormous amount of time: thank you for every minute. I would also like
to thank Jaco van de Pol for his time and energy during the early stages of my project, and
Cor Hurkens from the Combinatorial Optimization group at the Technische Universiteit
Eindhoven for helping me prove a precursor to theorem 1.

People at home

Last but not least I would like to thank my girlfriend, Kristel Maas, and my parents, Josette
van Geenen-Hustings and Ivo van Geenen, for continuously supporting me during my stud-
ies at the Technische Universiteit Eindhoven.

Contents

Preface
Acknowledgements

1 Problem Description

L1 Comtext e
1.1.1 The ING Financial Services Architecture
1.1.2 Communication patterns offered by thebus
1.2 Problemstatement
1.3 Possible SOIUtONS o\ ot s
1.3.1 Resendingrequestsandreplies
1.3.2 Compensating transactions
1.3.3 Allowing additional F&F-messages

2 Description of the n-R/R protocol

2.1 Introduction
22 Theclientprogramo v i i it it
22.1 High-leveldescription
2.22 Pseudo-codedescription
23 Theservice Program oot vttt e
23.1 High-leveldescription
232 Pseudo-codedescription
2.4 Example ransactions e
2.4.1 Scenario: a distributed transaction withsize2
2.4.2 Scenario: three distributed transaction withsize 1
2.5 Considerations
2.51 Thetransaction-identifier
2.5.2 Deadlock and suitable values for MAX_SZ and MAX_TIMEQUT
253 Efficiency
2.54 HandlingExceptions

255 Limitations

3 Verification of the 1-R/R protocol

3.1
3.2
3.3

34

35

3.6

3.7

3.8
39

Overview e
Identifiersand Types,
Formal model of the IFSA application-bus
33.1 Varableso
3.3.2 Languageconstructs
333 R/Rcommunication

334 F&Fcommunication

Specification

341 Imtroduction. i i

3.4.2 Clients

343 ServiCeS . . . i i e e e e e e e e e e e e e e

344 Mainprogram« ooi e ee e
345 CAtomicityo
Partial correctness criteria.o o e e

3.5.1 Formalization of requirement 1

3.5.2 Other invariants and auxiliary functions

Assertions: local correctnesso L.
3.6.1 Assertions in the main program
3.6.2 Assertions in the client component
3.6.3 Assertions in the service component
Assertions: global correctness
371 Imtroduction.

3.7.2 Absence of disturbance between clients

3.7.3 Absence of disturbance between clients and services
3.74

Invariants: correctness

Progress (requirement2)

3.9.1 Additional assertions in the client component
3.9.2 Additional assertions in the service component
393 AbsenceofLive-ordeadlock

394 Conclusion v o i i e e e e

4 Verification of the n-R/R protocol

4.1

4.2

Specification

4.1.1 Additional auxiliary functions

4.1.2 Additional global variables
4.1.3 Structure of the client component
414 Clients oo,
415 Atomicity
Partial Correctness criteria

Absence of disturbance between services

CONTENTS

CONTENTS 9

4.2.1 Formalization of requirement 1 89

4.2.2 Additional system-invariants and auxiliary functions 90

4.3 Assertions: local correctness e 90
4.3.1 Assertions in the client component 91

4.4 Assertions: global correctness 97
441 Introduction. 97

4.4.2 Absence of disturbance betweenclients 97

4.4.3 Absence of disturbance by clients of assertions of services 98

4.44 Absence of disturbance by services of assertions of clients 99

4.5 Invariants: COITECtNeSS 102
451 Imtroduction. 102
452 Proofs........ e e EE 102

4.6 Progress (requirement2) e PR 107
4.6.1 Additional assertions in the client component 107

4.6.2 Additional assertions in the service component 108

4.6.3 AbsenceofLive-ordeadlock 108

464 Conclusion 110

S Main Findings 111
5.1 Management SUMMAry uee e e e 111
5.2 Technmical Summary 113
521 Chapterl 113

522 Chapter2 e 115

523 Chapter3, 115

524 Chapterd 116

525 Conclusion 116

5.3 Directions for further research and development 116
A The business application interface 119
Al Introduction 119
A2 CommonBAlconcepts 119
A.2.1 Connections and Serviceslots 120
A22 (Un)registering ASEIVICE .« . v v vt e 120

A3 Sending messages OrrequestS 120
A3.1 The’FireandForget’ pattern 120
A.3.2 The Request/Reply’pattern 121
A33 Creatingrequestst 122
A34 Creatingreplies 122
A.3.5 Sendingrequestsandreplies 122

A4 ReCEIVINgMESSAZES « -« « « v v v v e it e e e e e e 123
A4l The IFSAGetMessagemethod 123

A.42 The IFSAGetReplymethod 123

10 CONTENTS

A.43 The IFSAGetAnyReplymethod 124
A5 Unitsof work o e e e e e e e e 125
A6 Considerations v v i e e e e e e e e e e e e e e e 126

B Functions, assertions, invariants and main-program 129

Chapter 1

Problem Description

In this chapter we introduce the business context, we give a definition of the problem ad-
dressed in this thesis and briefly sketch the different possible solutions. Along with each
possible solution we discuss its pros and cons, on which we base our choice for a particular
solution to be worked out in the subsequent chapters.

Section 1.1 introduces the context of the problem setting and some concepts and definitions
used throughout this thesis. Section 1.2 gives a problem statement and section 1.3 treats
the different possible solutions.

1.1 Context

ING is a large multinational financial institution headquartered in Amsterdam, the Nether-
lands. It is active in over 65 countries, has over 110,000 employees and serves over
50,000,000 customers worldwide. Profits in 2002 amounted to 4.3 billion euros.
Historically, ING has been formed as a conglomerate of multiple formerly independent
companies active in the financial services industry. All these former companies originally
had their own business processes and information-technology (IT). Leveraging opportu-
nities for economies of scale required a new company-wide business-architecture and a
corresponding IT-architecture: the ING Financial Services Architecture.

1.1.1 . The ING Financial Services Architecture

The pan-European ING Financial Services Architecture (IFSA) is a reflection of ING’s
business-architecture. IFSA defines organizational building blocks called domains. Two
examples of such domain are;

o Party Information Management: this domain manages data of customers and rela-
tions of ING.

o Payments: this domain manages money-transfers.
Three fundamental design-principles guided the design of IFSA;

o Allintra-domain communication between applications is implemented using services
(similar to web-services, see [Kay03]) via the central IFSA application bus, referred
to as bus in the sequel.

e Services are logically distributed over the domains of IFSA.

11

12 CHAPTER 1. PROBLEM DESCRIPTION

e Services are loosely coupled [Kay03]: they can connect to, or disconnect from the
network as in, for example, the internet.

The following three reasons led to the definition of the design-principles of IFSA;

¢ Enforcement of reuse, and concentration of services in domains avoids unnecessary
duplication.

e A service based architecture facilitates legacy-dismantling and -unlocking. Comput-
ing platforms have been introduced in the company since the 50’s. A lot of those
legacy systems operate with such efficiency that it is not economical to replace them
right away. Special ‘adaptor’ software makes it possible to hook legacy systems to
the bus, thus unlocking their functionality to other IFSA-services. Hence clients de-
pend only on services’ interfaces but not on the underlying applications. This makes
it possible to gradually replace and dismantle legacy systems when economical, with
minimal disruption. Also, because of the historical shaping of ING, there are often
multiple legacy-applications with similar functionality. Operation and maintenance
required for these applications is expensive whence dismantling those offers great
potential for cost savings.

e Loose coupling of services is dictated by the business architecture. Indeed, one of
its concepts is that it must be easy for business processes to be defined, changed or
terminated.

The main functionality offered by the bus is platform-independent messaging and acting
as a service-repository. Basically, a program can connect to the bus and act as a service-
requester (client) and/or register a service and act as a service-provider (service). The
situation is quite similar to web-services where we also have (loosely coupled) clients and
services. In this thesis we only consider programs that act either as client or as service, but
not both.

Along with IFSA comes an organizational apparatus that standardizes the way in which
clients and services are defined and (inter-)operate. This organizational apparatus governs
documentation, security, design-guidelines for clients and services and further development
of the bus. The conversion to IFSA was started several years ago and is still a process in
motion, even if the official IFSA project group is dismantled in August 2004. Many services
have already been defined and implemented. The bus went through different versions,
version 2.0 being the latest at the time of writing. This is also the version this thesis is
based on, the IFSA-documentation used being [Fit03] and [it03].

1.1.2 Communication patterns offered by the bus

The bus offers two communication patterns: Request/Reply (R/R) and Fire and Forget
(F&F). The R/R pattern consists of two messages: typically, a client sends a request to a
service upon which the service ideally responds with a reply. The R/R-pattern is similar
to the part of the HTTP-protocol most often used in web-browsing: sending a request and
receiving of the response. The R/R-pattern is said to be Jossy because requests and replies
can be lost. The R/R-pattern is discussed in section 1.1.2.1.

The F&F-pattern consists of a single F&F-message, referred to as message if no confusion
is possible. F&F-messaging is one-way, unordered, lossless and asynchronous; messages
are guaranteed to arrive, the order in which they arrive may differ from the order in which
they were sent. The F&F-pattern is discussed in section 1.1.2.2.

1.1. CONTEXT 13

1.1.2.1 The R/R Pattern

We discuss the R/R-pattern in more detail here. The four possible scenarios that can occur
when a client sends a request to a service and expects a reply are shown in figure 1.1.

msc R/R scenarios

| client | | bus | | service |

WI— request request

reply

reply

Scenario 2 F—— request

rgquest

W request request

reply

timeout
/
Scenario 4* ——— request

request

reply

timeout

a
S
=

Figure 1.1: Possible scenarios for R/R

We explain the different scenarios shown in figure.1.1 below; -

1. Only in scenario 1* we have that no messages are lost: the bus forwards the request
sent by the client to the service, the service sends a reply which is forwarded to the
client by the bus.

2. In scenario 2%, the service was not ready in time to receive the request sent by the
client which the bus tried to forward: the client receives a timeout instead of a reply
from the bus. Note that in this scenario, the service cannot detect that the client
actually sent it a request.

3. In scenario 3%, the service did receive the request in time but too much time passed
before the service sent the reply. Hence the reply is lost and the client receives a
timeout instead.

4. In scenario 4*, the service did receive the request and sent a reply in time but too
much time passed before the client was ready to receive the reply from the bus. The
client receives a timeout instead. In scenarios 2*, 3* and 4%, the client receives

14 CHAPTER 1. PROBLEM DESCRIPTION

a timeout if a request or reply is lost, although it cannot discriminate between the
scenarios. The service cannot discriminate between scenarios 1%, 3* and 4*. These
observations allow us both to reduce the number of scenarios and also, to leave out
the passing of messages by the bus: figure 1.2 reflects this. Instead of letting the bus
pass messages between clients and services, we abstract from the bus and do as if
clients and services communicate directly. Also note that a timeout is not an actual
message in reality: it is merely an indication for the client that a reply could not be
received. We do model them as such for easier representation.

msc¢ R/R scenarios

1 client41 ' service I

request
reply

Scenario 2 Téquest
_)'
timeout
. <O

Scenario 3 |—— _ request

reply
timeout &<

<—O

Figure 1.2: Possible scenarios for R/R (reduced)

The R/R-pattern features short-lived connections: a request is related to a unique reply or
timeout. The connection lasts for at most two messages.

1.1.2.2 The F&F-Pattern

We discuss the F&F-pattern here. Basically, the bus stores a F&F-message upon sending
(usually by a client) and deletes it only after it has been successfully received (usually by
a service). This phenomenon is called persistent messaging. The only scenario possible
when a client sends a F&F-message to a service is given in figure 1.3. It was already noted
that F& F-messaging is unordered: this is demonstrated in figure 1.4. The client sends two
messages to the service. It may happen that the message sent last, is actually received by
the service before the first message sent. The F&F-pattern is connectionless: every two
F&F-messages are by themselves unrelated.

A more detailed description of the bus and its business application-interface (BAI) can be
found in Appendix A: the BAI is the interface that programmers must use when writing
clients or services.

1.2. PROBLEM STATEMENT 15

msc F&F(1)
L client I Lservice]
message
Figure 1.3: Possible scenarios for F&F
msc F&F(2)

[client | [service ‘
|

Figure 1.4: Unordered nature of F&F-messaging

1.2 Problem statement

In this section we gradually define the problem-statement. To this end we must introduce
some concepts and definitions used throughout this thesis.

We refer to the ensemble of clients and services within IFSA as the transaction system. The
nature of the services offered by the services can differ enormously. In order to concretize
the use of a service by a client we model it as a distributed database transaction. To this
end we assume that each client and each service has its own Jocal database, referred to
as database if no-confusion is possible. A database-can only be-read or updated by its
owner by means of a local database transaction, referred to as transaction if no confusion
is possible.

A distributed transaction between a client and a single service typically involves two local
transactions: one executed by the client, one by the service. The conceptual (non-existent)
distributed database is simply the multiset of all databases of all machines in the transac-
tion system. In this way we can easily describe global correctness criteria and distributed
transactions.

To ensure consistency of the distributed database, it is generally required that the transac-
tion system maintains the following standard ACID properties of distributed transactions:

Atomicity. Either all operations of a distributed transaction are reflected properly in the
distributed database, or none are.

Consistency. Execution of a distributed transaction in isolation preserves the consistency
of the distributed database.

16 CHAPTER 1. PROBLEM DESCRIPTION

Isolation. Even though multiple distributed transactions may execute concurrently, it is
guaranteed that for every pair of distributed transactions 7;,7;, it appears to 7; that
7T; finished execution before 7; started or it appears to 7; that 7; finished execution
before 7; started.

Durability. After a distributed transaction completes successfully, the changes it has made
to the distributed database persist, even if there are system failures.

All definitions above were taken from [SKS98], which gives a more elaborate treatment of
the subject. Throughout this thesis we assume that durability is guaranteed by the imple-
mentors of clients and services: we do not concern ourselves with it.

A fundamental problem in ensuring atomicity, consistency and isolation of distributed
transactions is ensuring that either each party involved commits its local transaction, or,
each party aborts its local transaction. We refer to this problem as the commitment prob-
lem. The commitment problem is especially present when performing distributed update-
transactions while using only R/R-messaging for communication. In such distributed trans-
actions, at least one client or service must update its database.

To illustrate this, consider again the scenarios given in figure 1.2. Now assume the request
to contain an instruction for the service to update its database by means of a local database
transaction. Also assume the reply to contain information with which the client must update
its database, also, by means of a local database transaction.

Obviously if the client receives a timeout, it must abort its local database transaction (sce-
narios 2 and 3). In scenario 2 this is no problem: the service never received the client’s
service-request and hence never started a local database transaction of its own. In scenario
3 this is a problem though: the service cannot tell that the reply it sent was not received by
the client.

The impossibility for the client to discriminate between scenarios 2 and 3 and for the ser-
vice to discriminate between scenarios 1 and 3 is in fact the core of our problem. If the
client aborts its local database transaction, the service must also abort its local database
transaction.

The commitment problem has been analyzed and described as the coordinated attack prob-
lemin [Lyn96]. It is also shown in [Lyn96] that there exists no deterministic algorithm that
can solve the coordinated attack problem if communication between the machines involved
is lossy. R/R-messaging is also a form of lossy communication, in view of this one could
advise against using R/R-messaging in distributed transactions in which the commitment-
problem must be solved.

R/R-messaging though, has some advantages over (reliable) F&F-messaging;

e R/R-messaging has much lower overhead than F&F-messaging: the reliability of
persistent messaging with guaranteed delivery comes at a price.

e A single reply or timeout is related to a unique request: R/R-messaging provides
a (short-lived) connection between the sender of the request and the addressee. The
bus does not provide such functionality for F&F-messages: every two F&F-messages
are unrelated. The behavior of R/R-messaging can in part be simulated with F&F-
messaging by adding identifiers to the payload (contents) of messages to relate them.
This was actually one of the solutions formerly considered within ING to deal-
ing with the lossy nature of R/R-messaging. However, protocols featuring R/R-
messaging have a danger of deadlock if all R/R-messaging is replaced by F&F-
messaging. We explain why this is so;

~ Consider figure 1.2 again. As before, assume the request to contain an instruc-
tion for the service to perform an update to its database by means of a local

i

1.3. POSSIBLE SOLUTIONS 17

database transaction. Also assume that the reply contains information with
which the client must update its database, also, by means of a local database
transaction. Now in addition, assume that we have managed to replace the re-
quest and reply by F&F-messages such that a ‘F&F-request’ and a ‘F&F-reply’
are related by means of payload-variables (variables present in the contents of
messages).

Because F&F-messaging is reliable, we have that only scenario 1 applies. How-
ever, because IFSA is a loosely coupled architecture, it may be so that the ser-
vice is down. Hence it does not sent a ‘F&F-reply’ to the ‘F&F-request’ sent
by the client, or, it may take hours before it does. If the client simply waits
for the ‘F&F-reply’ to arrive, it is stuck for hours also. Of course we could
also introduce a timeout mechanism here, but then we would gain nothing by
replacing requests and replies by F&F-messages!

— In section 2.5.2 we give another more subtle example of a protocol that may
deadlock clients and services if R/R-messaging is replaced by F&F-messaging.
At this time it is not yet appropriate to discuss the details.

In summary, despite its lossy nature, R/R-messaging has important advantages over F&F-
messaging, especially in a loosely coupled architecture, but its use in distributed update-
transactions is problematic;

Problem Statement: given the communication primitives provided by the IFSA-bus,
find a solution for the problems connected to using R/R-messaging when performing
distributed update-transactions between one client and any number of services that
follows the IFSA design principles. To this end, ensure that;

1. Each distributed transaction always ends such that all parties involved commit
their local database transaction, or all parties involved abort their local database
transaction;

2. Distributed transactions always terminate;

3. It is impossible that the transaction system enters a state wherein each transac-
tion is always aborted.

4. A good balance exists between price and performance of the protocol.

The reason for the first requirement is clear: it requires the commitment-problem to be
solved between the parties involved in the distributed transaction (one client and any num-
ber of services). The second requirement ensures that whenever a client or service starts a
transaction, it cannot get stuck executing its protocol. The reason for the third requirement
is somewhat technical: a transaction system in which every transaction aborts from some
point onwards is of little practical use but may still satisfy requirements 1,2 and 4. The rea-
son for the fourth requirement also seems clear: ideally, a solution should be fast (in terms
of the number of distributed transactions processed per hour) and cheap (for example, in
terms of the number and type of messages required).

1.3 Possible solutions

In this section we sketch some solutions to the problems caused by the unreliability of
R/R-messaging when performing distributed database transactions. We ultimately choose a
single solution to work out. Note that simply replacing R/R-messaging by F&F-messaging

18 CHAPTER 1. PROBLEM DESCRIPTION

was ruled out already in section 1.2. Hence we consider the following potential solutions,
the first two of which were actually considered within ING;

e Resending requests and replies, discussed in section 1.3.1.
e Compensating transactions [KLS90], discussed in section 1.3.2.

o Allowing additional F&F-messages, discussed in section 1.3.3.

1.3.1 Resending requests and replies

A common solution to make unreliable communication reliable is the use of (a variation of)
the alternating-bit protocol (see for example [FvG99]). Basically, such protocols involve
re-sending messages until an acknowledgement from the recipient is received. In many
cases, the reason for a client receiving a timeout when using R/R-messaging is that either
the recipient is too busy serving other clients, or, that the service is temporarily discon-
nected from the network (‘down’). Either way, the continuous re-sending of requests until
a reply (instead of a timeout) is received is likely to only lengthen the service’s response-
time if it is not down, or worse, takes at least as long as the service’s downtime. Hence the
client’s response-time is also lengthened.

Another related problem is the additional administration needed that ensures that services
process a transaction associated with the request only once. For it may be the case that
a reply to such a request was sent by the service but lost, causing the client to resend its
request. Hence we reject this approach.

1.3.2 Compensating transactions

In this section we first discuss compensating transactions in a rather informal manner. The
technical details needed to substantiate some of the claims made are given in subsection
1.3.2.2.

1.3.2.1 Discussion

The use of compensating local transactions is an important topic in the world of web-
services [Kay03] because of the unreliable, R/R-like, HTTP-protocol often used. It was
also one of the solutions-considered within ING until we advised against this approach.

The basic idea is as follows: whenever a party in a distributed transaction commits its local
transaction while it should have aborted it because another party aborted, the effects of the
local transaction are undone by executing a compensating transaction later on.

For an example, reconsider the example distributed transaction discussed in section 1.2 in
connection to figure 1.2. Recall that the client aborted in scenarios 2 and 3. Hence the
service should execute a compensating transaction after scenario 3 took place. In scenario
2 the service’s database needs no compensation because it never started a transaction cor-
responding to the reply that was lost. :

Figure 1.5 is a flow diagram of a typical compensation scenario. The first transaction exe-
cuted is the transaction that must be compensated for, followed by K dependent-transactions.
Basically, those are transactions that read - but not update - database variables called enti-
ties that were updated by the compensated-for transaction. The compensating-transaction
must somehow ‘undo’ the effects of the compensated-for transaction such that the state of
the database is consistent, we return to the problem of defining a compensating transaction
in the sequel.

1.3. POSSIBLE SOLUTIONS 19

—"-I Transaction 1 ’—.| Transaction 2 " - PI Transaction K '——b Compensating ..
Transaction

Figure 1.5: Typical compensation scenario

Compensated-for
Transaction

The first objection to compensating transactions as a general solution to the problem state-
ment is that many real-world local transactions cannot be compensated for, because they
involve real actions [Gra81]: irreversible actions such as dispensing money from an au-
tomated teller machine. Hence the use of compensating transactions is limited to local
database transactions for which a compensating transaction exists. :

For the compensation mechanism to work, we must solve the two following problems;

1. Is consistency of the distributed database restored after executing the compensating
transaction? A sub-problem of this is: is consistency of the local database on which
the compensating transaction is executed restored afier compensation?

Both of these problems must be solved by the auditors of the transaction system.

Itis important to understand what is meant by consistency. Even if a compensated-for
transaction can be compensated for, it can be the case that the database is inconsistent
due to the dependent-transactions. Indeed, the dependent transactions read entities
that were changed by the compensated-for transaction. Hence it may be that the
dependent transactions have written values that are invalid after compensation. It
follows those dependent-transactions may have to be compensated as well. Note
that this danger is present for every client or service in the transaction-system that
read values witten by a compensated-for transaction. Hence a single compensating
transaction may trigger cascading compensating-transactions similar to cascading
aborts in databases [SKS98].

In section 1.3.2.2 we prove theorem 1, which states that the problem of determining
the consistency of the local-database on which the compensating transaction must be
executed is intractable.

2. How can we find a compensating transaction? Typically, it is the responsibility of
architects to design client- or service-programs such that a compensating transaction
can be defined and executed. In many applications, the only compensating transac-
tion allowed is the classical ‘undo’. For example, if a transaction transfers money
from account X to account Y, the compensating transaction would simply transfer
the same amount back to account X (and not some other amount).

In other applications one could define compensating transactions that do more than
a classical undo. Such compensating transactions could for example repair inconsis-
tencies that result from the invalid data written (after compensation) by the dependent
transactions.

In section 1.3.2.2 we prove theorem 2. This theorem states that the problem of defin-
ing a compensating transaction that undoes the compensated-for transaction and re-
stores the integrity of the database is intractable.

It was already noted that in general, both problems given above are intractable. In practice
this means that the amount of time needed to solve either problem is generally exponential
in the variable K and/or the number of entities of the local database. This is so unless all
transactions of the transaction-system have specific ‘nice’ properties. We return to such
nice properties later. Also note that without resorting to cascading compensating transac-
tions, it may be the case that even if we can quickly decide whether or not compensation
can restore the consistency of a database, it may be that consistency can not be restored

20 CHAPTER 1. PROBLEM DESCRIPTION

even if none of the transactions involves real actions! Of course this is a problem, hence
we reject compensation for transactions for which we cannot prove that compensation is
tractable and possible.

We give an example of a class of transactions for which compensation is tractable and
possible. For this we need the following definition: two transactions T}, T} are said to
commute [KLS90] if execution on a local database of T; followed by T; from initial state
S yields the same end-state as execution of T followed by T; from initial state S, for
all reachable states S. In the next subsection we prove that compensation is possible and
tractable if all transactions - including compensating transactions - in a transactions-system
commute and every transaction has a compensating transaction.

It is evident that many transactions do not commute. For example consider two transac-
tions: one transfers money to account X, the other transfers money from account X'. Now
suppose that the account-balance is the maximum credit allowed. Obviously we cannot
first transfer money from the account in this state: the two transactions do not commute.

Even if we can compensate transactions, one can ask how a client or service can be reliably
instructed to compensate a transaction if communication is lossy? It may be so that human
intervention is required to achieve this.

In summary, compensation is possible and tractable only for specific transactions. Even
then it may have adverse effects on performance (i.e. the number of transactions processed
per hour) both because of the danger of cascading compensating transactions and the pos-
sible requirement of human intervention. It is unlikely that compensation is a feasible
mechanism to solve the problems connected with R/R-messaging and update transactions.
Hence we do not investigate this approach any further.

"1.3.2.2 Proofs

Most of our definitions regarding compensating transactions in this section are (only slightly)
adapted from [KLS90], which gives a more formal treatment of compensating transactions
in (local) database transactions. We ourselves prove theorems 1 and 2 which state that
finding a compensating transaction is hard, as is determining whether or not the execution
of a compensating transaction results in a consistent state of the distributed database. We
also prove theorem 3 from which it can be inferred that that compensation is feasible for
commutative transactions.

We model distributed database transactions as small multi-programs (i.e. parallel pro-
grams). Each component of the multi-program - a local transaction or simply transaction

—if no-confusion arises- is executed on either a unique client or a-unique-service-and com-
municates by use of the bus with other components of the same multi-program. We specify
components in the Guarded Command Language (GCL) [FvG99].

We use the notation T to identify local database transaction i of a distributed transaction.
We represent a database as a set of variables and constants: only variables can be modified
by transactions. To identify distributed transaction ¢ we use the notation 7;. For example,
we could have 7y = Tp||T1: a distributed transaction 7y consisting of (local-) transactions
T and T;. We use the convention that the local transaction executed by the client always
has the lowest index: T is the local transaction executed by the client.

We use the letters ¢, ¢, ¢”, . .. to identify clients and s, s’,s”, ... to identify services. In
order to identify which client or service must execute a local transactions we subscript it:

T}, indicates that T; must be executed by client c.

We identify a compensating transaction simply by prefixing the identifier of the compensated-
for transaction by a capital C. For the sake of unity, we summarize and slightly adapt the
definitions of histories, soundness of a history and the dependency relation dep as defined
in [KLS90] below;

1.3. POSSIBLE SOLUTIONS 21

Histories: a history H of a set of local transactions ST is the catenation of some permu-
tation of all transactions in S7. We represent a history by means of a list of trans-
actions with list-separator ;’, i.e. Ty;Tp; 7} is a history of the set of transactions
{Ty, T1,T»}. Histories are used to denote the execution order of local transactions
on the database of a client or service. Associated with a history are often an initial
state Sp of the database and an end-state .S; of the database. We give states as pred-
icates over the database which allows us to capture the relation between begin-state,
end-state and history by means of a Hoare-triple {So} H {S:}.

Transaction-dependency: we say that local transaction T; depends on local transaction
T; if there exists at least one entity e in the database (i.e. e is a ‘database-variable’)
such that;

e T reads e after 7} has updated ¢;
e T does not abort before T} reads e; and,

e every transaction (if any) that updates e between the time 7; updates e and 7
reads e, is aborted before T; reads e.

The set of all dependent transactions of T is given by dep(T').

Soundness: Let I be the history of dep(T") where T is the compensated-for transaction,
CT its compensating transaction. Let S and S; be the initial- and end-state respec-
tively such that we have; :

{S0}T; H; CT{S:}

The history T'; H; CT is sound if there exists a history H' of dep(T) such that
{So} H' {51} is a valid Hoare-triple.

Using these definitions, we formally define the decision problem HistSound(DB, H,T, CT, Sy, S1)
as follows; :

Definition 1. Given a local database DB, compensated-for transaction T, compensating
transaction CT, a history H of dep(T'), an initial state Sy and end-state S,: is T; H; CT
sound?

Given the definition of soundness, this amounts to answering the question ‘does there exist
a history H' of only the transactions in dep(T') such that {Sy} H' {S1} is a valid Hoare-
triple?’

In view of distributed transactions, soundness of histories of the transactions performed on
all local databases in the network is a rather weak consistency criterion;

o Let T; € dep(T’). Execution of T; in the history H' with initial state Sy may lead
to 7; returning a result to its environment (a user, program or other transaction)
different from that produced in the history 7°; H with initial state Sp. It depends on
the application whether or not this is acceptable.

e Soundness of all Jocal databases does not guarantee consistency of the distributed
database.

Even still, we prove theorem 1 which states that if HistSound is in NP, then it is in-
tractable. If HistSound is not in AP then it is probably even harder.

Before proving the theorem, we first discuss why almost any real-life instance of HistSound
is in A'P. In order for HistSound to be in NP, it must be that a certificate of soundness of
a given history H - some other history H'- can be checked in polynomial time. A straight-
forward way to check the certificate is to execute H' from initial state Sy and check if S;
holds. Below we argue that checking a state and executing the transactions can usually be
done in an amount of time polynomial in the size of the inputs;

22 CHAPTER 1. PROBLEM DESCRIPTION

e Let |DB| denote the number of entities in the database DB. We assume that initial-
and end-states Sy and S; are predicates of the forme; = v A e2 = va A ... A
eipB| = VipB|, Where e; is an entity with value v;, 1 <7 < |DB)|. If the state of
the database does not satisfy Sp, we must first initialize DB by performing at most
|DB| assignments: one for each entity occurring in Sp. It follows we can usually
check S1 in O(|DB) time.

e Transactions usually have have an execution-time polynomial in |[DB|, O(|DB|*)
say, for some constant L. Let | H’| denote the number of transactions in the history H’
of the certificate. Obviously | H'| = |H|. Hence we can execute H' in O(|H||DB|*)
time.

Hence the total amount of time needed to check the certificate will in most cases be bounded
by a polynomial in the size of the problem.

Theorem 1. If HistSound € NP then HistSound is N'P-hard.
Proof. Assume HistSound € N'P. We have three proof obligations;

e Prove that HistSound is in N'P. This follows from our assumption.

e Provide a polynomial-time reduction of a known N'P-hard problem to HistSound.

We provide a polynomial-time reduction to H istSound of one-processor scheduling
with release-times and deadlines which was shown to be NP-hard in [LKB77].

This particular scheduling problem is defined as follows. Given K tasks labeled 1,
1 < i < K, each task has a release time 7t;, deadline dl; and processing-time pt;,
all positive reals. Let A be any positive amount of time: the global deadline. Then
the questions is;

Does there exist a schedule that allows processing of all tasks within A
time-units, such that each task i is started after its release-time rt; and
completed before its deadline dl; ?

In our database DB, we put for each task 7, 1 < ¢ < K, the real constants 7t;, dl;
and pt;. In addition we add the real constant A, the integer constant K, the integer
variable ntp (initially 0), a single boolean variable failed (initially false) and a
single real variable time (initially 0).

For task i, we define transaction 7} given below, which simulates the execution of
task ¢ after ntp tasks have been ‘successfully processed in time time-units. The
variable failed indicates if any task scheduled before task 7 failed to be processed.

T; = | var b : B;
b := (rt; <timeA time + pt; < dl; A time +pt; < A);
b= bV (time <1ty A rty+pt; <dls A rtg +pty < A);

if failed — skip;
| —failed A—=b — failed := true;
| —failed A b — time, ntp := pt; + MAX(rt;, time), ntp+1;

o

1

if ntp=K — time,ntp := 0,0;
| ntp# K — skip;
fi

1.3. POSSIBLE SOLUTIONS 23

The variable b is initialized in two steps and has the value st; V sty where st; is the
righthand-side of the assignment in step ¢. An explanation is given below;

— sty expresses that task ¢ may be started immediately and that it then meets its
own deadline and the global deadline A.

— sty expresses that task ¢ may be started only after waiting rt; — time time-units
and that it then also meets its own deadline and the global deadline A.

The first if-statement extends the schedule with task ¢ only if ~failed A b holds. If
not, failed is assigned the value true only if —failed holds as precondition (we
explain the necessity of this precondition in the sequel). Note that there is no point
in waiting after the release-time of a task has passed if the processor is idle. Hence
we refrain from implementing this.

The last if-statement sets time and nip to zero if 7; was the last in a history of all

transactions corresponding to a feasible schedule of all tasks. We explain the use of
this. Let H be any history of {T; | 1 < i < K}, define S and S as follows;

So : ~failed A time =0 A ntp=10
S1 : failed A time=0 A ntp=20

If we execute H from S, then the end-state satisfies Sy if and only if H corresponds
to a feasible schedule of the corresponding tasks. If we execute H from Sy, then the
end-state satisfies 57 because none of the tasks can be processed. The only difference
between Sy and Sy is the value of failed. We exploit this in our definition of the
compensated-for transaction 7p and compensating transaction C'Tp;

Ty = CTy = || failed := —failed ||

Clearly the entire transformation can be made in O(K) time, and we have for all
initial states S that C'Ty corresponds to the classical undoing of Tp:

{S} To; CTy {S}

Also, for all histories H of dep(T}), we have that dep(Tp) equals {T3|1 <i < K}
in the history Tp; H. Indeed, recall that failed is assigned the value true only if
—failed holds as precondition. Suppose we would allow this assignment from a
state in which failed already holds. Then by definition of dep, the first transaction
in H, T} say, would destroy the dependency relation between all other transactions
in-H-and T;.

o Prove that the answer to an instance of the problem to be reduced to HistSound
always equals the answer to its transformation to HistSound.
Note that the following Hoare-triple holds for all histories H of {77 |1 < < K}:

{So} To; H; CTy {So}
Indeed, we have;
{So} To; {S1} H; {S1} CTy {So}

Given an oracle that solves HistSound, weletit solve Histsound(DB, H, Ty, CTy, So, So).

If the oracle answers ‘yes’, then it must be the case that {Sp} H’' {Sp} is valid for
the certificate H', some history of {7; | 1 < 7 < K}. Hence, upon execution of
H' it must be that during each transaction, the third alternative is chosen in its first
if-statement. This corresponds to each task ¢ being started after 7¢; and completed
before dl;: H' indeed corresponds to a valid schedule of all tasks.

24 CHAPTER 1. PROBLEM DESCRIPTION

If the oracle answers ‘no’ then the state Sq cannot be reached by any history H' of
{T; |1 < i < K}, i.e. Tp; H;CTyp is not sound. Hence there exists no feasible
schedule of the tasks ¢ that allows processing of all tasks within A time-units.

O

Until now we have not discussed exactly what a compensating transaction should accom-
plish. Compensation is treated in [KLS90] as an application-dependent activity. The same
paper defines three constraints for compensating transaction, some or all of which may
or may not be applicable, depending on the application. Below we define Constraint 17,
somewhat similar to Constraint 1 defined in [KLS90].

Definition 2. Constraint 1*: let Sy be the state of the database before transaction T is
started. Then CT is a compensating transaction if {So}T'; CT{So} holds

Constraint 1* seems applicable in for example, transactions that transfer money: it is desir-
able that C'T" simply undoes the effects of 7.

