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1 Introduction

1.1 Summary

Some approximate equations are presented here for estimating the elastic critical load of planar lateral
load resisting braced and rigid frames, which provide the stability in tall buildings.

These equations can be obtained from a stick-spring model by combining the major modes of
deformation. Each mode of deformation corresponds to an individual stiffness and an individual
critical load. The stick-spring model requires the calculation of the individual stiffnesses, which are
necessary for the calculation of the individual critical loads. All these individual critical loads have to
be combined into one equation to obtain the elastic critical load of a structure.

The stick-spring model can be used to show the influence of the second order effects on the
deformations and bending moments. It is suitable for the preliminary stages of design and

can be used to check whether the results of computer analyses are reasonable or not.

A worked example is presented here to show the simplicity of the stick-spring model in the
preliminary stages of design of tall building structures. The accuracy of the stick-spring model has
been compared to finite element analyses.
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1.2 Introduction elastic critical load

To introduce the elastic critical load of a tall building structure, it is modelled into a flexural cantilever
as shown in fig. 1.1a. This cantilever has bending stiffness El , is subjected to a horizontal load
Q =¢P and a vertical load P and undergoes bending deformations only. Factor ¢ represents the ratio

between the horizontal and vertical load. The load-deformation diagram of the cantilever is shown in
figure 1.1b.

y P
WA
Q=¢P P !
2

PCI'

El P,
Pmax

/7 y

(a) (b)

Figure 1.1 Behavior of a flexural cantilever.

First-order elastic (FL+GL)

In a first-order elastic analysis the flexural cantilever is subjected to a horizontal top load only.
First-order means that equilibrium is reached in the undeformed state and rotations are small.

Elastic means the cantilever returns to its undeformed shape if the horizontal load disappears.

This top load causes a first-order horizontal deformation, a shear force and a bending moment in the
cantilever. The material of the cantilever is fysically and geometrically lineair, which leads to a lineair
elastic relation between load ¢P and deformation y (see line 1 fig. 1.1b). Fysically linear (FL) means

the material obeys Hooke's law and there is a lineair elastic relation between stress ¢ and strain & .
Geometrically lineair (GL) means equilibrium is defined for the undeformed state.

Elastic critical load (Euler)

The same flexural cantilever is subjected to a vertical top load P only. The cantilever collapses if the
vertical top load is higher then the elastic critical load, it returns to its original state if the vertical top
load is lower then the elastic critical load and it will be standing in the deformed state if the vertical
top load is equal to the elastic critical load. The elastic critical load P,, is called the buckling load of
the cantilever. A buckling analysis is a second-order analysis. Second-order means that equilibrium is
reached in the deformed state and rotations are small. During buckling equilibrium is possible for the
same load and for different deformations (see line 2 fig. 1.1b). This is called indifferent equilibrium.
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Second-order elastic (FL+GNL)

In a second-order elastic analysis a flexural cantilever is subjected to a horizontal top load ¢P and

a vertical top load P . The horizontal top load ¢P causes a first order-deformation, a shear force and a
bending moment in the cantilever. Vertical top load P causes additional horizontal deformations,
shear forces and bending moments in the cantilever. These additional deformations, shear forces and
bending moments are called second-order effects. The material of the cantilever is fysically lineair and
geometrically non-lineair. Geometrically non-lineair means equilibrium is defined for the deformed
state, which leads to a non-lineair relation between load P and deformation y

(see line 3 fig. 1.1b).

First-order plastic (FNL+GL)

In a first-order plastic analysis a flexural cantilever is subjected to a horizontal top load ¢P only.
Plastic means the cantilever will not return to its undeformed shape if the horizontal load disappears.
In the elementary collapse analysis a structure collapses if a mechanism appears. The material of the
cantilever is fysical non-lineair (FNL). Fysical non-linear means the material does not obey Hooke's
law. In that case only the plastic part of the o — & diagram will be used. Equilibrium is possible for the
same load and for different deformations (see line 4 fig. 1.1b).

Second-order plastic
In a second-order plastic analysis a flexural cantilever is subjected to a horizontal top load ¢P and

a vertical top load P . Line 5 represents the relation between load P and deformation y.

Second-order elastic-plastic (FNL+GNL)
In a second-order elastic-plastic analysis a flexural cantilever is subjected to a horizontal top load ¢P

and a vertical top load P . Elastic-plastic (bi-lineair) means that both the elastic and plastic parts of the
o — ¢ diagram will be used. The material of this cantilever is fysical non-lineair (FNL).
Transitional line 6 can be obtained by combining line 3 and 5 (see fig. 1.1b).

Note:
In this project only the elastic critical load P,, is important and therefore only line 2 of the load-
deformation diagram will be used (see fig. 1.1b).
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1.3 Introduction second-order effects

To introduce the second-order effects of a tall building structure, it is modelled into a flexural
cantilever as shown in fig. 1.2a. This flexural cantilever has bending stiffness El and is subjected to a
horizontal load Q and a vertical load P . First the cantilever is only subjected to a horizontal load Q

(see fig. 1.2b). The horizontal load Q causes a first-order deformation y, and a first-order bending
moment M, = QI . The vertical top load P causes a first step second-order additional bending
moment M,, = Py,, which gives a first step second-order additional deformation y,,

(see fig. 1.2c). This first step second-order additional deformation y,, in combination with vertical
top load P causes a second step second-order additional bending moment M, =Py, ,

which gives a second step second-order additional deformation y,., (see fig. 1.2d).

This process will go on, untill the cantilever collapses or equilibrium is reached.
These additional deformations and additional bending moments are called second-order effects.

oo
Yo Y1 Yoo Yo Y21 Y2:2
J|/ JI/ /||/ J|/ H 7{%‘4

°, "y

77 /77 /7 7
(a) (b) (c) (d)

Figure 1.2 First-order and second-order effects.

Horizontal deformation y caused by horizontal load Q and vertical load P is:
Y=Yo+Yo1 + Yy, +EIC (1.1)

Consider the deformation of each step is 1/n times the deformation of the previous step:

Yaii
Yoin = % (1.2)
and
Yo
Yo1=— (1.3)
n
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Substituting eq. (1.2) and eq. (1.3) into eg. (1.1) leads to the following expression:

Yo , Yoa 11 y n
=Yg +—+—+etc=y,|l+—+—+etc =y, +—=—— 14
Y="Yo 0 N yo( n 92 Yo n n_lyo (1.4)
Where amplification factor S is:
n
S=—— 1.5
] (1.5)
Bending moment M can be given by:
n
M=—M 1.6
— M, (16)

The amplification factor S takes the second-order effects caused by vertical top load P into account.
Therefore the first-order deformation y, and the first-order bending moment M, have to be
multiplied by amplification S to obtain deformation y (see eq. 1.4) and bending moment M

(see eq. 1.6). Amplification factor S is mathematically exact if the first-order deformed shape

(see fig. 1.2b) is identical to the first step second-order (see fig. 1.2c) and to the second step
second-order deformed shape (see fig. 1.2d) etc.
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1.4 Introduction stick-spring model

The stick-spring model was introduced by Dicke [1, 2] to obtain an approximate solution for the
critical load of a flexural cantilever subjected to a vertical top load P (see fig. 1.3a).

The flexural cantilever is fixed to the base, has one mode of deformation: individual bending stiffhess
El and is subjected to a vertical top load P . First the flexural cantilever is transformed into
Rosman’s model [3], where a stick has infinite individual bending stiffness El =00 and is supported
by the same flexural cantilever (see fig. 1.3b). Now the vertical load P is removed from the cantilever
and placed on the stick, which causes a tensile force Q in the horizontal rigid link.

This transformation gives always upperbound approximate solutions for the critical of a flexural
cantilever. Rosman's model can be transformed into the stick-spring model (see fig. 1.3c). In this
model the same flexural cantilever is replaced by a horizontal translation spring k , which takes the
individual bending stiffness El into account. Therefore spring stiffness k is a function of the
individual bending stiffness of the flexural cantilever k = f(El ).

Yo Yo
o VA,
P ¢ P
Q Q 1
A A
El - - |
4
77 77 /1

(a) (b)

Figure 1.3 Origin stick-spring model.

1.5 Objectives

The main objective of this project is to obtain simplified equations for estimating the elastic critical
load of lateral load resisting braced and rigid frames in the preliminary stages of design of tall
buildings, which combine the major modes of behavior. Another aim of this project is to check the
accuracy of the stick-spring model by a finite element analysis.
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1.6 Sway structures

Structures can be divided into sway and non-sway structures. Sway structures are tall and slender
structures, which develop global buckling (side-ways deformation) and non-sway structures are low
and compact structures, which develop local buckling. In this project only tall and slender one-bay
sway structures will be investigated. They are:

e X-braced frames with non-continous columns pin-connected to the base (see fig. 1.4a).

e X-braced frames with continous columns pin-connected to the base (see fig. 1.4b).

e Fixed rigid frames (see fig. 1.4c).

e Flexible rigid frames (see fig. 1.4d).
Highrise X-braced frames are sway structures consisting of beams and diagonals, which are
pin-connected to the columns (see fig. 1.4a/b). Highrise rigid frames are sway structures consisting of
columns and beams with fully moment resistant joints (see fig. 1.4c/d).

(a) (b) (c) (d)

Figure 1.4 Sway frames.

1.7 Assumptions

For this project the following assumptions have been made:
e The material is elastic.
e The loads on the structures are applied statically and hold their direction during buckling
(conservative loads).
The structures are one bay structures.
The structures are planar.
The structures are sway structures and only develop global buckling.
The structures develop small deformations.
The stiffness parameters of the structures are uniform up the height.
The height of the investigated structures varies from eight to forty stories.
All storeys have the same storey-height.
Imperfections are neglected.
Residual stresses caused by the rolling proces are neglected.
Shear deformations in the beams and columns of a rigid frame are neglected.
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1.8 Loadcases sway structures

The sway-structures are subjected to three different loadcases (see fig. 1.5):
e Vertical top loads (see fig. 1.5a).
e Uniformly distributed vertical loads (see fig. 1.5b).
e Load combinations (see fig. 1.5c).

y

(a) (b) (c)

Figure 1.5. Loadcases sway structures.

1.9 Report layout

This report consists of nine chapters. Chapter two gives a history search with a summary of all
important analytical models for the elastic stability of structures. Chapter three discusses additive
theorems. Chapter four introduces the stick-spring model subjected to three different loadcases for the
stability analysis. In chapter five the stick-spring model is used to obtain an approximate critical load
for a flexural cantilever with one mode of deformation: individual bending stiffness EI .

In chapter six the stick-spring model is used to obtain an approximate critical load for a braced frame
with non-continous columns pin-connected to the base and with two modes of deformation:

global bending stiffness EAc? and racking shear stiffness GA . In chapter six the stick-spring model is
also used to obtain an approximate critical load for a braced frame, but now with continous columns
pin-connected to the base and with two modes of deformation: overall bending stiffness El,

and racking shear stiffness GA. In chapter seven the stick-spring model is used to obtain an
approximate critical load for a rigid frame fix-connected to the base and with four modes of
deformation: individual bending stiffness El , global bending stiffness EAc?,

racking shear stiffness of the columns GA, and racking shear stiffness of the beams GA, .

In chapter seven the stick-spring model is also used to obtain an approximate critical load for a rigid
frame, but now flexibly connected to the base and with five modes of deformation:

individual bending stiffness EI , individual rotational stiffness C , global bending stiffness EAc?,
racking shear stiffness of the columns GA_ and racking shear stiffness of the beams GA, .

Chapter eight gives a discusion and the conclusions of this project and chapter nine describes
recommendations for further research.



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

2 Analytical models for the stability analysis
Several simplified analytical models are introduced here for the stability analysis.
These models can be used for estimating the critical load of braced and rigid frames.
They are:

e Flexural cantilever.

e Shear-flexure cantilever.

e Substitute column.

e Sandwich column with thin faces.

e Sandwich column with thick faces.
Each analytical model will be discussed independently.
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2.1 Flexural cantilever

A “flexural cantilever” is a column fixed to the base, has bending stiffness El and undergoes bending
deformations only (see fig. 2.1).

y¢Py

El El f I

X X

(a) (b)

Figure 2.1. Flexural cantilever.

2.1.1 Vertical top load

Euler [4] derived in 1744 a differential equation for a flexural cantilever subjected to a vertical top
load P (see fig. 2.1a)

d’y Py
= —— 2.1
dx® El @1
and obtained a formula for the critical load
2
7°El
I:)cr;EI :4|—2 (22)
2.1.2 Uniformly distributed vertical load
In 1936 Timoshenko [5] found a differential equation for a flexural cantilever subjected to an
uniformly distributed vertical load f (see fig. 2.1b)
3 2
M_,_ﬁﬂzo or M:—ﬂ (2.3)
dx®  El dx dx? El
.where F = fl and suggested a formula for the critical load
7.837El
I:cr;EI :|—2 (24)

10
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2.2 Shear-flexure cantilever

A “shear-flexure cantilever” is a column fixed to the base, has bending stiffness EIl , shear stiffness
GA and undergoes bending and shear deformations (see fig. 2.2).

y ¢ P y

El El f I
GA GA

(a) (b)

Figure 2.2. Shear-flexure cantilever.

2.2.1 Vertical top load

In 1936 Timoshenko [5] derived a differential equation for a shear-flexure cantilever subjected to a
vertical top load P (see fig. 2.2a)

d’y Py P d%

- 25
dx? El  GA dx? 29
and obtained a formula for the critical load
P.. 1 1 1
P, =—%5 or —= + (2.6)
1+ IDcr;EI Pcr F)cr;EI I:)cr;GA
Pcr;GA
, Where the bending critical load is
2
7°El
IDcr;EI :4|—2 (27)
and the shear critical load is
I:)cr;GA =GA (2.8)

Equation (2.6) can also be found by applying the Foppl-Papkovics theorem [6, 7] (see section 3.3).
For this case the FOoppl-Papkovics formula is mathematical exact, because the bending buckling shape
(see fig. 2.3a) is identical to the shear buckling shape (see fig. 2.3b). The shear buckling shape has no
definite buckling shape, which means the shear buckling shape can assume any form even the form of
the bending buckling shape.

11
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77 77
(a) (b)

Fig 2.3 Buckling shapes of a shear-flexure cantilever subjected to a vertical top load.

12
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2.2.2  Uniformly distributed vertical load
In 1979 [8] Zalka found a differential equation for a shear-flexure cantilever subjected to an uniformly
distributed vertical load f (see fig. 2.2b)

yrw _é(sym + Xyﬂn)_i_%(yr + Xy"): O (29)

and obtained a mathematically exact formula for the critical load by making use of a table or graph in

which a critical load parameter A is a function of a stiffness parameter /3
l:cr = IFcr;GA (210)
, Where the stiffness parameter is

— k.
,8 _ _ CrGA (211)
I:cr;EI

He also suggested a simplified approximate formula for the critical load by applying the
Foppl-Papkovics theorem [6, 7], which leads to

1 1 1
= + 2.12
= (2.12)

cr I:cr;EI Fcr;GA
, where the bending critical load is

_ 7.837El 2.13)

I:cr;EI _|—2
and the shear critical load is
Ferca =GA (2.14)

For this case the Foppl-Papkovics formula is always conservative, because the bending buckling shape
(see fig. 2.4a) is not identical to the shear buckling shape (see fig. 2.4b). The shear buckling shape has
a definite buckling shape, which means the shear buckling shape can assume only one form.

A 4

> /—/
(a) (b)

Fig 2.4 Buckling shapes of a shear-flexure cantilever subjected to a vertical UDL.

13
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2.3 Substitute column

A “substitute column” is a flexural column fixed to the base with bending stiffness El , which is
supported by a uniformly distributed moment m = f(GA) and undergoes bending and shear

deformations (see fig. 2.5).

<
<«
o
<

El
m= f(GA)

El
m= f(GA)

DIRIIDRIE
55355353

_—

a) (b)

Figure 2.5. Substitute column.

2.3.1 Vertical top load

In 1961 Csonka [9] derived a differential equation for a substitute column subjected to a vertical top
load P (see fig. 2.5a)

d?y P-GA
=— 2.15
dx? ( El j (215)

and obtained a formula for the critical load

P

o = I:)cr;EI + Pcr;GA (216)

, Where the bending critical load is

2
7“El
p _ =z = 2.17
cr;El 4| 2 ( )
and the shear critical load is
I:)cr;GA =GA (2.18)

Equation (2.16) can also be found by applying the Southwells theorem [10] (see section 3.2).

For this case the Southwell formula is mathematical exact, because the bending buckling shape

(see fig. 2.3a) is identical to the shear buckling shape (see fig. 2.3b). The shear buckling shape has no
definite buckling shape, which means the shear buckling shape can assume any form even the form of
the bending buckling shape.

14
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2.3.2 Uniformly distributed vertical load

In 1980 Zalka [11] found a differential equation for a substitute column subjected to an uniformly
distributed vertical load f (see fig. 2.5b)

F -GA d?y F -GA
"+ '=0 or =— 2.19
y ( Jy o ( £ j (2.19)

and obtained a mathematically exact formula for the critical load by making use of a table or graph in
which a critical load parameter « is a function of a stiffness parameter 3

N
A A

For = &Fcr;El = aFcr;EI - I:cr;GA + I:cr;GA = (a _ﬂ)Fcr;El + I:cr;GA (2.20)

cr

, Where the critical load parameter is

For (2.21)

I:cr;EI

a=

and the stiffness parameter is

~ F,.
ﬂ _ _CrGA (222)
I:Cr;EI

He also suggested a simple approximate formula for the critical load by applying the Southwell
theorem [10]
F.=F T Fcr;GA (2:23)

cr criE

, where the bending critical load is

7.837El
I:cr;EI :|—2 (224)

and the shear critical load is

I:cr;GA =GA (2.25)
For this case the Southwell formula (see eq. (2.23)) is always conservative, because the bending
buckling shape (see fig. 2.4a) is not identical to the shear buckling shape (see fig. 2.4b).

The shear buckling shape has a definite buckling shape, which means the shear buckling shape can

assume only one form. Equation (2.23) can give conservative errors of 47 % in comparison with the
mathematically exact formula (see eq. (2.20))

15
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2.4 Sandwich column with thin faces
A sandwich column with thin faces is a multi-layer column fixed to the base with global bending
stiffness EAc? and racking shear stiffness GA, which undergoes global bending and racking shear
deformations (see fig. 2.6). Most sandwich columns consist of three layers: two faces with thickness
t, and a core with thickness c, . Structures are called sandwich columns with thin faces,
if the following relationships hold:
e The thickness t, of the faces can be neglected, because t; <<<c, , whichleadsto c, ~d;.
e The individual bending stiffness of the faces ElI =0 can be neglected.
e The individual bending moment in the faces M, =0 can be neglected.

EAc?
GA

(a) (b)

Figure 2.6. Sandwich column with thin faces.

2.4.1 Vertical top load

In 1984 [12] Hegedis and Kollar derived a differential equation for a sandwich column with thin faces
subjected to a vertical top load P (see fig. 2.6a)

4 2 2 44 2 2
dx dx GA dx dx EAc® GA dx

, Where ¢ =y/I| and obtained a formula for the critical load

1 1 1

1 + (2.27)
cr Pcr;EAc2 Pcr;GA
, where the global bending critical load is
2
7 El
Pcr;EAc2 - 412 (2.28)

16
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and the shear critical load is

P

C

rca =GA (2.29)

Equation (2.27) can also be found by applying the Foppl-Papkovics theorem.

For this case the Féppl-Papkovics formula is mathematical exact, because the global bending buckling
shape (see fig. 2.3a) is identical to the racking shear buckling shape (see fig. 2.3b).

The racking shear buckling shape has no definite buckling shape, which means the racking shear
buckling shape can assume any form even the form of the global bending buckling shape.

2.4.2 Uniformly distributed vertical load

In 1979 [8] Zalka found a differential equation for a sandwich column with thin faces subjected to an
uniformly distributed vertical load f (see fig. 2.6b)

(y'+xy")=0 (2.30)

f
””__3 n nn
y GA(y +xy"")+ v

and obtained a mathematically exact formula for the critical load by making use of a table or graph in

which a critical load parameter A is a function of a stiffness parameter
Fcr = IFcr;GA (231)

, where the stiffness parameter is

—  Feena
B = : 2.32
= (2.32)

cr;EAc2

He also suggested a simplified approximate formula for the critical load by applying the
Foppl-Papkovics theorem [6, 7], which leads to

t__1 1 (2.33)

cr I:cr;EAcz Fcr;GA

, where the bending critical load is

2
_ 7.837EAc (2.3

I:cr;EI - |2
and the shear critical load is
I:cr;GA = GA (235)

For this case the Féppl-Papkovics formula (see eg. (2.33)) is always conservative,

because the global bending buckling shape (see fig. 2.4a) is not identical to the racking shear buckling
shape (see fig. 2.4b). The racking shear buckling shape has a definite buckling shape,

which means the shear buckling shape can assume only one form.

17
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2.5 Sandwich column with thick faces
A sandwich column with thick faces is a multi-layer column fixed to the base with individual bending

stiffness El , global bending stiffness EAc? and racking shear stiffness GA,
which undergoes individual bending, global bending and racking shear deformations (see fig. 2.7).
Structures are called sandwich cetmns with thick faces, if the following relationships hold:

e The thickness t, # 0 of thefaces can't be neglected and plays an important role.

e The individual bending stiffness EI #0.
e The individual bending moment Mg, #0.

e [ vl
EAC? |1 |1 ]! el ]|
o | |
10 el g
e T 7
(BT 3e ||
A o

(a) (b)

Figure 2.7. Sandwich column with thick faces.

2.5.1 Vertical top load

In 1984 [13] Hegedis and Kollar derived a differential equation for a sandwich column with thick
faces subjected to a vertical top load (see fig. 2.7a)

2 4 2 242
EAC EId_¢_(EAcz+E|)d b, p[EACTAYD 41, (2.36)
GA dx* dx? GA dx?

or

EAc? +El dzy: Py . P d2y+ El d?y

EAc?  dx? EAc? GA dx? GA dx2

, Where ¢ =y/l| and obtained a formula for the critical load

-1
pcr:[ S } . (2.37)

I:)cr;EAcz PC"?GA

18
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Equation (2.37) can also be found by applying the Foppl-Papkovics [6, 7] and Southwell theorem [10].
For this case the formula is mathematical exact, because the individual bending buckling shape is
identical to the global bending and racking shear buckling shape. The shear buckling shape has no
definite buckling shape, which means the shear buckling shape can assume any form even the form of
the individual bending and global bending buckling shape.

2.5.2 Uniformly distributed vertical load

In 1984 [13] Hegedis and Kollar found a differential equation for a sandwich column with thick faces
subjected to an uniformly distributed vertical load (see fig. 2.7b)

EAC?El d*¢ d?¢ EAc? d?¢
— W—(EACZ+EI)dX2 Pl oa g ¢ =0 (2.38)

or

EAc®+Eld®y  Fy  F d% ElId%

EAc?  dx? EAc? GA dx? GA dx?

, Where ¢ =y/1 and obtained a mathematically exact formula by making use of a table for numerical
parameter ¢,

2
E —c EAc + El (239)
1

cr
IZ

They also suggested a simplified approximate formula for the critical load by applying the
Foppl-Papkovics theorem [6, 7] and the Southwell theorem [10]

-1

F, - [ - l - 1 ] Py (2.40)
or:EAc2 criGA

For this case the combination of the Foppl-Papkovics and Southwell formula is always conservative,

because the individual bending and global bending buckling shape are not identical to the racking

shear buckling shape. The racking shear buckling shape has a definite buckling shape,

which means the racking shear buckling shape can assume only one form.

19
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3 Additive Theorems

Additive theorems are useful tools for dealing with complex problems in a simple way.
Equations for the overall critical load of a complex structure often rely on additive theorems and
therefore a short summary of the theorems is given below. These theorems can only be used in the
linear theory of stability for estimating the overall critical load of a structure.
A detailed analysis with mathematical background and the limitation of application of additive
theorems is given by Tarnai [14, 15]. The principle of all additive theorems used in the stability
analysis of structures is as follows. The buckling problem of an original structure is to complex and
therefore the structure is divided into simpler part problems. Each part problem corresponds to a
different buckling shape and a different individual critical load, which can be computed by a FEM
program by always assuming a different stiffness parameter to be infinite or zero.
The overall critical load of the original complex structure can now be obtained by a summation of the
individual critical loads of the part problems. This can be done by direct summation of the individual
critical loads (Southwell) or by inverse summation of the individual critical loads (Foppl-Papkovics).
The big advantage of additive theorems is that a solution of the part problems is usually available
whether the solution of the original complex problem is very difficult to obtain.
Three theorems will be introduced:

e The Dunkerley Theorem.

e The Southwell Theorem (parallel connection).

e The Foppl-Papkovics Theorem (serial connection).

3.1 The Dunkerley Theorem

Dunkerley [16] first used his formula for the vibration problem of shafts. The Dunkerley theorem
applied to stability problems is defined as follows. The principle of this theory is as follows.

If a load system of an elastic structure can be considered as the sum of two loadsystems,

then the inverse addition of the critical loads which belong to the two loadsystems gives a conservative
estimate of the overall critical load of the structure.

111 -
FCT FCT PCI’

This theorem makes it possible to investigate structures subjected to a combination of load systems.
For example a combination between a vertical top load and a uniformly distributed load.
The Dunkerley formula can also be used in a different form:

F P
—r—x<1 3.2
= 3.2)

cr cr

20
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3.2 The Southwell Theorem

Southwell [10] first applied his theorem to vibration problems. Southwell's theorem applied to

stability problems is defined as follows. The elastic system is characterized by e stiffness parameters.
The elastic system is first considered with all stiffness parameters zero except for the i-th one,
which is left unchanged. Then the critical load of the i-th column is calculated.
This procedure is then repeated and always another stiffness parameter is left unchanged,
while the values of all the others are assumed to be zero. This theory is based on parallel connection of
columns and leads to the following four conditions (see fig. 3.1):
e The horizontal displacement of the resultant column is identical to the horizontal
displacements of the individual columns:

Y=Y1=Y>=Y;

(3.3)

e The stiffness EI of the resultant column is equal to the sum of the individual stiffnesses.

