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Abstract 

This report presents the results of research performed at Philips Medical Systems in Best (the Netherlands) 
concerning the early reliability prediction based on field data . This implies an investigation on the (quality of) 
required data, choosing relevant models for the specific situation , and perfonning analyses on the data with 
those models. The analyses are split in three parts, one analysis focusing on data from one system, the second 
analysis focusing on data from multiple systems, and the third analysis focusing on the difference between 
two data sources. 
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Management summary 
This report describes the graduation project performed at the Cardio Vascular development department of 
Philips Medical Systems. Philips Medical Systems is a large organization making complex high-tech products. 
The company is situated in a dynamic medical systems environment where there are trends towards a growing 
market, higher product utilization, increasing product functionalities and increasing pressure on cost of 
ownership. This means product reliability is an important issue. 

The project falls within a research field of the Quality and Reliability Engineering (QRE) department at the 
Technical University in Eindhoven. The aim of that research field is to develop competence in quality and 
reliability by creating methods to predict the occurrence of product failures in the development process and 
early in the field introduction. PMS wants to be able to monitor, control and predict the product reliability in 
an earlier stage. In that way the feedback loop can be shortened, which leads to faster problem recognition. 

The aim of this project is to investigate how the product failure pattern that is found at PMS can be modeled 
and to assess the prediction performance of those models. 

Trends in the market are making ·reliability prediction using field data nowadays even more necessary then 
before. Time for extensive laboratory testing of products is not available anymore. The speed of evolution of 
new technologies and new product designs and the market-dictated short lead times between design start and 
product shipment, in parallel with longer Mean Time To Failure (MTTF) and Mean Time Between Failures 
(MTBFs), have made it difficult to find the test time to accumulate sufficient failure data to be useful for 
future prediction purposes. Added to this is the uncertainty about the customer use which, together with the 
mentioned trends, makes it hardly possible to develop and test the product on fitness for use for a reasonable 
time period (at least the warranty period). Related to these trends is the cost aspect. The sooner failures in 
products are recognized, the lower the cost of repairing those failures, since the number of products sold (that 
need to be repaired) is still relatively small . 

The available data 
There are two sources with field data available: service data and a data from software loggings of system at 
the customers, called FMT data. Both data sources are able to provide the necessary data for modeling system 
reliability. That is, they provide the failure moments relative to the moment of installation. There are however 
problems related to data quality for both sources of data. The service data has data quality problems related to 
all four data quality metrics, that is, completeness, consistency, timeliness, and accuracy. The FMT data has 
data quality problems related to completeness and accuracy. For the service data a manual filtering is 
performed to improve the data quality . 

Failure moments 
For the service data the failure moments are approximated by the difference between the warranty start date 
and the service call start date. This number gives the time to failure in days. The failure moments of the FMT 
data are obtained differently. The systems at the customer are able to provide the system online time enabling 
accurate determination of the failure moments. The failure moments are given in system online hours. 

Models 
The category of models that is found to be applicable has the following characteristics: continues parametric 
models for repairable systems with a mixture of hardware and software, without redundant parts. The model 
choice can be made using the general procedure for analyzing failure data of a repairable system. To 
determine whether there is trend in the failure data or not the Laplace trend test for multiple system is used. A 
straightforward generalization of the single system Laplace test if there are observations from m independent 
systems is: 

Lm Li, i Lm I ~ (b ) T.- -n +a L = }=I i=I IJ }=I 2 J J J 

C ✓-!~ "'m n . ( b . - a )2 
- L.,;=I J J J 
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The combined Laplace test indicates significant trend in five out of the six calculations, based on 1000 days of 
data. Using the general procedure for analyzing failure data of a repairable system this leads to the choice for 
Non Homogeneous Poisson Process models. There are two models most used in literature that are described as 
useful NHPP models for analyzing the failure pattern of repairable products: Power law and Exponential law. 
Both these models are investigated in this report. 

Power law 
Intensity: 

µi(T) = J..,f)T /J I with J.., , /3 > 0 , T ~ 0 (2) 

When the shape parameter p is equal to 1, the power law model reduces to the homogeneous Poisson process 
(HPP). When P> l (P< l) the intensity function is monotonically increasing (decreasing) with the operating 
time T: this corresponds to the situation in which the times between successive failures become shorter 
(longer) with T . The parameters for this model are calculated using the following fonnulas : 

/3• n and h = ~ = Ill ,, r (3) r P 
L Itn-" ,, 
. I . I T j= I = ij 

The expected number of failures is: E[N(T)] = J..,T fl 

Exponential law 
Intensity : 

(r) - a,, 1a 1T T O µ 2 - e , - oo <a11 , a 1 < oo , ~ 

(4) 

(5) 

(6) 

Since there were no articles or books found for calculating the parameters when including more than one 
system in the Exponential Law model , this formula has been derived by R. Ion from the Technische 
Universiteit Eindhoven . 

Parameter estimation : 

Analyses 

Ill 

Ill 

a,In1 
J= I 

Ice"i/,,i -1) 
) = I 

(7) and (8) 

Both the service data and the FMT data are used in the failure modeling. The data sets that are used are equal 
for both model types . The analyses that are performed can be divided in the following manner: 

Analysis of service data of a single system 
This analysis investi gates whether the power law model and the exponential law model are able to fit the 
failure pattern of the data that is used in this project. For this analysis unfiltered data is used, this has no 
influence on the question of whether the power law and exponential law are able to fit the failure pattern. 
Analysis of service data of multiple systems 
This analysis investigates the influence of using data from multiple systems for modeling the failure 
pattern. The analysis uses both unfiltered and filtered data to investigate the influence on the calculated 
values. 
FMT data versus service data 
This analysis shows the differences between usmg FMT data and usmg service data when trying to 
establish the failure pattern of a system . 
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These analyses are used to determine parameter values of the model, to calculate the ROCOF, to determine 
the goodness-of-fit, and to construct the confidence intervals on the MTBFc. To get more insight in the 
behavior of the power law and exponential law model, the models are created on the basis of data containing 
365 days, 730 days, and 1000 days of operating time. For all three groups of data the model is calculated for 
900 days of operating time. This means that the model based on 365 days and the one based on 730 days make 
a prediction of the number of failures until 900 days through extrapolation. The model based on 1000 days of 
data does not predict, it serves as a comparison of the line that the model would plot if it had all the necessary 
data. 

Analysis one: Analysis of service data of a single system. 
A first conclusion is that both modeling types, power law and exponential law, are able to fit the data of a 
single system based on 1000 days of data. But when prediction of the failure pattern for 900 days is concerned 
based on a limited amount of data (365 days), both model types give a wrong prediction of future failures . 
This has to do with the following: the models are flexible in a way that they can model a deteriorating system, 
an improving system and a system that shows no trend (a Homogeneous Poisson Process). The form that the 
model takes depends on the data that is put in the model. This means that the failure pattern early after field 
introduction of the system determines the pattern of the model. If a trend develops later on in the product life 
this will not be modeled when only using data from the period shortly after field introduction. The data needs 
to show at least a small amount of trend in order for the model to pick up the sign that the system is actually 
improving in time. When the model is based on 730 days of data it is able to predict the failure pattern of a 
900 days period correctly. 

Analysis two: Analysis of service data of multiple systems. 
A first conclusion here is that both the power law and the exponential law models adapt well to the data from 
the number of systems included in the model building. Next to that, similar effects as when using a single 
system for building the model can be found, meaning an inaccurate representation of the failure pattern when 
the data of 365 days is used. This means that when the model is based on 365 days of data this model can only 
be used to determine the situation at that moment, not to predict the future failure pattern. The model based on 
730 days of data is very close to the model based on 1000 days of data, like with the model based on a single 
system. This means that based on 730 days of data of good prediction of a 900 days period can be made . 

The large difference in the number of failures that occurs per system has a big influence on the fit of the 
model to the data. The model is of course an average and therefore it will not fit individual systems well, 
especially if the systems show such a large difference in number of failures . This spread in failure pattern 
between different systems makes the predictive value less accurate and causes relatively wide confidence 
bounds. When the spread in the failure pattern is smaller this leads to predictions that are closer to the actual 
failure pattern, although based on 365 days of data it still deviates too much to be called a good prediction. 

The power law and exponential law model do not always agree on the form the model should take. This even 
means that in some cases, based on the same data, one model type calculates an increasing reliability, while 
the other model type calculates a decreasing reliability. The cause of this can be found in the large difference 
in the number of failures that occur per system. One model type reacts differently than the other in case of 
such a diverse failure pattern between systems. When the failure patterns are not consistent the models neither 
will be. 

The influence of pollution in the data was investigated by comparing filtered data to unfiltered data. The 
filtered data shows similar failure patterns as the unfiltered data, although clearly different lines appear when 
the models are plotted. This means that the filtered data leads to different values of the expected number of 
failures, the model intensity, the goodness-of-fit, and the MTBF. It proves that having a good data quality is 
essential for obtaining reliable answers from these models. 

Analysis three: FMT data versus service data. 
This analysis shows the differences between using FMT data and using service data. The difference between 
the two data sources is clearly visible when they are compared; the failure moments, as well as the number of 
failures do not correspond. This leads to differences in the model based on FMT data and the model based on 
service data. That leads to maybe one of the most important conclusions from this report, that is, there first 

Copyright © 2004 Philips Medical Systems Nederland B.V 
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needs to be a clear understanding of the data that is put in the model before conclusions can be drawn about 
the final number that the model gives as an output. The quality of a model can be only as good as the quality 
of the data that is put in. 

Overall conclusions 
A basic question is which data source to use for making reliability analyses and predictions, service data or 
FMT data . The first relevant observation in that respect is that different data is obtained by these two data 
sources when failure data from the same systems over the same time period is collected . The FMT data has 
less human influence during the data collection and next to that the failure moments are recorded with much 
greater accuracy and therefore should be the data source used for the analyses. Service data should be used 
next to that for other analyses like call rate, material usage and material cost analysis . 

Choice between the power law model , the exponential law model , or another type of model. 
Both the power law model and the exponential law model have showed to be able to correctly fit to the failure 
pattern of the systems. And although there are some differences in the failure pattern that they show no 
definite conclusions about one model type being better than the other can be made . The problem with both 
these models is that early prediction based on data from a relatively small period of time (365 days) is not 
possible given this particular failure pattern shown by the systems analyzed in this project. This means that the 
search for a different model could be undertaken, looking for a model where earlier prediction of the 
reliability might be possible . 

High data quality will not lead to better reliability prediction based on a small amount of data. The flexibility 
of both the Power law and Exponential law model - being able to model increasing, decreasing, and constant 
reliability - fonns the problem in the reliability prediction . Based on data from a relatively small period of 
time (365 days) it is not possible to give a good prediction of the period until 900 days given the particular 
failure pattern shown by the systems analyzed in thi s project. This is due to the fact that the reliability 
improvement becomes visible later in the product lifetime. When 730 days of data are included a better 
prediction can be made. 

Further research 
A follow up should focus on the following aspects: 
I . Improving data quality of FMT tool 

It is essential that the data quality of the data provided by the FMT tool is as good as possible. Since this 
tool is only being used since very recent for making reliability analyses there probably is room for 
improvement. Especially the question of accuracy of the failure data is important to research extensively. 

2. Analysis of more FMT data sets 
This project provides the first analysis based on FMT field data . More analyses based on data of a larger 
time period need to be performed in order to conclude whether the behavior of the FMT data is similar to 
the service data. 

3 . Research on new model that makes a better prediction based on a small amount of data (early data) . 
The analyses have indicated that the power law and exponential law model are not able to predict the 
failure pattern based on a small amount of data; that is, not based on the datasets that were used in this 
project . Therefore, if a different model can be found or developed which is able to make a better 
prediction based on a small amount of data this would mean a significant improvement . 

4 . Implementation of the model into the business procedures. 
When a model is found giving better early predictions, or when it is decided to use the power law or 
exponential law model given its limitations, a good implementation of the analyses that can be perfonned 
with these models needs to be assured. The model analyses need to fit in the procedures of the 
organization . 
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Introduction 
Reliability is a basic demand for customer satisfaction. During development of a new product the marketing 
department is already promising new and improved functionalities in the new product; customer expectations 
are created. However, although getting a customer may be achieved by promoting the functionalities and 
improvements of the product, when it comes to keeping the customer it is crucial to live up to the 
expectations; making sure the product provides the presumed functionalities and performs these 
functionalities to a satisfactory level during a specified period of time. And if the product does brake down the 
problem has to be resolved quickly and adequately. 

Next to innovation, speed is a key word in the business environment of today. Strong competition makes it 
imperative to have the innovative products in the market before or at the same time competitors do. This faster 
environment asks for faster determination of the product reliability. Is the product reliability high enough? 
What kind of failure pattern does the product contain? How can reliability analysis help in these questions? 

During development the necessary tests for reliability are performed, but in order to know how the product 
performs at the customer it is necessary to analyze the data that comes from the field. This report investigates 
how the product failure pattern that is found at Philips Medical Systems can be modeled and assesses the 
prediction performance those models. In order to be able to make argued statements about this question 
scientific articles and books were consulted to create a theoretical basis. Practical application of theory was 
performed through research at Philips Medical Systems. 

Two important terms from this introduction are field data and reliability. The field data that is used in this 
report is broader than data accumulated through service on products only; data from a direct link to the 
product at hospitals will be used as well. This will be discussed in more detail in paragraph 2.1.3 . The first 
definition that will be given is for reliability. Kales [1] gives in his book a detailed scientific definition of 
reliability: 

An overview of all the definitions given throughout this report is given in Appendix A. Throughout the report 
the words 'product' and 'system' are used exchangeably. When spoken of in general the word ' product' is 
used; specific entities are called 'system' . 

Figure 1 describes the structure of this research report and the interaction of its different steps. This structure 
has four levels indicated as horizontal fields: The upper level indicates the wish to solution level; the second 
level indicates the current way of working at PMS, the third level contains the search for a useful model, and 
the fourth level indicates the investigated proposed model and changes for proposed data input. The report 
contains these levels and its steps in the following way: 
Chapter I describes steps 1, 2 and 3: a background on the field data environment and the medical systems 

environment leads to a description of the research project. This is followed by the reliability 
analysis benefits and the specific project objectives. 

Chapter II describes steps 4, 5 and 6: the current data collection, data quality, and data analysis situation at 
PMS is described. With this information the necessary background information is given to be 
able to look for a new reliability model. 

Chapter III describes step 7, 8 and 9: a research on parametric reliability prediction models described in 
literature. It describes a framework for continues reliability models and gives a more detailed 

Copyright © 2004 Philips Medical Systems Nederland B.V. 

All rights reserved e PHILIPS 



Tu/ e tecl111ische universite,t eindl1oven 

description on models for repairable systems. Step 8 describes the process of making a model 
choice. Step 9 gives the conclusion of this chapter. 

Chapter IV describes step l 0, 11 and 12: issues concerning the data input and the proposed failure modeling 
are described foll owed by an evaluation of these steps. 

Chapter V gives the conclusions in step 13 and therefore comes back to steps 3, 6, 9 and 12. 

V 

I 
Background of project ProJect description Benefits of reliability 

models 
2 3 

II Current data collection Current field data Evaluation of current 
analysis data and analysis 

4 5 6 

III 
Model investigation 

~ 
Model choice J Evaluation of model 

choice 
7 9 

Proposed data input Proposed failure Evaluation of model 
IV modeling performance 

12 10 II 

Conclusions and 

Figure I Report structure 

Each chapter will start with a small version of figure I to indicate which steps of the project are explained in 
that chapter. Next to the figure is a quote that is related to that chapter. 

In this version o( the report actual data are replaced bv fictive data due to the confidential character o( the 
data. 
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Chapter I Project background and description 

Background of the 
project 

Current data 
collection 

Model investigation 

Proposed data input 

Project description 

Current field data 
analys is 

Model choice 

Proposed failure 
modeling 

Let's make things better 
(!' hi lips slogan) 

This first chapter starts with explaining the specific situation the project is performed in. It gives background 
information on the medical systems environment on one side and the importance of field data on the other 
side. This is step 1 of the report structure. After that the project description will be discussed (step 2) and 
subsequently the benefits of reliability models are described (step 3) . 

1.1 Background of the project 
1.1.1 Medical systems environment 
The medical systems environment discussed in this paragraph consists of facts and figures of PMS, especially 
zooming in on the department where the project is performed and relevant trends in healthcare related to the 
product under consideration in this report. 

Philips Medical Systems 
General Information 
Philips Medical Systems is part of Royal Philips Electronics NV. It is one of the world leaders in diagnostic 
imaging, patient monitoring, clinical IT and related services. The division is active in healthcare for over 100 
years and currently employs 30,000 people worldwide with over 6,000 service professionals. The CEO of 
PMS is Jouko Karvinen. There are 18 manufacturing sites over the world and over 450 products and services 
are sold in more than 100 countries. The R&D expenses amount more than 11 % of system sales [2]. 

Ambition 
The ambition of Philips Medical Systems is to become the premier healthcare technology company in the 
world through a relentless pursuit of innovation. 

Strategy Objectives 
Achieve 14% EBIT A (earnings before interest and tax) in 2004, and grow faster than the market 
Continuous innovation of products & clinical applications 
Improve patients' lives through technology 
Building the strongest customer relationships 
Clinical Excellence without compromise 

Financial situation 
The sales of PMS were around 6,850 million euro in 2002, which is 22% of total sales of Philips. This means 
a growth of 42%, of which 41 % was caused by takeovers. The sales volume increased with 8%, while the 
average prices decreased with 3%. Regional growth was the largest in North America. In table 1 the sales 
growth over the period of 1996 - 2002 is given. 

T bl 1 S 1 ' wth 
. -~-~,~-;~.~t~~. 1996 1997 

: ; - .' ' ... .; . ;.: . - ·!~ 100 112 
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PMS Product groups 
PMS has a wide range of medical products, see table 2, using different high-tech technologies . In the next 
overview the product groups are given, within each group there are again several types of systems. One of the 
product groups given in table 2 is Cardio Vascular X-ray / Cath labs. This is the product group that the focus 
of the research perfonned in this project will be on. 

Cardio Vascular X-Ray/Cath labs 

Echo- / electrocardiography 

Radiation Therapy Planning 

Defibrillation I resuscitation 

Multimodality Fusion 

Medical IT/PACS 

Nuclear Medicine 

Ultrasound 

Organization 

Magnetic Resonance Imaging (MRJ) 

Computed Tomography (CT) 

Surgical X-Ray/C-arm 

Home monitoring 

Digital X-ray 

Diagnostic ECG 

Positron Emission Tomography (PET) 
Customer Support, Healthcare 
Consulting and Financial/Leasing 
Service 

In Figure 2 an overview of the organization is given . The practical research of this project is performed in the 
systems department. The figure shows that the Systems department falls under Development, which is part of 
the Business Unit Cardio Vascular (BU CV) within the Business Group Digital Imaging Systems (BG DIS) of 
the PMS organization . Another important part in this figure is the Sales and Service organization ; this is 
where the field data is created. This part of the organization is divided into three parts, the Sales and Service 
Regions (SSR) . 

PMS 

BG CMS BG US BG DIS BG MIT BG CS 

BU MR BU CT BU NM BUCV BU GXR 
BU OEM/ BU 

Tubes components 

SSR 

M&A Deve lopment TOM SCM F&A EMEA 

Pacific 
Mechanical 

Systems Software 
hardware SSR 

America 

Figure 2 PMS organization [31 

Business Unit Cardio Vascular 
In this Business Unit cardio vascular (CV) systems are made for cardiac and vascular imaging. These can be 
used in diagnostics and intervention. Techniques such as 30 image reconstruction and a flat detector, which 
transfonns the x-ray beams directly into a digital signal, are important features of the system. Table 3 shows 
the current products of cardio / vascular x-ray and gives the application area of these products. The numbers in 
the product names reflect the size of the x-ray detector; biplane means there are two stands (two detectors) . 
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Healthcare trends 
There are several trends specifically in healthcare. First of all the aging of the human population, through the 
last century the percentage of old people has risen and it will keep rising in the future . This means that there 
are less people to finance the growing costs of healthcare. The hospitals are reacting to this by working hard 
on the efficiency. Next to that there is more emphasis on getting a better diagnosis for each patient. The MD 
Buyline report [4] gives a detailed report about the market development in the cardio/vascular labs. In the 
following lines some aspects of this report are mentioned. 

The cardiac and vascular lab market is growing and will continue to do well as the baby boomer population 
ages and begins to reflect symptoms of cardiovascular disease . But although the market is growing, it 
continues to be largely a replacement market, particularly as digital detector flat panel technology is 
purchased. 

Although the number of dedicated labs is shrinking, a sizeable increase in the number of combination 
cardiac/vascular labs is being purchased. Cardiac magnetic resonance imaging (MRI) and computed 
tomography (CT) are emerging as primary diagnostic tools to rule out cardiovascular disease in patients. The 
result should be a greater emphasis on therapeutic and interventional work with cardiac/vascular labs rather 
than basic diagnostic work: the patients going to the lab will have already been proven to have cardiovascular 
disease. This means increased procedure times for interventional versus diagnostic procedures as well as 
higher stress levels on the equipment. In turn, these factors should drive expansion of existing imaging 
services to address workload, utilization, and increased patient populations. These processes lead to higher 
reliability demands. 

Healthcare organizations are also becoming more conscious of the cost of operating the labs. The pressure on 
costs will continue to increase as the procedure mix shifts to more costly interventional procedures. Also, the 
organizations strive to create a more consistent utilization pattern among all physicians to manage costs. Next 
to that facilities are seeking more comprehensive information management systems that may originate in the 
imaging lab but extend to all cardiac and/or vascular diagnostic and disease management areas in the hospital. 
This drive on cost reduction means that Philips will need to deliver the earlier mentioned increasing reliability 
for a decreasing cost of ownership of the labs. 

Summarizing 
Philips Medical Systems is a large organization making complex high-tech products. It is situated in a 
dynamic medical systems environment where there are trends towards a growing market, higher product 
utilization, increasing product functionalities and increasing pressure on costs. This means product reliability 
is an important issue. The next paragraph will discuss the importance of field data. 

1.1.2 Field data environment 
Life data analyses 
According to Oh and Bai [5] life data analyses are commonly used to estimate the lifetime distribution of a 
product and to obtain information on the life characteristic such as reliability, failure rate, percentile and mean 
time to failure, etc. This information is then used in developing new products or improving the reliability of 
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existing products, in designing bum-in and warranty programs, and in planning the supply of replacement 
parts . In general there are two ways of performing life data analyses, one is on the basis of laboratory tests, the 
other one is based on field data. 

laboratv,y test analysis is not enough 
Laboratory tests are perfonned on the product before it is put on the market . Oh and Bai [5] claim that most of 
the former works on life data analyses utilized laboratory life test data. However, many times field data is 
superior to laboratory data because it captures actual usage profiles and the combined environmental 
exposures that are difficult to simulate in the laboratory and it is more likely to observe longer time-to­
failures . 

Rai and Singh [6] reinforce this by stating that at development stage various act1v1t1es including 
concept/design failure mode and effects analysis, design verification planning and reporting, and robust design 
experiments are perfonned . Effectiveness of these activities in developing reliable and robust products is very 
often judged through laboratory life testing. However, success from laboratory life testing alone does not give 
design engineers full confidence and feedback about field perfonnance. 

Field data analysis 
Manufacturing companies collect field failure data of their products for various purposes. Apart from 
providing the data for any procurement incentive or penalty scheme and for vendor rating, a field failure 
repo11ing and analysis system has four main purposes according to Blanks [7]: 
a) Obtaining data on which to base corrective action , i.e . action to eliminate, or at least reduce, future 

failures and to eliminate corrective and preventive maintenance deficiencies . 
b) Obtaining data on which to base optimized equipment replacement and overhaul policies and schedules. 
c) Obtaining data on which to base logistic support optimization , e.g. the supply of spares and provision of 

maintenance resources. 
d) Obtaining input data for future reliability and maintainability analyses and predictions, e.g. as required in 

future system planning, in Life Cycle Cost tender validation and in product evaluation . 

Run-in test analysis 
Between laboratory test analysis and field data analysis, run-in tests can be performed . This is a test performed 
on a system after production , before it is delivered to the customer. Zaino [8] says the following about this: 
"typically , the run-in test surfaces early failures that result from assembly errors, calibration or adjustment 
errors, and/or part defects . This test is not to be confused with Reliability Growth tests, which are conducted 
earlier in the development cycle on a sample of machines. Reliability Growth tests usually surface design 
defects and process limitations that often lead to major or minor design modifications. ln theory , the run-in 
test, and the subsequent adjustments and replacements of weak or nonconfonning parts, improves the 
reliability of the individual machine only." 

Market trends 
Paragraph 1.1 .1 showed that field data analysis is important, but it does not explain why this analysis should 
be perfonned as soon as possible after market introduction . Time and cost are impo11ant factors , as this 
paragraph will show. 

Trends in the market are making reliability prediction using field data nowadays even more necessary then 
before . Time for extensive laboratory testing of products is not available anymore as is pointed out by Blanks 
[9] . He states that the speed of evolution of new technologies and new product desi gns and the market­
dictated short lead times between design start and product shipment, in parallel with longer Mean Time To 
Failure (MTTF) and Mean Time Between Failures (MTBFs), have made it difficult to find the test time to 
accumulate sufficient failure data to be useful for future prediction purposes. These market trends are also 
recognized by Sander et al. [IO] and Petkova et al. [ 11 ]. Ion et al. [ 12] add to this the uncertainty about the 
customer use which , together with the mentioned trends, makes it hardly possible to develop and test the 
product on fitness for use for a reasonable time period (at least the warranty period). 

Related to these trends is the cost aspect. The sooner failures in products are recognized, the lower the cost of 
repairing those failures , since the number of products sold (that need to be repaired) is still relatively small . 
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Summarizing 
These two subparagraphs have indicated the importance of field data analysis in reliability analyses, next to 
the importance of testing during development, and the need for this type of analysis to be performed soon after 
market introduction because of the trends in the market. 