We formalize the connection between soundness and the defining of a compensating trans-
action that satisfies Constraint 1* by means of the decision problem
CompSoundci«(DB,T, H, Sy, S1);

Definition 3. Given a local database D B, compensated-for transaction T, a history H of
dep(T), an initial state Sy and end-state Sy : does there exist a compensating transaction
CT such that;

e T: H;CT is sound, and,
o {So}T;CT;{So} holds ?

We prove theorem 2 which states that in its most general form, CompSoundci~ is in-
tractable.

Theorem 2. If CompSoundci« € N'P then CompSoundc+ is N'P-hard.

Proof. We use almost the same reduction as given in the proof of theorem 1. The only
modification is that our oracle must now solve CompSoundci-(DB,T, H, Sy, Sp): it
must find CTy by itself. If the oracle answers ‘yes’ it must be able to provide a certifi-
cate containing both a history H’ of dep(Tp) and CTp such that {Sp}T5; CTo{So} and
{So}H/{So} hold.

Note that by our definitions of T and Sy, we have that if the oracle answers ‘yes’, the
compensating CT, contained in the certificate must be semantically equivalent to Tp. In-
deed: transaction Tp only negates failed and the state of DB is uniquely determined by
S,. Hence we have as in the proof of theorem 1 that the oracle can answer ‘yes’ if and only
if a feasible schedule of the K tasks exist that allows them all to be executed within A time
units. 4

1.3. POSSIBLE SOLUTIONS 25

In section 1.3.2.1 it was claimed that compensation is possible and tractable for transac-
tions that commute and all have compensating transactions. Two transactions 7}, T} com-
mute [KLS90] if the following holds for all states Sy, S1 we have: {So}T;; 7;{S: } implies
{S0}T;; T;{S1}. Let HistSound,omm be the restriction of HistSound to commutative
transactions.

Theorem 3. HistSound.omm € P

Proof. We provide an algorithm that solves HistSoundeomm (DB, H, Ty, CTp, So, S1)in
polynomial time. Here H is a history of dep(Ty), where dep(Ty) = {T;|1 <i < K}. The
transactions are on the database DB, the initial state is Sy and end-state is S;. Also, all
transactions, including compensating transactions, commute. The algorithm is as follows:
return ‘yes’ and provide as certificate: H.

To see why this is correct note that by commutativity, we may permute the order of the
transactions without affecting the end-state;

{80} To;Th;. .. ; Tx; CTo {51}
= { commutativity, K times }
{So} To;CTo; T1; Io; ... T {51}

= { definitions of 7y, CTp }
{So} Tl;Tg; oo ;TK {Sl}

Our algorithm takes O(1) time, i.e. a polynomial in the size of our problem. O

1.3.3 Allowing additional F& F-messages

In the previous sections it became clear that the commitment problem present in update-
transactions cannot be easily solved if we allow R/R-messaging only. Replacing all requests
and replies by ‘F&F-requests’ and ‘F&F-replies’ was already rejected in section 1.2. Hence
the only viable option left to investigate is the use of F&F-messages in addition to request
and replies.

Reconsider the example distributed transaction discussed in section 1.2 in connection to fig-
ure 1.2. Recall that the client aborted in scenarios 2 and 3, while the service only ‘aborted’
in scenario 2. We can let the client send an extra F&F-message (after it received a reply
or timeout) containing an instruction for the service to commit or abort its local database
transaction. Of course the client may instruct the service to commit only in scenario 1, in
scenarios 2 and 3 the instruction should be to abort. By reliability of F& F-messaging, this
extra message arrives eventually and can be used to let the client and service agree on their
commit decisions.

In chapter 2 we present the n~-R/R protocol which allows for ACID distributed transactions
between one client and n different services, 1 < n, thanks to the use of additional F&F-
messages as described above. The integer n is called the size of the distributed transaction.
The n-R/R protocol allows the client and services involved in a distributed transaction to
vote whether or not to commit. Distributed transactions are only committed if the client
and all services unanimously vote to commit and are aborted otherwise.

The number of extra F&F-messages sent during a single distributed transaction is only n,
preceded by n requests and n replies from the R/R-pattern. Hence the total number of
messages sent in a distributed transaction equals 3n. Given the drawbacks of the solutions
proposed in sections 1.3.1 and 1.3.2 and the small number of (F&F-) messages needed
in the protocol, it seems by far the cheapest, fastest and most universal solution possible,
especially in a loosely-coupled setting. Indeed, the protocol is such that clients and services
may disconnect from the bus as long as they are not in the middle of a transaction without
causing deadlocks or a loss of integrity of the distributed database.

26 CHAPTER 1. PROBLEM DESCRIPTION

The protocol is verified in chapters 3 and 4. Chapter 3 verifies the protocol for transac-
tions with size 1: the 1-R/R protocol. Chapter 4 generalizes the results from chapter 3 to
transactions with any positive size n: the n-R/R protocol. The distinction between the two
protocols was made only in order to ease the verification proofs.

In the proposed solution we assume clients and services to be single-threaded: at any time,
a client or service can take part in only one distributed database transaction. Also, we
assume that neither clients nor services crash, or put differently, backup and recovery has
been implemented such that crashes cannot be noticed by other clients or services different
from the one that crashed (and recovered). The extension to multi-threaded services or
clients is not difficult, we omitted it because of time constraints of this project.

Chapter 2

Description of the n-R/R protocol

2.1 Introduction

In this chapter we describe the n-R/R protocol. The protocol allows a single client and
any number of services to agree on the outcome of a distributed transaction (see chapter
1 for a more detailed problem description). The n-R/R protocol can be used to solve other
consensus problems as well: we present the protocol as a distributed database transaction
protocol because most IT-professionals are familiar with this subject.

The client-program of the n-R/R protocol is discussed in section 2.2, that of the service in
section 2.3. In section 2.4 we give some example runs of the protocol by means of message
sequence charts.

Some important technical details are discussed in section 2.5 that must be considered by

implementors of the protocol. We also argue that requirements 3 and 4 of the problem
statement given on page 17 are met (requirements 1 and 2 are covered in chapter 4)

2.2 The client program

In section 2.2.1 we give a high-level description of the client-program. The purpose of
section 2.2.1 is twofold;

1. to provide a basic, operational understanding of the workings of the client program;

2. to serve as an introduction for the pseudocode version of the client program presented
in section 2.2.2.

The pseudo-code version of the client-program removes the ambiguity present in the high-
level description.

2.2.1 High-level description

A flow diagram of the client program is shown in figure 2.1. The boxes in figure 2.1 contain
the actual labels used in the pseudo-code of the client-program. The flow-diagram contains
a directed path from the box labeled ‘Input & Begin DB-Transaction’ to the inverted trian-
gle “Stop?” (a choice). The statements corresponding to the labels on that path correspond
to the client’s processing of a distributed transaction. If the client must start another dis-
tributed transaction, it chooses ‘no’ at the choice ‘Stop?’ and cycle back to the box labeled

27

28 CHAPTER 2. DESCRIPTION OF THE N-R/R PROTOCOL

Commit/
Init Abort
Send | il DB-Transaction &
Commit Output

Decision
Replies

Input & |—»1_ Requests

Begin DB-
Transaction [[- ...] B0 e
. Stop?

yes

Figure 2.1: Client-program: flow-diagram

‘Input & Begin DB-Transaction’, otherwise it chooses ‘yes’ after which the client-program
terminates.

Having explained the global structure of figure 2.1, we can explain the effects of the state-
ments associated with the various labels;

Imit each time the client program is (re-)started, it must go through a brief initialization
phase. Among other things, a connection must be made with the IFSA-bus.

Input & Begin DB-Transaction This is the first label of an actual local transaction. The
client-program receives input from its environment which leads to a distributed trans-
action of which it must ultimately return the result. The environment can be another
program, machine or a human using a user-interface. After examining the input, the
client program decides which services must be consulted in order for the output to
be returned. Also, the client starts a local database transaction.

Send Requests Corresponding to the input received, the client creates a request for each
service needed in the distributed transaction and sends it to the corresponding service.

Get Replies For each request sent, it must get a reply (or a timeout). The replies contain
all the usual information offered by the corresponding service and also a vote from
the service to commit or abort the distributed transaction. Services must vote to abort
if this is dictated by their business-application logic, or, if some error occurred (we
return to this in section 2.3).

Decide Ifno timeout was received in the Get Replies-phase and all of the services that take
part in the distributed transaction voted to commit, then the client program may de-
cide to commit. Else, the client must decide to abort. Note that business-application
logic, malformed replies or errors during processing by the client may lead to a de-
cision by the client to abort the distributed transaction.

Send Commit Decision A F&F-message is sent to each service part of the distributed
transaction, informing them of the commit decision taken in the previous phase.

Commit/Abort DB-Transaction & Qutput Corresponding to the commit decision, the
client either commits or aborts its local database transaction and returns the result of
the distributed transaction to its environment.

Note that all double-boxes in figure 2.1 contain actions that begin, commit or abort a local
database transaction: we use this convention throughout this chapter.

Some remarks are in place;

2.2. THE CLIENT PROGRAM 29

¢ Note that all requests are sent before all replies (or timeouts) are received and before
all commit decisions are sent. This allows a fair amount of parallelism: services that
were already sent a request by the client can start processing while the client is still
sending requests to other services. Distributed transactions generally take longer if a
request is sent to a service and the corresponding reply or timeout is received before
sending another request to another service.

e The protocol does not work correctly if some service is used more than once in
a single transaction: all requests within a distributed transaction must be sent to
different services.

¢ The mutual order in which requests are sent is of no concern and can be chosen
freely. The same holds for the mutual order in which replies are received and the
mutual order in which commit decisions are sent.

¢ Throughout this chapter, the (emphasized) key words ‘must’, ‘must not’, ‘may’, and
‘may not’ are to be interpreted as described in RFC 2119 [Bra97].

¢ The client program may only shutdown at the choice Stop? and nowhere else. In fact,
any deviation by the client from the protocol may have undesirable consequences
such as deadlock of (other) clients or services or inconsistency of the distributed
database. We return to this point in section 2.5.

2.2.2 Pseudo-code description

The program-variables and constants referred to in the pseudo-code of the client program
are given in table 2.1. Note that in an actual implementation, more variables may be needed.
If a type is prefixed by “+ in the second column, we mean that only unsigned numbers are
needed for the corresponding implementation variable or constant. For arrays, the type in
the second column is followed by its size between square brackets if known, or []’ if not.

In the third column it is indicated whether or not a variable or constant requires initialization
before a distributed transaction can be started. This initialization must be performed during
the Init-phase of the client-program on page 31. The only constant is MAX_SZ: the other
identifiers are variables.

Identifier | Type Initialization required?
MAX_SZ +int yes

sz +int no

tid +int64 yes

ssRR IFSAHSRVSLOT [MAX_SZ] no

ssFF IFSAHSRVSLOT[MAX_S Z] no

req IFSAHMSGH[MAX_SZ] no

plRep char[MAX SZ][] o

Table 2.1: Variables needed in the client-program
A description of all variables present in table 2.1 is given below;

e MAX_SZ: this constant equals the maximum number of services that may be used in
any single distributed transaction: the maximum distributed transaction size allowed.

¢ sz: this variable is used to store the actual distributed transaction size durmg a dis-
tributed transaction: 1 < sz < MAX_SZ.

30 CHAPTER 2. DESCRIPTION OF THE N-R/R PROTOCOL

e tid: this variable must be loaded from stable storage when the client program is (re-)
started. If the client program is terminated, the value of tid must be saved to stable
storage. This variable is used for global identification of distributed transactions and
the corresponding local transactions, hence the requirement of stable storage. At the
end of a distributed transaction, the variable tid equals the sum of the size of all
distributed transactions ever performed by the client. Hence it must equal zero if the
client program of client ¢ never ever performed a distributed transaction. But if we
shutdown the program after some transactions were processed, tid must not start
from zero again! In summary, tid is a persistent variable.

ssRR and ssFF are arrays of service-slots (see section A.2.1). The arrays are used
to store the different service-slots of the services used in a distributed transaction.
During a transaction, ssRR[s] contains the R/R-service-slot of service s and ssFF[s]
contains its F&F-service-slot. Note that we require 2 service-slots for each service
that participates in a distributed transaction! This is clarified in section 2.3.

e req: during a transaction, req[s] is used to store the request-handler of the request
sent to service s. '

e plRep: during a transaction, plRep([s] is be used to store the payload of the corre-
sponding reply from service s.

Table 2.2 summarizes which variables must occur in the payloads of messages sent in ad-
dition to any other client or service-dependent variables. Within a distributed transaction,
the request and commit-decision sent to a single service always carry the same transaction-
identifier tid and no other request or commit decision sent by the same client carries the
same transaction-identifier tid. Note that we do not need a variable tid in the reply: if the

Message Identifier | Type Explanation
Request tid +int64 | Transaction-identifier
Reply sv bool The service-vote: this variable has

value true if the sender (a service)
can comimit its transaction, it has
the value false if the sender must
abort its transaction.
Commit-Decision | tid +int64 | Transaction-identifier

cd bool This variable has value true if the
sender must commit its transaction,
it has value false if the-sender
must abort its transaction.

Table 2.2: Additional variables needed in messages

client receives a reply, the BAI-method IFSAgetAnyReply also returns the correspond-
ing request (see section A.4.3).

Some variables occur both in the client-program and in messages. In the sequel we sub-
script a variable with c to indicate that a variable is a client-program-variable to avoid
confusion. For example, tid, is the client-program-variable tid.

The pseudo-code version of the client program is given on page 31. The program consists
of several phases labeled by a heading in bold font (for example: Decide). Each phase may
consist of one or more steps labeled by numbers.

2.2. THE CLIENT PROGRAM 31

Init Load tid. from stable storage and connect to the IFSA-bus.

Input & Begin DB-Transaction During this phase of the protocol, the client program typically ac-
cepts some sort of question or instruction from either another program or a user-interface.
Because of the large number of possible scenarios, we only describe the state in which the
client program must be before proceeding to the label ‘Send Requests’ and assume the client
program to have started a local database transaction. In addition we require that:

e sz equals the distributed transaction size and 1 < sz < MAX_SZ and
e foralls, 0 <s < sz:
— ssRR[s] contains the R/R-service-slot of service s and,
— ssFF|s] contains the F&F-service-slot of service s
Send Requests In this phase, all requests are sent to the services chosen during the previous phase.
This cotresponds to performing the following once for each s, 0 < 5 < sz:
1. create the request req[s] using the service-slot ssRR[s], a payload of the request con-
taining:
o all fields and values required by service s
e an additional integer variable tid with the value tid. + s
2. send the request req|s| by means of the BAI-method IFSASend (see section A.3.1.2)

using the request, payload and service-slot from the previous step.

Get Replies The replies corresponding to the requests sent during the previous phase are received in
this phase. This corresponds to doing the following sz times:
1. call the BAI-method ITFSAgetAnyReply (see section A.4.3) to receive any pending

reply: the BAl must return a reply or timeout, the corresponding request, and the payload
of the reply (which equals NULL if a timeout is returned).

2. Let the request returned in the previous step be req[s’], 0 < s’ < sz. Store the
corresponding payload returned in the previous step (possibly NULL) in p1Rep]s’].
Decide We reach a commit decision as follows;

1. if no timeout was received during the previous phase and in all payloads plRepls],
0 < s < sz, the boolean variable sv equals true, then the decision to commit or abort
the local database transaction is free to make, else it must be decided to abort.

2. if the decision to commit or abort the local database transaction is free to make, then
perform any processing of the replies necessary to reach a commit decision and decide.

Send Commit Decision
1. Begin a unit of work by means of the BAI-method IFSABeginUOW (see section A.5).
2. Perform the following once for each s, 0 < 5 < sz:
(a) create a F&F-message using the service-slot ssFF|s] and a payload containing;
¢ all fields and values required by service s
¢ an additional integer variable tid with the value tid. + s
¢ an additional boolean variable cd with the value: ifit was decided to commit
then choose cd = true, else choose cd = false.
{b) send the F&F-message by means of the BAl-method IFSASend (see section A.3)
using the message, payload and service-slot from the previous step.
3. Commit the unit of work using the BAI-method IFSACommitUOW (see section A.5).

Commit/Abort DB-Transaction & Output
1. Ifthe decision was to commit then perform any processing necessary and commit, else
perform any processing necessary and abort.
2. Increase tid. by sz and output the result of the distributed transaction to the environ-
ment.

3. If another distributed transaction must be started #hen goto the label ‘Input & Begin
DB-Transaction’ else store tid. to stable storage and stop.

32 CHAPTER 2. DESCRIPTION OF THE N-R/R PROTOCOL

2.3 The service program

In this section we discuss the service-program of the n-R/R protocol. The structure of this
section is similar to section 2.2: a high-level description of the service-program is given in
section 2.3.1, a pseudo-code description is given in section 2.3.2.

2.3.1 High-level description

A flow diagram of the service-program is shown in figure 2.2. The boxes in figure 2.2 con-
tain the actual labels used in the pseudo-code of the service-program. The flow-diagram

Init Process Vote & Get) Commit/Abort DB-
Request& |l— Send [~ Commit Transaction
Begin DB- Reply Decision
/V Transaction
Get
Request
equ S o

yes

Stop

Figure 2.2: Service-program: flow-diagram

contains a directed path from the box labeled ‘Get Request’ to the inverted triangle ‘Stop?’
(a choice). The statements corresponding to the labels on that path correspond to the ser-
vice’s processing of a distributed transaction. If the service must process another trans-
action, it chooses ‘no’ at the choice ‘Stop?” and cycle back to the box labeled ‘Get Re-
quest’, otherwise it chooses ‘yes’ after which the service-program may terminate at the
label ‘Stop’. Note that the service-program may only stop here!

Having explained the global structure of figure 2.2, we can explain the effects of the state-
ments associated with the various labels;

Init each time the service program is (re-)started, it must go through a brief initialization
phase. Among other things, a connection must be made with the IESA-bus.-

Get Request This label is the first of an actual transaction: the service-program gets a
request from the IFSA-bus.

Process Request The service-program analyzes the request, starts a local database trans-
action and executes the required query. The local database transaction may not yet
bet committed!

Vote & Send Reply Send the reply containing the query result and also, a vote to commit
or abort the distributed transaction. ‘

Get Commit Decision Receive a F&F-message from the client called the commit-decision:
this message contains an instruction to commit or abort the local database transaction
of the service.

Commit/Abort DB-Transaction Commit or abort the local database transaction in accor-
dance with the client’s commit decision.

2.3. THE SERVICE PROGRAM 33

2.3.2 Pseudo-code description

The variables and constants referred to in the pseudo-code of the service program are given
in table 2.3. If a type is prefixed by ‘+” in the second column, we mean that only unsigned
numbers are needed for the corresponding implementation variable or constant.

In the third column it is indicated if a variable or constant requires initialization before a
transaction can be processed. This initialization must be performed during the Init-phase
of the service-program on page 34.

Identifier | Type Initialization required?
c +int no

conFF IFSAHCONN | yes

conRR IFSAHCONN | yes

ct +int64 no
req IFSAHMSGH | no
rep IFSAHMSGH | no

Table 2.3: Variables needed in the service-program

A description of the variables is given below: we only explain the initialization of a variable
if the last entry of the corresponding row equals ‘yes’;

e c: this variable is used to identify the address of the client in a transaction. At the
moment of writing of this thesis, the actual address of a client cannot be determined
by calling a BAI-method. However, this information is accessible to layer below
the BAT but has been hidden for application programmers. There are three simple
solutions to this problem;

— The entire protocol can be implemented at a layer under the BAI which can
access the address of the sender of a message.

— The adress of a sender can be made available by means of a method in an update
of the BAIL

— Clients can themselves add their address or some identifier unique to the client
both to the payloads of the request and commit-decision sent in a protocol
run. To avoid confusion it is advisable to use the same name for this payload-
variable: c.

Of course, the first two solutions are to be preferred. In reality, the type of ¢ may
differ from int. We simply model it as such.

e conFF and conRR represent two different connections of the service to the IFSA-
bus. Both variables must be initialized correspondingly during the phase Init. All
F&F-messaging must be done using conFF, all R/R-messaging must be done using
conRR. The protocol can not work correctly if only one connection is made to the
bus as the BAI provides no functionality (yet) that lets the service specifically get a
F&F-message instead of a request (or vice versa).

o ct: this variable is used to store the transaction-id during a transaction.

e req: during a transaction, req is used to store the request-handler of the request
received.

e rep: during a transaction, rep is used to store the reply-handler of the reply (to be)
sent.

34 CHAPTER 2. DESCRIPTION OF THE N-R/R PROTOCOL

For variables occurring in messages we refer to table 2.2. The pseudo-code version of the
service-program is given below.

Init Connect to the IFSA-bus: store the R/R-connection in the variable conRR, store the F&F-
connection in the variable conFF. Register the service in the bus-repository.

Get Request Receive a request using the BAI-method IFSAGetMessage using the connection
conRR and copy it to req. Note that this actually involves repeatedly invoking IFSAGetMessage
until a request was indeed available and received (see section A.4.1). Analyze the payload,
and copy the client adres in program variable ¢ and the payload-variable tid in ct.

Process Request Process the local database query corresponding to the request such that any changes
to the local database can be undone at the end of the transaction. Typically, this involves the
following steps:

1. start a local database transaction

2. process the query.

Vote & Send Reply

1. Create a reply by means of the BAI-method IFSACreateReply (see section A.3.4)
using the request req, the reply rep, and a payload containing:
o the query-result and all fields and values required by the service
o the variable sv with value: if the local database transaction can be committed then
set sv to true, else set sv to false. Note however that the database transaction
must not yet be committed or aborted! Also note that malformed requests, errors
during query-processing or business-application-logic may all lead to a vote to
abort.
2. Send the reply rep by means of the BAI-method IFSASend (see section A.3) using
the connection conRR and the reply and payload from the previous step.

Get Commit Decision this amounts to receiving F&F-messages from conFF until a message from
client c is received with payload-variable tid equal to ct;

1. begin a unit of work using the BAI-method IFSABeginUOW (see section A.5) with
connection conFF.

Repeat: receive a F&F-message by means of the BAI-method IFSAGetMessage (see
section A.4.1) using the connection conFF, a suitable value for WAIT DELAY,
the message handler oFF and the payload handler p1FF.

Until: the payload-variable tid in p1FF equals ct and mFF was sent by client ¢

Commit/Abort DB-Transaction
1. Ifthe payload-variable cd equals true, then commit the local database transaction; else-
abort the local database transaction.

2. commit the unit of work using the BAI-method IFSACommitUOW (see section A.5)
with connection conFF.

3. Ifthe service must be shut down then stop else goto the label Get Request.

2.4. EXAMPLE TRANSACTIONS 35

2.4 Example transactions

In this section we give two examples of scenarios of distributed transactions. The first
scenario is discussed in section 2.4.1. It concerns a distributed transaction between one
client and two services (size 2). The second scenario is discussed in section 2.4.2. It
concerns three distributed transaction, all with size 1. The scenarios are meant to increase
the understanding of the workings of the n-R/R protocol.

2.4.1 Scenario: a distributed transaction with size 2

Figure 2.3 gives a graphical representation of a possible scenario of the execution of a
single transaction between one client ¢y and two services s; and s;. Some things were
left out in order to reduce the size and complexity of the figure: the exact payload of the
messages sent, the manipulations of program-variables in the client or services, interaction
of the client and.services with the outside world, etc.

We give an informal description of the scenario given in figure 2.3. The distributed trans-
action 7, T = Ty, || T1s, ||T2s,. has size 2: two different services are involved. Because
s1 and s2 are idle in the beginning, they can both service the request sent by cg. The replies
are sent in time by both sy and s;. Also, ¢g receives both replies in time. Both services
voted to commit the distributed transaction. Hence ¢y may decide to commit and does so.
After having received the commit decision sent by ¢o, s1 and so commit, as does cq. Figure

msc Example distributed transaction(1)

L s | o | [|
T =ToeolT14, | T2s,
begin T
request
request
i begin 73
begin 75 l
repl
=Py reply
commit)
commit
commlt Tl commlt To ! commit 75 |

TIx

Figure 2.3: n-R/R-protocol: example distributed transaction (1)

2.3 illustrates that the protocol allows a fair amount of parallel processing. Indeed: actions
of different components appearing at the same vertical positions are executed in parallel.

36 CHAPTER 2. DESCRIPTION OF THE N-R/R PROTOCOL

2.4.2 Scenario: three distributed transaction with size 1

Figure 2.4 gives a graphical representation of a somewhat more complex scenario of the
execution of three distributed transactions, all with size 1. In the scenario we have two
clients ¢ and c1, and a single service sp.

msc Example distributed transaction(2)
[o | [| [& |
% = TOconTlso
begin Tp
request
{ begin T3
reply
commit
(commit To I commit 73]
’1’]'. = T’ZCOHT‘?so ,Z—é = T401 ”T5SQ
begin 15 begin T}
request
request
_.». .
l begin T5
reply
timeout
<O
\abort)_
commit
abort 75 |
F:ommit Ts [commit T J
|] I

Figure 2.4: n-R/R-protocol: example distributed transaction (1)

Below we give an informal description of figure 2.4;

o 7o, To = T, ||T1s,: the first distributed transaction, between ¢ and so. Because
sg is idle, it can service the request sent by co. The reply is sent in time by so and
received in time by cg and contains a vote of so to commit the distributed transaction.
Hence ¢y may decide to commit and does so. After having received the commit
decision sent by ¢y, s commits, as does ¢p. In the meantime, client ¢; was idle.

o 71, T, = T, ||Ts,: this distributed transaction is executed in parallel with 7.
Client co sent its request to sp, but so was also sent another request which is al-

2.5. CONSIDERATIONS 37

ready being processed. Because sy does not respond in time, ¢y receives a timeout.
Consequently, it must decide to abort. It sends this decision to sg: sg receives this
decision but, being in another transaction, simply ignores it. Finally, client ¢y aborts
the database transaction it started.

o 75, Ty = Ty, ||T5s,: this distributed transaction is executed in parallel with 77.
Client c; sent it request to so and service s is able to process it. The only differ-
ence with transaction 7y is that this time, service sg receives two commit decisions.
One belonging to 77 (abort), the other belonging to 75 (commit). The service can
however determine which commit decision belongs the transaction it is in by means
of the combination of the sender and the transaction-identifier in the payload of the
messages.

2.5 Considerations

In this subsection we discuss some important details of the n-R/R protocol that were left out
of sections 2.2 and 2.3. We also argue that requirements 3 and 4 of the problem statement
given on page 17 are met (requirements 1 and 2 are covered in chapter 4);

e In section 2.5.1 we discuss the implementation of the transaction-identifiers.

e Insection 2.5.2 we discuss deadlock and suitable values for MAX_SZ and MAX_TIMEQUT
and argue that requirement 3 of the problem statement given on page 17 is met.

e In section 2.5.3 we discuss the efficiency of the n-R/R protocol and argue that re-
quirement 4 of the problem statement given on page 17 is met.

o In section 2.5.4 we discuss how to handle exceptions raised by the BAL

Section 2.5.5 discusses some limitations of the n-R/R protocol.

2.5.1 The transaction-identifier

In the design of the protocol, the client-program variable tid., the payload-variable tid
and the service-program variable ctg are used to uniquely identify transactions.

It is important to understand that if multiple requests (or replies or F&F-messages) carry
the same transaction-identifier, the protocol is not guaranteed to function properly. Hence
the requirement that tid, is stably stored after termination of the client program and loaded
on a restart.

However, the machine integer used to represent tid., cannot grow forever: at some point
it overflows. In other words, there is a danger that partial-transactions cannot be uniquely
identified causing the protocol to malfunction. The chance of the protocol malfunctioning
becomes smaller if we use more bits to represent tid.. One should use 64-bit integers to
represent tid,, the payload-variable tid and the service-program variable ctg which take
forever (in computer terms) to overflow. Indeed, if a client would be in operation for 100
years, it would have to process about 5,849,424,174 transactions per second on average for
tid, to overflow!

2.5.2 Deadlock and suitable values for MAX_SZ and MAX_TIMEQUT

A suitable maximum for MAX_SZ in the client-program should be determined using test-
ing. Closely related is the value for MAX_TIMEQUT in the client-program: if MAX_SZ is

38 CHAPTER 2. DESCRIPTION OF THE N-R/R PROTOCOL

chosen large (i.e. 30 seconds), MAX_TIMEOUT should also be set rather large (i.e. 30 sec-
onds). There is however a problem associated with setting MAX_TIMEQOUT to such high
values which we discuss now.

Suppose two different clients ¢g and ¢; both want to perform a transaction simultaneously.
Client ¢y chooses the services in the set Sp and client ¢; chooses the services in the set 5.
Let So N S1 = {s0, 51} Obviously, only one of the requests sent to s by ¢g and ¢; can be
received first by sg. The same holds for the requests sent by cg and ¢; to s1.

Consider the scenario where so chooses the request sent by ¢; first and s; chooses the
request sent by cg first. Because s; is performing a transaction with ¢, it sends a reply to
¢o and waits for the commit decision from cg to arrive. Likewise, because sq is performing
a transaction with ¢, it sends a reply to ¢g and waits for the commit decision from cp to
arrive. After cg has sent all requests, it tries to receive all replies. It cannot receive a reply
from so however, because s is in a transaction with ¢; and itself waiting. Likewise, after
¢; has sent all requests, it tries to receive all replies. It cannot receive a reply from s;
however, because s1 is in a transaction with ¢y and itself waiting.

F&F-message = | F&F-message

Figure 2.5: Wait-for graph

Figure 2.5 is a wait-for graph [SKS98] of the scenario described above: the vertices in
the graph represent the clients and services. The outgoing arc from for example cg to 51
labeled ‘Reply’ indicates that ¢, is waiting for a reply from s;. The graph contains a cycle,
meaning that there is danger of deadlock for the machines represented by the vertices of
the cycle.

However, the IFSA-bus returns a timeout to ¢g and/or ¢; such that eventually all compo-
nents in the graph resume normal operation (the protocol has been proved to be deadlock-
free in section 4.6.3). The point however is to observe that the machines are stuck for up to
MAX_TIMEQUT time in the given scenario. Hence the following guidelines should be taken
into consideration if this is deemed undesirable;

o Reduce the chances of a client ¢ performing a transaction T and a different client
¢ performing a transaction T' simultaneously, such that T and T’ have more than

one service in cCommon

2.5. CONSIDERATIONS 39

o If the former guideline cannot be followed: set MAX_TIMEOUT rather small and con-
sequently, set MAX_SZ rather small.

Again, real-world testing should be performed in order to determine what exactly are
‘rather small’ values for MAX_TIMEOUT and MAX_SZ. Note that setting MAX_TIMEOUT zoo
small would lead all replies to timeout, whence all transactions would abort in which case
requirement 3 of the problem statement on page 17 would not be met. A sensible value of
MAX_TIMEOUT together with the two guidelines given above ensure that the n-R/R protocol
does indeed meet requirement 3 in all probability.

In section 1.2 it was mentioned that one could simulate R/R-messaging by means of F&F-
messaging with some additional identifiers. The advantage of doing this would be to pro-
vide for reliable R/R-messaging. It was noted that simply replacing R/R-messaging by such
F&F-messaging could introduce deadlock. For the n-R/R protocol with 1 < n, this is the
case. Indeed: the deadlock scenario depicted in figure 2.5 is not be resolved by the bus if
co and ¢; forever wait for ‘F&F-replies’ from s; and sq respectively. Of course one could
devise a similar timeout mechanism as present in R/R-messaging, but this would undo all
advantages of simulating R/R-messaging by means of F&F-messaging!

2.5.3 Efficiency

In this section we discuss the efficiency of the n-R/R protocol. The protocol requires 3n
messages to be sent during size-n distributed transactions: n F&F-messages, n requests
and n replies.

It was already mentioned in section 1.2 that the overhead associated with F&F-messages
is far greater than that of requests and replies. However, it was also argued in chapter 1
that distributed transaction integrity cannot be achieved if we only allow R/R-messaging.
Hence the n required F&F-messages seem a small price to pay for achieving distributed
transaction integrity. Especially in comparison to the formerly considered solution (see
section 1.2) of replacing all R/R-messaging by F&F-messaging: this would require at least
2n F&F-messages.

The speed by which messages are transported by the bus is about 1 megabyte per second
according to IT-architects at ING. The payload-variables required by our protocol take up
less than a kilobyte. Hence the additional payload-variables amount for an increase of the
processing time of a single transactions in the range of a few milliseconds.

In summary, we consider the n-R/R protocol to provide a good balance between price and
performance whence requirement 4 of the problem statement on page 17 is met by the
n-R/R protocol.

40

CHAPTER 2. DESCRIPTION OF THE N-R/R PROTOCOL

2.5.4 Handling Exceptions

In this section we dicuss how to deal with the loss of messages due to system-failures that
cause a BAI-method to return with an error (see section A.6). Note that the advise given in
this section is not backed up by formal proofs of properties of the transaction-system!

Each BAI-method returns a return-code and corresponding reason-code (see appendix A).
These return- and reasoncodes must be inspected after each BAI-method invocation to
detect the loss of messages.

Failures in the client-program related to the bus

Failure connecting to the IFSA-bus (Init): Human intervention is required, the
client-program must shutdown.

Failure obtaining a service-slot (Input): human intervention may be required.
Instead of proceeding to the label Send Requests, the client-program must
go to the label Commit/Abort DB-Transaction & Output, abort the local
database transaction (if one was started already in the Input-phase) and output
a result indicating that a failure occurred to its environment.

Failure sending a request (Send Request) or receiving a reply (Get Replies):
human intervention may be required. The client must however stick to the
protocol with only one exception: the decision in phase Decide must be to
abort the transaction. The client program may only shutdown at the end of
phase Commit/Abort DB-Transaction & Output but not before!

Failure beginning a unit of work(Send Commit Decision) or committing a unit
of work (Commit/Abort DB-Transaction & Output): human intervention is
required immediately because services it is transacting with may be waiting for
a commit-decision to arrive! This situation should be treated as if each commit
decision failed to be sent (treated below).

Failure sending a commit decision (Send Commit Decision): human inter-
vention is required immediately because services it is transacting with may be
waiting for a commit-decision to arrive! The easiest solution is to have the op-
erator of the addressed service insert the message that failed to be sent in the
service’s F&F-queue.

Failures in the service-program related to the bus

Failure connecting to the IFSA-bus-(Init): Human intervention-is required, the
service-program must shutdown.

Failure getting a request (Get Request): human intervention may be required.
Instead of proceeding to the label (Process Request), the service program must
either return to the label Get Request and a start a new transaction, or shut-
down.

Failure sending a reply (Vote & Send Reply): human intervention may be re-
quired. Note that the client with which the service is transacting eventually
receives a timeout for the reply that failed to be sent. The client-program even-
tually decides to abort the transaction. Hence the service is sent a corresponding
commit decision. It may as well abort immediately and either return to the label
Get Request, or shutdown.

Failure starting a Unit of Work: human intervention is required immediately.
Ultimately, the service must finish the transaction according to its protocol.
How this can be achieved depends on the error in the bus. See also the next
bullet.