El =Y El, =El, + El, +El,

i=1

(3.4)

e The horizontal top loading Q on the resultant column is equal to the sum of the horizontal
loading on the individual columns:

Q=§1Qi =Q,+Q, +Q,

(3.5)

e The vertical top loading P on the resultant column is equal to the sum of the vertical loading
on the individual columns:

P=SP =P +P, +P,
i=1

(3.6)

If the columns are parallel connected, then the sum of the individual critical loads of these parts gives
a lower bound to the overall critical of a structure:

cr = .

e
P 2 zlpcr;i = cr;l + I:,cr;2 + Pcr;S

Y1
A
Q PR
—>
El,

(3.7)

y
S
P

Q
o»

El

Y2 Y3 Y1 Yo Y3
e I e A
QZ P2 ¢Q3 P3 Ql Pl ¢ QZ PZ QS P3
D—l =] —>n —P7 —
El, El, Eh.+ HZ+ El,
El,=El, =0 El,=El,=0 El,=El,=0 EI=YEl
P P P

cr;l

cr;2

cr;3

Figure 3.1 Southwell’s model: parallel connection of columns.
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3.3 The Foppl-Papkovics Theorem

Foppl [6] and Papkovics [7] developed a theory for the stability of elastic structures, based on the
partial stiffening of its elements. The principle of his theorem is as follows. The elastic system is
characterized by e stiffness parameters. The system is first considered with all stiffness parameters
infinite except for the i-th one, which is left unchanged. Then the critical load of the i-th column is
calculated. This procedure is then repeated and always another stiffness parameter is left unchanged,
while the values of all the others is assumed to be infinite. This theory is based on serial connection of
columns and leads to the following four conditions (see fig. 3.2):

The horizontal displacement of the resultant column is identical to the sum of the
displacements of the individual columns:

e

Y=2VYi=YV1+tY,+VY; (3.8)

The stiffness El of the resultant column is equal to the reciprocal sum of the individual
stiffnesses.

1

L + L + L (3.9
El i3El, EI, El, El;

Mo

The horizontal top loading Q on the resultant column is equal to the horizontal loading on the
individual columns:

Q=Q,=Q,=0Q; (3.10)

The vertical top loading P on the resultant column is equal to the vertical loading on the
individual column:

P=P,=P, =P, (3.12)

If the columns are serial connected, then the reciprocal sum of the individual critical loads of these
parts gives a lower bound to the overall critical load of a structure:

1
— <
PCI‘

gttt 1 (3.12)
i=1 l:)cr;i Pcr;l I:)cr;z Pcr;3
y Y1 Y, Y3
Q P Q P Q, P, Q P,
—>n —>n —>n —>n
= + +
El El, El, El,
El, =El, =0 El, =El, =0 El, =El, =
P P P

cr;l

Figure 3.2 Féppl-Papkovics model: serial connection of columns.

cr;2 cr;3
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4 Stick-spring model

The stick-spring model was introduced by Dicke [1, 2] to obtain an approximate solution for the
overall critical load of a flexural cantilever subjected to a vertical top load P (see section 4.1).

This model will be further developed for a uniformly distributed vertical load F (see section 4.2) and
for a combination of a vertical top load P and uniformly distributed vertical load F (see section 4.3).

4.1 Vertical top load

As has been shown earlier (see section 1.4) a flexural cantilever subjected to a vertical top load P
(see fig. 4.1a) can be transformed into a stick-spring model subjected to a vertical top load P and a
horizontal load Q (see fig. 4.1b). In this model a flexural cantilever is replaced by a horizontal
translation spring k , which takes the individual bending stiffness El into account. Therefore spring
stiffness k is a function of the individual bending stiffness of the flexural cantilever k = f(El ).

y
P
£
VAN
El — I
74
(a)
Figure 4.1 Original stick-spring model for loadcase P .
In fig. 4.1b the deformed shape of the stick-spring model is shown, equilibrium is reached when:
Ql + Py =kyl (4.1)
Eq. (4.1) can be rearranged to find the horizontal displacement y at the top:
Ql
= e— 4.2
y kI-P (4.2
If the denominater is zero, instability occurs and the critical load is [1, 2]:
P, =Kkl (4.3)
In absence of vertical top load P the first-order deformation at the top is:
Vo= 2 (4.4)

k
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Substituting eq. (4.3) and eq. (4.4) into eq. (4.2) leads to the following expression:

P

cr
{ P, P n
= = = = 4.5
kl—PyO Pcr_PyO &_1% n_lyo (4.5)
P

y

Where the critical load ratio is:

n=Fe (4.6)

The amplification factor Ll takes the second-order effects caused by vertical top load P into
n —

account. If the critical load ratio is higher then ten the influence of the second order effects can be
neglected, because the inluence of the second order effects is less then 10 %.
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4.2 Uniformly distributed vertical load

In a similar way a flexural cantilever subjected to a uniformly distributed vertical load f

(see fig. 4.2a) can be transformed into a stick-spring model subjected to uniformly distributed vertical
load f and a uniformly distributed horizontal load w (see fig. 4.2b).

y y
H—H H—H
k=f(El) Ky
—» <+
—> 71
—>
w
é >
— I
—>
—>
>
—> 4
/]
(a) (b)
Figure 4.2 Original stick-spring model for loadcase F .
In fig. 4.2b the deformed shape of the stick-spring model is shown, equilibrium is reached when:
0.5wl? +0.5fly = kyl 4.7
The vertical load F is:
F=fl (4.8)
The horizontal load W is:
W =wl (4.9)
Substituting eq. (4.8) and eq. (4.9) into eq. (4.7) leads to:
0.5WI +0.5Fy = kyl (4.10)
Eq. (4.10) can be rearranged to find the horizontal displacement y at the top:
Wi
= 4.11
y 2kl - F (4.1
If the denominater is zero, instability occurs and the critical load is:
For = 2Kl (4.12)
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In absence of a vertical UDL f the first-order deformation at the top is:

wl W
- 4.13
Yo ok 2k ( )
Substituting eq. (4.12) and eq. (4.13) into eq. (4.11) leads to the following expression:
_cr
2kl F. F n
= = = = 4.14
y 2k|—Fy0 Fcr_Fyo F, Yo n_lyo ( )
Where the critical load ratio is:
F
n—_cr 4.15
: (4.15)

The amplification factor Ll takes the second-order effects caused by vertical UDL f into account.
n —
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4.3 Load combination

In a similar way a flexural cantilever subjected to a combination of a vertical top load P and a
uniformly distributed vertical load f (see fig. 4.3a) can be transformed into a stick-spring model

subjected to a vertical top load P, a horizontal top load Q, a uniformly distributed vertical load f
and a uniformly distributed horizontal load w (see fig. 4.3b).

y
A X b
v °
—> 71
—>
El — I
—>
—>
—>
—> :
—> 4
/]
(a) (b)
Figure 4.3 Original stick-spring model for loadcase P + F .
In fig. 4.3b the deformed shape of the stick-spring model is shown, equilibrium is reached when:
Ql +0.5wl? + Py + 0.5 fly = kyl (4.16)
Substituting eq. (4.8) and eq. (4.9) into eq. (4.16) leads to:
QI +0.5WI + Py + 0.5Fy = kyl (4.17)

Relations between the vertical loads P and F and relations between the horizontal loads Q and W

are needed to solve eq. (4.17). The relation between the vertical top load P and vertical UDL F can
be obtained from fig. 4.4. Fig. 4.4a shows a cantilever column, subjected to vertical floor loads F, and

a vertical roof load F, . The vertical loads can be replaced by a vertical UDL f . This is only correct
if the vertical roof load F, is half of the typical floor loading F, . If the vertical roof load F, is larger
then half of the floor loading F,, the vertical loads can be replaced by a combination of a vertical
UDL f (see fig. 4.4b) and a vertical top load P (see fig. 4.4c).
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F, =P +05F,
. - Y 4
\ /]
Fo w N
F, ) — +
A 4 N

& A 4 B \\ N
0.5F, \

7 ‘ .

/II/ /II/ /II/ /II/ /II/
p F F—sF p

Fig. 4.4 Cantilever subjected to different vertical loadcases.

The vertical roof load is:
Fy =9, (4.18)

Where factor y takes the effect of a different roof load F, into account.
The vertical load F is:

F =SsF, (4.19)

Where s is the number of stories.
The vertical top load P is (see fig. 4.4):

P=F, -05F, (4.20)
The vertical top load P can be rearranged by substituting eq. (4.18) and eq. (4.19) into eq. (4.20):

F(y-0.5)

P=F,(y-05)= S

(4.21)

The relation between the horizontal top load Q and horizontal UDL W can be obtained from fig. 4.5
in a similar way as has been done for the relation between vertical top load P and vertical UDL F .
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W, =Q+0.5W,
W A—F Q
—>r — —>
Wh \ \
_’ — \‘\ _>
Wh \ — w _> —I_
— \\\ ’J
" 1 |
_’ | — \\\ _>
0.5\Nh Y . —
7’7 /II/ /II/ /\II/ |£ |£ |£ |£
o7 w W =sW, Q
(a) (b) (c)

Fig. 4.5 Cantilever subjected to different horizontal loadcases.

The horizontal roof load is:

W, = MW, (4.22)
The horizontal load W is:

W =sW, (4.23)
The horizontal top load Q is (see fig. 4.5):

Q =W, —0.5W, (4.24)

The horizontal top load Q can rearranged by substituting eq. (4.22) and eq. (4.23) into eq. (4.24):

Q=W,(y-05)= M (4.25)
Substituting eq. (4.21) and eq. (4.25) into eq. (4.17) leads to the following expression:
—Wl(y_0'5)+0.5\Nl +—F(7;0'5)y+0.5Fy = kyl (4.26)
Eq. (4.26) can be rearranged to find the horizontal displacement y at the top:
- 2|<\|NI T 2k\|NI e 2a)kV\|”— F (4.27)
{2(y;o.5)+1} [s+257/—1}
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If the denominater is zero, instability occurs and the critical load is:
F. =2akl = oF,, (4.28)
Where reduction factor o takes the influence of the vertical top load P into account, which leads to:

S

S+2y-1
If y=05,then w=1and F, =F,.
In absence of vertical top load P and uniformly distributed vertical load f the first-order
deformation at the top is:
o w W{(Zy—l)ﬂl W[s + 2]/—1) y
s s
> W = = 4.30
o= ok 2k 2k 2ak (4.30)
Substituting eq. (4.28) and eq. (4.30) into eq. (4.27) leads to the following expression:
FC’I’
2kl F. F n
= = r = = 4.31
y Zwkl—Fyo Fc,r_Fyo i_lyo n_lyo ( )
F
Where the critical load ratio is
Fl
n=—"L 4.32
= (4.32)

The amplification factor Ll takes the second-order effects caused by vertical load P + F into

account.
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5 Flexural cantilever

5.1 Vertical top load

A stick-spring model is used here to obtain an approximate solution for the overall critical load of a
flexural cantilever subjected to a vertical top load P (see fig. 5.1a). As earlier has been shown a
flexural cantilever subjected to a vertical top load P can be transformed into a stick-spring model
subjected to a vertical top load P and a horizontal load Q (see fig. 5.1b).

In this model a flexural cantilever is replaced by a horizontal translation spring k ,

which takes the individual bending stiffness EI into account. Therefore spring stiffness k is a
function of the individual bending stiffness of the flexural cantilever k = f (El).

PREPSS PREPS

¢ Q ky

—> <4—
na
k=f(El)
A

El = |
74

7
(a) (b)

Figure 5.1 Transformation flexural cantilever into a stick-spring model for loadcase P .

Yo Yo
Q Af—H Q A#—H
—> —p <+
k Ky,
A
S

(a) (b)

Figure 5.2 First-order deformations flexural cantilever caused by horizontal top load Q .
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The behaviour of a flexural cantilever, which is subjected to a horizontal top load Q , consists of one
mode of deformation: individual bending deformation yg, .
The first-order deformation at the top of the flexural cantilever is (see fig. 5.2a):

Ql®
= 5.1
Yo 3E| (5.1)
The first-order deformation at the top of the stick-spring model is (see fig. 5.2b):
Q
== 5.2
Yo K (5.2)
Both deformations are the same yielding the horizontal translational spring stiffness K :
3El
It has also been shown that the critical load of the stick-spring model is (see eq. (4.3)):
Pcr =k (54)
After substituting eq. (5.3) into eq. (5.4) the critical load of the stick-spring model is [1, 2]:
3El
I:)cr = |_2 (55)
The actual individual bending critical load of a flexural cantilever for loadcase P is [4]:
2
z°El  2.4674El
Per = I:)cr;EI = 412 = 12 (5.6)

The individual bending critical load of the stick-spring model (see eq. (5.5)) is about 21.6% larger then
the actual individual bending critical load of a flexural cantilever (see eg. (5.6)),

because the individual bending deflection shape of a flexural cantilever is not identical to the
individual bending buckling shape of a flexural cantilever. The deflection shape of a flexural
cantilever is a third order function and the buckling shape of a flexural cantilever is a cosine function.

32



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

5.2 Uniformly distributed vertical load

In a similar way a stick-spring model is used here (see fig. 5.3b) to obtain an approximate solution for
the overall critical load of a flexural cantilever subjected to a uniformly distributed vertical load f

(see fig. 5.3a).

Ak A2k

—» <4+
—> 71
—>
f ¢ , k=f(El)
A w__,
El - —p |
—>
—>
>
—> 4
/]
(a) (b)
Figure 5.3 Transformation flexural cantilever into a stick-spring model for loadcase F .
i i
—> —> <+
—> —> ky
—> —> 0
w A w
—> - —>
_> _>
—> —>
_> _> H
/77
(a (b)
Figure 5.4 Deformations flexural cantilever caused by horizontal UDL w.
The first-order deformation at the top of the flexural cantilever is (see fig. 5.4a):
wl*
= 5.7
Yo SE| (5.7)
The first-order deformation at the top of the stick-spring model is (see fig. 5.4b):
wi
=— 5.8
Yo oK (5.8)

33



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

Both deformations are the same yielding the horizontal translational spring stiffness k :
k=—1 (5.9)

It has also been shown that the critical load of the stick-spring model is (see eq. (4.12)):
F, =2kl (5.10)

After substituting eq. (5.9) into eq. (5.10) the critical load of the stick-spring model is [1, 2]:
F,=— (5.11)

The actual individual bending critical load of a flexural cantilever for loadcase F is [5]:

7.837El

E : (5.12)

or — I:cr;EI =

The individual bending critical load of the stick-spring model (see eq. (5.11)) is about 2.1% larger then
the actual individual bending critical load of a flexural cantilever (see eq. (5.12)), because the
individual bending deflection shape of a flexural cantilever is not identical to the individual bending
buckling shape of a flexural cantilever. The deflection shape of a flexural cantilever is a fourth order
function and the buckling shape of a flexural cantilever can be approximated by a cosine function.
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5.3 Load combination

In a similar way a stick-spring model is used here (see fig. 5.5b) to obtain an approximate solution for
the overall critical load of a flexural cantilever subjected to a vertical top load P and a uniformly
distributed vertical load f (see fig. 5.5a).

<_
1>
s

(a)

Figure 5.5 Transformation flexural cantilever into stick-spring model (vertical UDL).

Q Q

—> —>
—> —>
w—» AW —P»
—> = —
—> —>
—> —>
—> — >

ST

(a) (b)

Figure 5.6 Deformations flexural cantilever caused by horizontal top load Q and horizontal UDL w.
The first-order deformation at the top of the flexural cantilever is (see fig. 5.6a):

QI w*
Yo =361 " 8El (613)

By substituting eq. (4.9) and eq. (4.25) into eq. (5.13) the first-order deformation at the top of the
flexural cantilever can be rearranged into:

W3 (»-05) WI?
= + 5.14
Yo = 3E ( s j 8EI (5.14)
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It has also been shown that the first-order deformation at the top of the stick-spring model is
(see eq. (4.30) and fig. 5.16b)):

w
- 5.15
Yo 2k (5.15)
Both deformations are the same yielding:
3 _ 3
1 | (7/ o.5j+ | (5.16)
20k 3EI S 8EI
It has been shown that the critical load of the stick-spring model is (see eq. (4.28)):
F. =2kl (5.17)
After substituting eq. (5.16) into eq. (5.17) the critical load of the stick-spring model is:
2 _ 2
11 | (7/ o.5j+ | (5.18)
F, 2okl 3EI{ s 8EI
In general, the critical load in eq. (5.18) can be written as:
1, _ 1 (;/—O.SJ+ 1 (5.19)
O S Fer.en
Where the critical loads obtained from the stick-spring model are for :
¢ Individual bending for loadcase P [1, 2]:
3El
I:>cr;EI :|_2 (520)
e Individual bending for loadcase F [1, 2]:
8EI
I:cr;EI :|_2 (521)
But the actual critical loads are for:
e Individual bending for loadcase P [4]:
7%El
I:>cr;EI = 4|2 (522)
e Individual bending for loadcase F [5]:
7.837El
I:cr;EI = (523)

|2
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Eq. (5.18) gives an overestimated individual bending critical load, because the individual bending
critical loads (see eg. (5.20) and eq. (5.21)) are overestimated in the stick-spring-model.

If the actual values for individual bending (see eq. (5.22) and eg. (5.23)) are substituted in eq. (5.19)
the critical load can be rearranged into:

2 2
L_4 (7‘0'5j+ ! (5.24)
F.~Z2EI\ s ) 7.837El

The ratio for the individual bending critical loads is:

Femr  7.837El 417

2 2
P 1> 7%El

=3.176 (5.25)

By substituting eq. (5.25) into eq. (5.24) the critical load can be rearranged into:

1 __1 {3.176(7/ _SO'5J+1}— ! 1 (5.26)

! - = !
Fer criEl aFcr;EI Fcr;EI

The actual individual bending critical load for a flexural cantilever for loadcase P + F is [17]:

7.837cEl

Fc,r = I:c’r;EI = aFcr;EI = |2 (527)

Where:
a is a reduction factor for the bending critical load, which takes the influence of the vertical top load
P into account and can be given by:

1 1 S

_ = 5.28
7—0.5)+1 3.176(y —05)+s s+3.176(y — 0.5) (5.28)

o=

3.176(
S S

Eq. (5.27) gives a conservative critical load, because the individual bending buckling shape for
loadcase P (see fig. 5.1a) is not identical to the individual bending buckling shape for loadcase F
(see fig. 5.3a).
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6 One bay braced frames

6.1 Braced frames with non-continous columns

A braced frame with non-continous columns is a structure consisting of columns,
beams and diagonals, which are pin-connected to each other (see fig. 6.1).
The columns of the frame are non-continous and pin-connected to the base.

A,

Figure 6.1 Braced frames pin-connected to base.

The buckling behaviour of a braced frame with non-continous columns pin-connected to the base can
be divided into 2 modes of deformation:
e Global bending (EAcz): axial deformation in the columns (shortening at one side and

lengthening at the other side) (see fig. 6.2a).
e Racking shear GA axial strains in the diagonals (see fig. 6.2b).

£l

EAc =f(Ac) GA:f(Ab,Ad)
(a) (b)

Fig 6.2 Modes of deformation of a braced frame with non-continious columns.

Assumptions:
e The columns, beams and diagonals are hinged connected to each other.

e The braced frame is pin-connected to the base.
e The columns are non-continous and therefore the individual bending stiffness is zero EI =0.
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e The braced frame has two lateral stiffness parameters EAc? = f(A,) and GA= f(A,, A, ).
e There is no connection between the diagonals.

6.1.1 Vertical top loads

A stick-spring model is introduced here to obtain an approximate solution for the overall critical load
of a one-bay braced frame with non-continous columns (see fig. 6.3a). The braced frame is subjected
to vertical top loads and can be transformed into a shear-flexure cantilever with global bending
stiffness EAc® = f(A, ) and racking shear stiffness GA= f(A,, A, ) (see fig. 6.3b).

This shear-flexure cantilever can be transformed into a stick-spring model (see fig. 6.3c).

In this model a shear-flexure cantilever is replaced by a horizontal translation spring k,

which takes the global bending stiffness EAc? and the racking shear stiffness GA of the shear-flexure
cantilever into account. Therefore spring stiffness k is a function of the global bending stiffness

EAc? and of the racking shear stiffness GA of the shear-flexure cantilever k = f(EAcz,GA).

y y
A—H W
¢ P P
Q K
k = (EAC?, GA)
A A .
EAc? = f(A,) EAc? =
GA= (A, A) GA =0
.
/77 7

(b) (c)

Figure 6.3 Transformation braced frame into stick-spring model (vertical top loads).

Yeac2 Yea

K

Ay =GA=c0 A, =EAc® =
() (b) ©)

Figure 6.4 Deformations braced frame caused by horizontal load Q .

The first-order deformation at the top of the braced frame is (see fig. 6.4a/b):
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Q' Q

= + [ A
Yo = Yenr TYoa T 57 T

The first-order deformation at the top of the stick-spring model is (see fig. 6.4c):

_Q
YO—k

Both deformations are the same yielding the horizontal translational spring stiffness k :

1 1B

= + —
k 3EAc? GA

It has been shown that the critical load of the stick-spring model is (see eq. (4.3)):

P, =kl

cr

After substituting eq. (6.3) into eq. (6.4) the critical load of the stick-spring model is:

1 1 |2 1

= + —
P, kI 3EAC’ GA

In general, the critical load of eqg. (6.5) can written as:

1 1 1
— = +

Pcr Pcr;EA(:2 I:)cr;GA

Where the critical loads obtained from the stick-spring model are for:

e Global bending [1, 2]:

3EAC?

cr;EAc2 = |2

¢ Racking shear [5]:

Perea = GA

But the actual critical loads are for:

e Global bending [4]:

_ 7°EAc?
cr;EAc2 - 4| 2

e Racking shear [5]:

P

C

rGA — GA
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The global bending critical load of the stick-spring model (see eq. (6.7)) is about 21.6% larger then the
actual global bending critical load of a braced frame (see eq. (6.9)), because the global bending
deflection shape of a braced frame is not identical to the global bending buckling shape of a braced
frame. The deflection shape of a braced frame is a third order function and the buckling shape of a
braced frame is a cosine function.

The racking shear critical load of the stick-spring model (see eq. (6.8)) is equal to the actual racking
shear critical load of a braced frame (see eq. (6.10)), because the racking shear deflection shape of a
braced frame (see fig. 6.5a) is identical to the racking shear buckling shape of a braced frame

(see fig. 6.5b). The racking shear buckling shape of a braced has not a definite buckling shape,

which means the racking shear buckling shape can assume any form even the form of the racking
shear deflection shape. Therefore different racking shear buckling shapes have one eigenvalue and one
critical load. If a braced frame has eight storeys, eight different racking shear buckling shapes have
one eigenvalue and one critical load.

(a) (b)

Figure 6.5 Racking shear shapes of braced frames caused by top loads.

If the actual values for global bending (see eq. (6.9)) and racking shear (see eq. (6.10)) are substituted
into eq. (6.6) the critical load of a braced frame becomes:

1 41? 1

_:—+_
P. 7?EAc® GA

cr

(6.11)

Eq. (6.5) gives in most cases an overestimated critical load, because the global bending critical load
(see eq. (6.7)) is overestimated by 21.6% in the stick-spring model. If the actual values for global
bending (see eg. (6.9)) and racking shear (see eq. (6.10)) are substituted into eg. (6.6) the critical load
is now conservative (see eq. (6.11)), because the global bending buckling shape (see fig. 6.6a) is not
identical to the racking shear buckling shape (see fig. 6.6b).

(a) (b)

Figure 6.6 Buckling shapes for loadcase P .
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6.1.2 Uniformly distributed vertical loads
In fig. 6.7a a braced frame with non-continous columns is subjected to vertical point loads F, accept
for the point loads at the roof and at the bottom of the frame which are 0.5F, .

In a similar way the stick-spring model can be used here to obtain an approximate solution for the
overall critical load of a braced frame. First a braced frame subjected to vertical point loads is
transformed into a shear-flexure cantilever subjected to a vertical UDL f (see fig. 6.7b),

which then can be transformed into a stick-spring model (see fig. 6.7c¢).

y y y

R o Ak
—» i
—»
—>
—> EAC®,GA)
aad I
—»
—»
—»
—>
—Pp 74

()

Figure 6.7 Transformation braced frame into stick-spring model (uniformly distributed vertical loads).

Yenc2 Yea
—H—F
—> —>
—> —>
—> —>
—> —> A
W _—» +p =

—> —>
_k _>
—> —>

Ay =GA=w A, = EAc? =0

(a) (b) (c)

Figure 6.8 Deformations X-braced frame caused by horizontal UDL w.

The first-order deformation at the top of the braced frame is (see fig. 6.8a/b):

wl? w2

—t— 6.12
8EAc? 2GA (6.12)

Yo = Yep2 T¥er =
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The first-order deformation at the top of the stick-spring model is (see fig. 6.8c):

wi
=— 6.13
Yo oK (6.13)
Both deformations are the same yielding the horizontal translational spring stiffness k :
3
I (6.14)
k 4EAc® GA
It has been shown that the critical load of the stick-spring model is (see eq. (4.12)):
Fe = 2Kkl (6.15)
After substituting eq. (6.14) into eq. (6.15) the critical load of the stick-spring model is:
2
S S (6.16)
F., 2kI 8EAc® 2GA
In general, the critical load of eg. (6.16) can be written as:
t__t .1 (6.17)
Fcr Fcr;EAcz I:cr;GA
Where the critical loads obtained from the stick-spring model are for:
e Global bending [1, 2]:
_ 8EAc? 6.18
crEAC T |2 (6.18)
e Racking shear [18-21]:
Feroa = 2GA (6.19)
But the actual critical loads are for:
e Global bending [5]:
7.837EAC®
cr;EAC? - |2 (620)
e Racking shear (see eg. (6.28)):
Fcr;GA =nGA (621)
Where 7 is a factor which takes the effect of the different normal forces N, iever @nd
N ame INto account for loadcase F :
S
= 6.22
7 s—-05 (6.22)
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The global bending critical load of the stick-spring model (see eq. (6.18)) is about 2.1% larger then the
actual global bending critical load of a braced frame (see eq. (6.20)), because the global bending
deflection shape of a braced frame is not identical to the global bending buckling shape of a braced
frame. The deflection shape of the braced frame is a fourth order function and the buckling shape of
the braced frame can be approximated by a cosine function.

