
 Eindhoven University of Technology

MASTER

Critical loads of tall building structures

Pel, E.J.

Award date:
2004

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/59740444-925b-4351-bbb4-25176ae1b496


CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

CRITICAL LOADS OF TALL BUILDING STRUCTURES 
      

A-2004.8 
 
 
  

  
 
 
 

    
 
 
 
         

     
         
                          
                  
            
          
 
 
 
        
 

 

 
 
 
 
 
 
 
 
    
 
 
 
     
 
 
 
 
 

 
 
 

 
 
 

Project:   Critical loads of tall building structures 
University:   Eindhoven University of Technology (TU/e) 
Department:   Architecture Building & Planning 
Group:   Structural Design 
Committee:   Dr. ir. J.C.D. Hoenderkamp, chairman 

     Prof. ir. H.H. Snijder 
     Dr. ir. M.C.M. Bakker 

Student:   Ing. E.J. Pel 
Identification number: 0500596 
Date:    29-6-2004 
Country:   The Netherlands

 1



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

Contents 
 
 
 
 

ACKNOWLEDGEMENTS...................................................................................................IX 

1 INTRODUCTION............................................................................................................ 1 

1.1 Summary ....................................................................................................................... 1 

1.2 Introduction elastic critical load ................................................................................. 2 

1.3 Introduction second-order effects............................................................................... 4 

1.4 Introduction stick-spring model ................................................................................. 6 

1.5 Objectives...................................................................................................................... 6 

1.6 Sway structures ............................................................................................................ 7 

1.7 Assumptions.................................................................................................................. 7 

1.8 Loadcases sway structures........................................................................................... 8 

1.9 Report layout ................................................................................................................ 8 

2 ANALYTICAL MODELS FOR THE STABILITY ANALYSIS................................ 9 

2.1 Flexural cantilever...................................................................................................... 10 
2.1.1 Vertical top load ................................................................................................... 10 
2.1.2 Uniformly distributed vertical load ...................................................................... 10 

2.2 Shear-flexure cantilever............................................................................................. 11 
2.2.1 Vertical top load ................................................................................................... 11 
2.2.2 Uniformly distributed vertical load ...................................................................... 13 

2.3 Substitute column....................................................................................................... 14 
2.3.1 Vertical top load ................................................................................................... 14 
2.3.2 Uniformly distributed vertical load ...................................................................... 15 

2.4 Sandwich column with thin faces.............................................................................. 16 
2.4.1 Vertical top load ................................................................................................... 16 
2.4.2 Uniformly distributed vertical load ...................................................................... 17 

2.5 Sandwich column with thick faces............................................................................ 18 
2.5.1 Vertical top load ................................................................................................... 18 
2.5.2 Uniformly distributed vertical load ...................................................................... 19 

 I



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

3 ADDITIVE THEOREMS.............................................................................................. 20 

3.1 The Dunkerley Theorem............................................................................................ 20 

3.2 The Southwell Theorem............................................................................................. 21 

3.3 The Föppl-Papkovics Theorem................................................................................. 22 

4 STICK-SPRING MODEL............................................................................................. 23 

4.1 Vertical top load ......................................................................................................... 23 

4.2 Uniformly distributed vertical load .......................................................................... 25 

4.3 Load combination....................................................................................................... 27 

5 FLEXURAL CANTILEVER ........................................................................................ 31 

5.1 Vertical top load ......................................................................................................... 31 

5.2 Uniformly distributed vertical load .......................................................................... 33 

5.3 Load combination....................................................................................................... 35 

6 ONE BAY BRACED FRAMES .................................................................................... 38 

6.1 Braced frames with non-continous columns............................................................ 38 
6.1.1 Vertical top loads ................................................................................................. 39 
6.1.2 Uniformly distributed vertical loads .................................................................... 42 
6.1.3 Load combinations ............................................................................................... 46 

6.2 Lateral stiffnesses of braced frame with non-continous columns.......................... 52 
6.2.1 Global bending stiffness....................................................................................... 52 
6.2.2 Racking shear stiffness......................................................................................... 52 

6.3 Accuracy...................................................................................................................... 54 
6.3.1 Numerical model .................................................................................................. 55 
6.3.2 Example................................................................................................................ 55 
6.3.3 Results .................................................................................................................. 59 

6.4 Braced frames with continous columns.................................................................... 63 
6.4.1 Vertical top loads ................................................................................................. 64 
6.4.2 Uniformly distributed vertical loads .................................................................... 68 
6.4.3 Load combinations ............................................................................................... 72 

6.5 Lateral stiffnesses of braced frame with continous columns.................................. 77 
6.5.1 Individual bending stiffness ................................................................................. 77 

6.6 Accuracy...................................................................................................................... 78 
6.6.1 Numerical model .................................................................................................. 78 
6.6.2 Example................................................................................................................ 79 

 II



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

6.6.3 Results .................................................................................................................. 83 

6.7 Comparison between the two investigated braced frames ..................................... 86 

7 ONE BAY RIGID FRAMES......................................................................................... 88 

7.1 Fixed rigid frames ...................................................................................................... 88 
7.1.1 Vertical top loads ................................................................................................. 89 
7.1.2 Uniformly distributed vertical loads .................................................................... 95 

7.2 Accuracy.................................................................................................................... 101 
7.2.1 Numerical model ................................................................................................ 102 
7.2.2 Example.............................................................................................................. 103 
7.2.3 Results ................................................................................................................ 106 

7.3 Rigid frames flexibly connected to the base........................................................... 115 
7.3.1 Vertical top loads ............................................................................................... 116 
7.3.2 Uniformly distributed vertical loads .................................................................. 121 

7.4 Lateral stiffnesses of a flexible rigid frame............................................................ 125 
7.4.1 Individual rotational spring stiffness.................................................................. 125 

7.5 Accuracy.................................................................................................................... 126 
7.5.1 Introduction numerical model ............................................................................ 127 
7.5.2 Example.............................................................................................................. 128 
7.5.3 Results ................................................................................................................ 131 

8 DISCUSSION AND CONCLUSIONS ....................................................................... 136 

8.1 Comparison between suggested formulae and existing formulae........................ 136 
8.1.1 Braced frames..................................................................................................... 136 
8.1.2 Fixed rigid frames .............................................................................................. 139 
8.1.3 Flexible rigid frames .......................................................................................... 144 

8.2 Comparison of all investigated structures ............................................................. 148 

9 RECOMMENDATIONS ............................................................................................. 149 

SUMMARY........................................................................................................................... 152 

REFERENCES ..................................................................................................................... 156 

 III



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

LIST OF SYMBOLS  
 
 
Capital letters 
 
 
symbol  description        dimension 
A   cross-sectional area       m2 

bA   cross-sectional area of beam      m2 

cA   cross-sectional area of column      m2 

dA   cross-sectional area of diagonal      m2 

C   rotational spring stiffness       KNm 
E   elastic modulus        KN/m2 

EA   axial stiffness        KN
2EAc   global bending stiffness       KNm2 

EI   individual bending stiffness, bending stiffness    KNm2 

iEI   stiffness of i-th column       KNm2 

0EI   overall bending stiffness      KNm2 

F   vertical load        KN 
dF   vertical roof load       KN 

vF   vertical floor load       KN 

crF   critical load (UDL)       KN 

CcrF ;   individual rotational spring critical load (UDL)    KN 

2;EAccr
F   global bending critical load (UDL)     KN 

EIcrF ;   individual bending critical load (UDL)     KN 

0;EIcrF   overall bending critical load (UDL)     KN 

GAcrF ;   global racking shear critical load (UDL)  / shear critical load (UDL) KN 

cantileverGAcrF ;;  shear critical load of a shear cantilever (UDL)     KN 

cGAcrF ;   racking shear critical load of the columns (UDL)   KN 

bGAcrF ;   racking shear critical load of the beams (UDL)    KN 

crF ′   critical load (vertical top load + UDL)     KN 
2;EAccr

F ′   global bending critical load (vertical top load + UDL)   KN 

EIcrF ;′   individual bending critical load (vertical top load + UDL)  KN 

0;EIcrF ′   overall bending critical load (vertical top load + UDL)   KN 

GAcrF ;′   global racking shear critical load (vertical top load + UDL)  KN 

cantileverGAcrF ;;′  shear critical load of a shear cantilever (vertical top load + UDL)  KN 
G   shear modulus        KN/m2 

GA   global racking shear stiffness, shear stiffness    KN 
bGA   racking shear stiffness of the beams     KN 

cGA   racking shear stiffness of the columns (caused by vertical loads)  KN 

cAG ′   racking shear stiffness of the columns (caused by horizontal loads) KN 

KGA   racking shear stiffness of K-braced frame    KN 

KneeGA   racking shear stiffness of Knee-braced frame    KN 

NGA   racking shear stiffness of N-braced frame    KN 
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XGA   racking shear stiffness of X-braced frame    KN 
I   second moment of area        m4 

bI   second moment of area  of beam     m4

cI   second moment of area  of column     m4

iI   second moment of area of i-th column     m4 

0I   overall second moment of area      m4

M   bending moment       KNm 
0M   first-order bending moment      KNm 

1.2M   first step second-order additional bending moment   KNm 

2.2M   second step second-order additional bending moment   KNm 
2EAc

M   global bending moment       KNm 

EIM   individual bending moment      KNm 

iNA   neutral axis i-th column       [-] 

frameNA  neutral axis frame       [-] 

cantileverN  normal force in cantilever at the bottom (UDL)    KN 

frameN   normal force in frame at the first storey (UDL)    KN 

cantileverN ′  normal force in cantilever at the bottom (vertical top load + UDL) KN 

frameN ′   normal force in frame at the first storey (vertical top load + UDL) KN 
P   vertical top load       KN 

crP   (elastic) critical load (vertical top load)     KN 

( )ANSYScrP  ANSYS critical load (vertical top load)     KN 

CcrP ;   individual rotational spring critical load (vertical top load)  KN 

2;EAccr
P   global bending critical load (vertical top load)    KN 

EIcrP ;   individual bending critical load (vertical top load)   KN 

GAcrP ;   global racking shear critical load (vertical top load) / shear critical load  KN 

cantileverGAcrP ;;  shear critical load of cantilever (vertical top load)   KN 

cGAcrP ;   racking shear critical load of the columns (vertical top load)  KN 

bGAcrP ;   racking shear critical load of the beams (vertical top load)  KN 

icrP ;   critical load of i-th column (vertical top load)    KN 

max;crP   overall critical load (vertical top load)     KN 

PcrP ;   plastic critical load (vertical top load)     KN 

iP   vertical top load on i-th column      KN 
Q   horizontal top load       KN 

iQ   horizontal top load on the i-th column     KN 
S   amplification factor       [-] 
W   horizontal load        KN 

dW   horizontal roof load       KN 

hW   horizontal floor load       KN 
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Small letters 
 
 
symbol  description        dimension 
a   width of frame, distance between exterior columns    m  

sb   width of sandwich column       m 
c′   rotational spring stiffness of individual column    KNm 
c   distance between column neutral axis and frame neutral axis  m 

ic   distance between neutral axis -th column and neutral axis frame m i
1c   numerical parameter       [-] 

sc   width of the core       m 
d   length of diagonal        m 

sd   thickness of the core       m 
e   number of columns       [-] 
f   uniformly distributed vertical load     KN/m 

if   uniformly distributed vertical load on i-th column   KN/m 
g   horizontal distance from knee-braced top to column   m 
h   storey-height of frame       m 
i   parameter running from 0 to e       [-] 
j   number of stiffness parameters      [-] 
k   translational spring stiffness      KN/m 

2EAc
k   translational spring stiffness for global bending    KN/m 

EIk   translational spring stiffness for individual bending   KN/m 

GAk   translational spring stiffness for global racking shear    KN/m 

ik   translational spring stiffness of i-th column     KN/m 
l   height of frame / height of structure     m 
m   uniformly distributed moment along substitute column   KNm/m 
n   critical load ratio       [-] 
p   horizontal distance between knee-braced tops    m 
r   combination factor       [-] 
s   number of stories of frame      [-] 
st   thickness of face       m 

w   horizontal uniformly distributed load     KN/m 
iw   horizontal uniformly distributed load on i-th column   KN/m 

x   distance from the origin       m 
y   horizontal deformation at the top of the column    m 

0y   first order horizontal deformation at top of the column   m 

01y   first order horizontal deformation at top of the first column  m 

02y   first order horizontal deformation at top of the second column  m 

1.2y   first step second-order additional deformation    m 

2.2y   second step second-order additional deformation   m 

iy   horizontal deformation at top of the i-th column    m 

Cy   individual rotational spring deformation at top of the frame  m 
2EAc

y   global bending deformation at top of the frame    m 

EIy   individual bending deformation at top of the frame    m 

0EIy   overall bending deformation at top of the frame    m 
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GAy   global racking shear deformation at top of the frame   m 

cGAy   racking shear deformation of the columns at top of the frame  m 

bGAy   racking shear deformation of the beams at top of the frame  m 
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Greek letters 
 
 
symbol  description        dimension 
α   reduction factor for bending critical loads EIcrP ;′  and EIcrF ;′   [-] 

sα   reduction factor        [-] 
α̂   critical load parameter of substitute column    [-] 
β   reduction factor for racking shear critical load (non-continous columns) [-] 
β ′   reduction factor for racking shear critical load (continous columns) [-] 
β   stiffness parameter shear-flexure cantilever    [-] 
β̂   stiffness parameter of substute column     [-] 
φ   rotation         [-] 
γ   factor which takes the effect of a different roof load into account [-] 
η   reduction factor, which takes the effects of different normal forces  
  and frameN  into account       [-] 

cantileverN

η′   reduction factor, which takes the effects of different normal forces  
  and  into account      [-] 

cantileverN ′

frameN ′

λ   critical load parameter of shear-flexure cantilever   [-] 
ω   reduction factor, which takes the influence of the vertical top load P   
  into account        [-] 
ς   ratio between the horizontal and vertical load    [-] 
σ   stresses         [-] 
ε   strain         [-] 
∆   error         %  
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1 Introduction 
 

1.1 Summary 
Some approximate equations are presented here for estimating the elastic critical load of planar lateral 
load resisting braced and rigid frames, which provide the stability in tall buildings.  
These equations can be obtained from a stick-spring model by combining the major modes of 
deformation. Each mode of deformation corresponds to an individual stiffness and an individual 
critical load. The stick-spring model requires the calculation of the individual stiffnesses, which are 
necessary for the calculation of the individual critical loads. All these individual critical loads have to 
be combined into one equation to obtain the elastic critical load of a structure.  
The stick-spring model can be used to show the influence of the second order effects on the 
deformations and bending moments. It is suitable for the preliminary stages of design and 
can be used to check whether the results of computer analyses are reasonable or not.  
A worked example is presented here to show the simplicity of the stick-spring model in the 
preliminary stages of design of tall building structures. The accuracy of the stick-spring model has 
been compared to finite element analyses.  
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1.2 Introduction elastic critical load 
To introduce the elastic critical load of a tall building structure, it is modelled into a flexural cantilever 
as shown in fig. 1.1a. This cantilever has bending stiffness EI , is subjected to a horizontal load 

PQ ς=  and a vertical load P  and undergoes bending deformations only. Factor ς  represents the ratio 
between the horizontal and vertical load. The load-deformation diagram of the cantilever is shown in 
figure 1.1b.  
    