2.5. CONSIDERATIONS 41

e Failure getting the commit decision (Get Commit Decision): human interven-
tion is required immediately for the commit decision that failed to be received
may well be the one corresponding to the transaction the service was perform-
ing. We briefly sketch a solution to this problem. We let the service stick to
its protocol: it must continue its repetition in the phase Get Commit Decision.
The operator of the service must consult the operator of the client in order to de-
termine the contents of the commit decision and insert a corresponding commit
decision in the service’s F&F-queue.

e Failure committing the Unit of Work: human intervention may be required.
The service must finish the transaction according to the protocol: as long as the
commit decision was already received, failing to commit the Unit of Work does
not affect the protocol.

2.5.5 Limitations

The protocol has been designed for single-instance, single-threaded services. It is how-
ever not difficult to extend the protocel such that it can function with multi-instance and/or
multi-threaded services. Nevertheless, we refrain from giving such an extension here be-
cause of time-constraints of this project. We provide more directions for further research
and development concerning transaction integrity in IFSA in section 5.3.

42

CHAPTER 2. DESCRIPTION OF THE N-R/R PRCTOCOL

Chapter 3

Verification of the 1-R/R protocol

In this chapter we formally prove that requirements 1 and 2 of the problem statement on
page 17 are met by the 1-R/R protocol. The 1-R/R protocol is a special case of the n-
R/R protocol introduced in section 2: it only allows for size-1 transactions between any
client/service pair. Chapter 4 extends the results from this chapter to the n-R/R protocol
for any positive n. The main reason for first considering the 1-R/R protocol is to bridle the
complexity of our proof obligations. Section 3.1 gives an overview of this chapter.

3.1 Overview

In this section we give an overview of this chapter. Connected to this is our choice of
formalism, which we discuss first. The following reasons motivated our choice for speci-
fication and verification of the protocol as a shared-memory multiprogram in the Guarded
Command Language (GCL) [Fv(G99];

e We study a transaction system with a virtually unbounded number of clients and
services. Each client may select any service and the number of transactions is also
unbounded in our model. The unbounded number of clients, services and transac-
tions is problematic in formalisms that rely on explicit state-space generation.

o One could model-check the state-space of a transaction system with a bounded num-
ber of clients, services and transactions. It is questionable whether or not results from
an artificially bounded transaction system would apply to the unbounded transaction
system, given the seemingly unbounded state-space of the transaction system under
investigation. Hence we opted for the safest route: to formally prove that the n-R/R
protocol satisfies requirements 1 and 2 of the problem statement in an unbounded
transaction system.

A derivational style of the program texts is often associated with the GCL. Algorithms (or
protocols) are often derived incrementally from a required system invariant or postcondi-
tion. We also followed this approach to derive the 1-R/R protocol but came to the conclu-
sion that also presenting it as such would only increase the complexity of our presentation
due to the large number of invariants and assertions needed, the cause/effect relations be-
tween them and the large number of program texts needed in an incremental derivation. We
present a fully annotated program instead.

We formalize requirement 1 of the problem statement given on page 17 by means of a
system-invariant. In order to prove that the system-invariant holds, we need many asser-
tions and other system-invariants. Assertions in turn, must also be shown to be both;

43

44 CHAPTER 3. VERIFICATION OF THE 1-R/R PROTOCOL

o locally correct: if an assertions is at a control point of, say, a client, we must show
that the statement before the assertion indeed establishes the assertion.

e globally correct: if an assertions appears in the program text of for example a client,
we must show that no atomic statement of other clients or services disturb the asser-
tion.

If assertions are both locally correct and globally correct, they are partially correct. With
the help of the correct assertions, we can prove all system invariants to be maintained by
the transaction system. Even if we can show the system-invariants to hold, this does not
mean that always eventually something (useful) happens. This is referred to as the issue of
progress (requirement 2 of the problem statement on page 17).

The program texts, invariants, assertions and associated proof obligations are treated in
separate sections. In section 3.2 we introduce some types and variables used in the sub-
sequent sections. In section 3.3 we model the messaging functionality of the IFSA-bus
discussed in section 1.1.2 and appendix A. In section 3.4 we introduce the components of
the multi-program.

In section 3.5 we give the main correctness criterion in the form of system-invariants. As-
sertions are introduced and proved locally correct in section 3.6. Global correctness of the
assertions is proved in section 3.7. Correctness of all system-invariants is proved in section
3.8. In section 3.9 we prove that progress is guaranteed in the 1-R/R protocol, which covers
requirement 2 of the problem statement.

Throughout this chapter we refer to the protocol described in chapter 2 as the informal
specification of the protocol and the version described in this chapter as the formal specifi-
cation. Differences between these specifications are explained when appropriate.

We advise readers to keep copies of pages 56, 57, 130, 131 and 133 at hand while reading
this chapter in order to avoid a lot of page turning in the sequel (see appendix B).

3.2 Identifiers and Types

We represent all clients by the set C, services are represented by the set S, where C' and S
are disjoint, infinite sets of nataral numbers. The members of the set A = C' U S are called
addresses. In the sequel it is assumed that variables ¢, ¢/, . . . are members of C, s, 5, ... of
Sanda,d,...of A.

In our formal specification we let bo#h clients and services assign a transaction-id to trans-
actions whereas in the informal specification, this was only done by clients. The service’s
transaction-id is only used for specification purposes and is neither communicated nor ac-
cessible to clients or other services. The transaction-id assigned by the service is called the
service-transaction-id, that of the client the client-transaction-id or simply the transaction-
id if no confusion is possible.

The tid + 1** transaction of a client is assigned client-transaction-id tid. The interpretation
of the service-transaction-id is similar. The variables ct, ct’, . .. (all members of N) are used
to refer to client-transaction-id’s, the variables st, st’, . .. (all integers at least -1) for those
of the services. The use of a service-transaction-id equal to -1 will be explained in section
3.5.1.

Distributed transactions are identified by a triple (¢, s, ¢t) meaning, ‘the distributed trans-
action with client ¢, service s and client-transaction-id ct’.

Requests, replies and F&F-messages alike are represented by the following specification
record-type;

3.2. IDENTIFIERS AND TYPES 45

fa:
ta :
tid :
to:

type Message =

&2

The differences in message-format between the formal and informal specifications have
been summarized in table 3.1. The column formal specification lists message-fields in the
formal specification, a corresponding entry in the column informal specification gives the
corresponding payload-variable in the informal specification or ‘-’ if none exists.

Message formal specification | informal specification
Request fa -
ta -
tid tid
to -
Reply fa -
ta -

tid -

to —-sv, return- and reason-codes
F&F-message | fa -
ta -
tid tid
to —cd

Table 3.1: Differences in message format

The fields of the type Message are explained below, along with the differences compared
to the message-format in the informal specification;

fa : A: (from address), the address of the sender. This field is not needed in the informal
specification as the bus provides for addressing.

ta : A: (to address), the address of the addressee. This field is not needed in the informal
specification as the bus provides for addressing.

tid : N: (transaction id), the client transaction-id of the transaction this message is sent for,
similar to the payload-variable tid in the informal specification.

to :B: (time out). We model the reception of a timeout by means of the reception of
an actual message in the formal specification: timeouts are indicated by return- and
reasoncodes in the informal specification. As discussed in the informal version of
the protocol, a service must communicate its vote to commit or abort a distributed
transaction by means of the payload-variable sv in the phase Vote & Send Reply
(see section 2.3.2). We do not discriminate between the reception by a client of a
vote to abort or a timeout. The effect of either message is the same in the n-R/R
protocol: the client must decide to abort the distributed transaction. The fields to is
used to indicate a time-out or commit decision, depending on the context;

o If the message is a request from the R/R interface then fa is a service, ta a
client and tid the client-transaction-id; the field to is superfluous. We use the
convention of setting to equal to false in requests.

o Ifthe message is a reply from the R/R interface, then ta is a client, fa a service
and the interpretation of to is as follows:

46 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

I

to ‘the message is a timeout or service fa voted to abort the dis-
tributed transaction’, and
—to = ‘the message is a reply, service fa voted to commit the dis-
tributed transaction’.
In the remainder of this chapter we call a reply with field to equal to true a

timeout. A reply with field to equal to false is called simply a reply.

e In case the message is a F&F-message then fa is a client, ta a service and the
interpretation of to is as follows:

to = ‘client fa decided to abort transaction (fa,ta, tid)’, and
—to = ‘client fa decided to commit transaction (fa, ta, tid)’.

F&F-messages as described above are called commit decisions throughout this
chapter. Compared to the informal specification, we have that the variable to
corresponds to the payload-variable ~cd.

We represent a record instance by means of a list of its members between angular brackets.
For example, the request (¢, s, 0, false) is one from client ¢, to service s. It has a client-
transaction-id equal to zero and a field fo equal to false. Note that we also use angular
brackets in defining atomicity in the sequel.

We use the following global arrays in our specification;

var tid = : Array[A] : [N);

var cd o Array[A][-1l.00) @ B;

var cw : Array[C]N] 2 S

var ct2st : Array[C][N] : [—1..00);

Below we give intuitive descriptions and properties of the arrays presented above. Those
properties are formalized by means of invariants and/or assertions in the sequel;

o tid (transaction id); tid[a] = K =‘machine ¢ has completed K transactions’. Note
that the second index of c¢d and the range of ci2st both includes -1: we explain the
use of this in section 3.5.1.

e cd (commit decision), for a € A, at < tid[al;

~ cdla,at] = ‘machine a (either a client or service) decided to commit its at +
1" competed transaction’;

~ —cdla, at] = ‘machine a decided to abort its at + 1** competed transaction’.

o cw (communicate with), for ¢t < tid[c]; cwlc,ct] = s = “inits ct + 1** completed
transaction, client ¢ transacted with service s’.

e ct2st (client-transaction-id to server transaction id), for ¢t < tid[c]; ct2st]c,ct] =
st =‘inits ct + 1** completed transaction, client c transacted with service s, which
was the st + 1% transaction for s°.

The differences between the variables in the formal and informal specifications are given in
table 3.2. The first column lists globally declared arrays present in the formal specification
(for example: cd). The corresponding entry in the third column gives the corresponding
variable in the client component (for the array cd[c], this is cd.). The corresponding entry
in the second column gives the corresponding variable in the service component (for the
array cd|s] there is none: ‘-’). An explanation of table 3.2 is given below;

3.3. FORMAL MODEL OF THE IFSA APPLICATION-BUS 47

Formal Specification: Informal Specification:
client ¢ | service s

cwlcl, ct2st, tid[s] - -
cdlc] - -
cd]s] - -
tid|c] tid. -
Z SZ. N

Table 3.2: Implementation of globally declared variables

e The variables cwlc] (for clients ¢), ct2st, tid[s] (for services s), are all specification
variables needed only for proving properties of the protocol. Hence those variables
are not needed in an actual implementation.

e The arrays cd[d] and cd[s] correspond to commits or aborts of database transactions
in the informal specification. -

o The variable sz is not needed in the formal specification of the 1-R/R protocol
because we study only distributed transactions with size 1 in this chapter.

3.3 Formal model of the IFSA application-bus

It is assumed that the reader is familiar with the R/R- and F&F-patterns (see sections 1.1.2
or, A.3.1 and A.3.2). In this section we model message passing as provided by the bus by
means of adding messages to- or taking messages from sets of messages. The variables
needed to this end are introduced in section 3.3.1. In section 3.3.2 we introduce some
language constructs needed in the sequel. Sections 3.3.3 and 3.3.4 give a formal model of
the R/R- and F&F-patterns respectively.

3.3.1 Variables

As noted earlier, we model message passing as provided by the bus by means of adding
messages to- or taking messages from sets of messages. Each set of messages represents
a message queue in IFSA terminology. Note that although the term ‘queue’ is used, no
ordering on messages is implied! The arrays needed to represent the message queues are
given below;

var rqgi : Array[S] : Set of Message;
var rpi : Array[C] : Set of Message;
var fi : ArraylS] Set of Message;
var rd : ArraylS] : B;

An overview of the differences between the informal and formal specifications is given in
table 3.3. We explain table 3.3 below;

e The set rgi[s] represents the R/R queue of service s. Typically, only clients add re-
quests to rgi[s] - which amounts to sending requests to service s- although it is con-
ceivable that in some applications services may also send requests to other services.
Only service s may take messages from rgi[s| (receive a request): services cannot
receive messages intended for other services. Services received requests using the

48

CHAPTER 3. VERIFICATION OF THE 1-R/R PROTOCOL

Formal Specification: Informal Specification:

clientc | service s
rqi[s] ssRR[s’] | conRRs
rpi[c] ssRR[s’] | conRRs
s ssFF[s] | conFF,
rd|s] bus bus

Table 3.3: Implementation of message-queues

connection conRR in the informal specification. Clients sent a request by means of
the service-slot ssRR[s’], 0 < s’ < sz, where ssRR[s’] represents a service-slot for
service s. Note that s’ was not an address in the informal specification whereas s is
one in the formal specification!

The set rpifc] contains only replies or timeouts addressed to client c. Hence only
client ¢ may take messages from it. A service s may add replies to 7pi[c], but only
after taking a corresponding request from rgi[s|. It is clarified in the sequel that also
client c itself may add timeouts to rpi[c]. Services sent replies using the connection
conRR in the informal specification. Clients received replies or timeouts by means
of the service-slot ssRR[s'], 0 < s’ < sz, where ssRR[s'] represents a service-slot
for service s.

The set ffi]s] represents the F&F queue of service s: any message therein is a F&F-
message. Each service s may take messages from ffi[s]|, other machines may add
messages to it. In the n-R/R protocol, only clients send messages to ffi[s], namely the
commit decisions. Services received commit-decisions using the connection conFF
in the informal specification. Clients sent a commit-decision by means of the service-
slot ssFF[s'], 0 < s’ < sz, where ssRR[s'] represents a service-slot for service s.

rd (ready); (rd[s] A rqi[s] = 0) =‘service s is ready to receive a request’. We use
the array rd to mimic the behavior of the R/R-pattern offered by the bus: this is
clarified in section 3.3.3.

3.3. FORMAL MODEL OF THE IFSA APPLICATION-BUS 49

3.3.2 Language constructs

In this section we introduce some language constructs and notational conventions that are
needed in the sequel. In our specification we take as atomic statements;

e cvery single statement;
e every program fragment enclosed between angular brackets ‘(> and ©)’.

o every guard evaluation not enclosed between angular brackets.

We also use statements of the following form:

var v : 1p;

var vy - Ty;

Here v; is some variable, P some predicate over program variables. The interpretation of
the statement above is ‘assign a value to v; such that P (v, . .., v;, . . . , Ux) holds’. Note that
the predicate P(vg, - - -, v, .., vx) is only locally correct so far. If multiple values exists
such that P(v;) holds, one is selected non-deterministically. In some cases we explicitly
require this choice to be fair. In most cases the predicate P is rather trivial or there exists a
BAI-method that establishes it.

We also use await-statements of the following form;

{ Control point 1 }
(await(P);

{P}

atomic body

)

{ Control point 2 }

Suppese the above statement occurs in client ¢. The interpretation is that execution of client
¢ remains at control point 1 until P holds. Execution can enter the atomic brackets only if
both P holds and if it is ¢’s turn to make a step in the interleaving with other components.
If this is the case, the atomic body is executed such that it is not interleaved with statements
of other clients or services. It is usually the task of other components to establish P.

Sections 3.3.3 and 3.3.4 give a formal specification of the BAI-methods for R/R and F&F
communication respectively, in terms of operations on the message-queues introduced in
section 3.3.1.

3.3.3 R/R communication

In section 1.1.2 we discussed R/R-messaging. Figure 1.2 on page 14 provided a reduced
overview of the three possible scenarios. Figure 3.1 shows how we model R/R-messaging
in the formal specification, the numbering of the scenarios corresponds to that of figure 1.2.
Scenario 1 is the same in both figures. In scenario 2 of figure 3.1, we knotted together the

50 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

lost and found messages present in scenario 2 of figure 1.2. Indeed, we model scenario 2
by letting the client send a timeout to itself. The same has been done in scenario 3 of figure
3.1: instead of losing the reply and finding a timeout, we do as if the service reliably sends
a timeout. In our model we take care to preserve the property of the R/R-interface that
clients cannot distinguish between scenarios 2 and 3, and the property that services cannot
distinguish between scenarios 1 and 3.

msc R/R scenarios

l client ¢ | service s |
@’— request: {c, s,tid, false)

reply: (s, c. tid, false)
:I timeout: (s, ¢, tid, true)
W request: {c, s, tid, false)

timeout: (s, ¢, tid, true)

Figure 3.1: R/R-scenarios in the formal specification

Having explained this, we can proceed by giving GCL-specifications of the operations on
the message-queues. We model the sending of requests and replies as follows;

Sending the tid - 1** request from client c to service s;

(if (rd[s] Arqi[s] = 0) — rgils] := rgi[s]U{{c, s, tid, false)};

| —=(rd[s] Argils] = 0) — rpild] := rpilc] U{(s,c, tid, true)};

fi
)
This corresponds to the BAI-method IFSASend (see sectionA.3.5).-A-request-gets
lost if the service is not ‘ready’ to receive one. A service is not ‘ready’ if —rd[s] V
rqi[s] # { holds. In that case the request is not added to the service’s request queue
but a timeout is added to the clients reply queue instead. The first alternative of the
if-statement corresponds to scenarios 1 and 3, the second to scenario 2 (all of figure
3.1).

If multiple clients compete in sending a request to the same service, it is not the case
that some clients have a higher chance of successfully sending the request (instead
of receiving a timeout). We say the choice between multiple clients to be fair. This
assumption is valid according to bus-architects.

Sending the reply (s, c, tid, false) or timeout (s, ¢, tid, true) from s to c;
(if
| true — mpild] := rpilc] U {(s,c,tid, false)};
| true — rpilc] := mpilc] U {(s, ¢, tid, true)};
fi
)

3.3. FORMAL MODEL OF THE IFSA APPLICATION-BUS 51

This corresponds to the BAI-method IFSASend (see section A.3.5). A reply may be
‘lost’ in which case the service did receive (and process) the corresponding request
and the client receives a timeout instead of a reply. Recall that a vote to abort from
a service corresponds to a timeout in the formal specification. The field to of the
request is chosen non-deterministically.

The first alternative of the if-statement corresponds to scenario 1, the second to sce-
nario 3 (both of figure 3.1).

We model the reception of requests and replies as follows;

Receiving a request by s;

rdls] 1= true;
(await(rgi[s] # 0);

m:m € rqils];

rgils], rd[s] := rgi[s]/{m}, false;
)
This corresponds to the BAI-method IFSAGetMessage (see section A.S5). The first
statement indicates that s is ready to receive a request. The second statement corre-
sponds to waiting until a request is available. The third statement chooses a message
from rgi[s] and assigns it to the program variable m. The last statement removes the
request from the queue and reflects that service s is no longer willing to receive a
request.

Receiving the reply m from s in the ct + 1*" transaction of client ¢ with service s;
(await((3m' :m/ € rpilc] A m'.fa=s N m/.tid = ct))
m:m € rpi[c] A m.fa=s A m.tid = ct;
rpile] := rgilc]/{m};

This models the behavior of the IFSAGetReply method (see section A.4.2) where a
specific reply to a request (passed as a parameter) can be received. In our model this
reply is identified by its transaction-id and sender.

In order to preserve the property of the R/R-interface that clients cannot distinguish be-
tween scenarios 2 and 3, we disallow the inspection of any variables in the client compo-
nent that would reveal or record this choice outside of the send and receive actions: rd,
rgi and rpi. Likewise, we disallow the inspection of rgi and rpi by services outside of
the send/receive actions in order to preserve the property that services cannot distinguish
between scenarios 1 and 3.

Note that the ta-field in the type M essage may seem superfluous given the send and re-
ceive operations introduced above. It can however be advantageous in modeling the use of
using units of work. This is explained in section 3.3.4.

3.3.4 F&F communication

The F&F channel is assumed to be reliable even if section A.6 mentions cases in which it
is not. According to bus architects those cases are restricted to extreme disasters (during
which the world itself may perish) or programming errors. They approve of the model of
F&F messaging being reliable.

Sending and receiving F&F-messages is modelled as follows;

Sending the F&F-message m to s;

fils] = fils} U {m}

52 CHAPTER 3. VERIFICATION OF THE 1-R/R PROTOCOL

Receiving a F&F-message m by s;
(await(fifs] # 0);
m: m € ffis];

>ﬁi[&} i= fils]/{m}

Note that if multiple choices are available, a fair choice is made: it cannot be the
case that some F&F-message remains in ffi[s] until the end of time if messages are
received repeatedly. This assumption is valid according to bus-architects.

Note that F&F messaging supports units of work (see section A.S). The above retrieval is
done without a unit of work. On the other hand, one can argue that the use of a unit of work
that contains a single send- or receive-operation is implied by the atomicity brackets.

In general, we can model units of work as follows. Let for each component that can send
or receive F&F-messages, F'O and FT be local sets of F&F-messages. The first is used
to temporarily store outbound messages during a unit of work, the second for inbound
messages. Then we can model the operations of a unit of work as follows;

beginning a unit of work;
FO,FI = §,0;

receiving a F&F-message m within a unit work;
(await(ffils] # 0);
m : m € fi[s];

> FIfils] := FIU{m},fils]/{m};

sending F&F-messages m within a unit work;
FO := FOU{m};

committing the unit of work;
(do FO £ —

[var m : Message;
m : mé€ FO;
fimta] := fijm.ta] U{m};
FO := FO/{m};

I

od

)

rolling back a unit of werk;

fils] = Fls|UFIL;

The formalization given above is certainly not unique. Depending on the protocol that is
to be developed and the formalism to be used, other formal representations of the unit of
work mechanism may be more convenient. It is important to understand that the effects of
F&F-messaging within a unit of work remain invisible to all other clients and services until
the unit of work is committed.

Hence if in some protocol, units of work must always be committed and only send actions
take place in it, then another way to model those units of work is the use of atomicity
brackets surrounding the normal send operations of F&F-messaging. In fact, we choose
and explain this modeling in the sequel. '

3.3. FORMAL MODEL OF THE IFSA APPLICATION-BUS 53

Beginning a unit of work translates to *(’, committing translates to °)’;
{ “atomic body of the unit of work: perform F&F- send operations here’)

When mixing send operations of F&F-messaging in the atomic body of a unit of work with
other statements, an argument must be provided that validates this mixture. It is dangerous
to add R/R-messaging to the atomic body. Even if one could prove properties of such
program texts, one would have proved properties of an invalid model as units of work have
no effect on R/R-messaging.

If F& F-messages are received within the atomic body of a unit of work, danger of deadlock
may have been introduced in the formal model that is not present in reality. We illustrate
this by means of an example multi-program given below. It simulates two clients sending a
F&F-message to a single service and the service receiving the two messages within a unit
of work.

[var fils];
component Client(c: C) = [fils] := fi[s]U{(c,0,0, false)};]

component Service(s : §) =
[var mg, m1 : Message;

(await(ffi[s] # 0);
mo : mo € fils];

fils] <= gilsl/{mo};
~await(fi[s] # 0);

my 1 my € ffils];
>ﬁi[8] = filsl/{mi};
I

Hils] := 0;
Service(0) || Client(1) || Client(3);

I

We give a rather informal treatment of the deadlock scenario. In the multi-program given
above, the servicerdeadlocks on its second await statement if it entersits unit of work before
before both clients sent their message. In this scenario, one client deadlocks also: the one
that did not yet send a message to the service. Indeed, by deadlock of the service within its
atomic body, execution never reaches a control point upon which this client can perform its
send operation.

In the real world however, the service cannot deadlock because the clients cannot deadlock,
hence the model is invalid. Indeed, either client completes its send operation whence the
service can always eventually receive the two messages within its unit of work. In the
sequel we allow of all send or receive operations only F&F-send operations in the atomic
body of a unit of work.

The above example also illustrates some of the problems associated with the use of atom-
icity brackets in general. In the sequel we use them with care: we shall always provide
arguments that validate their use.

54 CHAPTER 3. VERIFICATION OF THE 1-R/R PROTOCOL
3.4 Specification

In this section we present all components: clients (section 3.4.2) and services (section
3.4.3). The main program is presented in section 3.4.4. In section 3.4.5 we provide brief
arguments that validate the placing of the atomicity brackets in the program texts given in
sections 3.4.2, 3.4.3 and 3.4.4. Section 3.4.1 provides and introduction.

3.4.1 Introduction

This introduction serves the following purposes;

e introduction of ghost-variables (needed for proving global correctness) in section
34.1.1.

o labeling of assertions and statements present in the components given in sections
3.4.2,3.4.3 and 3.4.4 in section 3.4.1.2.

¢ explanation of the commit decision taken by the client in section 3.4.1.3.

3.4.1.1 Ghost-variables

Some ghost variable arrays have been introduced (for the purpose of proving global cor-
rectness in the sequel): the arrays RQO, RPO and CD: C' x N — N. Their interpretation
is as follows;

e RQO|c, ct] =‘the number of requests sent by client ¢ in its ¢t + 1** transaction’

e RPO|c, ct] =‘the number of timeouts’ -+ ‘the number of replies’ delivered to rpi[c]
in client ¢’s ct + 1*" transaction

e CDle, ct] =*the number of commit decisions sent by client c in its ¢t + 1" transac-
tion’ '

It follows that all these arrays must be initialized by Q. Also, none of the values of the
capital arrays ever exceeds 1 in the 1-R/R protocol. The ghost variables given above-are
not inspected by any component, they have been introduced for specification purposes only.
Hence they are absent in the informal specification.

3.4.1.2 Labeling of assertions, statements and substitutions

We give a placeholder for each assertion occurring in the program texts presented in the
sequel. The assertions itself are presented in section 3.6. We use the convention that the
statement with pre-assertion labeled i is labeled statement ¢. Assertions i is denoted by Az,
statement % by S4.

If a statement is the sequential composition of multiple sub-statements, we refer to for ex-
ample the 2"¢ sub-statement of statement S5 as S5.2. Also, we may subscript a statement
to denote by which component it is executed. For example, 55.1 is the first sub-statement
of statement 5 of client c. We use a similar subscripts for the assertions of a component.
The labeling system is further extended in section 3.6.

3.4. SPECIFICATION 55

3.4.1.3 The client’s vote and commit decision

As explained in section 2.2.2, a client is allowed to decide to abort a distributed transaction
even if it received a reply from the service stating that it may commit. This is useful in
practice for applicative reasons. One could view the whole process of reaching a commit
decision as a vote that only ends in a commit if the client and service unanimously vote to
do so.

To this end, we let the client register its vote in a local variable cv. After baving received the
reply or timeout my, say, from the service, the commit decision corresponds to —mz.toAcv.

56

CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

3.4.2 Clients

The client component is given below. The local variable my is used for receiving a reply
or timeout, the local variable s is used to abbreviate cw/c, tid[c]] . For sending the request
or commit decision we do not need a variable. We let the client select a service s non-
deterministically (in an implementation a more founded choice would be made). Statement
5 selects a service s and registers this choice in cwlc, tid[c]], statement 6 sends a request to
s. Statement 7 receives the reply (or timeout) corresponding to the request sent in statement
6. Also, the client’s vote whether or not to commit is recorded in cv. Statement 8 makes

the commit decision. This commit decision is recorded in cd and sent to service s.

component Client(c : C) =

Il

var mo : Message;
var s : S,
var cv : B;
do true —
{ Assertion 5 }
(s : true;
cwle, tidc]] 1 = s;
)

od

{ Assertion 6 }
(if (rd[s] Arqi[s]=0) — rgils], RQOlc, tidc]] :=
rqi[s] U {{c, s, tid[c], false)}, RQO|c,tid[c]] + 1;
| —(rd[s] Arqis] =0) — rpilc], RQO[c,tidlc]], RPOlc,tid[c]] =

rpilc) U {{s, c, tid[c],true)}, RQO|c,tid[c]] + 1, RPOlc,tid[c]] + 1;

fi
)

{ Assertion 7 }

(await((3Im : m € rpilc] : m.fa=s A m.tid = tid[c]));
ma : mao € rpilc] A ma.fa=s A ma.tid = tid[c];
rpile] = mpilc]/{m2};
cv : true;

)

{ Assertion 8 }
{ CDlc,tid|c]], edle,tid[c]] := CDle,tid|c]] + 1, —ma.to A cv;
fils] == fils] U {(c, s, tid[c], cde, tid[c]]) };

tidle] 1= tid[c] +1;

3.4. SPECIFICATION 57

3.4.3 Services

The service component is given below. The variables m; and ms are used for receiving
the request and commit decision in a transaction respectively, we need no variable for
sending the reply. In order to improve readability, the service component has local variables
¢ and ct, used for the client and client-transaction-id respectively. As the service may
receive requests from any client, the corresponding condition it waits for is simply that
some request is available. The situation is similar when waiting for commit decisions:
commit decisions must be received and removed until the commit decision of the active
transaction has been received. Statement 13 receives a request and registers which service-
transaction-id corresponds to the client-transaction-id of the request, statement 14 sends a
reply or timeout, statement 16 receives the commit decision and statement 18 records the
commit decision.

component Service(s : S) =
[var my1,mg : Message;
varc : C
var ct : N;

do true —

{ Assertion 13 }
(await(rgi[s] # D);
my : mq € rgils);
¢, ¢t = my.fa, m.tid;
rqils], ct2stle, ct], rd[s] 1= rqgi[s]/{ma},tid[s], false;

{ Assertion 14 }

(if true — pilc), RPO[c,ct] := rpilc] U (s,c,ct, false), RPO[c,ct] + 1;
| true — mpilc], RPOlc,ct] = rpilc] U (s,¢,ct true), RPO[c,ct] + 1;
fi

)

repeat

{ Assertion 16 }
(await(fi[s] # 0);

ms = mg € ffils];
>ﬁ[8]' 1= filsl/{ma};
{ Assertion 17 }

until (ms.fa=c A mg.ta =35 A ma.tid = ct)

{ Assertion 18 }
cd[s, tid[s]], tid[s], rd[s] := -ma.to, tid[s] + 1, true;

od

58 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

3.4.4 Main program

The main program is given below;

| type Message = record || fa,ta : A, tid : N; to : B]|

const C = {2n|n €N}
const S = {2n+1jneN}
const A = CUS;
var tid : Array[A] N
var cd : Array[A][~1..00) :B;
var cw : Array[C]|N] : S;
var ct2st : Array[C][N] [-1..00);
var rqi . Array[S] : Set of Message;
var rpi : Array[C] : Set of Message;
var ffi : ArraylS] : Set of Message;
var rd : ArraylS] : B;
var CD, RQO,RPO : Array[C]N] ' N;
{ AssertiorL(g }
(tid := 0}

—
cd := false;

—
rd := true;
ct2st 1= -1

- - —

i pi fi = 0,0, 05
CD, RQO, RPO := 0, 0, 0;

)

{ Assertion 1 }
(lc:ceC : Client(c)) || (|ls:seS : Service(s))

3.4. SPECIFICATION 59

3.4.5 Atomicity

In this section we provide brief arguments that validate the placing of the atomicity brack-
ets in the components given in sections 3.4.2, 3.4.3 and 3.4.4. To this end we need the
following definitions taken from [FvG99];

local variable: a variable is a local variable of a component if it can only be read or mod-
ified by the component itself.

private variable: a variable is a private variable of a component if it can only be medified
by the component itself.

shared variable: a variable is a shared variable if two or more components may modify
it. '

All local and private variables along with their owners are given in table 3.4.

Local variable owner

tid|a), cd[a) component a
wlc], CD[c], RQO|c] | clientc

M2es Ses CUC client ¢

M1, M3, Css Cls service s

Private variable owner

rd[s] service s

Table 3.4: Local- and private variables and their owners

Table 3.5 lists all shared variables and the components that can modify them.

Shared variable | Shared by

rqils|, fils] all clients and service s.
rpilc], RPO[c] | all services and client c.
ct2st|C] all services.

Table 3.5; Shared variables and their modifiers

Having explained this, we can return to the placing of the atomicity brackets. The use of
atomicity brackets ‘{” and)’ has two reasons;

e to reduce the proof burden: each control point needs an assertion and of each as-
sertion we need to proof global correctness. In summary, the number of proofs is
O(cp?), where cp equals the number of control points. By placing angular brackets
around statements we eliminate all control points between the statements within the
angular brackets. We may still put assertions at the eliminated control points, but we
do not need to prove global correctness of such assertions.

e to mimic complex real-world behavior: in section 3.3 we formalized some BAI-
methods. Most of those methods cannot be given by means of single statements in
the specification language used.

Below we provide an explanation of all atomicity brackets in the components given in
sections 3.4.2, 3.4.3 and 3.4.4 respectively. Because no component inspects any of the
ghost-variables RQO, RPO and CD, we silently allow statements that assign values to
the ghost-variables between angular brackets below.

60 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

Atomicity brackets in the client-component: Statement 5 selects a service s and regis-
ters this choice in cwc, tid[c]], statement 6 sends a request to s, statement 7 receives
the reply (or timeout) corresponding to the request sent in statement 6. Also, the
client’s vote whether or not to commit is recorded in cv. Statement 8 makes the com-
mit decision. This commit decision is recorded in cd and sent to s. Hence 56, S7
and S8 are BAI-methods as explained in section 3.3, with as only additions,

e the client’s vote to commit or abort(57.4): the variable cv is a local variable.
Placing this choice after the angular bracket that closes 57 cannot influence the
behavior of other components. We only loose some interleavings, aside from
that, ¢ does not behave any different either.

e the assignments to tid[c] and cd[c, tid[c]] in S8. We can implement this by us-
ing a unit of work of a single message (see sections 3.3.4 and A.5) of which
the begin and end are marked by the angular brackets of statement S8. As
tid[c] and cd]c] are local variables of client ¢, placing these assignment after
the angular bracket that closes S8 cannot influence the behavior of other com-
ponents. We only loose some interleavings, aside from that, ¢ does not behave
any different either.

A similar argument can be given for the assignments in S5: variables occurring in it
are local.

In the informal specification, clients committed or aborted their database transactions
after having sent their commit decision to the service(s). In the formal specification
this order has been reversed, which is justified by the fact that cd[c] is a local variable
of client c.

Atomicity brackets in the service-component: Statement 13 receives a request and reg-
isters which service-transaction-id corresponds to the client-transaction-id of the re-
quest. Statement 14 sends a reply or timeout, statement 16 receives a commit deci-
sion and statement 18 records the commit decision. Hence 513, S14 and S16 are
BAI-methods as explained in section 3.3, with as only addition, the assignments to
¢, ct and ct2st in S13 and the assignment to cd[s, tid[s]] in S18. As the reader
may check, variables ¢ and ct are superfluous local variables: by substituting ¢ with
m1.fa and ct with m;.tid, the assignments may be removed from the program text.
The variables c and ct were only introduced to increase readability.

As for the assignment to ct2st[cs, cts] in S13: there is no statement in any of the
components that inspects the array ¢t2st. Hence here also we have that the difference
of placing this assignment outside the angular brackets of S13 cannot influence-the_
behavior of other components.

As for the assignment to cd|s, tid[s]] in S18: cd[s] and tid][s] are both local variables
of service s. Hence here also we have that the difference of placing these assignments
after the angular brackets of S18 cannot influence the behavior of other components.