The racking shear critical load of the stick-spring model (see eq. (6.19)) is about 100% larger then the
actual racking shear critical load of eq. (6.21), because the racking shear deflection shape of a braced
frame (see fig. 6.9a) is not identical to the racking shear buckling shape of a braced frame

(see fig. 6.9b). The racking shear buckling shape of a braced has a definite buckling shape,

which means the racking shear buckling shape can assume only one form.

Therefore the racking shear buckling shape has one eigenvalue and one critical load.

2222222

(a) (b)

Figure 6.9 Racking shear shapes braced frame caused by UDL.

If the actual values for global bending (see eq. (6.20)) and racking shear (see eq. (6.21)) are substituted
into eq. (6.17) the critical load of a braced frame becomes:

N & L1
F, 7.837EAc? nGA

(6.23)

Eqg. (6.16) gives in most cases an overestimated critical load, because the global bending critical load
(see eq. (6.18)) is overestimated by 2.1% and the racking shear critical load (see eq. (6.19)) is
overestimated by nearly 100 % in the stick-spring model. If the actual values for global bending

(see eq. (6.20)) and racking shear (see eq. (6.21)) are substituted into eq. (6.17) the critical load is now
conservative (see eq. (6.23)), because the global bending buckling shape (see fig. 6.10a) is not
identical to the racking shear buckling shape (see fig. 6.10b).

(a) (b)

Figure 6.10 Buckling shapes for loadcase F with F_ ., =7GA.
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Now the derivation of the actual racking shear critical load of a braced frame will be given
(see eq. (6.21)). A lower bound for the racking shear critical load of a braced frame subjected to
floor loads F, can be found by assuming a shear cantilever subjected to UDL f , which gives:

F =GA (6.24)

cr;GA;cantilever

{

N frame — (S - 0-5) Fv = 3-5Fv Ncantilever =F= SFV = 4Fv

(a) (b) () (d)

Figure 6.11 Influence of normal force on the racking shear critical load F ., -

From the racking shear buckling shape of a braced frame it can be seen that the first-storey sways and
the other storeys remain vertical (see fig. 6.11a). The normal force N ;.. ina braced frame at the first

storey is (see fig. 6.11b):

N frame = (s —0.5)F, (6.25)

From the racking shear buckling shape of a shear cantilever it can be seen that a cantilever sways at
the bottom and the rest remains vertical (see fig. 6.11c). The normal force N in a cantilever at

the bottom is: (see fig. 6.11d):

cantilever

N =F =sF, (6.26)

cantilever
At buckling the normal force in the shear cantilever is half a floor load larger (0.5F,) then the normal

force in a braced frame. Therefore the racking shear critical load of a shear cantilever is lower then the
racking shear critical load of a braced frame and eq. (6.24) has to be rearranged, to take the effect of
the larger normal force into consideration, which leads to the actual racking shear critical load of a
braced frame:

N .
Fcr;GA — I\clantllever GA (627)

frame

Substituting eq. (6.25) and eq. (6.26) into eq. (6.27) leads to the actual racking shear critical load of a
braced frame subjected to floor loads F, :

I:cr;GA = UGA (628)

Formula (6.28) gives a mathematically exact racking shear critical load, because the racking shear
buckling shape of a braced frame (see fig. 6.11a) is identical to the racking shear buckling shape of a
shear cantilever (see fig. 6.11c) if factor # is taken into account.
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6.1.3 Load combinations
In fig. 6.12a a braced frame with non-continous columns is subjected to vertical point loads F, accept
for the point load at the roof, which is F, and the load at the bottom, which is 0.5F, .

In a similar way the stick-spring model can be used here to obtain an approximate solution for the
overall critical load of a braced frame. First a braced frame subjected to vertical point loads is
transformed into a shear-flexure cantilever subjected to a vertical top load P and a vertical UDL f

(see fig. 6.12b), which then can be transformed into a stick-spring model (see fig. 6.12c).

| v

> ¥
_> ¢

—>

—> EAC®,GA)
aad I
—»

—»

—»

—>

—» 74

Figure 6.12 Transformation braced frame into stick-spring model (load combination).

Yeac? Yoa Yo
Q A —H Q AH—+H Q #—*
>
2 2 et
— > —> k
—> —» - —»
W _—p T W
—> —> —>
— —> —>
—> —> —
Ay =GA= o0 A, = EAC? =

(a) (b) (c)

Figure 6.13 Deformations X-braced frame caused by load combination.

The first-order deformation at the top of the braced frame is (see fig. 6.13a/b):

3 wl? I wl?
Q + +Q—+

6.29
3EAc? 8EAc? GA 2GA (6.29)

Yo =VYea2 TYon =
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By substituting eq. (4.9) and eq. (4.25) into eq. (6.29) the first-order deformation at the top of the
braced frame can be rearranged into:

3 _ 3 _
o - WI* (y-05) WI° Wl (y-05) Wil (6.30)
3EACZ( s 8EACZ  GAl s 2GA

It has been shown that the first-order deformation at the top of the stick-spring model is
(see eq. (4.30) and fig. 6.13c):

W

Yo=o (6.31)
Both deformations are the same yielding k :

2¢1ok - 3EI,:C2 (7_50.5}- 8EI,Z\C2 +é(7_50-5)+ﬁ (632)
It has been shown that the critical load of the stick-spring model is (see eq. (4.28)):

F. = 2wkl (6.33)

After substituting eg. (6.32) into eq. (6.33) the critical load of the stick-spring model is:

2 _ 2 B
1 __t _ | Z(y 0.5)+ | 2+i(}/ 0.5}+ 1 (6:34)
F, 2akl 3EAC’\ s 8EAc® GA( s 2GA

In general, the critical load in eq. (6.34) can be written as:

L,: 1 (7—0.5)+ 1 1 (y—o.sJ+F1 (6.35)

S Fcr;EA02 Pcr;GA S cr;GA

P
cr or:EAc?

Where the critical loads obtained from the stick-spring model are for:
e Global bending for loadcase P [1, 2]:

cr;EAC? :?’E%CZ (6.36)
e Global bending for loadcase F [1, 2]:
8EAC’
criEac? |2 (6.37)
e Racking shear for loadcase P [5]:
Periea = GA (6.38)
e Racking shear for loadcase F [18-21]:
Feoa = 2GA (6.39)
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But the actual critical loads are for:
e Global bending for loadcase P [4]:

2 2

r:EAC? :% (6.40)

e Global bending for loadcase F [5]:
2

o % (6.41)
e Racking shear for loadcase P [5]:

Periea = GA (6.42)
e Racking shear of a shear cantilever for loadcase F [22]:

Fcr;GA;cantiIever =GA (6.43)

Eqg. (6.34) gives an overestimated critical load, because the global bending critical loads

(see eq. (6.36) and eq. (6.37)) and the racking shear critical load (see eq. (6.39)) are overestimated in
the stick-spring-model. If the actual values for global bending (see eq. (6.40) and eq. (6.41)) and
racking shear (see eq. (6.42) and eq. (6.43)) are substituted into eq. (6.35) the critical load is:

2 _ 2 _
i,: 24| 2(7/ 0.5)+ | 2+i(}/ o.5j+i (6.44)
Fe 7°EAc( s 7.837EAc® GAl s GA

The ratio for the global bending critical loads is:

Foea?  7.837EAC? 412
|2 7?EAC?

=3.176 (6.45)

l:::r;EAcZ
The ratio for the racking shear critical loads is:

F..
crica _ GA 1 (6.46)
PCI';GA GA

By substituting eq. (6.45) and eq. (6.46) into eq. (6.44) the critical load is:

L1 {3.176(7/_0'5)+1}+ 1 {(7_0'5}1}: r 1 (6.47)
Foo o Forea S Ferica S aF a2 PFecn

In general, the critical load of eq. (6.47) can be written as:

1,1 (6.48)
Fcr Fcr;EA02 I:cr;GA
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Where the critical loads are for:
e Global bending [17]:

_ 7.837aEAc?

criEAC? E

FV

cr;EAC?

—oF (6.49)

, Where « is a reduction factor for the bending critical load, which takes the influence of the
vertical top load P into account is:

S

s+3.176(y —0.5) (6.50)
e Racking shear of a shear cantilever:
I:c'r;GA;cantiIever = fGA (6.51)

, Wwhere £ is a reduction factor for the racking shear critical load, which takes the influence of
the vertical top load P into account is:

1 1 s

_ - _ 6.52

P (7—0.5)+1 (y-05)+s s+y-05 (6:52)
S S

Formula (6.49) gives a conservative critical load, because the global bending buckling shape for
loadcase P (see fig. 6.6a) is not identical to the global bending buckling shape for loadcase F
(see fig. 6.10a).

A lower bound for the racking shear critical load of a braced frame can be found by assuming a shear
cantilever. It has been shown that the racking shear critical load of a shear cantilever is (see eq. 6.51)):

I:c’r;GA;cantilever = fGA (6.53)

F, =P+05F, P ¢ P
if

A ¥
P +(s-05)F, =P +35F, N

) f
cantilever — P+F=P+ SFV =P+ 4FV

(a) (b) (c) (d)

Figure 6.14 Influence normal force on racking shear critical load F_., .

NI

frame
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From the racking shear buckling shape of a braced frame it can be seen that the first-storey sways and

!

the other storeys remain vertical (see fig. 6.14a). The normal force N, in a braced frame at the first
storey is (see fig. 6.14b):

N e = (s—0.5)F, + P=(s—0.5)F, +(y —0.5)F, =(s + y —1)F, (6.54)

From the racking shear buckling shape of a shear cantilever it can be seen that a cantilever sways at

!

the bottom and the rest remains vertical (see fig. 6.14c). The normal force N/, eer 1N @ braced frame
at the bottom is (see fig. 6.14d):
N !

cantilever

=sF, + P=sF, +(y - 0.5)F, =(s+ » - 0.5)F, (6.55)

At buckling the normal force in a shear cantilever is half a floor load larger (0.5F,) then the normal

force in a braced frame. Therefore the racking shear critical load of a shear cantilever is lower then the
racking shear critical load of a braced frame and eq. (6.53) has to be rearranged, to take the effect of
the larger normal force into consideration, which leads to:

N fani
Foron = I\T‘L'“f SGA (6.56)

frame

Substituting eq. (6.54) and eg. (6.55) into eq. (6.56) leads to the actual shear critical load:
Ferea =7'BGA (6.57)

Where 7" is a factor which takes the effect of the different normal forces N/, ijever @10 N ame INtO
account for loadcase P + F :

77'2 N(,:antilever — S+7_0'5
N s+y-1

frame

(6.58)

For the case when the roof load is half the floor load (y = 0.5), which is identical to a UDL, ' is:

Formula (6.57) gives a mathematically exact racking shear critical load, because the racking shear
buckling shape of a cantilever (see fig. 6.14c) is identical to the racking shear buckling shape of a
braced frame (see fig. 6.14a).

If the actual values for global bending (see eq. (6.49)) and racking shear (see eq. (6.57)) are substituted
into eq. (6.48) the critical load of a braced frame becomes:

1 12 L1
F.. 7.837aEAc? 7'BGA

(6.59)

Formula (6.59) gives a conservative critical load, because the global bending buckling shape for
loadcase P+ F (6.15a) is not identical to the racking shear buckling shape for loadcase P + F
(see fig. 6.15h).
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v

y

(a) (b)

Figure 6.15 Buckling shapes for loadcase P + F with F ;4 =7'AGA.
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6.2 Lateral stiffnesses of braced frame with non-continous columns

6.2.1 Global bending stiffness
The global bending stiffness caused by the axial deformation in the columns (shortening of the

columns at one side and lengthening at the other side) can be obtained from (see fig. 6.16):

EAc? = Y EAC,’ (6.60)

where E is the elastic modulus, A is the cross-sectional area of the column and c; is the distance
between the neutral axis of the column NA, and the neutral axis of the X-braced frame NA . -

Figure 6.16 Global bending stiffness braced frame with non-continous columns.

6.2.2 Racking shear stiffness

The racking shear stiffness GA can be defined as the resistance of a structure against shear.

The racking shear stiffness GA of an X-braced frame is caused by axial strains in the diagonals.
Values of the racking shear stiffness can be obtained by analysing one storey of an X-braced frame.
The racking shear stiffness of different bracing types has been derived earlier [23].

The racking shear stiffness of an one-bay X-braced frame is (see fig. 6.17a):

2a’hE
The racking shear stiffness of an one-bay K-braced frame is (see fig. 6.17b):
2d° a® |’
GA, = aZhE{— +—} (6.62)
Ay 4A
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The racking shear stiffness of an one-bay N-braced frame is (see fig. 6.17c):

2 @
GA, =a2hE{—+—}
A A

The racking shear stiffness of an one-bay Knee-braced frame is (see fig. 6.17d):

GA

3 3 2 2,270
:2mzhE{d_+g_+m}
A, A 6al,

I~

I~

I
I

A4
I I

(c) (d)

Figure 6.17 Bracing types.
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6.3 Accuracy

To establish the accuracy of the stick-spring model, critical loads of a number of one-bay X-braced
frames were estimated using the stick-spring model and a finite element analyses. Finite element
program ANSY'S was used to obtain the eigenvalues of the braced frames. The braced frames have
non-continous columns and pinned supports and the height of the frames varied from eight to forty
stories. The X-braced frames are subjected to three different loadcases (see fig. 1.5):

e Vertical top loads (see fig. 1.5a).

e Uniformly distributed vertical loads (see fig. 1.5b).

e Load combinations (see fig. 1.5c).
Five different cases will be investigated for one-bay X-braced frames:
Global bending deformation only (see fig. 6.18a).
Racking shear deformation only (see fig. 6.18b).
All deformations together (see fig. 6.18a/b).
Influence of varying cross-sectional area of the columns A, on the critical load.

e Influence of varying cross-sectional area of the diagonals A, on the critical load.

A, Aq
A = A =
EAc? = f(A,) GA=f(A,. A)

(a) (b)

Fig 6.18 Cases to investigate for braced frames with non-continous columns.

The first two cases only represent theoretical cases, but the inclusion of them is very important to
make a well-based judgement on the accuracy of the stick-spring model.
The critical loads found with the finite element method are assumed to be exact.

P - P ANSYS
The errors are calculated as follows A = — (ANSYS)

cr(ANSYS)
If the error is negative the stick-spring model gives a conservative value for the critical load.

x100% .
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6.3.1 Numerical model

The numerical model is built up from LINK1 elements. LINK1 elements can only sustain
normal forces (see fig. 6.19). The columns, beams and diagonals are all LINK1 elements with a
cross-sectional area A, A; or A, . All the connections between these LINK1 elements are hinged.

The columns are pin-connected to the base. For this investigation it is assumed that the braced frame
has an uniform cross-sectional area of the columns A_, of the diagonals A, and of the beams A, up

the height.
Ay

Aq A

LINK1

Figure 6.19 Numerical model for a braced frame with non-continous columns.

6.3.2 Example
An eight storey high one bay X-braced frame with non-continous columns (see fig. 6.20)

has a global bending stiffness EAc?, a racking shear stiffness GA and is subjected to three different
loadcases. The characteristics of the braced frame can be found in table 6.1.

¥

=24

a=3

Figure 6.20. Example of braced frames with non-continous columns.
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Table 6.1. Characteristics

Columns UC305x137 (305x305x137 mm)

Cross-sectional area: A=1.744E-02 m*
Second moment of area: 1,=3.281E-04 m*
Beams UB356x45 (356x171x45 mm)

Cross-sectional area: A,=5.733E-03m*
Second moment of area: 1,=1.207E-04 m*
Diagonals 250x15 mm

Cross-sectional area: A4=3.75E-03 m’
Second moment of area: 1,=1.953E-05 m*
Elastic modulus: E=2.00E+05 MN/m’

6.3.2.1 Stiffness parameters
The global bending stiffness is (see eq. (6.60)):

EAc? = Y EA,c;” = 2EAC;” =2x2x10° x1.744-107 x1.52 =15696MN
The racking shear stiffness is (see eq. (6.61)):

_2a’hEA; 2x3°x3x2x10°x3.75x10"°

MAE (8v2f

6.3.2.2 Vertical top load
The global bending critical load is (see eq. (6.9)):

=530.3MN

_ 7°EAC®  7°x15696

criEAC? 4]2 - A x 242

=67.24MN

The racking shear critical load is (see eq. (6.10)):

Pyr.ca = GA=530.3MN

The critical load is (see eg. (6.6)):

-1
a
po|t 1 :{ 1 1 } — 59.67MN
P Py 67.24 ' 530.32

cr;EAC?
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6.3.2.3 Vertical UDL
The global bending critical load is (see eq. (6.20)):

_ 7.837EAc?  7.837x15696
cr;EAC2 - |2 - 242

=213.6MN

Reduction factor 77 is (see eq. (6.22)):

S _ 8 _18_ 0666
s—05 8-05 15

n

The racking shear critical load is (see eq. (6.21)):

Fer.ea =1GA=1.0666 x 530.3 = 565.7MN

The critical load is (see eqg. (6.17)):

1
-1
Fcr=[ t 1 ] =[ 1 1 } —155.0MN

+
Foeaz  Foron 2136 565.7

6.3.2.4 Load combinations
If the vertical top load is 4 times the floor loading factor y is (see eq. (4.18)):

Reduction factor for the bending critical load « is (see eqg. (6.50)):

o - S _ 8
s+3.176(y -0.5) 8+3.176(4-0.5)

=0.4185

The global bending critical load is (see eq. (6.49)):

2
BT E  —04185%213.6=89.37MN
cr;EAc | 2 cr;EAc

Reduction factor for the racking shear critical load £ is (see eqg. (6.52)):

S 8

B = - = 0.6957
s+7-05 8+4-05

Reduction factor 7" is (see eq. (6.58)):

, S+y-05 8+4-05
S+y-1 8+4-1

=1.0455
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The racking shear critical load is (see eq. (6.57)):

Fer.n = 77/AGA =1.0455x 0.6957 x 530.3 = 385.7MN

The critical load is (see eqg. (6.48)):

cr;EAc2

S PR SO S R P S P
F’ Fooa| 18937 3857

All critical loads in this example calculated by the stick-spring model are in bold type and can be
found in tables 6.2-6.11.
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6.3.3 Results

The figures and tables below present the results of the critical loads obtained from the stick-spring
model and the numerical analysis. Table 6.2 shows the accurracy of the global bending critical loads

P eac? and F__ , and table 6.3 of the racking shear critical loads P,.;, and F.;, and table 6.4 of

cr;EAc
the critical loads P, and F . Table 6.5 shows the accuraccy of the global bending critical load

' table 6.6 of the racking shear critical load F/.;, =7'8GA, table 6.7 of the critical load F .

cr:EAc? !
Table 6.8 and 6.9 show the accurracy of the critical loads P, and F, by varying the cross-sectional
area of the columns A, and table 6.10 and 6.11 show the accurracy of the critical loads P,, and F_ by

varying the cross-sectional area of the diagonals A, . The errors for practical tall building structures
are given in red.

Table 6.2. Critical loads for braced frames with non-continous columns, global bending deformation only.

Number | Vertical top load P with ubL F(y = 0.5) with

of
storeys P , = 7°EAC’ _7.837 EAc?
S [ cr;EAc 412 crEAC 12
(see eq. (6.9)) (see eq. (6.20))
Critical loads P, [MN] Critical loads F_, [MN]
Stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A %] | spring A [%]
model model

8 67.24 67.93 -1.0 213.6 216.1 -1.2

16 16.81 16.84 -0.2 53.39 53.54 -0.3

24 7.47 7.48 -0.1 23.73 23.76 -0.1

32 4.20 4.20 -0.1 13.35 13.36 -0.1

40 2.69 2.69 0.0 8.54 8.55 0.0

Table 6.3. Critical loads for braced frames with non-continous columns, racking shear deformation only.

Number |  Vertical top load P with UDL F(;/ - 0_5) with

of
storeys Perica = GA Feroa =11GA
S [] (see eg. (6.10)) (see eq. (6.21))
Critical loads P, [MN] Critical loads F_, [MN]
Stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A[%] | spring A [%]
model model

8 530.3 530.3 0.0 565.7 565.7 0.0

16 530.3 530.3 0.0 547.4 547.4 0.0

24 530.3 530.3 0.0 541.6 541.6 0.0

32 530.2 530.2 0.0 538.7 538.8 0.0

40 530.2 530.2 0.0 537.0 537.0 0.0

Table 6.4. Critical loads for braced frames with non-continous columns, all deformations together.

Nun}ber Vertical top load P UDL F(}/ = 0_5)
0
storeys Critical loads P, [MN] Critical loads F_, [MN]
S [ (see eq. (6.6)) (see eq. (6.17))
Stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A [%] | spring A [%]
model model
8 59.67 60.06 -0.6 155.0 179.7 -14
16 16.29 16.32 -0.2 48.65 51.04 -4.7
24 7.37 7.37 -0.1 22.73 23.26 -2.2
32 4.17 4,17 -0.1 13.03 13.20 -1.3
40 2.68 2.68 -0.0 8.41 8.48 -0.8
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Table 6.5. Critical loads for braced frames with non-continous columns, P + F , global bending def. only.

Number 2
7.837aEAC
of Load combination P + F with F" =
storeys oriBAc |
S [ (see eq. (6.49))
Critical loads F., [MN]
y=1 y=4 y =16 y =64
Stick- | ANSYS | Error Stick- | ANSYS | Error | Stick- | ANSYS| Error | Stick- | ANSYS | Error
spring A[%] | spring A [%] | spring A [%] | spring A [%]
model model model model
8 178.2 181.5 -1.8 89.37 91.38 -2.2 29.85 30.30 -1.5 8.15 8.15 -1.0
16 48.57 48.92 -0.7 31.50 32.01 -1.6 13.10 13.26 -1.2 3.92 3.92 -0.6
24 22.26 22.35 -0.4 16.22 16.43 -1.3 7.78 7.88 -1.3 2.52 2.52 -0.6
32 12.72 12.76 -0.3 9.91 10.02 -1.1 5.26 5.33 -14 1.83 1.83 -0.7
40 8.22 8.24 -0.3 6.69 6.76 -1.1 3.83 3.88 -1.4 1.41 1.41 -0.8
Table 6.6. Critical loads for braced frames with non-continous columns, P + F |, racking shear def. only.
Nu(r)r}ber Load combination P+ F with Fj ., =7'SGA
storeys (see eq. (6.57))
S [ Critical loads F/. [MN]
y=1 y=4 y =16 y =64
Stick- | ANSYS | Error Stick- | ANSYS | Error | Stick- | ANSYS| Error Stick- | ANSYS | Error
spring A[%] | spring A[%] | spring A[o%] | Spring A [%]
model model model model
8 530.3 530.3 0.0 385.7 385.7 0.0 184.5 184.5 0.0 59.76 59.76 0.0
16 530.3 530.3 0.0 446.6 446.6 0.0 273.7 273.7 0.0 107.4 107.4 0.0
24 530.3 530.3 0.0 471.4 4714 0.0 326.3 | 3264 0.0 146.3 146.3 0.0
32 530.3 530.3 0.0 484.8 484.9 0.0 361.0 | 361.1 0.0 178.6 178.6 0.0
40 530.3 530.3 0.0 493.3 493.3 0.0 385.6 385.7 0.0 205.9 206.0 0.0
Table 6.7. Critical loads for braced frames with non-continous columns, P + F , all deformations together.
Number Load combination P + F
of (see eq. (6.48))
Stg”;}as Critical loads F_. [MN]
y=1 y=4 y =16 y =64
Stick- | ANSYS | Error Stick- | ANSYS | Error | Stick- | ANSYS| Error | Stick- | ANSYS | Error
spring A[%] | spring A [%] | spring A [%] | spring A [%]
model model model model
8 133.4 153.6 -13 72.56 79.97 -9.3 25.70 26.80 -4.1 7.17 7.29 -1.7
16 44.49 46.76 -4.8 29.43 30.83 -4.6 12.50 12.83 -2.6 3.79 3.82 -1.0
24 21.36 21.90 -2.5 15.68 16.15 -2.9 7.60 7.76 -2.2 2.48 2.50 -0.9
32 12.42 12.61 -1.5 9.71 9.92 -2.1 5.18 5.29 -2.0 1.81 1.83 -0.9
40 8.09 8.17 -1.0 6.60 6.71 -1.7 3.79 3.86 -1.8 1.40 1.42 -1.0

Table 6.8. Varying cross-sectional area of the columns A, for loadcase P, all deformations together.

Characteristics Vertical top load P

(see eq. (6.6))

Columns A, [m2] | EAc? MN] Error A [%]
s=8 s=16 s=24 §=32 s=40
Bar (d=10) 7.854e-5 70.686 -1.5 -0.4 -0.3 -0.2 -0.2
HE 100A 2.124e-3 19116 -0.9 -0.3 -0.1 -0.1 -0.1
HE 400A 1.59%-2 13310 -0.7 -0.2 -0.1 0.0 0.0
HE 800A 2.858e-2 25722 -0.6 0.2 -0.1 0.1 0.0
HE 1000M 4.442¢-2 39978 -0.6 -0.2 -0.1 0.0 0.0
HD 400x1086 1.815e-3 124740 -0.4 -0.1 -0.1 0.0 0.0
Fictive profile 0.25 225000 -0.3 -0.1 -0.1 0.0 0.0
Fictive profile 1 900000 -0.1 0.1 -0.1 0.0 0.0
Fictive profile 10 9000000 0.0 0.0 0.0 0.0 0.0
Fictive profile 10000 900000000 0.0 0.0 0.0 0.0 0.0
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Table 6.9. Varying cross-sectional area of the columns A, for loadcase F , all deformations together.