1.2 Proiect description 
1.2.1 Problem / wish 
Paragraphs 1.1.1 and 1.1.2 outlined the surroundings of the project. As shown field data plays an important 
factor in reliability analysis; 1) shorter development time, faster innovation and uncertainty about the 
customer use lead to the need for determination of the product reliability soon after market introduction of a 
product; 2) trends in the market of medical systems indicate a demand for higher product reliability with lower 
cost of ownership. How to cope with these issues while still maintaining a high reliability level forms the 
problem. This is the basis for the project aim, which is discussed in the next subparagraph. 

Stakeholders and their focus 
The two main stakeholders in this project are the Technical University of Eindhoven (TU/e) and Philips 
Medical Systems. At the Engineering department of 'Cardio Vascular x-ray' at Philips Medical Systems field 
data is used to get insight in the reliability of the products that are in the market. At the moment, only about 
two to three years after market introduction it is possible to draw conclusions from the collected data. PMS 
wants to be able to monitor, control and predict the product reliability in an earlier stage. In that way the 
feedback loop can be shortened, which leads to faster problem recognition. 

At the TU/e this graduation project falls within a research field of the Quality and Reliability Engineering 
(QRE) department. The aim of the research field is to develop competence in quality and reliability by 
creating methods to predict the occurrence of product failures in the development process and early in the 
field introduction. As a first step an understanding of the characteristics of the prevailing reliability prediction 
models is necessary . This also implies knowledge on how to obtain data of the right quality for these kinds of 
models. Later in the research program improved models might be introduced to predict the occurrence of 
failures better. 

In an internal report called "Reliability Growth Plan" an outline of the long-term reliability growth plan for 
the business unit CV is given. A reliability SWOT analysis on skills and knowledge in that report describes 
the knowledge within the QRE department at the TU/e as one of the opportunities for PMS to obtain 
knowledge in the field of reliability analyses. This has lead to the cooperation between PMS and the QRE 
department at the TU/e. 

The aim project follows from the two focuses of the TU/e and PMS: 

' • II' •'. ~ - • ~ .._ ~~ ....... ,.., ' ' • 

. . . 
- • - ,_,, ~~ ~ I • l .~ ... 

1.2.2 Project research questions 
As part of the competence development of the Quality and Reliability Engineering (QRE) group at the TU/e 
and the Business Unit CV at PMS this project will do three things: investigate the data that is available for 
making reliability analyses, identify models that can be used for reliability prediction, and perform analyses. 
These steps can be put as project questions leading to targets. 

Data question and targets 
1. Is the data that is necessary for making a reliability prediction available? 

• Investigate the databases with field data and determine whether the necessary data for making a 
reliability prediction is available. 

• Investigate the quality of the data to determine how accurate the results will be. 
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Model question and target 
2. What model(s) are available for the situation at PMS? 

• Identify a reliability prediction model , based on field data, that is applicable for the situation of 
Philips Medical Systems. 

Analyses questions and targets 
3. Can these models give the expected early insight into future reliability? 

• Use field data to detennine parameter values of the model , determine the goodness-of-fit, and 
construct the confidence intervals. Use this to detennine whether early prediction is possible. 

4. What are the improvement possibilities? 
• Make recommendations on the data collection and handling processes and on reliability prediction 

models to improve the accuracy of the prediction. 

Relation with other chapters 
The next chapters will try to give an answer to these project questions. Chapter II focuses on question one, 
chapter Ill focuses on question two, chapter IV focuses on question three and chapter V focuses on question 
four. Chapter V will also get back to questions 1-3, giving the overall conclusions on these questions. 

1.3 Benefits of reliability models 
1.3.1 Field data reliability analysis 
To get a better understanding of the specific use of field data reliability models this subparagraph shows what 
the outcome of such a model is. Chapter Lil discusses these models in greater detail. But since a clear 
understanding of what is meant by a model is necessary , a definition of a model is presented first. There are 
many descriptions of a model given in literature. What they have in common is that they describe a model as a 
simplification of reality , and therefore necessarily incomplete, focusing on essential elements or 
characteristics. The definition used in this report, taken from the on line dictionary of computing [ 13], is used 
since it also takes into account the limitations of a model. 

A model is a description of observed behavior, simplified by ignoring certain details. Models 
allow complex systems to be understood and their behavior predicted within the scope of the 
model, but may give incorrect descriptions and predictions for situations outside the realm of 
their intended use. 

The outcome of a field data reliability model is both numeric and graphical. The numeric values that can be 
calculated are: 

Number of failures that the product is expected to have in a certain period of time. For example after one 
year, two years, and three years. 
The mean time between failures at different points in time. 
The model sensitivity to the data in the fonn of confidence intervals. 

The graphical outcome provides: 
The expected failure pattern of a product. 
The expected moment that the reliability of the product comes into steady state. 

The next paragraph shows how these outcomes can be used for specific means. It shows that by making these 
analyses at several moments in time comparison of the numeric values and graphs will lead to benefits for 
several departments. 

1.3.2 Benefits of reliability models 
This paragraph shows the potential benefits of making predictions of product reliability using field data. These 
reliability predictions based on field data are not a goal by itself. It provides an interpretation of data that can 
be used, together with other analyses, in order to gain more insight in the product reliability and to take 
actions based on this insight that is provided. 
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Determination of current situation / pattern 
The first target is to determine the current situation. In order to know where to improve the product reliability 
there has to be a null measurement of the failure times to determine the current reliability situation. The null 
measurement gives specific numeric values and a graphical outcome calculated by the model, indicating the 
reliability performance at that moment. The outcome of this analysis is the reference point for the analyses 
performed after that. 

Evaluation / control 
For marketing 

• Marketing can get a better understanding of the product reliability and failure behavior. This can help 
in the risk analysis for bringing a product on the market at a certain point in time. It forms a basis for 
marketing, together with development, to work on managing possible product reliability risks. 

For development 
• As mentioned earlier in this chapter tests are performed during development and after production. On 

the basis of these tests, predictions can be made about the reliability of the system. Field data can be 
used to check whether these predictions are close to reality or not. 

• Reliability improvement efforts that are taken by development can be evaluated regarding their impact 
on system reliability. 

• The failure pattern during the product life can be studied to determine which part of the product life 
requires the most attention for improvement efforts. Also, the difference in failure pattern for different 
products can be studied, leading to different strategies for improvement for different products. 

For production 
• The effects of the run-in tests performed after assembly can be evaluated; helping with the 

optimization of this test period. 
• The same as with the improvement efforts from development also the reliability improvement efforts 

from production can be evaluated. 

For sales / service 
• Patterns in failure times can be studied, leading to a better anticipation (understanding) of the number 

of failures that the customer is going to be confronted with and around what time. The customer 
support agreements can be adjusted given the outcome of the analyses. 

• Influence of planned maintenance influences on the failure pattern can be evaluated, leading to new 
strategies in the planned maintenance . 

Warranty cost assessment 
Before a product is put on the market an estimate of the warranty costs is made. Using the predicted number 
offailures after a certain period of time (1 /2/3 years) an evaluation of that warranty cost estimate can be made. 
This warranty cost evaluation can lead to new insight in the total warranty costs that will be made and 
therefore can be used as an input for financial decision-making. 

Resource assessment 
The necessary effort in product improvement can be assessed at a strategic level. Some products might need 
large improvement efforts for the product on the market; in other cases effort for a follow up product should 
receive the most attention. 

Learning organization 
Comparing analyses of a system that are produced at different moments in time can give insight in the degree 
the organization is learning. 

Basis for root cause analysis 
When root causes of dominant failure mechanisms are to be discovered further analysis on a more detailed 
level needs to be performed. The analyses of failures at system level form a basis for this further research. 
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(H .E. Ascher & C. K. Ha11sc11 ) 

This chapter describes the product and cunent processes for the collection of data (step 4). Next the cunent 
field data analysis is described (step 5), followed by an evaluation of these two steps (step 6). Since all 
discussed processes are aimed at improvement of the product, some details about the product will be given 
first. 

2.1 Current data collection 
2.1.1 The product 
This paragraph is an extension of the remarks made about the product in paragraph I . l . l . It is important to 
give some extra details on the product that is under consideration in this report to present a better 
understanding of the complexity of the product. 

The product consists of modules, which can vary for different product types, but in general consist of: a stand, 
a table with controls, monitors in a ceiling suspension, a cabinet with computer hardware for image processing 
and storage, a cabinet for the x-ray generator, a cabinet with computer hardware for movement of the stand 
and table (geometry), and operator consoles (see figure 3). Many of these modules contain thousands of parts. 
Next to the hardware there is a large amount of software necessary for various reasons. There is geometry 
software for the movement of the stand and table, imaging software for the digital images made by the system , 
software for administrative purposes, etc. 

··· ··· ·····················r- Digital video 

Ed ited 
image 

Image 
processor .. 

Image 
storage 

Ethernet (patient data) 

~KV 
!···········' 

Generator 

Monitors 

Table with fool 

I 
r+--control table + C-arm 
l 

Geometry 
cabinet 

Graphical User 
Interface 

Figure 3 Schematic of the product [14] 

A relatively small number of Cardio Vascular X-ray systems are sold around the world, especially when taken 
into account that there are different types of Cardio Vascular X-ray systems. Although the basic modules are 
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more or less the same for different product types, the customer has several options to customize the system. 
Next to the choice for monoplane or biplane and the x-ray detector size, a choice can be made between a floor 
stand and a ceiling stand, a flat detector or traditional image intensifier, the number of monitors, and lots of 
other options; but also in software different application options are possible. 

2.1.2 Feedback loops for reliability improvement 
By focusing on finding failures as early as possible steps can be taken in order to try to come up with timely 
solutions for the failures and thus keeping costs down . There are several loops in the Product Life Cycle that 
lead to improvement of the reliability; the phases on the Product Life Cycle and the improvement loops 
connected to these phases are visualized in figure 4. 

Customer use 

Figure 4 Improvement loops 

1. Development loop 
First of all there are improvements through testing before the product is put on the market, see the 
graduation report of Roos [14] . Since the time to market is forced on the product some known problems 
are fixed after market introduction, this means that the development department keeps testing and fixing 
problems after market introduction . This loop also represents the development of new features that are 
added to the product after market introduction. Next to that there are also International Standards that 
change over time that lead to necessary changes in the product after market introduction. 

2. Production loop 
When production of a new product type starts there is usually a learning curve, which means that the 
reliability should improve gradually. Every system that is manufactured is being tested during "run-in" 
tests when it is finished . The testing of these systems is a couple of days. In these tests log files are created 
which show the failures that occur, that is, the software detectable failures . Next to that the hardware 
failures are stored in a so called 'Forest Database'. When a failure on a system occurs that is due to 
manufacturing, the parts that cause the failure are replaced to make sure the failure does not occur again. 
There are no actions taken toward development for those kinds of failures . 

3. Production to development loop 
When production finds mistakes in the product that lead back to design this is reported to development. 
These failures are found in the same database systems described at the Production loop. 

4. Customer use to development loop 
Information from the customer normally comes through the service department (loop 5), however, as 
mentioned before recently the Field Monitoring project was started. On basis of this information 
development can take improvement actions. Data from the field monitoring database will be used in the 
analysis of this project ( see chapter IV). 

5. Service to development loop 
There are two ways in which service helps the development department with information about the 
reliability of the systems. 

First of all the information from all the calls and jobs performed on the systems in the field are 
collected and used by development to perform analyses on. This data forms the initial data source 
used in the analysis of this project (see chapter IV). 
The second way is through a Field Problem Report (FPR). When the service engineer encounters a 
structural problem an FPR can be made. With a structural problem, a problem is meant that has been 
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encountered several times on different systems. This FPR is sent to the Quality Maintenance Control 
Board (QMCB) at the engineering department. This board has to decide on the kind of action to be 
taken as a result of this FPR (see Appendix B). 

In the near future there will also be more research performed on 'field returns ' as an extra feedback from 
service to development . This means that engineers from development will investigate the parts that broke 
down at the customer. Conclusions from these investigations should lead to improvements. 

The conclusion of this paragraph is that there are several feedback loops in place for reliability improvement. 
The loops that are of interest in this report are the "customer use loop" (4) and "service loop" (5). The data 
that is gathered in these loops and the analyses performed on this data is explained in the remainder of this 
chapter. 

2.1.3 Data collection 
Limnios and Nikulin (15) stress the importance of field data for making a reliability analysis. They state that 
reliability field data are the core of any reliability analysis. For systems in the field , these data are the basis for 
a realistic estimation of the achieved reliability level. For new designed systems they are used for a realistic 
evaluation of the reliability level. Field data are usually collected during a long time, for different climatic 
conditions, for different system configurations, etc. The problem is how to aggregate as much reliability 
information as possible, keeping control over quality of these data . 

Field data that is used for reliability analysis at PMS is collected from two different data sources. One source 
provides data that is directly obtained from systems at the customer, arrow I in figure 5; the other source 
provides data obtained through two data collection point at the service organization in the fonn of call data 
(arrow 2) and job data (arrow 3). The next subparagraphs discuss each data collection point. Both these data 
sources are used for analysis in this project . 

Customer Customer Call Jobs by ... ~ 

~ Service use ~ problem ~ 

engineer 
I I 
I I 
I I 
I I 
I I 

L ----,,_ ___ o_a_t_a_c_o_ll_e_ct-io_•_i __ ...,~-~--J __ 
2 

__________ j 
3 

Figure 5 Points of data collection 

Customer use 
Recently a Field Monitoring project was started at PMS. A direct link to about 20 sites at this moment gives 
data about the activities performed on the product. Log files are generated which show the exact moment in 
time that a failure occurs and what kind of failure it is. Every day the log files of the day before are retrieved 
from the systems and put in a database. Problem with this data is that not only failures are logged but also 
much more details of things happening on the system. This makes filtering of the data necessary in order to be 
able to use the data for analysis. 

From the log files a list is created with all failure types that have occurred at some point in time. At the 
moment the total number of failure types is quite large. System experts review this list to point out the 
relevant failures types as will be defined in paragraph 3.2, leaving a list of relevant failure types that is about 
14% of total failures types at this moment. This list is used to identify the number of relevant failures per 
system. 
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Unfortunately only the last 24 hours online time are logged, meaning that if the system is online for longer 
than 24 hours there is loss of data. The total online time of the system is still recorded but information about 
the activities that take place before those last 24 hours is lost. 

Next to that these software loggings are not able to identify all failures that occur on the system since the 
loggings are unable to detect failures that have no link to the software whatsoever, like a broken remote 
control for example. 

For the analysis of failure moments the current procedure is as follows: the days on which a relevant failure 
takes place are identified; for those days the FMT database only registers the first failure moment that occurs 
on a certain day. Other possible failures that occur that same day are not recorded. The failure time is 
measured in system online hours since the installation of the system. 

Customer problem 
A customer has a certain goal with the product that has been bought. For example, it has to work fast and 
efficient. There are three ways of satisfying a customer, and therefore three areas in which a customer can 
become dissatisfied. These are: 
• Functionality 

A customer has a certain idea of what the product must be able to perform, what functions there must be 
on the product. 

• Reliability 
Next to having the desired functions the product should also be able to perform these functions without 
problems during a specified period of time; it should be reliable. 

• Serviceability 
In the situation that the product does fail, the customer wants the problem fixed as soon as possible and in 
such a way that the problem does not come back any more. 

When does a customer place a call? 
Perceived functionality problems 
When a customer is dissatisfied with the performance of the functions of the product a call can come in . 
This does not mean that something has stopped working, just that the customer is not satisfied with the 
way it is working. For example, this can happen because of wrong use of the product or because of wrong 
system installation / fine-tuning . Depending on how big the difference is between the expected 
functionality and the perceived functionality a call will be made. 

Failures 
When there is a product failure there are two possibilities. The first possibility is that there is an 
unacceptable failure . This kind of failure is reported right away since the product needs to be working 
properly. The other kind offailures are so called ' intermitting' failures, these are problems that occur once 
in a while and they can usually be solved by rebooting the system. When the user thinks the moment has 
come to report these failures the ' call ' to the service desk will be made. In this situation it is not known 
when the first time was that the failure took place. 

Warranty period I Customer Support Agreement 
The warranty period and Customer Support Agreement (CSA) are important factors related to resolving a 
customer problem. The warranty period for the products is one year. During the warranty period both 
preventive maintenance and corrective maintenance is performed, as well as service on how to operate the 
system. After the warranty period there are Customer Support Agreements (CSA) in different gradations, 
starting with 'only preventive maintenance ' to ' full maintenance' contracts. Everything that is not in the 
maintenance contract is paid repair. This has influence on the customer behavior for what to do when the 
customer has a problem. If the customer is under warranty, or has a full maintenance contract, he will not 
hesitate to make a call . When the customer only has a preventive maintenance or no service contract anymore, 
meaning all repairs are paid repairs, then this customer might wait with repairing problems or tries to find 
cheaper service outside Philips. The most reliable field data from service therefore comes from systems under 
warranty or CSA. 
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Call 
When a corrective maintenance call comes in the employee puts a short description of the customer problem 
in the local service database. Next to that each call gets a priority code on the following scale based on 
seriousness of the problem: 
I. Procedure in process; this means that the system stopped working while a procedure on a patient was 

perfonned. 
2. System down ; this means that the system has stopped working totally, without a patient being in danger. 
3. System restricted; this means that the system has lost part of its functions but is still operational. 
4 . Intennittent problem ; this is a problem that occurs occasionally . Since the cause of an intennittent 

problem is probably not changing, it could be counted as just one failure (instead of taking into 
consideration all calls made about this intennittent problem). Right now all calls for intennittent problems 
are registered and treated separately . 

5. Schedule activity; this is a minor problem that does not need direct attention . 
The date on which the call is made and the closing date of the call are also put into the database. These open 
and close dates of calls are not always representative of the moment work is perfonned. Calls of planned 
maintenance activities can be open long before the planned maintenance is performed; closing of calls is 
sometimes done days or even weeks after the job of that call is performed. Before a service engineer is sent to 
the customer a first diagnosis of the system is made by use of ' remote service ' . This means that the service 
organization can connect to the system remotely from the SSD. The calls made by customers can be divided in 
five categories. These categories are explained next . 

Installation activities 
Wl1en a new system arrives at the hospital it is installed by Field Service Engineers. The total installation can 
take several weeks since it involves the complete setup of the operation room and the control room . 
Furthennore, the software of the system needs to be completely set to the customer ' s whishes . 

Field Change Orders and Upgrade kit 
There are two ways of product improvement when the product is in the market , an upgrade kit and a Field 
Change Order (FCO). When development comes up with an improved version of hardware or software, or 
with a new feature, these options can be offered to the customers in the fonn of an upgrade kit. This means 
that improvements are system dependent; this is no overall upgrade of all systems in the market at a 
prespecified moment . 

It can also happen that PMS decides to install a new version of hardware or software on the installed base (the 
systems on the market) . This is done in the fonn of an FCO. The cost of service calls (and the possible loss of 
customer satisfaction) versus cost of the FCO lead to the decision on whether or not to carry out the FCO. 
Hardware changes will generally only be made when the installed base is still small . For software, the size of 
the installed base is not such a big issue. Since the FCO' s are initiated by PMS this upgrade is an overall 
upgrade, the moment on which the FCO is performed in the hospital depends on the available time and 
regulations at the hospital. PMS tries to execute the FCO on all systems that qualify for the upgrade within a 
given timeframe. 

Planned Maintenance I Preventive Maintenance 
This sort of maintenance is arranged in the CSA contract with the customer. Together with the customer a 
schedule is made for this type of maintenance. As an indication a preventive maintenance frequency of once 
every six months can be used. The relation with the Call Rate is absolutely present according to a service 
department employee. This means that systems that have had no planned maintenance in a long period of time 
have more failures than systems that did have planned maintenance . 

Corrective maintenance 
Corrective maintenance does not always mean that parts have to be replaced. The problem can be in the 
software, which does not lead to replacement of a part . Next to that a problem is sometimes solved through a 
calibration. Wl1en the corrective maintenance does concern part replacement there are several possibilities 
according to the Handbook of reliability engineering [16] . It states that in the case ofa repairable product, the 
behavior of an item after a repair depends on the type of repair carried out. Various types of repair action can 
be defined: 
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Good as new repair 
Here, the failure time distribution of repaired system is identical to that of a new system, and successive 
failures are modeled using an ordinary renewal process. In real life this type of repair would seldom 
occur, since only a part of the system is repaired, not the whole system. 
Minimal repair 
A failed system is returned to operation with the same effective age as it possessed immediately prior to 
failure . Failures then occur according to a non-homogeneous Poisson process with an intensity function 
having the same form as the hazard rate of the time to first failure distribution. This type of rectification 
model is appropriate when system failure is caused by one of many components failing and the failed 
component being replaced by a new one. 
Different from new repair (I) 
Sometimes when an system fails, not only the failed components are replaced but also other that have 
deteriorated sufficiently. The mean time to failure of a repaired system is assumed to be smaller than that 
of a new system. In this case, successive failures are modeled by a modified renewal process. 
Different from new repair (II) 
In some instances, the failure distribution of a repaired system depends on the number of times the system 
has been repaired. The mean time to failure decreases as the number of repairs on the system increases. 

The kind of repair performed at systems under consideration is minimal repair, since it's not the whole system 
failing but just a part of a very complex system. 

Customer support activities and visits 
These are activities that do not involve maintenance. Examples of customer support activities are: helping out 
with conferences given in hospitals where the system is used, instructing personnel on using the system, etc. 

Job by Field Service Engineer 
The Field Service Engineer (FSE) performs the jobs as described in last paragraph . The jobs performed for a 
call are linked to the call through an ID number. When a job is completed the FSE fills out the jobsheet. The 
following details can be reported in the jobsheet: 

Operations; this is an overview ofthe hours worked, including open and close date of the job. 
Codes; these are dropdown menus of the cause, damage and activity of the job. 
Parts; details ofpart(s) replaced. 
Exceptions; space where exceptions can be put. 
Notes; space where the FSE can type notes on the corrective action performed. 

The details in the jobsheets are not always complete; the cause of the problem and the damage are sometimes 
left open, but also examples of hours that are not filled out exist. A possible reason for not filling out the cause 
of the problem or the damage is that in these dropdown menu's the choice that be made does not always 
reflect what the FSE wants to put in. Next to the fact that jobsheets are not always filled out completely it is 
also not possible for the FSE to provide all the preferred data, like the total online time of the system until 
failure. 

The corrective maintenance jobs performed by a service engineer where parts have failed lead to repair or 
replacement of the part. Parts that are replaced are replaced with the newest version of that part, this means it 
is not only a replacement but also an upgrade. Repairing a part does not mean 'on-site repairing' . The part that 
has failed is replaced with a 'new part' and taken back to the plant for repair. There the part is repaired and 
used as ' new part' in another system. On a database system there is an Electronic Spare parts Catalog that 
gives a full list of all parts that can be ordered by the service engineers. In this catalog it is stated whether the 
part has to be repaired or replaced/consumed. 

A general rule for the choice between repairing and replacing is based on cost. This means that if the cost of 
repair is lower than the cost of replacement, the part will be repaired. An exception is made for Table Side 
Operation modules (TSO's), these modules have a so-called "biohazard" which means that they would need to 
be treated with special cleaning materials when being repaired. Therefore these parts are always replaced, not 
repaired. 
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Field data collection databases 
Each call , with its accompanying jobs, is filed in a local database system at the SSR. At the moment it is not 
the same type of database system in every country, causing problems with transferring this data. Data from 
these local systems is put in the Global Data Warehouse (GOW), but only from the countries where the 
interfaces make data transfer to the GOW possible. Even for those, the interfaces between these database 
systems are not optimal. The notes made in the jobsheet are often not copied completely since there is a limit 
on the text transferred to the GOW. Also, the hours reported in the jobsheet are not always the same as the 
hours recorded in the GOW. 

Next to problems with transferring data from one database system to another, there are also fields that are no 
longer included in the GOW. The priority code, the cause, damage, and activity of a call are not transferred to 
the GOW. On top of all this the language in the jobsheets is the native language of the place where the 
jobsheet is from. This means that when the data is collected in the GOW several different languages are put in. 

In the USA there has been a change in local database system: since end of 1996 field data have been retrieved 
from the Fieldwatch database from PMSNA (Philips Medical Systems in North America). These data have 
been analyzed and published quarterly till end of 2000. Since September 2002 jobsheet data (from Jan 200 I 
onwards) from PMSNA are available via the Global Data Warehouse (GOW). One remark has to be made 
concerning the data from the USA. Systems are sold in the USA through PMSNA and through dealers who 
buy from Philips for a group of hospitals. The data is available from PMSNA; dealer data are not available. 
European data are only available from a number of countries. This has to do with differences in database 
systems, which makes data conversion not always possible. 

2.1.4 Data quality 
Studies described in literature found that often many end-users, including managers, are unaware of the 
lacking quality of data they use in a data warehouse [ 17]. According to Blischke and Murthy [ 18] some of the 
principal difficulties frequently encountered in service call data are as follows: 

Inaccurate, incomplete data - missing or incorrect entries; transpositions, and so on . 
Delays in reporting - periodic or haphazard reports of calls. 
Lags in making calls (particularly for minor failures or failures that do not seriously affect operation of the 
item) 
Invalid calls, calls after expiration of the warranty, failures due to misuse , or calls on items that did not 
fail. 
Valid calls that are not made - ignorance of warranty tenns; compensation deemed not worth the effort of 
collecting, and so on. 

In the previous paragraphs data quality problems were mentioned throughout the text. This paragraph puts 
these data quality problems into a framework using a categorization described in literature. This provides a 
way to structure the problems in order to find solutions for the data quality problems. There are many 
descriptions of data quality metrics in literature sometimes using up to seven [ 19] or even twenty [20] metrics. 
However, the four most important metrics found in literature are given by Ballou and Pazer [19]: data 
completeness, consistency , timeliness, and accuracy. These four metrics are described in this paragraph giving 
the problems related to these metrics. In paragraph 2.3 conclusions are drawn from these data quality 
problems. 