Atomicity brackets surrounding S0: There is no parallelism before statement Sy has ter-
minated: the atomicity brackets have been placed only to reduce the number of as-
sertions.

3.5 Partial correctness criteria

In this section we formalize requirement 1 of the problem statement on page 17. We also
introduce other invariants and auxiliary functions needed to show that requirement 1 is met
by the 1-R/R protocol. In section 3.5.1 we formalize requirement 1, section 3.5.2 introduces
the other invariants and auxiliary functions needed.

3.5. PARTIAL CORRECTNESS CRITERIA 61

3.5.1 Formalization of requirement 1

In this section we formalize requirement 1 of the problem statement on page 17 by means
of the system invariant ;. To this end we need the boolean function tra(c, s, ct, st) for
ceC,seS,ctecNandst € [-1...00);

tra(c, s, ct,st) = (cwlc,ct] = s A ct2stle,ct] = st A 0 < et < tid[c] A —1 < st < tid]s])

An informal interpretation of tra(c, s, ct, st) is: tra(c, s, ct, st) = ‘inits ¢t + 1** trans-
action, client ¢ transacted with service s, which was the st + 1*h transaction of s, and
distributed transaction (¢, s, ct) terminated’.

Note that tra(c, s, ct,—1) can also hold: every transaction of which the request is lost
- Scenario 2 of figure 3.1- is modeled to have a service-transaction-id of —1. In such
transactions, client ¢ chooses the 27¢ alternative upon execution of S6. The service s can
never decide to commit the transaction with service-transaction-id —1 because tid][s] is
initially 0 and cannot decrease over time. Hence those transactions always ‘abort’. This is
known as a strategy that defaults to aborting transactions [KLS90]. Connected to this are
the modeling choices to make cd rectangular (but not square) and extending the range of
ct2st to include -1. A consequence of this is that ¢t2st is not an injective map from client-
to service-transaction-id’s.

For all transactions for which ¢ra holds we require that the commit decisions of ¢ and s are
equal, which is expressed by Ip(c, s) given below. Finally, I expresses that for each client
and service pair (¢, s), Ip(c, s) holds (requirement 1 of the problem statement), the main
partial correctness criterion;

Iy : (Ve,s:ceC AseS : Iples))
Io(c,s) : (Vet,st : tra(e, s, ct,st) : cdle,ct] = cdls, st]), for c€ C, s € 5.

In the sequel we show that J; is maintained by the main program given in section 3.4.4. In
doing so we need quite a lot of invariants and assertions. The invariants are introduced in
section 3.5.2. The assertions needed are given in section 3.6 along with compact proofs of
their local correctness. Global correctness of the assertions is proved in section 3.7. The
validity of the invariants is discussed in section 3.8.

3.5.2 Other invariants and auxiliary functions

In this section we define some auxiliary functions and and system- and repetition-invariants
needed to prove that Iy holds in the sequel. The auxiliary functions are introduced in section
3.5.2.1, the system-invariants are introduced in section 3.5.2.2 and the repetition-invariants
are introduced in section 3.5.2.3

3.5.2.1 Auxiliary functions

We define the following auxiliary functions forc € C,s € Sand ct € N;
srqi(c, s,ct) = {m|m € rgi[s] A m.fa=c A m.tid = ct}
srpi(c,s,ct) = {m|m €rpilc] A m.fa=s A m.tid = ct}
sfi(c,s,ct) = {m|m e fils] A m.fa=c A m.tid = ct}
gu(c, ct) = (RQO|c, ct], RPOl¢,ct], CDlc,ct])

An intuitive explanation is given below;

62 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

o s7qi(c, s, ct): the smallest subset of rqi[s] that contains all requests of the ct + 1*

transaction of client c.

e srpi(c, s, ct): the smallest subset of rpi[c] that contains all replies of the ¢t + 1tk
transaction of client c.

e sfii(c,s,ct): the smallest subset of ffi[s] that contains all commit decisions of the
ct + 1" transaction of client c.

e guv(c,ct): the ghost variable array containing the ghost variables introduced in sec-
tion 3.4 of the ¢t + 1*" transaction of client c.

3.5.2.2 System invariants

In the invariants below, we introduce some superfluous dummy variables in order to in-
crease readability, a drawback of this approach is of course a more complex domain de-
scription in the quantifications. In particular, the dummy variable ct for client-transaction-
id is superfluous in predicates prgi,,prpi;, and pffi;. The dummy variable ¢ for client is
superfluous in predicates prgi; and pffi; and s for service is superfluous in predicate prpi;.

prqiy - (Ym,s : s€ S Amewrgils] : mfacC AN mia=s)
prgiy (Vm,s,c,ct : s€S A mergils] N c=m.fa A ct =m.tid :
gu(c,ct) = (1,0,0) A cwle,ct] =s
)
prgiy : (Vs : se€8 : |rqifs]| < 1)
prpiy - (Ym,c : c€ C A merpilc] : m.faeS A mta=c)
prpiy (¥m,c,s,¢ct : c€C AN m€rpilc] AN s=m.fa A ct =m.tid :

gv(c,ct) = (1,1,0) A (tid[s] = ct2st[c, ct] V m.to) A srqi(e, s, ct) =0

)

o ¢ (Ym,s : s€S A mefis] : mfacC Amta=s)
pffiy : (Vm,s,c,ct - s€S AN mefi[s] Nc=m.fa A ct =m.tid :
gv(c,et) = (1,1,1) A edle,ct] = —m.to A srpi(c,s,ct) =0
)
pewy (Ve,s,ct : c€C AN s€ES A cteN : [srqie,s,ct)Usrpi(e, s, ct)] < 1)
pct2sty @ (Ve,s,ct ce€eC AseES A RQO[c,.ct] =0 : ct2stfc,ct] < tid[s])

pRQO; : (Ve,s,ct i c€C AseS ANcteN A RQO[c,ct] =0 :
srqi(c, s, ct) Usrpi(c,s,ct) =0

pedyp (Vs,st : s €S Atid[s] < st : —cd|s, st])
pCD; (Ve,s : c€C AN seS A CDle,tid[c]] =0 :
—cdle, tid[c]] A —ed[s, ct2ste, tid]c]]]
)
PgUg (Ve,ct + RQOc,ct] =1 A CDle,ct] =0 tidlc] = ct)
An intuitive description of the invariants is given below;

e prgi,: expresses that every request in 7¢i[s| was sent to s by some client.

3.5. PARTIAL CORRECTNESS CRITERIA 63

e prygi,: expresses that for a request {c, s, tid, to) € rgi[s], the request belongs to the
tid + 1** transaction of client ¢ in which it chose to transact with s: no reply or
commit decision have yet been sent during this transaction.

e prgiy: expresses that the request queue of a service cannot contain more than one
request.

e prpiy: expresses that every reply or timeout in 7pi[c] was sent to ¢ by some service.

e prpi,: expresses that for a reply or timeout (s, c,tid,to) € rpilc|, that it was sent
during the tid + 1** transaction of client ¢. If the message is not a timeout, the
service has not completed its part of the distributed transaction (and is waiting for
a commit decision). The request-queue of the service contains no requests of this
distributed-transaction.

e pcwg: expresses that for any distributed transaction (c, s, ct), it cannot be the case
that both the request queue of s and the reply queue of c contain a message sent
during this transaction. Also, those queues can contain at most one message of trans-
action (c, s, ct) at any time.

e pctlsty: expresses that if a request has not been sent for a transaction, the corre-
sponding service-transaction-id must be smaller than tid[s].

e pffiy: expresses that every commit decision in ffi[c| was sent to s by some client.

o pffi,: expresses that a commit decision (c, s, tid, to) € ffi[s|was sent in the tid + 1t
transaction of client c. In addition, one request and one reply (or timeout) were sent
during this transaction and the reply-queue of the client does not contain that reply
(or timeout).

e pRQO;: expresses that if a client ¢ has sent no request during its ct+ 1*» transaction,
then no such request can exist in a request-queue of any s.

e pcdg: expresses that a service cannot have decided to commit a local-transaction if
the local-transaction did not yet terminate.

e pCDs: expresses that if a client ¢ has sent no commit decision during its ¢t + 1tk dis-
tributed transaction with service s, say, then neither s nor ¢ have decided to commit
their corresponding local-transactions.

e pgug: expresses that if a request was sent in the ¢t + 1%" transaction of client ¢ but
the commit decision was not yet sent, then the transaction has not yet terminated.

3.5.2.3 Repetition invariants

For each client ¢ we introduce the following repetition invariants:

pRQOy(c) : (VYet : ct €N : RQO[c,ct] <1 A (ct < tid[c] = RQO]c, ct] = 1))
pRPOy(c) : (Yet : ct € N : RPO[e,ct] <1 A (ct < tid[c] = RPO[c,ct] = 1))
pCDg(c) : (Yct : ct €N : CDle,ct] <1 A (ct < tid[c] = CDle,ct] = 1))

The invariants express that one request, one reply (or timeout) and one commit decision

are sent during each distributed-transaction. For each service s we define the following
repetition invariants:
pet2sti(s) : (Ve,et : c€C A ct €N A cwle,ct] = s : ct2stle, ct] < tid|s])
prpiz(s) : (Ymyc: c€C A merpilc] A m.fa=s : m.to)
pet2sty (s) expresses that there exist no client transaction with service-transaction-id ¢id][s].

prpis(s) expresses that any message in a reply-queue of a client that was sent by s, must
be a timeout.

64 CHAPTER 3. VERIFICATION OF THE 1-R/R PROTOCOL

3.6 Assertions: local correctness

In this subsection we give all assertions along with the hints needed to prove their local
correctness. We treat global correctness of the assertions in section 3.7. The hints are
detailed in the sense that the exact conjuncts from assertions and/or invariants needed are
provided. First year-style proofs that contain a step by step derivation have been omitted
as we trust that any reader interested in this chapter can work out such details with the
given hints. Also, the hints could be used in mechanically verifying the proofs. We remind
readers to keep copies of pages 56, 57, 130, 131 and 133 at hand in order to avoid a lot of
page turning (see appendix B).

As discussed in section 3.4.2, statements and assertions are numbered. In order to keep
things readable, we may use multiple assertions at a single control point. For example,
assertion A5 equals 45.1 A A5.2. By A5.1° we mean the i*" conjunct of 45.1. By
AB.1%7 we mean the ", j**, ... conjuncts of A5.1, by A6.1,2,3 we mean assertions
A6.1, A6.2 and A6.3.

For statements that consist of multiple sub-statements, we number the substitutions occur-
ring in the entire statements by the scheme ogn.1,05N.2 - - ., where SN is the statement
number. Note that these substitutions may be composed. For example, by 013 9 we mean
the substitution c,ct := ma.fa, my.tid. If statement SNV is the sequential composition
of K statements, we we use ogy to denote (csn.x)(0sn.kx—1)--.(OsNn.1)-

The two guards in the if-statement of S6 are labeled BE and B2. The guard of the repeat-
until statement in the service-component is labeled B7.

Some assertions like for example A5.2 are a corollary of co-assertions and/or invariants.
Although we use the same abbreviation system, it is noted of what co-assertions and/or
invariants the assertion is a corollary, if it is one.

3.6.1 Assertions in the main program

3.6.1.1 Assertion 0

Trivial: we use ¢rue as predicate over the initial state.

3.6.1.2 Assertion 1

We must show that A0 = A1(oy) holds.

e assertion 1.1: (Vc:c € C: pRQOy(c) N pRPOqy(c) A pCDy(c))
assertion 1.2: (Vs :s € S: prpia(s) A pct2sti(s) A rd[s])
local correctness: apply substitutions.

3.6.2 Assertions in the client component
3.6.2.1 Assertion 5

We must show that (V¢ : ¢ € C : Al = A5.) and A5(og) <= A8 hold for local
correctness of A5. Assertion A5.1 expresses the repetition invariants.

e assertion 5.1: pRQOy(c) A pRPOy(c) A pCDqy(c)
local correctness: Initial validity follows from assertion 1.1. Validity after S8: use
A8.3% and A8.1 and substitution.

e corollary 5.2: guv(c,tid[c]) = (0,0,0), corollary of assertion 5.1.

3.6. ASSERTIONS: LOCAL CORRECTNESS 65

3.6.2.2 Assertion 6

We obtain local correctness of A6 if we can show;

(Vs : s € §: A5 = (A6(cwle, tid[c]] := s)(s := §')))
e assertion 6.1: pRQO(c) A pRPOy(c) N pCDy(c)

local correctness: use assertion 5.1, and orthogonality of S5.
e assertion 6.2: cw(c, tid[c]] = s

local correctness: consequence of substitution.
s corollary 6.3: gu(c,tid[c]) = (0,0,0)

local correctness: corollary of A6.1.

e corollary 6.4: srqi(c, s, tid[c]) U srpi(c, s, tid[c]) = 0.
local correctness: corollary of A46.1! and pRQO;.

3.6.2.3 Assertion7

For local correctness we must establish A6 = [(AT(c61)) A (A7(06.2))], where
06.1, 0p.2 correspond to the multiple assignments of the 1%t and 279 alternative in S6
respectively.

e assertion 7.1: (pRQOy(c) A pRPOo(c)) (N := N/{tid[c]}) A pCDog(c)
Iocal correctness: use assertion 6.1 and orthogonality of S6.

e assertion 7.2: cw(c, tid[c]] = s
local correctness: use assertion 6.2 and orthogonality of S6.

e assertion 7.3: gu(c,tid[c]) = (1,0,0) V gv(c, tid[c]) = (1,1,0)

local correctness: follows from

(46.3 = (gu(c,tid]d]) = (1,0,0)061)) A (A6.3 = (gv(c, tid[d]) = (1,1,0)06.3)) -

e corollary 7.4: |srqi(c, s, tid[c]) U srpi(c, s, tid|c])] < 1.

local correctness: corollary of pcwg.

3.6.2.4 Assertion 8

Note that the variable cv does not occur in any co-assertion of A8. Hence we obtain local
correctness of A8 if we can prove;

((3m :m € rpilc] : m.fa=s A m.tid = tid[c]) N AT)
<V77>1 :m €mpilc) A m.fa=s A m.tid=tid[c] : A8 (rpilc] := rpilc]/{mz}) (m2 := m)).
e assertion 8.1:
(pRQOy(c) A pRPOo(c)) (N := N/{tid[c]}) N pCDy(c)
Iecal correctness: use assertion 7.1 and orthogonality of S7.

e assertion 8.2: cwlc, tid[c]] = s

66 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

local correctness: use assertion 7.2 and orthogonality of S7.

e assertion 8.3: gu(c, tid[c]) = (1,1,0) A (tid[s] = ct2st[c, tid[c]] V ma.t0)
local correctness: use prpi; (mo was taken from rpi[c]).

e assertion 8.4: srqi(c, s, tid[c]) =0 A srpi(c, s, tidlc]) = 0.
Jocal correctness: using A8.2, prpi, and prgiy and C NS = § we have

srqi(c, s, tid|c]) N srpi(c, s, tid[c]) = 0.

Using A7.4 and the removal of my from rpic|, 8.4 follows.

3.6.3 Assertions in the service component
3.6.3.1 Assertion 13

Assertions A13%? expresses the outermost repetition invariants of service s. We must show
that A1 = A13 and A18 = (A13(o1s)) hold.

e assertion 13.1: prpia(s)
local correctness: initially: use A1.21. After S18: use A18.4 and orthogonality of
518.

e assertion 13.2: pct2sti(s)
local correctness: initially: use A1.22. After S18: apply substitutions, use A18.1°
and A18.5.

e assertion 13.3: rd[s]
local correctness: initially: use A1.23. After S18: apply substitutions.

3.6.3.2 = Assertion 14

We must show;
(A13 A rgi[s] #0) = (Vm:m € rgi[s] : Al4(013.3)(013.2)(m1 = m))
e assertion 14.1: gv(c,ct) = (1,0,0) A cwle,ct] = s A ct2stc, ct] = tid[s]
local correctness: apply substitutions; use prqig, and prgé;.

e assertion 14.2: srqi(c,s,ct) =0 A srpi(c,s,ct) =0
local correctness: using prpig, prqig and C NS = () we obtain

srqi(c, s, tid[c]) N srpi(c, s, tidlc]) = 0.
Using pcwyg, and the removal of my from rgi[s], A14.2 follows.

e assertion 14.3: prpis(s)
local correctness: use A13.1 and orthogonality of S13.

s assertion 14.4:
ve',ct' : € Chct’ e NAcw[d,ct'] =sA—(d =cha’ =ct) : ct2st[c,et’] < tid[s])
local correctness: use A13.2 and orthogonality of S13.

e assertion 14.5: —rd]s]
local correctness: apply substitution.

3.6. ASSERTIONS: LOCAL CORRECTNESS 67

3.6.3.3 Assertion 16

First, we must show that A14 = (A16(014.1)) and Al4 = (Al16(o14.2)) hold, where
014.1, O14.2 correspond to the multiple assignments of the 1°¢ and 274 glternatives in S14
respectively. Second, we must show that (A17 A =(ms.fa = ¢ A ma.ta = s A m3.tid =
ct)) => A16 holds. Note that for ¢ : 1 < i < 2, the assertions 16.7 and 17.i are equal. For
j: 3<j <6, wehavethat A16.7 and A17.j + 2 are equal. Hence we only provide hints
for the first proof obligation;

e assertion 16.1: (gv(c,ct) = (1,1,0) V gv(c,ct) = (1,1,1)) A | cwle, ct] =
s A ct2stle,ct] = tid[s]

local correctness: apply substitutions; use A14.1 and V-weakening.

e assertion 16.2: srgi(c,s,ct) =0
local correctness: use A14.2 and orthogonality of S14.

e assertion 16.3: prpia(s)(C = C/{c})
local correctness: use A14.3 and orthogonality of S14.

e assertion 16.4: (Vm : m € rpi[c] A ~m.to A m.fa=s : m.tid = ct)
local correctness: apply substitutions; use A14.3.

o assertion 16.5:

(vc,et' i d € CAhet' e NAewld, et = sA(d =chet' =ct) : ct2st|d, ct'] < tid[s])

local correctness: use A14.4 and orthogonality of S14.

e assertion 16.6: —rd]s]
local correctness: use A14.5 and orthogonality of S14.

3.6.3.4 Assertion 17

‘We must show:
[A16 A fis] # 0] = (Ym:m € ffils] : Al7(016.2)(m3 1= m)).

e assertion 17.1: [gv(c,ct) = (1,1,0) V gu(c,ct) = (1,1,1)] A cwle,ct] =s A
ct2stle, ct] = tid[s]
local correctness: use A16.1 and orthogonality of S16.
o assertion 17.2: srqi(c,s,ct) =0
local correctness: use A16.2 and orthogonality of S16.
e assertion 17.3: gu(ma.fa,ms.tid) = (1,1,1) A cdlms.fa,ms.tid] = -ma.to A
srpi(ma.fa, s, ms.tid) =0
local correctness: use pffi, to obtain mg.ta = s, use pffi;.

e assertion 17.4: ms.fa € C

local correctness: use pffi,: ma was taken from fi[s]

e assertion 17.5: prpis(s)(C :=C/{c})
local correctness: use A16.3 and orthogonality of S16.

e assertion 17.6: (Ym : m € rpilc] A —m.to A m.fa=s : m.tid = ct)

68 CHAPTER 3. VERIFICATION OF THE 1-R/R PROTOCOL

local correctness: use A16.4 and orthogonality of S16.
e assertion 17.7:
(vciet' : € Cnet' e NAcw[d,ct'] = sA—=(d =cAhct’ =ct) @ ct2st]d, ct’] < tid[s])
local correctness: use A16.5 and orthogonality of S16.

o assertion 17.8: —rd]s]
local correctness: initially: use A16.6 and orthogonality of S16.

~

3.6.3.5 Assertion 18
We must show that { A17 A Bi7) = Al8 holds.

e assertion 18.1: gu(c,ct) = (1,1,1) A cwle,ct] =s A ct2stfc, ct] = tid]s]
local correctness: we obtain 18.1' by combining By7 and A17.31. The other con-
juncts equal those of 17.1.

e assertion 18.2: srqi(c,s,ct) =0 A srpi(c,s,ct) =0
local correctness: combine A17.2, B;; and A17.33

e assertion 18.3: cd]c, ct] = —ms.to

local correctness: combine A17.32 and By

e assertion 18.4: prpis(s)
local correctness: combine By7, A17.3% and A17.5.

e assertion 18.5:
Ve, ct' i e Chct' eNAcwld et =sA=(d =chct =ct) : ct2stld,ct’] < tid[s])
local correctness: use A17.7.

e assertion 18.6: —rd]s]

local correctness: use A17.8.

3.7. ASSERTIONS: GLOBAL CORRECTNESS 69
3.7 Assertions: global correctness

In this section we prove global correctness of the assertions presented in section 3.6.

3.7.1 Introduction

We have the following proof obligations;
No client ¢/ disturbs assertions of a different client ¢ This proof obligation is discussed
in section 3.7.2.

No service s disturbs assertions of client ¢ or vice versa: This proof obligation is discussed
in section 3.7.3.

No service s’ disturbs assertions of a different service s: This proof obligation is discussed
in section 3.7.4.

Note that assertions A0 and A1 are globally correct as there is no parallelism yet at those
control points whence we disregard them in this section. Before delving into the three
proof obligations of global correctness, we discuss two types of assertions of which global
correctness is trivial to prove;

o Assertions in a component that contain only its own local- and/or private variables:
for such assertions we can use the Rule of Private Variables [FvG99] whence their
global correctness is guaranteed.

o Assertions that are a corollary of other assertions and/or system-invariants: those are
globally correct if we can show the other assertions and/or system-invariants to be
s0.

Combining the above remarks and tables 3.4 and 3.5, table 3.6 lists all assertions different
from AQ and Al, that are not a corollary of other assertions and/or system invariants and
contain at least one variable not owned by the component in which the assertion occurs.

assertion | co-assertions

A5 A5.12

A6 A6.12

A7 AT.1% A73

A8 A8.1%, A8.3, A8.4
Al3 all except A13.3
Al4 all except A14.5
Al6 all except A16.6
Al7 all except A17.4,8
Al8 all except A18.6

Table 3.6: Remaining assertions (1)

Assertions omitted because they are a corollary have a local correctness hint given in sec-
tion 3.6 mentioning of what assertions and/or invariants it is a corollary. Assertions omitted
because they contain only variables owned by the component in which the assertion occurs,
only contain variables listed in table 3.4. In the sequel we only discuss global correctness
of the assertions given in table 3.6.

70 CHAPTER 3. VERIFICATION OF THE 1-R/R PROTOCOL

3.7.2 Absence of disturbance between clients

In this subsection we show that a client ¢’ cannot disturb assertions of a different client c:
one of the proof obligations for global correctness of the assertions of clients.

Clients have neither assertions containing, nor statements modifying private variables. Nei-
ther has client ¢ assertions in which local variables of client ¢/ occur. Hence we must only
deal with assertions of client ¢ that contain shared variables in this subsection.

From table 3.5 we obtain that the only shared variables written by ¢’ are rgi[sc|, rpi[c],
RPOI¢] and ffi[s./]. Note that ¢ has no assertions in which ffi, RPO|[c'] or rpi[c'] occur.
This leaves only r¢i[s.s] which occurs only in the form srqi(c, s, tid[c]) in A8.4.. Client

¢’ contains only statements that are orthogonal to this set. Indeed ¢’ # ¢ = srqi(c, s,ct) N
srqi(c, s, ct’) = 0, for all services s, s’ and naturals ct, ct'.

3.7.3 Absence of disturbance between clients and services

In this section we show absence of disturbance between clients and services. We treat
similar assertions in a single argument;

e Assertions A13.1, A14.3, A16.3,4, A17.5,6 and A18.4 of service s are all similar
in the sense that rpi[cs] is the only occurring variable that is not owned by service s.
Hence for those assertions, the only non-orthogonal statements of a client ¢ are 56,
and S7,. Statement S6. (2"¢ alternative) adds only timeouts to rpi[c], S7. removes
only messages from rpi[c]: the reader may check that those statements cannot disturb
A13.1, A14.3, A16.3,4, A17.5,6 or A18.4.

e Assertions A13.2, A14.4, A16.5, A17.7 and A18.5 of a service s are all similar. The
free variables occurring in these assertions not owned by s are cw in the antecedent
and ct2st in the consequent: the only potentially disturbing statement in the client
component is S5. By A5.1! and system-invariant pct2st, the pre-condition to 55.2
implies ct2st|c, tid[c]] < tid[s].

e As for A17.3, note that a client ¢ can only disturb it if (3.1) defined below holds.

c=ms.fa A tid[c] = ms.tid 3.1

Assuming (3.1), we have that the ghost-variables provide disjointness;
(A17.30 A (452 Vv A6:3 vV AT.3V A83')) = false

Hence we have either disjointness if (3.1) holds or orthogonality otherwise.

Using the above arguments and table 3.6, we need only prove absence of disturbance be-
tween clients and services of the assertions. given in the first two columns of table 3.7.
For the first 4 rows in table 3.7, the fourth column lists which statements in the service
components are non-orthogonal to the client-assertion in the first column due to the shared
variables listed in the third column: those variables also occur in some of the statements of
clients.

Likewise, for the last 4 rows in table 3.7, the fourth column lists which statements in the
client components are non-orthogonal (11.0.) to the service-assertion in first column due to
the variables listed in the third column.

Next we show that client ¢ and service s can only disturb the assertions listed in table 3.7
if the following non-orthogonality condition holds;

cs =c A ctg = tid[c] 3.2)

3.7. ASSERTIONS: GLOBAL CORRECTNESS 71

assertion | co-assertions variables n.o0. statements
Ab Ab5.12 RPO S14

A6 A6.12 RPO 514

A7 A?.lz, A7.3 RPO S14

A8 A8.1%2, A8.3, A8.4 | RPO,tid, ct2st,rqi,rpi S513.3,514, 518
Al3 none none none

Al4 Al4.1,2 RQO,RPO,CD, cw,rqi,rpi S5, 56,57,58
Al6 Al16.1,2 RQO,RPO,CD, cw,rqi S5,56,.58

Al7 Al17.1,2 RQO,RPO,CD, cw,rqi S5, 56,58

Al8 Al18.1,2,3 RQO,RPO,CD,cd,cw,rqi,rpi | 55,56,57,58

Table 3.7: Remaining assertions (2)

o For the remaining assertions of client ¢ occurring in table 3.7, the only statements of
s that can disturb assertions of ¢ are S13, S14 and S18;

Of all variables shown in the first four rows of table 3.7, S14 contains only
assignments to RPO and rpi[cs]. As remarked before, rpi occurs only in
the form srpi(c, s,tid[c]) in assertions of client ¢ whence S14 is only non-
orthogonal to this set if (3.2) holds. As for RPO, this array occurs only with
first index ¢ in assertions of client ¢. Hence for S14; to be non-orthogonal to
assertions of client ¢, ¢, = c is a necessary condition. Due to A14.1* and pgug
we have that ¢; = ¢ = ct; = tid|c]. Hence if S14, is non-orthogonal to the
assertions listed in table 3.7, then (3.2) holds at A14.

We can use the same line of reasoning for S13.3 as for S14. Of all variables
shown in the fourth rows of table 3.7, S13.3 contains only assignments to rg?
and ct2st. These arrays occur only with first index c¢ in assertions of client c.
Hence for $13.3; to be non-orthogonal to assertions of client ¢, ¢; = cis a
necessary condition. Note that using prqgi; we obtain guv(cs, cts) = (1,0,0) as
precondition to S13.3,. Then using pguy (which is not disturbed by S13.1,2)
we have that ¢, = ¢ = ct; = tid]c] holds as precondition to S13.3. Hence if
513.3, is non-orthogonal to the assertions listed in table 3.7, then (3.2) holds
as precondition to .$13.3.

518, is only non-orthogonal to A8.32, but only if s, = s: assume so. Fur-
thermore, S18, can only disturb A8.32 if in addition, the second disjunct of
A8.32 equals false in which case the first disjunct holds: assume so. Com-
bining A8:2, and the first disjunct of A8.32 we obtain cwlc, tid|c]] = s A
ct2st|c, tid[c]] = tid[s]. From A18.5, it follows that for no pair other than
¢s, Cts we have cwcs, cts] = s A ct2st[cs, cts] = tid[s| whence (3.2) holds.

e The arrays RQO, RPO, CD, c¢d and cw occur only at index ¢, ¢t in the remaining
assertions of service s listed in table 3.7. Also, any client ¢ only manipulates those
arrays at index ¢, tid[c]. As for rqi and rpi, note that those occur only in the form of
srqi(cs, s, cts) and srpi(cs, s, cts) in assertions of s. These sets can only be affected
by statements S6., and S7,,, but only if (3.2) holds.

In the remainder of this section we (silently) assume (3.2) to hold. It happens to be so that
this non-orthogonality condition greatly reduces the number of global correctness proofs.
In the service’s assertions the ghost variable vector gv(c, ct) occurs, in those of the clients,
gv(c,tid|c]) occurs. In table 3.8 the field denoted by row ¢, column 7 gives the value of
gv(e, tid[c]) when client ¢ and service s are at control points 4,7, respectively, under the
assumption that cts = tid[c] A ¢s = ¢. For example, row A7.3, column A16.11, has the

value (1,1,

0) that can be inferred from A7.3 A A16.1 A ct = tid[c].

72 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

Note that we also added the column S13.3: this corresponds to the service s being at
‘control-point” S13.3 while client c is at either of its control points, assuming (3.2). Al-
though A13 lacks a co-assertion expressing the value of gu(c, ct), we can locally derive
gv(e, ct) = (1,0, 0) as precondition to S13.3 using prgé; and orthogonality of statements
S13.1,2 to prqi;.

| 5133 Al14.1' Ale.1' A17.1' A18.1!

A52 | - . - - -
A63 | - - - - -
A7.3 | (1,0,0) (10,00 (1,1,0) (1,10 -
A83 | - - (LLO) (1,1,0) -

Table 3.8: Values of gu(e, tid[c]) at joint control points, assuming (3.2).

>

At for example row A5.2, column A18.11, *-> indicates that the conjunction of the co-
assertions describing the ghost variables and the assumption ¢t = ¢id[c] yields false. It
follows that neither neither S18 can disturb A5, nor can S5 disturb A18: the control points
are disjoint under (3.2).

Combining tables 3.7 and 3.8, table 3.9 shows for which assertions we must still prove non-
disturbance. How exactly one arrives at table 3.9 is described informally by the following
algorithm which should be applied to each row of table 3.7:

1. remove all statements from the fourth column for which table 3.8 shows disjointness.
2. repeat the following until nothing is removed anymore:
(a) remove any variable from column 3 which does not occur both in any assertion

of column 2 and any statement in column 4.

(b) for each row: remove all assertions from column 2 and statements from column
4 that contain no variables listed in column 3.

Note that any statement or variable removed by this procedure is either disjoint or or-
thogonal and table 3.7 shrinks during each repetition of the second statement whence the
procedure terminates.

assertion | co-assertions | variables | non-disjoint and non-orthogonai
A5 none none none

A6 none none none

A7 A71%2,A73 | RPO 514

A8 none none none

Al3 none none none

Al4 A14.22 roi S7

Al6 Al6.1% CD S8

Al7 Al17.11 CD S8

Al8 none none none

Table 3.9: Remaining assertions (3)

In the remainder of this section we treat non-disturbance of the assertions listed in the
second column of table 3.9 by the statements listed in the fourth column, assuming (3.2).

3.7. ASSERTIONS: GLOBAL CORRECTNESS 73

3.7.3.1 Assertion 7

From table 3.9 it follows that we must show that S14 cannot disturb A7.1% or A7.3, as-
suming (3.2).

o A7.1%: the antecedent of A7.1% becomes false if we substitute the dummy variable
ct by tid|c]. Hence we have orthogonality.

e A7.3: From table 3.8 we obtain;
(A7.3 N Al4.11 A et =tidc]) = gv{c,tid[c]) = (1,0,0).
Global correctness of A7.3 follows from the following (valid) Hoare-triple

{ gv(c, tid[c]) = (1,0,0) }
S14

{ gv(c, tidld]) = (1,1,0) }
Which implies (by weakening the postcondition):

{A7.3 A A14.1Y A a =tidc] }
514
{ A7.3}

3.7.3.2 Assertion 14

From table 3.9 it follows that we must show that S7 cannot disturb A14.2%. Assuming (3.2),
we have widening of A14.22. In fact, with somewhat work one can show disjointness under
(3.2).

3.7.3.3 Assertions 16 and 17

From table 3.9 it follows we must show that S8 cannot disturb A16.1! and A17.1%. For
A17.1" we have the same proof obligation. As A17.1' equals A16.1!, we give the proof
once for A16.12.

From table 3.8 we obtain;
((A16.1" v A17.1') A A83' A et =tid[c]) = gu(c,tid[c]) = (1,1,0).

Non-disturbance of 416.1! by A8 follows from the following (valid) Hoare-triple:

{ gv(c, tidld]) = (1,1,0) }
S8

{ gvle,tidld)) = (1,1,1) }
Which implies (by weakening the postcondition):
{ A16.1* A A83' A ¢t =tid[c] }

S8
{ A16.1}

74 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

3.7.4 Absence of disturbance between services

In this section we prove that no service s’ disturbs assertions of a different service s: one
of the proof obligations for global correctness of the assertions of the services.

We must prove global-correctness of the assertions listed in the second column of table 3.7.
For the local- or private and shared variables of component s we refer to tables 3.4 and
3.5 respectively. From table 3.5 we find that rd[s] and rgi[s] do not occur in statements of
service s’. Neither do rd[s'] and rqi[s’] occur in assertions of service s. Hence we may
ignore these variables in showing absence of disturbance between services. Also note that
assertions of service s contain neither local nor private variables of service s’ (see table
3.4).

As the reader may check, S18,, from any service s’ # s is orthogonal to assertions of
service s. Indeed: ¢d[s'] - the only non-local variable changed by S18, - does not occur in
assertions of s for the following reasons;

e It does not occur in A17.32 by A17.4,andC NS =0
(s'#s As €S AN AlT4;, ACNS=0 A s =mg.fa) = false

o From table 3.4 we infer that cd|c| is a local variable of client ¢, hence A18.3, cannot
be disturbed by S18,/. The other assertions of s do not contain cd at all.

The only non-local variable changed by S16 is ffi[s'], which does not occur in any asser-
tions. This leaves only the possibility of S134 or §14, disturbing assertions of s. Any
disturbance by S13, would be due only to the assignment to ct2st in 513.3. Indeed,
rqils'] and rd[s’] do not occur in assertions of service s.

Table 3.10 provides an overview of which assertions of service s are potentially non-
orthogonal to statements $13.34 and S14,. In the second column, the variables are shown
that occur both in those statements and the assertions in columns A13.3;, A14 etc. Asser-
tions in these columns are non-orthogonal due to the variable in the first column. The table
is constructed such that similar co-assertions are on the same row in the table. In particular,
for every pair of co-assertions in the same row we have that the co-assertion that is most
to the left in table 3.10 implies the other co-assertion. In the sequel we treat co-assertions
row-wise as they appear in table 3.10. We identify the co-assertions in a particular row by
the left-most co-assertion occurring in it. For example, the co-assertions in the last row in
table 3.10 are called ‘row A14.11".