Characteristics UDL F
(see eq. (6.17))

Columns Ac m2] | EAc? [MN] Error A [%]
s=8 =16 s=24 $=32 s=40
Bar (d=10) 7.854e-5 70.686 -2.9 -0.8 -0.4 -0.2 0.0
HE 100A 2.124e-3 1911.6 -3.5 -1.0 -0.4 -0.2 -0.2
HE 400A 1.59-2 13310 -13 -4.3 -2.1 -1.2 -0.8
HE 800A 2.858e-2 25722 -18 -7.1 -3.5 -2.1 -1.4
HE 1000M 4.442e-2 39978 -22 -10 -5.2 -3.1 -2.1
HD 400x1086 1.815e-3 124740 -23 -21 -13 -8.4 -5.8
Fictive profile 0.25 225000 -15 -26 -19 -13 -9.5
Fictive profile 1 900000 -4.3 -15 -27 -26 -23
Fictive profile 10 9000000 -0.5 -1.8 -3.8 -6.6 -9.9
Fictive profile 10000 900000000 0.0 0.0 0.0 0.0 0.0

Table 6.10. Varying cross-sectional area of the diagonals A; for loadcase P, all deformations together.

Charecteristics Vertical top load P

(see eq. (6.6))

Diagonals Ad [m2] GA [MN] Error A [%]
s=8 =16 s=24 5=32 s=40
Bar (d=10) 7.854e-5 11.11 -0.1 -0.1 -0.1 0.0 0.0
RHS 40x40x3 4.343e-4 61.42 -0.4 -0.2 -0.1 0.0 0.0
RHS 80x80x6.3 1.815e-3 256.68 -0.6 -0.2 -0.1 0.0 0.0
RHS 160x160x8 | 4.795e-3 678.12 -0.7 -0.2 -0.1 -0.1 0.0
RHS 250x250x12.5 |1.171e-2 1656.04 -0.7 -0.2 -0.1 0.0 0.0
RHS 400x400x16 | 2.43e-1 3436.54 -0.8 -0.2 -0.1 -0.1 0.0
Fictive profile 10000 | 9000000000 | -1.0 -0.2 -0.1 -0.1 -0.1

Table 6.11. Varying cross-sectional area of the diagonals A, for loadcase F , all deformations together.

Charecteristics UDL F
(see eq. (6.17))

Diagonals A, [m2] GA [MN] Error A [%]
s=8 =16 s=24 =32 =40
Bar (d=10) 7.854e-5 11.11 -5.2 -18 -28 -25 -21
RHS 40x40x3 4.343e-4 61.42 -22 -22 -14 -9.0 -6.2
RHS 80x80x6.3 1.815e-3 256.68 -21 -8.6 -4.3 -2.6 -1.7
RHS 160x160x8 4,795e-3 678.12 -12 -3.8 -1.8 -1.0 -0.7
RHS 250x250x12.5 |1.171e-2 1656.04 -6.1 -1.5 -0.8 -0.5 -0.3
RHS 400x400x16 | 2.43e-1 3436.54 -3.6 -1.0 -0.5 -0.3 -0.2
Fictive profile 10000 9000000000 -1.2 -0.3 -0.1 -0.1 -0.1

Observations
e The buckling behavior of a braced frame with non-continous columns can be divided
into global bending and racking shear.

e The dominant buckling shape for highrise braced frames is global bending.

e The critical load of a braced frame subjected loadcase P is lower then of a braced
subjected to loadcase F , because the point of impact of the resulting vertical load is higher.
The critical load depends on the point of impact of the resulting vertical load.

e The racking shear buckling shape of a braced for loadcase P has not a definite buckling
shape, which means the racking shear buckling shape can assume any form.
Therefore different racking shear buckling shapes have one eigenvalue and one critical load.
If a braced frame has eight storeys, eight different racking shear buckling shapes have one
eigenvalue and one critical load.

61



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

e The racking shear buckling shapes of a braced for loadcases F and P + F have a
definite buckling shape, which means the racking shear buckling shape can assume only
one form. Therefore the racking shear buckling shape has one eigenvalue and one critical

load.
: . 7’EAc? 7.837EAC?
e The global bending critical loads P eac? == e =T 7 and
, 7.837aEAc? . .
Fcr;EA02 =——————are conservative, because all errors are negative
(see table 6.2 and 6.5).

e The racking shear critical loads are P, ., = GA, F, c\ =7GA and F/ ., =7'AGA,

because the errors are zero (see table 6.3 and 6.6). This is because the racking shear buckling
shape of a shear cantilever is identical to the racking shear buckling shape of a braced frame.

2 -1 2 -1
e The critical loads P, ={L ! } , F, :{ ! n 1 } and

+_
7?EAc? GA 7.837EAc?  nGA

| 7.837aEAC?

(see table 6.2-6.11). This is because the global bending buckling shape is not identical to the
racking shear buckling shape.

-1
. |2 1 . .
F' = + 'ﬁGA are conservative, because the errors are negatlve
n

e The maximum errors for the theoretical tall building structures are (see table 6.2-6.11).

The highest conservative error for loadcase P is: -1.5%.
The highest conservative error for loadcase F is: -28 %.
The highest conservative error for loadcase P + F is: -13 %.

e The maximum errors for the practical tall building structures are
(see table 6.2-6.11 in red).

The highest conservative error for loadcase P is: -0.2 %.
The highest conservative error for loadcase F is: -10 %.
The highest conservative error for loadcase P + F is: -4.8 %.

e All suggested formula give good results for the preliminary design of practical highrise
braced frames with non-continous columns within a maximum error of 10%.

e All observations are only valid for X-braced frames of eight till forty stories
pin-connected to the base with non-continous columns.

e All observations are only valid for the investigated cases in this parameterstudy.
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6.4 Braced frames with continous columns

A braced frame with continous columns is a structure consisting of columns, beams and diagonals,
which are pin-connected to each other (see fig. 6.21). The columns of the frame are continous and

pin-connected to the base.

Al

Figure 6.21 Braced frame with continous columns pin-connected to base.

The buckling behaviour of a braced frame with continous columns pin-connected to the base can be

divided into 2 modes of deformation:
e Overall bending deformation (El, ): single curvature bending in the continous columns and

axial deformation in the columns (see fig. 6.22a).
¢ Racking shear deformation (GA): axial strains in the diagonals (see fig. 6.22b).

Ay = A =l =0
Elp = f(A. 1) GA= (A, A)
(a) (b)

Fig 6.22 Modes of behavior of a braced frame with continious columns.
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Assumptions:
e The beams and diagonals are hinged connected to continous columns.
e The braced frame is pin-connected to the base.
e The columns are continous up the height and therefore the individual bending stiffness is not
zero El #0.
e The braced frame has two lateral stiffness parameters El, = f(A,,1.) and GA= f(A,, A ).

e There is no connection between the diagonals.

6.4.1 Vertical top loads

A stick-spring model is introduced here to obtain an approximate solution for the overall critical load
of a one-bay braced frame with continous columns (see fig. 6.23a). The braced frame is subjected to
vertical top loads and can be transformed into a shear-flexure cantilever with overall bending stiffness
El, = f(A,,1.) and racking shear stiffness GA= f(A,, A, ) (see fig. 6.23b).

This shear-flexure cantilever can be transformed into a stick-spring model (see fig. 6.23c).

In this model a shear-flexure cantilever is replaced by a horizontal translation spring k ,

which takes the overall bending stiffness El, and the racking shear stiffness GA of the shear-flexure

cantilever into account. Therefore spring stiffness k is a function of the overall bending stiffness El
and of the racking shear stiffness GA of the shear-flexure cantilever k = f(El,,GA).

R e
P
v A y
Acle AN A
Elp = f(A. 1)
GA= f(Ab’Ad)

(a) (b)

Figure 6.23 Transformation braced frame (continous) into stick-spring model (vertical top loads).
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Yei Yon
Q Q Q
—> —>
e
A + Aq A
A, =GA=co A =1, =El,=c
(a) (b) (c)

Figure 6.24 Deformations braced frame (continous) caused by horizontal load Q .

The first-order deformation at the top of the braced frame is (see fig. 6.24a/b):

I I
Yo = Yei, T Yoa ZS’QE_IO+% (6.65)

The overall bending stiffness can be obtained from [5]:
El, = EAc? + El (6.66)

After substituting eq. (6.66) into eq. (6.65) the first-order deformation can be rearranged into:

QI Ql
- 9 6.67
Yo = 3EI+ 3EACZ | GA (667)

The first-order deformation at the top of the stick-spring model is (see fig. 6.24c¢):

Vo = % (6.68)

Both deformations are the same yielding the horizontal translational spring stiffness k :

1 I3 I

. = 361+ 3EACT + GA (6.69)
It has been shown that the critical load of the stick-spring model is (see eq. (4.3)):

P, =k (6.70)
After substituting eq. (6.69) into eq. (6.70) the critical load of the stick-spring model is:

N S G 671

= + —
P, kI 3ElI+3EAc® GA
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In general, the critical load of eq. (6.71) can be written as:

1 1 1
—= +

Pcr Pcr;EI + Pcr;EAcz I:>cr;GA

Where the critical loads obtained from the stick-spring model are for:
e Individual bending [1, 2]

3El

Pcr;EI =_|2

e Global bending [1, 2]:

_ 3EAC?
criEAC? T |2

e Racking shear [5]:
|:)cr;GA = GA

But the actual critical loads are for:
e Individual bending [4]:
7°El
41?

I:’cr;EI =

¢ Global bending [4]:

B 7?EAc?
cr;EAc2 - 4|2

e Racking shear [5]:

P

C

r;GA = GA

(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

(6.77)

(6.78)

The racking shear critical load of the stick-spring model (see eq. (6.75)) is equal to the actual racking
shear critical load of a braced frame (see eq. (6.78)), because the racking shear deflection shape of a

braced frame (see fig. 6.25a) is identical to the racking shear buckling shape of a braced frame
(see fig. 6.25b). The racking shear buckling shape of a braced has a definite buckling shape,
which means the racking shear buckling shape can assume only one form.

Therefore the racking shear buckling shape has one eigenvalue and one critical load.
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() (b)

Figure 6.25 Racking shear shapes braced frame (continous) caused by top loads.

If the actual values for individual bending (see eq. (6.76)), global bending (see eq. (6.77)) and racking
shear (see eq. (6.78)) are substituted into eq. (6.72) the critical load of a braced frame is:

2
1 Al ! (6.79)

= + —
P, 7#%El+7z°EAc? GA

Eq. (6.71) gives in most cases an overestimated critical load, because the individual bending critical
load (see eq. (6.73)) and the global bending critical load (see eq. (6.74)) are overestimated by 21.6% in
the stick-spring model. If the actual values for individual bending (see eq. (6.76)), global bending

(see eq. (6.77)) and racking shear (see eg. (6.78)) are substituted into eq. (6.72) the critical load is now
conservative (see eg. (6.79)), because the overall bending buckling shape (see fig. 6.26a) is not
identical to the racking shear buckling shape (see fig. 6.26b).

(a) (b)

Figure 6.26 Buckling shapes for loadcase P .
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6.4.2 Uniformly distributed vertical loads
In fig. 6.27a a braced frame with continous columns is subjected to vertical point loads F, accept for
the point loads at the roof and at the bottom of the frame which are 0.5F, .

In a similar way a stick-spring model can be used here to obtain an approximate solution for the
overall critical load of a braced frame. First a braced frame subjected to vertical point loads is
transformed into a shear-flexure cantilever subjected to a vertical UDL f (see fig. 6.27b),

which then can be transformed into a stick-spring model (see fig. 6.27c¢).

o
¥

—»>

—»>

—>  Jyx="1(E1,,GA)
w—>p I

—>

—»>

—»>

—>

—» 74

(c)

Figure 6.27 Transformation braced frame (continous) into stick-spring model (vertical UDL).

Yei Yo Yo
S — ek
—> —> —>
—> —> —>
—> —> —>
w —» w —» A WP
—» + — = —»
—> —> —>
—> —> —>
—» —> —»
A; =GA= A =l,=Elj=0

(a) (b) ()

Figure 6.28 Deformations X-braced frame (continous) caused by horizontal UDL w.

The first-order deformation at the top of a braced frame is (see fig. 6.28a/b):

Vomye +y _W|4+W|2
0 7Flo " CATgEl,  2GA

(6.80)
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The overall bending stiffness is [5]:

El, = EAc® +El

After substituting eq. (6.81) into eq. (6.80) the first-order deformation can be rearranged into:

o] Ql
= +
Yo = SEI + 8EAC | 2GA

The first-order deformation at the top of the stick-spring model is (see fig. 6.28c):

_w
yo—2k

Both deformations are the same yielding the horizontal translational spring stiffness K :

1 3 I
k 4El +4EAc? GA

It has been shown that the critical load of the stick-spring model is (see eq. (4.12)):

F,, =2kl

After substituting eq. (6.84) into eq. (6.85) the critical load of the stick-spring model is:

1 1 |2 1

—_——= —+
F. 2kl 8El+8EAc? 2GA

cr

In general, the critical load of eq. (6.86) can be written as:

1 1 1
— = +

I:cr I:cr;EI + Fcr;EAcz I:cr;GA

Where the critical loads obtained from the stick-spring model are for:
e Individual bending [1, 2]

8EI
I:cr;EI :|_2
e Global bending [1, 2]:

8EAC?

cr;EAc2 - | 2

¢ Racking shear:

Ferea = 2GA
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But the actual critical loads are for:
¢ Individual bending [5]:

7.837El
I:cr;EI = |—2 (691)

¢ Global bending [5]:

7.837EAC?
I:cr;EA(:2 = I 2 (692)

e Racking shear:
Ferea = 2GA (6.93)

The racking shear critical load of the stick-spring model (see eq. (6.90)) is equal to the actual racking
shear critical load of a braced frame (see eq. (6.93)), because the racking shear deflection shape of a
braced frame (see fig. 6.29a) is identical to the racking shear buckling shape of a braced frame

(see fig. 6.29b). The racking shear buckling shape of a braced has a definite buckling shape,

which means the racking shear buckling shape can assume only one form. Therefore the racking shear
buckling shape has one eigenvalue and one critical load.

v

IYYYYYYY

(a) (b)

Figure 6.29 Racking shear shapes braced frame (continous) caused by UDL.

If the actual values for individual bending (see eq. (6.91)), global bending (see eq. (6.92)) and racking
shear (see eq. (6.93)) are substituted into eq. (6.87) the critical load of a braced frame is:

1 B |2 . 1
F, 7.837El +7.837EAc® 2GA

(6.94)

Eq. (6.86) gives in most cases an overestimated critical load, because the individual bending critical
load (see eq. (6.88)) and the global bending critical load (see eq. (6.89)) are overestimated by 2.1% in
the stick-spring model. If the actual values for individual bending (see eq. (6.91)), global bending

(see eq. (6.92)) and racking shear (see eq. (6.93)) are substituted into eq. (6.87) the critical load is now
conservative (see eg. (6.94)), because the overall bending buckling shape (see fig. 6.30a) is not
identical to the racking shear buckling shape (see fig. 6.30b).
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() (b)

Figure 6.30 Buckling shapes for loadcase F .
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6.4.3 Load combinations
In fig. 6.31a a braced frame with continous columns is subjected to vertical point loads F, accept for
the point load at the roof, which is F, and the load at the bottom, which is 0.5F, .

In a similar way a stick-spring model can be used here to obtain an approximate solution for the
overall critical load of a braced frame. First a braced frame subjected to vertical point loads is
transformed into a shear-flexure cantilever subjected to a vertical top load P and a UDL f

(see fig. 6.31b), which then can be transformed into a stick-spring model (see fig. 6.31c).

y¢
—> i
=,
—>
—>  Jyx="1(E1,,GA)
W f ¢ |
:: ¢ El, =
— ¢ GA=o
&
—> 74

()

Figure 6.31 Transformation braced frame (continous) into stick-spring model (load combination).

Yei, Yea Yo
—F—F —FK—F H—F

> S > >
—> —> —>
—> —> —>

w —> w —» A w—>
—» T — =
—> —> —>
—> —> —>

Ay = GA= 0 A =1, =Ely=c0

(a) (b) (c)

Figure 6.32 Deformations X-braced frame (continous) caused by load combination.

The first-order deformation at the top of the braced frame is (see fig. 6.32a/b):

Y b I wl?
Q + +&+

= (6.95)
3El, 8El, GA 2GA

Yo=VYe, * Yea
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The overall bending stiffness is [5]:
El, = EAc® +El (6.96)

By substituting eq. (4.9), eq. (4.25) and eq. (6.96) into eq. (6.95) the first-order deformation at the top
of he braced frame can be rearranged into:

3 _ 3 _
Yo = wi : (}/ o.5j+ wi : +M[}/ 0.5)+ wi (6.97)
3El +3EAc s 8El +8EAc® GA( s 2GA

It has been shown that the first-order deformation at the top of the stick-spring model is
(see eq. (4.30) and fig. 6.32c):

W

- (6.98)

Yo

Both deformations are the same yielding the horizontal translational spring stiffness K :

3 _ 3 _
1 | 2(}/ 0.5)+ | 2+|_(;/ 0.5)+ | (6.99)
20k 3EIl +3EAC s 8EI +8EAc? GAl s 2GA

It has been shown that the critical load of the stick-spring model is (see eq. (4.28)):
F. =2k (6.100)

After substituting eq. (6.99) into eq. (6.100) the critical load of the stick-spring model is:

2 _ 2 _
1' _ 1 | 2(}/ 0.5)+ | 2+i(7/ o.5j+ 1 (6.101)
F., 2akl 3EI +3EAc S 8El +8EAc® GA S 2GA

In general, the critical load in eq. (6.101) can be written as:

1, _ 1 (7—0.5)+ 1 L1 (7/—0.5j+ 1 (6.102)
I:cr I:)cr;EI + Pcr;EAcz S Fcr;EI + Fcr;EAcz I:)cr;GA S l:cr;GA

Where the critical loads obtained from the stick-spring model are for:
¢ Individual bending for loadcase P [1, 2]

3El
PCF;EI :|_2 (6103)
e Individual bending for loadcase P [1, 2]
3El
|:)cr;El :|_2 (6104)
e Global bending for loadcase F [1, 2]:
8EAC®
criEAC2 12 (6.105)
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¢ Global bending for loadcase P [1, 2]:

oriEAC? 8E|;I‘2‘C2 (6.106)
e Racking shear for loadcase P [5]:
P..ca = GA (6.107)
e Racking shear for loadcase F :
Feen = 2GA (6.108)
But the actual critical loads are for:
¢ Individual bending for loadcase P [4]:
Per:el =% (6.109)
e Individual bending critical load for loadcase F [5]:
Fere =7'8|3$ (6.110)
e The actual global bending critical load for loadcase P [4]:
2 2
or;EAC2 :% (6.111)
e The actual global bending critical load for loadcase F [5]:
criEA? 783:#02 (6.112)
e Racking shear for loadcase P [5]:
P..ca = GA (6.113)
e Racking shear for loadcase F :
Feoa = 2GA (6.114)

Eq. (6.101) gives an overestimated critical load, because the individual bending critical loads

(see eq. (6.103) and eq. (6.104)) and the global bending critical loads (see eg. (6.105) and eg. (6.106))
are overestimated in the stick-spring-model. If the actual values for individual bending (see eg. (6.109)
and eq. (6.110)), global bending (see eq. (6.111) and eq. (6.112)) and racking shear (see eg. (6.113)
and eq. (6.114)) are substituted into eq. (6.102) the critical load can be rearranged into:

2 _ 2 _
1' _ 4 : 2(7 0.5)+ | 2+i(7 o.sj+ 1 (6.115)
F, 7x°El +7z%EAc s 7.837El + 7.837EAc® GA\ s 2GA
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The ratio for the individual bending critical loads is:

Femr  7.837El 417

2 2
Percen | 7El

=3.176 (6.116)

The ratio for the global bending critical loads is:

Foea?  7.837EAC? 412
1> #*EAc?

=3.176 (6.117)

Pcr;EAcz
The ratio for the racking shear critical loads is:

Ferca _ 2GA (6.118)
PCF;GA GA

By substituting eq. (6.116), eq. (6.117) and eq. (6.118) into eq. (6.115) the critical load is:

1,= ! {3.176[7_0'5}1}r ! H”O'SJH}: t 1 (6.119)
Foo  Foeac S Ferca S aF  cne? BFerea

In general, the critical load of eq. (6.119) can be written as:

1' =— ! - + '1 (6.120)
Fcr I:cr;EI + Fcr;EAcz I:cr;GA
Where the actual critical loads are for:
e Individual bending [17]:
, 7.837aEl
Fom = aFee :—|2 (6.121)
e Global bending [17]:
, 7.837aEAC?
cr;EAc2 =a cr;EAc2 = |2 (6122)

, where « is a reduction factor for the bending critical load, which takes the influence of the
vertical top load P into account is:

S
a= 6.123
s+3.176(y - 0.5) (6.123)

e Racking shear:
Ferea =28GA (6.124)
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, Where f’ is a reduction factor for the racking shear critical load, which takes the influence of
the vertical top load P into account is:

1 1 S
B = = = (6.125)
- 2y =1)+5s -
2[7 0-5)“ (VS)+ s+27-1
S

The racking shear critical load of eq. (6.124) is mathematically exact, because the racking shear

buckling for loadcase P (see fig. 6.26b) is identical to the racking shear buckling shape for loadcase
F (see fig. 6.30b).

If the actual values for individual bending (see eq. (6.121)), global bending (see eq. (6.122)) and
racking shear (see eq. (6.124)) are substituted into eq. (6.120) the critical load of a braced frame is:

1 1? L1
F. 7.837aEl +7.837aEAc? 2B'GA

(6.126)

Formula (6.126) gives now a conservative critical load, because the overall bending buckling shape
(see fig. 6.33a) is not identical to the racking shear buckling shape (see fig. 6.33b).

v oY

(a) (b)

Figure 6.33 Buckling shapes for loadcase P + F .
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6.5 Lateral stiffnesses of braced frame with continous columns

6.5.1 Individual bending stiffness

The individual bending stiffness caused by individual single curvature bending of the individual
columns is (see fig. 6.34):

El =Y El, (6.127)

Figure 6.34 Individual bending stiffness braced frame with continous columns.
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6.6 Accuracy
To establish the accuracy of the stick-spring model, critical loads of a number of one-bay X-braced
frames were estimated using the stick-spring model and a finite element analyses. Finite element
program ANSY'S was used to obtain the eigenvalues of the braced frames. The braced frames have
continous columns and pinned supports and the height of the frames varied from eight to forty stories.
The X-braced frames are subjected to three different loadcases (see fig. 1.5):

e Vertical top loads (see fig. 1.5a).

e Uniformly distributed vertical loads (see fig. 1.5b).

e Load combinations (see fig. 1.5c).
Three different cases will be investigated for one-bay X-braced frames:

e Overall bending deformation only (see fig. 6.35a).

e Racking shear deformation only (see fig. 6.35b).

o All deformations together (see fig. 6.35a/b).

Aj = A=l =
Elg=f(A.1.) GA= f(A, A)
(a) (b)

Fig 6.35 Cases to investigate for braced frames with non-continous columns.

The first two cases only represent theoretical cases, but the inclusion of them is very important to
make a well-based judgement on the accuracy of the stick-spring model.
The critical loads found with the finite element method are assumed to be exact.

P r I:)cr(ANSYS)

The errors are calculated as follows A =— x100% .

cr(ANSYS)
If the error is negative the stick-spring model gives a conservative value for the critical load.

6.6.1 Numerical model

The numerical model is built up from LINK1 and BEAM3 elements (see fig. 6.36). LINK1 elements
can only sustain normal forces and BEAMS3 elements can sustain normal forces, bending moments and
shear forces. The continous columns are BEAMS3 elements with a cross-sectional area A, and a

second moment of area I,. The beams and diagonals are LINK1 elements with only a cross-sectional
area A, and A, . The connections between the BEAM3 and LINK1 elements are hinged.

The columns are pin-connected to the base. In this investigation it is assumed that the braced frame
has an uniform cross-sectional area of the columns A_, of the diagonals A, and of the beams A, up

the height and an uniform second moment of area of the columns up the height I .
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9 A 18
Acle A
7 16
/ A
BEAM3 > LINK1
K
3 12
1 10

Figure 6.36 Numerical model for a braced frame with continous columns.

6.6.2 Example

An example is given for the three loadcases to demonstrate the simplicity and the accuracy of the
stick-spring model. An eight storey high one bay X-braced frame with continous columns

(see fig. 6.37) has an individual bending stiffness EI , a global bending stiffness EAc?,
a racking shear stiffness GA and is subjected to three different loadcases.
The characteristics of the braced frame can be found in table 6.1.

| =24

Figure 6.37 Example of braced frame with continous columns.

79



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

6.6.2.1 Stiffness parameters
The individual bending stiffness is (see eq. (6.127)):

El =Y El; =2El =2x2x10° x3.281x10~* =131.2MN

The global bending stiffness is (see eg. (6.60)):

EAc? = Y EA ¢, = 2EAC,” = 2x 2x10° x1.744-107% x1.52 = 15696 MN
The ratio between the bending stiffnesses:

EAc? 120

The racking shear stiffness is (see eq. (6.61)):

_2a’hEA;  2x3°x3x2x10°x3.75x10"°

GAy = FE (3\/5)3

6.6.2.2 Vertical top load
The individual bending critical load is (see eq. (6.76):

=530.3MN

7’El  x?x131.2
412 4x24?

criEl T

=0.56MN .

The global bending critical load is (see eq. (6.77)):

_ 7?EAC® 7% x15696

a2 = > > =67.24MN
criBA 4] 4x 24

The overall bending critical load is:

2 2
z’Ely _ 7 x (131.2 +15696):67.80MN

412 4 x 242

I:)cr;EIO =

The racking shear critical load is (see eq. (6.78)):

P

C

oa = GA=530.3MN

The critical load is (see eq. (6.72)):

-1
1 1 [ 1 1
P, = + = +
Pog +P P.rca 0.56+67.24 530.3

cr;EAC?