    
 

   
 
 
 
 
      
       
   

    

 y   P
 

PQ ς=    P      1  
         2  
     crP  
         3  

  EI    PP        
          5    4  

     maxP   
       6  
            
               
           y  

 

 
( )a       ( )b   

Figure 1.1 Behavior of a flexural cantilever. 
 
First-order elastic (FL+GL)  
In a first-order elastic analysis the flexural cantilever is subjected to a horizontal top load only.  
First-order means that equilibrium is reached in the undeformed state and rotations are small.  
Elastic means the cantilever returns to its undeformed shape if the horizontal load disappears.  
This top load causes a first-order horizontal deformation, a shear force and a bending moment in the 
cantilever. The material of the cantilever is fysically and geometrically lineair, which leads to a lineair 
elastic relation between load Pς and deformation  (see line 1 fig. 1.1b). Fysically linear (FL) means 
the material obeys Hooke`s law and there is a lineair elastic relation between stress 

y
σ  and strain ε . 

Geometrically lineair (GL) means equilibrium is defined for the undeformed state.  
 
 
Elastic critical load (Euler)    
The same flexural cantilever is subjected to a vertical top load P  only. The cantilever collapses if the 
vertical top load is higher then the elastic critical load, it returns to its original state if the vertical top 
load is lower then the elastic critical load and it will be standing in the deformed state if the vertical 
top load is equal to the elastic critical load. The elastic critical load  is called the buckling load of 
the cantilever. A buckling analysis is a second-order analysis. Second-order means that equilibrium is 
reached in the deformed state and rotations are small. During buckling equilibrium is possible for the 
same load and for different deformations (see line 2 fig. 1.1b). This is called indifferent equilibrium.  

crP
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Second-order elastic (FL+GNL)  
In a second-order elastic analysis a flexural cantilever is subjected to a horizontal top load Pς  and  
a vertical top load P . The horizontal top load Pς  causes a first order-deformation, a shear force and a 
bending moment in the cantilever. Vertical top load P  causes additional horizontal deformations, 
shear forces and bending moments in the cantilever. These additional deformations, shear forces and 
bending moments are called second-order effects. The material of the cantilever is fysically lineair and 
geometrically non-lineair. Geometrically non-lineair means equilibrium is defined for the deformed 
state, which leads to a non-lineair relation between load P  and deformation  y
(see line 3 fig. 1.1b).  
 
 
First-order plastic (FNL+GL)   
In a first-order plastic analysis a flexural cantilever is subjected to a horizontal top load Pς  only. 
Plastic means the cantilever will not return to its undeformed shape if the horizontal load disappears. 
In the elementary collapse analysis a structure collapses if a mechanism appears. The material of the 
cantilever is fysical non-lineair (FNL). Fysical non-linear means the material does not obey Hooke`s 
law. In that case only the plastic part of the εσ −  diagram will be used. Equilibrium is possible for the 
same load and for different deformations (see line 4 fig. 1.1b).  
 
 
Second-order plastic  
In a second-order plastic analysis a flexural cantilever is subjected to a horizontal top load Pς  and   
a vertical top load P . Line 5 represents the relation between load P  and deformation .  y
 
 
Second-order elastic-plastic (FNL+GNL)  
In a second-order elastic-plastic analysis a flexural cantilever is subjected to a horizontal top load Pς  
and a vertical top load P . Elastic-plastic (bi-lineair) means that both the elastic and plastic parts of the 

εσ −  diagram will be used. The material of this cantilever is fysical non-lineair (FNL).  
Transitional line 6 can be obtained by combining line 3 and 5 (see fig. 1.1b).  
 
 
 
 
 
Note: 
In this project only the elastic critical load  is important and therefore only line 2 of the load-
deformation diagram will be used (see fig. 1.1b).  

crP
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1.3 Introduction second-order effects 
To introduce the second-order effects of a tall building structure, it is modelled into a flexural 
cantilever as shown in fig. 1.2a. This flexural cantilever has bending stiffness EI  and is subjected to a 
horizontal load  and a vertical load Q P . First the cantilever is only subjected to a horizontal load  
(see fig. 1.2b). The horizontal load Q  causes a first-order deformation  and a first-order bending 
moment . The vertical top load 

Q

0y
QlM =0 P  causes a first step second-order additional bending 

moment , which gives a first step second-order additional deformation   01;2 PyM = 1;2y
(see fig. 1.2c). This first step second-order additional deformation  in combination with vertical 
top load 

1;2y
P  causes a second step second-order additional bending moment ,  1,22;2 PyM =

which gives a second step second-order additional deformation (see fig. 1.2d).  2;2y
This process will go on, untill the cantilever collapses or equilibrium is reached.  
These additional deformations and additional bending moments are called second-order effects.  
 

    
 
 
 
         
        
         
                           
                        

            
          
 
 
 
        
 

  y   
  0y     1;2y   2;2y            0y    1;2y       2;2y  
 
 
Q      P  P    P    Q                  P          P   
 
  
    
EI                    
                   l  

   
 
 
         

      ( )a ( )b    ( )c     
     Figure 1.2 First-order and second-order effects. 

( )d

 
Horizontal deformation  caused by horizontal load Q  and vertical load y P  is: 
 

etcyyyy +++= 2;21;20           (1.1) 
 
Consider the deformation of each step is   times the deformation of the previous step:  n/1
 

n
y

y i
i

;2
1,2 =+             (1.2) 

 
and  
 

n

y
y

0
1,2 =             (1.3) 
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Substituting eq. (1.2) and eq. (1.3) into eq. (1.1) leads to the following expression: 
 

0020
1;20

0 1
111 y

n
n

n
yyetc

nn
yetc

n
y

n
y

yy
−

=+=⎟
⎠
⎞

⎜
⎝
⎛ +++=+++=      (1.4) 

 
Where amplification factor  is: S
 

1−
=

n
nS            (1.5) 

 
Bending moment M  can be given by: 
 

01
M

n
nM
−

=             (1.6) 

 
The amplification factor  takes the second-order effects caused by vertical top load S P  into account. 
Therefore the first-order deformation  and the first-order bending moment  have to be 
multiplied by amplification S  to obtain deformation  (see eq. 1.4) and bending moment 

0y 0M
y M   

(see eq. 1.6). Amplification factor  is mathematically exact if the first-order deformed shape  S
(see fig. 1.2b) is identical to the first step second-order (see fig. 1.2c) and to the second step  
second-order deformed shape (see fig. 1.2d) etc.  
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1.4 Introduction stick-spring model 
The stick-spring model was introduced by Dicke [1, 2] to obtain an approximate solution for the 
critical load of a flexural cantilever subjected to a vertical top load P  (see fig. 1.3a).  
The flexural cantilever is fixed to the base, has one mode of deformation: individual bending stiffness 
EI  and is subjected to a vertical top load P . First the flexural cantilever is transformed into  
Rosman`s model [3], where a stick has infinite individual bending stiffness ∞=EI  and is supported 
by the same flexural cantilever (see fig. 1.3b). Now the vertical load P  is removed from the cantilever 
and placed on the stick, which causes a tensile force  in the horizontal rigid link.  Q
This transformation gives always upperbound approximate solutions for the critical of a flexural 
cantilever. Rosman`s model can be transformed into the stick-spring model (see fig. 1.3c). In this 
model the same flexural cantilever is replaced by a horizontal translation spring k , which takes the 
individual bending stiffness EI  into account. Therefore spring stiffness  is a function of the 
individual bending stiffness of the flexural cantilever 

k
( )EIfk = .  

 
 
 
 
         

        
         
                           
                        

            
          
 
 
 
        
 
       

                
 0y          0y             0y    0y  

   
 P     P      P  
                   

          
        Q    Q        

  
          ( )EIfk =  
 
EI       ∞=EI                       ∞=EI   l
      
                              
  

     ( )a ( )b      ( )c
Figure 1.3  Origin stick-spring model. 

 

1.5 Objectives  
The main objective of this project is to obtain simplified equations for estimating the elastic critical 
load of lateral load resisting braced and rigid frames in the preliminary stages of design of tall 
buildings, which combine the major modes of behavior. Another aim of this project is to check the 
accuracy of the stick-spring model by a finite element analysis.   
 
 
 
 

 6



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

1.6 Sway structures 
Structures can be divided into sway and non-sway structures. Sway structures are tall and slender 
structures, which develop global buckling (side-ways deformation) and non-sway structures are low 
and compact structures, which develop local buckling. In this project only tall and slender one-bay 
sway structures will be investigated. They are: 

• X-braced frames with non-continous columns pin-connected to the base (see fig. 1.4a).  
• X-braced frames with continous columns pin-connected to the base (see fig. 1.4b).   
• Fixed rigid frames (see fig. 1.4c). 
• Flexible rigid frames (see fig. 1.4d). 

Highrise X-braced frames are sway structures consisting of beams and diagonals, which are 
pin-connected to the columns (see fig. 1.4a/b). Highrise rigid frames are sway structures consisting of 
columns and beams with fully moment resistant joints (see fig. 1.4c/d).  
 

   
                           
                        

            
          
 
 
 
        
 

      ( )a ( )b     ( )c    ( )d
      Figure 1.4 Sway frames. 
 

1.7 Assumptions 
For this project the following assumptions have been made: 

• The material is elastic. 
• The loads on the structures are applied statically and hold their direction during buckling 

(conservative loads). 
• The structures are one bay structures. 
• The structures are planar. 
• The structures are sway structures and only develop global buckling. 
• The structures develop small deformations. 
• The stiffness parameters of the structures are uniform up the height.  
• The height of the investigated structures varies from eight to forty stories.  
• All storeys have the same storey-height. 
• Imperfections are neglected. 
• Residual stresses caused by the rolling proces are neglected.  
• Shear deformations in the beams and columns of a rigid frame are neglected.   
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1.8 Loadcases sway structures 
The sway-structures are subjected to three different loadcases (see fig. 1.5): 

• Vertical top loads (see fig. 1.5a). 
• Uniformly distributed vertical loads (see fig. 1.5b). 
• Load combinations (see fig. 1.5c). 

 

    
        
               
         
         
         

       

 
( )a    ( )b      ( )c

Figure 1.5. Loadcases sway structures. 
 
 

1.9 Report layout 
This report consists of nine chapters. Chapter two gives a history search with a summary of all 
important analytical models for the elastic stability of structures. Chapter three discusses additive 
theorems. Chapter four introduces the stick-spring model subjected to three different loadcases for the 
stability analysis. In chapter five the stick-spring model is used to obtain an approximate critical load 
for a flexural cantilever with one mode of deformation: individual bending stiffness EI .  
In chapter six the stick-spring model is used to obtain an approximate critical load for a braced frame 
with non-continous columns pin-connected to the base and with two modes of deformation:  
global bending stiffness  and racking shear stiffness GA . In chapter six the stick-spring model is 
also used to obtain an approximate critical load for a braced frame, but now with continous columns  

2EAc

pin-connected to the base and with two modes of deformation: overall bending stiffness   0EI
and racking shear stiffness . In chapter seven the stick-spring model is used to obtain an 
approximate critical load for a rigid frame fix-connected to the base and with four modes of 
deformation: individual bending stiffness 

GA

EI , global bending stiffness ,  2EAc
racking shear stiffness of the columns and racking shear stiffness of the beams .  cGA bGA
In chapter seven the stick-spring model is also used to obtain an approximate critical load for a rigid 
frame, but now flexibly connected to the base and with five modes of deformation:  
individual bending stiffness EI , individual rotational stiffness , global bending stiffness , 
racking shear stiffness of the columns and racking shear stiffness of the beams .  

C 2EAc
cGA bGA

Chapter eight gives a discusion and the conclusions of this project and chapter nine describes 
recommendations for further research.  
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2 Analytical models for the stability analysis 
Several simplified analytical models are introduced here for the stability analysis.  
These models can be used for estimating the critical load of braced and rigid frames.  
They are: 

• Flexural cantilever. 
• Shear-flexure cantilever. 
• Substitute column. 
• Sandwich column with thin faces. 
• Sandwich column with thick faces. 

Each analytical model will be discussed independently. 
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2.1 Flexural cantilever 
A “flexural cantilever” is a column fixed to the base, has bending stiffness EI  and undergoes bending 
deformations only (see fig. 2.1).  
 

          
      
      
      

      

  
y    P  y    

                
            

 
EI    EI          f  l  
      
           

     
         
            

  x         x   
 

( )a    ( )b       
Figure 2.1. Flexural cantilever. 

 

2.1.1 Vertical top load 
Euler [4] derived in 1744 a differential equation for a flexural cantilever subjected to a vertical top 
load P  (see fig. 2.1a) 
 

 
EI
Py

dx
yd

−=2

2

           (2.1) 

 
and obtained a formula for the critical load 
 

2

2

; 4l
EIP EIcr

π
=            (2.2) 

 
 

2.1.2 Uniformly distributed vertical load 
In 1936 Timoshenko [5] found a differential equation for a flexural cantilever subjected to an 
uniformly distributed vertical load  (see fig. 2.1b) f
 

03

3

=+
dx
dy

EI
fx

dx
yd  or 

EI
Fy

dx
yd

−=2

2

       (2.3) 

 
,where  and suggested a formula for the critical load flF =
 

2;
837.7
l

EIF EIcr =           (2.4) 
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2.2 Shear-flexure cantilever 
A “shear-flexure cantilever” is a column fixed to the base, has bending stiffness EI , shear stiffness  

 and undergoes bending and shear deformations (see fig. 2.2).  GA
 

     
      
      
      

      

  
y    P  y    

                
            

 
EI    EI      f   l  
GA   GA    
            

     
           
 x    x   

 
( )a    ( )b       
Figure 2.2. Shear-flexure cantilever. 