Statement | variables Al3, Al4, Al6, Al7, Al8;
5133, | ct2stles, ctor] AT4.13 | A16.13 | Al7.13 | AIR.13
ct2stles, cty] | A13.2, | Aldd, | A16.5, | A17.7, | A18.5,
S14,, rpilcs] A14.92 A18.22
rpifce] A13.1, | A14.3, | A16.3, | A17.5, | A18.4,
rpifes] Al6.4, | Al7.6,
rpilcs] A17.33
RPOlcy, cty] A14.11 | A16.11 | A17.11 | A18.11

Table 3.10: Overview of disturbance between services

We start with rows A17.33, A13.1,, A16.4,, and A13.2;;

e row A17.33: S14, can only disturb it if

ms,.fa =cy Ams,.tid = cty,

3.7. ASSERTIONS: GLOBAL CORRECTNESS 75

in which case we have disjointness by

(A17.3) A A14.1;) = false.

e rows A13.1, and A16.4,: S14, adds a message m to rpijcy] for which m.fa = s’
holds: the statement is orthogonal to all predicates appearing in rows A13.1s and
Al16.4, by s’ # s. Indeed, those predicates express only properties of messages
m' € rqilc,] for whichm’. fa = s holds.

e row A13.2,: note the conjunct cw|e, ct] = s appearing in the antecedent of all pred-
icates (where c and ct are dummies but s is not!). By prgi; we have that the pre-
condition of S13.3, implies cwlcy,cts] = §'. Hence S13, is orthogonal to the
predicates in row A13.2,.

Tt remains to show service s’ cannot disturb the co-assertions in rows A14.1%, A14.22 and
A14.1}. For assertions in those rows, we use a single argument of the following structure:

¢ First we show that s’ can only disturb assertions in those rows if (3.3) defined below
is precondition to the disturbing statements.

Cyt = Cs NCtg = Ctgr (3.3)

e Second we show this condition cannot hold, in which case we have shown disjoint-
ness under non-orthogonality.

We start with the first bullet. For the assertions in rows A14.11 and A14.13 it is rather
obvious that those can only be disturbed by S13, or S14, if (3.3) holds. Indeed, the
arrays ct2st and RPO occur only with index cs, ct, in those assertions. For row Al4.2§,
the clue is to observe that S14, adds a message m to rpi[cs] for which we have m.ta =
cer Am.tid = cty. This statement can only affect srpi(cs, s, cts) if (3.3) holds.

As for the second bullet, we nust show that it cannot be the case that (3.3) holds. Observe
that 14.12 expresses cw/cs, ¢ts] = s. By prqi; and orthogonality of 513.1, 2, the precon-
dition of $13.3, implies cwlcy/, ctyr] = s’ (which equals A14.12,). Disjointness follows
from:

(s #5 A cwles,cts] = s A cwles,cts] =8 N s =co Ncty =cty) = false.

76 CHAPTER 3. VERIFICATION OF THE 1-R/R PROTOCOL

3.8 Invariants: correctness

In this section we prove the validity of the system-invariants introduced in sections 3.5.1 and
3.5.2. Validity of all system-invariants at control point A1 follows directly after applying
the substitutions present in S0. Hence we only show that non-orthogonal statements of
clients or services cannot disturb the system-invariants.

3.8.0.1 Imvariance of I

Compared to other system-invariants, we give a somewhat more detailed analysis of Iy’s
invariance as it captures requirement 1 of the problem statement given on page 17. The
structure of I is such that if tra{c, s, ct, st) holds forc € C,s € S,ct € Nand —1 < st,
then cd|c, ct] must equal cd[s, st]. Hence from the client component, only statement 58.3
potentially disturbs Iy. Indeed, —tra(c, s., tid|c], ct2st[c, tid[c]]) holds as precondition to
each (sub-)statement of client ¢ by = (¢tid[c] < tid[c]) and cd is only written by client ¢ at
index ¢, tid[c]. Aside from the invariants Iy and pC'D; we need assertions A8.2 and A8.3;

In As€S A ceC A culetidld]] =s A guletidd]) = (1,1,0) A
pCD;1 A (ma.toV ct2stle, tid|c]] = tid[s])
I(os.3)(08.2)(0s.1)
{definition of Iy, 0 5 is orthogonal to Ip(cs.3)}
(Ve,s":deC N s e€S:Ihcd,s)) (083) (0s.1)
{splitoff: ¢ = c,usec€ C}
((ve'ys" : deCl{c} NS €S : In(d,s))y N(Vs : €8 : Iycs))) (0s3) (08.1)

1% conjunct: orthogonal to substitutions: use Iy.

274 conjunct: definition of Iy(c, 8), tra, skolemization.
(Ve ct/, st :

s'€S A cwle,et'] =8 A ct2stfc,ct’] = st' A0 <et! < tid[c] A

—1 < st' < tid[s'] : edle, ct’] = ed]s', st']
) (08.3)(08.1)
{substitution, once}
(Vs ct’, st :

s €8 A cwle,ct’l =5 A ct2stle,ct’] =st' A0 <t <tide]+ 1A

—1 < st’ < tid[s'] : edle, ct’] = cd[s, st']
) (08.1)
{split off: ct’ = tid|c], use ¢ € C implies tid[c] € N by declaration of ¢ and tid}
((Vs et st : €8 A cwle,et’] =5 A ct2stlc,ct’] = st A

0<ct <tidld] N —1 < st <tid]s] : cdle,ct’'] = cd[s, st']
) A
(Vs' st : s €S A cwle,tidlc]] =8 A ct2stle, tid[c]] = st’ A —1 < st < tid[s'] :
cdle, tid[c]] = cd[s’, st’]

e

v

fil

)
) (08.1)
_ 1%% conjunct: orthogonal to og 1, use Iy
- 274 conjunct: apply substitution; use cwlc, tidlc]] = s A s € S

(Vst' : ct2st[c,tid]c]] = st' A —1 < st' < tid[s] : (-ma.toAcv) = cdls, st'])

{1-point rule}

(=1 < ct2ste, tid[c]] < tid[s]) = ((—ma.to A cv) = cdls, ct2st]c, tid[c]]])

{use gv(e, tid|c]]) = (1,1,0), in particular CDle, tid[c]] = 0. Use pCD; : —cdls, ct2st[c, tid[c]]]}
—1 < ct2st[c, tid|c]] < tid[s] = (ma.toV —cv)

{use mq.to V tid[s] = ct2st[c, tid[c]|}

true

1t

1l

3.8. INVARIANTS: CORRECTNESS 77

The next thing to show is that no service disturbs Ip. There are two potentially disturbing
statements in the service component. $13.3, in particular the assignment to ct2st{c;, cts]
and S18. As for 513.3, observe that —tra(cs, s, cts, tid[s]) holds as a postcondition of
513.3 as —(tid[s] < tid[s]), hence Iy is not disturbed (widening). As for S18, using
A18.1%3 and A18.3 it is immediate that S18 leaves Iy invariant. Indeed, by A18.1%3 it
follows S18 only affects Io(cs,). The reader may verify that the following holds:

(Io(cs./s) A A18.1%% A A183) = IQ(CS,S) (0’18.1)‘

3.8.0.2 Invariance of prqig

The only free variable occurring in prqig is rgi[S] in the antecedent. Hence S5, 57, 58, S14, 516
and S18 are orthogonal.

e 56, 1t alternative only: use c € C and s € S: follows from declaration of ¢, s
respectively.

e 513.3: widening.

3.8.0.3 Imvariance of prqgi;

Free variables occurring in prqi; are rqi[S] in the antecedent and cw[C], RQO[C], RPO[C]
and CD|[C] in the consequent. Hence S7, 516 and 518 are orthogonal.

e S5: from A5.1' and pRQO; we obtain srqi(c, s, tid[c]) = 0.
s S6:

— 1%t alternative: use A6.2, A6.3 and substitution.
~ 274 glternative: use A6.4.

e 58.1: use A8.4%.

S513.4, widening.

514, either alternative: use A14.2%.

3.8.0.4 Invariance of prgis

The only free variable occurring in prqis is rqi[S] in the consequent. Hence only 56 (1%t
alternative) and 513 are non-orthogonal.

e 56 (1% alternative only): use Bgt.

e S513.4, widening.

3.8.0.5 Imvariance of prpig

The only variable occurring in prpig is rpi[C] in the antecedent. Hence S5, S8, 513, 516
and S18 are orthogonal.

e 56 (2™ alternative only): use ¢ € C and s € S: follows from declaration of ¢, s
respectively.

o 57.2: widening.

e S14, either alternative: use ¢ € C and s € S: follows from declaration of ¢, s
respectively.

78 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

3.8.0.6 Invariance of prpi;

Variables occurring in prpi; are rpi[C] in the antecedent and ¢id[S], ct2st[C], rqi[S],
RQO|C], RPO|C], and CD[C] in the consequent. Hence only S5 and 516 are orthogonal.
e S6:

— 1%t alternative: use A6.4.

— 2nd glternative: use A6.3, A6.4% and the fact that the message added to rpilc]
is a timeout.

e 57.3: widening.

S8: for $8.1: use A8.42.

513.4: using pcwg and the fact that m; is taken from rgi[s], it follows that the
precondition of $13.4 implies srpi(c, s, ct) = 0.

S514: use A14.11:3 and A14.2%;
S18:; use A18.4.

3.8.0.7 Imvariance of pffiy

The only variable occurring in pffi, is £fi[S] in the antecedent. Hence S5, S6, 57, S13, 514
and 518 are orthogonal.

e S8:usec € .Cands € S: follow from declaration of ¢, s respectively.

e S16: widening.

3.8.0.8 Invariance of pffi;

Variables occurring in pffi; are ffi[9] in the antecedent and RQO[C], RPOIC], CD[C],
¢d[C] and rpi[C] in the consequent. By gu(c, ct) = (1,1, 1) in the consequent and the fact
that every assertion in the client component expresses that gv(c, tid[c]) has a value different
from (1,1, 1), we have by pffi, at A5, A6, A7 and AS8:

= (3m,s : mefils] : m.fa=c A m.tid = tid[c]).

Consequently, S8.2 is the only potentially disturbing statement of the client component.
For the same reason, we may exclude-disturbance-of pffi; by 513 or S14, S18is-orthogonal
by s & C. This leaves only 58.2 and 516;

e S8: apply substitutions: use A8.3! and A8.4%.

e S516: widening.

3.8.0.9 Imvariance of pcuwyg

Variables occurring in pcwy are r¢i[S] and rpi[C] in the consequent. Hence statements S5,
S8, S16 and S18 are orthogonal.

o S6: either alternative: use A6.4;
e S7: widening.

o 513: widening.

S14: either alternative: A14.2.

3.8. INVARIANTS: CORRECTNESS 79

3.8.0.10 Invariance of pct2sty

Variables occurring in pct2sty are RQO in the antecedent, and ct2st[C] and tid[S] in the
consequent. The only assignment to RQO occurs in S6, which only widens pct2sty by
A5.11 (or by the type of RQO). The only assignment to ct2st occurs in S13. As my is
taken from r¢i[s] in S13, we have by prgii: gv(c,ct) = (1,0,0), ie. RQO[c,ct] = 1
whence S13 is orthogonal to pct2sty. The only assignment to ¢id[S] occurs in S18, here
we have widening.

3.8.0.i1 Invariance of pRQO;
Variables occurring in pRQO; are RQO|C] in the antecedent and r¢i[S] and rpi[C] in
the consequent. By the conjunct RQO|c,ct] = 0 in the antecedent we may disregard

statements S7, S8, S14, S16 and S18 by A7.3, A8.3", A14.1', A16.1! and A18.1! re-
spectively. S5 is orthogonal, this leaves only S6 and 513;

e S6: either alternative A6.4 and definition of the statement: widening.

¢ S513: widening.

3.8.0.12 Invariance of pcdy

The only free variable occurring in pedy is ¢d[S] in the consequent. Hence only S18 is
non-orthogonal, it is trivial to verify this statement does not disturb pcdo.

3.8.0.13 Invariance of pCD;

Variables occurring in pC' Dy are CD|C] in the antecedent and cd and ct2st in the conse-
quent. Hence only S8, 513 and A18 are potentially non-orthogonal.

o S8: use A8.3! and definition of the statement: widening.
e 513: using pedy we have that the precondition to $13.3 implies —cd(s, tid[s]].

o S18:use A18! = CDle,ct] = 1.

3.8.0.14 Invariance of pguy

Variables occurring in pgug are RQO|[C] and CD|C] in the antecedent, and tid[C] in
the consequent. In the client component, S6 and S8 are non-orthogonal. S6 changes
RQOlc, tid[c]] and S8 widens pgug. All statements in the service component are orthogo-
nal.

80 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

3.9 Progress (requirement 2)

In this section we prove that progress is guaranteed in the 1-R/R protocol, which covers
requirement 2 of the problem statement. Precise definitions of our progress requirements
are given in section 3.9.3. We prove lemmas 4, 5 and 6 in section 3.9.3. Lemma 4 states
that clients cannot deadlock. Lemma 5 states that a service can neither live- nor deadlock
in its innermost repetition. Lemma 6 states that a service s can only deadlock on 513.1
if no client ¢ ever chooses to perform a transaction with s (in which case it is ‘idle”). We
conclude that these lemmas indeed cover requirement 2 in section 3.9.4.

We need a few extra assertions in order to prove the lemmas 4, 5 and 6. Those are provided
in sections 3.9.1 and 3.9.2.

3.9.1 Additional assertions in the client component

We need the following additional assertions in the client components to prove that progress
is guaranteed in the 1-R/R protocol;

3.9.1.1 Assertion7

e D7.1: |srpi(c, s, tid[c])| = 1 V gu(c, tid[c]) = (1,0,0)
local correctness: apply substitutions: use A6.3 and A6.4.
global correctness: Let ¢ and ¢’ be two different clients. Statements of client ¢’ are
orthogonal to srpi(c, s, tid[c]) and guv(c, tid[c]) = (1,0,0) if ¢’ # c.
The only non-orthogonal statement in the service component is S14, but only
if (3.2) holds. Although in such cases, the second disjunct of D7.1 is made
false, the first is made true by using A14.2%.

e D7.2:
lsrpi(c, s, tid[c])] =1V
(rd[s] A rqils] = {{c, s,tid|c], false)}) V
ct2st[c, tid]c]] = tid]s]

local correctness: for the first two disjuncts: apply substitutions, use A6.3 and
A6.4. For the third disjunct: use V-weakening.

global correctness The only non-orthogonal statement of client ¢/, ¢’ # ¢, is S6%:
it is only non-orthogonal to the second conjunct of the second disjunct of D7.2.
By B¢, we obtain disjointness.-
Non-of'thogonal statements in the service component are 513, §14 and S18.
513, is non-orthogonal only to the second disjunct. If this disjunct holds, 513,
falsifies it while making the third disjunct true.
S14, is non-orthogonal only to the first disjunct, but only if (3.2) holds. Using
A14.2? we obtain disjointness.
S18, cannot disturb the second disjunct of D7.2 by A18.6 (disjointness). It
remains to show that S18, cannot disturb the third disjunct of D7.2. Let s be
at A18 while c is at A7 such that ct2stc, tid[c]] = tid[s] holds. From A18.5,
A18.123, A7.2 and ct2st[c, tid[c]] = tid[s] we obtain (3.2). Using table 3.8
we obtain disjointness.

3.9.2 Additional assertions in the service component

We need the following additional assertions in the service components to prove that progress
is guaranteed in the 1-R/R protocol;

3.9. PROGRESS (REQUIREMENT 2) 81

3.9.2.1 Assertion 16

e D16.1: gu(c,ct) = (1,1,0) V sfi(c,s,ct) # 0

local correctness:

— initially: apply substitutions, use A14.1 and V— weakening.
— repeatedly: apply substitutions: use D17.1 A =Bz

global correctness: as D16.1 equals D17.1, we discuss global correctness of both
assertions here (no co-assertions of A16 or A17 are needed). Of client ¢, only
statements S6, and S8, are non-orthogonal to B16.1 and B17.1, but only if
(3.2) holds. From table 3.8 we obtain that control points A6 and A16 or A17 are
disjoint under this condition. Although S8, makes the first disjunct of D16.1
false if (3.2) holds, it makes the second true.
For services s, s’ # s, the only statement non-orthogonal to D16.1 or D17.1
is $14,-, but only with precondition ¢ = ¢; A ¢ty = ct,. But then we obtain
disjointness from S$14.12, and A16.12 or A17.12.

3.9.2.2 Assertion 17

e D17.1: By V gv(c,ct) = (1,1,0) V sfi(c,s,ct) #0
local correctness: use D16.1 and orthogonality of S16 in case =By holds, or B17
otherwise.

global correctness: see D16.1.

3.9.3 Absence of Live- or deadlock

We say a component a to be individually deadlocked if it is forever stuck on one of its
awalit statements. Instead of saying that a is individually deadlocked, we simply say it
to be deadlocked if there is no danger of confusion. If a deadlocks on a statement of the
form await(B), the predicate — B is either a globally correct assertion, or, it happens to be
so that each time a inspects B, it equals false because of some other component, a’ say,
disturbing B just before a inspects it. In such scenarios we say a to be infinitely overtaken.

The conditions waited for in either the client or service components are if true, always
stably true. For the condition in S7.1., we have that no component but c itself removes
anything from rp:[c|—Similararguments can made for the conditions in S13.15 and S16.15.
Hence there is no danger of infinite overtaking in the 1-R/R protocol and if a component
were to deadlock on await(B), then B is a globally correct assertion.

We say service s to livelock, if it is forever executing its innermost repetition such that it
never deadlocks. If service s livelocks, then —B;7 must be a globally correct assertion at
Al6 and A17 as it contains only local variables. Using the fairness assumption from section
3.3.4 concerning the receiving of F&F-messages, it must be the case that sffi(cs, s, cts) = 0
is a globally correct assertion as well at both A16 and A17. Indeed, if it was not, then at
some point we would have sffi(cs, s,cts) # 0 at A16. But by the faimess assumption,
service s would eventually select {cs, s, cts) for ms at S16.1, because no component but
s removes anything from ffi[s]. Hence B17 would hold at A17 and the innermost repetition
would terminate, contradicting that s livelocks.

Given the characterizations of live- and deadlock, table 3.11 summarizes the possible state-
ments that can live- or deadlock, and the corresponding globally correct co-assertions.

82 CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

Deadlock at: Co-assertion:

S7.1, srpi(c, sc, tidlc]) =0

S513.16 rqifs] =0

516.1, fils) =10

Livelock at: Co-assertion:

S16, and 517, | sfii(cs, s,cts) =0 AN = (Bis V Bir)

Table 3.11: Possibly live- or deadlocking statements and corresponding assertions

Lemma 4. Clients cannot deadlock.

Proof. Given the earlier definition of deadlock, we further examine a client ¢ that dead-
locked. From table 3.11 we obtain this is only possible at S$7.1., and that at that this
control point, the following holds:

srpi(e, s, tidfc]) = 0 (34
Combined with D7.1, we obtain;

gule, tidle]) = (1,0,0) (3.5)
Combined with D7.2, we obtain;

(rd[s] A rqi[s] = {{c, s, tid[c], false)}) V ct2stlc,tid|c]] = tid]s] (3.6)

Note that (3.4), (3.5), and (3.6) are all globally correct as those predicates are corollaries of
assertions that were proved to be globally correct and an assumption of deadlock which is
assumed to be globally correct.

Let ¢ deadlock on S7.1. First we show that the second disjunct of (3.6) cannot hold, second
we show that the first disjunct of (3.6) cannot stably hold, in which case we have established
a contraction.

We show that the second disjunct of (3.6) cannot hold by showing that in such cases, service
s cannot be at either of its control points;

e Dueto A13.2, and A7.2, service s cannot be at con;rol point S13;.
o Note that ct2st[c, tid[c]] = tid[s] A A7.2.and
((A14.12° A A14.4,) Vv (A16.12° A AL6.5,) V (A14.13° A A17.7,) V (A18.13° A A18.5,)),
imply (3.2). Hence if execution of s were at control points"A14, 416, A17 or A18

while c is at A7 such that ct2st[c, tid|c]] = tid[s] holds we have that (3.2) holds. But
then we have that;

— for control point A14, by execution of 514, s would disturb 3.4, contradicting
that ¢ deadlocks.
— control points A16, A17 and A18 are disjoint due to
(ct =tidlc] A (A16.1' vV AL17.1' v A18.1%) A (3.5)) = false.
As the second disjunct of (3.6) cannot hold, it must be that the first disjunct stably holds,
ie.;
rd[s] A rqils] = {{c, s, tid[c], false)}.

From A13.3,, Al4.5,, A16.6,, A17.8, and A18.6; it follows that service s can only be
at control point A13. By rqi[s] = {{(c, s, tid|c], false)}, service s cannot deadlock on

S513.1,. Indeed, it must choose m; such that m; = (¢, s, tid|[c], false) holds at A14. By
Al4.5, we find that the second disjunct of (3.6) is eventually disturbed. J

3.9. PROGRESS (REQUIREMENT 2) 83

Lemma 5. A service cannot live- or deadlock in its innermost repetition.

Proof. Let s be a service that live- or deadlocks in its innermost repetition (i.e. it either
deadlocks at A16 or it livelocks). Note that by table 3.11 we have that sffi(c, s, cts) = 0
must then be a system-invariant. Indeed;

e if the service livelocks, the system-invariant equals the corresponding assertions in
3.11

o ifthe service deadlocks at A16,, the system-invariant follows from the corresponding
assertion in table 3.11.

e 10 component but s can remove anything from ffi[s]. Hence if sfii(c, s, cts) # 0
holds at some point, it would contradict the assumption that s live- or deadlocks.

It follows that it suffices to show that sffi(cs, s, cts) = () cannot be a system-invariant.

By sffi(cs, s, cts) = { we have that =Bz is a globally correct assertion at control point
Al7, if s livelocks in its innermost repetition. Combined with D16.1 and D17.1, we
obtain that gv(cs, cts) = (1,1,0) is also a system invariant if s live- or deadlocks in its
innermost repetition. Combining gv(cs, cts) = (1,1,0) and pguvy we obtain that tid[cs] =
cty is also a system invariant if s live- or deadlocks in its innermost repetition. Hence
gv(es, tid[cs]) = (1,1,0) is also a system invariant if s live- or deadlocks in its innermost
repetition.

From the ghost-variables vectors A5.1} , 46.3] , A7.3] and A8.3__ it follows that client
¢, must either be at control point A7 or at A8. By A7.2.,, A8.2.,, A16.12 and A17.12,
we obtain that s, = s. As by lemma 4, ¢, cannot deadlock on S7.1, it eventually executes
S8 with precondition ¢ = ¢5 A tid[c] = ct, disturbing sffi(cs, s, cts) = 0. O

It would be tempting to try to prove that s cannot deadlock on S13.1. Instead we prove
that if a service s is deadlocked on S13.1 then it is ‘idle’, i.e. no client is interested in
transacting with s.

Lemma 6. A service s can only deadlock on S13.1 if no client c ever chooses s. in S5.1,,
such that s, = s at AG6.

Proof. By contradiction: let s deadlock on S13.1 while some client ¢ chooses s, in $5.1,
such that s, = s at A6. Then by A13.3 and table 3.11 we have at A13: rqi[s] = 0 A rd[s].
At A6, we have cw|c, tid|c]] = s. But execution of S6.2 with precondition cwlc, tid[c]] =
s A rqils] =0 A rd[s] disturbs rqi[s] = 0. O

3.9.4 Conclusion

In this section we briefly show that lemmas 4, 5 and 6 indeed cover requirement 2 of the
problem statement given on page 17. Clients cannot deadlock by lemma 4. The service cho-
sen by a client for a distributed transaction can neither dead- nor livelock by lemmas 5 and
6 respectively. Hence both parties involved in a size-1 transaction always make progress.
At some point, both have finished processing their part of the distributed transaction, at
which point the distributed transaction has terminated.

84

CHAPTER 3. VERIFICATION OF THE I-R/R PROTOCOL

Chapter 4

Verification of the n-R/R protocol

In chapter 3 we proved requirements 1 and 2 of the problem statement on page 17 to be
met by the 1-R/R protocol. In this chapter we generalize the results from chapter 3 to
transactions of an arbitrary, positive size n: the n-R/R protocol. In doing so we reuse as
much as possible from chapter 3;

¢ All but one invariant, all auxiliary functions, and all concepts and definitions intro-
duced in chapter 3 are reused without modification. Only one invariant (pguvo) is
slightly modified, we add some fresh invariants in the sequel.

e The service component from the 1-R/R protocol (see section 3.4.3) is reused without
modification, along with all its assertions.

e The main program from the 1-R/R protocol (see section 3.4.4) is only slightly modi-
fied.

o The formal-model of the bus given in section 3.3 is reused without modification.

The structure of this chapter is also similar to that of chapter 3. In section 4.1 we introduce
the new client component. Requirement 1 of the problem statement on page 17 is formal-
ized in section 4.2 by means of two system-invariants. Assertions of the client components
are introduced and proved to be locally correct in section 4.3. Global correctness of all
assertions is proved in section 4.4, correctness of all system-invariants is proved in section
4.5. Requirement 2 of the problem statement on page 17 is covered in section 4.6.

We advise readers to keep copies of pages 57, 88, 130, 132 and 133 at hand while reading
this chapter in order to avoid a lot of page turning in the sequel (see appendix B).

4.1 Specification

We need some additional auxiliary functions and global variables in comparison to the 1-
R/R protocol: those are introduced in sections 4.1.1 and 4.1.2 respectively. We explain the
overal structure of the client component in relation to that of the 1-R/R protocol in section
4.1.3. The adapted client component itself is given in section 4.1.4. In section 4.1.5 we
discuss the placing of the atomicity brackets in the client component.

85

86 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

4.1.1 Additional auxiliary functions

We need the additional auxiliary functions sct : N x N — 2N, scw: C x Nx N — 29
and allRep : C x 2N x 2Message _, B Definitions of the auxiliary functions are given
below;

sct(cto, K) = {ct|cto<ct<cto+ K}
scw(e, cto, K) = {cwle,ct] | ct € sct(cto, K)}
allRep(c,CT,M) = |CT|=|M| A CT = {m.tidlm € M} A

(Ym : m €M : m.fa=cwm.ia,mtid Am.ta=c)

The functions sct(tid[c], sz) and sc(s, tid[c], sz) are used to generalize the variables tid|c]
and s, respectively, to distributed transactions with any positive size sz. The predicate
allRep(c, CT, M) expresses that the set M is a smallest set containing a reply or timeout
of each transaction with a transaction-id ¢t, ¢t € CT.

4.1.2 Additional global variables

In this section we discuss some additional global variables needed in our specification. First
we explain the need for those. In section 3.2 it was discussed that both clients and services
assign a transaction-id to distributed transactions in order to uniquely identify them. The
interpretation of the client-transaction-id is somewhat different in view of distributed trans-
actions with a size greater than 1. At the end of a distributed transaction, the variable tid|c]
equals all of the following;

o the sum of the size of all distributed transactions ever performed by client ¢, and,
e the number of requests ever sent by ¢, and,
o the number of commit-decisions ever sent by ¢, and,

e the number of requests received + the number of timeouts ever received by c.

It follows that multiple client-transaction-id’s may be assigned to a single distributed trans-
action because the transaction size may be greater than one. Hence we need the following
additional global variables in order to be able to identify such transactions;

var dtid : Array[C] i N;
var-dt2ct : Array[C][N] :N;
var sz : Array|C| N

An intuitive description of the arrays is given below;

s dtid (distributed-transaction-id):
dtid[c] = K =‘client ¢ has completed K distributed transactions’.

o dt2ct (distributed-transaction-id to client transaction-id), for 0 < dt < dtid|c].
dt2ct|c, dt] = ct = “ct is the smallest client-transaction-id of the dt + 1% distributed
transaction of client c.

e sz (distributed transaction size):
sz[c] = K = ‘client c is performing a distributed transaction with size K.

All of the variables above except sz[c] are specification variables: only sz[c] is present in
the informal specification as sz. (see section 2.2.2). The corresponding changes needed to
the main-program given in section 3.4.4 are; '

4.1. SPECIFICATION 87

o The declarations of dtid, dt2c¢t and sz.

e The catenation of statement SO with dtid, dt2ct : = 0,0. The array sz needs no
initialization.

4.1.3 Structure of the client component

In this subsection we discuss the relation between the program texts of the client compo-
nents of the 1-R/R and n-R/R protocols. We advise the reader to compare the program texts
given on pages 56 and 88 while reading this subsection. The number of, and the labeling of
the statements is the same in both protocols. Note that we neither consider variable declara-
tions nor guard-evaluations to be sub-statements when labeling sub-statements. The main
differences between the client components are given below;

o Recall from section 3.9.1 that statement i., 6 < 7 < 8, in the 1-R/R protocol had a
co-assertion cwlc, tid[c]]. = s.: s. was used only to abbreviate cwlc, tid[c]]. We do
not use such abbreviations in the n-R/R protocol. =

e The additional local variables CT; , 6 < j < 9 present in each client ¢, all sets of N.
The sets are used to store client-transaction-ids during a distributed transaction. At
A6, A7, and A8 we have that the following holds;

(Ni:6<i=o: CT;) =0 A (Us=<i< 9: CT;) = sct(c tidld], s2[c])

e Statement ¢ of client ¢ in the n-R/R protocol, 6 < ¢ < &, is a repetition of the
-following structure;

— initially CT;. = sct(tid|c], sz[c]), and, during each round:
x select some transaction-id ¢t € CT5.;
* perform the same send/receive/commit operations for (partial-)transaction
(¢, cwle, ct], ct) as is done during execution of statement 7 in the 1-R/R
protocol for transaction (c, s, tidc]).
* move the element ¢t from CT;. to CTi41;

- end if CT; is empty.

Note that the choice of ct in statement S7.2 of the n-R/R protocol may seem super-
fluous. Indeed, we have ct = my.tid as precondition to S7.3,4. However, we use it
(as above) to allow for a more uniform treatment of the statements of the protocol.

e The variable my, was used to receive the reply in statement S7. of the 1-R/R pro-
tocol. In the n-R/R protocol we store all replies that must be received during a
transaction in the additional set M» . of messages.

o In statement S5 of the 1-R/R protocol we selected a single service and recorded this
choice in cw. In statement S5 of the n-R/R protocol we do the same for a set of
services S’ and also record the transaction size in sz[c| . The set S’ is only used for
notational convenience. The sets CTj, 6 < j < 9, and M, are also initialized in
statement S5.

Note that the 1-R/R and n-R/R protocols are the same (up to cosmetic differences) if clients
always choose to perform size-1 transactions in the n-R/R protocol. We return to the rela-
tion between the client components of the 1-R/R and n-R/R protocols when discussing the
assertions in section 4.3.1.

88 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

4.1.4 Clients

An explanation of the client component is given on page 87.

component Client(c : C) =

[var M> : Set of Message;
var CTy, CTy7,CTg, CTg : Set of N;
var ¢t : N;
var cv : B;

do true —
{ Assertion 5 }
(var S’ : Set of S;
szle], 8': S'C S Asz[c] =|5"; .
cwld]| tid[c]..tid[c] + sz[c] — 1] := 5';
CTs, CT:, CTs, CTy, My := sct(tidd, sz]d]), 0, 0, 0, 0;

)
{ Assertion 6 }
do CTs £ 0 —
(ct : ct e CTg;
if rgifcw(c, ct]] = B Ardlewle, ct]]) — rgilew[e, ct]], RQO[c,ct] =
rgifcwle, ct]] U {{c, cwle, ct], ct, false)}, RQO[e,ct] + 1;
| —(rgi[cwle, ct]] = 0 Ardlewle, ct]]) — #pilc], RQOc,ct], RPOlc,ct] :=
rpilc] U {{cwlec, ct], ¢, ct, true)}, RQO[c,ct] + 1, RPOlc, ct] + 1;
fi
CTG, OT7 = CTG/{Ct}, CT’TU{Ct};
)
od

{ Assertion 7 }
do CT7 7é B —
(var mg : Message;
await(Im :: m € rpi[d] A m.tid € CTy A m.fa = cwc,m.tid]);
ct,ma @ ¢t =mao.tid A ma €7pilc] A matid € CTy A mo.fa = cwlc, me.tid];
rpilc], Ma, CTy, CTy := rpilc]/{ma}, Mz U{ma}, CT;/{ma.tid}, CTg U {ms.tid};
cv : true;

)
od

{ Assertion 8 }
< do CTg 7é 0 —
ct . ct € CTy;
CDlc,ct], cdlc,ct] := CDle,ct]+ 1, = (Vm : m € My : m.to) Acv;
filewle,ct]] 1= filew[e, ct]] U {{e, cwle, et], ct,—cd]e, ct])};
CTy, CTy := CTg/{ct}, CTyU {ct};
od
tid[c], dtid[c], dt2ct]c,dtid[c] + 1] := tid[c] + sz|e], dtid[c] + 1, tid[c] + sz[c];
)
od

|

4.2. PARTIAL CORRECTNESS CRITERIA 89

4.1.5 Atomicity

In this section we validate the placing of the atomicity brackets in the client component
given in section 4.1.4. We refer to section 3.4.5 for the placing of the atomicity brackets in
the service components. For the brackets surrounding Sy we also refer to section 3.4.5.

For statements S5, 56 and S7 we can also reuse the arguments provided in section 3.4.5.
Indeed, in comparison to the client program of the 1-R/R protocol given in section 3.4.2,
we have that;

e We refer to services in the program text of the n-R/R protocol by means of cw|c, ct’]
for ct’ € sct(tid|c], sz[c]) instead of the variable s. in the 1-R/R protocol. Note that
both cw|c] and s, are local variables. Hence this difference is merely cosmetic.

e Only assignments to local variables have been added. Because those variables can
not be read by any other component than the owner, we may as well place them out-
side the angular brackets. This would only produce somewhat different interleavings,
the behavior of clients or services would however be no different.

The brackets surrounding S8 in the n-R/R protocol reflect the use of a unit of work that
is always committed (see section 3.3.4). All variables occurring in S8, except ffi are local
variables of client c¢. Again, because those variables can not be read by any other compo-
nent, we may as well place them outside the angular brackets.

4.2 Partial Correctness criteria

In this section we formalize requirement 1 of the problem statement on page 17 and also
" introduce some fresh system-invariants and auxiliary functions needed in the sequel. Re-
quirement 1 is formalized in section 4.2.1, section 4.2.2 introduces the additional system-
invariants and auxiliary functions.

4.2.1 Formalization of requirement 1

The main partial correctness criterion is to ensure that for each distributed transaction,
eventually the client and all services it transacted with agree on the outcome: to commit or
abort (requirement 1 of the problem statement given on page 17). To this end we reuse o
as introduced in section 3.5.1. This system-invariant is however not strong enough in view
of distributed transactions with size greater than 1. We explain why this is so and what is
needed in addition to 1.