1
} =60.11MN
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6.6.2.3 Vertical UDL
The individual bending critical load is (see eq. (6.91)):

7.837El _ 7.837x131.2

=1.79MN
|2 242

I:cr;EI =

The global bending critical load is (see eq. (6.92)):

_ 7.837EAc?  7.837x15696
cr;EAC2 - |2 - 242

=213.6MN

The overall bending critical load is:

7.837El, 7.837x(131.2 +15696)

T Y = 215.3MN

The racking shear critical load is (see eg. (6.93)):

Ferea =2GA=2x530.3=1060.6MN

The critical load is (see eqg. (6.87)):

1
a

F, = ! — { t |t } ~179.0MN
Faer 2 Fuon | 17942136 565.7

6.6.2.4 Load combinations

Assume the vertical top load is 4 times the floorloading.
Factor y is (see eq. (4.18)):

Reduction factor « is (see eq. (6.123)):

S 8

o= = = 0.4185
s+3.176(y -0.5) 8+3.176(4-0.5)

The individual bending critical load is (see eq. (6.121)):

T83TGEl ok - 0.4185x1.79 = 0.75MN .

4 f—
Foa = |2 = 0F¢rEl

The global bending critical load is (see eq. (6.122)):

, _7.837aEAc®

F

= al
cr;EAc2 | 2 cr;EAc2

=0.4185x179.0=74.91IMN .
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The overall bending critical load is:

_ 7.8370El, 7.837x0.4185x(131.2 +15696) 90.12MN (see table 16)

criElg — 2 2
0 | 24

!

Reduction factor g’ is (see eq. (6.125)):

S 8

= = =0.5333
S+2y—-1 8+2x4-1

ﬂ/
The racking shear critical load is (see eq. (6.124)):
Feroa = 28'GA=2x0.5333x530.3=565.7MN

The critical load is (see eq. (6.120)):

- 1
E - 1 L1 z[ 1 } —77.74MN
F+F Foron 0.75+89.37 565.7

criE cr;EAC?

All critical loads in this example calculated by the stick-spring model are in bold type and can be
found in tables 6.12-6.17.
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6.6.3 Results

The figures and tables below present the results of the critical loads obtained from the stick-spring
model and the numerical analysis. Table 6.12 shows the accurracy of the global bending critical loads
Perier, and Fg.g, and table 6.13 of the racking shear critical loads P,.c, and F; ., and table 6.14 of
the critical loads P, and F, . Table 6.15 shows the accuraccy of the global bending critical load
Fere, » table 6.16 of the racking shear critical load F.q, and table 6.17 of the critical load F .

Table 6.12. Critical loads for braced frames with continous columns, overall bending deformation only.

Number | Vertical top load P with UDL F(}/ = 0_5)
of 2
Storeys — T El 0 _ 7837E| 0
s [ Tl T g2 wEe T2
Critical loads P, [MN] Critical loads F_, [MN]
Stick- | ANSYS Error Stick- | ANSYS | Error
spring A [%] | spring A [%]
model model
8 67.80 68.14 -0.5 215.3 216.4 -0.5
16 16.95 16.97 -0.1 53.84 53.87 -0.1
24 7.53 7.54 0.0 23.93 23.93 0.0
32 4.24 4.24 0.0 13.46 13.46 0.0
40 2.71 2.71 0.0 8.61 8.61 0.0

Table 6.13. Critical loads for braced frames with continous columns, racking shear deformation only.

Nurr}ber Vertical top load P with ubL F(y = 0.5)with
0 _
storeys Poroa =GA Fer.on = 2GA
S [] (see eq. (6.78)) (see eq. (6.93))
Critical loads P, [MN] Critical loads F, [MN]
Stick- | ANSYS | Error Stick- ANSYS | Error
spring A%] | spring A [%]
model model
8 530.3 530.3 0.0 1060.7 1060.6 0.0
16 530.3 530.2 0.0 1060.6 1060.5 0.0
24 530.3 530.3 0.0 1060.6 1060.3 0.0
32 530.2 530.2 0.0 1060.5 1060.0 0.0
40 530.2 530.2 0.0 1060.4 1059.7 0.1

Table 6.14. Critical loads for braced frames with continous columns, all deformations together.

Number Vertical top load P UDL F(}/ = 0.5)
of
storeys (see eq. (6.72) (see eq. (6.87))

S [ Critical loads P, [MN] Critical loads F, [MN]
Stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A [%] | spring A [%]
model model

8 60.11 60.41 -0.5 179.0 180.0 -0.6

16 16.43 16.44 -0.1 51.24 51.37 -0.3

24 7.43 7.43 0.0 23.40 23.43 -0.1

32 4.20 4.20 0.0 13.29 13.30 -0.1

40 2.70 2.70 0.0 8.54 8.55 0.0
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Table 6.15. Critical loads for braced frames with continous columns, P + F | overall bending deformation only.

Number 7.837aEl
of Load combination P + F with Fc’r;,ﬂO = 0
storeys |
S [ Critical loads F, [MN]
y=1 y=4 y =16 y =64
Stick- | ANSYS | Error Stick- | ANSYS | Error | Stick- | ANSYS | Error Stick- | ANSYS | Error
spring A[%] | spring A[%] | spring A[%] | spring A [%]
model model model model
8 179.7 181.9 -1.2 90.12 91.73 -1.8 30.10 30.44 -1.1 8.22 8.27 -0.7
16 48.98 49.23 -0.5 31.77 32.22 -1.4 13.21 13.35 -1.1 3.96 3.98 -0.5
24 22.44 22.52 -0.3 16.35 16.56 -1.2 7.84 7.94 -1.3 2.55 2.56 -0.5
32 12.82 12.86 -0.3 9.99 10.10 -1.1 5.30 5.37 -1.4 1.84 1.86 -0.7
40 8.29 8.30 -0.2 6.74 6.81 -0.9 3.86 3.92 -1.4 1.43 1.44 -0.8

Table 6.16. Critical loads for braced frames with continous columns, P + F , racking shear deformation only.

Nug}ber Load combination P + F with F.c, =28GA
storeys (see eq. (6.124))
S [ Critical loads F/, [MN]
y=1 y=4 y =16 y =64
Stick- | ANSYS | Error Stick- | ANSYS | Error | Stick- | ANSYS | Error Stick- | ANSYS | Error
spring A[%] | spring A[%] | spring A[%] | spring A [%]
model model model model
8 942.8 942.8 0.0 565.7 565.7 0.0 2176 | 217.6 0.0 62.85 | 62.85 0.0

16 998.2 998.1 0.0 737.8 737.8 0.0 361.1 361.1 0.0 118.7 | 1187 0.0

24 1018.2 | 1017.9 0.0 821.1 821.0 0.0 462.8 | 462.8 0.0 168.6 | 168.6 0.0

32 1028.4 | 1027.9 0.0 870.2 869.9 0.0 538.7 | 538.6 0.0 2134 | 2134 0.0

40 1034.6 | 1033.9 0.1 902.5 902.0 0.1 597.4 | 597.3 0.0 254.0 | 254.0 0.0

Table 6.17. Critical loads for braced frames with continous columns, all deformations together.

Number Load combination P + F
of " ,
storeys Critical loads F_, [MN]
S [ (see eq. (6.120))
y=1 y=4 y =16 y =64
Stick- | ANSYS | Error Stick- | ANSYS | Error | Stick- | ANSYS | Error Stick- | ANSYS | Error
spring A[%] | spring A[%] | spring A[%] | spring A [%]
model model model model
8 150.9 154.0 -2.0 77.74 80.31 -3.2 26.44 26.94 -1.9 26.44 | 26.94 -0.9
16 46.69 47.06 -0.8 30.46 31.04 -1.9 12.74 12.93 -1.5 12.74 | 12.93 -0.6
24 21.96 22.06 -0.5 16.03 16.27 -1.4 7.71 7.82 -1.5 7.71 7.82 -0.6
32 12.67 12.71 -0.3 9.88 9.99 -1.0 5.25 5.33 -1.5 5.25 5.33 -0.7
40 8.22 8.24 -0.3 6.69 6.76 -0.7 3.84 3.89 -1.5 3.84 3.89 -0.8
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Observations
e The buckling behavior of a braced frame with non-continous columns can be divided
into individual bending, global bending and racking shear.

e The dominant buckling shape for highrise braced frames is global bending.

e The racking shear buckling shape of a braced with continous columns for loadcase P,
F and P+ F has a definite buckling shape, which means the racking shear buckling
shape can assume only one form. Therefore the racking shear buckling shape has one
eigenvalue and one critical load.

2
. . El 7.837El
e The overall bending critical loads P, =%, Ferieo =|—20 and
, 7.837aEl, . .
F ————— are conservative, because all errors are negative

criElg — 12

(see table 6.12 and 6.15).

e The racking shear critical loads are P, ., =GA, F .\ =2GA and F/ ., =25GA,

because the errors are zero (see table 6.13 and 6.16). This is because the racking shear
deflection shape of the braced frame is identical to the racking shear buckling shape of the
braced frame.

412 1T 12 1 T
e Thecritical loads P, =| —; ——+—|  Fy= —t
7°El + 7°EAc® GA 7.837El +7.837EAc® 2GA

2 -1
and F; = ! +
7.8370El +7.837aEAC?  25'GA

negative (see table 6.12-6.17). This because the overall bending buckling shape is not identical
to the racking shear buckling shape.

are conservative, because the errors are

e The stick-spring model compares very well to the numerical results for the three
loadcases (see table 6.12-6.17).

The highest conservative error for loadcase P is -0.5 %.
The highest conservative error for loadcase F is -0.6 %.
The highest conservative error for loadcase P + F is: -3.2 %.

e All suggested formula give good results for the preliminary design of highrise braced
frames with continous columns within a maximum error of 3.2%.

o All observations are only valid for X-braced frames of eight till forty stories
pin-connected to the base with continous columns.

e All observations are only valid for the investigated cases in this parameterstudy.
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6.7 Comparison between the two investigated braced frames
This section compares a braced frame with non-continous and continous columns (see table 6.18).

Table 6.18. Comparison between braced frames with continous columns and non-continous columns.

loadcase P

Non-continous Continous
Columns non-continous continous
Lateral stiffnesses EAc?, GA El, EAc? and GA
Individual bending critical load Pog =0 7°El
for loadcase P B T
Global bending critical load for 72EAc? 72EAc?
loadcase P cr;EAC? :4|—2 cr;EAC? :4|—2
Racking shear critical load for Per.ca = GA Per.ca = GA

Racking shear buckling shape
for loadcase P

can assume any form

assumes one form

loadcase F

Critical load 1 1 N 1 1 1 1
for loadcase P P Prcaz  Porca P Poet 7 Pcae Forea
Individual bending critical load Fem =0 7.837El
for loadcase F Forer = 12
Global bending critical load for 7.837EAc? 7.837EAC?
loadcase F oA T 12 oriEAC 12
Racking shear critical load for Ferca = 71GA Ferga = 2GA

Racking shear buckling shape
for loadcase F

assumes one form

assumes one form

Critical load 1 1 N 1 1 1 N 1
for loadcase F Fo  Fiea? Forca Foe  Fam +F 2 Foroa
Individual bending critical load Fe.m =0 , 7.837aEl
for loadcase P + F Ferer = |2
Global bending critical load for ' 7.837aEAC? ' 7.837aEAC?
loadcase P+ F orEA? T 2 oEA? 2
Racking shear critical load for Fer.ca =77'BGA Ferca = 28'GA
loadcase P +F
Reduction factor for racking S , S
shear critical load B= s+y-05 Tsi2y-1

Racking shear buckling shape
for loadcase P + F

assumes one form

assumes one form

Critical load
for loadcase P + F

1 1 1

+
! ! ’
Fcr Fcr; EAC? I:cr;GA

N
F' I:c'r;EI + F, I:c,r;GA

cr cr;EAC?
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Conclusions:

e Theerrors of a braced frames with continous columns are lower then of braced frames
with non-continous columns for loadcase F and P + F , because the global bending and
racking shear buckling shapes of a braced frame with continous columns (see fig. 6.38a/b)
are more identical to each other then the global bending and racking shear buckling shapes of
a braced frame with non-continous columns (see fig. 6.38c/d).

(a) (b) (c) (d)

Figure 6.38 Buckling shapes of braced frames for loadcase F and P+ F .
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7 One bay rigid frames

7.1 Fixed rigid frames

A rigid frame is a structure which consists of columns and beams (see fig. 7.1). The joints of a rigid
frame are moment resistant. The boundary conditions at the base of a rigid frame can be pinned, fixed
or flexible. In this investigation the boundary conditions are fixed (see fig. 7.1). This fixed connection
at the base introduces a new mode of deformation to the buckling behavior, which is individual
bending.

0.5,
¥
Al I
|
Ib
L
/]

Ak

Figure 7.1 Fixed rigid frame.

The buckling behaviour of a fixed rigid frame can be divided into 4 modes of deformation:
¢ Individual bending of the columns (EI ): single curvature bending of the vertical members
(see fig. 7.2a).
¢ Global bending (EAcz): axial deformation in the columns (shortening of the columns at one
side of the rigid frame and lengthening at the other side) (see fig. 7.2b).
e Racking shear of the columns (GA, ): double curvature bending in the columns (see fig. 7.2c).
e Racking shear of the beams (GAb): double curvature bending in the beams (see fig. 7.2d).

I A

7 STT
I, =0 I, =0
El=f(l,) EAc? = f(A,)

(a) (b) (c) (d)

Fig 7.2 Modes of behavior of a fixed rigid frame.
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Assumptions:

e The column-beam connections are fully moment resistant.

e The rigid frame is fixed to the base.

e The columns are continuous up the total height of the structure.

e The fixed rigid frame has four lateral stiffness parameters El = f(1,), EAc® = f(A,) ,
GA, = f(1,) and GA, = f(I,).

e For the racking shear buckling shape of the beams it is assumed that the column-base
connections are pinned (see fig. 7.2d).

e The cross-section of the beams is infinite A, =c for all modes of behaviour.

e Shear deformations in the beams and columns are neglected, which means

Ab;shear = Ac;shear =,

7.1.1 Vertical top loads

A stick-spring model is introduced here to obtain an approximate solution for the overall critical load
of a one-bay fixed rigid frame (see fig. 7.3a). It is first suggested to transform a rigid frame subjected
to vertical top loads into a multiple stick model (see fig. 7.3b).

In a multiple stick model a pinned column is supported by a flexural cantilever with individual
bending stiffness El and by a shear-flexure cantilever with global bending stiffness EAc?, racking
shear stiffness of the columns GA, and racking shear stiffness of the beams GA, .

The flexural cantilever can be transformed into a stick-spring model with horizontal translational
spring stiffness k, = f(EI) and the shear-flexure cantilever can be transformed into a stick-spring

model with horizontal translational spring stiffness k, = f(EAcz,GAC,GAb ) The multiple stick model
can then be transformed into a stick-spring model, where the horizontal translation spring

k = f(kg,k,) (see fig. 7.3c).

The justification for this suggestion is that the shear-flexure cantilever can be seen as a quasi-braced
frame with the flexural cantilever adding an individual bending stiffness EI of the rigid frame.

If the beams of a rigid frame are cut through it can still develop individual bending (see fig. 7.2a),
because of the fixed connection at the bottom and the continuous columns.

v v ©

Q_> e,
N El EAc? N
— GA, —
GA,
k, k,
ST ST

(a) (b) (c)

Figure 7.3 Transformation of fixed rigid frame into stick-spring model (vertical top loads).
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Yo Yo1 Yoz Yo
Ak Ak Ak Ak
Q=0Q,+Q, Q Q; Q
_> 7
I
S 77 7
(a) (b)

Figure 7.4 Deformations caused by load Q .

The horizontal beams are rigid links and therefore the first-order deformation at the top of the multiple
stick model is (see fig. 7.4a):

Yo =Yo1 = Yoz (7.0)

The horizontal load Q at the top of the multiple stick-model is (see fig. 7.4a):

Q=Q,+Q, (7.2)

The first-order deformations at the top of the stick-spring models are

Yo =% (7.3)
Vo = (14)
and

Yoz =E—22 (7.5)
Substituting eq. (7.3), eq. (7.4) and eq. (7.5) into eq. (7.2) leads to:

kYo =K, Yor + Ky Yoo (7.6)
Sustituting eq. (7.1) into eq. (7.6) yields the horizontal translational spring stiffness K :

k=k, +k, =Yk, (7.7
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The critical load of the stick-spring model for the rigid frame is (see eq. (4.3)):

P

cr

— K (7.8)

The critical loads P, and P,., of the stick-spring models shown in fig. 7.5b and 7.6b
for the separate cantilevers can similarly be obtained from:

I:)(:r;l = klI (79)
and
P = Kyl (7.10)

Substituting eq. (7.7) into eq. (7.8) leads to:
P, =k +k,l (7.11)
Substituting eq. (7.9) and eq. (7.10) into eq. (7.11) leads to:

P

C

r = I:)cr;l + Pcr;Z = Z I:)cr;i (712)

The flexural cantilever, with individual bending EI , is assumed to be standing alone so k, =0

(see fig. 7.5a). This can be modelled into a stick-spring model with horizontal translation spring
stiffness k, = f(EI) (see fig. 7.5b).

t

El

1>

77
(a) (b)

Figure 7.5 Flexural cantilever subjected to top loads.

The first-order deformation at the top of the flexural cantilever is (see fig. 7.5a):

|3
Yoo =Ye :% (7.13)

The first-order deformation at the top of the stick-spring model is (see fig. 7.5b):

Yoo = % (7.14)
1
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Both deformations are the same yielding the horizontal translational spring stiffness k; :

k, =— (7.15)

After substituting eq. (7.15) into eq. (7.9) the critical load of the stick-spring model is:

3El
Pcr;l = |_2 (7.16)
In general, the critical load of eq. (7.16) can be written as:
Pera = Perie (7.17)

The shear-flexure cantilever, with global bending stiffness EAc?, racking shear stiffness of the
columns GA, and racking shear stiffness of the beams GA, is assumed to be standing alone so k; =0
(see fig. 7.6a). This can be modelled into a stick-spring model with horizontal translation spring
stiffness k, = f(EAcz,GAC,GAb) (see fig. 7.6b).

c oy

1>

EAc?
GA,
GA,

77
(a) (b)

Figure 7.6 Shear-flexure cantilever subjected to top loads.

The first-order deformation at the top of the spring-flexure cantilever is:

3
Q. + Q! + Q. (7.18)

Yoo =Yepz T Yon TYon T5p 2 T oa T GA,
C

The first-order deformation at the top of the stick-spring model is:

Yoo = % (7.19)
2

Both deformations are the same yielding the horizontal translational spring stiffness k,:

3
R R (7.20)
k, 3EAc? GA. GA,

92



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

After substituting eq. (7.20) into eq. (7.10) the critical load of the stick-spring model is:

1

1 12 1 1
= = >+ +
Pro koI 3EAc® GA, GA,

In general, the critical load of eq. (7.21) can be written as:

1
P2 = ! + ! + !
IDcr;EAcz PC"?GAC PCF?GAb

After substituting eq. (7.17) and eq. (7.22) into eq. (7.12) the critical load of a rigid frame is:

-1
1 1 1
P, =P, g + + +
cr cr;El {P P P ]

cr:EAC? cr,GA; cr;GAy,

Where the critical loads obtained from the stick spring model are for:
¢ Individual bending [1, 2]:

3El
|:)cr;EI :|_2
e Global bending [1, 2]:

_ 3EAc?

cr;EAc2 - |2

e Racking shear of the columns [5]:

24EI,
hZ

Pcr;GAb = GA(,) =

e Racking shear of the beams [5]:

1281,
~ah

Pcr;GAb =GA,

The actual critical loads are for:
e Individual bending [4]:

2
7 El
I:’cr;EI = 4|2

¢ Global bending [4]:

_ 7’EAC?
cr;EAc2 - 4] 2
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¢ Racking shear of the columns [27]:

c (7.30)

e Racking shear of the beams [5]:

12El,
ah

Pcr;GAb =GA, = (7.31)

The individual bending critical load of the stick-spring model (see eq. (7.24)) is 21.6% larger then the
actual individual bending critical load of a rigid frame (see eq. (7.28)), because the individual bending
deflection shape of a rigid frame is not identical to the individual bending buckling shape of a rigid
frame. The deflection shape of a rigid frame is a third order function and the buckling shape of a rigid
frame is a cosine function.

Similar reasoning can be done for the global bending critical load (compare eq. (7.25) and eq. (7.29)).

The racking shear critical load of the columns of the stick-spring model (see eq. (7.26)) is 21.6%
larger then the actual racking shear critical load of the columns of a rigid frame (see eq. (7.30)),
because the racking shear deflection shape of the columns of a rigid frame (see fig. 7.7a) is not
identical to the racking shear buckling shape of the columns of a rigid frame (see fig. 7.7b).

The deflection shape of a rigid frame is a third order function and the buckling shape of a rigid frame
is a cosine function.

Yea, Yoa,

L 0.5P
4 74

0.5h

0.5h

AN
N
N
N

Figure 7.7 Double curvature bending of the columns.

The racking shear critical load of the beams of a fixed rigid (see eq. (7.31)) is assumed to be the same
as the racking shear critical load of the beams of a flexible rigid frame (see eq. (7.84)).

If the actual values for individual bending (see eq. (7.28)), global bending (see eq. (7.29)),
racking shear of the columns (see eq. (7.30)) and racking shear of the beams (see eq. (7.31))
are substituted into eq. (7.23) the critical load of a rigid frame becomes:

-1

_712EI+ 41 . h? ,_ah
Ta? | Z?EAC®  27°El,  12EL,

(7.32)
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7.1.2 Uniformly distributed vertical loads
In fig. 7.8a a rigid frame is subjected to vertical point loads F, accept for the point loads at the roof
and at the bottom of the frame which are 0.5F, . In a similar way a stick-spring model can be used

to obtain an approximate solution for the overall critical load of a rigid frame. First a rigid frame
subjected to vertical point loads is transformed into a multiple stick model subjected to a horizontal
UDL w and a vertical UDL f (see fig. 7.8b). The multiple stick model is then transformed into the

stick-spring model (see fig. 7.8¢).

0.5F, 0.5F,
—> 9, O —» —t
I:v I:v —> >
—» —» k
F, F, w—> f El EAC’| w —p YT
AN TP GA, A —> |
= —> — >
I:V I:V _> GAD _ I
—> —»
0.5F, 0.5F, —p >
> ky k, —> L
/;7 /}'7 ST /77 /7
(a) (b) (c)
Figure 7.8 Transformation of fixed rigid frame into stick-spring model (UDL).
Yo Yo1 Yoo Yo
H—HK  A—F H—H H—H
> @) —> K
—> —> — >
—> —p —
W=W, +W w w
1t ) N 2 2
N p /EAC N
— —> [ CA = —» l
—> —» | GA —>
—> —> —
—> —> —>
—> —> . %
/77 /77 7

Q

(a) (b)

Figure 7.9 Deformations multiple stick model caused by load w.

The horizontal beams are rigid links and therefore the first-order deformation at the top of the multiple
stick model is (see fig. 7.9a):

Yo =Yo1 = Yoz (7.33)
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The horizontal UDL w on the multiple stick model is (see fig. 7.9a):
W=Ww, +W,
The first-order deformations at the top of the stick-spring models are

_w
Yo oK

ol
01 2k,

and

yo, = el
02 2k,

Substituting eq. (7.35), eq. (7.36) and eq. (7.37) into eq. (7.34) leads to:

2k¥=2k1%+2k2%

Substituting eq. (7.33) into (7.38) yields the horizontal translational spring stiffness k :
2k =2k, + 2k, =2Y k;

The critical load of the stick-spring model for a rigid frame is (see eq. (4.12)):

F., =2kl

The critical loads F, and F_., of the stick-spring models shown in fig. 7.10b and 7.11b
for the separate cantilevers can similarly be obtained from:

Fera = 2K
and
Fero = 2K,

Substituting eq. (7.39) into eq. (7.40) leads to:
Fo =2k 1 + 2k,I
Substituting eq. (7.41) and eq. (7.42) into eq. (7.43) leads to:

F r = Fcr;l + Fcr;z = Z Fcr;i

C

The flexural cantilever, with individual bending EI , is assumed to be standing alone so k, =0

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(see fig. 7.10a). This can be modelled into a stick-spring model with horizontal translation spring

stiffnes k, = f(EI) (see fig. 7.10b).
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—> 71
—>
—>
—>
El f, AW I
- —»
—>
—>
—>
4
_> 7

(a) (b)

Figure 7.10 Flexure cantilever subjected to UDL.

The first-order deformation at the top of the flexural cantilever is:

w,l?

Yo1 = Yei :E

The first-order deformation at the top of the stick-spring model is:

2w,
Yoo =——

Ky

Both deformations are the same yielding the horizontal translational spring stiffness k; :

After substituting eq. (7.47) into eq. (7.41) the critical load of the stick-spring model is:

8El

eril —
|2

F

In general, the critical load of eq. (7.48) can be written as:

Fcr;l = Fcr;EI

The shear-flexure cantilever, with global bending stiffness EAc?, racking shear stiffness of the

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

columns GA, and racking shear stiffness of the beams GA,, is assumed to be standing alone so k; =0
(see fig. 7.11a). This can be modelled into a stick-spring model with horizontal translation spring

stiffness k, = f (EAC?, GA,,GA, ) (see fig. 7.11b).
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. T
—>
—>
f, Wo—p
EAC? N |
GA, - >
—>
GA, .
—>
s —
(a) (b)

Figure 7.11 Shear-flexure cantilever subjected to UDL.
The first-order deformation at the top of the spring-flexure cantilever is:
~ . s Cowl? . W, s A
Yoo = Yeae2 T Yo, T Yon, 8EACZ | 2GA, | 2GA

The first-order deformation at the top of the stick-spring model is:

oo el
02 2k,

Both deformations are the same yielding the horizontal translational spring stiffness k,:

1 N | I

= + +
k, 4EAc? GA, GA,

After substituting eq. (7.52) into eq. (7.42) the critical load of the stick-spring model is:

1 1 12 1 1
= = + +
F.o 2k, 8EAc® 2GA, 2GA,

In general, the critical load of eq. (7.53) can be written as:

a1
I:Cr;2 = 1 + 1 + 1
I:cr;EAcz FC"?GAC FCV?GA{:

After substituting eq. (7.49) and eq. (7.54) into eq. (7.44) the critical load of a rigid frame is:

-1
1 1 1
For = Fere +{F + = + = }
cr;EAcz cr;GA cr;GA,
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Where the critical loads obtained from the stick spring model are for:
¢ Individual bending [1, 2]:

8El
I:cr;EI :|_2 (756)
¢ Global bending [1, 2]:
_ 8EAC? 257
cr;EAc2 - |2 ( . )
e Racking shear of the columns:
, 48El
Ferca, =2GA; = 2 £ (7.58)
¢ Racking shear of the beams:
24El
Ferca, = 2GA, = o~ b (7.59)
The actual critical loads are for:
¢ Individual bending [5]:
7.837El
I:cr;EI :|—2 (760)
e Global bending [5]:
7.837EAC?
oriEAC? E (7.61)
e Racking shear of the columns (see eg. (6.21)):
27°El,
Fcr;GAC :nGAc =n h2 (762)
Where factor 7 is (see eq. (6.22)):
S
= 7.63
T=s"05 (7:63)
e Racking shear of the beams:
24El
Fercn, = 2GA, = ™ b (7.64)
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The individual bending critical load of the stick-spring model (see eq. (7.56)) is 2.1% larger then the
actual individual bending critical load of a rigid frame (see eq. (7.60)), because the individual bending
deflection shape of a rigid frame is not identical to the individual bending buckling shape of a rigid
frame. The deflection shape of a rigid frame is a fourth order function and the buckling shape of a
rigid frame can be approximated by a cosine function.