2.2.1 Vertical top load 
In 1936 Timoshenko [5] derived a differential equation for a shear-flexure cantilever subjected to a 
vertical top load P  (see fig. 2.2a) 
 

2

2

2

2

dx
yd

GA
P

EI
Py

dx
yd

+−=           (2.5) 

 
and obtained a formula for the critical load 
 

GAcr

EIcr

EIcr
cr

P
P

P
P

;

;

;

1+
=  or 

GAcrEIcrcr PPP ;;

111
+=       (2.6) 

 
, where the bending critical load is 
 

2

2

; 4l
EIP EIcr

π
=            (2.7) 

 
and the shear critical load is 
 

GAP GAcr =;            (2.8) 
 
Equation (2.6) can also be found by applying the Föppl-Papkovics theorem [6, 7] (see section 3.3).  
For this case the Föppl-Papkovics formula is mathematical exact, because the bending buckling shape 
(see fig. 2.3a) is identical to the shear buckling shape (see fig. 2.3b). The shear buckling shape has no 
definite buckling shape, which means the shear buckling shape can assume any form even the form of 
the bending buckling shape.       
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( )a    ( )b     

Fig 2.3 Buckling shapes of a shear-flexure cantilever subjected to a vertical top load. 
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2.2.2 Uniformly distributed vertical load 
In 1979 [8] Zalka found a differential equation for a shear-flexure cantilever subjected to an uniformly 
distributed vertical load  (see fig. 2.2b)  f
 

( ) ( ) 03 =′′+′+′′′′+′′′−′′′′ yxy
EI
fyxy

GA
fy        (2.9) 

 
and obtained a mathematically exact formula for the critical load by making use of a table or graph in 
which a critical load parameter λ  is a function of a stiffness parameter β  
 

GAcrcr FF ;λ=            (2.10) 
 
, where the stiffness parameter is 
 

EIcr

GAcr

F
F

;

;=β            (2.11) 

 
He also suggested a simplified approximate formula for the critical load by applying the  
Föppl-Papkovics theorem [6, 7], which leads to  
 

GAcrEIcrcr FFF ;;

111
+=           (2.12) 

 
, where the bending critical load is 
 

2;
837.7
l

EIF EIcr =           (2.13) 

 
and the shear critical load is 
 

GAF GAcr =;            (2.14) 
 
For this case the Föppl-Papkovics formula is always conservative, because the bending buckling shape 
(see fig. 2.4a) is not identical to the shear buckling shape (see fig. 2.4b). The shear buckling shape has 
a definite buckling shape, which means the shear buckling shape can assume only one form.       
         

 
    

    

 
( )a     ( )b  

Fig 2.4 Buckling shapes of a shear-flexure cantilever subjected to a vertical UDL. 
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2.3 Substitute column 
A “substitute column” is a flexural column fixed to the base with bending stiffness EI , which is 
supported by a uniformly distributed moment ( )GAfm =  and undergoes bending and shear 
deformations (see fig. 2.5). 
 

               
         
         
         
 
 
 
        
 

          
     y     P   y     
                    
                
EI    EI  

( )GAfm =   ( )GAfm =   f   l   
         
             
          
            
  
 x    x   

 

  
 

( )a    ( )b      
Figure 2.5. Substitute column. 

 

2.3.1 Vertical top load 
In 1961 Csonka [9] derived a differential equation for a substitute column subjected to a vertical top 
load P  (see fig. 2.5a)  
 

⎟
⎠
⎞

⎜
⎝
⎛ −

−=
EI

GAP
dx

yd
2

2

          (2.15) 

 
and obtained a formula for the critical load 
 

GAcrEIcrcr PPP ;; +=           (2.16) 
 
, where the bending critical load is 
 

2

2

; 4l
EIP EIcr

π
=            (2.17) 

 
and the shear critical load is 
 

GAP GAcr =;            (2.18) 
 
Equation (2.16) can also be found by applying the Southwells theorem [10] (see section 3.2).  
For this case the Southwell formula is mathematical exact, because the bending buckling shape  
(see fig. 2.3a) is identical to the shear buckling shape (see fig. 2.3b). The shear buckling shape has no 
definite buckling shape, which means the shear buckling shape can assume any form even the form of 
the bending buckling shape.   
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2.3.2 Uniformly distributed vertical load 
In 1980 Zalka [11] found a differential equation for a substitute column subjected to an uniformly 
distributed vertical load  (see fig. 2.5b)  f
 

0=′⎟
⎠
⎞

⎜
⎝
⎛ −

+′′′ y
EI

GAFy  or ⎟
⎠
⎞

⎜
⎝
⎛ −

−=
EI

GAF
dx

yd
2

2

      (2.19) 

 
and obtained a mathematically exact formula for the critical load by making use of a table or graph in 
which a critical load parameter α̂  is a function of a stiffness parameter  β̂
 

( ) GAcrEIcrGAcrGAcrEIcrEIcrcr FFFFFFF ;;;;;;
ˆˆˆˆ +−=+−== βααα     (2.20) 

 
, where the critical load parameter is   
 

EIcr

cr

F
F

;

ˆ =α            (2.21) 

 
and the stiffness parameter is 
 

EIcr

GAcr

F
F

;

;ˆ =β            (2.22) 

 
He also suggested a simple approximate formula for the critical load by applying the Southwell 
theorem [10] 
  

GAcrEIcrcr FFF ;; +=           (2.23) 
 
, where the bending critical load is 
 

2;
837.7
l

EIF EIcr =           (2.24) 

 
and the shear critical load is 
 

GAF GAcr =;            (2.25) 
 
For this case the Southwell formula (see eq. (2.23)) is always conservative, because the bending 
buckling shape (see fig. 2.4a) is not identical to the shear buckling shape (see fig. 2.4b).  
The shear buckling shape has a definite buckling shape, which means the shear buckling shape can 
assume only one form. Equation (2.23) can give conservative errors of 47 % in comparison with the 
mathematically exact formula (see eq. (2.20)) 
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2.4 Sandwich column with thin faces 
A sandwich column with thin faces is a multi-layer column fixed to the base with global bending 
stiffness  and racking shear stiffness , which undergoes global bending and racking shear 
deformations (see fig. 2.6). Most sandwich columns consist of three layers: two faces with thickness 

 and a core with thickness . Structures are called sandwich columns with thin faces,  

2EAc GA

st sc
if the following relationships hold: 

• The thickness  of the faces can be neglected, because  st ss ct <<<  , which leads to . ss dc ≈
• The individual bending stiffness of the faces 0=EI  can be neglected.  
• The individual bending moment in the faces 0=EIM  can be neglected.  

 
 

                        
                    
         
       

     

   P          
 
                           
               

2EAc             f   l  
GA  
            

           
         sb  
   
 st       sc      st                
  sd               

 
( )a    ( )b     

Figure 2.6. Sandwich column with thin faces. 
 

2.4.1 Vertical top load  
In 1984 [12] Hegedüs and Kollár derived a differential equation for a sandwich column with thin faces 
subjected to a vertical top load P  (see fig. 2.6a)  
 

04

42

2

2

4

4
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

dx
d

GA
EAc

dx
dP

dx
dEAc φφφ   or 2

2

22

2

dx
yd

GA
P

EAc
Py

dx
yd

+−=   (2.26) 

 
, where ly /=φ  and obtained a formula for the critical load 
 

GAcrEAccrcr PPP ;;

111
2

+=           (2.27) 

 
, where the global bending critical load is 
 

2

2

; 4
2

l
EIP

EAccr

π
=           (2.28) 
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and the shear critical load is 
 

GAP GAcr =;            (2.29) 
 
Equation (2.27) can also be found by applying the Föppl-Papkovics theorem.  
For this case the Föppl-Papkovics formula is mathematical exact, because the global bending buckling 
shape (see fig. 2.3a) is identical to the racking shear buckling shape (see fig. 2.3b).  
The racking shear buckling shape has no definite buckling shape, which means the racking shear 
buckling shape can assume any form even the form of the global bending buckling shape.    
 
 

2.4.2 Uniformly distributed vertical load 
In 1979 [8] Zalka found a differential equation for a sandwich column with thin faces subjected to an 
uniformly distributed vertical load  (see fig. 2.6b)  f
 

( ) ( ) 03 2 =′′+′+′′′′+′′′−′′′′ yxy
EAc

fyxy
GA

fy        (2.30) 

 
and obtained a mathematically exact formula for the critical load by making use of a table or graph in 
which a critical load parameter λ  is a function of a stiffness parameter β  
 

GAcrcr FF ;λ=            (2.31) 
 
, where the stiffness parameter is 
 

2;

;

EAccr

GAcr

F
F

=β            (2.32) 

 
He also suggested a simplified approximate formula for the critical load by applying the  
Föppl-Papkovics theorem [6, 7], which leads to  
 

GAcrEAccrcr FFF ;;

111
2

+=           (2.33) 

 
, where the bending critical load is 
 

2

2

;
837.7

l
EAcF EIcr =           (2.34) 

 
and the shear critical load is 
 

GAF GAcr =;            (2.35) 
 
For this case the Föppl-Papkovics formula (see eq. (2.33)) is always conservative,  
because the global bending buckling shape (see fig. 2.4a) is not identical to the racking shear buckling 
shape (see fig. 2.4b). The racking shear buckling shape has a definite buckling shape,  
which means the shear buckling shape can assume only one form.       
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2.5 Sandwich column with thick faces 
A sandwich column with thick faces is a multi-layer column fixed to the base with individual bending 
stiffness EI , global bending stiffness  and racking shear stiffness ,  2EAc GA
which undergoes individual bending, global bending and racking shear deformations (see fig. 2.7). 
Structures are called sandwich columns with thick faces, if the following relationships hold: 

• The thickness 0≠st  of the faces can`t be neglected and plays an important role. 
• The individual bending stiffness 0≠EI .  
• The individual bending moment  0≠EIM . 
   

                    
         
        
       

     

   

   
   P          
 
                    
               
EI  

 2EAc         f  l  
GA  
            

          
        sb  
   
 st       sc      st                
          sd      

( )a     ( )b    
Figure 2.7. Sandwich column with thick faces. 

 

2.5.1 Vertical top load 
In 1984 [13] Hegedüs and Kollár derived a differential equation for a sandwich column with thick 
faces subjected to a vertical top load (see fig. 2.7a)  
 

( ) 02

22

2

2
2

4

42

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++− φφφφ

dx
d

GA
EAcP

dx
dEIEAc

dx
d

GA
EIEAc      (2.36) 
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, where ly /=φ  and obtained a formula for the critical load 
 

EIcr
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PP
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        (2.37) 
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Equation (2.37) can also be found by applying the Föppl-Papkovics [6, 7] and Southwell theorem [10]. 
For this case the formula is mathematical exact, because the individual bending buckling shape is 
identical to the global bending and racking shear buckling shape. The shear buckling shape has no 
definite buckling shape, which means the shear buckling shape can assume any form even the form of 
the individual bending and global bending buckling shape.   
 

2.5.2 Uniformly distributed vertical load 
In 1984 [13] Hegedüs and Kollár found a differential equation for a sandwich column with thick faces 
subjected to an uniformly distributed vertical load (see fig. 2.7b)  
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, where ly /=φ  and obtained a mathematically exact formula by making use of a table for numerical 
parameter  1c
 

2

2

1 l
EIEAccFcr

+
=           (2.39) 

 
They also suggested a simplified approximate formula for the critical load by applying the  
Föppl-Papkovics theorem [6, 7] and the Southwell theorem [10] 
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        (2.40) 

 
For this case the combination of the Föppl-Papkovics and Southwell formula is always conservative, 
because the individual bending and global bending buckling shape are not identical to the racking 
shear buckling shape. The racking shear buckling shape has a definite buckling shape,  
which means the racking shear buckling shape can assume only one form.     
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3 Additive Theorems 
Additive theorems are useful tools for dealing with complex problems in a simple way. 
Equations for the overall critical load of a complex structure often rely on additive theorems and 
therefore a short summary of the theorems is given below. These theorems can only be used in the 
linear theory of stability for estimating the overall critical load of a structure. 
A detailed analysis with mathematical background and the limitation of application of additive 
theorems is given by Tarnai [14, 15]. The principle of all additive theorems used in the stability 
analysis of structures is as follows. The buckling problem of an original structure is to complex and 
therefore the structure is divided into simpler part problems. Each part problem corresponds to a 
different buckling shape and a different individual critical load, which can be computed by a FEM 
program by always assuming a different stiffness parameter to be infinite or zero.  
The overall critical load of the original complex structure can now be obtained by a summation of the 
individual critical loads of the part problems. This can be done by direct summation of the individual 
critical loads (Southwell) or by inverse summation of the individual critical loads (Föppl-Papkovics). 
The big advantage of additive theorems is that a solution of the part problems is usually available 
whether the solution of the original complex problem is very difficult to obtain.  
Three theorems will be introduced: 

• The Dunkerley Theorem. 
• The Southwell Theorem (parallel connection). 
• The Föppl-Papkovics Theorem (serial connection). 