Let ct be a client-transaction-id, 0 < ct < tid[¢]. The interpretation of cdlc, ct] in the
n-R/R protocol is as follows;

e cd[c,ct] =‘The distributed transaction in which client ¢ sent its ¢t + 1" request
was committed’

e —cd[c, ct] =‘The distributed transaction in which client ¢ sent its ¢t + 1t* request
was aborted’

In particular, if a distributed transaction with size 2, say, was assigned client-transaction-ids
¢t — 1 and ct, we need in addition that cd|c, ¢t — 1] = ed|c, ct] holds. This is expressed by
the fresh system-invariant pdtidp;
pdtidy : (Ve : ceC : pdtide(c))
pdtidy(c) : (vdt : 0 < dt < dtid|c] :
(Vet,ct' : dit2etle,dt] < ct < ot/ < di2ctle,dt + 1] : cdlc, ct] = cd]e, ct’])

)

90 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

pdtidg{c) holds initially for all ¢ if we initialize dtid by 0. As the reader may check, an
increase of dtid|c] by one, at the end of a distributed transaction, must have the following
precondition:

(Vet,ct' = dt2ctc,dtid|c]] < ct < ct’ < dt2ctle, dtid]c] +1] : cdle, ct] = cdle, et']).

A nice property of pdtidg(c) is that it contains only local variables of client c: this limits
the number of proofs needed to show its invariance.

4.2.2 Additional system-invariants and auxiliary functions

We reuse all but one system-invariant introduced in section 3.5.2.2 without modification.
All repetition-invariants introduced in section 3.5.2.2 are reused without modification. The
only system-invariant that changed is pguvo: it is changed to pgug given below (we will also
use pgug (c) for clients ¢ in the sequel);

(Ve,ct’ : gu(e,ct’) = (1,0,0) V gu(c,ct’) = (1,1,0) : ct’ € sct(tid[c], sz[c]))
(Vet' : gu(c,ct’) = (1,0,0) V gu(e, et’) = (1,1,0) : ct’ € sct(tid|c], szc])

Pgvy
pgug(c)

We also need the following additional system-invariants;

pdt2cty
pdt2cty

(Ve: ce€ C :tid|c] = dt2cte, dtidc]])
(Ve,dt : c€ C A dtid[c] < dt : dt2ctle, dt] < tid[c])

From the combination of the two invariants it follows we have for each client ¢;

[dt2ct[c, dtid[c])..dt2ct[c, dtid[c] +1]) = 0

All differences between invariants in the 1-R/R and n-R/R protocols have been summarized
in table 4.1.

New: System-invariants: Introduced in section
pdtidy 421
pdt2cty, pdt2cty 422
Reused:
Iy 3.5.1
prqig, prgii, proty 3522
prpis, piitg, pifi 3522
pcwy, pctsty 3522
pRQO: (), pedo(e), pCD1 () 3522
Changed:
pgvg (from pgug) 422
Reused: Repetition-invariants:
Service s: | pct2sty(s), prpia(s) 3.523
Client c: pRQOy(¢c), pPRPOy(c),pCD0Oy(c) | 3.5.2.3

Table 4.1: Differences between invariants in the 1-R/R- and n-R/R protocols

4.3 Assertions: local correctness

In section 4.3.1 we present the assertions in the client components, along with a proof of
their local correctness.

4.3. ASSERTIONS: LOCAL CORRECTNESS 91

Note that in comparison to the system-invariants in n-R/R we changed only pgvo (to pgvg),
pguo was not used in proving Jocal correctness of any assertion of the service component,
and all other system-invariants have been reused. Also, note that we reused the service
component and its annotations without modifications. Hence we refer to section 3.6.3 for
the assertions in the service components and a proof of their local correctness.

We did not add or change loop-invariants of clients or services in the n-R/R protocol. Hence
we need no strengthening of assertion Ag defined in section 3.6.1. The initializations of
dtid, dt2ct and sz that were catenated to Sp - see section 4.1.2- are orthogonal to Ag.
Hence we may also reuse the corresponding local-correctness argument given in section
3.6.1.

4.3.1 Assertions in the client component

Before actually discussing the assertions of the client component, we discuss their relation
to the assertions of the client component of the 1-R/R protocol. This relation is reflected in
the numbering of the co-assertions in the n-R/R protocol. Table 4.2 shows which assertions
have been added.

Assertion Additional co-assertions

A5 none

A6 A6.3%2 A6.42 A6.5 A6.6

A7 A7.32 ATA4%2 AT5 AT6 ATT

A8 A83% A85 A86 A87 A8S8

Table 4.2: Additional assertions

Assertions in the same column have been added for a similar reason which we discuss here.
The changes in the assertions are due to the changes in the client component. Correspond-
ingly, assertions A6, A7 and A8 are now repetition invariants of the repetitions within
statements S6, S7 and S8 respectively. For this reason some co-assertions were added or
changed. All additional assertions are listed in table 4.2, all assertions that were changed
fundamentally are given in table 4.3. An explanation of the assertions in tables 4.2 and 4.3
is given below;

o Leti € {6.7},j € {3,4}. The assertions in the first two columns of table 4.2 have
the following structure:
— Assertion ¢.j! describes properties of transactions ct’ € CT;
— Assertion i.j2 and (¢ + 1).j1 describe properties of transactions ct’ € CTi41

— Assertion i.j! is the generalization of assertion i.j! from the 1-R/R protocol
(we explain what is meant by ‘generalization’ in the sequel).

— Assertion i.52 equals assertion (i + 1).j*, the generalization of assertion (i +
1).5! from the 1-R/R protocol.

By ‘generalization’ in the last two bullets above we mean that predicates of the form
P(c, s, tid[c]) in assertion ¢ of client ¢ in the 1-R/R protocol have been replaced by a
predicate of the form:

(Vet' : ct’ € CT; : Ple,cwle, ct'], ct’)).

¢ In order to maximize the correspondence between the client components of the
single- and n-R/R protocol on the one hand, and to minimize the number of proof
obligations on the other hand, the choice was made to introduce the variables CT5 7 3,9

92

CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

and M- and perform all necessary initializations to those in statement $5.3. The
price of this is of course that we need additional assertions that describe properties
of CTg,7,8,9 and the effect of §5.3 . Fortunately, the additional assertions due to
CTs,7,8,0 contain only local variables. The assertions in columns three and four of
table 4.2 are due to the introduction of CTg 7 8,9 and Mo.

AR.8 is needed for showing invariance of I in the sequel.

Due to the introduction of M, the choice was made to move assertion A8.32 from
the 1-R/R protocol to assertions A7.7 and A8.7. This covers the last column in
table 4.2 and also explains why those assertions appear in table 4.3 which lists the
assertions that were fundamentally changed, or moved to a new placeholder.

In the 1-R/R protocol we used the variable s to abbreviate cw|c, tid[c]] in the client
component. Hence we needed co-assertions A6.2, A7.2 and A8.2 (the first column
in table 4.3). We do not use this abbreviation anymore in the n-R/R protocol. Hence
those assertions have become superfluous in the n-R/R protocol. The placeholders
were reused for assertions describing that during each distributed transaction, a ser-
vice s can be selected at most once.

Assertion A6.1 has been weakened: the transactions-ids from sct(tid|c], sz[c]) for
which messages have been sent have been removed from the domain description.
Due to the presence of A6.3% however, we do not loose any information.

Assertion Fundamentally changed co-assertions

Ab none

A6 A6.1, 2 (changed)

AT A7.2 (changed)

A8 A8.2 (changed) A8.3% (moved to A7.7 and A8.7)

Table 4.3: Fundamentally changed co-assertions

In the remainder of this section we treat all assertions of client ¢ and their local correctness
in a similar way as done in section 3.6.2 for client ¢ in the 1-R/R protocol. Due to all
assertions being repetition invariants, we provide for each assertion two proofs:

o A proof that shows the invariant to be initially correct: this proof is always preceded

by the keyword ‘Initially’. The second colunmimtable 4.4 shows of what statement
the assertion in the first column must be shown to be a postcondition.

A proof that shows that the repetition-body does not disturb the invariant: this proof
is always preceded by the keyword ‘Repeatedly’. Note that by the use of the atom-
icity brackets, the repetitions of statements S6 and S7 contain only a single atomic
statement. The repetition of S8 is completely enclosed between atomicity brack-
ets. The third column in table 4.4 shows of what statement the assertion in the third
column must be shown to be a postcondition. In this proof we always provide the as-
sertions needed in addition to the assertion of which we are proving local correctness
(i.e. we do not give the assertion itself as well). Because the proofs are straightfor-
ward we do not explain them in detail. For almost all quantifications one must apply
all substitutions and split of the case ¢’ = ct (or m = my). The assertions and/or
invariants needed for this split-off part are the ones given in the hints.

We also provide variant functions for the repetitions in statements .S6, 57, and 58. These
variant functions prove termination of the corresponding repetitions.

4.3. ASSERTIONS: LOCAL CORRECTNESS 93

Postcondition to statements:

Assertion Initially | Repeatedly

A5 S0 outermost repetition-body
A6 S5 repetition-body of S6

AT S6 repetition-body of S7

A8 ST repetition-body of S8

Table 4.4: Proof obligations Repetition invariants of client ¢

4.3.1.1 Assertion 5
AB.1 expresses the repetition invariants of the outermost repetition in the client component.

Because we do not want this repetition to terminate, we do not provide a variant function
for it.

e assertion 5.1: pRQOy(c) A pRPOy(c) N pCDy(c)
local correctness:

— Initially: follows from assertion 1.1.

— Repeatedly: A5.1 < ((A8.1 A A8.3% A A8.5' A =Bs) (0ss)) -
e corollary 5.2: (Vct' : tid[c] < ct’ : gv(c,ct’) = (0,0,0))

local correctness: corollary of assertion 5.1.

4.3.1.2 Assertion 6

As a variant function for the repetition, one can use |CTg|. By A6.5 we have that this
function is limited by the number of services chosen. Also, |CTs]| decreases in every round.

e assertion 6.1: (pRQOy(c) A pRPOy(c)) (N := N/CT;) A pCDy(c)

local correctness:

— Initially:-use assertion 5.1 and orthogonality of S5.

— Repeatedly: assignments to RQO and/or RPO are at index ¢, ct. As ct is
added to CT% we have widening.

e assertion 6.2: |scw(c,tid|c], sz[c])| = |sct(tid]c], sz|c])]|
local correctness:
— Initially: apply substitutions.
— Repeatedly: orthogonality of the repetition body.

e corollary A6.3! and assertion A6.3%:

(Vet' : ct’ € CTs = gule,ct’) = (0,0,0)) A
(Vet' : ct' € CTy : gv(e,ct’) = (1,0,0) V gu(c,ct’) = (1,1,0))

local correctness: A6.3' is a corollary of A6.1 and A6.5. This leaves only A6.3%;

94 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

— Initially: apply substitutions.
— Repeatedly: apply substitutions, use A6.3.

e corollary 6.4:

(Vet' : ct' € OTg : srqi(c,cwle,ct'],ct’) U srpi(c, cwle, ct'], ct’)

=0)A
(Vet' : ct' € CTr : |srqi(e, cwle, ct'], ct’) U srpi(c, cwle, ct'], ct’)| < 1

)
A6.4" is a corollary of A6.1, A6.5? and pRQO;. A6.4? is a corollary of pcwy.
e assertion 6.5:
CTs U CT; = sct(tid|c],s2[c]) A (Vi,j : 6<i<j<10 : CT; N CT; =0)
local correctness: both for initial and repeated validity: apply substitutions.

e assertion6.6: CTa =0 ANCTo =0 A Ma=10

local correctness:

— Initially: apply substitutions.
— Repeatedly: orthogonality of the repetition bedy.

4.3.1.3 Assertion 7
As a variant function, one can use |CT%|.

e assertion 7.1:
(pRQOs(c) A pRPOy(c)) (N := N/sct(tid[c], sz[c])) A pCDy(c)

local correctness:

— Initially: use A6.1 and A6.5".
— Repeatedly: orthogonality of the repetition body.

e assertion 7.2: |scw(c,tid]c], sz[c])| = |sct(tid[c], s2)|

local correctness:

— Initially: use A6.2.
— Repeatedly: orthogonality of the repetition body.

e assertion 7.3:

(Vet' : ct' € CTr : gu(c,et’) = (1,0,0) V gv(c,et’) = (1,1,0)) A
(Vet': e’ € CTy : gv(e,ct’) =(1,1,0))

local correctness:

— Initially: use A6.3% and A6.6.
— Repeatedly: for A7.3': observe that CT7 shrinks whence we have widen-
ing. For A7.3%: use prpi;.

e corollary A7.4! and assertion A7.4%:

et': ct' € CTy « |srqi(c, cwle, '], ct’) U srpi(c, cwle, ct’], ct’)] < 1) A
(Vet' : et € CTy : srgi(c,cwle,ct’], ct’) = O A srpi(c, cwlc, ct’], ct’) = §)

4.3. ASSERTIONS: LOCAL CORRECTNESS 95

local correctness: A7.4! is a corollary of pcwy. This leaves only A7.4%;

— Initially: use A6.6.

— Repeatedly: using prqio, prpig, and C N S = () we obtain rqi[ms.fa] N
rpi[ma.ta] = (as precondition to §7.3. Combined with my. fa = cwle, ma.tid]
and the removal of my from rpi|c], the necessary precondition to S7.3 fol-
lows.

e assertion 7.5:

CT; U CTy = sct(tid|c],sz[c]) A (Vi,j : 6<i<j<10: CT;n CT; =0)
local correctness:

— Initially: use 46.5, 46.6' and - Bg.
~ repeated validity : apply substitutions.

e assertion 7.6: CTy =0 A allRep(c,CTy, M>)

local correctness:

— Initially: use A6.6.

— Repeatedly: apply substitutions; from A7.5%, mo.tid € CTy and A7.62
we can infer mo & M. The predicate mo.ta = ¢ A ma.tid € CT7 A
ma.fa = cwlc, my.tid] is established by S7.2 and prpi;. A7.6 is or-
thogonal to S7.

e assertion 7.7: (Ym : m € M, : ct2st[c,m.tid] = tidm.fa] V m.to)

local correctness:

— Initially: use A6.63.
— Repeatedly: use prpi;.
43.14 Assertion§

As a variant function for the repetition in S8, one can use |CTg|.

¢ assertion 8.1:
(pRQOy(c) ApRPOq(c)) (N:= N/sct(tid|c], sz[c])) A pCDo(c)(N:= N/CTy)

local correctness:

— Initially: use A7.1.

— Repeatedly: for the first two conjuncts we have orthogonality. For the third
conjunct: the assignment to C'D is at index ¢, ct. As ct is added to CTy
we have widening.

o assertion 8.2: |scw(c,tid[c], sz[c])| = |sct(tid[c], sz[c])]|

local correctness:

— Initially: use A7.2.
— Repeatedly: orthogonality of the repetition body.

96

CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

e assertion 8.3:
(Vet' @ ct' € CTy = gu(c,et’) = (
(Vet' : ct' € CTy = gv(e,ct’) = (1,1,1))

local correctness:

— Initially: use A7.3% and A7.6%.
— Repeatedly: As CTy shrinks we have widening of A8.3'. For A8.3%: use
AR8.3 and substitution.

s assertion 8.4:
(Vet' : ct’ € sct(tid[c], sz[c]) : srqilc, cwle,ct'], ct’) U srpi(c, cwle, ct'], ct’) = 0)

local correctness:

— Initially: use A7.4%, A7.5' and =B;.
— Repeatedly: orthogonality of the repetition body.

e assertion 8.5:

CTy UCTy = sct(tid[c], sz[c]) A (Vi,j : 6<i<j<10: CT; N CT; =0)

local correctness:

— Initially: use A7.5, A7.6' and —By.
— Repeatedly: apply substitutions.
e assertion 8.6: allRep(c, sct(tid|c], sz[c]), M2)

local correctness:

— Initially: use A7.5', A7.6% and —Br.
— Repeatedly: orthogonality of the repetition body.

o assertion 8.7: (Vm : m € My : ct2stle, m.tid] = tid[m.fa] V m.to)

local correctness:

~ Initially: use A7.7.
— Repeatedly: orthogonality of the repetition body.

e assertion 8.8:

(Vet' : ct’ € CTy: cdle,c’] = (= (Vm: m € My : m.to) Acv)) A
(Vet' : ct' € CTy : —ed [ew [, ct'], ct2st [c, ct']])

local correctness:

— Initially: use A7.6%.

— Repeatedly: for A8.8' : apply substitutions. As for A8.8% : it suffices
to show that —cd [cw [e, ct'] , ct2st [c, ct']] is precondition to S8.4. Using
A8.3! and pC D; we have as precondition to $8.2: —ed [cw [c, ct'] , ct2st [c, ct']].
58.1 and 58.2 are orthogonal to this predicate as cw [, ¢t’] € S by decla-
ration of cw. Hence it it is also precondition to S8.4.

4.4. ASSERTIONS: GLOBAL CORRECTNESS 97
4.4 Assertions: global correctness

4.4.1 Introduction

In this section we prove global correctness of the assertions presented in sections 4.3.1 and
3.6.3. We reuse as much as possible from the results obtained in section 3.7. Exactly what
is reused is discussed in the subsections that follow.

We have the following proof obligations;

No client ¢’ disturbs assertions of a different client ¢: This proof obligation is discussed
in section 4.4.2.

No service s disturbs assertions of client ¢: This proof obligation is discussed in section
44.3.

No client ¢ disturbs assertions of service s: This proof obligation is discussed in section
444, - :

No service s’ disturbs assertions of a different service s: Recall that the service compo-
nent and its assertions are the same as in the 1-R/R protocol, that we did not use pgvg
to prove that services do not disturb each others assertions in 1-R/R protocol, and that
all invariants but pgvg have been reused without modification in the n-R/R protocol.
We refer the reader to the proof given in section 3.7.4.

As opposed to section 3.7.3, we discuss absence of disturbance of clients by services and
vice versa in two separate sections, because the n-R/R protocol and its assertions are some-
what more complex than the 1-R/R protocol.

All local and private variables and their owners are shown in table 4.5. We added no shared
variables to the specification of the n-R/R protocol (in comparison to the 1-R/R protocol).
Hence table 3.5 shows all shared variables.

Local variable owner
tidla), cdla] component ¢
cwlc], CD[¢], dtid|c], dt2ct[c], RQO|c], sz[c] | client c
M,,.,CT;, (for 6 <4 <9), cte, cve, Sh,ma, | cliente

M1 ,M35,Cls service $
Private variable owner
rd]s] service s

Table 4.5: Local- and private variables and their owners

Note that we have in fact hidden control points in the client components immediately after
the evaluation of the guards B;, and the statement that follows, for 6 < ¢ < 8. However,
those guards contain only local variables of client ¢ whence their global correctness is
trivial: we did not hide proof obligations!

4.4.2 Absence of disturbance between clients

In this section we prove that two different clients cannot disturb each others assertions. The
argument given in section 3.7.2 for the 1-R/R protocol can almost by copied verbatim for
the clients in the n-R/R protocol. The only difference is that co-assertions of client ¢ in
which rqi[cwle, ct']] occurs for some ct’ € N are of the form srqi(c, cw|c, ct'], ct’) instead
of srqi(c, s., tid|c]) in the 1-R/R protocol. Again, the reader may check that this set cannot
be affected by statements of any client ¢’ such that ¢’ # ¢.

98 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

4.4.3 Absence of disturbance by clients of assertions of services

In this section we reuse as much as possible of the arguments given in section 3.7.3 in
proving that a client ¢ cannot disturb assertions of service s.

Note that we added only local-variables to the n-R/R protocol (in comparison to the 1-R/R
protocol). The additional local-variables are all owned by clients and occur only in the
owner’s assertions, if they occur at all. Hence in showing absence of disturbance by clients
of assertions of services, we must deal with the assertions of services listed in the last five
rows of table 3.6. Below we treat the same assertions of service s as in the beginning of
section 3.7.3;

o For assertions A13.1, A14.3, A16.3,4, A17.5,6 and A18.4 the same argument can
be used as in section 3.7.3 because the nature of the modifications made by the clients
to rpi[s] for services s is the same as in the 1-R/R protocol.

e Assertions A13.2, A14.4, A16.5, A17.7 and A18.5 are all similar. Variables occur-
ring in these assertions are cw in the antecedent and ct2st in the consequent: the
only potentially disturbing statement in the client component is S5. By 45.1! and
pct2sty the pre-condition to 55.2 implies:

(Vet' @ ct’ € sct(tid|c], sz|c]) : ct2stle,ct’] < tid[ewle, ct']]).
Hence 55.2 is orthogonal to those assertions.
e As for A17.3, note that ¢ can only disturb it if (4.1) defined below holds.
¢c=mg.fa A ma.tid € sct(tid[c], sz[c]) “4.D
Assuming (4.1), we have that the ghost-variables provide disjointness;

(c=ma.fa A mg.tid € sct(tid|c],sz[c]) A A17.3% A
(A5.2 v (A6.31 A A6.5) Vv (AT.3' NAT.5') Vv (4831 A A8.5'))
) = false.

Hence we have either disjointness or orthogonality.

The remaining assertions of service s to be dealt with are those in the last four rows of table
3.7. Observe that those assertions can only be disturbed as follows;

e_by S5.2 if the following is precondition to 55.2:

cs =¢ N cts € sct(tid|c], sz[c]) 4.2)

o by sub-statements of statement 7, ¢ € {6, 7,8} if the following is precondition to
statement 7.2:

cs=c N\ cts =cte N cwle,cts] =s ANct, € CT; (4.3)

Indeed, the necessity of the first two and fourth conjuncts is trivial. The third conjunct
equals assertions 7.12, for j € {14,16,17,18}.

Observe that for i € {6,7,8} we have that execution of any but the first sub-statement
of statement i of client ¢ has precondition ct, € CT;.. By Ai.3! it follows that after
execution of statement 7.1 we have that the value of gu(c, ct.) precondition to Si.2 equals
the value of gu(c, tid|c]) at control point ¢ in the client component of the 1-R/R protocol.
Assertion A5 equals that of the 1-R/R protocol, hence for any ct/, tid[c] < ct’ we have

4.4. ASSERTIONS: GLOBAL CORRECTNESS 99

gv(c,ct’) = (0,0, 0) at A5 which again equals the value of gv(c, tid[c]) at A5 in the 1-R/R
protocol. It follows that table 3.8 also gives the possible values of gu(cs, ct;) in the n-R/R
protocol that must hold if a client ¢ is to execute the first sub-statement of a statement that
is non-orthogonal to assertions of service s in the last four rows of table 3.7.

Combining table 3.8 and the last four rows of table 3.7, the last four rows of table 3.9 shows
the remaining assertions in the service component to be dealt with. In the remainder of this
section we treat those assertions: the proofs are almost identical to those given in section
3.7.3.

4.4.3.1 Assertion 14

From table 3.9 it follows we must show that S7 cannot disturb A14.22. Assuming non-
orthogonality, i.e. (4.3), we have widening of A14.22. In fact, with somewhat work one
can show disjointness under the non-orthogonality assumption. '

4.4.3.2 Assertions 16 and 17

From table 3.9 it follows we must show that S8 cannot disturb A16.1%. For A17.1' we have
the same proof obligation. As [A17.1' = A16.11], we give the proof once for A16.1%.

In the predicates below we identify cts; and ct. with ct as ct; = ct. under the non-
orthogonality assumption. From table 3.8 we obtain gv{c, ct) = (1, 1,0). Non-disturbance
of A7.3 by S8 follows from the following (valid) Hoare-triple:

{gvle.ct) = (1,1,0) }
S8

{gv(c,ct)=(1,1,1) }
Which implies (by weakening the postcondition):

{A16.11 A A8.3'}
58
{ A16.1'}

4.4.4 Absence of disturbance by services of assertions of clients

In this section we prove that no service s can disturb assertions of client c.

The only non-corollary co-assertion of A5, is A5.1.. The only potentially non-orthogonal
statement of services is S14, because of the assignment to RQO|cs, cts]. 514, is only
non-orthogonal to A5.1, if ¢; = c. But then we have disjointness by the ghost-variables:
(A14.1' A A5.1%) = false.

Recall from section 4.3.1 the distinction between initial and repeated (local-) correctness
of the repetition invariants that comprise assertions 6,7, and 8. Because of the use of a unit
of work in statement S8 (see sections 4.1.5 and A.5), we must only prove initial global
correctness of the invariants that constitute A8. Indeed, because of the atomicity brackets
surrounding S8, other components cannot disturb A8, once client ¢ enters (or exits) the
atomicity brackets surrounding S8. In particular, if client ¢ is at control point A8 before
it entered the atomicity brackets, we have CTy = § (by A7.6' and orthogonality of S7)
whence initial global correctness of A8.3? and A8.82 are trivial. Also note that we need
not prove global correctness of assertions that are corollaries of other assertions and/or
system-invariants.

Combining the above remarks and table 3.5, table 4.6 lists all assertions in the client com-
ponent of which non-disturbance by any service s remains to be shown.

100

CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

assertion | co-assertions

A6 A6.1%2, A6.3%
A7 A7.1%, A7.3, AT.4% AT.T
A8 A8.1%, A8.3, A8.4, A8.7

Table 4.6: Remaining assertions in the client component (1)

Assertions Ai.12, 6 < ¢ < 8, are all similar. The only non-orthogonal statement of service
s being S14 if ¢, = c. Using pgvj and A14.1 we obtain that at control point A14 we have:

cts € sct(tid]c], sz[c]).

But then we have by Ai.5! that S14 is orthogonal to Aé.1%.

The remaining assertions to be dealt with are given in table 4.7. The table is constructed
such that:

It has three rows: the first two having a Condition eniry.
1t has four columns.

Similar assertions appear in the same column. In particular, the last row shows the
global variables that occur both in the assertions above it and in some statement of
the service component: RQO and CD are not present in the last entry of column 2
because they do not appear in statements of service s.

The Condition entry in a row lists the condition necessary for a service s to disturb
the assertions in the same row. Note that the conditions are mutually exclusive due
to A6.5%, A7.52 and A8.5%. We only explain why for service s to disturb A7.7 or
A8.7 by executing S18, the non-orthogonality condition ¢, = ¢ A ct, € CTy is
necessary. For the other assertions/statements this is trivial.

S18, can disturb A7.7 or A8.7 only if for some m € My we have:
-m.to A ct2stim.fa, m.tid] = tidlm.fa] A m.fa=s

Then from A18.1§ and A18.5, it follows that for no pair other than ¢, c¢f; we have
cwles, cts] = s A ct2st[cs, cts] = tid[s]. Combined with A7.6? (or A8.6), the
non-orthogonality condition follows.

If one assertion is above another in the same row and column, then the assertions are
equal (i.e. A6.3% and A7.3%).

Assertions Condition
A6.32 cs=c A cts € CTr,
A7.31
A7.3%] AT.47 AT.7 cs=c¢ A cts € Clg,
A8.31 | A8.4! A8.7
RPO | rqi,rpi | ct2st,tid

Table 4.7: Remaining assertions in the client component (2)

The only statements of services that contain assignments to RPO, rqi, rpi, ct2st or tid
are 513.3, S14 and S18. Using prgi; we obtain that the precondition to S$13.3 implies
gv(cs,cts) = (1,0,0). Using this observation, A14.1', A18.1 and the values of the

4.4. ASSERTIONS: GLOBAL CORRECTNESS 101

ghost-variables given by the assertions in the first column of table 4.7, table 4.8 shows the
values of gu(cs, cts) at joint control points given the non-orthogonality condition in the
first column. The entries followed by an arrow ‘—’ give an interpretation of all the entries
to the right in the same row. The entries followed by an arrow ‘|’ give an interpretation
of all the entries further down in the same column. The abbreviation cp stands for ‘control
point’. The fourth quadrant of the table lists the values of gu(c, ct) at joint control points
under the corresponding condition-entry. Again ‘-’ is used to denote disjointness.

Statement— S13.3, S14, S18,
gu(cs, cts) — (1,0,0) | (1,0,0) | (1,1,1)
¢pl | Condition| gule,cte) |

A6, | co=c A cts € CTg, | (0,0,0) - -
AT, | es=c A cts € CTy. | (1,0,0) 0r (1,1,0) | (1,0,0) | (1,0,0) -
A8, | co=c A ct, € CTg, | (1,1,0) - -

Table 4.8: Values of gu(c, ct) at joint control points.

Tables 4.7 and 4.8 reveal that it remains to show that neither A6.3%2 nor A7.3' can be
disturbed by $13.3 or §14.3, provided that ¢; = ¢ A cts € CT¥_ holds.
4.4.4.1 Statement S13

513 is orthogonal to A6.3% and A7.3%.

4.4.4.2 Statement S14

First we prove non-disturbance of A7.31. From tables 4.7 and 4.8 we obtain;
(A7.31 A Al4.12 A cs=c A cts € CTy,) = gv(cs,cts) = (1,0,0).

Global correctness of A7.3* follows from the following (valid) Hoare-triple

{ gv(es, cts) = (1,0,0) }
514,

{gv(es,cts) = (1,1,0) }

Whichimplies (by weakening the-postcondition);

{ gv(es,cts) = (1,0,0) } '
S14,

{ gv(es,cts) = (1,1,0) V gu(cs,cts) = (1,0,0)}

As A6.32 = A7.3!, we can use a similar argument for 46.3% (note that we needed no
co-assertions of A7.3%).

102 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

4.5 Invariants: correctness

4.5.1 Introduction

In this section we prove correctness of the system-invariants shown in table 4.1 marked
‘new’ or ‘reused’. The repetition-invariants shown in table 4.1 are reflected in the asser-
tions: we need not treat those here. The service-components are the same as in chapter 3,
as are their annotations. All invariants from the 1-R/R protocol but pgvg were reused in the
n-R/R protocol. Note that we did not use pgug in proving the correctness invariants other
than pguy itself in the 1-R/R protocol. Hence for system-invariants that have been marked
as ‘reused’ in table 4.1, we do not need to prove again that the service components do not
disturb them: we refer the reader to section 3.8 instead. Validity of all invariants at control
point Al follows directly after applying the substitutions present in S0.

4.5.2 Proofs
4.5.2.1 Invariance of Iy (reused)

As noted in section 4.1.3, the variable s is no longer present in our specification because
it is referred to as cwle, ct’] for some client-transaction-id ct’. The dummy variables s and
st present in I, are superfluous: we may substitute s by cwlc, ct] and st by ct2st[e, ct'].
Hence it is more convenient to rewrite Ip;

Iy

I

(Ve,et! 1 c€ C A 0Lt <tidle] A—1<ct2stle,ct’] < tid[cw(c, ct']] -
cdlc, ct'] = edlewle, ct'], ct2st]c, ct']]

{ domain trading }
(Ve,ct’ : c€ C N O0< et <tidld] :
~1 < ct2stle, ct’] < tid[cwle, ct']] = edle, '] = cdlewle, ct'], ct2st[c, ct']]
)
{ implication rule, type of ct2st}
(Ve,ct’ - c€e C A0 < et <tidld] :
tid[cw(c, ct']] < ct2stle,ct’] V (cdle, et'] = edfewlc, ct'], ct2st[c, ct']})

)

Hl

We may ignore all statements in the client component preceding 58.5 as those only change
cdc, ct] or cwle, et] for tid[c] < ct. Indeed, for S5 this is trivial, for statement S6, ST and
S8 this follows from A6.5%, A7.5' and A8.5" respectively. Because the variables present
in Iy that are modified by client ¢ are local variables of client ¢, it is advantageous to rewrite
I as follows:

Iy: (Ve e C : L))
In(c): (Vet' : 0<ct/ <tid[c] :
tidlcw[c, ct']] < ct2stc, ct’] V (cdle, ct'] = cd[ewle, ct'], ct2st[c, ct']])
y, forceC.

{ definition of Iy, Iy(c, s), tra. Dummy transformation and dummy elimination (twice). }

4.5, INVARIANTS: CORRECTNESS 103

As remarked, it suffices to investigate Ip(c)(0s.5,);

[Io(c) A A85" A AB.6 N AB.T A A8.8 A-Bg
>
(Vet' : 0 <ct' <tid]c] :
tid[cw(c, ct']] < et2stle,ct’] V (cdle, ct'] = cdlcwle, ct'], ct2st[c, ct']])
) (08.5.)
{ apply substitution, split off: ct’ € sct(tid|c], sz|c]), definition of Ip(c)}
IO(C) AN
(Vet' : o’ € sct(tid|c], sz|c]) :
tidlewle, ct']] < et2st[e,ct’] V (edle, ct'] = ed[ewe, ct'], ct2st]c, ct']])

)
{use Iy(c), (A8.5' A =Bs) = (CTp = sct(tid[d], sz[c])) , and A8.8"}
(Vet' : ot € sct(tid[c], sz]c]) :
tid[cwle, ct']] < ct2st[e, ct']V
A

(= (Vm:m € My : m.to) A ev) = edlew|e, ct'], ct2st[c, ct']})

It

{use (A8.8% A A8.5' A —Bsg) = (CTy = sct(tid[c], s2[c]))}
(Vet' @ ot € sct(tid[e], szlc]) :
tidlewle, ct']] < ct2ste,ct’]V = (= (Vm :m € M : m.to) A cv)

{ use A8.6 (and dummy transformation), de Morgan’s law.}
(Vvm/ : m' € My :
tidlew[c, m’ tid]] < et2stle,m’ tid] V (V' m:m € My : m.to) V —cv
)
{ v- distribution over V, dummy transformation}
(Ym : m € My : tidlcw[c, m.tid]] < ct2stle, m.tid]) V
(Vm:m € M, :m.to) V ~cv
{ (A8.7 A A8.6) = (¥m : m € My : ct2stlc, m.tid] = tid[cw[c, m.tid]] V m.to)}
true

4.5.2.2 Invariance of pdi2cty (new)

Although this invariant is new, it concerns only local variables of clients. Variables oc-
curring in pdt2ctq are dtid[C], dt2ct[C] and tid[C] in the consequent. Hence the only
non-orthogonal statement is S8: after applying the substitutions we need only pdi2ctg
itself.

4.5.2.3 Invariance of pdi2ct; (new)

Although this invariant is new, it concerns only local variables of clients. Variables occur-
ring in pdt2ct; are dtid[C] in the antecedent and dt2ct[C] and tid[C] in the consequent.
Hence the only non-orthogonal statement is S8: after applying the substitutions we need
only pdt2ct; itself.

4.5.2.4 Invariance of pdtidy (new)

As remarked in section 4.2.1, only statements of client ¢ may be non-orthogonal to pdtidy(c):
all statements of any service or a client ¢/, ¢/ # c, are orthogonal.

From pdt2cty 1 and orthogonality of all assignments but $8.5. of client ¢ to pdi2cto,1, we
obtain as precondition to each assignment present in client ¢ (see also, section 4.2.2):

dt2ct[c, dtid]c] + 1] < dt2ct]e, dtid]c]] A di2ct]c, dtid[c]] = tid[c].