Completeness 
Definition of completeness: Presence of all defined content at both data element and data set levels [21]. 

Completeness problems in service data 
Data set level: 

Systems sold through dealers are not in the GOW database. 
Transition to a new database system in the USA in 200 I, causing that only data from after January 200 I is 
available in the GOW. 
Data in Europe is only available from a number of European countries. 
No data avai I able from the Asian countries. 
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No complete data from systems that are not under warranty or CSA, and therefore not able to model the 
failure behavior of the total system life. 

Data element level: 
FSE not filling out ajobsbeet completely. 
Jobs registered in the SSR database, which are not found in the GDW database. 
Details from jobs in SSR database that are not transferred completely to the GDW database (e.g. notes 
made by the FSE). 
Fields in the local SSR database that are not transferred to the GDW (e.g. priority code). 
The time that the system has been online until a failure takes place cannot be recorded. 
There are jobs in the GOW database without calls and calls without jobs. 

Completeness problems in FMT data 
Data element level: 

Only some systems types are monitored by the field monitoring team. This means that there is no FMT 
data from all the older systems that are in the field (which is the large majority). 
At most one failure per day is registered. 
Potential loss of data when system is online for more than 24 hours. 

Consistency 
Definition of consistency: format and definition uniformity within and across all comparable data sets [21] . 

Consistency problems in service data 
The information in the jobsheets can differ from one SSR to the other since different systems are used for 
data storage in the different regions. 
Textual data arrive in the native language of each country. 
There are differences between the product types which have an influence if all this data is treated as one 
set. 
The fact that, as mentioned earlier, some fields in the SSR database are not transferred to the GDW 
database leads to a consistency problem since different call priority levels are not visible anymore. 
Different FSE's throughout the world operating differently; different customers throughout the world 
reacting differently on problems. 
CM calls that are in fact "site visits / customer visits". 
Installation activities, planned maintenance and FCO calls incorrectly booked as a CM call. 

Consistency problems in FMT data 
There are no consistency problems found for the FMT data. 

Timeliness 
Definition of timeliness: extent to which the age of information is appropriate for the task and user; where age 
is the amount of time that has passed since the information was produced [22] 

Timeliness problems in service data 
No ' live' data is available since the GOW is built oftline and only uploaded with data once a month. 

Timeliness problems in FMT data 
There are no timeliness problems found for the FMT data. 

Accuracy 
Definition of accuracy: extent to which data represents what it is supposed to represent [22]. In other words, 
the degree to which something is correctly documented in the data. 

Accuracy problems with service data 
Calls that stay open long after job has been performed. 
Moment on which the failure is recorded can be impure, depending on when the call is made. 

Copyright © 2004 Philips Medical Systems Nederland B.V. 

All rights reserved 17 ~ PHILIPS 



Tu/ e tecll11iscl1e u·1ive1s1te1t eindlloven 

There are cases of an incorrect number of hours recorded in the GOW database for corrective maintenance 
activities; it is not the same as the number of hours actually booked. 

Accuracy problems with FMT data 
The relevant failure types are identified by experts, which does not rule out the there are relevant failure 
types that are not identified or that a failure type identified as being relevant is not . 

Possible causes of these data quality problems 
The overview in these last subparagraphs shows that there are data quality problems related to all four metrics . 
These data quality problems are divers and have different causes. The causes can be divided into human 
errors, database and data transfer errors, and procedural errors. 

Human errors, like not filling out the job sheet completely, or filling it out the wrong way, cause their 
problems mostly in the consistency and accuracy of the data. 
Database and data transfer errors, like the data from several countries that cannot be taken into account, 
and the problems with incomplete or incorrect data transfer, cause problems in the completeness and 
consistency of the data . 
Procedural errors, like keeping a call open too long, only updating the database once a month cause 
problems in the consistency and timeliness of the data . 

In order to resolve the problems with the databases and the data transfer between the databases action is being 
undertaken at the moment. Worldwide the service departments are converting to the same database system 
(SAP) which will have a positive effect on the completeness and consistency of the data. The Market Essential 
Harmonized Installed base, Reliability & Perfonnance Repo1ting (MENHIR) project within PMS provides 
requirement specifications to have better ( central) control of the reporting tools and methodologies in the new 
IT Landscape (SAP and the SAP Integrated Client). This is explained in more detail in the MENHIR report 
[23] . 

For the Human errors and procedural errors no specific structural plans for improvement are in place, at least 
not to my knowledge . These errors are likely to be more difficult to resolve, especially because they cannot 
always be seen as errors. Cultural influences, priority considerations, lack of diagnosis tools, etc. are possible 
reasons for the ' errors ' . Making sure for example that every FSE processes jobs in the job sheet in exactly the 
same way all over the world is a big challenge. 

2.2 Current field data analysis 
Now that the recorded data has been explained, together with the problems in data quality , this paragraph 
shows the current analyses that are performed by PMS based on the data recorded in the GOW. 

Data analysis 
Sanity check 
The data is first checked for calls without a job and jobs without a call , these are removed from the database. 
This is done under the assumption that a call has at least one job and a job belongs to exactly one call. 

FilteringfiJr Call rate analysis 
The following filters are bein g used on the data in the database: 
I . Only the Integris family and its successors are considered. This means that systems older than the Integris 

family that are still in the field are not considered. Neither are the systems from other suppliers that are 
serviced by PMS, for example a GE system. A list of system versions that is considered can be found in 
appendix C. 

2. Calls per month are calculated for systems that are at maximum 3 years old and that are supported under 
Warranty or under a Customer Support Agreement (CSA) [24 ]. The reason for this is that the most 
reliable data is obtained from this group. For the systems that are under warranty or CSA calls will be 
registered when something is wrong, when there is no more warranty or CSA this cannot be assumed. 

3. Systems that produce no calls in a single year are filtered out under the assumption that these systems are 
not in use. 
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Call rate analysis I MAT (Moving Annual Total) Call rate 
Definition of Call rate according to the PMS Business Balance Score Card, where KPI stands for Key 
Performance Indicator: 

In formula, keeping in mind the filter explained above: 

Number of calls per month over last 12 months 
Call Rate I MAT= --------------------- (2-1) 

Total number of systems under warranty over last 12 months 

This total number of systems has to be specified in more detail. For a system that is only one month old it is 
counted for as 1/12 system. Hence, only a system that is at least one year old counts for a full system. This 
MAT Call rate shows what has happened on average in the last 12 months. An example of this analysis is 
given in figure 6, taken from the Quarterly report [24]. 

On the horizontal axis of the figure is the time measured in 
quarters of a year. The vertical axis shows the call rate I 
(MAT). In the figure there are three lines representing data 
from two different geographic sections (North America and 
Europe) and a line for the world average. 

What can be derived from this graph is that in the first and 
second quarter of 2002 the call rate in the United States 
went up and in the third quarter of 2003 the call rate started 
going down again, while in Europe the call rate kept stable 
during that period. It is not possible to see in this graph 
whether the system that caused this increase were in the 
beginning, middle, or towards the end of their technical 
lifetime. 

Call rate II analysis "Call rate in the lifetime " 

-;;; 
u 

Call rate trend 
labs <3 years old - warranty- CSA 

year-quarter 

- PMSNA - EUR - world 

Figure 6 Call rate I MAT 

In this calculation systems with a maximum of 3 years of age are used, but to get more data from systems in 
the last age category, systems from a 42 months period are considered in the calculation. From that data 
systems are grouped by age. This means that all systems that are at least one month old are grouped, all 
systems that are at least two months old, etc. From these system groups the total number of calls per month is 
determined. This number is then divided by the total number of systems in that group. An example of this 
analysis is given in figure 7, taken from the Quarterly report [24] . 
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On the horizontal axis the months in operation are given . 
The vertical axis shows the call rate II, in calls per 
month. This graph shows a decrease in the call rate as the 
systems are in operation for a longer period of time. 

Other kinds of analyses 
Material (pareto) analysis 

I f 

I 1 

PMSNA 
monoplane sites under warranty/contract 

# Calls per month 

months in operation 

Figure 7 Call rate II 

To get in sight in the material used during maintenance the IO highest scores on material quantity and the l 0 
highest scores on material exchange costs are determined . This infonnation is put in Pareto diagrams; the 
items in the diagrams are ranked on total exchange costs: Material and labor. 

Top X list and Top Q list 
Every Sales and Service Region keeps a list of the biggest quality related problems (Top X list). The Business 
Line Customer Service has a similar list. Together these lists form the Top Q list with priority problems, when 
developing structural solutions for problems in the field are concerned. 

2.3 Evaluation of the current data and analysis 
This paragraph sums up the most important statements made on data collection, data quality and current data 
analyses in this chapter. Next to that a short summarize is given of what has been discussed so far and how 
this fits in the report . 

2.3.1 Important statements 
Product related considerations 

The cardio vascular x-ray products are very complex , cons1stmg of a large amount of modules . 
Furthennore the customer has many adjustment (fine tuning) options making it a customized system . 
These differences between systems make overall comparison less accurate. 
The product is a so-called " repairable product" . 
The economic lifetime of the product is very long (sometimes more than 20 years). During its lifetime 
numerous improvements and updates are made on the system , so the systems do not remain the same . 
The products are being sold in relatively small numbers. 

Reliability feedback loops 
There are five general feedback loops for reliability improvement identified from which the data of the 
' customer use to development loop' and the ' service to development loop ' are analyzed in this report . 

Current data collection 
There are two sources for the collection of data: I) service data from the Global Data Warehouse; 2) field 
monitoring data from the FMT database. 
FMT data is retrieved directly from the systems at the hospitals, it gives the failures noticed by software 
and the moment of failure is given with great accuracy in tenns of on line time. 
There are five major activities performed by Field Service Engineers: installation activities , FCO ' s, 
planned maintenance, corrective maintenance, and customer support activities. From these five activities 
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the interest of this report goes to the corrective maintenance activities since system failures are related to 
this type of activity . 

Data quality 
The data quality problems are classified according to four data quality metrics: completeness, consistency, 
timeliness and accuracy. 
The causes of these data quality problems can be divided into human errors, database and data transfer 
errors, and procedural errors. 
The database and data transfer errors are worked on at the moment in the MENHIR project. 
The data quality problems with service data are much more extensive than the problems with the FMT 
data. Reasons for that are that the service data requires much more human input collected in several 
independent databases. 

Current field data analysis 
The failure analyses that are done: 

o Call rate analysis I; moving annual total. 
o Call rate analysis II; call rate in the lifetime. 

The failure moment is estimated by the closing date of a call, not by the start date . There can be a large 
difference between these dates, sometimes several months. This influences the call rate calculated. This is 
analyzed in more detail in appendix D. 
These analyses are overall analyses, not per product type. This gives only a very general picture of the 
performance of all product types together. 
Call rate analysis I gives no insight in product reliability, only insight in overall number of calls of all 
systems in the field during a certain month . More about the disadvantages of the use of call rate for 
reliability purposes can be read in the article by lon et al. [12]. 
Data is aggregated into calls per month, which makes the Call Rate calculations less accurate. For 
calculations of mean time between failures this aggregation would make calculations very inaccurate. 
The analyses only look back in time, they are evaluative of nature; statistical predictions cannot be made 
for the future . 

2.3.2 Summary 
This chapter provided insight in the field data that is available for analysis and explained the current way of 
field data analysis. Two data sources are available for failure analysis, service data and FMT data, both have 
data quality problems which need to be kept in mind when drawing conclusions based on this data. The 
current field data analysis is not able to provide the desired reliability prediction capabilities in order to satisfy 
the project aim described in paragraph 1.2. Therefore, chapter III will describe models found in literature and 
uses a data analysis to determine what kind of models can be used in the situation of PMS. The study is not 
exhaustive and the many references in the chapter give the opportunity for further reading in this field . The 
focus is on models that are most used and therefore well described in literature. This choice is made with the 
reasoning that first a good understanding of more popular models should be obtained before the more exotic 
models are studied. Chapter lV analyses the prediction performance of the chosen models. 
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Chapter III Model investigation and choice 

Backgroun d of thi; 
proj ci.: t 

C um.:nt Jata 
collection 

:Vlodc l investi gation 

Proposed data input 

Cum.:nt lidd data 
:mi1l ys is 

Mo<ld choice.: 

Prnposcd fa ilure 
modeli ng 

V 
For II u:paimhle .1y1ten1. 011 e is mrely in terestecl 
µri11 111ri/1 · i11 lilll e lo fin! fi1i/11re. R11ther. i11/erest 
genemllr ceJJ{ l::'J'S (/1'()/fl/(f the µmhuhility or S\'\'{/:!1 1/ 
fi1i/11re os ofi111ctio11 ofsrste111 uge. 

(L .H . Cro11) 

This chapter starts with a literature investigation for finding a model applicable to the situation at PMS (step 
7). Subsequently the model choice is made based on actual field data (step 8). After that an evaluation of this 
model choice is presented (step 9) . 

3.1 Model investigation 
Step 7 starts with a broad view on models for field data reliability analysis, followed by an overview of 
coming to the right model in case of repairable systems . After that two Nonhomogeneous Poisson Process 
(NHPP) models will be discussed and the tests that need to be perfonned to assess the accuracy of these 
models . 

3.1.1 Model considerations 
There is a large diversity of models described in literature all written from a certain perspective, depending on 
the system or part under consideration . First of all there is a difference between hardware and software 
reliability models. This has to do with the different reaction of hardware and software to repair of failures. 
Debugging in software normally leads to a pennanent improvement, other than repair of hardware, which is 
subject to deterioration [25] . Since the product under consideration is a complex product with a lot of 
hardware and software, the models designed specifically for software will be excluded. With that the 
assumption is made that the model used is able to take both hardware and software failures into consideration , 
although the difference between these two kinds of failures should be kept in mind when drawing conclusions 
from the results given by the model. 

Next is the difference between models for system versus models for parts (components) . According to Ascher 
and Feingold [25] there is a widely held misconception that the same models and data analysis techniques can 
be used for repairable systems and parts . Parts usually only fail once and are discarded afterwards, and 
therefore only Time To First Failure is of interest. Models for repairable systems use Time Between Failures 
since the system can fail more than once . Related to this is the question of what state the system is in after 
repair, thi s was discussed in paragraph 2.1.3 . This project deals with models for system reliability; models 
where reliability of parts is added to fonn system reliability are excluded. 

Another deci sion that has to be made is between discreet and continues models . Discreet models are based on 
data in which the system has to operate only on discreet moments, like for instance a switch. This situation is 
not applicable in this report since the system has to operate for a continues time; more on discrete models can 
be read in [26]. 

Then there is the choice between parametric models and non-parametric models. The non-parametric models 
are not based on an expected underly ing failure di stribution. Non-parametric models use curve-fitting 
techniques, like regression analysis, see Blischke and Murthy [27], and Arkin [28]. In this project it is chosen 
to investigate the possibility to fit a model on an expected failure distribution, therefore non-parametric 
models are left out of the analysis. 
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There are models for redundant and non-redundant systems; redundant systems have components in standby 
mode where there can also be failures of components that are in standby mode. The system at PMS is 
generally saying 'non-redundant', although there are possibilities build into the system to keep it running 
without the use of certain functions. This means that certain components can fall out (software/hardware) 
without the whole systems failing . More information about redundant systems by Seo et al . (29] . 

For lots of specific situations different kinds of special models have been constructed. For example models 
including pre-sales data (where there are repairs at the dealer) . Unfortunately these models are only described 
for non-repairable systems in literature, see Majeske [30]. There are two dimensional models especially for 
the car industry where it is possible to look at both mileage related data as well as time related data. More on 
two-dimensional models by Chen [31] and Lu [32] . And models using neural networks for system reliability. 
These models can be found for example in an article by Xu et al. [33]. 

Summarizing, the models that this chapter will look at are continues parametric models for systems with a 
mixture of hardware and software, without redundant parts. The next paragraph will give a framework that 
can be used for the identification of a proper model in this situation. 

3.1.2 Framework for continues parametric models 
Model identification framework 
In figure 8 an overview of continuous models used for reliability prediction is given . As can be seen in this 
figure several subdivisions in these models can be made. The most important subdivision is repairable versus 
non-repairable. This is in line with what Crow says in his article [34] : many systems can be categorized into 
two basic types; one-time or non-repairable systems, and reusable or repairable systems. This will be 
elaborated on in the next subparagraphs . 

The reason to leave this choice explicitly in the model is because the project started with the objective to 
validate a reliability prediction model for continues parametric systems developed at the TU/e. 

n Exponential 
Independent fit 
and identically 
distributed -
failures Non-

~ exponential -
Models for fit 
repairable 
systems 

- NHPP (power 
Reliability Dependent and law) 
analysis -NHPP not identically - (exponential law) - distributed 
Continues failures 
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of Ion et al.) 
- Field call rate 

Models for - Warr an ty cal I rate 
non- - Warranty packet 
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Figure 8 Model identification Framework 
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Non-repairable systems 
Models for non-repairable products include only Time To First Failure since the product is discarded right 
after this failure. Or the assumption is made that only the time to first failure is of interest because this one 
(usually) falls within the warranty period. Models that are used for non-repairable systems are, among others, 
the Weibull model [12], field call rate [10], warranty call rate [11 ,12], warranty packet method [10], hazard 
function [10, 11], reliability function [I I], and the MIS MOP method [10] . In the conclusions of the previous 
chapter it is said that the product under consideration is a so-called ' repairable system '. This means that the 
non-repairable systems models cannot be applied in thi s situation. 

Repairable systems 
When a system can be repaired other models are used. For example in " Modeling the reliability of repairable 
systems in the aviation industry" [35] this is the subject of study . This paper states that in complex machinery 
such as a jet engine, the systems are generally not replaced but are repaired when they fail In this case, the 
usual non-repairable methodologies are simply not appropriate for repairable systems and the renewal process 
should not be used since the required refurbishment will typically not achieve a "same-as-new" status [34]. 

According to Crow [34] one is rarely interested primarily in Time To First Failure for a repairable system. 
Rather, interest generally centers on the probability of system failure as a function of system age. Exact 
reliability analyses for complex, repairable systems are often difficult because of the complicated failure 
process that may result from the replacement or repair policy . A common procedure in practice is to 
approximate the complicated failure process by a simpler failure process, which although not exact, still yields 
useful practical results . One such approach assumes that the failure times of the complex repairable system 
follow a Non Homogeneous Poisson Process (NHPP). Crow developed the Power Law NHPP as a model for 
the reliability of a complex, repairable system when data are generated from multiple systems. Another NHPP 
model often seen in literature [35 , 35] is the Exponential Law model 

3.1.3 General procedure for analyzing failure data of a repairable system 
When deciding among the three most basic model categories, Homogeneous Poisson Process (HPP), Renewal 
Process (RP), and Non Homogeneous Poisson Process NHPP, the procedure outlined in figure 9 can be used. 
This procedure is proposed by Ascher and Hansen [37] and will be explained in this paragraph . 

.-------, Yes 

,__H_P_P_M_o_d_el _ _.l◄ 
Goodness-of-fit test 
TIT plot 
Exp-score plot 

Analysis of 
interarrival times 
X1. Xz ..... Xm 

No 

Other RP Model 

No 

Analysis of failure data 
for a Repairable System 

Validation of Data 

Understanding the 
nature of the data 

Visual Examination 
of data 

Laplace Trend Test 

Yes 

Modified Laplace Trend Test 

Inconsistenc ies 
and errors ·> 

Unit of measurement'> 
Single system or multiple 
copies '.> 
Overhaul' ' 

# Failures vs. Cu m. 
Operating time 

Analysis of arrival times 
T 1• T :: . ... . T 111 

NHPP Model 

Power law Model 
Exponential law Model 
IBM Model 

Figure 9 General Procedure for analyzing failure data of a repairable system 
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Validation of data 
This first check of the data is used to track down any inconsistencies and errors in the data. Through this 
check conclusions can be drawn on the quality of the data. This can lead to a number of assumptions that have 
to be made about the data. If too many inconsistencies and errors are found the conclusion can be drawn that 
the data is not useful for analysis . 

Understanding the nature of the data 
Single system or multiple copies? 
This consideration speaks for itself. A choice has to be made between including a single system or multiple 
copies. For both choices different models are available. 

Unit of measurement 
In [36] Lindqvist says the following about this "one should remember the fact that the choice of time scale 
influences the pattern of failures . Using calendar time, operating time, mileage or cumulative repair cost as the 
time scale for a car will probably give quite different patterns of failures ." This shows that the choice for unit 
of measurement should be made explicitly. 

Overhaul? 
It should be established whether or not situations of overhaul are included in the data analysis . Depending on 
whether or not overhaul is included different assumptions on repair, and therefore on models, should be made. 

Visual examination of data 
For this step there are several graphical techniques that can be used, Ascher and Feingold [25] mention (1) 
plotting cumulative failures versus cumulative time on linear paper, (2) estimating average "rate of occurrence 
of failure" (ROCOF) in successive time periods and (3) Duane plots. These graphs can be used to help 
determine whether a system is improving or deteriorating. Such a technique is particularly useful for seeking 
out the data' s salient features and for checking the assumptions made in fitting formal models to data. 

The interarrival times of an improving (deteriorating) system tend to become larger (smaller); hence a plot of 
cumulative number of failures on linear paper will tend to be concave down (up) [15]. 

Evidence of trend 
In [37] it is stated that often the patterns of failures show evidence of some trend. They say that in fact, the 
primary focus of data analysis is on detecting a trend, since one usually hopes that interarrival times tend to 
become larger, thus indicating reliability improvement; in some cases, improvement is unrealistic so one 
hopes for renewal rather than deterioration. Kvaley and Lindqvist [36] give the following definition of trend: 

. . t~'l-f' i'I. ·•· 11-:• .. JM-r~~,..j- ~7~~~': ... j' ·: . 1= . ,.,:· ' ~ , .. ..,. . '1''~, 

~ .: . ,·},.·. ~'- .· _:. ·--~:~(:·:~;.:_~-~~ '"'1 _;., t . _'. •· . . . ,, .. :.,0~1 :fi:J. 

In Ascher and Feingold [25] tests are mentioned which have been proposed for distinguishing between an 
HPP and a monotonic trend. These tests are Laplace, Bates, Bartholomew, Boswell, Cox and Lewis, Boswell 
and Brunk, Lorden and Eisenberger, Saw and MIL-HDBK-189 . In other literature [36], [37], [38] the Laplace 
test is proposed as a good test to use in this situation. 

A generalized formula for trend in [36] makes it possible to look at both time-truncated and failure-truncated 
processes. Censoring strategies are important because data obtained by different censoring schemes are 
stochastically different. Hence, data must be treated differently depending on which censoring scheme is 
actually used. If n = total number of observed failures for a system, then the difference between time and 
failure truncation is: 

~ { n if the process is time truncated 

n = n -1 if the process is failure truncated 
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L = the Laplace statistic 
Ti = Time to failure i (i = I, .. , iz) 
(a,b] = time interval 

In fonnula: 

" '; T; - -!, iz(b+a) 
l = L.,,= I -

✓-& n(b-a) 2 
(3-1) 

These processes are observed in the time interval (a,b]. For time truncation the system is observed during a 
prespecified (operation) time. The observed number of failures is thus a random variable. For failure 
tmncation the system is observed until a prespecified number of failures has occurred . The length of the 
observation interval is now random. 

According to K val0y and Lindqvist [36] a straightforward generalization of the single system Laplace test if 
there are observations from m independent systems is: 

L Iii L1\ T LIii I • b ) - 0 n . +a . l = j =I i =I I/ .i=I - J ( J I 

C ✓ 1 m "" ~ 
I"" " -. n ( b . - a . ) - L.,1=1 I I I 

(3-2) 

Thejth system is observed in the time interval (aj , bi] with nj failures occurring at times Tij , i = I, 2, .. , nj 

There is evidence of trend at a significance level a if [37] 

l > za' -:>. (reliability deterioration) 

l < -za .2 (reliability improvement) 

The null hypothesis of the Laplace test is the HPP. When the trend test is perfonned and a significant 
likelihood of trend is determined, the model that should be chosen is the Non-homogeneous Poisson Process 
model . 

If - za 2 < l < za 2 then there is no evidence of positive or negative reliability growth at the a significance 

level and the growth analysis is terminated. In this case, the hypothesis of exponential times between 
successive failures (or a homogeneous Poisson process) is accepted at the a significance level [39]. 

Data Analysis for exponential fit 
In case there is no trend the data should be analyzed for exponential fit . This can be done through analysis of 
the interan-ival times of failures. 

3. 1.4 Repairable systems models 
This paragraph discusses the repairable systems models. First an overview of the symbols used 111 this 
paragraph is given. 

a 0 = parameter for the exponential law model 

a 1 = parameter for the exponential law model 

~ = shape parameter for the power law model 
A= scale parameter for the power law model 

µ 1 (T) = power law intensity function 

µ 0 (T) = exponential law intensity function 

E[N(T)] = expected number of failures in (O,T) 
MTBF; = instantaneous MTBF 
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MfBFc = cumulative MTBF 
i = index for failure 
j = index for system 
m = total number of independent systems 
n = total number of observed failures for a system 
T = Time from start of system life 
T;i = Time to failure i of system j (i = 1, ... , n), (j = 1, .. . , m) 
N(T) = number offailures in (0,T) 

Homogeneous Poisson Process 

Tu/ e technische universiteit eindhoven 

This model comes about when the interarrival times between failures are independent and identically 
distributed according to the exponential distribution, with parameter A. It implies that there is no improvement 
or wearout with age. This basic model is also known as a Homogeneous Poisson Process (HPP). According to 
[40] the following formulas apply: 

The cumulative distribution function of the waiting time to the next failure (or "interval" time between 
failures) : 

N(T) = the cumulative number of failures from time 0 to time T 

E[N(T)] =AT = the expected number of failures by time T 
A= the Rate of Occurrence of Failures (ROCOF) 

1 th . ·1 -= e Mean Time Between Fai ures (MfBF) 
J 

(3-3) 

(3-4) 

(3-5) 

(3-6) 

In the HPP model, the probability of having exactly k failures by time T is given by the Poisson distribution 
with mean AT (see equation 3-4). 