 

3.1 The Dunkerley Theorem 
Dunkerley [16] first used his formula for the vibration problem of shafts. The Dunkerley theorem 
applied to stability problems is defined as follows. The principle of this theory is as follows.  
If a load system of an elastic structure can be considered as the sum of two loadsystems,  
then the inverse addition of the critical loads which belong to the two loadsystems gives a conservative 
estimate of the overall critical load of the structure.  
 

crcrcr PFF
111

+≤
′

          (3.1) 

 
This theorem makes it possible to investigate structures subjected to a combination of load systems. 
For example a combination between a vertical top load and a uniformly distributed load. 
The Dunkerley formula can also be used in a different form: 
 

1≤+
crcr P
P

F
F            (3.2) 
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3.2 The Southwell Theorem 
Southwell [10] first applied his theorem to vibration problems. Southwell`s theorem applied to 
stability problems is defined as follows. The elastic system is characterized by e stiffness parameters. 
The elastic system is first considered with all stiffness parameters zero except for the i-th one,  
which is left unchanged. Then the critical load of the i-th column is calculated.  
This procedure is then repeated and always another stiffness parameter is left unchanged,  
while the values of all the others are assumed to be zero. This theory is based on parallel connection of 
columns and leads to the following four conditions (see fig. 3.1): 

• The horizontal displacement of the resultant column is identical to the horizontal 
displacements of the individual columns:  

 
321 yyyy ===          (3.3) 

 
• The stiffness EI  of the resultant column is equal to the sum of the individual stiffnesses. 
 

3
1

21 EIEIEIEIEI
e

i
i +∑ +==

=
        (3.4) 

 
• The horizontal top loading  on the resultant column is equal to the sum of the horizontal 

loading on the individual columns: 
Q

 

3
1

21 QQQQQ
e

i
i +∑ +==

=
        (3.5) 

 
• The vertical top loading P  on the resultant column is equal to the sum of the vertical loading 

on the individual columns: 
 

3
1

21 PPPPP
e

i
i +∑ +==

=
         (3.6) 

 
If the columns are parallel connected, then the sum of the individual critical loads of these parts gives 
a lower bound to the overall critical of a structure: 
 

3;
1

2;1;; cr

e

i
crcricrcr PPPPP +∑ +=≥

=
        (3.7) 
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   Figure 3.1 Southwell`s model: parallel connection of columns. 
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3.3 The Föppl-Papkovics Theorem 
Föppl [6] and Papkovics [7] developed a theory for the stability of elastic structures, based on the 
partial stiffening of its elements. The principle of his theorem is as follows. The elastic system is 
characterized by e  stiffness parameters. The system is first considered with all stiffness parameters 
infinite except for the i-th one, which is left unchanged. Then the critical load of the i-th column is 
calculated. This procedure is then repeated and always another stiffness parameter is left unchanged, 
while the values of all the others is assumed to be infinite. This theory is based on serial connection of 
columns and leads to the following four conditions (see fig. 3.2): 

• The horizontal displacement of the resultant column is identical to the sum of the 
displacements of the individual columns:  

 

321
1

yyyyy
e

i
i ++=∑=

=          
(3.8) 

 
• The stiffness EI  of the resultant column is equal to the reciprocal sum of the individual 

stiffnesses. 
 

31 21

11111
EIEIEIEIEI

e

i i
+∑ +==

=
       (3.9) 

 
• The horizontal top loading  on the resultant column is equal to the horizontal loading on the 

individual columns: 
Q

 
321 QQQQ ===          (3.10) 

 
• The vertical top loading P  on the resultant column is equal to the vertical loading on the 

individual column: 
 

321 PPPP ===          (3.11) 
 

If the columns are serial connected, then the reciprocal sum of the individual critical loads of these 
parts gives a lower bound to the overall critical load of a structure: 
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11111
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Figure 3.2 Föppl-Papkovics model: serial connection of columns. 

 22



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

4 Stick-spring model 
The stick-spring model was introduced by Dicke [1, 2] to obtain an approximate solution for the 
overall critical load of a flexural cantilever subjected to a vertical top load P  (see section 4.1).  
This model will be further developed for a uniformly distributed vertical load F  (see section 4.2) and 
for a combination of a vertical top load P  and uniformly distributed vertical load F  (see section 4.3).  
 

4.1 Vertical top load 
As has been shown earlier (see section 1.4) a flexural cantilever subjected to a vertical top load P  
(see fig. 4.1a) can be transformed into a stick-spring model subjected to a vertical top load P  and a 
horizontal load  (see fig. 4.1b). In this model a flexural cantilever is replaced by a horizontal 
translation spring , which takes the individual bending stiffness 

Q
k EI  into account. Therefore spring 

stiffness  is a function of the individual bending stiffness of the flexural cantilever k ( )EIfk = .  
 

 
 
         
   
         
                      
            
          
          
 
 
 
        
 
       

              
 y      y  

  P        P  
            Q    ky  
      
                  

       ( )EIfk =   
           

EI            ∞=EI                l
    

                           
  

  

  

 
( )a       ( )b      

Figure 4.1 Original stick-spring model for loadcase P . 
 
In fig. 4.1b the deformed shape of the stick-spring model is shown, equilibrium is reached when: 
 

kylPyQl =+            (4.1) 
 
Eq. (4.1) can be rearranged to find the horizontal displacement  at the top: y
 

Pkl
Qly
−

=            (4.2) 

 
If the denominater is zero, instability occurs and the critical load is [1, 2]: 
 

klPcr =            (4.3) 
 
In absence of vertical top load P  the first-order deformation at the top is: 
 

k
Qy =0             (4.4) 
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Substituting eq. (4.3) and eq. (4.4) into eq. (4.2) leads to the following expression:  
 

0000 11
y

n
ny

P
P

P
P

y
PP

P
y

Pkl
kly

cr

cr

cr

cr

−
=

−
=

−
=

−
=       (4.5) 

 
Where the critical load ratio is: 
 

P
Pn cr=             (4.6) 

 

The amplification factor 
1−n

n  takes the second-order effects caused by vertical top load P  into 

account. If the critical load ratio is higher then ten the influence of the second order effects can be 
neglected, because the inluence of the second order effects is less then 10 %. 
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4.2 Uniformly distributed vertical load  
In a similar way a flexural cantilever subjected to a uniformly distributed vertical load   f
(see fig. 4.2a) can be transformed into a stick-spring model subjected to uniformly distributed vertical 
load  and a uniformly distributed horizontal load w  (see fig. 4.2b).  f
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            ( )EIfk =   ky  
      
                  

         
  f            w           f     
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( )a      ( )b      

Figure 4.2 Original stick-spring model for loadcase F . 
 
In fig. 4.2b the deformed shape of the stick-spring model is shown, equilibrium is reached when: 
 

kylflywl =+ 5.05.0 2           (4.7) 
 
The vertical load F  is: 
 

flF =             (4.8) 
 
The horizontal load W  is: 
 

wlW =            (4.9) 
 
Substituting eq. (4.8) and eq. (4.9) into eq. (4.7) leads to: 
 

kylFyWl =+ 5.05.0           (4.10) 
 
Eq. (4.10) can be rearranged to find the horizontal displacement  at the top: y
 

Fkl
Wly

−
=

2
           (4.11) 

 
If the denominater is zero, instability occurs and the critical load is: 
 

klFcr 2=            (4.12) 
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In absence of a vertical UDL  the first-order deformation at the top is: f
 

k
W

k
wly

220 ==             (4.13) 

 
Substituting eq. (4.12) and eq. (4.13) into eq. (4.11) leads to the following expression:  
 

0000 112
2 y

n
ny
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F

F
F

y
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F
y

Fkl
kly

cr

cr

cr

cr

−
=

−
=

−
=

−
=       (4.14) 

 
Where the critical load ratio is: 
 

F
F

n cr=             (4.15) 

The amplification factor 
1−n

n  takes the second-order effects caused by vertical UDL  into account. f
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4.3 Load combination 
In a similar way a flexural cantilever subjected to a combination of a vertical top load P  and a 
uniformly distributed vertical load  (see fig. 4.3a) can be transformed into a stick-spring model 
subjected to a vertical top load 

f
P , a horizontal top load Q , a uniformly distributed vertical load  

and a uniformly distributed horizontal load  (see fig. 4.3b).  
f

w
 

 
 
         
   
         
                      
              
          
          
 
 
 
        
 
       

  

              
 y      y  

  P        P   
                  Q     ky  
      
                  

       ( )EIfk =   
 f      w       f     

     EI         ∞=EI      l
    
                           
  

 
( )a      ( )b      
Figure 4.3  Original stick-spring model for loadcase FP + . 

 
In fig. 4.3b the deformed shape of the stick-spring model is shown, equilibrium is reached when: 
 

kylflyPywlQl =+++ 5.05.0 2          (4.16) 
 
Substituting eq. (4.8) and eq. (4.9) into eq. (4.16) leads to: 
 

kylFyPyWlQl =+++ 5.05.0          (4.17) 
 
Relations between the vertical loads P  and F  and relations between the horizontal loads Q   and W  
are needed to solve eq. (4.17). The relation between the vertical top load P  and vertical UDL F  can 
be obtained from fig. 4.4. Fig. 4.4a shows a cantilever column, subjected to vertical floor loads  and 
a vertical roof load . The vertical loads can be replaced by a vertical UDL . This is only correct 
if the vertical roof load  is half of the typical floor loading . If the vertical roof load  is larger 
then half of the floor loading , the vertical loads can be replaced by a combination of a vertical 
UDL  (see fig. 4.4b) and a vertical top load 

vF

dF f

dF vF dF

vF
f P (see fig. 4.4c).  
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                              F                    
                     
                 
 

   

 vd FPF 5.0+=         
 

dF         P  
 

vF  
 

vF             f        l  
 

vF  
 

vF5.0  
 
  
         P  F    vsFF =        P       

 
( )a      ( )b     ( )c
Fig. 4.4 Cantilever subjected to different vertical loadcases. 

 
The vertical roof load is: 
 

vd FF γ=            (4.18) 
 
Where factor γ  takes the effect of a different roof load  into account.   dF
The vertical load F  is: 
 

vsFF =            (4.19) 
 
Where s  is the number of stories. 
The vertical top load P  is (see fig. 4.4): 
 

vd FFP 5.0−=            (4.20) 
 
The vertical top load P  can be rearranged by substituting eq. (4.18) and eq. (4.19) into eq. (4.20): 
 

( ) ( )
s

FFP v
5.05.0 −

=−=
γγ          (4.21) 

 
The relation between the horizontal top load  and horizontal UDL W  can be obtained from fig. 4.5 
in a similar way as has been done for the relation between vertical top load 

Q
P  and vertical UDL F .  
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 hd WQW 5.0+=          
dW          Q   

 
hW  

 
hW              w          

                 l
hW  

 
hW5.0           

  
    
  Q  W     hsWW =                  Q      

   

   ( )a      ( )b     ( )c  
Fig. 4.5 Cantilever subjected to different horizontal loadcases.    

 
The horizontal roof load is: 
 

hd WW γ=            (4.22) 
 
The horizontal load W  is: 
 

hsWW =            (4.23) 
 
The horizontal top load  is (see fig. 4.5): Q
 

hd WWQ 5.0−=           (4.24) 
 
The horizontal top load  can rearranged by substituting eq. (4.22) and eq. (4.23) into eq. (4.24): Q
 

( ) ( )
s

WWQ h
5.05.0 −

=−=
γγ          (4.25) 

 
Substituting eq. (4.21) and eq. (4.25) into eq. (4.17) leads to the following expression: 
 

( ) ( ) kylFyy
s

FWl
s

Wl
=+

−
++

− 5.05.05.05.0 γγ       (4.26) 

 
Eq. (4.26) can be rearranged to find the horizontal displacement  at the top: y
 

( )
Fkl

Wl

F

s
s

kl
Wl

F

s

kl
Wly

−
=

−

⎥⎦
⎤

⎢⎣
⎡ −+

=
−

⎥⎦
⎤

⎢⎣
⎡ +

−

=
ω

γγ
2

12
2

15.02
2

     (4.27) 
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If the denominater is zero, instability occurs and the critical load is: 
 

crcr FklF ωω ==′ 2           (4.28) 
 
Where reduction factor ω  takes the influence of the vertical top load P  into account, which leads to:  
 

12 −+
=

γ
ω

s
s            (4.29) 

 
If 5.0=γ , then 1=ω  and . crcr FF =′
In absence of vertical top load P  and uniformly distributed vertical load  the first-order 
deformation at the top is: 

f

 
( )

k
W

k
s

sW

k
s

W

k
W

k
Qy

ω

γγ

22

12

2

112

20 =
⎟
⎠
⎞

⎜
⎝
⎛ −+

=
⎥⎦
⎤

⎢⎣
⎡ +

−

=+=       (4.30) 

 
Substituting eq. (4.28) and eq. (4.30) into eq. (4.27) leads to the following expression:  
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−
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−
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′

=
−

=
ω

ω       (4.31) 

 
Where the critical load ratio is 
 

F
F

n cr′=             (4.32) 

 

The amplification factor 
1−n

n  takes the second-order effects caused by vertical load FP +  into 

account. 
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5 Flexural cantilever 
 

5.1 Vertical top load 
A stick-spring model is used here to obtain an approximate solution for the overall critical load of a 
flexural cantilever subjected to a vertical top load P  (see fig. 5.1a). As earlier has been shown a 
flexural cantilever subjected to a vertical top load P  can be transformed into a stick-spring model 
subjected to a vertical top load P  and a horizontal load Q  (see fig. 5.1b). 
In this model a flexural cantilever is replaced by a horizontal translation spring ,  k
which takes the individual bending stiffness EI  into account. Therefore spring stiffness  is a 
function of the individual bending stiffness of the flexural cantilever 

k
( )EIfk = .  
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( )a      ( )b      

Figure 5.1 Transformation flexural cantilever into a stick-spring model for loadcase P . 
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( )a    ( )b  

Figure 5.2 First-order deformations flexural cantilever caused by horizontal top load  . Q
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The behaviour of a flexural cantilever, which is subjected to a horizontal top load , consists of one 
mode of deformation: individual bending deformation  .  