104 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

It follows that the interval [dt2ctlc, dtid|c]]..dt2ct]c, dtid[c] + 1]) is empty whence all
statements preceding S8.5. are orthogonal to pdtidy as well. Hence we need only in-
vestigate the effect of S8.5, on pdtidy(c);

i pdtidg(c) N A8.81 A A8.5' A =Bg A pdi2cty

pdtidy (C) (0’8_5)

{apply substitution: split off the case dt = dtid|c], definition of pdtidy(c)}
pdtido(c) A

(Vet',ct” @ dt2ctle,dtid]c]) < ct’ < et < tid[c] + sz[c] : cdlc,ct’] = cd]c,ct”])

Il

_ [1% conjunct: pdtidg(c) is orthogonal to S8.1...4 , hence it holds
- { 27 conjunct: Use (A8.51 A —Bg) = (CTo = sct(tid|c], sz[c])) , A8.8" and pdt2cty
true

4.5.2.5 Invariance of prqiy (reused)

The only free variable occurring in prqio is 7¢i[S] in the antecedent. Hence 55, 57 and S8
are orthogonal.

o 56, first alternative: use ¢ € C (and cwe, ¢t] € 9): follows from declaration of ¢
and ct, cw respectively.
4.5.2.6 Invariance of prqi, (reused)

Free variables occurring in prqi; are rqi[S] in the antecedent and cw|[C], RQO[C], RPO[C]
and C D|C] in the consequent. Hence S7 is orthogonal;

e S5: from A5.1' and pRQO; we obtain (Vet' : tidlc] < ct’ : srgi(e, s, ct’) = 0).
s S6:

— 1°t alternative: apply substitutions and use A46.3".

— 274 alternative: use A6.4%.

e 58.2: use A8.41 and A8.5.

4.5.2.7 Invariance of prpip (reused)

The only variable occurring in prpig is rpi[C] in the antecedent. Hence S5 and S8 are
orthogonal.

e 56, 2" alternative: use ¢ € C and cw|c, ct] € S: follows from declaration of ¢ and
ct, cw respectively.

e 57.3: widening.

4.5.2.8 Invariance of prpi; (reused)

Variables occurring in prpi; are rpi[C] in the antecedent and ¢id[S], ct2st[C], r¢i[S],
RQOIC), RPOI[C], and CDIC] in the consequent. Hence only S5 is orthogonal.

o S6:

4.5. INVARIANTS: CORRECTNESS 105

— 1%t alternative: use A6.41.

— 274 alternative: use A6.3', A6.4! and the fact that the message added to 7pi|c|
is a timeout.

e S57.3: widening.
e 58.2: use A8.41 and A8.51.

4.5.2.9 Invariance of pffi, (reused)

The only variable occurring in pffi, is ffi[S] in the antecedent. Hence only 58 is not orthog-
onal.

o S58: use ¢ € C (and cwle, ct] € S): follows from declaration of ¢ and ct, cw respec-

tively.
4.5.2.10 Invariance of pffi; (reused)
Variables occurring in pffi; are ffi[S] in the antecedent and RQO|[C], RPO[C], CDI[C],
¢d[C] and rpi[C] in the consequent. Hence we have as only orthogonal statement S5. By
respectively A6.3, A7.3! and A8.3' we have that 56.2, S7.3 and S8.2 have a precondition
implying guv(c, ct) # (1,1,1). Using pffi;, we can derive for 6 < ¢ < 8 as precondition to
S56.2 (either alternative), S7.3 and 58.2 respectively:

={3Im,s : mefils] : m.fa=c A miide CT;).

Hence S§8.3 is the only potentially disturbing statement of the client component.

e 58:use A8.3, A8.4, A8.5' and substitution.

4.5.2.11 Invariance of pcwyg (reused)

Variables occurring in pcwy are rqi[S] and pi[C] in the consequent. Hence statements S5
and 58 are orthogonal.

o 56: either alternative: use A6.4%;

e ST7: widening.

4.5.2.12 Invariance of pct2sty (reused)

Variables occurring in pet2stq are RQO in the antecedent, and ct2st[C] and tid[S] in the
consequent. The only non-orthogonal statement is 56.2 (either alternative), which only
widens pct2sty: use A6.3%.

4.5.2.13 Invariance of pRQO; (reused)

Variables occurring in pRQO; are RQO[C] in the antecedent and r¢i[S] and rpi[C] in
the consequent. By the conjunct RQO]c,ct] = 0 in the antecedent we may disregard
statements 57,58 (use A7.3' and A8.31).This leaves only S6:

e S6: either alternative: use A6.3! and definition of the statement: widening.

106 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

4.5.2.14 Invariance of pcdy (reused)

The only free variable occurring in pedy is ¢d[S] in the consequent whence all statements
of client ¢ are orthogonal.

4.5.2.15 Invariance of pCD; (reused)

Variables occurring in pCD; are CD[C] and ¢d|C] in the antecedent and cd, tid[C] and
ct2st in the consequent. Hence only S8 is non-orthogonal.

e S8: use A8.3! and definition of the statement: widening.

4.5.2,.16 Invariance of pgv{ (changed)

Because we changed pgug to pgvg in the n-R/R protocol, we must also show that no service
s can disturb it. Variables occurring in pgve are RQO[C], RPO|[C] and CD[C] in the
antecedent, and tid[C] and sz[c] in the consequent. Hence only S5.1, 56, S8 and S14 are
non-orthogonal;

o 55.1: use A5.2.
e S6: apply substitutions; use 46.5%.

e S8: note that S8, is only non-orthogonal to pgv§(c) and that A5, is postcondition
to S8.. As at A5., pgug(c) is a corollary of A5.1, it is immediate that S8, cannot
have disturbed it.

e S14: apply substitutions; use A14.1' (widening).

4.6. PROGRESS (REQUIREMENT 2) 107

4.6 Progress (requirement 2)

In this section we prove that progress is guaranteed in the 1-R/R protocol, which covers
requirement 2 of the problem statement. The structure of this section is similar to section
3.9. Precise definitions of our progress requirements are given in section 4.6.3. We also
prove lemmas 7, 8 and 9 in section 4.6.3. Lemma 7 states that clients cannot deadlock.
Lemma § states that a service can neither live- nor deadlock in its innermost repetition.
Lemma 9 states that a service s can only deadlock on $13.1 if no client ¢ ever chooses to
perform a transaction with s (in which case it is ‘idle’). We conclude that these lemmas
indeed cover requirement 2 in section 4.6.4.

oa COVOLD L CACHL i

We need a few extra assertions in order to prove the lemmas 7, 8 and 9. Those are provided
in sections 4.6.1 and 3.9.2 (reused).

4.6.1 Additional assertions in the client component

‘We need the following additional assertions in the client components to prove that progress
is guaranteed in the n-R/R protocol;

4.6.1.1 Assertion 6

e D6.1: (Yt : ct € CT; : |srpi(c, cwle, ct], ct)| = 1V gu(e, ct) = (1,0,0))
Iocal correctness:

— initially: apply substitutions: we obtain CT7 = {.
— repeatedly: apply substitutions: use A46.3', A46.4' and A6.5.
e D6.2:

(" Vet : et € CTy -
|srpi(c, cwle, ct], ct)| =
(rd[cwle, ct]] A rqz[cw e, }] = {{c, cwlc, ct], ct, false)}) V
ct2st(c, ct] = tid[cwc, ct]

local correctness:

— initially: apply substitutions: we obtain C77 = 0.
— repeatedly: for the first two disjuncts: apply substitutions, use A6. 31
A6.4' and A6.5. For the third disjunct: use V— weakening.

4.6.1.2 Assertion7

e D7.1: equals D6.1
local correctness:

— initially: use D6.1.
— repeatedly: apply substitutions: widening.

e D7.2: D6.2
local correctness:

— initially: use D6.2.
— repeatedly: apply substitutions: widening.

108 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

4.6.1.3 Global Correctness

No client ¢’ # ¢ can disturb D6 or DT: the argument given in section 4.4.2 also applies to
D6 and D7.

The only statement in the service component non-orthogonal to D6.1 is S14,, but only if
cs = ¢ A ctg € CTy. Splitting off ¢t = ¢t from D6.1 we find that in such cases the second
disjunct is made false, while the first is made true by A14.22. Note that D6.1 = D7.1
whence the result applies to D7.1 as well.

As D6.2 = D7.2, we treat both assertions in a single proof. Assume CT; # §, and split
off any case for ¢t from D86.2 (or D7.2):

|srpi(c, cwle, ct], ct)| =1V
(rdlcwle, ct]] A rgilewle, ct]] = {{c, cwle, ct], ct, false)}) V
ct2stle, ¢t] = tid]cw]e, ct]]

It suffices to show that no service s can disturb the split-off above.

o The first disjunct is only non-orthogonal to S14,, but only if ¢; = ¢ A ct; € CT%
hold: cw[c, ct] = s can be obtained from A14.12. But then we have disjointness by
A14.22,

o The second disjunct is only non-orthogonal to S13.y[c,cz.] and S18cy(c t,], the last
of which only causes widening. S13cc t,) makes the second disjunct false while
the third disjunct is made true. Indeed: m, can only be chosen such that m; =
(¢, cwle, cte], cte, false),ie. cs = ¢ N cts = ct hold at Aldcyc et

e The third disjunct is non-orthogonal to S13.3,, but only if ¢; = ¢ A ct; € CTy
hold as precondition: in this case the disjunct follows from A14.1%3. Also, S18;
is non-orthogonal if cw[e, ct.] = s. From ct. € CT7, A6.2 and A6.5 it follows
that there exists no ct’, ct’ € CTy/{ct.}, such that cw|c, ct'] = s. (For D7.2: use
AT7.2 and A7.5" instead of A6.2 and A6.5'). By A18.2 it must be the case that
¢s = ¢ A cty = ct. holds. But then we obtain disjointness by table 3.8.

4.6.2 Additional assertions in the service component

The additional assertions needed in the service component are those given in section 3.9.2.
It remains only to prove absence of disturbance of D16.1 and D17.1 by clients. As D16.1
~equals D17.1, we discuss global correctness of both assertions in a single proof.

Only statements S6. and S8, are non-orthogonal to B16.1 and B17.1, but only if ¢ =
cs A ct. = cts. Note that for ¢ € 6,7, 8, we always have ct. € C7Tj, as precondition
to any sub-statement of statement %.. From table 3.8 we obtain that control points A6 and
A16 or A17 are disjoint under this condition.

For S8, we have widening of the second disjunct of D16.1 and D17.1if¢c; = ¢ A ct, =
tidc].

4.6.3 Absence of Live- or deadlock

The definitions of live- and deadlock given in section 3.9.3 also apply in this section. Note
that variant functions were provided in section 4.3.1 for the repetitions of statements 56,
S7 and S8. Hence there is no danger in the clients similar to the danger of livelock in the
services: for clients there is only danger of deadlock. Table 4.9 summarizes the possible
statements that can live- or deadlock, and the corresponding globally correct co-assertions.

4.6. PROGRESS (REQUIREMENT 2) 109

Deadlock at: Co-assertion:

S7.1. CTr #0 A (Yet : ct € CTy : srpi(e, cwle, ct], ct) =)
513.14 rgils] =0

516.1, fils] =0

Livelock at: Co-assertion:

S164 and 5175 | sffi(cs,s,¢ts) =0 N =Bz

Table 4.9: Possibly deadlocking statements and corresponding assertions

Given the definitions above, we further examine a client ¢ that deadlocked. From table 4.9
we obtain this is only possible at S7.1., and that at this control point, the following holds:

CTy #0 A (Vet : ct € CTy @ srpi(c, cwle, ct], ct) = 0) “4.4)
Using D7.1, we obtain;

Vet : et € CTr : gu(e,ct) =(1,0,0)) “4.5)
Using (4.5) and D7.2, we obtain;

(Vet : cteCTy :
(rdcwle, ct]] A rgiew(c, ct]] = {{c, cwle, ct], ct, false)}) V 46
ct2stlc, ct] = tidjcwle, ct]] (4.6)

)

Lemma 7. Clients cannot deadlock.

Proof. Let ¢ deadlock on S7.1. By (4.4) we have C'T7 # {: split off an arbitrary case ct -
ct € CTy - from (4.6), and abbreviate cw|c, ct] by s;

(rd[s] A rqils] = {{c,s,ct, false)}) V ct2st[c, ct] = tid[s] 4.7
It suffices to show that (4.7) is always eventually disturbed. We analyze both disjuncté;

e First we show that the second disjunct of (4.7) cannot hold by showing that if it
would hold, then service s can not be at either of its control points;

— Due to A13.2, service s cannot be at control point S13.

— The conjunction of ct2stle, ct] = tid[s] and either A14.4, A16.5, A17.7 or
Al8.5 yields cts = ¢t A ¢s = cif execution of s were at control points Al14,
A16, A17 or A18. In which case: '

* For control point A14, by execution of S14, s would disturb 4.4, contra-
dicting that ¢ deadlocks.
x Control points A16, A17 and A18 are disjoint due to

((A16.1' v A17.1' v A18.1%) A (4.5)) = false.

o Second, we show that the first disjunct of (4.7) cannot stably hold, for assume that
it holds. From Al3.3, Al14.5, A16.6, A17.8 and A18.6 it follows that service s
can only be at control point A13. By rgi[s] = {{c, s, ct, false)}, service s cannot
deadlock at S13.1 while cis at A7. Indeed, it must choose 14 such that the following
holds at holds at A14:

m1 = {c, s, ct, false)

From A14.2% and A14.5; it follows that S13; disturbs first disjunct of (4.7).

110 CHAPTER 4. VERIFICATION OF THE N-R/R PROTOCOL

O

Lemma 8. 4 Service cannot live- or deadlock on in its innermost repetition.

Proof. Let s be a service that live- or deadlocks in its innermost repetition (i.e. it either
deadlocks at A16 or it livelocks). Note that by table 4.9 we have that sffi(c, s, cts) = 0
must then be a system-invariant. Indeed;

e if the service livelocks, the system-invariant equals the corresponding assertions in
4.9.

o ifthe service deadlocks at A16,, the system-invariant follows from the corresponding
assertion in table 3.11.

e 1o component but s can remove anything from ffi[s]. Hence if sffi(c, s, cts) # 0
holds at some point, it would contradict the assumption that s live- or deadlocks.

It follows that it suffices to show that sffi(cs, s, cts) = B cannot be a system-invariant.

By sffi(cs, s, cts) = @ we have that —Bi7 is a globally correct assertion at control point
Al7, if s livelocks in its innermost repetition. Combined with D16.1 and D17.1, we
obtain that gv(cs, cts) = (1,1,0) is also a system invariant if s live- or deadlocks in its
innermost repetition. Combined with pgug(cs), A16.1% and A17.1% we obtain that (4.8)
defined below is also a system-invariant;

cwles,cts] = s A cts € sct(cs, tid[cs), sz[cs]) A gu(cs,cts) = (1,1,0) 4.8)

From A5.2.,, A6.3.,, A7.3., and A8.3,, it follows client c, must either be at control point
A6, A7 or A8 and cty, € CT7 U CTg holds. As by lemma 7, ¢s cannot deadlock, and
all of its innermost repetitions were proved to terminate in section 4.3, it must eventually
reach control point A5 again. But (A5.1., A (4.8) A ct, € N) = false. Hence (4.8)
cannot be a system-invariant, which contradicts that s live- or deadlocks in its innermost
repetition. J

Lemma 9. A service s can only deadlock on S13.1 if no client c ever chooses S, in S5.1.,
such that s € S..

Proof. By contradiction: let s deadlock on S13.1 while some client ¢ chooses S, in 55.1.,
such that s € S’. Then by A13.3 and table 4.9 we have at A13: rqi[s] = § A rd[s]. At
A6, we have for some ct, ct € sct(tid|c], sz[c]): cwlc, ct] = s. But execution of $6.2 with
precondition cwlc;ct] = s A rgils] =0 A rd[s] disturbs rqi[s] = 0. O

4.6.4 Conclusion

In this section we briefly show that lemmas 7, 8 and 9 indeed cover requirement 2 of the
problem statement given on page 17. Clients cannot deadlock by lemma 4. The services
chosen by a client for a distributed transaction can neither dead- nor livelock by lemmas
5 and 6 respectively. Hence all parties involved in a distributed transaction will always
make progress. At some point, all have finished processing their part of the distributed
transaction, at which point the distributed transaction has terminated.

Chapter 5
Main Findings

In this chapter we present the main findings in this thesis. Section 5.1 gives a management
summary, section 5.2 gives a technical summary. In section 5.3 we present directions
for further development of the IFSA application-bus and research concerning transaction
integrity in IFSA.

5.1 Management Summary

The business processes within financial institutions typically require a great amount of
information processing. Hence information technology is essential to the strategy of ING:
it must be properly aligned to its business architecture. This is reflected in a recently
introduced, pan-European IT architecture, called the ING Financial Services Architecture
(IFSA).

Three fundamental design-principles guided the design of IFSA;

e All intra-domain communication between applications is implemented using ser-
vices via the central IFSA application bus, referred to as bus in the sequel. Ser-
vices communicate by means of sending messages through the bus. The way in
which messages are sent is standardized in communication patterns: IFSA defines
the Request/Reply-pattern (R/R) and the Fire and Forget-pattern (F&F).

o Services are logically distributed over the domains of the business architecture.

e Services are loosely coupled [Kay03]: they can connect to, or disconnect from the
network as in, for example, the internet.

The transition to a loosely coupled, service based architecture has many advantages and
offers great potential for cost reductions. However, it also raises the issue of distributed
transaction integrity. Basically, distributed transaction integrity can be defined by means
of the following requirements;

1. All service-requesters (clients) and services involved in a distributed transaction
agree on the outcome of a distributed transaction. That is, either all clients and
services commit the distributed transaction, or all services abort.

2. None of the clients or services deadlocks. A client or service deadlocks if it reaches
a state in which it is stuck forever (unless humans intervene).

The issue of distributed transaction integrity in IFSA is mainly due to the following reasons;

111

112 CHAPTER 5. MAIN FINDINGS

o Because the services are loosely coupled, they may be temporarily down at any time.

e The R/R-pattern offered by the application bus is /ossy: it has the property that mes-
sages sent may be lost.

The most thorough approach to ensuring distributed transaction integrity is the develop-
ment of distributed transaction protocols: sets of rules to which all parties involved in a
distributed transaction must adhere. Hence the approach taken in this thesis was to design
and formally verify a distributed transaction protocol called the n-R/R protocol.

The main properties of the n-R/R protocol are that;

e It guarantees distributed transaction integrity for distributed transactions that must
terminate rather quickly, between a client and any number of services.

o It can to some extent deal with programming errors that lead to malformed service-
requests, malformed service-replies, and errors during processing by service-requesters
and/or services.

o It is perfectly suited to the loosely-coupled nature of IFSA: services (and service-
requesters) may shutdown between transactions without causing the protocol to mal-
function.

The design and verification of transaction protocols requires expertise often found only
in universities or related institutions such as the Laboratory for Quality Software at the
Technische Universiteit Eindhoven. A famous quote from Roger Needham is that ‘Security
protocols are three line programs that people still manage to get wrong’. It can be asserted
that the same holds for distributed transaction protocols. In fact, in chapter 1 we give two
examples of distributed transaction protocols formerly considered within ING that do not
guarantee distributed transaction integrity;

Replacing the R/R-pattern by the F&F-pattern: the R/R-pattern offered by the appli-
cation bus is lossy, which is often a reason for the loss of transaction integrity. The
F&F-pattern is not. Hence came the idea to replace R/R-messages by F&F-messages.
In section 1.2 we show that;

e Whenever a service disconnects from the bus, it may result in service-requesters
being stuck until the service reconnects to the bus. Hence this approach is ill-
suited to the concept of loose-coupling.

e Some protocols featuring R/R-messaging can deadlock service-requesters and/or
services. if the R/R-messages are replaced by F&F-messages.

Compensating Transactions: whenever a service commiitted a distributed transaction while
it should have aborted the transaction, it is instructed to execute a compensating
transaction that ‘undoes’ the compensated-for transaction. In section 1.3.2 we show
that;

o Compensation is impossible for transactions that involve real-actions such as
dispensing money from an automated-teller machine.

e The problem to determine whether or not a compensating transaction actually
restores transaction integrity is intractable. In practice this means that the pro-
cessing power needed to solve the problem may exceed that of modern and
future computers.

o The problem to define a compensating transaction that restores transaction in-
tegrity is also intractable.

' 5.2. TECHNICAL SUMMARY 113

The consequences of using a faulty protocol in IFSA can be dramatic. Often, faults cannot
be repaired (for example, because transactions involve real-actions), or, repairing them may
result in huge amounts of man- and machine-hours, possible financial burden, and a loss of
goodwill. It can be expected that the costs incurred by the formal verification of a protocol
outweigh the costs incurred by the use of an incorrect protocol, especially in an architecture
as large as IFSA. Indeed, once a protocol has been designed and verified, it can be reused
throughout IFSA without any added costs.

Although the n-R/R protocol is suited to a wide range of applications, there are also ap-
plications to which it is not. Hence it may be considered to develop and verify additional
transaction-protocols to cover a wider range of applications. In section 5.3 we present some

directions to this end.

5.2 Technical Summary

In this section we provide a technical summary. This section complements the management
summary given in section 5.1: we do not repeat definitions or abbreviations already given
there. Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4 summarize chapters 1, 2, 3 and 4 respectively.
In section 5.2.5 we summarize how the requirements of the problem-statement given in
chapter 1 are met.

5.2.1 Chapter1

In chapter 1 we define IFSA as a loosely-coupled network of clients and services that com-
municate by means of the IFSA-application-bus. In order to be able to reason about dis-
tributed transaction integrity, we assumed each client and service to have a local database.
Clients and services can only read or update their own database, by means of local database
transactions. The distributed database was defined as the multiset of all local databases. We
explain the two messaging-patterns offered by the bus in section 1.1.2.

The F&F-pattern provides for one-way, unordered, reliable, asynchronous communication,
and features only F&F-messages. The only scenario possible when sending a F&F-message
from a client to a service was given in figure 1.3 on page 15, the unordered nature of F&F-
messaging was demonstrated in figure 1.4 on page 15. F&F-messaging is expensive in the
sense that the associated overhead is much greater than that of R/R-messaging.

The R/R-pattern provides for two-way, unordered communication and distinguishes be-
tween requests and replies. Typically a client sends a request toa service-and expects a
reply from the service. However, it is also possible that the client receives a timeout from
the bus instead of a reply from the service. Hence the R/R-pattern was said to be lossy. We
reduced the possible scenarios for R/R-messaging to the three scenarios given in figure 1.2
on page 14.

In defining the problem statement, we defined an example distributed-update-transaction
using only R/R-messaging on the basis of the scenarios given in figure 1.2. In particular, we
assumed the request in each scenario of figure 1.2 to contain an instruction for the service
to perform an update to its local database by means of a local database transaction, and the
reply to contain information with which the client must update its database, also, by means
of a local database transaction. The impossibility for the client to discriminate between
scenarios 2 and 3 of figure 1.2, and for the service to discriminate between scenarios 1 and
3 formed the basis for our problem-statement.

However problematic in distributed update-transactions, it was argued that R/R-messaging
also has important benefits over F&F-messaging in distributed transactions between one
client and several services. Indeed, replacing R/R-messaging by F&F-messaging was

114 CHAPTER 5. MAIN FINDINGS

shown to introduce deadlock in some cases, or, it proved to be ill-suited to the loosely-
coupled nature of IFSA.

Hence the exact problem-statement was to find a solution for the problems connected to
using R/R-messaging when performing distributed update-transactions between one client
and any number of services. The solution should respect the loosely-coupled nature of
IFSA, use only functionality provided by the bus, and ensure that the four requirements
listed in the first two columns of table 5.1 are met. (We explain the other columns of table
5.1 in the sequel.)

Requirement is covered by in section(s)
1 | Eack distributed transaction always ends such that | invariants Ip and | 4.2.1 and 4.5
all parties involved commit their local database | pdiidy
transaction, or all parties involved abort their lo-

cal database transaction

2 | Distributed transactions always terminate lemmas 7, 8 and 9 4.6.4

3 | It is impossible that the transaction system enters a | remark 252
state wherein each transaction is always aborted

4 | 4 good balance exists between price and perfor- | remark 253

mance of the protocol

Table 5.1: Requirements traceability matrix

We considered the following candidate-solutions to the problem statement;

¢ Resending of requests by the client until a reply is received (instead of a timeout),
discussed in section 1.3.1. It was argued that this approach is ill-suited to the loosely-
coupled nature of IFSA.

o Compensating transactions, discussed in section 1.3.2, was a solution formerly con-
sidered within ING until we showed it to be problematic. The main idea is that
whenever a party in a distributed transaction committed its local database transac-
tion while another party aborted, the party that committed is instructed to perform a
compensating transaction that undoes the effects of the compensated-for transaction.

The discussion was largely based on the formal framework provided in [KILLS90]
for compensating transactions on local databases. The paper defines soundness of
histories of transactions on (local-)databases as the main integrity criterion. We
ourselves showed the decision-problems of determining soundness after compen-
sation (HistSound), and, defining a compensating transaction that ensures sound-
ness (ComSounds.), to be intractable in theorems 1 and 2 respectively. As those
problems would have to be solved in many applications that rely on compensating
transactions to achieve distributed transaction integrity, we rejected compensating-
transactions as a general solution to our problem-statement. It was also noted that
reliably instructing a client or service to perform a compensating transaction is prob-
lematic using only R/R-messaging.

e Allowing additional F&F-messaging, discussed in section 1.3.3. Given the draw-
backs of the other proposed solutions, allowing F&F-messaging in addition to R/R-
messaging seemed the only viable solution left. In chapter 2 we present a protocol
that uses such additional F&F-messages: the n-R/R protocol. It allows distributed
transactions between 1 client and n different services, 1 < n. The integer n is called
the size of the distributed transactions.

5.2. TECHNICAL SUMMARY 115

5.2.2 Chapter 2

In chapter 2 we present the n-R/R protocol, the main properties of which are that;

e It requires n requests, n replies and n F&F-messages for distributed transactions
with size n.

e It suits the loosely-coupled nature of IFSA: it allows clients and services to discon-
nect from the bus in between transactions without causing the protocol to malfunc-
tion.

o The decision to commit or abort a distributed transaction is taken by means of a
voting process: a distributed transaction can only be committed if the client and all
services involved unanimously vote to do so, otherwise it is aborted.

e The protocol can to some extent deal with programming errors that lead to malformed
requests, malformed replies, or errors during processing by the business applications
run by clients or services.

o The protocol is similar to the 2-phase-commit protocol (see for example: [SKS98]).
The main difference between the 2-phase-commit protocol and the n-R/R protocol
are;

— The 2-phase-commit protocol requires 3n messages to be sent in addition to the
messages needed to perform the actual transaction. The messages contain only
votes or commit/abort-instructions. The n-R/R protocol requires 3n messages
in total.

— The n-R/R protocol is specified in terms of the communication-primitives of-
fered by the bus. We use those primitives in a very specific manner. In section
2.5.2 we showed that the n-R/R protocol can deadlock clients and services if
we replace all R/R-messaging by F&F-messaging. The protocol thus obtained
is also similar to the 2-phase-commit protocol. This shows that implementing
a known protocol in terms of bus-primitives is not a trivial matter!

e The protocol is intended for distributed transactions that terminate rather quickly (in
the range of a few seconds).

The client- and service-programs of the n-R/R protocol are discussed in sections 2.2 and 2.3
respectively. In section 2.4 we give some example scenarios of executions of the protocol.
Section 2.5 discusses mostly implementation-details,-we also provide arguments that show
that requirements 3 and 4 are met by the n-R/R protocol (see the last two rows of table 5.1).
Section 2.5.5 discusses the limitations of the protocol.

5.2.3 Chapter 3

In chapter 3 we verify that requirements 1 and 2 of the problem statement are met by the
1-R/R protocol: a special case of the n-R/R protocol that only allows transactions with
size 1. The main motivation for first examining this special case was the complexity of our
proof requirements.

In section 3.3 we give a formal model of the messaging-primitives offered by the applica-
tion bus in the Guarded Command Language (GCL, [FvG99]). Note that this model may
also be used to design other protocols.

The client- and service-programs given in chapter 2 are translated to the GCL in sections
3.4.2 and 3.4.3 respectively. Requirement 1 of the problem statement is translated to the

116 CHAPTER 5. MAIN FINDINGS

system-~invariant I in section 3.5.1. Sections 3.6, 3.7 and 3.8 are devoted to proving proper-
ties of the protocol that enable us to prove that the system invariant Iy is indeed maintained
by the 1-R/R protocol. In section 3.9 we prove that the 1-R/R protocol meets requirement
2.

5.2.4 Chapter 4

In chapter 4 we verify that requirements 1 and 2 of the problem statement are met by the n-
R/R protocol for any positive n. In doing so we reuse as much as possible from the results
in chapter 3. The client-program of the 1-R/R protocol given in section 3.4.2 is extended to
allow for transactions with any positive size n in section 4.1.4. The service program given
in section 3.4.3 is reused without modification.

Requirement 1 of the problem statement is translated to the reused system-invariant I and
the new system-invariant pdtido in section 4.2.1. Sections 4.3, 4.4 and 4.5 are devoted
to proving properties of the protocol that enable us to prove that the system invariants I
and pdtidy are indeed maintained by the n-R/R protocol. In section 4.6 we prove that the
n-R/R protocol meets requirement 2.

5.2.5 Conclusion

Table 5.1 is a requirements-traceability matrix. Entries in the last two columns show exactly
where and how it is remarked or formally proved that a requirement given in the first two
columns is met. For requirements 1 and 2 we gave a formal proof. For requirement 3 we
provide guidelines in section 2.5.2 that if followed, lead to it being met in all probability.
The efficiency of the n-R/R protocol is discussed in section 2.5.3, it is also argued there
that requirement 4 is met.

Recall from section 5.2.2 that the n-R/R protocol also respects the loosely-coupled nature
of IFSA, and that it only uses the functionality offered by the IFSA-bus. Hence we consider
all requirements of the problem-statement to be met under the required preconditions.

5.3 Directions for further research and development

In this section we present some directions for further development of the IFSA application-
—bus-and research concerning transaction integrity in IFSA.

The following directions concern further development of the IFSA application-bus;

o The method for receiving requests or F&F-messages IFSAGetMessage (see section
A.4.1), returns any available request or F&F-message. The BAI provides no func-
tionality that lets a service specifically receive a request instead of a F&F-message,
or vice versa. This could be a useful feature in future versions of the bus. The ab-
sence of this feature led to the requirement in the n-R/R protocol that a service has
two connections (one only for R/R-messaging and one only for F&F-messaging, see
section 2.3.2).

e As discussed in section 2.3.2, the BAI provides no functionality that lets a service
identify the sender of messages even though this information is available at the layer
below the BAI. This information is often needed for distributed transaction protocols
to function. There are two solutions to this;

— Expose the sender of a message by means of a new BAI-method.

5.3. DIRECTIONS FOR FURTHER RESEARCH AND DEVELOPMENT 117

— Implement distributed transaction protocols at the layer below the BAI and ex-
pose only the methods needed for the distributed transaction protocols to oper-
ate by means of new BAI-methods.

The following directions concern further research concerning transaction integrity in IFSA;

o It might be useful to extend the n-R/R protocol to allow for nested transactions:
transactions in which services must also act as service-requester (client). We provide
some sketches to this end below.

An example scenario for a nested distributed transaction is given in figure 5.1. Two
services are involved in the scenario: the client transacts with service 1, service 1
must transact with service 2 in order to be able to send a reply to the client. The
messages exchanged between the client and service 1 are exactly those of a size-
1 distributed transaction of the n-R/R protocol. The same holds for the messages
exchanged between services 1 and 2, the difference being that service 1 acts as client
in its communication with service 2.

msc Scenario of the nested n-R/R protocol

| client I | service IJ i service 2 I
request
request
repl
reply Py
commit .
commit

Figure 5.1: Scenario of the nested n-R/R protocol

Only the service-program of the n-R/R protocol given in section section 2.3 would
have to be adapted to allow for nested transactions. A flow diagram of the adapted
service-program is given in figure 5.2. The interpretation of the grey boxes is the
same as the boxes with corresponding labels in the client program of the n-R/R
protocol (see section 2.2 and figure 2.1). The interpretation of the white colored
boxes is the same as the boxes with corresponding labels in the service program of
the n-R/R protocol (see section 2.3 and figure 2.2). '

Some remarks are in place. First of all, it is evident that the risk of receiving a timeout
(or reply containing a vote to abort) increases with the level of nesting. Secondly, the
informal description of the nested-n-R/R protocol given above should not be taken
as a specification but merely as a starting point for further research!

e It may be desirable to develop other distributed transaction-protocols in addition to
the n-R/R protocol because some applications may not be suited to the n-R/R pro-
tocol. We explain this by giving an example. Recall from section 2.5.2 that in the
n-R/R protocol, the variable MAX_TIMEOUT roughly indicates the maximum amount
of time a transaction may take. It was argued in section 2.5.2 that this amount should
not be set too high. Some applications may call for long-lived distributed transac-
tions: distributed transactions that can take hours or even days to complete. It is
evident that the n-R/R protocol is not suited to such applications.

118

CHAPTER 5. MAIN FINDINGS

Get
Process : Commit
Request & l Decision
Begin DB- et
Transaction Vote &
o RS:‘;d Commit/Abort DB-
Py Transaction

Get

R t \
s T RRUTTUTT nO e,
"""" Stop?
yes

Figure 5.2: Service-program of the nested n-R/R protocol: flow-diagram

e The n-R/R protocol has been designed for single-instance, single-threaded services.

It is however not difficult to extend the protocol such that it can function with multi-
instance and/or multi-threaded services: services that can process multiple transac-
tions simultaneously. Verifying that a multi-threaded version of the n-R/R protocol
maintains transactional-integrity as required by our problem-statement given on page
17 seems challenging though.

e In section 2.5.4 we gave some guidelines for dealing with exceptions caused by mal-

functioning of the bus. However, we did not prove that following these guidelines
restores distributed transaction integrity. It might also be useful to extend and verify
the protocol such that it allows clients and/or services to recover from crashes during
a transaction.

e In section 2.5.2 it was shown that replacing all R/R-messaging by F&F-messaging

in the n-R/R protocol introduces the danger of deadlock. It would be interesting to
investigate whether or not the functionality offered by our protocol can be provided
by a protocol that uses only and at most 3n F&F-messages - or generally, only and at

-most 3n reliable, asynchronous and unordered messages - in distributed transactions
with size n, without resorting to the use of timeouts.

Appendix A

The business application interface

A.1 Introduction

The business application interface (BAI) of the IFSA bus is the only interface accessible to
the business-application programmer. Because of its importance to this project and for the
sake of unity of this document, some parts of the interface that concern communication are
treated in detail in this appendix. The sections that follow also explain some terminology
and concepts used throughout the bus documentation.

Note that the BAI is available for multiple programming languages and platforms such as
C, Java, NET, CICS/COBOL, etc., on UNIX, Windows, etc. The differences between these
implementations are minor. This appendix is based on the C-interface described in [it03].

Section A.2 discusses basic concepts and how connections with the bus can be made. Sec-
tion A.3 explains how messages can be sent, section A.4 explains how messages can be
received. Section A.5 discusses units of work. Section A.6 discusses the various faults and
exceptions that may occur in communication.

A.2 Common BAI concepts

Every BAI-method returns a completion-code, the corresponding BAI type is the enumera-
tion type IFSARETCODE = {IFSACC_DK, IFSACC_WARNING, IFSACC FAILED}. Associated
with a completion-code is a reason-code, the corresponding BAI type is IFSAREASON. It is
listed below what the meaning of the different completion-codes is;

e IFSACC_OK: the invocation completed successfully, the corresponding reason-code
has a default value IFSARC_DEFAULT.

e IFSACC_WARNING: the invocation completed but raised a warning, the corresponding
reason-code contains a description of the warning. The warning must be specifically
handled in most cases. The reason-codes differ per method in this case.

e IFSACC_FAILED: a rather serious failure occurred, the corresponding reason-code
contains a description of the failure.