Despite the simplicity of this model, it is widely used for repairable equipment and systems throughout 
industry. Justification for this comes, in part, from the shape of the empirical Bathtub Curve. Most systems 
spend most of their "lifetimes" operating in the long flat constant ROCOF portion of the Bathtub Curve. The 
HPP is the only model that applies to that portion of the curve, so it is the most popular model for system 
reliability evaluation and reliability test planning [40] . 

Other Renewal Process (RP) models 
In Ascher and Hansen [37] it is stated that the RP model implies that the system is restored to an "as new" 
condition by each repair. Models used in this situation are conventional analysis techniques. Coetzee [38] 
states that in this situation the data can be reordered in the conventional failure interval histogram. This can 
then be used to fit a standard statistical distribution, after which, optimization of the maintenance strategy for 
the component or system can take place. 

NHPP Power Law model 
The NHPP is a generalization of the HPP that allows for a change in the intensity as a function of system age 
[35] . Or put in another way, HPP is a process with no trend, while the NHPP permits the modeling of trend 
via the intensity functionµ (T); another term used forµ (T) is peril rate or the ROCOF for a nonhomogeneous 

Poisson process. This way the other parts of the bathtub curve can be modeled. 

A well-accepted format of the NHPP model is the 'Power law process' (PLP) [36, 38]. 
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µi(T) = )./JTfl I with /4, /J > 0 , T?:. 0 (3-7) 

When the shape parameter p is equal to l, the power law model reduces to the homogeneous Poisson process 
(HPP) with constant failure intensity equal to I IA. When P> I (P< I) the intensity function is monotonically 
increasing (decreasing) with the operating time T: this corresponds to the situation in which the times between 
successive failures become shorter (longer) with T [ 41]. 

Parameter estimation 
According to (38] the maximum likelihood estimates for the parameters of the Power Law intensity are: 

n 
/J = II T 

Lin-" 
i = I Ti 

(3-8) 

n = Number of observed failures for a system. 
T 11 = Total observed time period 
T; = Time to failure i 

and 

Parameter estimation in case u("mure than one system 

A n 
/4=­

T{J 
II 

(3-9) 

For the superposition system , there is a " failure" each time any one of the j systems fails. Consequently, the 
intensity of failure for the superposition system isj times the intensity for each of the systems (34]. 

/J n ( and i*=~ = "' " T 3-I0) TP (3-11) 

L Lin-" " 
j = I i = I Tii 

),,* = m/4 
T;i = Time to failure i of systems j 
T 11 = Total observed time period 
m = Number of systems that are evaluated 

Number o/fc1ilures 

The expected number of failures is: E[N(T)] = J,,Tfl 
Where T = Time 

Mean Time Between Failures 

(3-12) 

There are two types of mean time between failures (MTBF), the instantaneous MTBF and the cumulative 
MTBF. The MTBF; is equal to one divided by the model intensity as fonnula 3-13 shows. This shows the 
direct connection between the intensity and the MTBF; . The MTBFc is calculated by dividing the time T by 
the expected number of failures at time T, as formulas 3-14 shows: 

I Tl fl 
MTBF(T) = m(T) = -- = -

I I µ\(T) /4fJ 
(3-13) 

(3-14) 

NHPP Exponential Law Model 
The formula for the Exponential law was introduced by Cox and Lewis (42]. Another name for this model is 
' Log-linear model ' . According to Coetzee [38] the fonnula for the intensity function (ROCOF) is: 

(3-15) 
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Where a 0 and a, are the parameter for the exponential law model. This format of the NHPP-model models 

repairable systems well with a 1 > 0 

Using maximum likelihood estimates, the parameters for µ 2 (T) can be found from : 

and 

n = Number of observed failures for a system. 
In= Total observed time period 
T; = Time to failure i 

(3-16) 

(3-17) 

The parameter values are found by solving equation (3-16) for a1 and then substituting this value in equation 

(3-17) to solve for a0 . 

Number of failures 
The expected number of failures in the interval [ a,b] are: 

ao 
E[N(T) ab ] = ~(ea,T• -ea,T. ) 

a, 

Mean Time Between Failures 

(3-18) 

Here the same types of MTBF as with power law, the instantaneous MTBF and the cumulative MTBF. The 
formulas are: 

MTBF(T) = m (T) =_I_= _I_ 
1 1 µ 2 (T) eao+a,T 

T 
MTBFc(T) = mc(T) =--­

E[N(T)] 

T 

Parameter estimation in case of more than one system 

(3-19) 

(3-20) 

Since there were no articles or books found for calculating the parameters when including more than one 
system in the Exponential Law model, this formula has been derived by R. Ion from the TU/e. 

Model: 
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Parameter estimation: 

Ill 
(3-21) 

~)ea,r.j -1) 
/ ; J 

(3-22) 

These parameters are found in a similar way as the parameters for one system. 

3.1.5 Goodness-of-fit test 
Two tests for Goodness-of-fit are discussed . First, the generally applicable Chi-squared test, which can be 
used for the Power Law model and the Exponential Law model. Next, the Cramer-von Mises test is given . 
This test is applicable only to the Power Law model. 

Chi-squared test 

The standard X 2 test can be applied to both NHPP models and has the benefit that the start time of the test 

need not be zero as is the case with Crow 's application of the Cramer von Mises test [36, 38]. The X 2 test is 
applied in the customary way with the expected number of failures in any interval (T,., Tb) given by: 

a., 

E[N(Tt,J = !:._(e a,1;, - ea,1; ) 
al 

According to the book "Applied statistics and probability for engineers" [43] the Chi-Square Goodness-of-fit 
test is calculated in the following manner: 

Oi = observed frequency in the i-th class interval 
Ei = expected frequency in the i-th class interval 
k = number of classes 
p = number of parameters 
Degrees of freedom = k - p - I 

(3-23) 

According to [43] the observed and expected frequencies in a class interval should preferable be at least 3-5. 
Next to that the class intervals don't have to be of equal size, if a class does not contain enough values the 
class can be enlarged. The approximation improves as the number of observations increases. 
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A frequency distribution that uses either too few or too many bins will not be informative. Choosing the 
number of bins approximately equal to the square root of the number of observations often works well in 
practice [43) . 

The hypothesis that the distribution of the population is the hypothesized distribution 1s rejected if the 

calculated value of the test statistic xi > X ~ ,k - p- i . 

Yamada and Osaki [44) mention the following: "We should perform a goodness-of-fit test to check 
statistically whether the applied reliability growth model provides a good fit to the observed data. The well-

known and commonly used test is z 2 goodness-of-fit test. The goodness-of-fit test based on this statistic has 

the following advantage and disadvantage, respectively: 

The tabulated critical values of z 2 are readily available for all sample sizes and significance levels. 

The accuracy of z 2 goodness-of-fit test decreases, as the sample size gets smaller. 

Cramer-von Mises test (for Power Law) 
According to [39) the Cramer-von Mises statistic is given by the following expression: 

C2(n) = Cramer-von Mises statistic 
n = Number of observed failures for a system. 
Ti = Time to failure i 
Tn = Total observed time period 
~ = shape parameter for the power law model 

(3-24) 

This statistic then has to be measured against the correct value from the table given in appendix E. This table 
gives the critical values of the Cramer-von Mises statistic for 10% significance level. If the statistic C2(n) 
exceeds the critical value corresponding to 'n ' in the table, then the hypothesis that the Power law model 
adequately fits the data shall be rejected. Otherwise, the model shall be accepted [39). 

3.1.6 Confidence bounds 
With the formulas for the MTBF c and MTBFi given earlier in this chapter it is possible to plot the lines of the 
MTBFc and MTBFi. It is however also important to know something about the variance of the TBF. With the 
formulas given in this paragraph it is possible to calculate the confidence bounds for the Power law model. 
Unfortunately no formulas were found applicable to the exponential law model. 

The following symbols are used: 
o = partial derivative 
~ = shape parameter for the power law model 
A = scale parameter for the power law model 
me= Cumulative Mean Time Between Failures 
mi = Instantaneous Mean Time Between Failures 
T = Time from start of life 
n = Number of observed failures for a system . 
Var = variance 
Cov = covariance 

Before the confidence bounds can be calculated the variance and covariance of the two parameters need to be 
calculated. This is done using Fisher' s Matrix [45) . 
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Fisher's Matrix: 

8 2A 82A 
- I 

---
a,.f 8).,8/J _ Var(A) 
8 2A 82A 

---
ap2 

r , 
Cov(p,1) 

Cov(P;1)l 
Var(/J) 

8).,8/J A A 

/J =/J ,A=A 

Where the following formulas need to be calculated: 

82A n 
(3-25) 

(3-26) 

(3-27) 

For the calculation of the confidence bounds (CB) of the MTBFc the following fonnulas need to be calculated: 

(3-28) 

Fonnula (3-29) 

Var(m (T)) = (amc (T))2 Var(fi) + (8mc(T))2 Var(1) + 2(amc (T))(omc(T))cav(fi 1) 
c o/J aA ap oA ' 

(3-30) 

(3-31) 

The calculation of the confidence bounds (CB) of the MTBF; is done using the following fonnulas: 

(3-32) 

Fonnula (3-33) 

Var(mJT)) = (ami(T))
2 

Var(fi) +(om,(T) y Var(1) + 2(om,(T))(omJT) 1cov(p,1) 
8/3 0,,1, ) o/J 0,,1, ) 
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ami(T) = __ l_Tl-/3 __ l_TI-/J lnT 

ap 1fJ2 1/J (3-34) 

(3-35) 

3.2 Model choice 
The model choice is made using the general procedure for analyzing failure data of a repairable system as 
described in paragraph 3 .1. 3. This paragraph describes the analysis of data that is necessary in order to make a 
model choice. But before this analysis is described a clear definition of a relevant failure is necessary, this is 
given in the next subparagraph. 

Definition of relevant failures for analysis 
In order to be able to perform an analysis on failure data it is important to have a clear definition on what will 
be noted as a relevant failure . For this it is necessary to first define a failure [13]: 

A definition of a relevant failure used in the IEC 1014 standard [ 46] is: 

I - ,,. ', - • - 1 \. ~ 
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A more specific way of looking at failure is given in [35]. There it is stated that the uncertainty of an engine 
failure or removal is dependent on a number of external and internal factors: 

Component-specific factors ( design, manufacturing) 
Operational factors (pressure, temperature) 
Environmental factors (ambient conditions, temperature, humidity) 
Maintenance factors (servicing frequency, overhaul strategy) 

For this project the above definitions are not giving the essence of a relevant failure. Therefore definitions for 
relevant failures specifically for this project will be described. There will be two definitions since there are 
two data sources used for data analysis. Both data sources require their own definition because of the 
difference characteristics of the sources. 

Description of a failure for service data 
As described in chapter II the Global Data Warehouse database contains call and job information on 
installation activities, corrective and planned maintenance, field change orders, and customer support 
activities. The basic filtering, as PMS performs it, is to use the corrective maintenance calls as a description of 
a failure. 

To clean up these corrective maintenance calls partially some of the inconsistencies are filtered out: 
Filtering out the calls before the start use date 
Filtering out calls without jobs, and jobs without calls 

In the remainder of this report this data will be called the unfiltered data since, next to corrective maintenance 
calls, it still contains incorrectly placed: 

Planned maintenance calls 
Installation activities 
Customer support activities 
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Field Change Orders 

Description of a relevant failure.for service data 
When the data in the Global Data Warehouse database is given a closer look calls that are no corrective 
maintenance calls can be deleted from the list manually , leaving only corrective maintenance calls. This will 
be called the filtered data and was done in the following manner: 

Filter out the Field Change Orders 
Manually filter out all planned maintenance calls, installation activities and site visits incorrectly booked 
as corrective maintenance. 
Filter out the calls before the start use date 
Filter out calls without jobs, and jobs without calls 

Selection criterion used/or the moment offctilure 
Since there is an open and a close date of a call a choice has to be made between them for establishing the 
failure moment. The influence of choosing one or the other is shown in appendix D. Since the open date is 
closer to the moment of failure this will be used as the failure moment. 

Description of a relevantfizilure.for FMT data 
In consultation with persons involved in reliability analysis and the field monitoring team at PMS the 
customer is taken as the center point for defining a relevant failure. The definition of a relevant failure that 
will be used for data from the FMT database is: 

IRetevant failures are all fa ilures that a customer can be confronted with. 

In this definition reduction of perfonnance of a certain function will not be taken into account while it cannot 
be retrieved from the available data. The criterion for detennination of failures that a customer can be 
confronted with is based on 'the judgment of development engineers ' . 

Now that the definition of a relevant failure is established a dataset is chosen to detennine the kind of model 
fits the failure pattern of the systems under consideration the best. As said, this is done using the general 
procedure for analyzing failure data of a repairable system. 

Validation of data 
Data sources 
Both types of data sources discussed in chapter II are used, service data and FMT data. The FMT data is 
available late in the project and is only considering a limited time period, since the FMT-project started only 
recently. Therefore, in order to analyze data of a larger amount of systems over a longer period, service data is 
used as the primary data source. 

System choice 
Since there are different system families developed at the Cardio I Vascular X-ray department, the first step is 
to define which system family to analyze. In table 4 the four general product areas are presented. In the rows a 
difference is made between cardio and vascular systems, this has mostly to do with the diameter of the x-ray 
detector of the system ; the cardio x-ray system has a smaller detector. The columns monoplane and biplane 
differentiate between a system with a single stand (one x-ray detector) and a system with a double stand (two 
x-ray detectors). 

Table 4 s stems 

Cardio X-ra 

Vascular X-ra 
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The systems that will be considered are the Cardio monoplane systems as shown by the dot in table 4. The 
reason for looking at the cardio monoplane systems is that the field monitoring project was started for 
collecting field data for the latest generation of this type of systems. 

Understanding the nature of the data 
The visual examination of the data of multiple systems gives an impression of the different failure patterns 
that these systems show. The Laplace trend test is performed both on individual systems as on a group of 
systems as a whole and gives a numeric value to the failure pattern indication significant trend or not. As said 
earlier, all analyzed systems are cardio monoplane, still under warranty or CSA, and younger than three years. 

Time lines 
Three kinds of timelines are used in this report: calendar time, operating time, and online time. It is important 
to give the descriptions of these timelines in order to be clear on what is meant by these terms. 

Calendar time 
Figure 10 shows the installation of systems in the field and the failure history subsequent to the installation 
moment. It shows that system number one, for example, has three failures in the observation period. The part 
of time that these systems have actually been online cannot be seen; it is just the calendar days that the system 
is in the field after installation. The call rate I (MAT) analysis discussed in chapter II uses this timeline. 

System no . 

)( )( 

2 

1 1-I ---;><---->lf-<---x--
Calendar time End of ♦ 

observation ::_____J 
period 

Operational time 

X failure moment 

► Figure 10 Calender time 

In figure 11 the same pattern of system history is illustrated, but now in terms of the operational time T. This 
way a comparison of the systems can be made all having the same age, e.g. all being in their first month after 
installation. 

System no. 

3 1-I --....,>If-<----->*<--
2 X failure moment 

I 1-I ---)(-----~)('----~)('---

Operational time Figure 11 Operational time 

Online time 
The online time only takes into account the time the system has been switched on. This is of course more 
accurate than operational time. There is no assurance that the online time equals the exact productive time 
(time when medical procedures are performed), but it is the closest approximation that can be made right now. 

System no. 

3 I 1 )( I )( I 1 1 
X failure moment 

2 I )( I )(I I online time 
I , , )( I )( I 1)( 

Online time 
Figure 12 Online time 

Service data 
Location of the systems 
The data from systems in the United States market is used for the analysis for a couple of reasons: 

It is the biggest market for PMS 
The data can be compared to each other since it comes out of the same database 
Philips uses this data in the analyses that it makes right now 
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Number of'systems 
For the visual examination and the trend test twenty systems are used. This way the effects of having more 
than one system for an analysis can be taken into account without the data becoming unmanageable. These 
twenty systems have all been in use for at least I 000 days. Given that criterion the twenty systems are chosen 
randomly. 

Next, these twenty systems are divided into two groups of ten systems: systems 1-10 and systems 11-20. This 
division is based on the installation date, meaning that systems 1-10 were installed earlier than systems 11-20. 
In this paragraph the following notation will be used for the datasets in this analysis: 

Data from system 1-20: dataset 2 
Data from system 1-10: dataset 2A 
Data from system I I -20: dataset 2B 

Furthermore the analysis is also split into unfiltered data and filtered data . This is done to examine how big 
the influence is of the data pollution of the unfiltered data . Appendix H shows the differences in the recorded 
number of failures for filtered and unfiltered data of the 20 systems. From that overview it becomes clear that 
there are quite large differences between filtered and unfiltered failure data for some systems; on average the 
number of failures from filtered data is about 30% lower than the number of failures from unfiltered data in 
this dataset . 

Unit of measurement 
The unit of measurement is in days. This is due to the fact that the data stored on failures in the field is not 
recorded in greater detail. 

Operational time 
The problem with the data at hand is that it is not possible to detennine the time a system has been online until 
a failure occurs or the online time between failures . The service engineer cannot record this online time . 
Therefore operating time is used in calculations with service data. 

Field Monitoring Team data 
location o(the systems 
The data comes from systems that are located all over the world. All systems are of the same version. 

Number of'systems 
At the moment there is a reasonable number of systems being monitored by the Field Monitoring Team . A 
selection of eight systems is made based on the following considerations. 

Some of the systems were used as prototypes. These were excluded since they can be seen as an extension 
of the test phase, not as nonnal customer use (see Roos [ 14 ]). 
The time the systems were in the market differs . Chosen are systems with at least 1000 hours of on line 
time. 
Service data needed to be available of these systems in order to be able to analyze the differences between 
the results from the FMT data and the service data from these systems. 

Online time 
The online time is recorded in the database, which makes detailed detennination of the online time possible 

Visual examination of data 
For the visual examination of the data the plotting of cumulative failures versus cumulative time on linear 
paper is used. For the service data the graphs of all the used systems' failure patterns are given in appendix I. 
Two graphs of dataset 2A are presented in this paragraph to illustrate the failure patterns, figure 13 and 14; 
where figure 13 shows the unfiltered data and figure 14 the filtered data . 

As can be seen in these plots the line tends to be concave down in almost all instances; only system 7 clearly 
shows a greater amount of failures than the other systems. This means that the interarrival times (time 
between failures) of the products tend to become larger. The conclusion from this visual examination of data 
is that it is plausible to assume that there is a trend. 
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Another observation that can be made is that there is a quite large spread in the failure pattern that the 
different systems show. This spread makes it more difficult to have the data be represented by one line of a 
model. 
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Figure 13 Failure pattern of dataset 2A, unfil. data 

Evidence of trend with Laplace test 
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Figure 14 Failure pattern of dataset 2A, fil. data 

Both individual Laplace tests and combined Laplace tests are performed. The Laplace tests of individual 
systems are performed in order to determine whether the individual systems show a significant trend. The 
combined Laplace test of 10 and 20 systems are in order to establish whether there is a significant trend when 
the data of all these systems is combined. This trend analysis forms an important step in the "General 
procedure for analyzing failure data of a repairable system", since the result of this step determines whether to 
use NHPP models or whether further research is necessary when the use ofNHPP models is rejected. 

Significance level 
At a two-sided significance level of 90%, the null hypothesis of HPP should be rejected if the test statistic z is: 

z ::; -1. 64 or z 2:: 1. 64 

Service data results 
The individual Laplace tests: 
The results of the individual Laplace tests vary to large extend. In table 5 are the results of the three out of the 
twenty systems that an individual Laplace test was performed on . The total list can be found in appendix F . 

The combined Laplace test: 
The results of the combined Laplace test show a very significant trend for the twenty systems that are included 
in the test. However, if only ten systems are included in the test very different results appear, see table 6 for 
the unfiltered data and table 7 for the filtered data. The fact that dataset 2A shows no significant trend is 
probably caused by system 7 which shows a much higher number of failures and therefore a different failure 
pattern. 
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T bl 7 C b. d L 1 a e om tne apace I tere fil d d ata 
Filtered data Le z Significant trend 
Combined Laplace 20 systems -8.497 -1 .64 Yes 
Combined Laplace 10 systems (A) -4 .142 -1 .64 Yes 
Combined Laplace 10 systems (B) -7 .758 -1 .64 Yes 

FMT data results compared to service data 
In this comparison between FMT data and service data there is a problem of comparing two different time 
scales, the operating time and the online time. Using the dates on which relevant failures took place according 
to the FMT data a time period is set for operating time of the service data. Appendix G shows a graph in 
which the operating time is plotted against the online time. It shows that there is a linear relation between 
these two timelines. For 1000 hours of on line time there is an average of 150 days of operating time. 

Although there is a relation between operational time and the on line time, there are differences found between 
the failure moments and the number of failures registered by the two data sources. For instance, the FMT data 
indicating no failures in a certain month for a system, while the service data indicates four failures in that 
same month for that same system . It is not the case that FMT data structurally registers more (or less) failures 
than the service data; this is different from system to system . 

The individual Laplace tests: 
The results of the individual Laplace tests for FMT data show no significant trend in all but one case. The time 
period that is observed is much shorter than the time period observed for the 20 systems in the calculations 
made earlier in this paragraph ( 1000 hours, equal to 150 days, versus 1000 days of data) . This might explain 
why no trend is found. The service data of these systems leads to the same conclusion , no trend within these 
first I 50 days . 

T bl 8 R a e esu ts 111 1 vt ua apace test, d .. d IL 1 FMTd ata an dS erv1ce d ata 
System FMT data z SiQnificant trend Service data z Significant trend 

1 -0.638 -1 .64 No -1 .185 -1 .64 No 
2 0.102 -1 .64 No -0.619 -1 .64 No 
3 -2.389 -1 .64 Yes -1.431 -1 .64 No 
4 -0.985 -1.64 No -1.214 -1 .64 No 
5 -0.144 -1 .64 No 0.968 -1 .64 No 
6 -0.951 -1 .64 No 1.170 -1 .64 No 
7 1.630 -1 .64 No -1.012 -1 .64 No 
8 -0.200 -1 .64 No -0.585 -1.64 No 

The results of the combined Laplace test for these eight systems are given in table 9. This table shows the 
same conclusion as for the individual Laplace test: no trend in the first 1000 hours (150 days). 

T bl 9 R a e esu ts com me apace test, b' d L 1 FMTd ata an dS erv1ce d ata 
FMT data Le z Significant trend 
Combined Laplace 8 systems -1.100 -1 .64 No I 
Service data .. Le z Significant trend 
Combined Laolace 8 systems -1 .320 -1 .64 No I 

3.3 Evaluation of model choice 
The Laplace test shows that individual systems all have their own degree of trend, some being significant 
trend and some not. However, the combined Laplace for IO and 20 systems give significant trend in all but 
one case. Therefore, given the visual examination of the data and the Laplace tests performed on the data, the 
models that should be used to analyze the failure data are the Nonhomogeneous Poisson Process models. The 
two most used and best described models in literature are the Power law and Exponential law model. The 
choice is made to investigate the prediction perfonnance of these two models since first a good understanding 
of more popular models should be obtained before the more exotic models are studied, as mentioned in 
chapter II . 
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The FMT data for 1000 hours and the service data over the same period of time did not show any trend. It is 
still possible to use NHPP models in this situation since the formula changes into an HPP formula when ~ = 1, 
as explained by Ascher and Feingold [25] . The graduation project by Roos [14] shows this as well . 

As a starting point in this analysis of NHPP-models individual systems will be used for fitting a Power law 
and an Exponential law model. This is done to get an idea of how the model reacts to the data. After that both 
Power law and exponential law models for more than one system will be fitted to the data. 

Causes of trend 
Since trend is indicated, the question raises what causes this trend. There are several processes that influence 
the system reliability, which can cause the reliability improvement. First of all the replacement of a bad part, 
or a part that is outside specification. The term 'outside specification' is used to include parts that have not 
broken down, but that do not function correctly. The cause of these kinds of parts to be replaced can be 
multiple. Wrong specification, wrong design, fault during production, damage during shipping, etc. An extra 
effect of the replacement of those kinds of parts to the reliability improvement is that the parts are normally 
replaced with the newest version of the part, which is not necessarily the same version as was in the original 
system. 

The second cause of the reliability improvement is the implementation of an FCO. This is similar to the 
replacement of parts that are bad, or out specification, with the difference that an FCO is coordinated by PMS, 
meaning that the change might be to parts that have not failed at that moment. The second difference is that 
with an FCO the change applies to all systems, not to a single system. 

User 
A different perspective on reliability improvement which can play a role in the perception of reliability 
improvement is habituation by the customer. This only plays a role in case service data is used as an input for 
failure data. With habituation is meant the effect of 'knowing the system better as time goes by' on placing a 
call by the user. This can be compared to having a new car. In the beginning each little strange sound the car 
makes can raise an alarm bell, leading to a call at the service department. Once the owner of the car has the car 
for a longer period of time, he will be more familiar with it and won't be as anxious to call service. This effect 
on the calls that come in is not a proven fact; the information comes from someone within the PMS service 
organization. However, this effect does sound plausible and needs further research to really determine the 
effect on calls that come in . 

The initial reliability level can also change through time. The first system sold of a totally new version will 
likely have a lower reliability level than a system that comes on the market long after the first introduction of 
the new version to the market. Both in development and in production initial problems will exist with a new 
version. A second form of influence on the initial reliability level are the tests performed after assembly at 
production. The period that these tests are performed will influence the initial reliability level for the 
customer. 

Copyright © 2004 Philips Medical Systems Nederland BV. 