Q

EIy
The first-order deformation at the top of the flexural cantilever is (see fig. 5.2a): 
 

EI
Qly
3

3

0 =            (5.1) 

 
The first-order deformation at the top of the stick-spring model is (see fig. 5.2b): 
 

k
Qy =0             (5.2) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : k
 

3
3
l
EIk =            (5.3) 

 
It has also been shown that the critical load of the stick-spring model is (see eq. (4.3)): 
 

klPcr =            (5.4) 
 
After substituting eq. (5.3) into eq. (5.4) the critical load of the stick-spring model is [1, 2]: 
 

2
3
l
EIPcr =            (5.5) 

 
The actual individual bending critical load of a flexural cantilever for loadcase P  is [4]: 
 

22

2

;
4674.2

4 l
EI

l
EIPP EIcrcr ===

π         (5.6)

  
The individual bending critical load of the stick-spring model (see eq. (5.5)) is about 21.6% larger then 
the actual individual bending critical load of a flexural cantilever (see eq. (5.6)),  
because the individual bending deflection shape of a flexural cantilever is not identical to the 
individual bending buckling shape of a flexural cantilever. The deflection shape of a flexural 
cantilever is a third order function and the buckling shape of a flexural cantilever is a cosine function.  
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5.2 Uniformly distributed vertical load 
In a similar way a stick-spring model is used here (see fig. 5.3b) to obtain an approximate solution for 
the overall critical load of a flexural cantilever subjected to a uniformly distributed vertical load  f
(see fig. 5.3a).  
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( )a      ( )b      

Figure 5.3 Transformation flexural cantilever into a stick-spring model for loadcase F . 
 

 0y    0y    
      

           
      k    0ky  
 
w     w  

       
  
                   
  

( )a     ( )b  
Figure 5.4 Deformations flexural cantilever caused by horizontal UDL . w

 
The first-order deformation at the top of the flexural cantilever is (see fig. 5.4a): 
 

EI
wly
8

4

0 =            (5.7) 

 
The first-order deformation at the top of the stick-spring model is (see fig. 5.4b): 
 

k
wly
20 =             (5.8) 
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Both deformations are the same yielding the horizontal translational spring stiffness : k
 

3
4
l
EIk =            (5.9) 

 
It has also been shown that the critical load of the stick-spring model is (see eq. (4.12)): 
 

klFcr 2=            (5.10) 
 
After substituting eq. (5.9) into eq. (5.10) the critical load of the stick-spring model is [1, 2]: 
 

2
8
l
EIFcr =            (5.11) 

 
The actual individual bending critical load of a flexural cantilever for loadcase F  is [5]: 
 

2;
837.7
l

EIFF EIcrcr ==           (5.12)

  
The individual bending critical load of the stick-spring model (see eq. (5.11)) is about 2.1% larger then 
the actual individual bending critical load of a flexural cantilever (see eq. (5.12)), because the 
individual bending deflection shape of a flexural cantilever is not identical to the individual bending 
buckling shape of a flexural cantilever. The deflection shape of a flexural cantilever is a fourth order 
function and the buckling shape of a flexural cantilever can be approximated by a cosine function.  
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5.3 Load combination 
In a similar way a stick-spring model is used here (see fig. 5.5b) to obtain an approximate solution for 
the overall critical load of a flexural cantilever subjected to a vertical top load P  and a uniformly 
distributed vertical load (see fig. 5.5a).  f
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Figure 5.5 Transformation flexural cantilever into stick-spring model (vertical UDL). 
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Figure 5.6 Deformations flexural cantilever caused by horizontal top load  Q  and horizontal UDL . w
 
The first-order deformation at the top of the flexural cantilever is (see fig. 5.6a): 
 

EI
wl

EI
Qly

83

43

0 +=           (5.13) 

 
By substituting eq. (4.9) and eq. (4.25) into eq. (5.13) the first-order deformation at the top of the 
flexural cantilever can be rearranged into: 
 

EI
Wl

sEI
Wly

8
5.0

3

33

0 +⎟
⎠
⎞

⎜
⎝
⎛ −

=
γ          (5.14) 
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It has also been shown that the first-order deformation at the top of the stick-spring model is  
(see eq. (4.30) and fig. 5.16b)): 
 

k
Wy
ω20 =             (5.15) 

 
Both deformations are the same yielding: 
 

EI
l

sEI
l

k 8
5.0

32
1 33

+⎟
⎠
⎞

⎜
⎝
⎛ −

=
γ

ω
         (5.16) 

 
It has been shown that the critical load of the stick-spring model is (see eq. (4.28)): 
 

klFcr ω2=′            (5.17) 
 
After substituting eq. (5.16) into eq. (5.17) the critical load of the stick-spring model is: 
 

EI
l

sEI
l

klFcr 8
5.0

32
11 22

+⎟
⎠
⎞

⎜
⎝
⎛ −

==
′

γ
ω

        (5.18) 

 
In general, the critical load in eq. (5.18) can be written as:  
 

EIcrEIcrcr FsPF ;;

15.011
+⎟

⎠
⎞

⎜
⎝
⎛ −

=
′

γ          (5.19) 

 
Where the critical loads obtained from the stick-spring model are for : 

• Individual bending for loadcase P  [1, 2]:  
 

2;
3
l
EIP EIcr =           (5.20) 

 
• Individual bending for loadcase F  [1, 2]: 

 

2;
8
l
EIF EIcr =           (5.21) 

 
But the actual critical loads are for: 

• Individual bending for loadcase P  [4]: 
 

2

2

; 4l
EIP EIcr

π
=           (5.22) 

 
• Individual bending for loadcase F  [5]: 

 

2;
837.7
l

EIF EIcr =          (5.23)
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Eq. (5.18) gives an overestimated individual bending critical load, because the individual bending 
critical loads (see eq. (5.20) and eq. (5.21)) are overestimated in the stick-spring-model.  
If the actual values for individual bending (see eq. (5.22) and eq. (5.23)) are substituted in eq. (5.19)  
the critical load can be rearranged into: 
 

EI
l

sEI
l

Fcr 837.7
5.041 2

2

2

+⎟
⎠
⎞

⎜
⎝
⎛ −

=
′

γ
π

        (5.24) 

 
The ratio for the individual bending critical loads is:  
 

176.34837.7
2

2

2
;

; ==
EI
l

l
EI

P
F

EIcr

EIcr

π
        (5.25) 

 
By substituting eq. (5.25) into eq. (5.24) the critical load can be rearranged into: 
 

EIcrEIcrEIcrcr FFsFF ;;;

1115.0176.311
′

==⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

=
′ α

γ       (5.26) 

 
The actual individual bending critical load for a flexural cantilever for loadcase FP +  is [17]: 
 

2;;
837.7

l
EIFFF EIcrEIcrcr

αα ==′=′         (5.27) 

 
Where: 
α  is a reduction factor for the bending critical load, which takes the influence of the vertical top load 
P  into account and can be given by:   
 

( ) ( )5.0176.35.0176.3
1

15.0176.3

1
−+

=
+−

=
+⎟

⎠
⎞

⎜
⎝
⎛ −

=
γγγ

α
s

s

s
s

s

    (5.28) 

 
Eq. (5.27) gives a conservative critical load, because the individual bending buckling shape for 
loadcase P  (see fig. 5.1a) is not identical to the individual bending buckling shape for loadcase F  
(see fig. 5.3a). 
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6 One bay braced frames 
 

6.1 Braced frames with non-continous columns 
A braced frame with non-continous columns is a structure consisting of columns,  
beams and diagonals, which are pin-connected to each other (see fig. 6.1).  
The columns of the frame are non-continous and pin-connected to the base. 
 

  
        
              
        
        
         

       

      
    bA                
             
   h  
      

cA  dA         
     l   
 
 
 
 

 
      a        

        d       
 

Figure 6.1  Braced frames pin-connected to base. 
 
The buckling behaviour of a braced frame with non-continous columns pin-connected to the base can 
be divided into 2 modes of deformation: 

• Global bending ( )2EAc : axial deformation in the columns (shortening at one side and 
lengthening at the other side) (see fig. 6.2a).  

• Racking shear ( )GA : axial strains in the diagonals (see fig. 6.2b). 
 

    

 

     
       
 

cA          dA     
        
    
                
 
  
    

∞=dA   ∞=cA  
   ( )cAfEAc =2     ( )db AAfGA ,=   

 

   
( )a     ( )b      

Fig 6.2 Modes of deformation of a braced frame with non-continious columns.  
 
Assumptions: 

• The columns, beams and diagonals are hinged connected to each other. 
• The braced frame is pin-connected to the base. 
• The columns are non-continous and therefore the individual bending stiffness is zero 0=EI . 
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• The braced frame has two lateral stiffness parameters ( )cAfEAc =2  and ( )db AAfGA ,= . 
• There is no connection between the diagonals. 
 

6.1.1 Vertical top loads  
A stick-spring model is introduced here to obtain an approximate solution for the overall critical load 
of a one-bay braced frame with non-continous columns (see fig. 6.3a). The braced frame is subjected 
to vertical top loads and can be transformed into a shear-flexure cantilever with global bending 
stiffness  and racking shear stiffness ( cAfEAc =2 ) ( )db AAfGA ,=  (see fig. 6.3b).  
This shear-flexure cantilever can be transformed into a stick-spring model (see fig. 6.3c).  
In this model a shear-flexure cantilever is replaced by a horizontal translation spring ,  k
which takes the global bending stiffness  and the racking shear stiffness GA  of the shear-flexure 
cantilever into account. Therefore spring stiffness  is a function of the global bending stiffness 

 and of the racking shear stiffness GA  of the shear-flexure cantilever 

2EAc
k

2EAc ( )GAEAcfk ,2= .  
 

 
         

        
         
                           
                        

            
          
 
 
 
        
 
       

y     y         y  
                  
      P     P   
 bA        Q  

       
         
 dA                      ( )GAEAcfk ,2=  

cA                                   l  
     ( )cAfEAc =2     ∞=2EAc        

     ( )db AAfGA ,=    ∞=GA   
   
                             

      ( )a ( )b       ( )c
Figure 6.3 Transformation braced frame into stick-spring model (vertical top loads). 
 

 

              

    

 2EAc
y       GAy 0y  

        
  Q    Q            Q  
 
          k  

  
cA          dA  

 
 
 
 
 ∞== GAAd   ∞== 2EAcAc   

( )a     ( )b      ( )c
Figure 6.4 Deformations braced frame caused by horizontal load  . Q

 
The first-order deformation at the top of the braced frame is (see fig. 6.4a/b): 
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GA
Ql

EAc
Qlyyy GAEAc

+=+= 2

3

0 3
2         (6.1) 

 
The first-order deformation at the top of the stick-spring model is (see fig. 6.4c): 
 

k
Qy =0             (6.2) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : k
 

GA
l

EAc
l

k
+= 2

3

3
1           (6.3) 

 
It has been shown that the critical load of the stick-spring model is (see eq. (4.3)): 
 

klPcr =            (6.4) 
 
After substituting eq. (6.3) into eq. (6.4) the critical load of the stick-spring model is: 
 

GAEAc
l

klPcr

1
3

11
2

2

+==          (6.5) 

 
In general, the critical load of eq. (6.5) can written as:  
 

GAcrEAccrcr PPP ;;

111
2

+=           (6.6) 

 
Where the critical loads obtained from the stick-spring model are for: 

• Global bending [1, 2]:  
 

2

2

;

3
2

l
EAcP

EAccr
=          (6.7)

  
• Racking shear [5]: 

 
GAP GAcr =;           (6.8) 

 
But the actual critical loads are for: 

• Global bending [4]:  
 

2

22

; 4
2

l
EAcP

EAccr

π
=          (6.9)

  
• Racking shear [5]: 

 
GAP GAcr =;           (6.10) 
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The global bending critical load of the stick-spring model (see eq. (6.7)) is about 21.6% larger then the 
actual global bending critical load of a braced frame (see eq. (6.9)), because the global bending 
deflection shape of a braced frame is not identical to the global bending buckling shape of a braced 
frame. The deflection shape of a braced frame is a third order function and the buckling shape of a 
braced frame is a cosine function.  
 
The racking shear critical load of the stick-spring model (see eq. (6.8)) is equal to the actual racking 
shear critical load of a braced frame (see eq. (6.10)), because the racking shear deflection shape of a 
braced frame (see fig. 6.5a) is identical to the racking shear buckling shape of a braced frame  
(see fig. 6.5b). The racking shear buckling shape of a braced has not a definite buckling shape,  
which means the racking shear buckling shape can assume any form even the form of the racking 
shear deflection shape. Therefore different racking shear buckling shapes have one eigenvalue and one 
critical load. If a braced frame has eight storeys, eight different racking shear buckling shapes have 
one eigenvalue and one critical load.  

             

     
( )a     ( )b      

Figure 6.5 Racking shear shapes of braced frames caused by top loads. 
 
If the actual values for global bending (see eq. (6.9)) and racking shear (see eq. (6.10)) are substituted 
into eq. (6.6) the critical load of a braced frame becomes: 
 

GAEAc
l

Pcr

141
22

2

+=
π

          (6.11) 

 
Eq. (6.5) gives in most cases an overestimated critical load, because the global bending critical load 
(see eq. (6.7)) is overestimated by 21.6% in the stick-spring model. If the actual values for global 
bending (see eq. (6.9)) and racking shear (see eq. (6.10)) are substituted into eq. (6.6) the critical load 
is now conservative (see eq. (6.11)), because the global bending buckling shape (see fig. 6.6a) is not 
identical to the racking shear buckling shape (see fig. 6.6b).  
 

              

     
( )a    ( )b   

Figure 6.6 Buckling shapes for loadcase P . 
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6.1.2 Uniformly distributed vertical loads 
In fig. 6.7a a braced frame with non-continous columns is subjected to vertical point loads  accept 
for the point loads at the roof and at the bottom of the frame which are   

vF

vF5.0 .
In a similar way the stick-spring model can be used here to obtain an approximate solution for the 
overall critical load of a braced frame. First a braced frame subjected to vertical point loads is 
transformed into a shear-flexure cantilever subjected to a vertical UDL  (see fig. 6.7b),  f
which then can be transformed into a stick-spring model (see fig. 6.7c).  
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Figure 6.7 Transformation braced frame into stick-spring model (uniformly distributed vertical loads). 
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Figure 6.8 Deformations X-braced frame caused by horizontal UDL . w
 
The first-order deformation at the top of the braced frame is (see fig. 6.8a/b): 
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The first-order deformation at the top of the stick-spring model is (see fig. 6.8c): 
 

k
wly
20 =             (6.13) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : k
 

GA
l

EAc
l

k
+= 2

3

4
1           (6.14) 

 
It has been shown that the critical load of the stick-spring model is (see eq. (4.12)): 
 

klFcr 2=            (6.15) 
 
After substituting eq. (6.14) into eq. (6.15) the critical load of the stick-spring model is: 
 

GAEAc
l

klFcr 2
1

82
11

2

2

+==          (6.16) 

 
In general, the critical load of eq. (6.16) can be written as:  
 

GAcrEAccrcr FFF ;;

111
2

+=           (6.17) 

 
Where the critical loads obtained from the stick-spring model are for: 

• Global bending [1, 2]:  
 

2

2

;

8
2

l
EAcF

EAccr
=          (6.18)

  
• Racking shear [18-21]: 

 
GAF GAcr 2; =           (6.19) 

 
But the actual critical loads are for: 

• Global bending [5]:  
 

2

2

;

837.7
2

l
EAcF

EAccr
=          (6.20)

  
• Racking shear (see eq. (6.28)): 

 
GAF GAcr η=;           (6.21) 

  
Where η  is a factor which takes the effect of the different normal forces   and 

 into account for loadcase 
cantileverN

frameN F : 
 

5.0−
=

s
sη           (6.22) 
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The global bending critical load of the stick-spring model (see eq. (6.18)) is about 2.1% larger then the 
actual global bending critical load of a braced frame (see eq. (6.20)), because the global bending 
deflection shape of a braced frame is not identical to the global bending buckling shape of a braced 
frame. The deflection shape of the braced frame is a fourth order function and the buckling shape of 
the braced frame can be approximated by a cosine function.  
 