If warmnings can be returned by a method they are discussed. Also failures that can be
recovered from are discussed. Irrecoverable failures are not discussed in detail.

119

120 APPENDIX A. THE BUSINESS APPLICATION INTERFACE

A.2.1 Connections and Service slots

Each application that wants to use the bus must connect to it first, once the connection is
no longer needed it must be destroyed in order to release the resources associated with the
connection. The corresponding BAI-methods are IFSAConnectEx and IFSADisConnect
respectively. A connection is represented by a connection-handler of the type IFSAHCONN.

For each connection, it is possible to create an arbitrary number of service slots, that are to
be destroyed when not needed anymore. The corresponding BAI-methods are
IFSAAllocateServiceSlot and IFSAReleaseServiceSlot respectively. Each service
if communication is needed with n services, n service slots are needed. The BAI type for
service-slot-handlers is IFSAHSRVSLOT.

A.2.2 (Un)registering a service

The bus repository is an internal store (invisible to the programmer) that keeps track of the
services that are accessible through the bus and their addresses. Services must be registered
before they can be used and unregistered if unavailable, in order to register a service, a
connection is needed. The corresponding BAI-methods are IFSARegisterService and
IFSAUnRegisterService respectively. The BAI type for services is IFSAHSRV.

A.3 Sending messages or requests

The IFSA specification provides two patterns to exchange messages. With each pattern are
associated a certain message type and means to send and receive messages. Both patterns
provide unordered communication only: there is no guaranteed order in which messages
are received.

A.3.1 The ’Fire and Forget’ pattern

The Fire and Forget (F&F) messages, simply referred to as messages in the sequel if no
confusion is possible may have a size of up to 4 megabytes. Their BAI type is TFSAHMSG.
There is a (very) high probability that the message arrives, there are however (extreme)
cases where thisis-not so; we deal with those cases-at a later stage. There is no such thing
as a connection associated with the subsequent sending of multiple messages: the messages
arrive at some time at the destination service.

A.3.1.1 Creating F&F-messages

Messages are created and destroyed by means of the BAl-methods
IFSACreateFireAndForget and IFSADestroyMessage respectively, the latter of which
simply releases the memory associated with a message (this method must also be used for
destroying replies, treated later).

Table A.1 gives the details for IFSACreateFireAndForget. A value ‘in’ in the column
‘Input/Output’ means that the argument in the corresponding row is an input parameter, a
value ‘out’ an output parameter. The value ‘in/out’ means that before invoking the method,
a variable of the corresponding type must have be declared and passed as an argument.
This variable is then modified (or assigned a value) by the invocation. These conventions
are used throughout this appendix.

A.3. SENDING MESSAGES OR REQUESTS 121

Argument Input/Output Type Description

serviceSlot = in IFSAHSRVSLOT The service-slot handler, deter-
mines the destination

message in/out IFSAHMSG The message handler

payload in char]] The payload (contents) of the mes-
sage

reasonCode int/out IFSAREASON A description of the failure or warn-
ing (if any)

completionCode out IFSARETCODE Completion-code

Table A.1: The IFSACreateFireAndForget method

A.3.1.2 Sending F&F-messages

Sending of messages is done by means of the BAI-method IFSASend, the details of which
are given in table A.3.1.2.

Argument Input/Output Type Description

message in/out IFSAHMSG The message to be sent

reasonCode int/out IFSAREASON A description of the failure or warn-
ing (if any)

completionCode out IFSARETCODE Completion-code

Table A.2: The IFSASend method

The different values for completionCode have the following interpretation;

o IFSACC_WARNING: with one of the following reason-codes;

— IFSARC_PAYLOAD TOO_LARGE: the message was sent although the payload is
too large; the application contains a programming error.

Note that IFSASend must also be used for sending requests or replies (discussed in the
sequel).

A.3.2 The Request/Reply’ pattern

The *Request/Reply’ (R/R) pattern distinguishes requests and replies. A request is sent
to a destination service after which a unique reply from the destination service is ex-
pected. One can see this as a connection between the client and service that lasts for
two communications. Replies are identified by their corresponding request in the BAIL.
In contrast with the F&F pattern, upon creating a request, a parameter timeJut must
be specified. There exist internal configuration parameters MIN_TIMEOUT, MAX_TIMEQUT,
(MIN.TIMEOUT < MAX_TIMEOUT), that cannot be changed by the programmer, that specify
the minimum and maximum allowed respectively. If the value of timeQut exceeds these
boundaries it is changed to equal the closest boundary. When a request is sent, the system
internally calculates the following parameters;

o systemTime =’the system time of the bus upon sending the request’.

e absoluteTimeout = systemTime 4 timelut,.

122 APPENDIX A. THE BUSINESS APPLICATION INTERFACE

e expiryTime = F(timeOut): where F is a monotonously increasing function, such
that timeOut < F(absoluteExpiryTime),

e absoluteExpiryTime = systemTime + expiryTime.

After absoluteExpiryTime, the reception of a reply is impossible, in some cases this
is already so after absoluteTimeout. The exact meaning of absoluteTimeout and
absoluteExpiryTime is explained when discussing the reception of requests. Requests
and replies may have a payload of up to 32 kilobytes, their BAI types are equal to that of
F&F-messages.

A.3.3 Creating requests

Requests are created and destroyed by means of the BAl-methods IFSACreateRequest
and IFSADestroyMessage respectively, the latter of which simply releases the memory
associated with a message (this method must also be used for destroying replies, treated in
section A.3.4). Table A.3 gives the details for IFSACreateRequest.

Argument Input/OCutput Type Description

serviceSlot in IFSAHSRVSLOT The service-slot handler, deter-
mines the destination

timeOut in int The timeout value

request in/out IFSAHMSG The request handler

payload in char(] The payload of the request

reasonCode int/out IFSAREASON A description of the failure or warn-
ing (if any)

completionCode out IFSARETCODE Completion-code

Table A.3: The IFSACreateRequest method

A.3.4 Creating replies

Replies are created and destroyed by means of the BAI-methods IFSACreateReply and
IFSADestroyMessage respectively. Table A.4 gives the details for IFSACreateReply.

Argument Input/Cutput Type Description

request in/out IFSAHMSG The request for which the reply is

reply in/out TFSAHMSG The reply

payload in char]] The payload of the reply

reasonCode int/out IFSAREASON A description of the failure or warn-
ing (if any)

completionCode out IFSARETCODE Completion-code

Table A.4: The IFSACreateReply method

A.3.5 Sending requests and replies

Sending of requests and replies must be done as sending F&F-messages because their BAI
types are equal.

A.4. RECEIVING MESSAGES 123

A.4 Receiving messages

The following subsections treat the methods for receiving F&F-messages, requests and
replies.

A.4.1 The IFSAGetMessage method

IFSAGetMessage is a BAI-method to receive either requests or F&F-messages. The method
is intended for services. This method can get any message addressed to the specified con-
nection. The receiving service must inspect a received message in order to determine the
type of the message (either a reply or a F&F-message). The details of IFSAGetMessage
are given in table A.5.

Argument Input/Output Type Description

connection in IFSAHCONN The connection to use

waitDelay in/out int Wait time in milliseconds if no mes-
sage is available

message in/out IFSAHMSG The received F&F-message or reply

payload in/out char(] The payload of the message or reply

reasonCode int/out IFSAREASON A description of the failure or warn-
ing (if any)

completionCode out IFSARETCODE Completion-code

Table A.5: The IFSAGetMessage method

The values of reasonCode that can be returned have the following interpretations;

e completionCode = IFSACC_WARNING A reasonCode = IFSARC.NO_MESSAGE_AVAILABLE:

No message was received within waitDelay milliseconds.

e completionCode = IFSACC_WARNING A reasonCode = IFSARC_POISON MESSAGE:
There was a F&F-message waiting, but that message had already been offered to the
service several times within a unit of work that was aborted too many times (see
section A.5). The returned message is valid whence all context information can be
retrieved. The payload however is NULL. '

A4.2 The IFSAGetReply method

The IFSAGetReply method can be used to receive a pending reply corresponding to a
specified request. The details of IFSAGetReply are given in table A.6. The method may
take up to timeOut milliseconds to return, where timeQut is the parameter specified upon
invocation of TFSCreateRequest for creating the corresponding request.

The value AbsoluteTimeOut associated with a reply determines until when and invocation
of IFSAGetReply may wait for a reply. If the method invocation must wait and the reply
has not arrived at AbsoluteTimeOut, then the reply times out. Once a reply has timed out,
it cannot be received anymore, it is deleted by the bus. Irrespective of the BAI-method used
for receiving a reply, a reply is deleted by the bus if it has not yet been received or timed out
(and thus subsequently deleted) at AbsoluteExpiryTime. If IFSAGetReply is invoked
after AbsoluteTimeOut but before AbsoluteExpiryTime while the reply is available,
the reply can still be received. Note that the exact waiting behavior of IFSAGetReply is
invisible to the application programmer.

The possible values for completionCode must be interpreted as follows;

124 APPENDIX A. THE BUSINESS APPLICATION INTERFACE

Argument Input/Output Type Description

request in IFSAHMSG The request for which a reply is ex-
pected

reply in/out IFSAHMSG The reply

payload in/out char]] The payload of the reply

reasonCode int/out IFSAREASON A description of the failure or wam-
ing (if any)

completionCode out IFSARETCODE Completion-code

Table A.6: The IFSAGetReply method

e completionCode = IFSACC_WARNING: a timeout occurred, reply is not a valid
reply, the payload is NULL. Note that any failure from the sending application or the
bus leads to a timeout.

A.4.3 The IFSAGetAnyReply method

The IFSAGetAnyReply method can be used to receive any pending reply for the specified
connection. The details of IFSAGetAnyReply are given in table A.7. The method may
take up to timeOut milliseconds to return, where timeOut is the minimum over all values
of timeQOut specified upon invocation of IFSCreateRequest for the associated pending
requests.

Argument Input/Output Type Description

connection in IFSAHCONN The connection to use

request in/out IFSAHMSG The request for which a reply or
timeout is returned

reply in IFSAHMSG The reply returned

payload in char]] The payload of the reply

reasonCode int/out IFSAREASON A description of the failure or warn-
ing (if any)

completionCode out IFSARETCODE Completion-code

Table A.7: The IFSAGetReply method

The possible values for completionCode and reasonCode must be interpreted as follows;

e completionCode = IFSACC_FAILED A reasonCode = IFSARC_NO PENDING REQUEST:
the invoking application sent no requests for which a reply (or timeout) was not yet
returned.

e completionCode = IFSACC_FAILED A reasonCode = IFSARC_TIME.OUT: a
timeout occurred. A request that was sent previously is not collected in time by the
service, it is not processed in time, or the corresponding reply was not received in
time. Note that if the sender of a reply crashes just before sending, or the bus crashes
before the reply is collected, the result is also a timeout. The returned request is
valid, which makes identification possible of the reply that timed out.

If several replies are expected, only one reply or timeout is returned by IFSAGetAnyReply
during each invocation.

A.5. UNITS OF WORK 125

A.5 Units of work

It is possible to send or receive multiple F&F-messages in a unit of work (UOW). A UOW
has an effect on F&F-messaging similar to that of a database transaction on a database.
Database transactions are used to group a number of actions that modify the database into
an atomic action that is either performed (if the transaction is comitted), or not (if the
transaction is aborted). A unit of work is used to group a number of send- and receive
actions of F&F-messages of a single client or service into an atomic action that is either
performed (if the UOW is comitted), or not (if the UOW is rolled back).

A UOW is started by means of the BAl-method IFSABeginUOW and ended by either
IFSACommitUOW or IFSARollbackUOW. The scope of a UOW is that of the connec-
tion. Any request or reply sent or received is never part of a UOW, although requests
and replies may be sent or received independent of the actions of a UOW. F&F-messages
sent or received within a UOW are either all sent and received (in case the UOW ends with
IFSACommitUOW), or none of them are (in case the UOW ends with IFSARo11backUOW).

The messages that were received within a UOW that is rolled back, are kept by the bus
for retrieval at a later stage. Messages that that were sent within a UOW that is rolled
back are never offered to the destination service: the bus simply deletes the message. If a
F&F-message is received outside the scope of a UOW, it can not be received again.

It is possible to configure a parameter called MaxBackout within the bus BAI (this is in-
visible to the programmer) that specifies how many times the retrieval of a F&F-message
may be rolled back. If this value is exceeded for a F&F-message, the message becomes a
poison-message. Upon receiving a poison-message, a warning is raised (see section A.4.1).

Argument Input/Output Type Description

connection in IFSAHCONN The connection to use

reasonCode int/out IFSAREASON = A description of the failure or warn-
ing (if any)

completionCode out IFSARETCODE Completion-code

Table A.8: The IFSABeginUOW, IFSAEndUOW, IFSARo11backUOW methods

Table A.8 lists the arguments for IFSABeginUOW, IFSAEndUOW and IFSARol1backUOW.
If IFSABeginUOW is invoked if a UOW is already active, then the method returns with
completionCode = IFSA FAIL A reasonCode = IFSARC_UOW_IN _PROGRESS; the ac-
tive UGW must be committed or rolled back first.

126

APPENDIX A. THE BUSINESS APPLICATION INTERFACE

A.6 Considerations

In this section we discuss the various faults and exceptions that may occur in communica-

tion;

e Itis possible F&F-messages arrive more than once because of crashing and recovery
of the bus, independent of whether or not UOWs are used.

o Itis possible that requests, replies or F&F-messages do not arrive at their destination
service because one of the following reasons;

— A failure or crash occurred in a business application or a disaster struck the
infrastructure hosting the bus. The details are listed in table A.9.

— A request expired. The details are listed in table A.10 .

— A message was rejected by the bus. The details are listed in table A.11.

Note that F&F-messaging can be considered reliable if units of work are used: only ex-
treme disasters or severe programiming-errors may prevent a F&F-message from reaching

its destination.

Message type Failure point Explanation
F&F Failure during It may be expected that the sender notices this by in-
IFSASend specting completion-codes and that it sends the mes-
sage again.
F&F Crash of a part of the Disaster recovery plans have been put in place to re-
bus cover from disasters. Depending on the magnitude of
the disaster, messages in transit can be lost.
F&F failure during If the receiver crashes during the invocation of
IFSAGetMessage IFSAGetMessage, the message is lost. This can be
prevented by using a UOW.
Request failure during See under F&F
IFSASend
Request crash of a part of the This depends on which part of the bus crashed. The
bus infrastructure of the bus is complex and there are
many possibilities.If the request is indeed lost by
the crash, then IFSAGetReply returns with an error.
Which specific error is dependent on the nature of
the crash. IFSAGetAnyReply shows no special be-
haviour. If a reply to this request already exists, it is
ignored. Anyway, no warning or failure is returned
for this request.
Request failure during If the receiver crashes during the invocation of
IFSAGetMessage IFSAGetMessage, the message is lost. This cannot
be prevented. Eventually, the sender receives a time-
out when trying to receive the reply.
Reply - Basically the same as under request: the only differ-

ence being that the receiver has received the request
in this case and has done some work.The sender how-
ever cannot know whether the failure occurred before
or after the receiver received the request.

Table A.9: Undelivered messages due to system failure

A.6. CONSIDERATIONS

127

Message type

Explanation

Request

Reply

It takes longer than the specified expiry value to reach the service (e.g.:
an extremely short value for timeOut is specified). In this case the
intended receiver cannot notice anything: the request is never offered.
The sender receives a timeout when the reply is received.

The time lapse between the invocation of the IFSASend routine and
the corresponding IFSAGetReply or IFSAGetAnyReply is larger than
the specified expiry. Either the sender took too long to create the reply
or the path for the reply or the request was too long, that makes no
difference for the result. The sender receives a timeout when the reply

is received.

Table A.10: Undelivered messages due to expiry

Message type

Failure point

Explanation

Any

Request or F&F

Reply

Message header

Service

Coupled request

Module

Retry mode

The header of the message is not IFSA compliant.
The intended receiver is not informed of this. In
case of a request, the sender eventually receives a
timeout.

The service addressed by this message is not reg-
istered by the receiver. Neither are the receiver nor
the sender informed of this. In case of a request, it
eventually times out.

The reply is not coupled to a pending request (for
example because the request is already destroyed).
The client that originally sent the request does not
notice the rejected reply.

Some module used by the BAI encountered-an er--
ror while the message was received. The applica-
tion receives a notice.

The message is offered to the receiver several
times in a Unit of Work, but every time the UOW
was rolled back. If the message is rolled back as
often as the Backout Threshold (a setting for the
service) indicates, then it is in retry mode and it
is rejected. The receiver receives a warning with
reason-code IFSARC_POISON.MESSAGE.

Table A.11: Undelivered messages due to rejection

128 APPENDIX A. THE BUSINESS APPLICATION INTERFACE

Appendix B

Functions, assertions, invariants
and main-program

In this appendix we give all auxiliary functions, assertions, invariants and the main-program
in a compact format to avoid page-turning in verification of the proofs given in chapters 3
and 4.

All auxiliary functions are given in table B.1 in alphabetic order, forc € C,s € S, ct € N,
st € NU{-1}, K € Nand M € 2Message_ A]] system- and repetition invariants are
given in table B.2. Note that some auxiliary functions and/or auxiliary are only used in the
1-R/R (pguyp), or only in the n-R/R protocol (allRep,sffi, scw, sct, pgug, pgvs(c), pdtido,
pdtidg(c), pdt2cty and pdi2ct,).

The assertions of clients and services in the 1-R/R protocol are given in table B.3. The
assertions of clients and services in the n-R/R protocol are given in table B.4. Note that the
services’ program texts and assertions are the same in the 1-R/R and n-R/R protocols.

The main-program of the 1-R/R and n-R/R protocols is given on page 133. Assertions AQ
and Al have been included in the program text.

We advise readers interested in chapter 3 to keep copies of pages 56, 57, 130, 131 and 133
at hand while reading that chapter in order to avoid a lot of page turning. Readers interested
in chapter 4 are advised to keep copies of pages 57, 88, 130, 132 and 133 at hand.

129

130

APPENDIX B. FUNCTIONS, ASSERTIONS, INVARIANTS AND MAIN-PROGRAM

Auxiliary functions

gu{e, ct)
sct(cty, K)

sffi(c, s, ct)
srpi(c, s, ct)
srqi(c, s, ct)

allRep(c,CT, M)

scw(c, cto, K)

tra(e, s, ct, st)

[CT| = |M| A CT = {m.tidjm € M} A
(Ym : m € M : m.fa= cwmta,mtid Am.ta=c)
(RQOlc, ct], RPOlc,ct], CDlc,ct])
{ct|cto < ct <cto+ K}
{cwle, ct] | et € sct(cto, K)}
{m|m efils] A m.fa=c A m.tid = ct}
{m|m € pilc] A m.fa=s A m.tid = ct}
{m|m € rgi[s] A m.fa=c A m.tid = ct}
cwle,ct] = s A ct2stfe,ct] = st A 0 < ct < tid[c] A =1 < st < tid]s]

Il

(Il

Table B.1: Auxiliary functions in the 1-R/R and n-R/R protocols

System Invariants
Iy : (Ve,s 1 c€C N seS : Io(cs))
In(e,s): (Vet, st = tra(c, s, ct,st) : cdle,ct] = cd[s, st])
pCDs : (Ve,s : c€C N s€S A CDle,tidld]] =0 : —edle, tidlc]] A —cdls, ct2st[e, tid[c]]])
pedp (Vs,st : s €S Atid[s] < st : —cdls, st])
pct2sty : (Ve,s,ct : c€C A s€S ANRQO[c,ct] =0 : ct2stle, ct] < tid[s])
pew ¢ (Ve,s,ct c€C A s€eS A aeN : [srgi(es,ct) Usrpi(c,s,ct)] < 1)
pdtidy : (Ve : ce C : pdtidy(c))
pdtidg(c) : | (Vdt : 0 < dt < dtid[c] :
(Vet,ct' : dt2ctle,dt] < ct < ! < dt2ctle,dt +1] : cdle, ct] = cde, ct'])
)
pdt2cty (Ve: ce C : tidlc] = di2ct[c, dtid[c]])
pdi2cty : (Ve,dt : c€ C A dtid[c] < dt : di2ct[e,dt] < tid[c])
ity (Ym,s : s€S Amefis] : mfaecC A mia=s)
iy (Ym,s,c,ct : s€S AN meffis] A e=m.fa A ct =m.tid :
gv(c,ct) = (1,1,1) A edle,ct] = ~m.to A srpi(c, s,ct) =
)
PG {Ve,ct : RQO[c,ct] =1 A CDle,ct] =0: tid[c] = ct)
PgUg Ve, ct’ : gule,ct’) = (1,0,0) V guv(e,ct’) = (1,1,0) : ct’ € sct(tidc], sz[c]))
pgvi(c) (Yet' : gu(c,ct’) = (1,0,0) V gv(e, ct’) = (1,1,0) : ct’ € sct(tid|c], sz[c])
pRQO; : (Ve,s,et :c€C AseS Ace€NA RQO[e,ct] =0 : srgi(c, s, ct) U srpi(c, s, ct) = 0)
prgiy (¥m,s : s€ S Amemngils] : m.fa€ C A mta=s)
prqiy {¥m,s,c,ct : s€ES A mergis)] AN c=m.fa A ct =m.tid :
gv(e,ct) = (1,0,0) A cwle,ct] =s
)
prqiy (Vs : s€ 8 : |rqgils]| < 1)
prpig (¥m,c: c€e C A merpil : mfacS ANmita=c)
prpiy (Vm,c,s,¢t : c€C AN mermilc] A s=m.fa A ct=m.tid :
gu(e,ct) = (1,1,0) A (tid[s] = ct2stle, ct] V m.to) A srqi(c,s,ct) =0
Repetition invariants of client ¢
pRQOg(c): | (Vet : ct €N : RQOc,ct] <1 A (ct < tid[c] = RQO|c, ct] = 1))
pCDo(c): | (Vet : ct €N : CDle,ct] <1 A (ct < tid[c] = CDlc, ct] = 1))
pRPOy(c) : | (Vet : ¢t €N : RPOle,ct] <1 A (ct < tid[c] = RPO[c, ct] = 1))
Repetition invariants of service s
pct2st1(s) : | (Ve,ct : c€C A ct €N A cwle,ct] = s : ct2stle, ct] < tid[s])
prpis(s) : (Ym,c : c€ C A merpilc] N m.fa=s : m.to)

Table B.2: System- and repetition-invariants in the 1-R/R and n-R/R protocols

131

Assertions of client ¢ (1-R/R protocol)

A5.1 pRQO(c) A pRPOy(c) N pCDy(c)
A5.2 gv{e, tid[c]) = (0,0,0)
A6.1 pRQOq(c) A pRPOg(c) A pCDol(c)
A6.2 cwle, tid[c]] = s
A6.3 gv(e, tid[c]) = (0,0,0)
A6.4 srqi(e, s, tid[c]) U srpi(c, s, tid[c]) = 0
A7.1 (pRQOo(c) A pRPOy(c)) (N := N/{tidlc]}) A pCDy(c)
AT7.2 cwle, tid[c]] = s
AT7.3 gu{e, tid[c]) = (1,0,0) V gv{c, tidlc]) = (1,1,0)
A7.4 lsrqilc, s, tid[c]) U srpi(e, s, tid]c])] <1 .
A8.1 (pRQOo(c) A pRPO(c)) (N := N/{tidlc|}) A pCDy(c)
A8.2 cwle, tid[c]] = s -
A8.3 gu(c, tidlc]) = (1,1,0)- A (tid[s] = ct2st[e, tid[c]] V ma.to)
A84 srqi(c, s, tidlc]) =0 A srpi(c, s, tidlc]) = 0
Assertions of service s (1-R/R protocol)
Al3.1 prpia(s)
Al3.2 pct2st1(s)
Al13.3 rd|s]
Ald.l guie,ct) = (1,0,0) A cwle,ct] =s A ct2stfe, ct] = tid|s]
Al4.2 srqi(e, s,ct) =0 A srpi(c,s,ct) =0
Al4.3 prpia(s)
Ald.4 Vet : e C A et eNA cwld,ct']=s AN =(d =c A et =ct) : ct2st]d,ct'] < tid[s])
Al4.5 —rd[s]
Al6.1 (guv(e,ct) = (1,1,0) Vgu(e,ct) = (1,1,1)) A cwle,ct] =s A ct2st]e, ct] = tid[s]
Al6.2 srqi(c, s,ct) =0
Al6.3 prpis(s)(C = C/{c})
Al6.4 (Ym : m € rpilc] A -m.to A m.fa=3s : m.tid = ct)
Al6.5 (Vyet! : d€C AN et eNA cewld,ct']=s AN =(d =c A et =ct) : ct2st]d, ct'] < tid[s])
Al16.6 —rd]s]
Al7.1 lgvie,ct) = (1,1,0) V gu(c,ct) = (1,1, 1)] A cwle,ct] =s A ct2st[e, cf] = tid[s]
Al7.2 srqi(c, s,ct) =0
Al7.3 gu(ms.fa,ma.tid) = (1,1,1) A cdlmg.fa, ma.tid] = =mg.to A srpi(ms.fa,s, ms.tid) = 0
Al74 mg.fa € C
Al7.5 prpia(s)(C = C/{c})
Al7.6 (Ym : m € rpile] A ~-mito A m.fa=s : m.tid = ct)
A17.7 (Ve,et' : € C ANt eN A cuw[d,ct']=s A =(d =c Nt =ct) : ct2st]d, ct’] < tid]s])
Al7.8 —rd[s]
Al81 gu(c,et) = (1,1,1) A cwle,ct] = s A ct2st|e, ct]| = tid]s]
A18.2 srqi(c,s,ct) =0 A srpi(c,s,ct) =0
Al8.3 cdle, ct] = ~mg.to
Al18.4 proia(s)
Al8.5 (Vyet! : d€eC AN et eNA cwld,ct'] =5 A =(d =c A ct/ =ct) : ct2st[d,et'] < tid[s])
Al8.6 —rd|s]

Table B.3: Assertions in the 1-R/R protocol

132 APPENDIX B. FUNCTIONS, ASSERTIONS, INVARIANTS AND MAIN-PROGRAM
Assertions of client ¢ (n-R/R protocol)
A5.1 pRQO(c) A pRPOy(c) A pCDy(c)
Ab.2 (Vet' : tid[c] < et : gu(c,et’) = (0,0,0))
A6.1 (pRQOo(c) N pRPOo(c)) (N := N/CT7) A pCDq(c)
A6.2 (Vet' : ct’ € CTg = gule,ct’) =(0,0,0)) A
(Vet' : ' € CTy : gv(e,et’) = (1,0,0) V gv(c,ct’) = (1,1,0))
A6.3 gv{c, tid[c]) = (0,0,0)
A6.4 Vet : ct’ € CTy = srqi(c, cwle,ct’],ct’) U srpi(ec, cwle,ct’],ct’) =0) A
(Vet' : ct’ € CTy : |srqi(c, cwlc, ct'], ct’) U srpi(e, cwlc, ct'], ct’)| < 1)
A6.5 CTs U CTy = sct(tid|c], sz[c]) A (Vi,j : 6<i<j<10: CT;NCT; =0
A6.6 Clg=0 ANCTo =0 N My=10
AT.1 (pRQOo(c) A pRPOgy(c)) (N := N/sct(tid|c], sz[c])) A pCDy(c)
A7.2 |scw(c, tid|c], sz[c])| = |sct(tid|c], s2)]
A7.3 (Vet': ot/ € CTy : guv(c,et’) = (1,0,0) V gu(e,ct’) =(1,1,0)) A
(Vet' : ot/ € CTy : gv(e,ct’) =(1,1,0))
A74 (Vet': et € CTy = |srqi(e, cwle, ct'], ct') U srpi(e, cwle, ct'], ct’) < 1) A
(Vet' : ct' € CTy : srqi(c,cwle,ct’],ct’) = O A srpifc, cwle, ct’],ct’) =0)
A7.5 CTr UCTy = sct(tid[c],sz[c]) A (Vi,j : 6<i<j<10 : CT; N CT; =0)
AT7.6 CTy =0 A allRep(c, CTg, Ma)
AT (Vm : m € M, : ct2stlc,m.tid] = tidim.fa] V m.to)
A8.1 (pRQOo(c) N pRPOg(c)) (N := N/sct(tid|c], szlc])) A pCDo(c)(N := N/CTy)
A8.2 |scw(e, tid[c], sz[c])| = |sct(tid]c], sz[c])]|
A8.3 (Vet' : et/ € CTy = gu(e,ct’) = (1,1,0)) A (Vet': ct’ € CTy = gv(e,ct’) = (1,1,1))
A8.4 (Vet' = ct' € sct(tid|c], sz[c]) : srqi(ec, cwle,ct’], ct’) U srpi(c, cwle, ct’],ct') = 0)
A8.5 CTg U CTy = sct(tid[c], sz]e]) A (Vi,j : 6<i<j<10 : CT; N CT; =0)
A8.6 allRep(¢, sct(tid[c], sz[c]), M2)
A8.7 (Vm : m € My : ct2st[e,m.tid] = tidim.fa] V m.to)
A8.8 Vet ¢ ct' € CTy : cdle,ct’] = (= (Vm: m € My : m.to) Acv)) A
(Vet' + et € CTy : ~edlew e, ct'], ct2st [c, ct']])
Assertions of service s (n-R/R protocol)
Al13.1 prota(s)
Al13.2 pet2st (s)
Al3.3 rd[s]
Ald.l gu(c,ct) = (1,0,0) A cwle,ct] = s N ct2stle, ct] = tid]s]
Ald.2 srqi(c,s,ct) =0 A srpi(c,s,ct) =0
Al4.3 prpia(s) :
Al4.4 Wc,ct! : d€C A’ eNA cwld,ct/]=s A =(d =c A et/ =ct) : ct2st]d, ct'] < tid[s])
Al4.5 —rd[s]
Al16.1 (gule,ct) = (1,1,0) Vgu(e,ct) = (1,1,1)) A cwle,ct)=s A ct2st]c, ct] = tid[s]
A16.2 srqi(c, s,ct) =0
Al16.3 prpiz(s)(C = C/{c})
Al6.4 (Vm : m e rpilc] A ~m.to A m.fa=s : m.tid=ct)
Al6.5 Ve,ct' : deC ANctl eNA cwld,ct']=5 N =(c =c A ct’ =ct) : ct2st]c, ct'] < tid[s])
A16.6 : -wd[s]
Al7.1 [gv(c,ct) = (1,1,0) V guv(c,ct) = (1,1,1)] A cwle,ct] =s A ct2stc,ct] = tid|s]
A17.2 srqi(c, s,ct) =0
A17.3 gv(ms.fa,ms.tid) = (1,1,1) A cdlms.fa, mg.tid] = =ms.to A srpi(ms.fa,s, ms.tid) =0
Al7.4 ms.fa € C
Al17.5 prpia(s)(C = C/{c})
Al7.6 (Ym : m € rpilc] A ~mio A m.fa=s : m.tid = ct)
Al7.7 (Vc,et' : d€C At eNAcw[d,ctl]=s AN =(d =c A ct/ =ct) : ct2st]c,ct'] < tid[s])
A17.8 : —rd[s]
Al8.1 gu(e,ct) = (1,1,1) A cwle,ct] = s A ct2stle, ct] = tid]s]
Al8.2 srqi(c,s,ct) =0 A srpilc,s,ct) =0
Al8.3 edle, ct] = —~mg.to
A18.4 prpiz(s)
Al18.5 (Veet' : d€C At eNAcw[d,d]=s A(d=c At =ct) : ct2stld,ct’] < tid[s])
A18.6 : -rd[s]

Table B.4: Assertions in the n-R/R protocol

Below we give the main-program of the n-R/R protocol. By ignoring declarations of and assignments
to the variables dtid, dt2ct and sz, the program-text can also be used for the 1-R/R protocol. Indeed,

Main Program

the assertions A1.1 and A1.2 are orthogonal to those statements.

[type Message = record || fa,ta

const C = {2n|n e N}
const S = {2n+1|jn €N}
const A = CUS;
var tid Array[A
var cd ArraylA
var cw Array|[C][N]
var ct2st Array[C]N]
var rqi ArraylS]
var rpi Array|C)
var ffi Arrayl[S]
var rd ArraylS]
var CD, RQO,RPO : Array[C]N|
var dtid Array[C]
var dt2ct Array[C]|N]
var sz Array|C]

{ Assertion 0: true }

(tid = 6};
cd =]T(;,—ls—e);
rd = tr—ue);
ct2st = :—1>

e G —

rgi, rpi, i = 0, 0, 0;
CD, RQO, RPO := 0,70, 0;

dtid, dt2ct := 0,0;
\
/

w5z

zzz Z

: Ay tid : N; to @ B

s

: [—loo),

: Set of Message;
: Set of Message;
: Set of Message;
. B;

{ A1.1: (Vc:c € C:pRQOu(c) A pRPOo(c) A pCDo(c)) }
{ A1.2: (Vs:s € 8 prpia(s) A 5;’:7523751 (s) A rdls]) }

(lc: ceC : Client(c))

s €S : Service(s))

133

134 APPENDIX B. FUNCTIONS, ASSERTIONS, INVARIANTS AND MAIN-PROGRAM

Bibliography

[Bra97]

[Fit03]

[FvG99]

[Gra81]

[it03]

[Kay03]

[KLS90]

[LKB77]

[Lyn96]

[SKS98]

S. Bradner. Key words for use in RFCs to indicate requirement levels. Technical
Report RFC 2119, IETF, 1997.

Tony Fitzpatrick. IFSA AND WEB SERVICES POSITION AND STRATEGY,
January 2003. IFSA version 2.0, Document 114.

W.H.J. Feijen and AJM. van Gasteren. On a Method of Multiprogramming.
Springer-Verlag, 1999.

Jim Gray. The transaction concept: Virtues and limitations (invited paper). In
Very Large Data Bases, 7th International Conference, September 9-11, 1981,
Cannes, France, Proceedings, pages 144—154. IEEE Computer Society, 1981.

IFSA interface team. IFSA APPLICATION BUS, TECHNICAL DESIGN C AND
COBOL INTERFACE, August 2003. IFSA version 2.0, Document 852.

Doug Kay. Loosely Coupled: The Missing Pieces of Web Services. Rds Asso-
ciates Inc, 2003.

Henry F. Korth, Eliezer Levy, and Abraham Silberschatz. A formal approach to
recovery by compensating transactions. In Dennis McLeod, Ron Sacks-Davis,
and Hans-J6rg Schek, editors, 16th International Conference on Very Large
Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings,
pages 95-106. Morgan Kaufmann, 1990.

TK. Lenstra, A.H.G.R. Kan, and P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:343-362, 1977.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
1996.

Abraham Silberschatz, Henry F. Korth, and S. Sudershan. Database System
Concepts. McGraw-Hill, Inc., 1998.

135

	Preface
	Acknowledgements
	Contents
	1. Problem description
	2. Description of the n-R/R protocol
	3. Verification of the 1-R/R protocol
	4. Verification of the n-R/R protocol
	5. Main findings
	App. A The business application interface
	App. B Functions, assertions, invariants and main-program
	Bibliography