All rights reserved 39 e PHILIPS 



Tu/ e techn isc l1e universiteit eindhoven 

Chapter IV Analysis of field data 

Bm.:kgroun d of the 
project 

C um:nt data 
co ll c...: tion 

Mod i.: I in vcsti ga tion 

Proposed d.1\a input 

Prtlj cct dr..: scriplio n 

Current field data 
analys is 

Pmposi.:d failun: 
modeling 

V Not everyth ing that can be coun ted coun ts, and not 
everyth ing that coun ts can be coun ted . 

( A lbert Eillstcill) 

Now that the choice for the models applicable in the situation of the cardio monoplane systems at PMS is 
clear the actual analyses can be performed. First the data input is discussed (step 10), followed by an analysis 
of the data in the proposed models (step 11). After that the model perfonnance is evaluated (step 12). 

4. 1 Proposed data input 
The kind of call data used for the calculations in this chapter is in line with the description of a failure 
(unfiltered data) and the description of a relevant failure (filtered data) given in chapter Ill. The FMT data is 
in line with the description of a relevant failure in case of FMT data. The moment the warranty starts is used 
as the starting point for the collection of failure data for the field data analyses. Furthennore, there is no 
grouping of failures ; all failures are treated individually, which gives a more accurate reflection of reality 

Calculation of failure moments 
For the service data the failure moments are approximated by the difference between the warranty start date 
and the call start date . This number gives the time to failure in days. Table 10 gives an example of the data 
necessary for the calculations . The failure moments of the FMT data is obtained differently . The systems at 
the hospital are able to provide the system on line time enabling accurate detennination of the failure moments. 
The failure moments are given in system online hours. 

T bl 10 E a e xamp e o ff ·1 at ure d ata 
Warranty start date Call ooen date Time to failure cum no of failures 

2001-03-30 2001-04-02 3 1 
2001-03-30 2001-04-17 18 2 

Visualization of the period that can be analyzed with the available data 
As mentioned in chapter II the available data only contains complete infonnation about the failures in the first 
three years a system is in use . This means only part of the bathtub curve can be visualized with the available 
data. In order to get a better understanding of the phases in the bathtub curve some background information is 
now presented. 

There are two types of bathtub curves [25], one for parts (non repairable systems) and one for repairable 
systems. As stated before , this project will only discuss system reliability. This leads to a bathtub curve where 
the rate of occurrence of failure (ROCOF) is plotted against cumulative operating time. For further discussion 
on the difference between the two bathtub curves I refer to [25]. The bathtub curve (figure 15) provides 
insight into the nature of the three classes of failure mechanisms: early failures (A), random failures (B), and 
aging (C). The models discussed in this report are related to the first two classes, aging is not included since 
there is no reliable data available to examine the behavior in aging class. 
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To get more insight in the behavior of the power law and exponential law model, the models are created on 
the basis of data containing 365 days, 730 days, and 1000 days of operating time. For all three groups of data 
the model is calculated for 900 days of operating time. This means that the model based on 365 days and the 
one based on 730 days make a prediction of the number of failures until 900 days through extrapolation. The 
model based on 1000 days of data does not predict, it serves as a comparison of the line that the model would 
draw if it had all the necessary information. 

The goodness-of-fit test that is used for the models based on 365 and 730 days of data fits these models to the 
individual failures of the 900 days period. This means that it is used as a sort of goodness-of-prediction-fit, 
since the model uses data from 365 days (and 730 days) to fit a 900 days period. The models based on 1000 
days of data are also fit to the individual failures of the 900 days period, which is a normal fitting of data. 

Assumptions for the data 
The fact that the data is used for modeling the real life situation means that a simplification of reality is used. 
In the next overview the most important assumptions are presented. 

General assumptions 
Systems under consideration are representative for the cardio monoplane system population (see [34]). 
The repair on the products can be seen as minimal repair (see chapter II). 
The features to the system stay the same, none are removed, and none are added. 
Quality of data: the necessary data for analyses is complete, consistent, timely and accurate. 
Problems with the data quality were discussed in chapter II. 
The failure is solved at the moment the corrective maintenance job is executed (no need to come back for 
it a second time, 'No Trouble Found repair'). 
Repair time is not taken into account. Ascher and Feingold formulate this in the following manner in [25]: 
"We will also devote little attention to repair times, assuming in most cases that repair is either completed 
instantaneously or is measured on a different time scale than system operating time." 
Products in population are assumed to be identical, this means that the same sort of failures can occur on 
all products under consideration. 
This is achieved partly by keeping a dataset restricted to only cardio monoplane systems and looking at 
the same system version within the cardio monoplane systems. There will however still be small 
differences given the customization possibilities the customer has described in chapter II. More about the 
tradeoffs between completeness and consistency of data can be found in Ballou and Pazer [21]. 

Specific assumptions for the data from the service data 
Usage of the customer is constant in time and the usage is constant among the users (see [8]). 
It is known that this assumption is not true. The usage depends on the hospital, the kind of system ( cardio, 
vascular, or cardio/vascular), and the procedure that is performed by the doctor. Service data however is 
not able to record the online time as explained in chapter III . 
The moment a call takes place is equal to the moment the failure has taken place (there is no reporting 
delay). 
In chapter II it was explained that there can be such a reporting delay. However, those kinds of delays are 
usually restricted to a couple of days maximum. 
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At moments that there are no calls, there are no failures . 
This is also debatable since not certain that every time something happens that falls under the definition of 
a relevant failure a call is placed. 

Specific assumptions.for the datafi-·um the FMT database 
When there is no log made, there is no failure. 
If there is more than one failure in a day the other failures that day are the result of that first failure and 
therefore do not need to be taken into account. 

4.2 Proposed failure modeling 
4.2.1 Data analyses using the proposed models 
As concluded from last chapter NHPP models will be used; specifically the power law and the exponential 
law model. Both the service data and the FMT data are used in the failure modeling. The data sets that are 
used are equal for both model types . The analyses that are perfonned can be divided in the following manner: 
I. Analysis of service data of a single system 

This analysis investigates whether the power law model and the exponential law model are able to fit the 
failure pattern of the data that is used in this project. For this analysis unfiltered data is used, this has no 
influence on the question of whether the power law and exponential law are able to fit the failure pattern 
since chapter III showed that for both the unfiltered and filtered data NHPP models should be used. 

2. Analysis of service data of multiple systems 
This analysis investigates the influence of using data of multiple systems for modeling the failure pattern. 
The analysis uses both unfiltered and filtered data to investigate the influence of filtering on the calculated 
model values . 

3. FMT data versus service data 
This analysis shows the differences between us111g FMT data and using service data when trying to 
establish the failure pattern of a system . 

4.2.2 Analysis one: Service data of a single system 
This analysis uses the data from one system; appendix J shows the failure data that is used for the calculation 
of the model parameters. The system is one of the 20 systems that are used in analysis two, that is, system 15 . 
This is a system that shows significant trend, but there are no special characteristics why this system is chosen 
for the analysis of the single system, the other systems would qualify just as well. First is the analysis made 
with the power law model , after that the analysis with the exponential law model. 

Power law 
As explained in chapter III, the fonnulas to estimate the model parameters based on maximum likelihood 
estimates are: 

and 

These parameter estimates are calculated based on 365, 730, and I 000 days of failure data leading to the 
parameters values given in table 11. 

Table 11 parameters i and jJ, formulas for E[N(T)] and µ1 (T) 

A, /J 
365 days 0.112 0.887 

730 days 0.339 0.664 

1000 days 0.423 0.622 
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E[N(t)] µ, (T) 

E[N(T)] = 0.1118T 0 887 µ, (T) = 0.0992T -0 113 

E[N(T)] = 0.3393T0 664 µ, (T) = 0.2252T -0336 

E[N(T)] = 0.4233T 0 622 µ,(T) = 0.2631T -0378 
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With these parameters the expected number of failures E[N(T)] are calculated, see table 10. There is a clear 
'pattern' visible in the values of these equations. The constants in the formula are increasing and the values of 
the power are decreasing. The decreasing value of /j indicates an increasing trend since when jj = 1 the model 

becomes a Homogeneous Poisson Process. When the expected number of failures E[N(T)] are plotted, as 
shown in figure 16, it is clear that based on the smallest amount of data (365 days) the model reflects the 
actual data the least accurate. This indicates that for this dataset, prediction of the failure pattern for 900 days 
based on 365 days of data is not accurate. For the models based on 730 and 1000 days of data the middle part 
of the graph shows a slight deviation from the actual data. 
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Figure 16 Expected number of failures power law model 

Model goodness-of-fit: Chi-squared test and Cramer-von Mises 

The actual number of failures after 900 
days is 30; E[N(900)] based on 365 days is 
47 ; E[N(900)] based on 730 days is 31 ; 
E[N(900)] based on 1000 days is 29 . This 
shows how close to the actual number of 
failures the model is based on both 730 and 
1000 days of data. 

As explained in chapter III the Chi-squared test works by dividing the observed and expected number of 
failures into classes. At a 95% level of significance, with five classes, and two parameters in the model , the 
test statistic is 5 .99. The number of classes is determined using the rules for given in paragraph 3 .1 .5. The test 
statistic for the Cramer-van Mises test is taken from table 25 in appendix E. Both tests test the models against 
a 900 days period, as explained in 4.1 (prediction window). Table 12 gives the results. 

Conclusion from Chi-squared goodness-of-fit 
The model based on 365 days of data is rejected. This means that this model cannot give a good 
representation of the failure behavior and is not able to predict the near future . 
The model based on 730 days of data is accepted. This means that this model gives a good representation 
of the failure behavior and is able to predict the near future. 
The model based on 1000 days of data is accepted. This means that this model gives a good representation 
of the failure behavior. 

Conclusion from Cramer-van Mises 
This test does not work with classes, like the Chi-squared test. This takes away the problem of having to 
choose classes of time periods. 
The difference with the Chi-squared test is that the Cramer-van Mises test rejects all models! The values 
of the models based on 730 days and 1000 days of data are however very close to being accepted. But the 
difference in result between the two tests is striking. The reason for not accepting the model might be 
explained by the deviation of the models from the data points in the middle part of figure 16. 
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Bathtub curves 

The intensity function µ
1 
(T) is also calculated using the estimated parameter values A and /J, the fonnulas are 

shown in table 11 . Since fJ is smaller than I in all three cases the rate of occurrence of failure is decreasing in 

each case. Figure 17 shows the plots of the ROCOF against the cumulative operating time. With these plots it 
is possible to visualize when the system comes into the ' steady state ' phase, indicated as phase 8 in figure 15 
where the bathtub curve was explained. The three lines are all still decreasing at the end of the graph which 
means they have not reached their steady state, although the lines are leveling out indicating that they are 
close to reaching the steady state. 
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1

-+-- 365 days 
TT - 730days 
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cum operating time [days] 

Figure 17 Bathtub curves power law model 

MTFBc 

1000 days 

1000 

The graph clearly shows the difference 
between the line based on 365 days 
compared to the lines based on 730 
and I 000 days of data . 

Based on the Fisher Matrix the variance and covariance of A and ~ are calculated. These are used to calculate 
the upper and lower 90% confidence bounds of the MTBFc. The figures below show the measured MTBFc 
and the MTBFc calculated by the model based on an increasing amount of failure data with its confidence 
bounds. These three graphs clearly visualize the adaptation of the calculated MTBFc to the extra data it is 
given. The confidence bounds are quite wide indicating that the necessary precaution needs to be taken when 
drawing conclusions based on the actual MTBFc values in the figures . 
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Figure 18 MTBFc based on 365 days of data 
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Figure 19 MTBF c based on 730 days of data 

In figure 18 the MTBFc starts at a value 
around IO days, with a confidence interval 
of O < MTBF c < 31, and ends up at a 
value a little less than 20 days, with a 
confidence interval of 14 < MTBFc < 23. 

In figure 19 the MTBF c starts at a value 
around 5 days, with a confidence interval 
of O < MTBFc < 13, and ends up at a 
value a little less than 30 days, with a 
confidence interval of 21 < MTBFc < 38 . 
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In figure 20 the MTBFc starts at a value 
around 4 days, with a confidence inteival 
of 0 < MTBFc < 10, and ends up at a value 
around 31 days, with a confidence inteival 
of22 < MTBFc < 41. 

Concluding from this power law analysis of one system it can be said that, looking at the graph where the 
cumulative operating time is set against the cumulative number of failures, the models based on 730 days and 
1000 days of data are able to represent the real data quite good. The two goodness-of-fit tests show a very 
different outcome, which could be explained by the deviation in the middle part of the graph in figure 16. The 
graphs of the cumulative mean time between failure show that the value of this statistic should be dealt with 
care since the confidence bounds are quite wide. So far the analysis based on the power law formulas . The 
next paragraph will use the same dataset for calculations based on the exponential law formulas. 

Exponential law 
The formulas to estimate the model parameters based on maximum likelihood estimates are: 

~ 1 { na, } ao = n , r 
eal n -1 

and 

Like with the power law calculations, these parameter estimates are calculated based on 365, 730, and 1000 
days of failure data leading to the parameters values given in table 13. The parameters of this model are 
calculated using a mathematical program called Matlab. The interesting conclusion that can be drawn when 
obseiving the parameter values is that the values of 1000 days of data are in between the values of 365 days of 
data and 730 days of data. This is different from the power law model. 

Table 13 Parameters a 0 and a 1 , formulas for E[N(T)] and µ2 (T) 

E[N(T)] 

-2.6506 -0.0011 
- 2.6506 

E [N(T)] = e (e -0.oonr. -e-0.0011r. ) 
2 -0.0011 

p
2 
(T) = e -2.6506-0.0011r 

-2.4720 -0.0025 
-2.4720 

E [N(T)] = e (e-0.0025r. -e-0.0025r. ) 
2 -0.0025 

P2 (T) = e -2.4720--0.002sr 

-2.5617 -0.0021 
-2.5617 

E [N(T)] = e (e-0.0021r. -e-0.0021r. ) 
2 -0.0021 

Figure 21 shows the expected number of failures E[N(T)] which are calculated using the Exponential law 
formula for a single system. Here it is visible what is stated above: the line based on 1000 days of data is in 
between the line of 365 days of data and 730 days of data, although these two lines are almost the same line. 
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Figure 21 number of failures exponential law model 

Model guudness-o_ffit: Chi-squared test 

The actual number of failures after 900 
days is 30; E[N(900)] based on 365 days 
is 40; E[N(900)] based on 730 days is 30; 
E[N(900)] based on I 000 days is 31 . This 
is similar to the power law model , only 
the expected value based on 365 days is 
closer to the actual value compared to the 
power law model. 

The chi-squared test tests the models against a 900 days period, as explained in 4 .1 (prediction window). 
Unfortunately it is only possible to perfonn a Chi-squared test on the exponential law models since the 
Crarner-von Mises test is only built for the power law models. At a 95% level of significance, with five 
classes, and two parameters in the model, the test statistic is 5.99. The results are presented in table 14. 
T bl 14 It d f fit t t a e resu s goo ness-o - 1 es 

System Days %2 Test statistic Result 
15 365 4.70 5.99 Accept 
15 730 0.83 5.99 Accept 
15 1000 1.81 5.99 Accept 

Conclusion from Chi-squared goodness-of-fit 
The models based on 365, 730, and l000 days of data are accepted. This means that the exponential law 
model gives a good representation of the failure behavior and is able to predict the near future. 

Interesting detail is that the value of x2 is the lowest for the model that is based on 730 days of data, 

instead of the model based on I 000 days of data. This means the best fit to the data points by the model 
based on 730 days of data. 

Bathtub curves 

The model intensity µ2 (T) is also calculated using the estimated parameter values a 0 and a 1 , the fonnula 

values are shown in table 13. Sincea1 is smaller than 0 in all three cases the rate of occurrence of failure is 

decreasing in each case. Figure 22 shows the plots of the ROCOF against the cumulative operating time. With 
these plots it is possible to visualize when the system comes into the ' steady state ' phase, indicated as phase B 
in figure 15 where the bathtub curve was explained . The three lines are all still decreasing at the end of the 
graph which means they have not reached their steady state, although the lines are leveling out indicating that 
they are close to reaching the steady state. 
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final values. 

Figure 22 Bathtub curves exponential law model 
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MTBFc 
Unfortunately there are no formulas found in literature to calculate the confidence bounds for the exponential 
law model, therefore only the MTBFc calculated by the model based on 365, 730, and 1000 days of data is 
given set out against the measured MTBFc values. Interesting in these graphs compared to the graphs of the 
MTBFc based on the power law model is the beginning of the modeled line. Where the MTBFc based on the 
power law model showed a curve in the beginning of the line, the MTBF c based on exponential law is an 
almost straight line. The power law model gives a better fit to the measured MTBF in the beginning of the 
graphs. 
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Figure 23 MTBFc based on 365 days of data 
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Figure 24 MTBFc based on 730 days of data 
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Figure 25 MTBFc based on 1000 days of data 

In figure 23 the MTBFc starts at a value 
around 14 days and ends up at a value 
around 23 days. 

In figure 24 the MTBFc starts at a value 
around 12 days and ends up at a value a 
little less than 30 days. 

In figure 25 the MTBFc starts at a value 
around 14 days and ends up at a value 
around 29 days. 

Concluding from this Exponential law analysis for one system is that the fit of the model to the data points 
seems to be good, as well as the predictive value based on 730 days of data, and even the predictive value 
based on 365 days of data according to the Chi-squared goodness-of-fit test. Visual examination shows 
however that this model starts to deviate from the data points after about 450 days. For the MTBFc the model 
fits the measured MTBFc very well except for the first part. 

Overall conclusions of analysis one 
The fit to this dataset is accepted using the Chi-squared goodness-of-fit test in all but one case, 365 days of 
data in the power law model. The Cramer-von Mises goodness-of-fit rejects the power law model in all cases, 
for which an explanation could be found in the visual examination of the data. Visual examination shows that 
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especially the middle part of the fitted power law model deviates from the actual data leading to the rejection 
by the Cramer-von Mises test. 

For the exponential law model the fit to this dataset is accepted for the model based on 365, 730 and I 000 
days of data using the Chi-squared goodness-of-fit test. Visual examination shows however that the model 
based on 365 days does deviate from the data points after about 450 days . The main difference between Power 
law and Exponential law when the MTBFc is concerned is the beginning of this MTBFc for Exponential law. 
This first part does not follow the data points like the Power law model does. On the other side, the MTBFc for 
Power law does not fit the data points as well as Exponential law in the middle part. It seems that both models 
focus on a different part. The next step is to see whether the fonnula also works when more than one system is 
included. 

4.2.3 Analysis two: Service data from multiple systems 
The same twenty systems are used for this analysis as the ones used in paragraph 3.2, where the service data 
for trend analysis is discussed. These twenty systems have all been in use for at least 1000 days. The same 
notation for the datasets in this analysis will be used 

Data from system 1-20: dataset 2 
Data from system 1-10: dataset 2A 
Data from system I 1-20: dataset 2B 

Furthennore the analysis is also split into unfiltered data and filtered data to examine how big the influence is 
of the data pollution of the unfiltered data. 

Power law 
The combined systems fonnula is used (given in paragraph 3.1.4) for the parameter estimation of the power 
law model. The formulas are calculated using 365 days, 730 days and I 000 days of data. Tables 15 and 16 

give the values of the estimated model parameters i and,B calculated for each of the cases. 

Table 15 Parameter values 
Data Dataset 2A Dataset 2B -

Unfiltered Filtered Unfiltered Filtered ;_, 

A, /3 A, /3 A, /3 A, /3 
365 days 0.0088 1.2840 0.0089 1.2071 0.0783 0.9632 0.0437 0.9961 
730 days 0.0387 1.0048 0.0268 1.0019 0.2189 0.7617 0.1318 0.7817 
1000 days 0.0763 0.8864 0.0537 0.8798 0.3167 0.6931 0.1801 0.7242 

A conclusion from these model parameters is that the /4 values are increasing when the number of days 

included in estimating the parameters increases. For the jJ values this is the other way around, their values 

decrease when the number of days included in estimating the parameters increases. If jJ < I this means that 

the times between failures become longer (increasing reliability); if this /3 value gets closer to zero there is 

more trend in the model , which is the case when the number of days included goes from 365 to I 000 days. 
Another conclusion can be drawn when the jJ values from dataset 2A are compared to the jJ values from 

dataset 2B is that for dataset 2A, based on 365 and 730 days of data, jJ 2: I while for dataset 2B /3 :S I in all 

cases. This means that these jJ values for dataset 2A indicate an increasing rate of occurrence of failure. In 

other words, the reliability is not increasing but decreasing. 

Table 16 Parameter values 
Data Dataset 2 

Unfiltered Filtered 

A, /3 A, /3 
365 days 0.0347 1.0780 0.0236 1.0737 
730 days 0.1083 0.8589 0.0685 0.8706 
1000 davs 0.1737 0.7737 0.1076 0.7893 
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In comparison with the parameter values based on dataset 2A and 2B the overall parameter values ( of dataset 

2) are in between the values of datasets 2A and 2B, as would be expected. The ,i value based on dataset 2 is 

larger than the i value based on dataset 2A and smaller than the i value based on dataset 2B . A similar 
conclusion can be drawn for /j . 

A comparison of the unfiltered values and the filtered values of 2 and /3 shows that the influence of the data 
pollution on the pattern of the models is not large. This means that the pollution in the unfiltered data does not 
lead to a model going from decreasing reliability over time based on unfiltered data to increasing reliability 
based on filtered data, or the other way around. The differences in parameter values will however lead to 
different values of the intensity function, expected number of failures and the MTBF. 

Using the parameter values from table 15 and 16 the intensity function, the expected number of failures at a 
certain point of time, and the MTBFc can be obtained. In order to draw conclusions on the models it is not 
necessary to show all graphs of all models, therefore the graphs of dataset 2A are presented to explain the 
effects that take place. The choice for presenting the graphs of dataset 2A is based on two considerations. 
First, graphs from dataset 2 become more or less unreadable because of the many data points. Second, the 
failure patterns of the systems in dataset 2A is more divers then that of the systems in dataset 2B, which 
makes the complications of having more than one system in the data analysis more clear. Appendix K gives 
the intensity functions and the function for calculation of the expected number of failures for dataset 2, 2A, 
and 2B. 

Expected number of failures 
In figures 26 and 27 the cumulative numbers of failures against the cumulative operating time for unfiltered 
and filtered data of dataset 2A are given. The figures show the actual data points and the values calculated by 
the models based on 365, 730, and 1000 days of data from these ten systems. Clearly visible is the fact that the 
lines of the models based on filtered data are lower than the lines of the models based on unfiltered data. Also 
clearly visible is the large spread of the actual data points around the modeled lines. The other graphs of the 
cumulative number of failures against the cumulative operating time are given in Appendix L. In these other 
graphs the most distinct difference compared to the graphs given below is that the line based on 365 days of 
data is more in line with the lines based on 730 and 1000 days of data. This is due to the fact that the data of 
dataset 2B shows less spread. 
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Figure 26 Power law unfiltered data 
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Figure 27 Power law filtered data 

Conclusions on the expected number of failures of dataset 2A: 
Using 365 days of data gives a graph with a slight curve upwards, implying that the reliability is 
deteriorating with time. 
Using 730 days of data gives a graph with a slight curve downwards, implying that the reliability is 
slightly improving with time. 
Using 1000 days of data gives a graph with more curve downwards, implying that the reliability is 
improving with time. 

Model Goodness-of-fit (Chi-squared test) 
In appendix M the results of the chi-squared test are given. These are the goodness-of-fit results on individual 
systems, for the models based on combined systems formula. The model is fitted to 900 days of data, the 
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failures are divided into classes based on the rules for making classes explained in chapter Ill. The number of 
parameters p = 2 and the level of significance a = 0.05. The test statistic varies per system to which the 
goodness-of-fit test is performed since the number of failures, and therefore the number of classes, is different 
per system . 

A critical note to this analysis is that the models are based on 10 (and 20) systems, while the goodness-of-fit is 
performed on a single system. Since the model is based on an average of all systems, it is logical that the 
goodness-of-fit to an individual system is not always perfect. 

To get some insight in the results of the chi-squared test two histograms are made, figure 28 and 29, indicating 
the values at 365, 730, and 1000 days of data per system. The shorter the bar in the histogram the better the fit 
of the model to the data. These figures show that in most cases the values "365 days" are much higher than the 
values "730 days" and " 1000 days", indicating a worse fit. This is logical since the model based on 365 days 
of data predicts based on the smallest amount of data. When the model is fitted to system 7 the situation turns 
around, the best fit is obtained with the model based on 365 days of data, although that fit is still very far from 
being a significant fit. 
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Figure 28 Dataset 2A Chi-squared unfiltered data Figure 29 Dataset 2A Chi-squared filtered data 

Conclusions of Chi-squared goodness-of-fit 
For datasets 2, 2A, and 2B most goodness-of-fit results show an improvement in fit when more data is 
included. 
Dataset 2A has one system giving a totally different reaction than the other systems. 
The results of the filtered data are similar to the results of the unfiltered data, although the chi-squared 
values are different. 

Model Goodness-of-fit (Cramer-van Mises) 
As said earlier, this test does not work with classes, like the Chi-squared test. Figures 30 and 31 show the 
Cramer-von Mises results for dataset 2A, the results of dataset 2 and 2B are given in appendix N. 
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Conclusions from Cramer-von Mises 
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Figure 31 Dataset 2A Cramer filtered data 

It can be concluded that more models are accepted by this test than with the Chi-squared test, see 
appendix N for details. 
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The same critical note to this analysis can be made as with the Chi-squared test, meaning that the models 
are based on 10 (and 20) systems, while the goodness-of-fit is performed on only 1 system. Since the 
model is based on an average of all systems, it is logical that the goodness-of-fit to an individual system is 
not always perfect. 