The racking shear critical load of the stick-spring model (see eq. (6.19)) is about 100% larger then the 
actual racking shear critical load of eq. (6.21), because the racking shear deflection shape of a braced 
frame (see fig. 6.9a) is not identical to the racking shear buckling shape of a braced frame  
(see fig. 6.9b). The racking shear buckling shape of a braced has a definite buckling shape,  
which means the racking shear buckling shape can assume only one form.  
Therefore the racking shear buckling shape has one eigenvalue and one critical load.  

              

     
( )a     ( )b  

Figure 6.9 Racking shear shapes braced frame caused by UDL. 
 
If the actual values for global bending (see eq. (6.20)) and racking shear (see eq. (6.21)) are substituted 
into eq. (6.17) the critical load of a braced frame becomes: 
 

GAEAc
l

Fcr η
1

837.7
1

2

2

+=          (6.23) 

 
Eq. (6.16) gives in most cases an overestimated critical load, because the global bending critical load 
(see eq. (6.18)) is overestimated by 2.1% and the racking shear critical load (see eq. (6.19)) is 
overestimated by nearly 100 % in the stick-spring model. If the actual values for global bending  
(see eq. (6.20)) and racking shear (see eq. (6.21)) are substituted into eq. (6.17) the critical load is now 
conservative (see eq. (6.23)), because the global bending buckling shape (see fig. 6.10a) is not 
identical to the racking shear buckling shape (see fig. 6.10b).  

              

     
( )a      ( )b   
Figure 6.10 Buckling shapes for loadcase  with F GAF GAcr η=; . 
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Now the derivation of the actual racking shear critical load of a braced frame will be given  
(see eq. (6.21)). A lower bound for the racking shear critical load of a braced frame subjected to  
floor loads  can be found by assuming a shear cantilever subjected to UDL , which gives:  vF f
 

GAF cantileverGAcr =;;           (6.24) 
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Figure 6.11 Influence of normal force on the racking shear critical load  . GAcrF ;

 
From the racking shear buckling shape of a braced frame it can be seen that the first-storey sways and 
the other storeys remain vertical (see fig. 6.11a). The normal force  in a braced frame at the first 
storey is (see fig. 6.11b): 

frameN

 
vframe FsN )5.0( −=           (6.25) 

 
From the racking shear buckling shape of a shear cantilever it can be seen that a cantilever sways at 
the bottom and the rest remains vertical (see fig. 6.11c). The normal force  in a cantilever at 
the bottom is: (see fig. 6.11d): 

cantileverN

 
vcantilever sFFN ==           (6.26) 

 
At buckling the normal force in the shear cantilever is half a floor load larger ( ) then the normal 
force in a braced frame. Therefore the racking shear critical load of a shear cantilever is lower then the 
racking shear critical load of a braced frame and eq. (6.24) has to be rearranged, to take the effect of 
the larger normal force into consideration, which leads to the actual racking shear critical load of a 
braced frame: 

vF5.0

 

GA
N

N
F

frame

cantilever
GAcr =;           (6.27) 

 
Substituting eq. (6.25) and eq. (6.26) into eq. (6.27) leads to the actual racking shear critical load of a 
braced frame subjected to floor loads : vF
 

GAF GAcr η=;            (6.28) 
 
Formula (6.28) gives a mathematically exact racking shear critical load, because the racking shear 
buckling shape of a braced frame (see fig. 6.11a) is identical to the racking shear buckling shape of a 
shear cantilever (see fig. 6.11c) if factor η  is taken into account. 

 45



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

6.1.3 Load combinations 
In fig. 6.12a a braced frame with non-continous columns is subjected to vertical point loads  accept 
for the point load at the roof, which is  and the load at the bottom, which is   

vF

dF vF5.0 .
In a similar way the stick-spring model can be used here to obtain an approximate solution for the 
overall critical load of a braced frame. First a braced frame subjected to vertical point loads is 
transformed into a shear-flexure cantilever subjected to a vertical top load P  and a vertical UDL   f
(see fig. 6.12b), which then can be transformed into a stick-spring model (see fig. 6.12c).  
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Figure 6.12 Transformation braced frame into stick-spring model (load combination). 
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Figure 6.13 Deformations X-braced frame caused by load combination. 
 
The first-order deformation at the top of the braced frame is (see fig. 6.13a/b): 
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By substituting eq. (4.9) and eq. (4.25) into eq. (6.29) the first-order deformation at the top of the 
braced frame can be rearranged into: 
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It has been shown that the first-order deformation at the top of the stick-spring model is  
(see eq. (4.30) and fig. 6.13c): 
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Both deformations are the same yielding : k
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It has been shown that the critical load of the stick-spring model is (see eq. (4.28)): 
 

klFcr ω2=′            (6.33) 
 
After substituting eq. (6.32) into eq. (6.33) the critical load of the stick-spring model is: 
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    (6.34) 

 
In general, the critical load in eq. (6.34) can be written as:  
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Where the critical loads obtained from the stick-spring model are for: 

• Global bending for loadcase P  [1, 2]:  
 

2

2
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l
EAcP
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=          (6.36) 

 
• Global bending for loadcase F  [1, 2]: 

 

2
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l
EAcF
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• Racking shear for loadcase P  [5]:  

 
GAP GAcr =;           (6.38) 

 
• Racking shear for loadcase F  [18-21]: 

 
GAF GAcr 2; =           (6.39) 
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But the actual critical loads are for: 

• Global bending for loadcase P  [4]: 
 

2

22

; 4
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l
EAcP

EAccr

π
=          (6.40) 

 
• Global bending for loadcase F  [5]: 
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2

l
EAcF
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• Racking shear for loadcase P  [5]:  

 
GAP GAcr =;           (6.42) 

 
• Racking shear of a shear cantilever for loadcase F  [22]: 

 
GAF cantileverGAcr =;;          (6.43) 

 
Eq. (6.34) gives an overestimated critical load, because the global bending critical loads  
(see eq. (6.36) and eq. (6.37)) and the racking shear critical load (see eq. (6.39)) are overestimated in 
the stick-spring-model. If the actual values for global bending (see eq. (6.40) and eq. (6.41)) and 
racking shear (see eq. (6.42) and eq. (6.43)) are substituted into eq. (6.35) the critical load is: 
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     (6.44) 

 
The ratio for the global bending critical loads is:  
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The ratio for the racking shear critical loads is:  
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By substituting eq. (6.45) and eq. (6.46) into eq. (6.44) the critical load is: 
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In general, the critical load of eq. (6.47) can be written as:  
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Where the critical loads are for: 

• Global bending [17]: 
 

2

2

;;

837.7
22

l
EAcFF

EAccrEAccr

αα ==′        (6.49) 

 
, where α  is a reduction factor for the bending critical load, which takes the influence of the 
vertical top load P  into account is:   
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• Racking shear of a shear cantilever:  

 
GAF cantileverGAcr β=′ ;;          (6.51) 

 
, where β  is a reduction factor for the racking shear critical load, which takes the influence of 
the vertical top load P  into account is:   
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      (6.52) 

 
Formula (6.49) gives a conservative critical load, because the global bending buckling shape for 
loadcase P  (see fig. 6.6a) is not identical to the global bending buckling shape for loadcase F   
(see fig. 6.10a). 
 
A lower bound for the racking shear critical load of a braced frame can be found by assuming a shear 
cantilever. It has been shown that the racking shear critical load of a shear cantilever is (see eq. 6.51)):  
 

GAF cantileverGAcr β=′ ;;           (6.53) 
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Figure 6.14 Influence normal force on racking shear critical load GAcrF ;′ . 
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From the racking shear buckling shape of a braced frame it can be seen that the first-storey sways and 
the other storeys remain vertical (see fig. 6.14a). The normal force frameN ′  in a braced frame at the first 
storey is (see fig. 6.14b): 
 

( ) ( ) ( ) vvvvframe FsFFsPFsN 15.05.0)5.0( −+=−+−=+−=′ γγ     (6.54) 
 
From the racking shear buckling shape of a shear cantilever it can be seen that a cantilever sways at 
the bottom and the rest remains vertical (see fig. 6.14c). The normal force cantileverN ′  in a braced frame 
at the bottom is (see fig. 6.14d): 
 

( ) ( ) vvvvcantilever FsFsFPsFN 5.05.0 −+=−+=+=′ γγ       (6.55) 
 
At buckling the normal force in a shear cantilever is half a floor load larger ( ) then the normal 
force in a braced frame. Therefore the racking shear critical load of a shear cantilever is lower then the 
racking shear critical load of a braced frame and eq. (6.53) has to be rearranged, to take the effect of 
the larger normal force into consideration, which leads to: 
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Substituting eq. (6.54) and eq. (6.55) into eq. (6.56) leads to the actual shear critical load: 
 

GAF GAcr βη′=′ ;            (6.57) 
 
Where η′  is a factor which takes the effect of the different normal forces cantileverN ′ and  into 
account for loadcase 
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For the case when the roof load is half the floor load ( 5.0=γ ), which is identical to a UDL, η′  is:  
 

5.0−
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s
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Formula (6.57) gives a mathematically exact racking shear critical load, because the racking shear 
buckling shape of a cantilever (see fig. 6.14c) is identical to the racking shear buckling shape of a 
braced frame (see fig. 6.14a).  
 
If the actual values for global bending (see eq. (6.49)) and racking shear (see eq. (6.57)) are substituted 
into eq. (6.48) the critical load of a braced frame becomes: 
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         (6.59) 

 
Formula (6.59) gives a conservative critical load, because the global bending buckling shape for 
loadcase  FP +  (6.15a) is not identical to the racking shear buckling shape for loadcase FP +  
(see fig. 6.15b).  
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( )a     ( )b   

Figure 6.15 Buckling shapes for loadcase FP + with GAF GAcr βη′=′ ; . 
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6.2 Lateral stiffnesses of braced frame with non-continous columns 
 

6.2.1 Global bending stiffness 
The global bending stiffness caused by the axial deformation in the columns (shortening of the 
columns at one side and lengthening at the other side) can be obtained from (see fig. 6.16): 
 

∑= 22
iccEAEAc           (6.60) 

 
where E  is the elastic modulus,  is the cross-sectional area of the column and  is the distance 
between the neutral axis of the column  and the neutral axis of the X-braced frame . 
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Figure 6.16 Global bending stiffness braced frame with non-continous columns. 

 

6.2.2 Racking shear stiffness 
The racking shear stiffness  can be defined as the resistance of a structure against shear.  GA
The racking shear stiffness  of an X-braced frame is caused by axial strains in the diagonals. 
Values of the racking shear stiffness can be obtained by analysing one storey of an X-braced frame. 
The racking shear stiffness of different bracing types has been derived earlier [23]. 

GA

The racking shear stiffness of an one-bay X-braced frame is (see fig. 6.17a): 
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The racking shear stiffness of an one-bay K-braced frame is (see fig. 6.17b): 
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The racking shear stiffness of an one-bay N-braced frame is (see fig. 6.17c): 
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The racking shear stiffness of an one-bay Knee-braced frame is (see fig. 6.17d): 
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      Figure 6.17 Bracing types. 
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6.3 Accuracy 
To establish the accuracy of the stick-spring model, critical loads of a number of one-bay X-braced 
frames were estimated using the stick-spring model and a finite element analyses. Finite element 
program ANSYS was used to obtain the eigenvalues of the braced frames. The braced frames have  
non-continous columns and pinned supports and the height of the frames varied from eight to forty 
stories. The X-braced frames are subjected to three different loadcases (see fig. 1.5): 

• Vertical top loads (see fig. 1.5a). 
• Uniformly distributed vertical loads (see fig. 1.5b). 
• Load combinations (see fig. 1.5c). 

Five different cases will be investigated for one-bay X-braced frames: 
• Global bending deformation only (see fig. 6.18a).  
• Racking shear deformation only (see fig. 6.18b). 
• All deformations together (see fig. 6.18a/b). 
• Influence of varying cross-sectional  area of the columns  on the critical load. cA
• Influence of varying cross-sectional  area of the diagonals  on the critical load. dA
 

 

    

   
 

      
     

     
      
 

cA          dA   
        
    
                
 
  
    

∞=dA   ∞=cA  
   ( )cAfEAc =2     ( )db AAfGA ,=   

( )a     ( )b      
Fig 6.18 Cases to investigate for braced frames with non-continous columns. 

 
The first two cases only represent theoretical cases, but the inclusion of them is very important to 
make a well-based judgement on the accuracy of the stick-spring model.  
The critical loads found with the finite element method are assumed to be exact.  

The errors are calculated as follows %100
)(

)( ×
−

=∆
ANSYScr

ANSYScrcr

P
PP

.  

If the error is negative the stick-spring model gives a conservative value for the critical load.  
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6.3.1 Numerical model 
The numerical model is built up from LINK1 elements. LINK1 elements can only sustain   
normal forces (see fig. 6.19). The columns, beams and diagonals are all LINK1 elements with a  
cross-sectional area r . All the connections between these LINK1 elements are hinged.  dc AA ,  o

   

bA
The columns are pin-connected to the base. For this investigation it is assumed that the braced frame 
has an uniform cross-sectional area of the columns , of the diagonals  and of the beams  up 
the height.   

cA dA bA

     
      
     
     
     

     

 
bA     

       
       dA   cA          
      
 
 
      
             LINK1 
 
      
 
     
          
  

Figure 6.19 Numerical model for a braced frame with non-continous columns. 
  