Similar reasoning can be done for the global bending critical load (compare eq. (7.57) and eq. (7.61)).

The racking shear critical load of the columns of the stick-spring model (see eq. (7.58)) is 143% larger
then the actual racking shear critical load of the columns of a rigid frame (see eq. (7.62), because the
racking shear deflection shape of the columns of a rigid frame (see fig. 7.12a) is not identical to the
racking shear buckling shape of the columns of a rigid frame (see fig. 7.12b).

v v

Ny

A =l,=w
(a) (b)

Figure 7.12 Racking shear shapes of the columns caused by UDL.

The racking shear critical load of the beams of a fixed rigid (see eq. (7.59)) is assumed to be the same
as the racking shear critical load of the beams of a flexible rigid frame (see eq. (7.105)).

If the actual values for individual bending (see eqg. (7.60)), global bending (see eq. (7.61)),
racking shear of the columns (see eq. (7.62)) and racking shear of the beams
(see eq. (7.64)) are substituted into eq. (7.55) the critical load of a rigid frame becomes:

-1
_ 7.837El 12 h? ah

F + + +
“ |2 7.837EAC®  527%El,  24El,

(7.65)
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7.2 Accuracy

To establish the accuracy of the stick-spring model, critical loads of a number of one-bay rigid frames
were estimated using the stick-spring model and a finite element analyses. Finite element program
ANSYS was used to obtain the eigenvalues of the rigid frames. The rigid frames have fixed supports
and the height of the frames varied from eight to forty stories. The rigid frames are subjected to two
different loadcases (see fig. 1.5):

e Vertical top loads (see fig. 1.5a).

e Uniformly distributed vertical loads (see fig. 1.5b).
Six different cases will be investigated for one-bay rigid frames:

¢ Individual bending deformation only (see fig. 7.13a)
Global bending deformation dominates (see fig. 7.13b).
Racking shear deformation of the columns dominates (see fig. 7.13c).
Global racking shear deformation dominates (7.13c/d).
All deformations together (see fig. 7.13a/b/c/d).
Influence individual bending stiffness on the critical load.

Y s
Ib:O |b:OO AC=|b=OO

El=f(l,) EAc? = f(A,) GA, =f(l,)
(a) (b) (c)

Figure 7.13 Cases to investigate for fixed rigid frames.

The first four cases only represent theoretical cases, but the inclusion of them is very important to
make a well-based judgement on the accuracy of the stick-spring model.
The critical loads found with the finite element method are assumed to be exact.

P r I:)cr(ANSYS)

The errors are calculated as follows A =— x100% .

cr(ANSYS)
If the error is negative the stick-spring model gives a conservative value for the critical load.
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7.2.1 Numerical model

The numerical model shown in figure 7.14 is built up from BEAMS3 elements. BEAM3 elements can
sustain normal forces, bending moments and shear forces. All the connections at each node are
moment resistant. The columns and beams are divided into three BEAM3 elements.

In this investigation it is assumed that the columns have an uniform cross-sectional area A, and an

uniform second moment of area |, up the height and the beams have a uniform second moment of
area |, up the height except for the roof beam, which has a second moment of area 0.51,.

The rigid frame has no uniform racking shear stiffness of the columns GA, up the height,

because of a discontinuity at the bottom caused by the fixed connection at the base.

This discontinuity can't be solved and causes a larger racking shear stiffness at the bottom of the rigid
frame. If the number of stories increases the influence of this discontinuity decreases.

The cross-section of the beams is assumed to be infinite A, =.

Shear deformations in the beams and columns are neglected, i.€. Ay gcar = Ac.ghear = -

0.51,

Acle | Ty

|~

1, BEAMS3

Figure 7.14 Numerical model for a rigid frame fix-connected to the base.
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7.2.2 Example

An eight storey high one bay fixed rigid frame (see fig. 7.15) has an individual bending stiffness EI ,
global bending stiffness EAc?, racking shear stiffness of the columns GA, , a racking shear stiffness
of the beams GA, and is subjected to two different loadcases. The characteristics of the rigid frame
can be found in table 6.1.

051, v
Ib
Al Iy
I, | =24
Iy
Ib
Iy
Ib
h=3
74
A

Figure 7.15. Example of fixed rigid frames.

7.2.2.1 Stiffness parameters
The individual bending stiffness is (see eq. (6.127)):

El =Y El; =2El, =2x2x10° x3.281x107* =131.2MN

The global bending stiffness is (see eg. (6.60)):

EAc? = Y EA,c;” = 2EAC;” =2x2x10° x1.744-107% x1.5? =15696MN
Ratio between the bending stiffnesses:

El 1312 1
EAc? 15696 120
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7.2.2.2 Vertical top load
The individual bending critical load is (see eq. (7.28)):

7°El 7% %1312
41 4x 247

criEl T

=0.562MN .

The global bending critical load is (see eq. (7.29)):

p B 7’EAc? B 7% x15696
criEAC? 4]2 - 4% 242

=67.24MN

The racking shear critical load of the columns is (see eq. (7.30)):

b 27°El,  2x 7% x2x10°x3.281x10"*

ios, = -+ =143.9MN

The racking shear critical load of the beams is (see eq. (7.31)):

12E1, 12x 2x10° x1.207 10~

A = =32.19MN
oriGh ah 3x3
The critical load is (see eq. (7.23)):
-1 4
Pcr = I:)cr;E| + 1 + ! + ! =0.562+|: 1 + 1 + 1 i| =19.47MN
o EAC? Peroa,  Perca, 67.24 1439 32.19

7.2.2.3 Vertical UDL
The individual bending critical load is (see eg. (7.60)):

Fcr;EI =

7.837TEl  7.837x131.2

=1.786MN
12 242

The global bending critical load is (see eq. (7.61)):

_ 7.837EAc? _ 7.837 x15696

EAR?
cr;EAc |2 242

=213.6MN

Factor 7 is (see eq. (7.63)):

> 8 _16_1 0666

" 5-05 8-05 15

n
The racking shear critical load of the columns is (see eq. (7.62)):

27%El
Foron, = n% =1.0666 x143.9 =153.5MN
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The racking shear critical load of the beams is (see eq. (7.64)):

24El, 24x2x10° x1.207 x10™*

= = =64.37TMN
eriGh ah 3x3
The critical load is (see eqg. (7.55)):
~1 O
Fo=Fog +| = bt 1 :1.786+[ 1 1 } —30.20MN
weaz  Toroa, Feron 213.6 1535 64.37

All critical loads in this example calculated by the stick-spring model are in bold type and can be
found in tables 7.1-7.7.
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7.2.3 Results

The figures and tables below present the results of the critical loads obtained from the stick-spring
model and the numerical analysis.

7.2.3.1 Individual bending deformation only
The second moment of area of the beams is assumed to be zero I, =0, which leads to a zero racking
shear critical load of the beams P, =0. The structure no longer behaves as a rigid frame, but as

two independent flexural cantilevers, which develop single curvature bending deformation only.
Therefore the rigid frame cannot develop double curvature bending of the columns, which leads to a
zero racking shear critical load of the columns P,.;, =0 and the rigid frame cannot develop global

bending, which leads to a zero global bending critical load P =0.

cr;EAC?
Substituting Py.g =0, Py.ga =0 and Pcr;EA02 =0 into eq. (7.23) leads to:
11 17"
Pcr = l:)cr;EI + 6+6+6 = I:)cr;EI +0= l:)cr;EI .

Now the rigid frame can develop individual bending deformation only.
Table 7.1 shows the accurracy of the individual bending critical loads P,,.;, and F.g, .

Table 7.1. Critical loads for fixed rigid frames, individual bending deformation only.

Nurr}ber Vertical top load P with UDL F(}/ - 0_5) with
0

2
storeys  E =7T_EI E _ 7.837El
S [_] ’ 4| 2 cr;El | 2
Critical loads P, [MN] Critical loads F_, [MN]
Stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A [%] | spring A [%]
model model

8 0.562 0.562 0.0 1.786 1.774 0.6

16 0.141 0.141 0.0 0.446 0.446 0.2

24 0.062 0.062 0.0 0.198 0.198 0.0

32 0.035 0.035 0.0 0.112 0.112 0.0

40 0.023 0.023 0.0 0.071 0.071 0.0

Observations
e The rigid frame develops one mode of deformation: individual bending only
(see fig 7.13a).

2
e The individual bending critical loads can very well be predicted by P, g, =7I4I—EI and

7.837El

Fem = —z because all errors are nearly zero (see table 7.1).
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7.2.3.2 Global bending deformation dominates
The second moment of area of the beams is assumed to be infinite I, =oo, which leads to
an infinite racking shear critical load of the beams P, =o.

Substituting Py,.cs = into eq. (7.23) leads to:

-1 -1
1 1 1 1 1
Pcr = I:)cr;EI +{P + =) +;] = I:>cr;EI +[P + P } :

criEAc? criGA cr:EAc? criGA;

Now the rigid frame can develop individual bending, global bending and racking shear deformation of

the columns. Global bending dominates, because Py.qp >P .., . and P > > Py .

Table 7.2 shows the accurracy of the global bending critical loads P. _ , and F__ .
cr;EAc cr;EAc

Alternative 1 is introduced to show that more identical buckling shapes lead to lower errors.

Table 7.2. Critical loads for fixed rigid frames, global bending deformation dominates.

Number Vertical top load P UDL F()/ = 0.5) uDL F(]/ = 0.5)
of -
storeys Critical loads P,, [MN] Critical loads F_, [MN] Alternative 1
S [ with Fy. s =7GA, and Critical loads F, [MN] with
Feroa, =2GA; and
Fcr;GAb = 2GAb '
Fcr;GAb = 2GAb
Stick- ANSYS | Error Stick- ANSYS | Error Stick- ANSYS | Error
spring A[%] | spring A[%] | spring A [%]
model model model
8 46.39 48.20 -3.8 91.10 124.3 -27 124.4 124.3 +0.1
16 15.19 15.44 -1.6 39.72 46.61 -15 45.48 46.61 -2.4
24 7.16 7.22 -0.8 20.63 22.43 -8.0 22.12 22.43 -1.4
32 4.12 4.14 -0.5 12.34 12.98 -4.9 12.87 12.98 -0.9
40 2.66 2.67 -0.3 8.14 8.42 -3.3 8.37 8.42 -0.6

Observations
e The rigid frame develops three modes of deformation: individual bending (see fig. 7.13a),
global bending (see fig. 7.13b) and racking shear of the columns (see fig. 7.13c).

e Global bending dominates the buckling behavior.

¢ Rigid frames subjected to vertical top loads P give lower errors then rigid frames
subjected to vertical UDL's F (see table 7.2), because the buckling shapes of the first
(see fig. 7.16) are more identical to each other then the buckling shapes of the second
(see fig. 7.17).

e Rigid frames subjected to vertical UDL's F give lower errors if the buckling shapes are
more identical (compare fig. 7.17/7.18 and table 7.2).

2 2 2
. . 7 EAC 7.837EAC
e The global bending critical loads P eac? :4|—2and F reac? :I—Zare

conservative, because all errors are negative (see table 7.2).
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y y

7 77 A
(a) (b) (c)

Fig 7.16 Modes of behavior of a fixed rigid frame subjected to top loads.

i : Lo

e 7S
(a) (b) (c)

Fig 7.17 Modes of behavior of a fixed rigid frame subjected to UDLs.

v {
Il v

7 A A
(a) (b) (c)

Fig 7.18 Modes of behavior of a fixed rigid frame subjected to UDL s (alternative 1).
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7.2.3.3 Racking shear deformation of the columns dominates

The cross-sectional area of the columns is assumed to be infinite A, =0 and the second moment of
area of the beams is assumed to be infinite 1, =oo. The first leads to an infinite global bending critical
load Pcr;EACZ =00 .. The second leads to an infinite racking shear critical load of the beams P,.g, =o0.

Substituting Pcr;EAc2 =oo and P, =00 into eq. (7.23) leads to:

o P o0

1
1 1 1

P =P + l:_+ +_:| =P + Pcr;GAc ~ PCF:GAC '
cr;GA

Now the rigid frame can develop individual bending and racking shear deformation of the columns.
Racking shear of the columns dominates, because Py .ch > Py -

Table 7.3 shows the accurracy of the racking shear critical loads of the columns P.c, and F.qa -

Table 7.3. Critical loads for fixed rigid frames, racking shear deformation of the columns dominates.

Nun}ber Vertical top load P UDL F(}/ = 0_5)
0
storeys Critical loads P, [MN] Critical loads F_, [MN]
S [] | stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A[%] | spring A [%]
model model
8 1445 144.2 +0.2 155.3 153.8 +1.0
16 1441 144.2 -0.1 149.0 148.8 +0.1
24 144.0 144.1 -0.1 147.2 147.2 0.0
32 144.0 144.1 -0.1 146.3 146.4 -0.1
40 143.9 144.1 -0.1 145.8 146.0 -0.1

Observations
e The rigid frame develops two modes of deformation: individual bending of the columns
(see fig. 7.13a) and racking shear of the columns (see fig 7.13c).

e Racking shear of columns dominates the buckling behavior.
e The stick spring model gives good results (see table 7.3).

e The racking shear critical loads of the columns can very well be predicted by
P 27l E 2Py h | ble 7.3
oA =z and Fg.cn _nh—z, ecause the errors are very low (see table 7.3).

This is because the racking shear buckling shape of a cantilever is identical to the racking
shear buckling shape of the columns of a rigid frame.

e If the number of stories increases to infinite the reduction factor » = decreases to

s—-0.5
27°El,

1 and the racking shear critical load of the columns becomes F.q, 7

(see table 7.3).
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7.2.3.4 Global racking shear dominates
The area of the columns A, =oo is assumed to be infinite, which leads to an infinite global bending
critical load Pcr-EAc2 = oo . Substituting Pcr_EACZ =00 into eq. (7.23) leads to:

P

cr

where

P

:Pcr;EI+|:1+ - + .

P

cr:GA :{

Now the rigid frame can develop individual bending deformation and global racking shear

o P

cr;GA P

1 1

-1
+
cr;GA,

cr;GA P

cr;GAy,

-1
:l = I:)cr;EI + I:>cr;GA ~ Pcr;GA'

deformation. Global racking shear dominates, because P, ., > P,.¢, . Table 7.4 shows the accuracy
of the global racking shear critical load P,,.;, and F .. For rigid frames subjected to UDL two

other alternatives will be presented here. Alternative 1 and 2 are introduced to find upper and lower
bound solutions for the actual global racking shear critical load.

Table 7.4 Critical loads for rigid frames fix-connected to the base, global racking shear deformation dominates.

Number Vertical top load P ubL F(y =0.5) UDLF(y =0.5) ubL F(y =0.5)
0 : :
storeys |  Critical loads P, [MN] Critical loads F,, [MN] Alternative 1 Alternative 2
S [ with Fyygp = 7GA, and Critical loads F_, [MN] with | Critical loads F, [MN] with
Foron = 2GA, Feroa, =2GA; and Ferca, =7GA; and
cr;
Fcr;GAb = ZGAb Fcr;GAb = UGAb
Stick- ANSYS | Error Stick- ANSYS | Error Stick- ANSYS | Error | Stick- | ANSYS | Error
spring A %] | spring A[%] | spring A %] | spring A [%)]
model model model model
8 26.87 27.60 -2.7 47.14 44,95 +4.9 54.39 44,95 +21 29.84 44,95 -38
16 26.44 27.19 -2.7 45.36 36.95 +23 53.05 36.95 +44 27.60 36.95 -27
24 26.37 27.11 -2.8 44.96 34.23 +31 52.80 34.23 +54 27.06 34.23 -22
32 26.34 27.08 -2.8 44.80 32.82 +37 52.72 32.82 +61 26.83 32.82 -19
40 26.33 27.07 -2.8 44,72 31.93 +40 52.68 31.93 +65 26.71 31.93 -17
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Observations
e The rigid frame develops three modes of deformation: individual bending of the columns
(see fig. 7.13a), racking shear of the columns (see fig 7.13c) and racking shear of the
beams (see fig. 7.13d).

e Global racking shear (racking shear of columns and beams) dominates the buckling
behavior.

e The actual global racking critical load lays between:
NGA< Fi caaca < 2GA (see tabel 7.4 and fig. 7.19).

Ferca = 2GA (alternative 1)

\ / F..on =77GA (alternative 2)

Fcr;GA;actuaI (ANSYS)

Figure 7.19 Global racking shear buckling shapes for load case F .

-1
2
e The global racking shear critical load P, s, ={ h ah }

5 +
27°El, 12El,
is conservative, because all errors are negative (see table 7.4).

-1
2
e The global racking shear critical load F ., ={ h ah }

5 +
n2z°El,  24El,
is unconservative, because all errors are positive (see table 7.4).

e If global racking shear is dominant, which is the case if F,;, <F__ ,,formula
' cr;EAc

7.837El |2 h? ah
cr = 2 + 2 + 2 +
I 7.837EAc” n2x°El, 24El,
(see table 7.4).

-1
F } gives unconservative critical loads
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7.2.3.5 All deformations together
Table 7.5 shows the accuracy of the critical loads P, and F .

Table 7.5. Critical loads for fixed rigid frames, all deformations together.

Number Vertical top load P uUDL F(}/ = 0_5)
of
storeys Critical loads P, [MN] Critical loads F,, [MN]
S [-]1 | Stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A %] | spring A %]
model model

8 19.47 19.85 -1.9 39.20 40.34 -2.9

16 10.40 10.51 -1.1 24.84 26.15 -5.0

24 5.88 5.92 -0.7 15.71 16.60 -5.4
32 3.66 3.67 -0.4 10.39 10.84 -4.2
40 2.46 2.47 -0.3 7.24 7.48 -3.1

Observations
e The buckling behavior of a fixed rigid frame can be divided into individual bending,
global bending, racking shear of columns and racking shear of beams (see fig. 7.13).

e Thecritical loads P, and F, are conservative, because the errors are negative
(see table 7.5).

-1
7.837El 12 h? ah
+ + +
12 7.837EAC® n27’El, 24El,

for tall rigid frames dominated by global bending, which is the case if F__ , <F. s

e Formula F, =

can only be used

(see table 7.5), because it then gives conservative critical loads.

e The maximum errors for the theoretical tall building structures are (see table 7.1-7.7).

The highest conservative error for loadcase P is: -3.8 %.
The highest conservative error for loadcase F is: -27 %.

The highest unconservative error for loadcase P is: +0.2 %.
The highest unconservative error for loadcase F is: +40 %.

e The extreme cases (see table 7.1-7.4 and table 7.6-7.7) are normally of theoritical interest,
because there is always a combination between individual bending, individual rotation, global
bending, racking shear of the columns and racking shear of the beams. For practical tall
building structures, therefore only table 7.5 is important.

e The maximum errors for the practical tall building structures are (see table 7.5 in red).
The highest conservative error for loadcase P is: -1.9 %.
The highest conservative error for loadcase F is: -5.4 %.

e All suggested formula give good results for the preliminary design of practical highrise
fixed rigid frames of 8 till 40 stories within a maximum error of 5.4% .

e All observations are only valid for one-bay fixed rigid frames of eight till forty stories.

e All observations are only valid for the investigated cases in this parameterstudy.
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7.2.3.6 Influence of the individual bending stiffness on the critical load

The influence of the individual bending stiffness EI on the overall critical will be investigated.
This will be done by increasing the second moment of area of the columns. Therefore the individual

bending stiffness El and the racking shear stiffness of columns GA, will also increase. All other

parameters remain constant. The global bending stiffness is EAc? =15696MNm? and the racking

shear stiffness of the beams is GA, = 32.19MN . Very important in this matter is the > ratio. First

EAc

the practical limits of the ratio will be defined.

EAc?

A lower bound can be found by assuming a rigid frame with weak columns (see fig. 7.20a):

El  2El, I, 0000003492 1
EAc®> 2EAc® Ac? 0002124x15% 1369

An upper bound can be found by assuming a coupled wall with very stiff columns (see fig. 7.20b):

El I, 0007223 1
EAc®> Ac® 0.04442x15° 14

Practical limits:
1 < El <1

1369 EAc’? 14

K
HE100A HE1000M
A, =0.002124 =12 A, =0.04442
I, =0.000003492 I, =0.007223

h=3
K | -
/— /—
a=3 a=38
c; =1.5 ¢, =15

—_
QD
N—
—_
(ox
N—

Figure 7.20 Practical limits.

Table 7.6 shows the influence of the individual bending critical load on the overall critical load by

varying ratio Ei with s =8.Table 7.7 shows the influence of individual bending stiffness EIl on

CZ

the critical loads P, and F, .
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El
Table 7.6. Influence individual bending critical load on the overall critical load by varying EACE ratio, S=8.
c

Critical loads [MN
El Pcr;EI ; ANSYS I:>cr;ANSYS I:>cr;EI ;ANSYS g
e o LIS o]
[ ]C I:)cr;ANSYS
0.001 0.13447 14.08 1
0.01 1.3447 22.00 6
0.1 13.447 35.08 38
1 134.47 156.21 86

Table 7.7. Critical loads for fixed rigid frames, influence of the individual bending stiffness EI on the critical
loads P, and F,, s=24.

El Vertical top load P uDL F(]/ = 0.5)
EAc? Critical loads Py, [MN] Critical loads F_ [MN]
[l Stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A[%] | spring A [%]
model model
0.001 5.17 5.29 -2.3 11.66 13.90 -16
0.01 6.11 6.12 -0.3 17.00 17.44 -2.5
0.1 7.55 7.55 0.0 22.00 22.48 -2.1
1 21.00 21.00 0.0 64.79 65.78 -1.5

Observations

e If the ratio is higher the influence of the individual bending critical load on the

EAc
overall critical load is larger (see table 7.6).

e The individual bending stiffness EI can have a big influence on the critical load and
therefore can't be neglected (see table 7.7).
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7.3 Rigid frames flexibly connected to the base

A rigid frame is a structure which consists of columns and beams (see fig. 7.21). The joints of a rigid
frame are moment resistant. The boundary conditions at the base of a rigid frame can be pinned, fixed
or flexible. In this investigation the boundary conditions are flexible (see fig. 7.21). This flexible
connection at the base introduces a new mode of deformation to the buckling behavior, which is
individual rotation of the columns.

051,

v
I, h

At |1 A
|
Ib
051,
D c (b

SR S pd 7

74%&%
Figure 7.21 Flexible rigid frames.

The buckling behaviour of a flexible rigid frame can be divided into 5 modes of deformation:
¢ Individual bending (EI ): single curvature bending of the vertical members (see fig. 7.22a).

e Individual rotation (C): caused by double curvature bending of a groundfloor beam

(see fig. 7.22Db).
e Global bending (EACZ)Z axial deformation in the columns (see fig. 7.22c).

e Racking shear of the columns (GA, ): double curvature bending in the columns

(see fig. 7.22d).
e Racking shear of the beams (GA, ): double curvature bending in the beams (see fig. 7.22e).

ﬁ f S Wark

l,=0,C=0 1,=0,l,=0 l,=C=o A =1,=C=w A =Il=o
El=1f(l,) C=1(l,) EAc? = f(A,) GA, =f(l,) GA, = f(I,
(a) (b) (c) (d) (e)

Fig 7.22 Modes of behavior of a flexible rigid frame.
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Assumptions:
e The column-beam connections are fully moment resistant.
e The rigid frame is flexibly connected to the base.
e The columns are continuous up the total height of the structure.
e The flexible rigid frame has five lateral stiffness parameters El = f(1.), C=f(1,),

EAc? = f(A,), GA, = f(l,) and GA, = f(I,).
e The cross-section of the beams is infinite A, = for all modes of behavior.
e Shear deformations in the beams and columns are neglected, which means

Ab;shear = Ac;shear =0,

7.3.1 Vertical top loads

A stick-spring model is introduced here to obtain an approximate solution for the overall critical load
of a one-bay flexible rigid frame (see fig. 7.23a). It is first suggested to transform a rigid frame
subjected to vertical top loads into a multiple stick model (see fig. 7.23b).

In a multiple stick model a pinned column is supported by a spring-flexure cantilever with individual
bending stiffness El , individual rotational spring stiffness C and by a shear-flexure cantilever with
global bending stiffness EAc?, racking shear stiffness of the columns GA, and racking shear stiffness
of the beams GA, . The spring-flexure cantilever can be transformed into a stick-spring model with
horizontal translational spring stiffness k, = f(EI,C) and the shear-flexure cantilever can be
transformed into a stick-spring model with horizontal translational spring stiffness

k, = f(EAc2 ,GA,,GA, ) The multiple stick model can then be transformed into a stick-spring model,
where the horizontal translation spring k = f(kl, kz) (see fig. 7.23c).