Bathtub curves 
Figures 32 and 33 show the bathtub curves of the unfiltered and filtered data for the models based on dataset 
2A. In appendix L the other intensity functions based on the calculated parameter values are plotted 
representing the parts A and B of the bathtub curve discussed in the beginning of this chapter. 
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Figure 32 ROCOF based on dataset 2A unfiltered Figure 33 ROCOF based on dataset 2A filtered 

Conclusions on the bathtub curves, plotted using the calculated ROCOF: 
Using 365 days of data the prediction is that the ROCOF of the systems is deteriorating in time and no 
steady state can be predicted. Next to that there is a clear difference between the values of the curve based 
on filtered data compared to the curve based on unfiltered data. The final value of the unfiltered data 
(around 0.08) is almost twice as high as the value based on filtered data (around 0.04). 
Using 730 days of data the prediction is that the ROCOF of the systems is constant in time. This would 
imply an HPP where the moment steady state is achieved from the beginning. 
Using I 000 days of data the prediction is that the ROCOF of the systems is improving in time. Here it is 
possible to make an estimate of the moment steady state is achieved. For the filtered data this is around 
500 days. 

MTBFc 
The MTBF0 is calculated the same way as for the analysis based on a single system. The figures 34 and 35 
show the MTBF0 with its confidence bounds for the model based on 1000 days of operating time of dataset 
2A. Also the points of the actual MTBF0 values measured for the ten systems are given in the graphs. The 
graphs show that the modeled lines represent the data reasonably well, although the confidence bounds 
indicate that the actual values of the lines should be treated with a certain amount of reservation . The other 
MTBF0 graphs are in appendix 0. 
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Figure 34 MTBFc of unfiltered data with confidence bounds based on dataset 2A 
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Figure 35 MT8Fc of filtered data with confidence bounds based on dataset 2A 

Exponential Law 
The values of the exponential law model parameters are calculated using the fonnulas for multiple systems. 
Again , the parameter values are calculated using 365 , 730 and I 000 days of data . Matlab is used to calculate 
the parameters <l<i and a 1. Table 17 gives the parameter values . 

T bl 17 P a e arameter va ues o fd ataset 2A d 2B an , exponent1a 11 aw 
Data Dataset 2A Dataset 28 

Unfiltered Filtered Unfiltered Filtered 

a o a, ao a, ao a, a o al 
365 days -3.7475 0.00380 -4.1077 0.0041 -2.6067 -0.00071 -3.0933 0.00040 
730 days -3.1315 -0.00016 -3.6898 0.0010 -2 .4813 -0.00180 -2.9698 -0.00090 
1000 days -3.1070 -0 .00030 -3.5130 -0.000022 -2 .5394 -0.00160 -2.9734 -0.00130 

The first thing that strikes here is the sign change of a
1 

in dataset 2A and 2B ; where a
1 
< 0 means an 

increasing reliability and a 1 > 0 means a decreasing reliability . This is similar to the change of /3 in the 

power law models being smaller or larger than I. Only in case of unfiltered data in dataset 2B there is no 

value of a 1 > 0. In that case there is an increasing reliability for the models based on 365 , 730, and I 000 days 

of data. 

When the parameter values of power law and exponential law are compared on the basis of whether increasing 
or decreasing reliability is modeled, it can be concluded that there are some cases where power law and 
exponential law disagree on whether there is an increasing or a decreasing reliability . This shows the caution 
that needs to be taken when interpreting these models, since the same data can lead to a model with increasing 
or decreasing reliability depending on the model chosen . In the conclusions of this chapter an attempt will be 
made to decide which model type (power law or exponential law) has the best prediction performance, based 
on which model provides the most significant fits to the 900 days period. 

T bl 18 P a e arameter va ues o fd ataset 2 t" 11 , exponen ia aw 
Data Dataset 2 

Unfiltered Filtered 

ao a, ao a l 
365 days -3.0715 0.00120 -3.5051 0.0018 
730 days -2.7815 -0 .00099 -3.2991 0.00001 
1000 days -2.8049 -0 .00095 -3.2241 -0.00071 

Conclusion from the parameter values of dataset 2 is that these values are in between the values of dataset 2A 
and 28. Appendix P gives the intensity functions and the function for calculation of the expected number of 
failures for dataset 2, 2A, and 28. 
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Expected number of failures 
In figure 36 and 37 the cumulative number of failures is plotted against the cumulative operating time for 
dataset 2A. The lines of the models based on 365, 730, and 1000 days of data are plotted together with the 
actual number of failures that occur in this time period. The other graphs of the expected number of failures 
are given in Appendix Q. 
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Figure 36 dataset 2A unfiltered data Figure 37 dataset 2A filtered data 

Conclusions on expected number of failures : 
For the model based on dataset 2A 

o Using 365 days of data gives a graph with exponentially faster occurrence of failure , this is a very 
bad fit to the data. 

o Using 730 days of data gives a graph with a slight curve, implying an increasing rate at which the 
failures are occurring in time; in other words a decreasing reliability. 

o Using 1000 days of data gives a graph with a more or less straight line, implying no trend. 

For the model based on dataset 2B and dataset 2 (appendix Q) 
o Using 365 days of data gives a graph with an almost straight line, implying no trend. 
o Using 730 days of data gives a graph with a slight curve, implying a slightly decreasing rate at 

which the failures are occurring in time; in other words a slightly increasing reliability. 
o Using 1000 days of data gives a graph with more curve, implying a decreasing rate at which the 

failures are occurring in time; in other words a increasing reliability. 

Model Intensity µ2 (t) 
In figures 38 and 39 the ROCOF is plotted showing a clearly different pattern in case of 365 days of data, both 
in case of filtered and unfiltered data. The pattern based on 365 days of data predicts a strongly increasing 
ROCOF, meaning that the reliability is decreasing strongly. This is not a good prediction since the graphs 
based on 730 and 1000 days of data show a totally different ROCOF. When compared to the Power law 
graphs (figure 32 and 33) the most striking is the difference between the patterns based on 365 days of data. 
Although in both cases the predictive value is not good, the ROCOF stabilizes in the Power law model, while 
it only gets worse in the Exponential law. The other graphs of the ROCOF (intensity function) are given in 
Appendix Q. There the plots of dataset 2B show that when there is less spread in the dataset, the plot based on 
365 days of data shows a less radical deviation from the plots based on 730 and 1000 days of data. 
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Conclusions on the bathtub curves (see also appendix Q), plotted using the calculated ROCOF: 
Based on 365 days of data the plots give a diverse image. It can be concluded that the predictive value of 
these models is low. 
Using 730 days of data the prediction is that the systems are improving in time. It is not possible to make 
an estimate of the moment steady state is achieved. 
Using I 000 days of data the prediction is also that the systems are improving in time. The form of the 
trend has only changed slightly. It is not possible to make an estimate of the moment steady state is 
achieved. 

Model Goodness-of/it 
In figure 40 and 41 the histograms with the results of the chi-squared goodness-of-fit test of dataset 2A are 
presented. These are the chi-squared goodness-of-fit results on individual systems, for the models based on 
combined systems formula. The model is fitted to 900 days of data, the failures are divided into classes based 
on the rules for making classes explained in chapter III. The number of parameters p = 2 and the level of 
significance a = 0.05. The results for dataset 2 and 2B are presented in appendix R. 
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Figure 40 Dataset 2A Chi-squared unfiltered data Figure 41 Dataset 2A Chi-squared filtered data 

Conclusions of Chi-squared goodness-of-fit 
For the model based on dataset 2A 

o The chi-squared values of the model that is based on 365 days of data are extremely high 
indicating a very bad fit. This is in accordance with the remarks made earlier about the intensity 
and expected number of failures based on 365 days of data . 

o System 7 shows to be totally different from the other systems where the failure pattern is 
concerned, which was also seen for the power law model. In most other cases it shows that 
including more data leads to better fits. 

For the model based on dataset 2B and dataset 2 (appendix R). 
o Dataset 2B shows to have better fits to the models based on that data. Especially the fit of the 

model based on 365 days is much better compared to the model for dataset 2A. 
o When dataset 2 is observed as a whole the earlier made conclusion about system 7 is confirmed. 
o The models based on filtered data generally show a worse fit to the systems than the models based 

on unfiltered data. 

In appendix S graphs are presented of the actual and expected number of failures for the individual systems of 
dataset 2 based on 365, 730, and I 000 days of data. The continuing line represents the model based on all 
systems of dataset 2. This graph gives an impression of the differences in individual failure patterns and how 
those lines compare to the continuing line based on all systems. The conclusion from these graphs is that the 
differences between the individual failure patterns cause a large spread around the continuing line. 

MTBF, 
As explained in the single system analysis where the exponential law model of one system was analyzed there 
are no formulas found in literature for confidence bounds of the exponential law model. To get an idea of the 
spread around the MTBFc of dataset 2 (the thick black line in figure 42), based on 1000 days of data, the 
individual MTBFc plots of the 20 systems in dataset 2 are plotted as well. These give an idea the lines that the 
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thick black line is representing. Interesting to see is that the MTBF lines in figure 42 are almost straight lines. 
This in contrast to the lines modeled by Power law. 
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Figure 42 MTBFc of systems from dataset 2 

Overall conclusions of analysis two 

The MTBF c line of dataset 2 starts 
around 17 days and ends around 23 
days. The individual MTBFc lines start 
between 8 and 69 days and end 
between 12 and 54 days. 

The Power law model seems to have a reasonably good fit to the data when there is trend. The predictive 
value depends on the amount of data that the model is based on, based on 365 days of data the predictions 
made are not accurate. When 720 days of data is used, the predictive value is a lot better. More accurate data 
should be used to validate these conclusions. 

For the exponential law model it can be concluded that the model based on 365 days of data shows a radically 
different failure pattern, especially for dataset 2A. The model based on 730 days of data is close to the model 
based on 1000 days of data indicating a much better fit to the data points based on these 730 days of data. The 
influence of the spread in data seems to be larger for the Exponential law model than for the Power law 
model, since dataset 2B (in appendix Q) shows a better fit for the model based on 365 days of data. The fact 
that no confidence intervals can be calculated for the Exponential law is a set back. 

4.2.4 Analysis three: FMT data versus service data 
Number of systems taken into account 
The same eight systems are used for this analysis as the ones used in paragraph 3 .2, where the FMT data for 
trend analysis is discussed. 

Points of time chosen to fill into model 
In this comparison between FMT data and service data there is a problem of comparing two different time 
scales, the operating time and the online time. Using the dates on which relevant failures took place according 
to the FMT data a time period is set for operating time of the service data, as explained in chapter III. 
Appendix G shows a graph in which the operating time is plotted against the online time. It shows that there is 
a linear relation between these two timelines. For I 000 hours of online time there is an average of 150 days of 
operating time . 

Power law 
First the parameter values of both the FMT data and the Service data from the chosen eight systems are 
calculated. These parameters are given in table 19. 
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Table 19 Parameter values 
Data System 1-8 

.. 
·" . 

-· .L,h '°'"- ')", 't. j FMT data " Service data 

/4 /3 /4 /3 
1000 hours / 150 days 0.0307 0.8627 0.0689 0.9487 

Both for the FMT data and the Service data the value of /3 is close to one, indicating there is almost no trend 

in these data. This is in line with the observations from the data in dataset two, where the first 365 days show 

almost no trend (or even a negative trend). Another observation is that the value/4 for the Service data is more 
than double compared to the value of the FMT data. 

Using the fonnula for the expected number of failures the following graphs are made (figure 43 and 44). 
These graphs visualize the difference between using FMT data to model the failure pattern and using Service 
data. It is clear that according to the model based on the Service data of these systems the number of failures 
after 150 days (1000 hours) is lower than the number of failures according to the FMT data. This shows the 
importance of the data source that is used to perform the calculations with ; a different data source gives a 
different outcome. 
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Figure 44 Expected number of failures Service data 

The intensity functions of the FMT data and the Service data are given in table 20. When graphs would be 
made from the equations given in table 20 they would show that there are no bathtub curve effects in this data. 
This would indicate that these systems show no reliability improvement at all during their lifetime. However, 
based on the knowledge from the second data set it is plausible that later in the lifetime of these systems 
reliability growth will occur. Therefore, using these models for prediction purposes is not wise. Data from a 
longer period of time should be accumulated in order to be able to model the trend that presumably will be 
visible later on in the lifetime . 

T bl ?O I a e_ ntens1tv , onnu a ase I b d on system l 8 -
Data FMT data Service data 
1000 hours / 150 days fL. (T) = 0.0264T-0 137 

fL1 (T) = 0.0654T -0051 

Goodness-of/it 
In appendix T the results of the Cramer-von Mises and the Chi-squared goodness-of-fit test are given. Both 
tests show a similar view on the goodness-of fit. In the Cramer-von Mises test a significant fit is found for five 
of the eight systems, for both the FMT data and the Service data . This indicates that the spread of the data 
around the calculated model line is not very large. The Chi-squared test also accepts five out of the eight 
systems, although the accepted systems are not totally in accordance with the Cramer-von Mises test results. 

MTBFc 
In fi gure 45 and 46 the MTBFc is plotted together with the 90% confidence bounds. The increase in MTBFc 
value is much larger in the FMT data than the increase in the Service data . Another observation that can be 
made from these graphs is that the spread in the FMT data is much larger than the spread in the Service data. 
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Statements about the value of the MTBF c based on FMT data should therefore be made with great 
reservations. 
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Figure 45 MTBF c based on Service data from eight systems 
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Figure 46 MTBF c based on FMT data from eight systems 

Exponential law 
In table 21 the parameter values of both the FMT data and the Service data from the chosen eight systems are 
given ca1culated using exponential law. 

Table 21 Parameter va1ues 

The differences found between the parameter values from the FMT data and the Service data are similar to the 
differences found using power law. The parameter values calculated using exponential law show almost no 
trend, like the values found using power law. However, interesting detail is that where the little bit of trend in 
the power law model is indicating increasing reliability, the little bit of trend in the exponentia1 law model is 
indicating decreasing reliability! Since there is a1most no trend in both cases the influence of this difference 
will not be large, it is however a tota1ly different sort of trend. 

Figures 47 and 48 show the expected number of failures based on the exponentia1 law model. The modeled 
lines of both the FMT data and the Service data are increasing faster than the lines calculated using power 
law. This is due to the explained difference between decreasing and increasing reliability. The expected 
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number of failures after 1000 hours of on line time calculated from the FMT data with exponential law is 14, 
while calculated by the power law system the expected number of failures is 12. A similar difference is visible 
for the Service data. 
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In table 22 the equations for calculating the model intensity are given. As said before there is almost no trend 
in these models, plotting the ROCOF against the cumulative operating time is therefore not useful. 

T bl ?2 Md I. a e_ o e mtens1tv b d ase on system 1 8 -
Data FMT data Service data 
1000 hours / 150 days A (T) _ -45304 +000047T µ 2 -e A (T) _ - 2 9766+0 00360T µ 2 -e 

Chi-squared goodness-of-fit test 
When the values of the chi-squared test based on exponential law are compared with the values based on 
power law (both given in appendix T) the observation can be made that now for only four out of the eight 
systems there is a significant fit for the FMT data, and only three out of eight for the Service data. This 
indicates that for this dataset the power law gives a better fit to the data. Although this statement is based on 
the chi-squared test , which is not the most reliable goodness-of-fit test, the test is performed exactly the same 
way for the power law and the exponential law model and therefore seems credible. 

4.3 Evaluation of the model performance 
This chapter describes three analyses: 

I . Analysis of service data of a single system 
This analysis investigated whether the power law model and the exponential law model are able to fit the 
failure pattern of the data that is used in this project . 

The analysis showed that both the power law and the exponential law model are able to fit the failure 
pattern of the data when enough data is provided to the model (1000 days of data). Based on a limited 
amount of data (365 days of data) both models give an incorrect prediction of the situation over a 900 
days time period. The models based on 730 days of data are very close to the models based on I 000 days 
of data and therefore able to give a good prediction of the situation over a 900 days period of time. 

The MTBF c plots of Power law and Exponential law shows a clear difference between these lines; where 
the Power law model is able to fit the data points better in the beginning, the Exponential law model 
provides a better fit in the middle part of the plots. 

2. Analysis of service data of multiple systems 
This analysis investigates the influence of using data from multiple systems for modeling the failure 
pattern. The analysis uses both unfiltered and filtered data to investigate the influence of filtering on the 
calculated model values. 
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When multiple systems are used for the building of a model the diversity of the failure times of systems 
that are included has a big influence on the models. The more spread there is in the failure patterns of the 
systems, the less accurate the model can represent the data. 

Similar to analysis of a single system the models based on multiple systems are not able to give a good 
prediction of the failure pattern based on a limited amount of data (365 days) . When the model is based on 
730 days of data the model is very close to the model based on 1000 days of data indicating a good 
prediction of the 900 days period, provided that the model based on 1000 days of data gives a good 
representation of the 900 days period. The fact that the goodness-of-fit test fits the model to the data 
points of the individual systems, which show a large spread in the failure pattern, is the reason that the fit 
is not significant in most cases. This means that it is hard to determine what line represents these systems 
the best. 

The influence of pollution in the data is clearly visible in this analysis when the unfiltered and filtered 
plots are compared. The expected number of failures of the filtered data is lower than that of the unfiltered 
data. This difference between models based on filtered data and models based on unfiltered data proves 
that having a good data quality is essential for obtaining reliable answers from these models. 

The question of which model type (Power law or Exponential law) is able to provide a better goodness-of­
fit to the actual failure data can be found through analyzing the chi-squared goodness-of-fit of both the 
power law and the exponential law model. The Cramer-von Mises test cannot be used since this test can 
only be used for the power law model. An overall conclusion for these models based on the dataset used 
in this analysis of multiple systems is that the exponential law gives a slightly better fit than the power law 
model. But this difference is so small that the conclusion can be drawn that they are both equal when their 
performance is considered. Using the goodness-of-fit test when more than one system is included gives 
problems however as discussed on the top of this page. 

The fact that they are equally able to model the data does not mean that they are the same. The analysis 
has shown that there are distinct differences in the models based on power law and exponential law in 
several cases, meaning that the power law model suggests an increasing reliability while the exponential 
law model suggests a decreasing reliability. 

3. FMT data versus service data 
This analysis shows the differences between using FMT data and using service data when trying to 
establish the failure pattern of a system. 

This analysis shows that the model based on FMT data shows a similar pattern as the model based on 
Service data. However, due to the fact that the actual data differs (the FMT failure moments do not 
coincide with the service failure moments), the models provide different model values. 
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Chapter V Conclusions and recommendations 
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(Sore n Kierkegaard ) 

This chapter starts with the conclusions, which are directly related to the project research questions that were 
stated in chapter I. Subsequently the recommendations are presented including a proposal for further research. 

5.1 Conclusions 
The following aims of PMS and the QRE department at the TU/e were given in chapter I: For the QRE 
department the aim of the research field is to develop competence in quality and reliability by creating 
methods to predict the occurrence of product failures in the development process and early in the field 
introduction . PMS wants to be able to monitor, control and predict the product reliability in an earlier stage. In 
that way the feedback loop can be shortened, which leads to faster problem recognition. 

This has lead to the following project fonnulation 

To investigate how the product failure pattern that is found at PMS can be modeled and to 
assess the prediction performance of those models. 

The project research questions and targets stated in chapter I will be used as a framework for fonning the 
conclusions of the project in this chapter. 

Data questions and targets 
Question I ls the data that is necessary for making a reliability prediction available? 
Target a: Investigate the databases with field data and determine whether the necessary data for making a 

reliability prediction is available. 

There are two sources with field data available: a Global Data Warehouse database where service 
data is collected and a Field Monitoring Team database where system software loggings are 
collected. Both data sources are able to provide the necessary data for modeling system reliability . 
That is, they provide the failure moments relative to the moment of installation . 

Target b: Investigate the quality of the data to determine how accurate the results will be. 

Both sources of data have problems related to data quality, although there are more problems with 
the service data. The service data has data quality problems related to all four data quality metrics, 
that is, completeness, consistency, timeliness, and accuracy. 

Positive points of service data 
Data from all system types and versions is available. 
A broad spectrum of failures is covered, including failures that would not lead to a software 
logging (like in the FMT data). 
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Negative points of service data 
Completeness: far from complete on data set level ; only data from a number of countries is 
available. On a data element level the failure moments are generally complete only for the 
period that the systems are under warranty or CSA, and there are problems with the 
completeness of the data necessary for the determination of severity of the failures . 
Consistency: the wrong transfer of data between databases, differences between procedures 
throughout the world, and personnel that has a certain amount of freedom when filling out the 
jobsheets lead to consistency problems. 
Timeliness: timely availability of data has to improve, especially if considered that the FMT 
data is updated daily. 
Accuracy: failure moment registration has to improve since there is too much diversity in the 
registration of moment of failure . 

The FMT data has data quality problems related to completeness and accuracy. 

Positive points of FMT data 
Consistency: the failure data is consistent since all loggings are evaluated using the same 
description of a relevant failure . 
Timeliness: the database is update with new failure data on a daily basis. 

Negative points of FMT data 
Completeness: far from complete on data set level since only data from the newest system 
version is available. 
Accuracy : no certainty on whether the list of registered relevant failures is an accurate 
representation of all relevant failures . 

The data quality problems with the service data, which were the largest, lead to defining a specific 
group of systems for the analysis of this service data. That way a part of the data quality problems 
could be coped with. Only cardio monoplane systems were considered, other system types were 
left out of the analysis; the data was taken from systems in the USA only, to improve the 
consistency of the data; only systems under warranty or CSA were analyzed; and a manual 
filtering was used to filter out calls wrongly booked as corrective maintenance. 

Model questions and targets 
Question 2: What model(s) are available for the situation at PMS? 
Target: Identify a reliability prediction model, based on field data, which is applicable for the situation of 

Philips Medical Systems. 

Answer: The category of models that is found to be applicable for situation of PMS has the following 
characteristics: continues parametric models for repairable systems with a mixture of hardware 
and software, without redundant parts. The model choice can be made using the general procedure 
for analyzing failure data of a repairable system. The fact that the model$ that are considered by 
this general procedure are designed for hardware failures indicates that the assumption is made 
that both hardware and software failures can be considered by these models. There are however 
differences between these types of failures. 

To determine whether there is trend in the failure data or not the Laplace trend test is performed. 
Conclusion from the individual Laplace tests is that, based on 1000 days of data, the systems 
show a heterogeneous picture with some of the systems showing significant trend, while other 
systems do not show this significant trend. The combined Laplace test indicates significant trend 
in five out of the six calculations, based on l 000 days of data. This leads to the choice for Non 
Homogeneous Poisson Process models. There are two models in literature that are most used and 
described as useful NHPP models for analyzing the failure pattern of repairable products: Power 
law and Exponential law. Both these models are investigated in this report. 
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Analyses questions and targets 
Question 3: Can these models give the expected early insight into future reliability? 
Target: Use field data to determine parameter values of the model, determine the goodness-of-fit, and 

construct the confidence intervals. Use this to determine whether early prediction is possible. 

Answer: 

Part A: 

Part B: 

In chapter IV three analyses of datasets are presented, the answer to this third question will 
therefore be separated in three parts, A, Band C 

Analysis of service data of a single system . 
This analysis was performed to investigate whether the power law model and the exponential law 
model are able to fit the failure pattern of the data that is used in this project. 

A first conclusion is that both modeling types, power law and exponential law, are able to fit the 
data of a single system based on I 000 days of data. But when prediction of the failure pattern for 
900 days is concerned based on a limited amount of data (365 days), both model types give a 
wrong prediction of future failures. This has to do with the following: the models are flexible in a 
way that they can model a deteriorating system, an improving system and a system that shows no 
trend (a Homogeneous Poisson Process). The form that the model takes depends on the data that 
is put in the model. This means that the failure pattern early after field introduction of the system 
determines the pattern of the model. If a trend develops later on in the product life this will not be 
modeled when only using data from the period shortly after field introduction. The data needs to 
show at least a small amount of trend in order for the model to pick up the sign that the system is 
actually improving in time. When the model is based on 730 days of data it is able to predict the 
failure pattern ofa 900 days period correctly . 

Analysis of service data of multiple systems. 
This analysis was perfonned to investigate the influence of using data from multiple systems for 
modeling the failure pattern. 

A first conclusion here is that both the power law and the exponential law models adapt well to 
the data from the number of systems included in the model building. Next to that, similar effects 
as when using a single system for building the model can be found, meaning an inaccurate 
representation of the failure pattern when the data of 365 days is used. This means that when the 
model is based on 365 days of data this model can only be used to detennine the situation at that 
moment, not to predict the future failure pattern. The model based on 730 days of data is very 
close to the model based on 1000 days of data, like with the model based on a single system. This 
means that based on 730 days of data of good prediction of a 900 days period can be made. 

The large difference in the number of failures that occurs per system has a big influence on the fit 
of the model to the data . The model is of course an average and therefore it will not fit individual 
systems well , especially if the systems show such a large difference in number of failures. This 
spread in failure pattern between different systems makes the predictive value less accurate and 
causes relatively wide confidence bounds. When the spread in the failure pattern is smaller this 
leads to predictions that are closer to the actual failure pattern, although based on 365 days of data 
it still deviates too much to be called a good prediction. 

The power law and exponential law model do not always agree on the form the model should 
take. This even means that in some cases, based on the same data, one model type calculates an 
increasing reliability , while the other model type calculates a decreasing reliability. The cause of 
this can be found in the large difference in the number of failures that occur per system. One 
model type reacts differently than the other in case of such a diverse failure pattern between 
systems. When the failure patterns are not consistent the models neither will be . 

The influence of pollution in the data was investigated by comparing filtered data to unfiltered 
data. The filtered data shows similar failure patterns as the unfiltered data, although clearly 
different lines appear when the models are plotted. This means that the filtered data leads to 
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different values of the expected number of failures, the model intensity, the goodness-of-fit, and 
the MTBF. It proves that having a good data quality is essential for obtaining reliable answers 
from these models. 

FMT data versus service data. 
This analysis shows the differences between using FMT data and using service data. 

The difference between the two data sources is clearly visible when they are compared; the failure 
moments, as well as the number of failures do not correspond. This leads to differences in the 
model based on FMT data and the model based on service data. That leads to maybe one of the 
most important conclusions from this report, that is, there first needs to be a clear understanding 
of the data that is put in the model before conclusions can be drawn about the final number that 
the model gives as an output. The quality of a model can be only as good as the quality of the data 
that is put in. 