6.3.2 Example 
An eight storey high one bay X-braced frame with non-continous columns (see fig. 6.20)  
has a global bending stiffness , a racking shear stiffness  and is subjected to three different 
loadcases. The characteristics of the braced frame can be found in table 6.1. 

2EAc GA

 

 
    
          
    
    
    

   

 
                 
  dA  
 

cA   bA    
 

24=l
  
 
 
 
 
 
 
 
   

    
   3=h  

 3=a  
 

Figure 6.20. Example of braced frames with non-continous columns. 
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Table 6.1. Characteristics 
Columns UC305x137 (305x305x137 mm)  
Cross-sectional area: Ac=1.744E-02 m2

Second moment of area: Ic=3.281E-04 m4

Beams UB356x45 (356x171x45 mm)  
Cross-sectional area: Ab=5.733E-03m2

Second moment of area: Ib=1.207E-04 m4

Diagonals 250x15 mm  
Cross-sectional area: Ad=3.75E-03 m2

Second moment of area: Id=1.953E-05 m4

  
Elastic modulus: E=2.00E+05 MN/m2

 

6.3.2.1 Stiffness parameters 
The global bending stiffness is (see eq. (6.60)): 
 

MNcEAcEAEAc icici 156965.110744.110222 225222 =×⋅×××==∑= −  
 
The racking shear stiffness is (see eq. (6.61)): 
 

( )
MN

d
hEAa

GA d
X 3.530

23

1075.31023322
3

352

3

2

=
××××××

==
−

 

6.3.2.2 Vertical top load 
The global bending critical load is (see eq. (6.9)): 
 

MN
l

EAcP
EAccr

24.67
244
15696

4 2

2

2

22

; 2 =
×
×

==
ππ  

 
The racking shear critical load is (see eq. (6.10)): 
 

MNGAP GAcr 3.530; ==   
 
The critical load is (see eq. (6.6)): 
 

MN
PP

P
GAcrEAccr

cr 67.59
32.530

1
24.67

111 1
1

;; 2

=⎥⎦
⎤

⎢⎣
⎡ +=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

−
−
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6.3.2.3 Vertical UDL 
The global bending critical load is (see eq. (6.20)): 
 

MN
l
EAcF

EAccr
6.213

24
15696837.7837.7
22

2

; 2 =
×

==   

 
Reduction factor η  is (see eq. (6.22)): 
 

0666.1
15
16

5.08
8

5.0
==

−
=

−
=

s
sη        

 
The racking shear critical load is (see eq. (6.21)): 
 

MNGAF GAcr 7.5653.5300666.1; =×==η   
  
The critical load is (see eq. (6.17)): 
 

MN
FF

F
GAcrEAccr

cr 0.155
7.565

1
6.213

111 1
1

;; 2

=⎥⎦
⎤

⎢⎣
⎡ +=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

−
−

  

 

6.3.2.4 Load combinations 
If the vertical top load is 4 times the floor loading factor γ  is (see eq. (4.18)): 
 

4==
v

d

F
F

γ           

 
Reduction factor for the bending critical load α  is (see eq. (6.50)):  
 

( ) ( ) 4185.0
5.04176.38

8
5.0176.3

=
−+

=
−+

=
γ

α
s

s  

 
The global bending critical load is (see eq. (6.49)): 
 

MNF
l

EAcF
EAccrEAccr

37.896.2134185.0837.7
22 ;2

2

;
=×===′ αα   

 
Reduction factor for the racking shear critical load β  is (see eq. (6.52)): 
 

6957.0
5.048

8
5.0

=
−+

=
−+

=
γ

β
s

s    

 
Reduction factor η′  is (see eq. (6.58)): 
 

0455.1
148
5.048

1
5.0

=
−+

−+
=

−+
−+

=′
γ

γη
s

s   
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The racking shear critical load is (see eq. (6.57)): 
 

MNGAF GAcr 7.3853.5306957.00455.1; =××=′=′ βη     
 
The critical load is (see eq. (6.48)): 
 

MN
FF

F
GAcrEAccr

cr 56.72
7.385

1
37.89

111 1
1

;; 2

=⎥⎦
⎤
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⎡ +=
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′
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′
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All critical loads in this example calculated by the stick-spring model are in bold type and can be 
found in tables 6.2-6.11.     
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6.3.3 Results 
The figures and tables below present the results of the critical loads obtained from the stick-spring 
model and the numerical analysis. Table 6.2 shows the accurracy of the global bending critical loads  

2;EAccr
P  and  and table 6.3 of the racking shear critical loads  and  and table 6.4 of 

the critical loads  and . Table 6.5 shows the accuraccy of the global bending critical load 
 ,  table 6.6 of the racking shear critical load 

2;EAccr
F GAcrP ; GAcrF ;

crP crF

2;EAccr
F ′ GAF GAcr βη′=′ ; , table 6.7 of the critical load crF ′ . 

Table 6.8 and 6.9 show the accurracy of the critical loads  and  by varying the cross-sectional 
area of the columns  and table 6.10 and 6.11 show the accurracy of the critical loads  and by 
varying the cross-sectional area of the diagonals . The errors for practical tall building structures 
are given in red.  

crP crF

cA crP crF

dA

 
Table 6.2. Critical loads for braced frames with non-continous columns, global bending deformation only. 

Vertical top load P  with 

2

22

; 4
2

l
EAcP

EAccr

π
=  

(see eq. (6.9)) 

UDL ( )5.0=γF  with  

2

2

;

837.7
2

l
EAcF

EAccr
=  

(see eq. (6.20)) 
Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 67.24 67.93 -1.0 213.6 216.1 -1.2 
16 16.81 16.84 -0.2 53.39 53.54 -0.3 
24 7.47 7.48 -0.1 23.73 23.76 -0.1 
32 4.20 4.20 -0.1 13.35 13.36 -0.1 
40 2.69 2.69 0.0 8.54 8.55 0.0 

 
Table 6.3. Critical loads for braced frames with non-continous columns, racking shear deformation only.  

Vertical top load P  with 
  GAP GAcr =;

(see eq. (6.10)) 

UDL ( )5.0=γF  with 

GAF GAcr η=;  
(see eq. (6.21)) 

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 530.3 530.3 0.0 565.7 565.7 0.0 
16 530.3 530.3 0.0 547.4 547.4 0.0 
24 530.3 530.3 0.0 541.6 541.6 0.0 
32 530.2 530.2 0.0 538.7 538.8 0.0 
40 530.2 530.2 0.0 537.0 537.0 0.0 

 
Table 6.4. Critical loads for braced frames with non-continous columns, all deformations together. 

Vertical top load P   UDL ( )5.0=γF  

Critical loads [MN]  crP
(see eq. (6.6)) 

Critical loads [MN] crF
(see eq. (6.17)) 

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 59.67 60.06 -0.6 155.0 179.7 -14 
16 16.29 16.32 -0.2 48.65 51.04 -4.7 
24 7.37 7.37 -0.1 22.73 23.26 -2.2 
32 4.17 4.17 -0.1 13.03 13.20 -1.3 
40 2.68 2.68 -0.0 8.41 8.48 -0.8 
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Table 6.5. Critical loads for braced frames with non-continous columns, FP + , global bending def. only. 

Load combination FP +  with 2

2

;

837.7
2

l
EAcF

EAccr

α
=′   

(see eq. (6.49)) 
Critical loads crF ′ [MN] 

1=γ  4=γ  16=γ  64=γ  

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 178.2 181.5 -1.8 89.37 91.38 -2.2 29.85 30.30 -1.5 8.15 8.15 -1.0 
16 48.57 48.92 -0.7 31.50 32.01 -1.6 13.10 13.26 -1.2 3.92 3.92 -0.6 
24 22.26 22.35 -0.4 16.22 16.43 -1.3 7.78 7.88 -1.3 2.52 2.52 -0.6 
32 12.72 12.76 -0.3 9.91 10.02 -1.1 5.26 5.33 -1.4 1.83 1.83 -0.7 
40 8.22 8.24 -0.3 6.69 6.76 -1.1 3.83 3.88 -1.4 1.41 1.41 -0.8 

 
Table 6.6. Critical loads for braced frames with non-continous columns, FP + , racking shear def. only. 

Load combination FP +  with GAF GAcr βη′=′ ;   
(see eq. (6.57)) 

Critical loads crF ′ [MN]  

1=γ  4=γ  16=γ  64=γ  

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 530.3 530.3 0.0 385.7 385.7 0.0 184.5 184.5 0.0 59.76 59.76 0.0 
16 530.3 530.3 0.0 446.6 446.6 0.0 273.7 273.7 0.0 107.4 107.4 0.0 
24 530.3 530.3 0.0 471.4 471.4 0.0 326.3 326.4 0.0 146.3 146.3 0.0 
32 530.3 530.3 0.0 484.8 484.9 0.0 361.0 361.1 0.0 178.6 178.6 0.0 
40 530.3 530.3 0.0 493.3 493.3 0.0 385.6 385.7 0.0 205.9 206.0 0.0 

 
Table 6.7. Critical loads for braced frames with non-continous columns, FP + , all deformations together. 

Load combination FP +    
(see eq. (6.48)) 

Critical loads crF ′ [MN] 

1=γ  4=γ  16=γ  64=γ  

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 133.4 153.6 -13 72.56 79.97 -9.3 25.70 26.80 -4.1 7.17 7.29 -1.7 
16 44.49 46.76 -4.8 29.43 30.83 -4.6 12.50 12.83 -2.6 3.79 3.82 -1.0 
24 21.36 21.90 -2.5 15.68 16.15 -2.9 7.60 7.76 -2.2 2.48 2.50 -0.9 
32 12.42 12.61 -1.5 9.71 9.92 -2.1 5.18 5.29 -2.0 1.81 1.83 -0.9 
40 8.09 8.17 -1.0 6.60 6.71 -1.7 3.79 3.86 -1.8 1.40 1.42 -1.0 

 
Table 6.8. Varying cross-sectional area of the columns 

 
for loadcase cA P , all deformations together. 

Characteristics Vertical top load P   
(see eq. (6.6)) 
Error ∆  [%] Columns 

cA  [m2] 2EAc  MN] 
s=8 s=16 s=24 s=32 s=40 

Bar (d=10) 7.854e-5 70.686 -1.5 -0.4 -0.3 -0.2 -0.2 
HE 100A 2.124e-3 1911.6 -0.9 -0.3 -0.1 -0.1 -0.1 
HE 400A 1.59e-2 13310 -0.7 -0.2 -0.1 0.0 0.0 
HE 800A 2.858e-2 25722 -0.6 -0.2 -0.1 -0.1 0.0 

HE 1000M 4.442e-2 39978 -0.6 -0.2 -0.1 0.0 0.0 
HD 400x1086 1.815e-3 124740 -0.4 -0.1 -0.1 0.0 0.0 
Fictive profile 0.25 225000 -0.3 -0.1 -0.1 0.0 0.0 
Fictive profile 1 900000 -0.1 -0.1 -0.1 0.0 0.0 
Fictive profile 10 9000000 0.0 0.0 0.0 0.0 0.0 
Fictive profile 10000 900000000 0.0 0.0 0.0 0.0 0.0 
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Table 6.9. Varying cross-sectional area of the columns 
 
for loadcase cA F , all deformations together. 

Characteristics UDL F  
 (see eq. (6.17)) 
Error ∆  [%] Columns 

cA  [m2] 2EAc  [MN] 
s=8 s=16 s=24 s=32 s=40 

Bar (d=10) 7.854e-5 70.686 -2.9 -0.8 -0.4 -0.2 0.0 
HE 100A 2.124e-3 1911.6 -3.5 -1.0 -0.4 -0.2 -0.2 
HE 400A 1.59e-2 13310 -13 -4.3 -2.1 -1.2 -0.8 
HE 800A 2.858e-2 25722 -18 -7.1 -3.5 -2.1 -1.4 

HE 1000M 4.442e-2 39978 -22 -10 -5.2 -3.1 -2.1 
HD 400x1086 1.815e-3 124740 -23 -21 -13 -8.4 -5.8 
Fictive profile 0.25 225000 -15 -26 -19 -13 -9.5 
Fictive profile 1 900000 -4.3 -15 -27 -26 -23 
Fictive profile 10 9000000 -0.5 -1.8 -3.8 -6.6 -9.9 
Fictive profile 10000 900000000 0.0 0.0 0.0 0.0 0.0 

 
Table 6.10. Varying cross-sectional area of the diagonals 

 
 for loadcase dA P , all deformations together. 

Charecteristics P   Vertical top load 
(see eq. (6.6)) 
Error ∆  [%] Diagonals GA  [MN] dA [m2] 

s=8 s=16 s=24 s=32 s=40 
Bar (d=10) 7.854e-5 11.11 -0.1 -0.1 -0.1 0.0 0.0 

RHS 40x40x3 4.343e-4 61.42 -0.4 -0.2 -0.1 0.0 0.0 
RHS 80x80x6.3 1.815e-3 256.68 -0.6 -0.2 -0.1 0.0 0.0 
RHS 160x160x8 4.795e-3 678.12 -0.7 -0.2 -0.1 -0.1 0.0 

RHS 250x250x12.5 1.171e-2 1656.04 -0.7 -0.2 -0.1 0.0 0.0 
RHS 400x400x16 2.43e-1 3436.54 -0.8 -0.2 -0.1 -0.1 0.0 

Fictive profile 10000 9000000000 -1.0 -0.2 -0.1 -0.1 -0.1 
 
Table 6.11. Varying cross-sectional area of the diagonals 

  
for loadcase dA F , all deformations together. 