The justification for this suggestion is that the shear-flexure cantilever can be seen as a quasi-braced
frame and the spring-flexure cantilever can be seen as a flexible column adding the individual bending
stiffness EI and rotational spring stiffness C of the rigid frame. If the beams of a rigid frame are cut
through it can still develop individual bending (see fig. 7.22a) and individual rotation of the columns
(see fig. 7.22b), because of the flexible connection at the bottom and the continuous columns.

v v 0

—> —> 7T
A EAc? N
GA, GA =
GA, =
> > C=x ¥
/;7 /;7 ST

(c)

Figure 7.23 Transformation of flexible rigid frame into stick-spring model for loadcase P .
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It has been shown that (see eq. (7.12)):
I:)cr = I:>cr;1 + I:)cr;z (766)

The spring-flexure cantilever, with individual bending EI and individual rotational spring stiffness
C , is assumed to be standing alone so k, =0 (see fig. 7.24a). This can be modelled into the

stick-spring model with translation spring k, = f(EI ,C) (see fig. 7.24Db).

"

El

1>

c
P
(a) (b)

Figure 7.24 Spring-flexure cantilever subjected to top loads.

The first-order deformation at the top of the spring-flexure cantilever is:

3
A", Ql (7.67)

= =+ =
Yor =Y +¥Yc 3EI C

The first-order deformation at the top of the stick-spring model is:

Qo (7.68)

Both deformations are the same yielding the horizontal translational spring stiffness k; :

1_r ! (7.69)

=——+
k, 3EI C
The critical load of the stick-spring model is:

IDcr;l = k1I (770)

After substituting eq. (7.69) into eq. (7.70) the critical load of the stick-spring model is:

2
t 1 0.1 (7.71)
k| 3EI C

P

cr;l
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In general, the critical load of eq. (7.71) can be written as:

-1
1 1
l:)cr;l = |: + :|
l:)cr;EI Pcr;C

It has been shown that the critical load of the shear-flexure cantilever is (see eq. (7.22)):

-1
1 1 1

P, = + +

iz [P P P }

cr;EAC? criGA criGAp

After substituting eq. (7.72) and eq. (7.73) into eq. (7.66) the critical load of a rigid frame is:

-1 -1
1 1 1 1 1
P, = + + + +
IDcr;EI I:,cr;C Pcr;EAc2 I:,cr;GAc Pcr;GAJ

Where the critical loads obtained from the stick spring model are for:
e Individual bending [1, 2]:

3EI

|2

Pcr;EI =

¢ Individual rotation [1, 2]:

C
I:>cr;C :l_

e Global bending [1, 2]:

_ 3EAc?

criEAC? |2

e Racking shear of the columns [5]:

24El
P o £

criGA. GA; =

¢ Racking shear of the beams [5]:

_12El,

Pcr;GAb = GAb ah
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The actual critical loads are for:
e Individual bending [4]:

7%El
I:><:r;EI :4|—2 (780)
e Individual rotation [1, 2]:
C
Perc =7 (7.81)
e Global bending [4]:
7*EAC?
criEAC? 412 (7.82)
¢ Racking shear of the columns [27]:
27°El,
Pcr;GA: :GAC = h2 (783)
e Racking shear of the beams [5]:
12EI
Pcr;GAb =GA, = ah ° (7.84)

The individual rotational spring critical load of the stick-spring model (see eq. (7.76)) is equal to the
actual individual rotational spring critical load of a rigid frame (see eq. (7.81)), because the individual
rotation deflection shape of a rigid frame (see fig. 7.25a) is identical to the individual rotation buckling
shape of a rigid frame (see fig. 7.25b).

v

> 2

I, =0, |, =

(a) (b)

Figure 7.25 Individual rotational spring shapes for top loads.

The racking shear critical load of the beams of the stick-spring model (see eq. (7.79)) is equal to the
actual racking shear critical load of the beams of a rigid frame (see eq. (7.84)), because the racking

shear deflection shape of the beams of a rigid frame (see fig. 7.26a) is identical to the racking shear
buckling shape of the beams of a rigid frame (see fig. 7.26b).
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Figure 7.26 Racking shear shapes of the beams caused by top loads.

If the actual values for individual bending (see eq. (7.80)), individual rotation (see eq. (7.81)),
global bending (see eq. (7.82)), racking shear of the columns (see eq. (7.83)) and racking shear of the
beams (see eq. (7.84)) are substituted into eq. (7.74) the critical load of a rigid frame becomes:

az 11T ar h? ah |”
Pe=l 2ot =| t| Zerz T et (7.85)
2Bl C Z2EAC? | 27°El,  12El,
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7.3.2 Uniformly distributed vertical loads
In fig. 7.27a a rigid frame is subjected to vertical point loads F, accept for the point loads at the roof
and at the bottom of the frame which are 0.5F, . In a similar way a stick-spring model can be used

to obtain an approximate solution for the overall critical load of a rigid frame
First a rigid frame subjected to vertical point loads is transformed into a multiple stick model subjected
to a horizontal UDL w and a vertical UDL f (see fig. 7.27Db).

The multiple stick model is then transformed into the stick-spring model (see fig. 7.27c).

0.5F, 0.5F,
—> 9, O — > —t
FF LR, —» —>
» — K
—>
F, F, w f El EAc? W f |
/N > AN —»
= —» GA, = _
I:V I:V _> GAb _>
—> —»
0.5F, 0.5F, > —
—> —> %
c b 4
/;7 /77

(a) (b) (c)

Figure 7.27 Transformation of flexible rigid frame into stick-spring model (UDL).
It has been shown that (see eq. (7.44)):
I:cr = I:cr;l + I:cr;2 (786)

The spring-flexure cantilever, with individual bending EI and individual rotational spring stiffness
C, is assumed to be standing alone so k, =0 (see fig. 7.28a). This can be modelled into the

stick-spring model with translation spring k, = f(El,C) (see fig. 7.28D).

—> T
—>
—>
—>
LA
—>
—>
—>
C —> 2B

(a) (b)

Figure 7.28 Spring-flexure cantilever subjected to UDL.
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The first-order deformation at the top of the spring-flexure cantilever is:

wil* wl?
Vv + 7.87
Yoo =Ye +¥Yc SEl 2C (7.87)
The first-order deformation at the top of the stick-spring model is:
2wl
Yoo = k_l (7.88)
1
Both deformations are the same yielding the horizontal translational spring stiffness k; :
3
S A (7.89)
k, 4El C
It has been shown that the critical load of the stick-spring model is:
Fera = 2kl (7.90)
After substituting eq. (7.89) into eq. (7.90) the critical load of the stick-spring model is:
2
11 ! +i (7.91)
Foa 2k 8EI 2C
In general, the critical load of eq. (7.91) can be written as:
1 1]
Fera :{ + } (7.92)
I:cr;EI I:cr;C
It has been shown that the critical load of the shear-flexure cantilever is (see eq. (7.54)):
-1
Foo = t 1 (7.93)
I:cr;EA02 FC"?GAc FC";GAb

After substituting eq. (7.92) and eq. (7.93) into eq. (7.86) leads to the critical load of a rigid frame:

-1 -1
F, = 1 + 1 + 1 + 1 + 1 (7.94)
I:cr;EI I:cr;C Fcr;EAc2 I:cr;GAc Fcr;GAJ

Where the critical loads obtained from the stick spring model are for:
e Individual bending [1, 2]:

8El

S (7.95)

Fcr;EI =
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¢ Individual rotation [1, 2]:

2C
Foc == (7.96)
e Global bending [1, 2]:
_ 8EAC® 297
cr;EAC? _|—2 (7.97)
e Racking shear of the columns [5]:
, 48El
Fera, =2GA; = 2 < (7.98)
¢ Racking shear of the beams [5]:
24El
Forion, =26A, =— : (7.99)
The actual critical loads are for:
¢ Individual bending [5]:
7.837El
Fere == (7.100)
e Individual rotation [1, 2]:
Fec =$ (7.101)
e Global bending [5]:
7.837EAC®
cr;EAC? - |2 (7102)
e Racking shear of the columns (see eq. (6.21)):
27°El,
Feroa, =71GA. =11 2 (7.103)
Where factor 7 is (see eq. (6.22)):
__ S (7.104)
T=5 05 '
e Racking shear of the beams:
24El
Feroa, = 2GA, = - b (7.105)
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The individual rotational spring critical load of the stick-spring model (see eq. (7.96)) is equal to the
actual individual rotational spring critical load of a rigid frame (see eq. (7.101)), because the
individual rotation deflection shape of a rigid frame (see fig. 7.29a) is identical to the individual
rotation buckling shape of a rigid frame (see fig. 7.29b).

—>

—»>

—>

—>

_> T

_> -

—>

> <
7 ST

Figure 7.29 Individual rotational spring shapes for top UDI.

The racking shear critical load of the beams of the stick-spring model (see eq. (7.99)) is equal to the
actual racking shear critical load of the beams of a rigid frame (see eq. (7.105)), because the racking
shear deflection shape of the beams of a rigid frame (see fig. 7.30a) is identical to the racking shear
buckling shape of the beams of a rigid frame (see fig. 7.30b).

Figure 7.30 Racking shear shapes of the beams of rigid frames caused by UDL’s.

If the actual values for individual bending (see eq. (7.100)), individual rotation (see eq. (7.101)),
global bending (see eq. (7.102)), racking shear of the columns (see eq. (7.103)) and racking shear of
the beams (see eq. (7.105)) are substituted into eq. (7.94) the critical load of a rigid frame becomes:

12 s E h? ah |
F,=|lo———t+—| + -+ > + (7.106)
7.837El ' 2C 7.837EAC?  p27’El,  24El,
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7.4 Lateral stiffnesses of a flexible rigid frame

7.4.1 Individual rotational spring stiffness

The individual rotational spring stiffness C of the columns caused by double curvature bending of the
groundfloor beam can be obtained from (see fig. 7.31).

L oM M 6El,
C=2c _2?_2 V0B = 2 (7.107)
3% 0.5El,

where E is the elastic modulus, I, is the second moment of area of the groundfloor beam and a is
the distance between the neutral axis of the columns.

1>
1>

0.5El, c' > c />

0.5a
A—H

Figure 7.31 Individual rotational spring stiffness of a flexibe rigid frame.
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7.5 Accuracy

To establish the accuracy of the stick-spring model, critical loads of a number of one-bay rigid frames
were estimated using the stick-spring model and a finite element analyses. Finite element program
ANSYS was used to obtain the eigenvalues of the rigid frames. The rigid frames have flexible
supports and the height of the frames varied from eight to forty stories. The rigid frames are subjected
to two different loadcases (see fig. 1.5):

e Vertical top loads (see fig. 1.5a).

e Uniformly distributed vertical loads (see fig. 1.5b).
Eight different cases will be investigated for one-bay rigid frames:

¢ Individual bending deformation only (see fig. 7.32a)
Individual rotational spring deformation only (see fig. 7.32b).
Global bending deformation dominates (see fig. 7.32c).
Racking shear deformation of the columns only (see fig. 7.32d).
Racking shear deformation of the beams only (see fig. 7.32e).
Global racking shear deformation dominates (7.32d/e).
Individual bending and individual rotational spring deformation (see fig. 7.32a/b).
All deformations together (see fig. 7.32a/b/c/d/e).

Figure 7.32 Cases to investigate for flexibly rigid frames.

The first seven cases only represent theoretical cases, but the inclusion of them is very important to
make a well-based judgement on the accuracy of the stick-spring model.
The critical loads found with the finite element method are assumed to be exact.

P, P
The errors are calculated as follows A = —%— A% 1000 .
cr(ANSYS)

If the error is negative the stick-spring model gives a conservative value for the critical load.

126



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

7.5.1 Introduction numerical model

The numerical model shown in figure 7.33 is built up from BEAMS3 elements. BEAM3 elements can
sustain normal forces, bending moments and shear forces. All the connections at each node are
moment resistant. The columns and beams are divided into three BEAM3 elements.

In this investigation it is assumed that the columns have an uniform cross-sectional area A, and an

uniform second moment of area |, up the height and the beams have a uniform second moment of
area |, up the height except for the groundfloor- and roof beam., which has a second moment of area

0.51, . The cross-section of the beams is assumed to be infinite Aj =oo.
Shear deformations in the beams and columns are neglected, which means Ay ... = A.ghear = ©-

051,

Iy BEAM3

051,

Figure 7.33 Numerical model for a rigid frame flexibly connected to the base.
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7.5.2 Example

An eight storey high one bay flexible rigid frame (see fig. 7.34) has an individual bending stiffness

El , individual rotational spring stiffness C , global bending stiffness EAc?, racking shear stiffness of
the columns GA,, racking shear stiffness of the beams GA, and is subjected to two different
loadcases. The characteristics of the rigid frame can be found in table 6.1.

0.51, v
Ib
Al Iy
I, | =24
Ib
Ib
ly
Ib
h=3
0.51, L
W

Figure 7.34. Example of flexible rigid frames.

7.5.2.1 Stiffness parameters
The individual bending stiffness is (see eq. (6.127)):

El =Y El,; =2El, =2x2x10° x3.281x10™* =131.2MN

The individual rotational spring stiffness is (see eq. (7.107)):

5 -4
_ 6El, _ 6x2x10 ><31.207 x10 _ 48.28MNM
a

C

The global bending stiffness is (see eg. (6.60)):
EAc? = Y EA,c,” = 2EAC;” =2x2x10° x1.744-107 x1.52 =15696MN
Ratio between the bending stiffnesses:

El 1312 1
EAc? 15696 120

128



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

7.5.2.2 Vertical top load
The individual bending critical load is (see eg. (7.80)):

7°El 7% %1312

= >—=0.562MN .
4] 4x24

criEl
The individual rotational spring critical load is (see eq. (7.81)):

=———=2.01IMN

C 4828
Fere =7 =24

The global bending critical load is (see eq. (7.82)):

B 72EAC? B 7% x15696

cEA T 412 4242 =67.24MN

The racking shear critical load of the columns is (see eq. (7.83)):

b 27°El,  2x 7% x2x10°x3.281x10"*

o, =7 = - =143.9MN

The racking shear critical load of the beams is (see eq. (7.84)):

12El ® x1. -
P b:12><2><10 x1.207 x10 32 19MN

% " ah 3x3

The critical load is (see eq. (7.74)):

P

1 1 1

P, =19.35MN

129

-1 -1 .
o] ) o |
= + + + + = + +
PCr;E' Pcr;C PCI’;EACZ Pcr;GAc Pcr;GAb 0-562 2.01

+ +
67.24 1439 32.19
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7.5.2.3 Vertical UDL
The individual bending critical load is (see eg. (7.100)):

7.837El _ 7.837x131.2

=1.786MN
|2 242

I:cr;EI =

The individual rotational spring critical load is(see eq. (7.101):

_2C _2x48.28

Fure =5 oy = 402N

The global bending critical load is (see eq. (7.102)):

_ 7.837EAc®  7.837x15696

. 2 = 2 2
cr;EAC | 24

=213.56MN

Reduction factor 77 is (see eq. (7.104)):

p=—> -8 10 10666
s-05 8-05 15

The racking shear critical load of the columns is (see eq. (7.103)):

2 ZEI 2 5 ) -4
Fcr;G%zn%zl.OGE‘)BXZX” ><2><1C;2><3281><10 _1535MN

The racking shear critical load of the beams is (see eq. (7.105)):

5 -4
- :24E|b :24><2><10 x1.207 x10 _ 64.37MN
T T ah 3x3

The critical load is (see eq. (7.94)):

1

1

1

cr,GA. cr;GAy,

-1 -1
1 1 1 1 1 { 1 1
F, = + + + + = +
Fer Fec F F F 1.786 4.02

cr;EAC?

F, =38.65MN

All critical loads in this example calculated by the stick-spring model are in bold type and can be

found in tables 7.8-7.12.
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+ +
213.6 1535 64.37
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7.5.3 Results

The figures and tables below present the results of the critical loads obtained from the stick-spring
model and the numerical analysis.

7.5.3.1 Individual bending deformation only
For results and observations see section 7.3.3.1.

7.5.3.2 Individual rotational spring deformation only

The second moment of area of the beams is assumed to be zero I, =0 and the second moment of area
is assumed to be infinite 1, =oo. The first leads to a zero racking shear critical load of the beams
Per.ca, = 0. The second leads to an infinite individual bending critical load P.;, =0 and an infinite

C

racking shear critical load of the columns P, =oo. The structure no longer behaves as a rigid

frame, but as two independent spring-cantilevers, which develop individual rotational spring
deformation only only. Therefore the rigid frame cannot develop global bending, which leads to a zero
global bending critical load P _ , =0. Substituting P, =0, Pygs = and P =0 into

criEAC? T
eq. (7.74) leads to:

-1 a
1 1 1 1 1
P, =|—+ +|=+—+=| =P,c+0=P,..
cr |:OO Pcr;c :| |:0 0 0:| cr;C cr;C

EAc

Now the rigid frame can develop individual rotational spring deformation only.
Table 7.8 shows the accurracy of the individual rotational spring critical loads P,,.. and F ..

Table 7.8. Critical loads for flexible rigid frames, individual rotational spring deformation only.

Number | Vertical top load P with uUDL F(y = 0_5) with
of
storeys Pyc = S E - E
S [] ' | orc T
Critical loads P, [MN] Critical loads F_, [MN]
Stick- | ANSYS | Error | Stick- | ANSYS | Error
spring A [%] | spring A [%]
model model
8 2.01 2.01 0.0 4.02 4.02 0.0
16 1.01 1.01 0.0 2.01 2.01 0.0
24 0.67 0.67 0.0 1.34 1.34 0.0
32 0.50 0.50 0.0 1.01 1.01 0.0
40 0.40 0.40 0.0 0.80 0.80 0.0

Observations
e The rigid frame develops individual rotational spring deformation only
(see fig 7.32a).

2
I 1

because all errors are zero (see table 7.8). This is because the rotational spring deflection

shape of the rigid frame is identical to rotational spring buckling shape of the rigid frame.

e The individual rotational spring critical loads are equal to P,,.. =T and F,.. =
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7.5.3.3 Global bending deformation dominates
For results and observations see section 7.3.3.2.

7.5.3.4 Racking shear deformation of the columns dominates
For results and observations see section 7.3.3.3.

7.5.3.5 Racking shear deformation of the beams dominates

The cross-sectional area of the columns is assumed to be infinite A, =0 and the second moment of
area of the columns is assumed to be infinite 1, =0 . The first leads to an infinite global bending
critical load Pcr;EAcz =oo0. The second leads to an infinite individual bending critical load P,.;, =

and an infinite racking shear critical load of the columns Py, =o0. Substituting Py.;; =0,
=00 and Py.gy =0 intoeq. (7.74) leads to:

cr;EAC?

-1 -1
1 1 1 1 1
Per = {_ ' :I ' {_ N } =Perc + Percn, ~ Perion, -

Y Pcr;C Y Y Pcr;GAb

Now the rigid frame can develop individual rotational spring and racking shear deformation of the
beams. Racking shear deformation of the beams dominates, because P,.c, > P.c . Table 7.9 shows

the accurracy of the racking shear critical loads of the beams P.c, and Fg.ca -

Table 7.9. Critical loads for flexible rigid frames, racking shear deformation of the beams dominates.

Number Vertical top load P uDL F(}/ = 0.5)
of
storeys Critical loads P, [MN] Critical loads F_, [MN]
S [-] | Stick-spring model | ANSYS | Error A [%] | Stick-spring model | ANSYS | Error A [%]
8 34.20 32.19 +6.3 68.40 64.37 +6.3
16 33.19 32.19 +3.1 66.38 64.37 +3.1
24 32.86 32.19 +2.1 65.71 64.37 +2.1
32 32.69 32.19 +1.6 65.38 64.37 +1.6
40 32.59 32.19 +1.3 65.18 64.37 +1.3

Observations
e The rigid frame develops two modes of deformation: individual rotation
(see fig. 7.32b) and racking shear of the beams (see fig 7.32e).

¢ Racking shear of beams dominates the buckling behavior.
e The stick spring model gives good results (see table 7.9).

e The racking shear critical load of the beams are very well be predicted by

12El 24El
b and Ferca, =—hb, because the errors are very low (see table 7.9).
‘ a

cr;GAy =
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7.5.3.6 Global racking shear deformation dominates
The cross-sectional area of the columns is assumed to be infinite A, =, which leads to an infinite
global bending critical load P op2 =% Substituting P p2 =% into eq. (7.74) leads to:

-1 -1
1 1 1 1 1
Pcr:|:P +P :| +|:—+P +P :| = cr;l+Pcr;GA'
cr;El cr;C o0 cr;GA cr;GA,

-1 -1
where Py = {L + L :| and Perica = ! + -
IDcr;EI I:,cr;C I:>cr;GAC Pcr;GA{J

Now the rigid frame can develop individual bending, individual rotational spring and global racking
shear deformation. Global racking shear dominates, because P, > P,,.,. Table 7.10 shows the

crile
accurracy of the global racking shear critical loads P,,.c, and F.ca.

Table 7.10. Critical loads for flexible rigid frames, global racking shear deformation dominates.

Number Vertical top load P uDL F(}/ = 0.5)
of
storeys Critical loads P, [MN] Critical loads F_, [MN]
S [-] | Stick-spring model | ANSYS | Error A [%] | Stick-spring model | ANSYS | Error A [%]
8 26.74 27.05 -1.1 46.59 33.69 +38
16 26.43 27.05 -2.3 45.28 30.96 +46
24 26.36 27.05 -2.6 44.94 29.95 +50
32 26.34 27.05 -2.6 44.79 29.41 +52
40 26.32 27.06 -2.7 44.72 29.07 +54

Observations
e The rigid frame develops four modes of deformation: individual bending (see fig. 7.32a),
individual rotation (see fig. 7.32b), racking shear of the columns (see fig 7.32c) and
racking shear of the beams (see fig. 7.32d).

e Global racking shear (racking shear of columns and beams) dominates the buckling
behavior.
-1
h? ah }

> +
27°El, 12El,
is conservative, because all errors are negative (see table 7.10).

e The global racking shear critical load P, s, ={

2 -1
e The global racking shear critical load F g, = hz + ah
‘ n2x°El, 24El,

is unconservative, because all errors are positive (see table 7.10).

e Ifglobal racking shear is dominant, which is the case if P,y <P __ , ,formula
-1 -1
12 | 12 h? ah . .
Fo=lo=—=—+—| + >+ > + gives unconservative
7.837ElI  2C 7.837TEAC” n2z°El, 24El,

critical loads (see table 7.10).
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7.5.3.7 Individual bending and individual rotational spring deformation
The second moment of area of the beams is assumed to be zero I, =0, which leads to a zero racking
shear critical load of the beams P, = 0. The structure no longer behaves as a rigid frame, but as

two independent spring-flexure cantilevers, which develop individual bending and individual
rotational spring deformation only. Therefore the rigid frame cannot develop double curvature bending
of the columns, which leads to a zero racking shear critical load of the columns P, =0 and the

rigid frame cannot develop global bending, which leads to a zero global bending critical load
P 2 =0.Substituting P,.c, =0, P =0and P__ , =0 intoeq. (7.74) leads to:

cr;EAc cr;GA criEAC

-1 ] -1
P, = ! + ! +F+1+£} = ! + ! +0=P,, +0="P,.
I:)(:r;EI I:’cr;C 0 0 O I:)cr;EI I:’cr;C

where

-1
I:)cr;l = L + L
I:)cr; El IDcr;(:

Now the rigid frame can develop individual bending and individual rotational spring deformation.
Table 7.11 shows the accurracy of the critical loads P, and F.,.

Table 7.11. Critical loads for flexible rigid frames, individual bending and individual rotational spring def.

Number Vertical top load P uUDL F(}/ = 0_5)
of
storeys Critical loads P, [MN] Critical loads F,, [MN]
S [-] | stick-spring model | ANSYS | Error A [%] | Stick-spring model | ANSYS [ Error A [%]
8 0.439 0.454 -3.3 1.237 1.297 -4.7
16 0.123 0.126 -2.1 0.365 0.378 -3.4
24 0.057 0.058 -1.5 0.172 0.178 -2.6
32 0.033 0.033 -1.2 0.100 0.103 -2.1
40 0.021 0.022 -1.0 0.066 0.067 -1.8

Observations
e The rigid frame develops two modes of deformation: individual bending (see fig. 7.32a)
and individual rotation (see fig. 7.32b).

e The stick spring model gives good results (see table 7.11).

e Thecritical loads P

C

cr;El I:)cr;(: cr;El Fcr;C

-1 -1
e :{Pl + 1 } and Fcr;l:[Fl + L } are conservative,

because all errors are negative (see table 7.11). This because the individual bending buckling
shape is not identical to the individual rotational spring buckling shape.
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7.5.3.8 All deformations together
Table 7.12 shows the accuracy of the critical loads P, and F .

Table 7.12. Critical loads for flexible rigid frames, all deformations together.

Number Vertical top load P UDL F(}/ = 0_5)
of
storeys Critical loads P, [MN] Critical loads F_, [MN]
S [-] | stick-spring model | ANSYS | Error A [%] | Stick-spring model | ANSYS [ Error A [%]
8 19.35 19.67 -1.7 38.65 32.12 +20
16 10.38 10.50 -1.2 24.76 25.32 -2.2
24 5.88 5.92 -0.7 15.68 16.54 -5.2
32 3.66 3.67 -0.4 10.38 10.83 -4.2
40 2.46 2.47 -0.3 7.24 7.47 -3.2

Observations
e The buckling behavior of a fixed rigid frame can be divided into individual bending,
individual rotation, global bending, racking shear of the columns and racking shear of
the beams (see fig. 7.32).

e Thecritical loads P, and F, are conservative, because the errors are negative
with s>16 (see table 7.12).

12 L] 12 h? ah |
e Formula F, =| ——+—| + + + can only be used
7.837El 2C 7.837EAC’  n27’El,  24El,

for tall rigid frames dominated by global bending, which is the case if Foea2 <Foroa

(see table 7.12), because it then gives conservative critical loads.

e The maximum errors for the theoretical tall building structures are (see table 7.8-7.12).

The highest conservative error for loadcase P is: -3.8 %.
The highest conservative error for loadcase F is: -27 %.