Aim of the project 
The aim of this project was to investigate how the product failure pattern that is found at PMS can be modeled 
and to assess the prediction performance of those models. The direct answer to this aim is that the 
investigation for a model lead to the choice of the NHPP power law and exponential law models, which are 
able to predict the failure pattern when based on enough data to pick up signs of trend. For the datasets used in 
this project this is not after 365 days, but after 730 days. 

Use of the model 
In chapter I the potential benefits of prediction of product reliability using field data were discussed. It 
described the use for: determination of the current situation; evaluation and control; warranty cost assessment; 
resource assessment; learning organization. Next to that it could serve as a basis for root cause analysis. 
Question then is whether the models researched in this project can be put into practice now in order to benefit 
from this potential. Conclusion is that it is too early for using the models for these purposes. In the 
recommendations an answer will be given on what needs to be done in order to arrive at the desired situation. 

5.2 Recommendations 
The recommendations are split into two parts, first the last question that was formulated in paragraph 1.2.2 
will be answered. After that the recommendations on further research will be explained. 

The fourth question with a project target described in paragraph 1.2.2 was as follows: 
Question 4: What are the improvement opportunities? 
Target: Make recommendations on the data collection and handling processes and on reliability prediction 

models to improve the accuracy of the prediction. 

Answer: First the recommendations on the data collection will be given, then on the handling processes 
and last on the models. 

Data The most basic question in this respect is the question of which data source to use for making 
collection: reliability analyses and predictions, service data or FMT data. Both sources of data have positive 

sides and negative sides as explained in the conclusions. But a big difference exists in what needs 
to be done to influence the quality of data that is produced by these two data sources. 

Part A: When service data is continued to be used the following points should be worked on: 
Database and data transfer 
Actions have to be taken in improving the completeness and consistency of the databases by 
creating one database system. Promising are the actions taken by the MENHIR project to improve 
the problems related to the databases. Since this is already being worked on at the moment no 
extra actions need to be taken in this respect. However, at least until the MENHIR project is in 
place problems with data completeness and consistency of the data will remain. 
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Personnel 
The value of complete, consistent, accurate, timely and valid data for the purpose of analysis 
should be a part of the training of field service engineers and other personnel involved in the 
creation of failure data. This should lead to the creation of awareness of providing data of good 
quality. The problem is that there are differences of interest between the SSRs and the Business 
Units. The SSRs have no primary interest in providing reliability data ; their main interest when 
filling out the jobsheets is to make sure they are able to account for the hours booked and to make 
sure the billing is done correctly. 

Procedures 
Actions have to be taken in improving the consistency and timeliness of the data by adaptation of 
procedures. Registration of the on line time at the moment a job is perfonned on a system should 
be done when possible. 

For some problems the origin of the problem can be unclear, being for example whether it is a 
human error or a procedural error. The discussion in this report about data quality is not 
exhaustive. To find out more about the root causes of data quality problems a study should be 
perfonned at the service department (SSR and/or SSD). 

Part B: When FMT data will be used the following points should be worked on: 
An investigation is necessary to determine to what extend the failure data produced by the FMT 
tool contains the relevant failures of the systems. This comes down to answering the following 
two questions: 
- To what extend is the tool able to log the relevant types of failure? The fact that this will never 
be I 00% is already certain since the software loggings are unable to detect failures that have no 
link to the software whatsoever, like a broken remote control for example. 
- Are the registered relevant failures giving a complete and valid representation of the failures 
defined as relevant failures? This is questionable since it is the opinion of a system engineer, 
which is not always unambiguous. 

In general : If not all problems of the service data and FMT data can be worked on at the same time a division 
of the metrics has to be made indicating the importance of each metric . For instance first 
concentrating on improving the consistency data, then on the accuracy, then on completeness and 
last on the timeliness. The priority depends on the severity of problems related to the metrics. 

Independent of the data source that is used attention should be given to the gravity of the failures 
that occur. The use of a scale to categorize the failures leads to more insight in the sort of failures 
that occur. This leads to a further refinement of the relevant failure definition . The service data is 
already capable of providing such a categorization with its priority code, if this code would be 
available in the Global Data Warehouse. 

In addition, the following categorization was found in literature [45] and could be used in making 
a distinction in the data now booked as "failure" . 
Type I - Failure - Severe operational incidents that would definitely result in a service call, such 
as part failures , unrecoverable equipment hangs, DOAs, consumables that fail/deplete before their 
specified life, onset of noise, and other critical problems. These constitute "hard-core" failure 
modes that would require the services of a trained repair technician to recover. 
Type II - Intervention - Any unplanned occurrence or failure of product mission that requires the 
user to manually adjust or otherwise intervene with the product or its output. These tend to be 
"nuisance failures" that can be recovered by the customer, or with the aid of phone support . 
Depending on the nature of the failure mode, groups of the Type II failures could be upgraded to 
Type I if they exceed a predefined frequency of occurrence. 
Type III - Event - Events will include all other occurrences that do not fall into either of the 
categories above. This might include events that cannot be directly classified as failures, but 
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whose frequency is of engineering interest and would be appropriate for statistical analysis. 
Examples include failures caused by test equipment malfunction or operator error. 

My recommendation for the future situation would be to use FMT data for reliability analysis, and 
to use the service data next to that for other analyses like call rate, material usage and material cost 
analysis. When data from the FMT becomes available over a longer period of time this should be 
used to model the total system life. Furthermore, the failure moments stored in the FMT database 
provided for the analyses in online hours is detailed enough for the calculations made with this 
data, it is not necessary to provide this data in minutes or seconds. 

Choice between the power law model, the exponential law model, or another type of model. Both 
the power law model and the exponential law model have showed to be able to correctly fit to the 
failure pattern of the systems. And although there are some differences in the failure pattern that 
they show no definite conclusions about one model type being better than the other can be made. 
The problem with both these models is that early prediction based on data from a relatively small 
period of time (365 days) is not possible given this particular failure pattern shown by the systems 
analyzed in this project. This means that the search for a different model could be undertaken, 
looking for a model where earlier prediction of the reliability might be possible. 

Further research 
A follow up should focus on the following aspects: 
1. Improving data quality of FMT tool 

It is essential that the data quality of the data provided by the FMT tool is as good as possible. Since this 
tool is only being used since very recent for making reliability analyses there probably is room for 
improvement. Especially the question of accuracy of the failure data is important to research extensively. 

2. Analysis of more FMT data sets 
This project provides the first analysis based on FMT field data. More analyses based on data of a larger 
time period need to be performed in order to conclude whether the behavior of the FMT data is similar to 
the service data. 

3. Research on new model that makes a better prediction based on a small amount of data (early data). 
The analyses have indicated that the power law and exponential law model are not able to predict the 
failure pattern based on a small amount of data; that is, not based on the datasets that were used in this 
project. Therefore, if a different model can be found or developed which is able to make a better 
prediction based on a small amount of data this would mean a significant improvement. 

4. Implementation of the model into the business procedures. 
When a model is found giving better early predictions, or when it is decided to use the power law or 
exponential law model given its limitations, a good implementation of the analyses that can be performed 
with these models needs to be assured. The model analyses need to fit in the procedures of the 
organization. 
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Appendix A Definitions 

Failure 
Given by the on line dictionary of computing [13]: 

Model 

The inability of a system or system component to perform a required function within specified 
limits. 

Definition of a model given by the on line dictionary of computing [13] : 

A model is a description of observed behavior, simplified by ignoring certain details. Models 
allow complex systems to be understood and their behavior predicted within the scope of the 
model, but may give incorrect descriptions and predictions for situations outside the realm of 
their intended use. 

Relevant failure 
A definition ofa relevant failure used in the IEC 1014 standard [46] is : 

A failure that should be included in interpreting test or operational results or in calculating the 
value of a reliability performance measure. 

The definition of a relevant failure that will be used in this report is: 

IRelevantfailures are all failures that a customer can be confronted with. 

In this definition reduction of perfonnance of a certain function will not be taken into account while it cannot 
be retrieved from the available data. The criterion for determination of failures that a customer can be 
confronted with is 'the judgment of development engineers'. 

Reliability 
Detailed definition of reliability given by Kales[!]: 

Trend 

The reliability of an item is the probability that the item will perform a specified/unction under 
specified operational and environmental conditions, at and throughout a spec(fied time. 

This means that before we can deal with reliability, the producer and the user must reach formal 
agreements on what the product is to do, how the user is to use the product, the range of 
environments under which the product is expected to perform satisfactorily, and the instant or 
duration in time that the performance of the product or service is demanded. 

Definition of trend [36]: 

There is a trend in the pattern of failures if the inter-arrival times tend to alter in some 
systematic way, which means that the inter-arrival times are not identically distributed. 
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Appendix C System versions 

Table 23 System versions 
; .. , ~ 

Allura 9C Xper FD ·Allura Xper mono card 

Allura 9F Xper FD Allura Xper mono card 

IAllura 9C mo Allura mono card 

IAllura 9F mo Allura mono 1 card 

IAllura 9 bi Allura bipl card 

l ints CV lntegris 5000 mono mix 

Allura 12/15 mo Allura mono vase 

IAllura 12/15 bi ·Allura bipl vase 

iV3000 lntegris 3000 mono vase 

IV3000 lntegris 3000 mono ,vase 

jV3000 i lntegris 3000 mono vase 

IV4000 lntegris 3000 mono vase 

IV4000 lntegris 3000 mono vase 

IV4000 lntegris 3000 mono vase 

IH3000 lntegris 3000 mono card 

HM3000 : lntegris 3000 mono mix 

BN/BV3000 Bi lntegris 3000 bipl vase 

, BN/BV3000 Mo i lntegris 3000 mono ,vase 

BH3000 lntegris 3000 bipl card 

V3000P lntegris 3000 mono vase 

V3000P lntegris 3000 mono vase 

V3000P , lntegris 3000 mono, vase 

H5000 lntegris 5000 mono card 

BH5000 : lntegris 5000 bipl card 

jV5000 lntegris 5000 mono, vase 

BV5000 lntegris 5000 bipl vase 

Allura 9F mo FD Allura FD mono .card 
Allura 9C mo FD Allura FD mono .card 
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Appendix D Call open and close date investigation 

Four randomly chosen systems to investigate the influence of choosing the start date or the close date of a call 
on the number of calls per month. M stands for month, so MO is O months after the system was taken into use. 

Table 24 Call information according to overview 
s ,vstem a 

MO Ml M2 M3 M4 MS M6 M7 M8 M9 MIO Mll Ml2 
Start 1 4 2 0 3 6 3 1 2 3 2 2 1 
End 0 2 0 1 2 10 2 2 2 3 1 4 0 
Diff I 2 2 I I 4 I I 0 0 I 2 I 
S b ,vstem 
Start 0 2 11 7 3 1 0 1 3 1 3 0 0 
End 0 2 7 11 2 2 0 1 3 1 3 0 0 
Diff 0 0 4 4 I I 0 0 0 0 0 0 0 
s ,vstem c 
Start 1 5 3 1 2 4 9 4 7 2 3 2 0 
End 1 0 3 3 3 5 2 5 7 6 3 3 0 
Diff 0 5 0 2 I I 7 I 0 4 0 I 0 
S I ,vstem ( 
Start 0 5 7 7 2 5 6 3 10 3 2 2 2 
End 0 5 0 13 3 4 5 3 6 6 5 1 2 
Diff 0 0 7 6 I I I 0 4 3 3 I 0 

Conclusions drawn from the data of the four systems: 
The difference between the starting date and the closing date of a call can cause large differences in the 
number of calls in a month. 
The difference between opening and closing date of a call varies from 'a couple of hours' to ' more than 
four months'. 
The start date of a job (within a call) is sometimes earlier than the start date of the call itself. Sometimes 
this can be more than a month difference. This is probably due to a call on the same problem that has been 
worked on before. The job start date is then equal to the job start date of the job that handled the same 
problem earlier. This can be caused by the time of ordering parts . 
The other way around also happens; the start date of the job is then a lot later than the start date of the call. 
Question is what happens in the time between the start of the call and the start of the job. 
There are cases of calls with a job open for a month while only a couple of hours are booked within this 
period. 
Problems are not always solved right away ; there is an example where one problem that leads to six 
separate calls. 
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Appendix E Critical values for Cramer-von Mises 

Table 25 Critical values for Cramer-von Mises oodness-of-fit test at 10% level of significance 

3 0 .154 
4 0.155 
5 0 .160 
6 0.162 
7 0.165 
8 0.165 
9 0.167 
10 0.167 
11 0.169 
12 0.169 
13 0.169 
14 0.169 
15 0.169 
16 0.171 
17 0.171 
18 0.171 
19 0.171 
20 0.172 
30 0.172 
60 0.173 

This table is taken from 1164 IEC (1995) [29] 
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Appendix F Individual Laplace test 

T bl 26 R a e esu ts 111 1v 1 ua a J ace tes , service d t aa 
System Unfiltered Significant Filtered Significant 

trend trend 
1 0.390 No -1 .762 No 
2 0 .096 No -0.228 No 
3 -2 .813 Yes -4.136 Yes 
4 -1.022 No 1.325 No 
5 1.231 No -0.221 No 
6 -0 .715 No -1.440 No 
7 1.473 No 0.233 No 
8 -0.029 No -1.683 Yes 
9 -1 .535 No -2 .542 Yes 
10 -2.423 Yes -3.394 Yes 
11 -0 .633 No 0.971 No 
12 -2 .073 Yes -2 .075 Yes 
13 -0 .605 No -1.255 No 
14 -3 .690 Yes -3.162 Yes 
15 -3 .051 Yes -2 .917 Yes 
16 -1.089 No -1.744 Yes 
17 -3 .523 Yes -4.487 Yes 
18 -0.499 No -0 .781 No 
19 -4 .275 Yes -5 .150 Yes 
20 -4 .968 Yes -4 .639 Yes 
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Appendix G Relation between operating time and online time 

Figure 52 shows the relation between the cumulative operating time in days and the cumulative online time in 
hours . It can be concluded that for all systems in the graph there is a linear relation between the operating time 
and the online time. 
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Figure 52 Operating time versus online time 
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In table 27 the number of days connected to 1000 hours of online time is given. From this the average and 
standard deviation are calculated showing an average of 150 days of operating time connected to 1000 hours 
of online time. 

An interpretation of this relation between the operating time and the online time is that the system is online for 
6 .67 hours per day (1000/150 = 6 .67 hours per day) if the system is used every day of those 150 days. This 
would mean an online time of 9.33 hours per day if the system is used 5 days per week. 

Table 27 
System Hours Days 

1 1000 137 
2 1000 145 
3 1000 214 
4 1000 135 
5 1000 137 
6 1000 185 
7 1000 106 
8 1000 144 

Average 150 
Standard deviation 33.55 
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Appendix H Difference between filtered and unfiltered data 

T bl 28 F ·1 a e a, ures o 1 tere an un I tere ata or t e f fi l d d fi l d d fi h 20 systems 

Svstem 365 days 730 davs 1000 davs 
Failures Diff Failures Diff Failures Diff 
Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 

1 8 3 63% 14 4 71% 16 4 75% 
2 8 3 63% 14 7 50% 17 9 47% 
3 20 12 40% 27 16 41% 29 16 45% 
4 9 1 89% 11 1 91% 16 4 75% 
5 12 6 50% 27 15 44% 33 18 45% 
6 23 17 26% 43 35 19% 54 42 22% 
7 28 22 21% 61 51 16% 78 65 17% 
8 24 18 25% 41 32 22% 46 36 22% 
9 12 9 25% 17 11 35% 20 12 40% 
10 27 19 30% 37 26 30% 39 28 28% 
11 18 12 33% 35 25 29% 51 39 24% 
12 17 12 29% 29 22 24% 33 25 24% 
13 17 11 35% 28 18 36% 31 21 32% 
14 22 16 27% 25 16 36% 29 19 34% 
15 21 14 33% 27 18 33% 31 21 32% 
16 23 18 22% 37 30 19% 44 37 16% 
17 34 27 21% 42 34 19% 45 36 20% 
18 13 5 62% 31 16 48% 34 19 44% 
19 39 27 31% 49 35 29% 51 36 29% 
20 26 14 46% 29 14 52% 31 15 52% 
Av. 20 13 34% 31 21 ·- 32% 36 25 31% 
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Appendix I Graphs of the failure versus operating time of systems 1-20 

These are the systems that are used for the trend analyses and the fitting of the models. 
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Figure 53 Failure pattern of system 1-10, unfil. data 
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Figure 55 Failure pattern of system 11-20, unfil. data 
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Appendix J Data set one system 

T bl ?9 D a e _ ata use or ana1ys1s 111 c rnpter I . 1 . IV 
Warrantv start date Call ooen date TTF TBF cum no of failures 

2001-03-30 2001-04-02 3 3 1 
2001-03-30 2001-04-17 18 15 2 
2001-03-30 2001-04-17 19 0 3 
2001-03-30 2001-06-16 79 60 4 
2001-03-30 2001-06-20 83 4 5 
2001-03-30 2001-07-13 105 23 6 
2001-03-30 2001-07-31 124 18 7 
2001-03-30 2001-08-16 140 16 8 
2001-03-30 2001-08-30 154 14 9 
2001-03-30 2001-08-31 154 1 10 
2001-03-30 2001-09-05 160 5 11 
2001-03-30 2001-09-13 168 8 12 
2001-03-30 2001-09-27 181 14 13 
2001-03-30 2001-10-06 190 9 14 
2001-03-30 2001-10-24 209 19 15 
2001-03-30 2001 -10-25 209 1 16 
2001 -03-30 2001-11-08 223 14 17 
2001-03-30 2001 -12-10 255 32 18 
2001-03-30 2002-03-20 356 100 19 
2001-03-30 2002-03-21 357 1 20 
2001-03-30 2002-03-27 363 6 21 
2001-03-30 2002-05-02 398 36 22 
2001 -03-30 2002-05-02 399 0 23 
2001-03-30 2002-06-28 456 57 24 
2001-03-30 2002-07-09 466 11 25 
2001-03-30 2002-11-08 588 122 26 
2001-03-30 2003-01-16 657 69 27 
2001-03-30 2003-05-07 768 111 28 
2001-03-30 2003-06-02 794 26 29 
2001-03-30 2003-08-20 874 79 30 
2001-03-30 2003-10-11 925 52 31 
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Appendix K Power law: model intensity µ1 (T) and expected number of failures E[N(T)] 

Power law unfiltered 

Table 30 Fonnula based on dataset 2A 

µ1(T) = 0.0l 13T0284 A (T) = 0.0389T0.oos µ1 (T) = 0.0673T--O.ll.c 

E[N(t)] = 0.008811284 E(N(T)] = 0.0387T1.oos E[N(T)] = 0.0763T0
·
186 

Table 31 Fonnula based on dataset 2B 
,, 

t 1. l",: ·J~ ~-:~:i~~~:: ,.~ .. ,•:~I,..~.~ .. ·~} 
:~ r,._, •• ,.. "fl-.,.- .. 
µ1 (T) = 0.0754T--0.037 µ1 (T) = 0. l 668T--0238 

E[N(T)] = 0.0783T0
·
963 E[N(T)] = 0.2189T0

·
762 

Table 32 Fonnula based on dataset 2 
l 

1

' • -~w:•1;-v-~C$f?!:!•• • .. , ,. ,. ~ i·•rff C :·~•~ .~ 

µ1(T) = 0.0374To.o-78 µ1(T) = 0.0930T--0·141 

E[N(T)] = 0.0347T1
·
071 E[N(T)] = 0.1083To.a59 

Power law filtered 

Table 33 Fonnulas based on dataset 2A 
lfr:; i .-,•••I' ,1t'•~•i:t,- •~ • C:~~{~:z·-' ~ ' ' ,~- : ;xi. '(.;.· .. } .. - "'~ 3- • 

fl1(t) = 0.0107t0207 /11 (t) = 0.0268t°·002 

E[N(t)] = 0.0089t1
.207 E[N(t)] = 0.026811.002 

Table 34 Fonnulas based on dataset 2B 
-·· t a : ~ ;~-{t,:i_~:~;~-~: ~;.' ' .: . :j.-:. ·~t-·~: . -' . , 

fl1(t) = 0.0436t--0.004 fat (t) = 0.1030t--O.lll 

E[N(t)] = 0.0437t0
·
996 E[N(t)] = 0.13181°·712 

Table 35 Fonnulas based on dataset 2 

f ., .,-· 1-1-'.lI~~atr ·~-.. . . "' ~ t .. 
> . .• r f""•: "'~i;tfU' • '1- .• 

~ :jt•~+ j~~ ,! ::-, 

fl1 (t) = 0.0253t0
·
074 /11 (t) = 0.0596t --O. ll9 I 

E[N(t)] = 0.023611.07.c E[N(t)] = 0.0685t0
·
871 i 
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, ' ,;.ib.· •.. .!.t-

A (T) = 0.2195T--0.307 

E[N(T)] = 0.3 l 67T0
·
693 

7· ~ - ·/' t - ~~ 

A (T) = 0.1344T--0.226 

E(N(T)] = 0.1737T0
·
774 

, .. 
~!}{~ '. 

fl1(t) = 0.0472t --O.l20 

E[N(t)] = 0.0537t0
-'
1
M> 

'. ?, -,;., ! 

fo1 ( t > = 0.1304t --0.2?6 

E[N(t)] = 0.1801t0
·
724 

r ~ . ~~~. ~ , !!; .}1 
/11 (t) = 0.0849t --0.21l 

E[N(t)] = 0.1076t0
·'
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Appendix L Graphs of Power law model intensity µ1 (T) and expected number of 
failures E(N(T)) 
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Figure 57 E[N(T)] of dataset 2A unfiltered power law 
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Figure 59 E[N(T)] of dataset 2B unfiltered power law 
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Figure 61 E[N(T)] of dataset 2 unfiltered power law 
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Figure 58 E[N(T)] of dataset 2A filtered power law 
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Figure 60 E[N(T)] of dataset 2B filtered power law 
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Figure 62 E[N(T)] of dataset 2 filtered power law 
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Figure 63 ROCOF of dataset 2A unfiltered power law Figure 64 ROCOF of dataset 2A filtered power law 
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Appendix M Chi-squared goodness-of-fit 

Table 36 unfiltered data Power law 
Ch. d d f fi b d f I-SC uare goo 11ess-o - It ase 011 onnu a or I f d ataset 2A 

Sys x2 Test Result x2 Test Result x2 Test Result 

365 statisti 730 statisti 1000 statisti 

1 days C days C days C 

1 28 .07 5.99 Reject 13 .07 5.99 Reject 10.50 5.99 Reject 
2 26.46 5.99 Reject 11.79 5.99 Reject 9.33 5.99 Reject 
3 25.00 3.84 Reject 12 .00 3.84 Reject 9.38 3.84 Reject 
4 27 .72 3.84 Reject 11.89 3.84 Reject 8.82 3.84 Reject 
5 14.38 5.99 Reject 7.75 5.99 Reject 9.15 5.99 Reject 
6 10.31 9.49 Reject 8.05 9.49 Accept 11.92 9.49 Reject 
7 39.63 12.59 Reject 96.49 12.59 Reject 124.17 12.59 Reject 
8 18.53 9.49 Reject 23 .54 9.49 Reject 25 .60 9.49 Reject 
9 25.46 3.84 Reject 12.00 3.84 Reject 10.63 3.84 Reject 
10 25.10 5.99 Reject 16.84 5.99 Reject 15 .00 5.99 Reject 
Ch I-square goo 11ess-o - It ase 011 ormu a or d d ffi b d f I f d ataset 28 
11 3.57 5.99 Accept 3.19 5.99 Accept 6.64 5.99 Reject 
12 15 .86 5.99 Reject 5.60 5.99 Accept 3.34 5.99 Accept 
13 15 .71 5.99 Reject 9 .20 5.99 Reject 10.62 5.99 Reject 
14 29.48 3.84 Reject 17.80 3.84 Reject 18.73 3.84 Reject 
15 16.31 5.99 Reject 5.73 5.99 Accept 2.91 5.99 Accept 
16 6.18 7 .81 Accept 4 .17 7.81 Accept 7.85 7.81 Reject 
17 20 .04 7.81 Reject 17.38 7.81 Reject 20.22 7.81 Reject 
18 15 .71 7.81 Reject 12.72 7.81 Reject 10.88 7 .81 Reject 
19 28.70 9.49 Reject 28 .86 9.49 Reject 33 .11 9.49 Reject 
20 36.05 5.99 Reject 24.95 5.99 Reject 18.21 5.99 Reject 
Ch. I-square goo 11ess-o - It ase 011 ormu a or d d ffi b d f I f d ataset 2 
1 26.90 5.99 Reject 13.47 5.99 Reject 12.08 5.99 Reject 
2 25.35 5.99 Reject 12 .30 5.99 Reject 10.91 5.99 Reject 
3 19.49 3.84 Reject 8.40 3.84 Reject 6.49 3.84 Reject 
4 26.60 3.84 Reject 12.92 3.84 Reject 10.24 3.84 Reject 
5 13 .96 5.99 Reject 11.97 5.99 Reject 10.10 5.99 Reject 
6 3.45 9.49 Accept 5.59 9.49 Accept 9.84 9.49 Reject 
7 37.74 12 .59 Reject 94.11 12.59 Reject 126.40 12 .59 Reject 
8 15 .30 9.49 Reject 23 .39 9.49 Reject 27 .12 9.49 Reject 
9 23 .55 3.84 Reject 11.64 3.84 Reject 10 .59 3.84 Reject 
10 16.69 5.99 Reject 9.26 5.99 Reject 8.16 5.99 Reject 
11 4.02 5.99 Accept 3.21 5.99 Accept 5.18 5.99 Accept 
12 18.32 5.99 Reject 7.02 5.99 Reject 5.02 5.99 Accept 
13 14.32 5.99 Reject 7.71 5.99 Reject 9.04 5.99 Reject 
14 31 .66 3.84 Reject 18.35 3.84 Reject 18.24 3.84 Reject 
15 18.27 5.99 Reject 6 .64 5.99 Reiect 4 .01 5.99 Accept 
16 7.38 7.81 Accept 3.77 7.81 Accept 7.20 7.81 Accept 
17 25.79 7.81 Reject 19.48 7 .81 Reject 23 .92 7.81 Reiect 
18 14.66 7.81 Reject 11.62 7.81 Reject 10 .33 7.81 Reject 
19 35.46 9.49 Reject 39 .01 9.49 Reject 37 .34 9.49 Reject 
20 47.41 5.99 Reject 32 .73 5.99 Reject 25.15 5.99 Reject 
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Table 37 filtered data power law 

ch· 1-souare goo d dn ess-o - 1t ase on ormu a or ata~et ff b d £ l £ d 2B 

11 1.96 5.99 Accent 5.93 s.~ Accent 
12 8.23 5.99 Reject 1.93 S.95 A,...-

13 13.98 5.99 Reiect 11.35 5.~ Reiect 
14 23.35 3.84 Reiect 8.06 3.8-1 Reiect 
IS 10.68 S.99 Reiect 3.98 5.~ Accent 
16 3.52 7.81 Accent 14.90 7.81 Accent 
17 18.88 7.81 Reiect 23.82 7.81 Reiect 
18 10.69 7.81 Reject 4.12 7.81 Accent 
19 22.29 5.99 Reiect 23.87 5.~ Reiect 
20 29.26 3.84 Reject 18.34 3.8-1 Reiect 
Ch. 1-souare goo d dn ess-o - 1 ase on ormu a or a ase f ft b d £ 1£ dt t2 