The highest unconservative error for loadcase P is: +6.3 %.
The highest unconservative error for loadcase F is: +54 %.

e The extreme cases (see table 7.8-7.11) are normally of theoritical interest, because there is
always a combination between individual bending, individual rotation, global bending, racking
shear of the columns and racking shear of the beams. For practical tall building structures,
therefore only table 7.12 is important.

e The maximum errors for the practical tall building structures are (see table 7.12 in red).
The highest conservative error for loadcase P is: -1.2 %.
The highest conservative error for loadcase F is: -5.2 %.

e All suggested formula give good results for the preliminary design of practical highrise
flexible rigid frames of 16 till 40 stories within a maximum error of 5.2% .

e All observations are only valid for one-bay flexible rigid frames of eight till forty stories.

e All observations are only valid for the investigated cases in this parameterstudy.
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8 Discussion and conclusions

8.1 Comparison between suggested formulae and existing formulae

In the literature several formulae can be found for estimating the critical loads of braced and rigid
frames. In this section some existing formulae will be compared to the formulae derived with the
stick-spring model to make a comparison. Only frames subjected to uniformly distributed loads will be
compared, because this loadcase is only interesting for tall building structures.

The characteristics of the frames can be found in table 6.1.

8.1.1 Braced frames

8.1.1.1 Uniformly distributed loads

Zalka
In 1999 Zalka [24] modelled a braced frame subjected to a vertical UDL by a sandwich column with
thin faces and obtained a mathematically exact formula for the critical load by making use of a table or

graph in which a critical load parameter A is a function of a stiffness parameter 4

Fcr = ZFcr;GA (81)

Where:
e The stiffness parameter £ is:

o Fcr;GA 82
B== (8.2)

cr; EAC?

e Global bending critical load is:

7.837aEAC?
oriEAC? 12 (8.3)
e Reduction factor o is:
s
- > 8.4
% T 511588 ®4)
¢ Global racking shear critical load is:
-1
h? ah
F . — + 85
e [2;;2E|C 12EIJ 89

136



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

Hoenderkamp [18-21]
In 2002 [18-21] Hoenderkamp modelled a braced frame subjected to a vertical UDL by a stick-spring
model and suggested an approximate formula for the critical load

2
R - (8.6)
F, 7.837EAC’  2GA

Stick-spring model
The critical load for a braced frame subjected to a vertical UDL in this project has been derived from a
stick-spring model and can be written as

2
I (8.7)
F., 7.837EAc® 7nGA
where reduction factor 7 is
S
= 8.8
7505 (88)

In tabel 8.1 Zalka's formula (see eqg. (8.1)), Hoenderkamp's formula (see eq. (8.6)) and the stick-spring
model (see eq. (8.7)) are compared. Formulae which are based on tables and graphs are given with
capital letter T and approximate formula with capital letter A in table 8.1.

Table 8.1. Comparison of Zalka, Hoenderkamp and stick-spring model.

Number Vertical UDL F
Sto‘;gys Critical loads F,, [MN] Error A [%]
S [] Zalka Hoenderkamp | Stick- | ANSYS Zalka Hoenderkamp |  Stick-
(sandwich column spring (sandwich column spring
with thin faces) model with thin faces) model
T A A T A A
8 153.4 177.8 155.0 179.7 -15 -1.1 -14
16 46.89 50.83 48.65 51.04 -8.1 -0.4 -4.7
24 22.02 23.21 22.73 23.26 -5.3 -0.2 -2.2
32 12.63 13.18 13.03 13.20 -4.3 -0.1 -1.3
40 8.16 8.47 8.41 8.48 -3.8 -0.1 -0.8
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Conclusions:

If the approximate methods are compared to the FE method Hoenderkamps formula
gives more accurate results then the stick-spring model (see table 8.1) if the buckling
behavior is dominated by global bending which is the case if F__ , <Fgca,

because the global bending and racking shear buckling shapes of Hoenderkamp
(see fig. 8.1a/b) are more identical to each other then the global bending and racking shear
buckling shapes of the stick-spring model (see fig. 8.1c/d).

The stick-spring model gives always conservative critical loads, but Hoenderkamp's
approximate method does not. If the buckling behavior is dominated by global bending

F a2 <Feriea Hoenderkamps formula gives conservative critical loads, but if the buckling

behavior is dominated by global shear F___ , > F.c, Hoenderkamps formula gives
unconservative critical loads.
If the approximate methods are compared to the graphical method the approximate

methods give better results then the graphical method and they are easier to use in the
preliminary stages of the design (see table 8.1).

(a) (b) c) (@)

Figure 8.1 Buckling shapes of braced frames for loadcase F and P+ F.
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8.1.2 Fixed rigid frames

8.1.2.1 Uniformly distributed loads

Zalka: continuum model

In 1998 Zalka [28] modelled a fixed rigid frame subjected to a vertical UDL by a continuum model
and obtained a mathematical exact formula for the critical load by making use of a table or graph in

which a critical load parameter & is a function of a stiffness parameter 3

I'(OAC _:B)Fcr;El + I:cr;GA +
= cr;EAc2

chr;EI I:cr;GA

I:cr;GA

1+

cr;EAC?

e Individual bending critical load is:

7.837a,El

Fcr;EI = |2

¢ Global bending critical load is:

_ 7.837a EAC?

cr;EAc2 - |2

e Global racking shear critical load is:

) -1
o h N ah
T 2721, 12E,

e Reduction factor « is:

v S
5+1.588

e  Stiffness parameter ,3 is:

B‘ _ I:cr;GA
Fcr;EI

e Combination factor ris

27°El,
2
r=—ms h
27%El, 12El,
_l’_
h? ah
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Zalka: sandwich column with thin faces
In 1998 Zalka [28] modelled a fixed rigid frame subjected to a vertical UDL by a sandwich column
with thin faces and obtained a mathematically exact formula for the critical load by making use of a

table or graph in which a critical load parameter A is a function of a stiffness parameter S

Fcr = ZFcr;GA (816)

Where:
e The stiffness parameter £ is:

—  F..
ﬂ _ = cr;GA (817)

cr;EAC?

e Global bending critical load is:

7.837a EAC?
criEAC? E (8.18)
e Reduction factor « is:
S
= 8.19
% ~s+1588 (8.19)

e Global racking shear critical load is:

-1
h? ah
Foron = + 8.20
e {2;;256 12Elb:| (8:20)

Zalka: design formula (combination of sandwich column with thin faces and continuum model)

As both the continuum and sandwich models approach the same problem from a different direction,
it seems to be sensible to combine the two relevant formula. Zalka [28] combined both methods and
obtained a design formula by making use of a table or graph in which a critical load parameter « is a

function of a stiffness parameter ,3 and in which a critical load parameter 4 is a function of a

stiffness parameter

— chr;EIIE(1+&_'é+23)+ FCF?GA(1+/T+Z'E)

F — 8.21
cr 2(1+ﬂ) ( )
Where:
¢ Individual bending critical load is:
7.837a,El
cr;El :I—zs (822)
e Global bending critical load is:
_ 7.837a EAC? ©.23)

cr;EAc2 | 2
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Global racking shear critical load is:

-1
2
Fcr;GA{ h™ , an } (8.24)

27%El, 12El,

e Reduction factor « is:

S
= 8.25
% T 511588 (8.25)
e Stiffness parameter ,3 is:
~  F,
B =R (8.26)
I:cr;EI
e Stiffness parameter S is:
—  F..
B = cr;GA (8.27)
I:cr;EAcz
e Combination factor r is:
27°El,
r= h* (8.28)
27°El, | 12E1,
h? ah

Hegedis and Kollar: sandwich column with thick faces
In 1984 Hegeds and Kollar [13] modelled a fixed rigid frame subjected to a vertical UDL by a
sandwich column with thick faces and obtained a mathematical exact formula for the critical load by

making use of a table or graph in which c, is a numerical parameter

2
F —c EAC TEl (8.29)

|2

Hegedis and Kollar
In 1984 Hegedus and Kollar [13] suggested an approximate formula for the critical load of a fixed
rigid frame subjected to a vertical UDL

|2 h? ah | 7.837EI

= + + + 8.30
7.837EAC® 2z°El, 12El, 12 (8:30)

cr

141



CRITICAL LOADS FOR TALL BUILDING STRUCTURES

Stick-spring model
The critical load for a fixed rigid frame subjected to a vertical UDL in this project has been derived
from a stick-spring model and can be written as

-1

s—05 h? ah

7.837EI |
= + +
s 27°El, 24El,

Fo = +
“« |2 7.837EAC?

(8.31)

In tabel 8.2 and 8.3 Zalka's continuum model (see eq. (8.9)), Zalka's sandwich column with thin faces
(see eq. (8.16)), Zalka's design formula (see eq. (8.21)), Hegeds/Kollar's sandwich column with
thick faces (see eq. (8.29)), Hegediis/Kollar's approximate formulae (see eg. (8.30)) and the
stick-spring model (see eq. (8.31)) are compared. Formulae which are based on tables and graphs are
given with capital letter T and approximate formula with capital letter A in table 8.2 and 8.3.

Table 8.2. Critical loads for fixed rigid frames.

Number Vertical UDL F
Sto‘;zys Critical loads F,, [MN]
S [] Zalka Zalka Zalka Hegedis/ Kollar | Hegediss/ | Stick- | ANSYS
(continuum | (sandwich (design (sandwich Kollar | spring
model) column with | formula) column with model
thin faces) thick faces)
T T T T A A
8 34.70 26.05 31.10 39.55 25.20 39.19 40.34
16 22.19 23.57 23.06 25.43 18.07 24.84 26.15
24 14.74 15.52 15.21 16.11 12.67 15.71 16.60
32 10.12 10.26 10.23 10.56 8.97 10.39 10.84
40 7.23 7.13 7.21 7.35 6.52 7.24 7.48
Table 8.3. Errors for fixed rigid frames.
Number Vertical UDL F
of Error A [%)]
storeys
S [] Zalka Zalka Zalka Hegedis/ Kollar | Hegedis/ | Stick-
(continuum | (sandwich (design (sandwich Kollar | spring
model) column with | formula) column with model
thin faces) thick faces)
T T T T A A
8 -14 -35 -23 -2.0 -38 -2.9
16 -15 -9.9 -12 -2.8 -31 -5.0
24 -11 -6.5 -8.4 -2.9 -24 -5.4
32 -6.7 -5.4 -5.6 -2.6 -17 -4.2
40 -3.3 -4.7 -3.6 -1.8 -13 -3.1
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Conclusions:

If the approximate methods are compared to the FE method the stick-spring model gives
the most accurate results (see table 8.2/8.3).

If the graphical methods are compared to the FE method the sandwich column with
thick-faces gives the most accurate results (see table 8.2/8.3).

If the most accurate approximate method (stick-spring model) is compared to the most
accurate graphical method (sandwich column with thick-faces) the graphical method
gives more accurate results, but the approximate method is easier to use in the
preliminary stages of the design (see table 8.2/8.3).

The differences between the approximate methods are the racking shear critical loads of
the beams and the racking shear critical loads of the columns. The racking shear critical

load of the columns of eq. (8.31) is a factor > ) higher then the racking shear critical

load of the columns of eq. (8.30). This reduction factor is of little importance for tall
buildings, because it decreases to one if the number of stories increases to infinite.
The racking shear critical load of the beams of eq. (8.31) is a factor two higher then
racking shear critical load of the beams of eq. (8.30) and therefore is extremely
important (see table 8.2/8.3).
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8.1.3 Flexible rigid frames

8.1.3.1 Uniformly distributed loads

The methods introduced by Zalka for fixed frames are the same as for flexible frames.
There are also some differences:
e The bending critical loads of a fixed rigid frame (see eg. (8.22) and eq. (8.23)) are different
from the bending critical loads of a flexible rigid frame (see eq. (8.33) and eq. (8.34)).

e The critical load parameter a of a fixed rigid frame is different from the critical load
parameter o?p of a flexible rigid frame, because & is based on a fixed connection to the base

and &, ona pinned connection to the base.

e The supporting effect of the groundfloor beam has been taken into account in the design
formula, but not in the continuum model and sandwich column with thin faces.

Zalka: continuum model
In 1998 Zalka [28] modelled a flexible rigid frame subjected to a vertical UDL by a continuum model
and obtained a mathematically exact formula for the critical load by making use of a table or graph in

which a critical load parameter &p is a function of a stiffness parameter 3

A~

~ rl:cr'EI I:cr'GA
I’(Olp - ﬂ)Fcr;El + I:cr;GA +

For = oriEAc” (8.32)
1+ I:cr;GA
cr;EAc2
Where:
¢ Individual bending critical load is:
7.837El
I:cr;EI = |2 (833)
e Global bending critical load is:
7.837EAC?
oriEAC? 12 (8.34)
¢ Global racking shear critical load is:
h? ah |
F - + 8.35
e [2;;2E|C 12EIJ (839
e Stiffness parameter ,3 is:
~ F,.
ﬂ: cr;GA (836)

I:cr;EI
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e Combination factor r is:

27°El,

2
r=— 1 (8.37)
227l | 12El,

h?2 ah

Zalka: sandwich column with thin faces
In 1998 Zalka [28] modelled a flexible rigid frame subjected to a vertical UDL by a sandwich column
with thin faces and obtained a mathematical exact formula for the critical load by making use of a

table or graph in which critical load parameter A is a function of stiffness parameter g

For = AF 0 (8.38)

Where:
e The stiffness parameter £ is:

_ F,
f== il (8.39)

cr;EAC?
¢ Global bending critical load is:

7.837EAC?

cr;EAC? - |2 (840)
e Global racking shear critical load is:
h? ah |
F . — + 841
e {2;;25[: 12E|J (841

Zalka: design formula (combination of sandwich column with thin faces and continuum model)

As both the continuum and sandwich models approach the same problem from a different direction,

it seems to be sensible to combine the two relevant formula. Zalka [28] combined both methods and
obtained a design formula by making use of a table or graph in which a critical load parameter o?p isa

function of a stiffness parameter ,3 and in which a critical load parameter A is a function of a
stiffness parameter

Fee = rFCr;EIE(l-l- a, —,B+,E+ I’,E_— r)+ I:cr;GA(]‘-'”T+/T'E) (8.42)
2(1+ﬂ)

Where:
e Individual bending critical load is:

7.837El
I:cr;EI =5 (843)

|2
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Global bending critical load is:

_ 7.837EAC’

cr;EAc2 - |2

(8.44)

e Global racking shear critical load is:

-1
h?2 ah
F_ — + 845
criGA {2;:2E|C 12E|J (8.45)

e Stiffness parameter ,3 is:

~  Fg.
p=—0 (8.46)
I:cr;EI

e Stiffness parameter S is:

- F.
ﬂ _ = cr;GA (8_47)

cr;EAc2
e Combination factor r is:

27°El,

2
r=— 1 (8.48)
2r’El, _12El,

h2 ah

Hegeds and Kollar
In 1984 Hegedus and Kollar [13] suggested an approximate formula for the critical load of a fixed
rigid frame subjected to a vertical UDL

2 2 -1
| h ah 7.837El
+ +

7837EAC? | 27°El, 12El, 12 (849)

cr

This approximate formula can also be used for a flexible rigid frame.

Stick-spring model
The critical load for a flexible rigid frame subjected to a vertical UDL in this project has been derived
from a stick-spring model and can be written as

2 -1 2 B 2 -1
F. = I +L + ! 43 05_h + an (8.50)
7.837El 2C 7.837EAC? s 2z°El, 24El,
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In tabel 8.4 and 8.5 Zalka's continuum model (see eq. (8.32)), Zalka's sandwich column with thin
faces (see eq. (8.38)), Zalka's design formula (see eq. (8.42)), Hegedis/Kollar's approximate formulae
(see eq. (8.49)) and the stick-spring model (see eq. (8.50)) are compared. Formulae which are based on
tables and graphs are given with capital letter T and approximate formula with capital letter A in table
8.4 and 8.5.

Table 8.4. Critical loads for fixed rigid frames.

Nun}ber Vertical UDL F
0 -
storeys Critical loads F_, [MN]
S [ Zalka Zalka Zalka | Hegedus/ | Stick- | ANSYS
(continuum | (sandwich (design Kollar | spring
model) column with | formula) model
thin faces)
T T T A A
8 28.15 26.11 27.26 25.20 38.65 32.12
16 19.82 24.19 22.04 18.07 24.76 25.32
24 13.64 16.19 14.94 12.67 15.68 16.54
32 9.55 10.66 10.11 8.97 10.38 10.83
40 6.84 7.37 7.11 6.52 7.24 7.47

Table 8.5. Errors for fixed rigid frames.

Number Vertical UDL F
of Error A [%]
storeys
S [ Zalka Zalka Zalka | Hegedus/ | Stick-
(continuum | (sandwich (design Kollar | spring
model) column with | formula) model
thin faces)
T T T A A
8 -12 -19 -15 -38 +20
16 -22 -4.5 -13 -31 -2.2
24 -18 -2.1 -9.7 -24 -5.2
32 -12 -1.6 -6.6 -17 -4.2
40 -8.4 -1.3 -4.8 -13 -3.2
Conclusions:

e If the approximate methods are compared to the FE method the stick-spring model gives
the most accurate results (see table 8.4/8.5).

o If the graphical methods are compared to the FE method the sandwich column with
thin-faces gives the most accurate results (see table 8.4/8.5).

e If the most accurate approximate method (stick-spring model) is compared to the most
accurate graphical method (sandwich column with thin-faces) the graphical method
gives more accurate results, but the approximate method is easier to use in the
preliminary stages of the design (see table 8.4/8.5).

e The differences between the approximate methods are the rotation spring critical load,
the racking shear critical loads of the beams and the racking shear critical loads of the
columns. Eq. (8.49) neglects the influence of the rotation spring critical load and eq.
(8.50) not, but the influence of the rotation spring critical is of very little importance.

The racking shear critical load of the columns of eq. (8.50) is a factor >

higher then
5

the racking shear critical load of the columns of eq. (8.49). This reduction factor is of
little importance for tall buildings, because it decreases to one if the number of stories
increases to infinite. The racking shear critical load of the beams of eq. (8.50) is a factor
two higher then racking shear critical load of the beams of eq. (8.49) and therefore is
extremely important (see table 8.4/8.5).
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8.2 Comparison of all investigated structures

The following structures have been investigated:

e X-braced frames with non-continous columns pin-connected to the base (see fig. 8.2a).

e X-braced frame with continous columns pin-connected to the base (see fig. 8.2b).

e Fixed rigid frames (see fig. 8.2c).

e Flexible rigid frames (see fig. 8.2d).
In this section these structures will be compared. The best way to do so is to compare their critical
loads. In this way it can be concluded, which of the structures is the most effective.
The characteristics of the frames can be found in table 6.1. The critical loads of these structures have
been computed by a finite element method ANSYS and the results are given in table 8.6.

(a) (b) (c) (d)

Figure 8.2 Investigated structures.

Table 8.6 Critical loads of one-bay structures subjected to UDL.

Vertical UDL F

Critical loads F, [MN]

Number of storeys S [-] 8 16 24 32 40

Braced frames with non-continous columns | 180.0 | 51.37 | 23.43 | 13.30 | 8.55

Braced frames with continous columns 179.7 | 51.04 | 23.26 | 13.20 | 8.48

Fixed rigid frames 40.34 | 26.15 | 16.60 | 10.84 | 7.48
Flexible rigid frames 32.12 | 25.32 | 16.54 | 10.83 | 7.47
Conclusions:
e Braced frame are more effective then rigid frames, because the critical loads are higher
(see table 8.6).

e If the number of stories increases the difference in performance of the structures
becomes smaller, because the difference between the critical loads of the structures decreases.
This is because all structures eventually develop global bending deformation only if the
number of stories increases (see table 8.6).

e The difference in performance of braced frames with non-continous and with continous
columns is negligible for tall buildings which are dominated by global bending,
because the critical loads are nearly the same (see table 8.6).

e The suggested formula give good results for the preliminary design of practical tall
braced and rigid frames within a maximum error of 10%.
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9 Recommendations

Many recommendations can be made for further research involving the critical load of a structure.
In this chapter these recommendations will be summed up.

In this project only frames have been investigated with a width of 3 m and a storey height of 3 m,
but for tall buildings it would be better to investigate frames with a width of 7.2 m and a storey height
of 3.6 m.

The parameter study for frames is restricted in this project. It could be useful to expand this parameter
study.

The approximate formula for fixed and flexible rigid frames obtained by the stick-spring model gives
high unconservative errors if these rigid frame are dominated by global racking shear

(see table 7.4 and 7.10). It could be interesting to investigate the buckling behavior of fixed and
flexible rigid frames which are dominated by global racking shear further.

In this project only one-bay X-braced frames pin-connected to the base have been investigated.

It could be useful to investigate one-bay braced frames with other types of bracing (see fig. 9.1).
For example N-bracing (see fig. 9.1a), K-bracing (see fig. 9.1b) and Knee-bracing (see fig. 9.1c).

>
)
)
A
(b)

Figure 9.1 Different type of bracing.

(a) (c)

Only one-bay X-braced frames and one-bay rigid frames have been investigated.
It can be interesting to investigate frames with more then one-bay (see fig. 9.2).

<]
<]

A A A

Figure 9.2 Two-bay frames.

Only one-bay rigid frames fix- and flexibly connected to the base have been investigated.
It can be fascinating to investigate other types of rigid frames (see fig. 9.3). For example rigid frames
pin-connected to the base.
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A A

Figure 9.3 Rigid frame pin-connected to base.

For rigid frames shear deformations in the beams and columns will normally be neglected.

For coupled walls the influence of the shear deformations of the columns and beams could be taken
into account, because the beams and columns are compact. It can be useful to investigate the influence
of the shear deformations of the beams and columns on the overall critical load of a coupled wall

(see fig. 9.4).

Figure 9.4 Coupled walls.

Only regular structures have been investigated, which means structures with uniform stiffness up the
height or uniform width up the height and all storeys have the same storey height.

It can be interesting to investigate non-regular structures (see fig. 9.5). For example frames with
varying width up the height (see fig. 9.5a), frames with varying stiffness parameters up the height
(see fig. 9.5b) and frames with longer first storey columns (see fig. 9.5c).

ST
(a) (b) (c)

Figure 9.5 Non-regular structures.
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In this project loads are applied symmetrically, but this is not always the case and sometimes columns
are overloaded in comparison with others, which affects the critical load and the buckling shape.

It could be interesting to investigate the influence of assymetrical loading on the critical load of frames
(see fig. 9.6).

Figure 9.6 Assymetrically loaded frames

Only the buckling behavior of separate braced and rigid frames has been investigated.
It can be interesting to investigate the critical load of a combination of structures.
For example a combination of a core, braced frame, rigid frame and coupled wall (see fig. 9.7).

0 00 0 0 0

o 0 g
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Figure 9.7 Combination of a core, braced frame, rigid frame and coupled wall.
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Summary

Introduction

Tall buildings are usually subjected to horizontal wind loading and vertical gravity loading.

The horizontal wind loading causes first-order deflections. These deflections cause eccentricities of the
vertical loads, which cause additional bending moments and additional deflections. These additional
deformations and additional bending moments are called second-order effects. Building space is scarce
and therefore buildings become taller and slender and are more vulnerable to horizontal windloading
and second order effects. It is possible to estimate these second order effects in the preliminary stages
of the design by defining the elastic critical load of and the vertical load on the structure.

Objective

Obtain simplified equations for estimating the elastic critical load of lateral load resisting braced and
rigid frames in the preliminary stages of design of tall buildings, which combine the major modes of
behavior.

Model
The stick-spring model will be used to obtain this simplified equation for the elastic critical load.

Structures to investigate

The following one-bay sway structures will be investigated:
e Braced frames (see fig. 0.1a).
e Rigid frames (see fig. 0.1b).

77 ST
() (b)

Figure 0.1 Structures to investigate.

Loadcases to investigate

The sway-structures are subjected to three different loadcases (see fig. 0.2):
e Vertical top loads (see fig. 0.2a).
e Uniformly distributed vertical loads (see fig. 0.2b).
e Load combinations (see fig. 0.2c).

For tall buildings only uniformly distributed vertical loads are interesting.
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y

(a) (b) (c)

Figure 0.2 Loadcases sway structures.

Braced frames
The buckling behaviour of a braced frame can be divided into 2 modes of deformation:

e Global bending (EAcz)' axial deformation in the columns (see fig. 0.3a).
e Racking shear GA axial strains in the diagonals (see fig. 0.3b).

£l

EAc _ f(AC) GA= f(Ab,Ad)
(a) (b)

Fig 0.3 Modes of deformation of a braced frame.

Each mode of deformation is related to an individual critical load and a buckling shape.
The overall critical load of a braced can be obtained by combining all individual critical loads

Fcr:[ SR ] (0.

F..
cr;EAc? cr;GA
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Where:
e Global bending critical load is:

2

ot = 7.83I72EAC 0.2)
e Racking shear critical load is:

Ferea =71GA (0.3)

where reduction factor 7 is:

S
=5 05 ©04)
Rigid frames

The buckling behaviour of a rigid frame can be divided into 4 modes of deformation:
¢ Individual bending (EI ): single curvature bending of the vertical members (see fig. 0.4a).

Global bending (EAC2 ): axial deformation in the columns (see fig. 0.4b).
e Racking shear of the columns (GAC ): double curvature bending in the columns (see fig. 0.4c).
e Racking shear of the beams (GAb): double curvature bending in the beams (see fig. 0.4d).

N A s s
Ib:0 |b:OO AC=|b=OO

El=1f(l,) EAc? = f(A,) GA, =f(l,)
(a) (b) (c)

Fig 0.4 Modes of deformation of a rigid frame.

QD

The overall critical load of a rigid frame can be obtained by combining all individual critical loads

-1

S S S (05)

Fcr;GAc I:cr;GAb

F

cr
cr;EAC?
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Where:
¢ Individual bending critical load is:

7.837El
I:cr;EI :|—2 (06)
e Global bending critical load is:
7.837EAC®
criEAC? - |2 (07)
e Racking shear critical load of the columns:
27°El,
Feoa =1 2 (0.8)
e Racking shear critical load of the beams:
24El,
P 0.9
cr;GA, ah ( )

The accuracy of the stick-spring model will be checked by a finite element analysis.

Conclusion
e All suggested formula give good results for the preliminary design of practical highrise
braced and rigid frames within a maximum error of 10%.
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