1 27.80 3.84 Reiect 18.87 
2 19.74 3.84 Reject 11 .93 
3 20.97 3.84 Reject 12.48 
4 21.56 3.84 Reject 18.82 
5 10.77 3.84 Reiect 5.75 
6 8.74 9.49 .Ar~l>fft 16.12 
7 58.SO 12.59 Reiect 96.67 
8 12.87 9.49 Reiect 16.30 
9 19.30 3.84 Reiect 11.93 
10 11 .22 5.99 Reject 6.77 
11 2.15 5.99 Accent 6.13 
12 9.05 5.99 Reject 5.05 
13 11.79 5.99 Reiect 9.17 
14 23.Sl 3.84 Reiect 16.66 
15 10.01 5.99 Reject 4.17 
16 4.83 7.81 Accent 8.20 
17 24.13 7.81 Reiect 24.10 
18 8.47 7.81 Reject 4.10 
19 29.44 5.99 Reiect 25.54 
20 33.31 3.84 Reiect 24.37 
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8.38 S.99 Reject 
2.43 S.99 Accent 

11 .20 5.99 Reject 
16.07 3.84 Reiect 
2.83 S.99 Accent 

15.99 7.81 Reject 
23.15 7.81 Reiect 
3.87 7.81 Accent 

22.19 5.99 Reject 
16.36 3.84 Reject 

15.90 3.84 Reiect 
9.64 3.84 Reiect 
9.80 3.84 Reiect 

IS.98 3.84 Reiect 
4.57 3.84 Reiect 

16.70 9.49 Reiect 
137.00 12.59 Reiect 
26.97 9.49 Re.iect 
10.59 3.84 Reject 
7.12 5.99 Reiect 
8.42 5.99 Reiect 
3.80 5.99 Accent 
9.37 5.99 Reiect 

15.24 3.84 Reiect 
2.87 5.99 Accent 

16.67 7.81 Reiect 
27.58 7.81 Reiect 
4.17 7.81 Accent 

32.98 5.99 Reiect 
21.40 3.84 Reiect 
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Histograms of the chi-squared test results 
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Figure 69 Dataset 2A Chi-squared unfiltered data 
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Figure 71 Dataset 28 Chi-squared unfiltered data 
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Figure 70 Dataset 2A Chi-squared filtered data 
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Figure 72 Dataset 28 Chi-squared filtered data 
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Appendix N Cramer-von Mises goodness-of-fit Power law 

Table 38 unfiltered data 
Formula based on dataset 2A 

Formula based on dataset 2B 

Formula based on dataset 2 
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16 0.490 0.172 Reject 
17 2.472 0.172 Reject 
18 0.412 0.172 Accept 
19 3.504 0.172 Reject 
20 3.296 0.172 Reject 

Table 39 filtered data 
Fonnula based on dataset 2A 
Sys C2 (n) Test Result 

365 statisti 

days C 

1 0.480 0.171 Reject 
2 0.038 0.171 Accept 
3 2.084 0.172 Reject 
4 0.323 0.171 Reject 
5 0.170 0.172 Reject 
6 0.562 0.172 Reject 
7 0.393 0.173 Reject 
8 0.663 0.172 Reiect 
9 0.898 0.172 Reject 
10 1.438 0.172 Reject 

Fonnula based on dataset 28 
Sys C 2 (n) Test Result 

365 statisti 

days C 

11 0.039 0.172 Accept 
12 0.320 0.172 Reject 
13 0.271 0.172 Reject 
14 2.288 0.172 Reject 
15 0.623 0.172 Reject 
16 0.191 0.172 Reject 
17 1.754 0.172 Reject 
18 0.069 0.172 Accept 
19 2.580 0.172 Reject 
20 2.276 0.172 Reiect 

Fonnula based on dataset 2 
Sys C 2 (n) Test Result 

365 statisti 

days C 

1 0.393 0.171 Reject 
2 0.039 0.171 Accept 
3 1.742 0.172 Reject 
4 0.357 0.171 Reject 
5 0.139 0.172 Reiect 
6 0.310 0.172 Reiect 
7 0.357 0.173 Reiect 
8 0.404 0.172 Reiect 
9 0.702 0.172 Reject 
10 1.062 0.172 Reject 

e PHILIPS 

0.160 
1.331 
0.162 
1.989 
2.247 

C 2 (n) 
730 
days 

0.346 
0.050 
1.548 
0.378 
0.143 
0.200 
0.416 
0.291 
0.599 
0.865 

C 2 (n) 
730 
days 

0.259 
0.095 
0.311 
1.567 
0.245 
0.110 
0.880 
0.147 
1.419 
1.618 

C2 (n) 
730 
days 

0.263 
0.095 
1.181 
0.423 
0.201 
0.069 
0.713 
0.156 
0.421 
0.532 

0.172 
0.172 
0.172 
0.172 
0.172 

Test 
statisti 
C 

0.171 
0.171 
0.172 
0.171 
0.172 
0.172 
0.173 
0.172 
0.172 
0.172 

Test 
statisti 
C 

0.171 
0.171 
0.172 
0.171 
0.172 
0.172 
0.173 
0.172 
0.172 
0.172 

Test 
statisti 
C 

0.171 
0.171 
0.172 
0.171 
0.172 
0.172 
0.173 
0.172 
0.172 
0.172 
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Accept 0.146 0.172 Accept 
Reject 0.949 0.172 Reject 
Accept 0.152 0.172 Accept 
Reject 1.445 0.172 Reject 
Reject 1.806 0.172 Reject 

Result C 2 (n) Test Result 

1000 statisti 

days C 

Reject 0.269 0.171 Reject 
Accept 0.091 0.171 Accept 
Reject 1.207 0.172 Reject 
Reject 0.420 0.171 Reject 
Reject 0.195 0.172 Reject 
Reject 0.074 0.172 Accept 
Reject 0.683 0.173 Reject 
Reiect 0.162 0.172 Acceot 
Reject 0.432 0.172 Reject 
Reject 0.554 0.172 Reject 

Result C2 (n) Test Result 

1000 statisti 

days C 

Reject 0.383 0.171 Reiect 
Accept 0.069 0.171 Accept 
Reject 0.375 0.172 Reject 
Reject 1.378 0.171 Reject 
Reject 0.167 0.172 Accept 
Accept 0.164 0.172 Accept 
Reject 0.693 0.173 Reject 
Accept 0.204 0.172 Reject 
Reject 1.140 0.172 Reject 
Reiect 1.421 0.172 Reiect 

Result C 2(n) Test Result 

1000 statisti 

days C 

Reject 0.217 0.171 Reject 
Accept 0.144 0.171 Accept 
Reject 0.952 0.172 Reject 
Reject 0.457 0.171 Reject 
Reiect 0.297 0.172 Reiect 
Accept 0.650 0.172 Reiect 
Reiect 0.713 0.173 Reject 
Accept 0.139 0.172 Accept 
Reject 0.324 0.172 Reject 
Reject 0.360 0.172 Reject 
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11 0.025 0.172 ~-- 0.128 0.172 A - --~ 0.245 0.172 Reiect . 
12 0.432 0.172 Reject 0.169 0.172 A,...- 0.100 0.172 A..-

13 0.313 0.172 Reioct 0.261 0.172 Reiect 0.304 0.172 Reiect 
14 2.S36 0.172 Reject 1.868 0.172 Reiect 1.S92 0.172 Reiect 
lS 0.776 0.172 Reiect 0.389 0.172 Reioct 0.256 0.172 Reject 
16 0.292 0.172 Reiect 0.098 0.172 A.-.- 0.106 0.172 Accent 
17 2.098 0.172 Reiect 1.219 0.172 Reioct 0.907 0.172 Reiect 
18 0.078 0.172 ,&,...- 0.092 0.172 ,&,...- 0.141 0.172 A,.,....t . . 
19 3.012 0.172 Reiect 1.887 0.172 Reject 1.4S8 0.172 Reiect 
20 2.478 0.172 Reject 1.908 0.172 Reiect 1.644 0.172 Reiect 
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Figure 75 Dataset 2A Cramer-van Mises unfiltered data Figure 76 Dataset 2A Cramer-van Mises filtered data 
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Figure 77 Dataset 2B Cramer-van Mises unfiltered data Figure 78 Dataset 2B Cramer-van Mises filtered data 
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Figure 79 Dataset 2 Cramer-van Mises unfiltered data Figure 80 Dataset 2 Cramer-van Mises filtered data 
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Appendix O MTBFc power law 
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Figure 81 Power law dataset 2A unfiltered 365 days 
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Figure 82 Power law dataset 2A unfi ltered 730 days 
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Figure 83 Power law dataset 2A unfiltered 1000 days 
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Figure 84 Power law dataset 28 unfiltered 365 days 
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Figure 85 Power law dataset 2B unfiltered 730 days 
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Figure 86 Power law dataset 2B unfiltered 1000 days 
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Figure 87 Power law dataset 2 unfiltered 365 days 
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Figure 88 Power law dataset 2 unfiltered 730 days 
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Appendix P Exponential law: model intensity µ2 (T) and expected number of failures 

EIN(T)) filtered 

Exponential law unfiltered 

Table 40 Dataset 2A 
365 days µ

2
(T) = e - 3.7441+00038r 

- 3.7441 

E [N (T)] = e ( eooo38T,, _ eooo38r, ) 
2 

0.0038 
730 days µ

2 
(T) = e - 31320- o.000 16r 

- 3.1320 
E [N(T)] = e ( e - 000016r. - e - 000016r, ) 

2 - 0.00016 
1000 days A (T) _ - 3.1074- 0.00030T 

µ 2 - e 

- 3. 1074 
E [N (T)] = e ( e - 0000301;, _ e - oooo3or, ) 

2 -0.00030 

Table 4 1 Dataset 28 
365 days µ

2 
(T) = e - 260734- 00001 1r 

- 2.60734 

E [N(T)] = e ( e - oooom. - e - 00001 1r, ) 
2 -0.00071 

730 days µ
2 
(T) = e - 2A12 18- 00018r 

- 2.472 18 

E [N (T)] = e ( e - ooom. - e - 00018r, ) 
2 -0.0018 

1000 days µ
2 
(t) = e - 2 53035- 0 0016T 

- 2.53035 
E [ N(T)] = e (e - 00016r,, - e - 00016r, ) 

2 -0.0016 

Table 42 Dataset 2 
365 days µ

2
(T) = e - 28595+7654£- 16r 

- 2.8535 
E[N(T)] = e ( e7654E- 161• _ e1654E- 16r, ) 

2 7.654£ - 16 
730 days A ( ) - 2.782- 0.00098T µ 2 t = e 

- 2.782 
E [N(T)] = e ( e - oooo98r. - e - ooo098r, ) 

2 -0.00098 
1000 days µ

2
(t) = e - 28054- 00()095T 

- 2.8054 
E [N(T)] = e ( e - oo<l095T• - e -000095r, ) 

2 -0.00095 

e PHILIPS 92 
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Exponential Law filtered 

Table 43 Formulas based on dataset 2A 
A(T) = e◄.11S4+o.0041r 

µ
2
(T) = e - 3.s136--0.0000211 

e - 3.5136 
E [N(T)] = ---(eo.000021r. - eo.0000211. ) 

2 0.000021 

Table 44 Formulas based on dataset 2B 
µ

2 
(T) = e - 3.0933+o.0004r 

µ
2 
(T) = e - 2.986s--0.0013r 

- 2.9865 
E [N(T}] = e (e --0.00131. -e--0.oom. ) 

2 -0.0013 

Table 45 Formulas based on dataset 2 

A2 (T) = e ◄.20lll+o.OOS4r 

e-4.2088 
E [N(T)] = --(eo.OOS4r. - eo.ooS4r. ) 

2 0.0054 
µ

2 
(T) = e - 3.2998+0.0000121 

- 3.2998 
E [N(T}]= e (e --0.0000121. -e--0.0000121. ) 

2 - 0.000012 

- 3.2247 
E [N(T)] = e (e--0.000111. -e--0.000111.) 

2 - 0.00071 
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Appendix Q Graphs of Exponential law model intensity ft:i(T) and expected number of 

failures EIN(T)) 
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E[N(T)] of dataset 28 unfiltered exponential law E[N(T)] of dataset 28 filtered exponential law 
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Figure 96 
ROCOF of dataset 2A unfiltered exponential law 
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ROCOF of dataset 2 unfiltered exponential law 
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Figure 97 
ROCOF of dataset 2A filtered exponential law 
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Figure 99 
ROCOF of dataset 28 filtered exponential law 
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ROCOF of dataset 2 filtered exponential law 
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Appendix R Chi-squared goodness-of-fit Exponential law 

Table 46 unfiltered data 
Cl . d d f ft b d f 11-sc uare goo ness-o - 1t ase on ormu a or I f d ataset 2A 

Sys %2 Test Result %2 Test Result %2 Test Result 

365 statisti 730 statisti 1000 statisti 

davs C days C days C 

1 156.21 5.99 Reject 14.00 5.99 Reject 12.17 5.99 Reject 
2 154.26 5.99 Reject 12.71 5.99 Reject 11 .00 5.99 Reject 
3 154.48 3.84 Reject 10.84 3.84 Reject 9 .53 3.84 Reject 
4 156.05 3.84 Reject 12.62 3.84 Reject 11.30 3.84 Reject 
5 134.17 5.99 Reject 8.23 5.99 Reject 7.06 5.99 Reject 
6 129.90 9.49 Reject 6.60 9.49 Acceot 7 .57 9.49 Accept 
7 117 .66 12.59 Reject 97.42 12.59 Reject 92.42 12.59 Reject 
8 144.55 9.49 Reject 20.49 9.49 Reject 21.15 9.49 Reject 
9 153 .03 3.84 Reject 12.84 3.84 Reject 11.21 3.84 Reject 
10 154.22 5.99 Reject 14.34 5.99 Reject 13 .00 5.99 Reject 
Cl. 11-square goo ness-o - 1t ase on ormu a or ataset d d ffi b d f I f d 28 
11 2.39 5.99 Accept 7.29 5.99 Reject 7 .22 5.99 Reject 
12 10.79 5.99 Reject 3.78 5.99 Accept 4 .68 5.99 Accept 
13 10.86 5.99 Reject 7.12 5.99 Reject 5.68 5.99 Accept 
14 22 .27 3.84 Reject 12.12 3.84 Reject 13.58 3.84 Reject 
15 11.05 5.99 Reject 2.81 5.99 Accept 3 .02 5.99 Accept 
16 2.11 7.81 Accept 4.35 7.81 Accept 5.49 7.81 Accept 
17 13.46 7.81 Reject 9.27 7.81 Reject 10.87 7.81 Reject 
18 13 .11 7.81 Reject 13.42 7.81 Reject 9 .62 7.81 Reject 
19 20.60 9.49 Reject 17 .55 9.49 Reject 17 .55 9.49 Reject 
20 30.36 5.99 Reject 17 .81 5.99 Reject 20 .73 5.99 Reject 
Cl . 11-square goo ness-o - 1t ase on ormu a or a aset _ d d ffi b d f I f d t ? 

1 26 .04 5.99 Reject 13.44 5.99 Reject 13 .87 5.99 Reject 
2 24.49 5.99 Reject 12.44 5.99 Reject 12 .87 5.99 Reject 
3 17 .49 3.84 Reject 6 .06 3.84 Reject 6 .54 3.84 Reject 
4 25 .51 3.84 Reject 13.43 3.84 Reject 12 .77 3.84 Reject 
5 14.45 5.99 Reject 12.35 5.99 Reject 8 .35 5.99 Reject 
6 2.34 9.49 Accept 5.75 9.49 Accept 4 .94 9.49 Accept 
7 41.27 12.59 Reject 94 .20 12 .59 Reject 91.32 12.59 Reject 
8 15 .06 9.49 Reject 18.63 9.49 Reject 18.14 9.49 Reject 
9 22 .63 3.84 Reject 10.64 3.84 Reject 11.48 3.84 Reject 
10 13 .88 5.99 Reject 5.42 5.99 Accept 7 .32 5.99 Reject 
11 3.34 5.99 Accept 4.20 5.99 Accept 2.93 5.99 Accept 
12 16.19 5.99 Reject 5.64 5.99 Accept 4.99 5.99 Accept 
13 13.71 5.99 Reject 5.94 5.99 Accept 6 .80 5.99 Reject 
14 29.27 3.84 Reject 16.75 3.84 Reject 16.19 3.84 Reject 
15 15 .94 5.99 Reject 4.55 5.99 Accept 4.99 5.99 Accept 
16 6.38 7.81 Accept 4.48 7.81 Accept 3.00 7.81 Accept 
17 22 .36 7 .81 Reject 16.26 7 .81 Reject 17 .51 7.81 Reject 
18 13 .56 7.81 Reject 8.08 7.81 Reject 12 .13 7.81 Reject 
19 30.89 9.49 Reject 27.48 9.49 Reject 30.01 9.49 Reject 
20 41 .12 5.99 Reject 27.48 5.99 Reject 27 .70 5.99 Reject 
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Table 47 filtered data 
Chi-s uared oodness-of-fit based on formula for dataset 2A 

12.13 
119.30 17.40 
99.43 58.17 

121.36 15.4 
153.12 21.59 
135.21 17.31 

ch · d dn 1-square goo ff b d ess-o - 1t ase fi I fi d on ormu a or ataset 2B 
11 6.83 5.99 Reject 3.48 5.99 A,,...-

12 17.44 5.99 Reject 4.25 5.99 Acceot 
13 20.51 5.99 Reject 10.02 5.99 Reiect 
14 33.17 3.84 Reject 17.71 3.84 Reject 
15 19.41 5.99 Reject 5.25 5.99 A,,.,.....t . 
16 9.32 7.81 Reject 5.40 7.81 Acceot 
17 24.20 7.81 Reject 14.02 7.81 Reiect 
18 19.20 7.81 Reject 6.57 7.81 Acceot 
19 27.01 5.99 Reject 14.83 5.99 Reject 
20 40.22 3.84 Reiect 20.95 3.84 Reiect 
ch· 1-square goo d dn ess-o - 1t ase on ormu a or ataset ff b d fi I fi d 2 
1 60.73 3.84 Reiect 25.73 
2 51.45 3.84 Reiect 18.00 
3 53.41 3.84 Reiect 16.75 
4 60.24 3.84 Reiect 25.62 
5 40.38 3.84 Reiect 9.45 
6 28.81 9.49 Reiect 9.57 
7 32.14 12.59 Reject 71.40 
8 32.64 9.49 Reject 11 .17 
9 50.47 3.84 Reject 18.39 
10 39.70 5.99 Reject 9.02 
11 22.42 5.99 Reiect 1.55 
12 38.22 5.99 Reiect 5.88 
13 39.10 5.99 Reiect 11.86 
14 54.96 3.84 Reiect 22.01 
15 39.93 5.99 Reiect 7.93 
16 26.15 7.81 Reiect 7.53 
17 S0.22 7.81 Reiect 21.60 
18 37.30 7.81 Reiect 6.27 
19 52.97 5.99 Reiect 23.97 
20 66.23 3.84 Reiect 25.31 
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3.84 Reiect 
3.84 Reiect 
3.84 Reiect 
3.84 Reiect 
3.84 Reiect 
9.49 Reiect 

12.59 Reiect 
9.49 Reiect 
3.84 Reiect 
5.99 Reiect 
5.99 Accent 
5.99 Accent 
5.99 Reiect 
3.84 Reiect 
5.99 Reiect 
7.81 Accent 
7.81 Reiect 
7.81 Accent 
S.99 Reiect 
3.84 Reiect 
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19.72 
5.78 

19.25 9.49 
80.13 12.59 
13.83 9.49 
12.86 3.84 
10.17 5.99 

11.08 5.99 Reject 
2.99 5.99 Accent 
7.52 5.99 Reject 

12.74 3.84 Reject 
2.72 5.99 Accent 
7.90 7.81 Reject 

13.15 7.81 Reject 
5.54 7.81 Accent 

14.06 5.99 Reject 
18.34 3.84 Reject 

18.78 3.84 Reiect 
12.43 3.84 Reiect 
10.18 3.84 Reiect 
18.88 3.84 Reiect 
5.68 3.84 Reiect 

12.87 9.49 Reiect 
102.40 12.59 Reject 
16.05 9.49 Reject 
11.66 3.84 Reject 
4.24 5.99 Accent 
6.22 5.99 Reiect 
3.32 5.99 Accent 
7.77 5.99 Reiect 

15.03 3.84 Reiect 
2.70 5.99 Accent 
9.45 7.81 Reiect 

19.63 7.81 Reiect 
4.SS 7.81 Accent 

21.63 5.99 Reiect 
20.35 3.84 Reiect 
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Figure 102 Dataset 2A Chi-squared unfiltered data 
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Figure 104 Dataset 28 Chi-squared unfiltered data 
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Figure 106 Dataset 2 Chi-squared unfiltered data 
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Figure 103 Dataset 2A Chi-squared filtered data 

50 ..----------------~ 

~ 40 I-------------~ --< 

I 
~ I □ 365 days ' 
~ 30 "' ■ 730 days 
~ 20 CT 1-------ri----; ~ 1000 days 

i 10 
(.) 

2 3 4 5 6 7 8 9 10 
systems 

Figure 105 Dataset 28 Chi-squared filtered data 
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Figure 107 Dataset 2 Chi-squared filtered data 
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Appendix S Actual and expected number of failures, exponential law 
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Figure 108 dataset 2, 365 days, unfiltered data 
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Figure 110 dataset 2, 730 days, unfiltered data 
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Figure 112 dataset 2, 1000 days, unfiltered data 
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Figure 109 dataset 2, 365 days, filtered data 
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Figure 111 dataset 2, 730 days, filtered data 
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Figure 113 dataset 2, 1000 days, filtered data 
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Appendix T Dataset 3 FMT versus Service data 

Results of the goodness-of-fit tests. 

Power law 

Table 48 Cramer-von Mises 
System FMT C2 (n) Test statistic Result 

hours 
1 1000 0.109 0.165 Accept 
2 1000 0.083 0.169 Accept 
3 1000 0.455 0.167 Reject 
4 1000 0.114 0.162 Accept 
5 1000 0.067 0.165 Accept 
6 1000 0.140 0.171 Accept 
7 1000 0.675 0.169 Reject 
8 1000 0.176 0.171 Reject 

T bl 49 Cl . d a C 11-square test 
System FMT x2 Test statistic Result 

hours 
1 1000 2.00 3.84 Accept 
2 1000 5.00 5.99 Accept 
3 1000 8.50 3.84 Reject 
4 1000 4.40 3.84 Reject 
5 1000 5.00 5.99 Accept 
6 1000 2.55 5.99 Accept 
7 1000 21 .25 5.99 Reject 
8 1000 3.75 3.84 Accept 

Exponential law 

T bl 50 Cl. d a e 11-square test 

System FMT x2 Test statistic Result 
hours 

1 1000 3.00 3.84 Accept 
2 1000 3.92 5.99 Accept 
3 1000 14.75 3.84 Reject 
4 1000 5.44 3.84 Reject 
5 1000 1.83 5.99 Accept 
6 1000 6.37 5.99 Reject 
7 1000 9.33 5.99 Reject 
8 1000 2.29 3.84 Accept 
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Service C2 (n) Test statistic Result 
days 
150 0.143 0.169 Accept 
150 0.075 0.165 Acceot 
150 0.667 0.160 Reject 
150 0.161 0.165 Acceot 
150 0.153 0.165 Acceot 
150 0.317 0.165 Reject 
150 0.165 0.160 Reject 
150 0.071 0.167 Acceot 

Service x2 Test statistic Result 
days 
150 10.33 5.99 Reject 
150 3.17 3.84 Accept 
150 4.70 3.84 Reject 
150 4.00 3.84 Reject 
150 0.67 3.84 Accept 
150 2.17 3.84 Acceot 
150 1.83 3.84 Acceot 
150 4.80 3.84 Acceot 

Service x2 Test statistic Result 
days 

150 10.20 5.99 Reject 
150 5.99 3.84 Reject 
150 0.70 3.84 Accept 
150 4.57 3.84 Reject 
150 2.13 3.84 Accept 
150 4.03 3.84 Reject 
150 3.70 3.84 Accept 
150 6.29 3.84 Reject 
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