FCharecteristics  UDL
 (see eq. (6.17)) 
Error ∆  [%] Diagonals GA  [MN] dA [m2] 

s=8 s=16 s=24 s=32 s=40 
Bar (d=10) 7.854e-5 11.11 -5.2 -18 -28 -25 -21 

RHS 40x40x3 4.343e-4 61.42 -22 -22 -14 -9.0 -6.2 
RHS 80x80x6.3 1.815e-3 256.68 -21 -8.6 -4.3 -2.6 -1.7 
RHS 160x160x8 4.795e-3 678.12 -12 -3.8 -1.8 -1.0 -0.7 

RHS 250x250x12.5 1.171e-2 1656.04 -6.1 -1.5 -0.8 -0.5 -0.3 
RHS 400x400x16 2.43e-1 3436.54 -3.6 -1.0 -0.5 -0.3 -0.2 

Fictive profile 10000 9000000000 -1.2 -0.3 -0.1 -0.1 -0.1 
 
 
Observations 

• The buckling behavior of a braced frame with non-continous columns can be divided 
into global bending and racking shear.  

 
• The dominant buckling shape for highrise braced frames is global bending. 

 
• The critical load of a braced frame subjected loadcase P  is lower then of a braced 

subjected to loadcase F , because the point of impact of the resulting vertical load is higher.  
The critical load depends on the point of impact of the resulting vertical load. 

 
• The racking shear buckling shape of a braced for loadcase P  has not a definite buckling 

shape, which means the racking shear buckling shape can assume any form.  
Therefore different racking shear buckling shapes have one eigenvalue and one critical load.  
If a braced frame has eight storeys, eight different racking shear buckling shapes have one 
eigenvalue and one critical load.  
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• The racking shear buckling shapes of a braced for loadcases F  and FP +  have a 
definite buckling shape, which means the racking shear buckling shape can assume only 
one form. Therefore the racking shear buckling shape has one eigenvalue and one critical 
load. 

 

• The global bending critical loads 2

22

; 4
2

l
EAcP

EAccr

π
= , 2

2

;

837.7
2

l
EAcF

EAccr
=  and 

2

2

;

837.7
2

l
EAcF

EAccr

α
=′ are conservative, because all errors are negative  

(see table 6.2 and 6.5).  
 

• The racking shear critical loads are GAP GAcr =; , GAF GAcr η=;  and GAF GAcr βη′=′ ; , 
because the errors are zero (see table 6.3 and 6.6). This is because the racking shear buckling 
shape of a shear cantilever is identical to the racking shear buckling shape of a braced frame.  

 

• The critical loads 
1

22

2 14
−
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+=

GAEAc
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2 1
837.7
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GAEAc
lFcr η

and 

1

2

2 1
837.7

−

⎥
⎦

⎤
⎢
⎣

⎡
′

+=′
GAEAc

lFcr βηα
are conservative, because the errors are negative  

(see table 6.2-6.11). This is because the global bending buckling shape is not identical to the 
racking shear buckling shape.  
 

• The maximum errors for the theoretical tall building structures are (see table 6.2-6.11). 
The highest conservative error for loadcase P  is:    -1.5 %.   
The highest conservative error for loadcase F  is:    -28 %. 
The highest conservative error for loadcase FP +  is:    -13 %. 

 
• The maximum errors for the practical tall building structures are  

(see table 6.2-6.11 in red). 
The highest conservative error for loadcase P  is:    -0.2 %.   
The highest conservative error for loadcase F  is:    -10 %. 
The highest conservative error for loadcase FP +  is:    -4.8 %. 

 
• All suggested formula give good results for the preliminary design of practical highrise 

braced frames with non-continous columns within a maximum error of 10%. 
 
• All observations are only valid for X-braced frames of eight till forty stories  

pin-connected to the base with non-continous columns.  
 
• All observations are only valid for the investigated cases in this parameterstudy.    
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6.4 Braced frames with continous columns  
A braced frame with continous columns is a structure consisting of columns, beams and diagonals, 
which are pin-connected to each other (see fig. 6.21). The columns of the frame are continous and  
pin-connected to the base. 
     

    
    
    
    
    

    

          
    bA       
         
   h  
      

cc IA ,  dA     
     l
 
 
 
 

 
      a     

     d        
 

 
Figure 6.21 Braced frame with  continous columns pin-connected to base. 

 
The buckling behaviour of a braced frame with continous columns pin-connected to the base can be 
divided into 2 modes of deformation: 

• Overall bending deformation ( )0EI : single curvature bending in the continous columns and 
axial deformation in the columns (see fig. 6.22a).  

• Racking shear deformation ( )GA : axial strains in the diagonals (see fig. 6.22b). 
 

    

 

     
       
 

cA          dA     
        
    
                
 
  
    

∞=dA   ∞== cc IA  
   ( )cc IAfEI ,0 =  

 

( )db AAfGA ,=     
 

( )a     ( )b      
Fig 6.22 Modes of behavior of a braced frame with continious columns. 
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Assumptions: 

• The beams and diagonals are hinged connected to continous columns. 
• The braced frame is pin-connected to the base. 
• The columns are continous up the height and therefore the individual bending stiffness is not 

zero . 0≠EI
• The braced frame has two lateral stiffness parameters ( )cc IAfEI ,0 =  and ( )db AAfGA ,= . 
• There is no connection between the diagonals. 
  

6.4.1 Vertical top loads  
A stick-spring model is introduced here to obtain an approximate solution for the overall critical load 
of a one-bay braced frame with continous columns (see fig. 6.23a). The braced frame is subjected to 
vertical top loads and can be transformed into a shear-flexure cantilever with overall bending stiffness 

( )cc IAfEI ,0 =  and racking shear stiffness ( )db AAfGA ,=  (see fig. 6.23b).  
This shear-flexure cantilever can be transformed into a stick-spring model (see fig. 6.23c).  
In this model a shear-flexure cantilever is replaced by a horizontal translation spring , k
which takes the overall bending stiffness  and the racking shear stiffness GA  of the shear-flexure 
cantilever into account. Therefore spring stiffness  is a function of the overall bending stiffness  
and of the racking shear stiffness  of the shear-flexure cantilever 

0EI
k 0EI

GA ( )GAEI ,0 .  fk =
 

 
 
         
        
         
                           
                        

            
          
 
 
 
        
 
       

                 
y      y             y  
                  
      P     P   
 bA        Q  

       
         

 dA                     ( )GAEIfk ,0=  
cc IA ,                                   l  

      
( )cc IAfEI ,0 =    ∞=0EI  

     ( )db AAfGA ,=   ∞=GA   
   
                             

      ( )a ( )b       ( )c
Figure 6.23 Transformation braced frame (continous) into stick-spring model (vertical top loads). 
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0EIy       GAy 0y  
       

 Q    Q            Q  

         k  
  

cc IA ,          dA  

 
∞== GAAd   ∞=== 0EIIA cc   

( )a     ( )b    ( )c  
Figure 6.24 Deformations braced frame (continous) caused by horizontal load  . Q

 
The first-order deformation at the top of the braced frame is (see fig. 6.24a/b): 
 

GA
Ql

EI
Qlyyy GAEI +=+=

0

3

0 30
         (6.65) 

 
The overall bending stiffness can be obtained from [5]: 
 

EIEAcEI += 2
0            (6.66) 

 
After substituting eq. (6.66) into eq. (6.65) the first-order deformation can be rearranged into: 
 

GA
Ql

EAcEI
Qly +
+

= 2

3

0 33
         (6.67) 

 
The first-order deformation at the top of the stick-spring model is (see fig. 6.24c): 
 

k
Qy =0             (6.68) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : k
 

GA
l

EAcEI
l

k
+

+
= 2

3

33
1          (6.69) 

 
It has been shown that the critical load of the stick-spring model is (see eq. (4.3)): 
 

klPcr =            (6.70) 
 
After substituting eq. (6.69) into eq. (6.70) the critical load of the stick-spring model is: 
 

GAEAcEI
l

klPcr

1
33

11
2

2

+
+

==          (6.71) 
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In general, the critical load of eq. (6.71) can be written as:  
 

GAcrEAccrEIcrcr PPPP ;;;

111
2

+
+

=          (6.72) 

 
Where the critical loads obtained from the stick-spring model are for: 

• Individual bending [1, 2] 
 

2;
3
l
EIP EIcr =           (6.73) 

 
• Global bending [1, 2]:  

 

2

2

;

3
2

l
EAcP

EAccr
=          (6.74)

  
• Racking shear [5]: 

 
GAP GAcr =;           (6.75) 

 
But the actual critical loads are for: 

• Individual bending [4]: 
 

2

2

; 4l
EIP EIcr

π
=           (6.76) 

 
• Global bending [4]: 

 

2

22

; 4
2

l
EAcP

EAccr

π
=          (6.77) 

 
• Racking shear [5]: 

 
GAP GAcr =;           (6.78) 

 
The racking shear critical load of the stick-spring model (see eq. (6.75)) is equal to the actual racking 
shear critical load of a braced frame (see eq. (6.78)), because the racking shear deflection shape of a 
braced frame (see fig. 6.25a) is identical to the racking shear buckling shape of a braced frame  
(see fig. 6.25b). The racking shear buckling shape of a braced has a definite buckling shape,  
which means the racking shear buckling shape can assume only one form.  
Therefore the racking shear buckling shape has one eigenvalue and one critical load. 
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( )a    ( )b      

Figure 6.25 Racking shear shapes braced frame (continous) caused by top loads. 
 
If the actual values for individual bending (see eq. (6.76)), global bending (see eq. (6.77)) and racking 
shear (see eq. (6.78)) are substituted into eq. (6.72) the critical load of a braced frame is: 
 

GAEAcEI
l

Pcr

141
222

2

+
+

=
ππ

         (6.79) 

 
Eq. (6.71) gives in most cases an overestimated critical load, because the individual bending critical 
load (see eq. (6.73)) and the global bending critical load (see eq. (6.74)) are overestimated by 21.6% in 
the stick-spring model. If the actual values for individual bending (see eq. (6.76)), global bending  
(see eq. (6.77)) and racking shear (see eq. (6.78)) are substituted into eq. (6.72) the critical load is now 
conservative (see eq. (6.79)), because the overall bending buckling shape (see fig. 6.26a) is not 
identical to the racking shear buckling shape (see fig. 6.26b).  
 

              

     
( )a    ( )b   

Figure 6.26 Buckling shapes for loadcase P . 
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6.4.2 Uniformly distributed vertical loads 
In fig. 6.27a a braced frame with continous columns is subjected to vertical point loads  accept for 
the point loads at the roof and at the bottom of the frame which are   

vF

vF5.0 .
In a similar way a stick-spring model can be used here to obtain an approximate solution for the 
overall critical load of a braced frame. First a braced frame subjected to vertical point loads is 
transformed into a shear-flexure cantilever subjected to a vertical UDL  (see fig. 6.27b),  f
which then can be transformed into a stick-spring model (see fig. 6.27c).  
 

 
 
         
        
         
                           
                        

            
          
 
 
 
        
 
       

                
 y            y         y  
 

vF5.0            
  bA     vF5.0  

vF       dA      
  cc IA ,    vF        

vF                     ( )GAEIfk ,0=  
     vF   f             w         f            l  

vF  vF    ( )cc IAfEI ,0 =    ∞=0EI  
     ( )db AAfGA ,=    ∞=GA   

vF5.0          vF5.0  
                              
  

      ( )a ( )b       ( )c
Figure 6.27 Transformation braced frame (continous) into stick-spring model (vertical UDL). 

 

           

    

 
0EIy      GAy 0y  

        
   
 
          k  
 
w    w      w    
 
    

 
 
 

∞== GAAd   ∞=== 0EIIA cc   
( )a     ( )b      ( )c
Figure 6.28 Deformations X-braced frame (continous) caused by horizontal UDL . w

 
The first-order deformation at the top of a braced frame is (see fig. 6.28a/b): 
 

GA
wl

EI
wlyyy GAEI 28

2

0

4

0 0
+=+=          (6.80) 
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The overall bending stiffness is [5]: 
 

EIEAcEI += 2
0            (6.81) 

 
After substituting eq. (6.81) into eq. (6.80) the first-order deformation can be rearranged into: 
 

GA
Ql

EAcEI
Qly

288 2

3

0 +
+

=          (6.82) 

 
The first-order deformation at the top of the stick-spring model is (see fig. 6.28c): 
 

k
wly
20 =             (6.83) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : k
 

GA
l

EAcEI
l

k
+

+
= 2

3

44
1          (6.84) 

 
It has been shown that the critical load of the stick-spring model is (see eq. (4.12)): 
 

klFcr 2=            (6.85) 
 
After substituting eq. (6.84) into eq. (6.85) the critical load of the stick-spring model is: 
 

GAEAcEI
l

klFcr 2
1

882
11

2

2

+
+

==         (6.86) 

 
In general, the critical load of eq. (6.86) can be written as:  
 

GAcrEAccrEIcrcr FFFF ;;;

111
2

+
+

=          (6.87) 

 
Where the critical loads obtained from the stick-spring model are for: 

• Individual bending [1, 2] 
 

2;
8
l
EIF EIcr =           (6.88) 

 
• Global bending [1, 2]:  

 

2

2

;

8
2

l
EAcF

EAccr
=          (6.89)

  
• Racking shear: 

 
GAF GAcr 2; =           (6.90)
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But the actual critical loads are for: 

• Individual bending [5]: 
 

2;
837.7
l

EIF EIcr =          (6.91) 

 
• Global bending [5]: 

 

2

2

;

837.7
2

l
EAcF

EAccr
=          (6.92) 

 
• Racking shear: 

 
GAF GAcr 2; =           (6.93) 

 
The racking shear critical load of the stick-spring model (see eq. (6.90)) is equal to the actual racking 
shear critical load of a braced frame (see eq. (6.93)), because the racking shear deflection shape of a 
braced frame (see fig. 6.29a) is identical to the racking shear buckling shape of a braced frame  
(see fig. 6.29b). The racking shear buckling shape of a braced has a definite buckling shape,  
which means the racking shear buckling shape can assume only one form. Therefore the racking shear 
buckling shape has one eigenvalue and one critical load. 
 

             

     
( )a     ( )b      

Figure 6.29 Racking shear shapes braced frame (continous) caused by UDL. 
 
If the actual values for individual bending (see eq. (6.91)), global bending (see eq. (6.92)) and racking 
shear (see eq. (6.93)) are substituted into eq. (6.87) the critical load of a braced frame is: 
 

GAEAcEI
l

Fcr 2
1

837.7837.7
1

2

2

+
+

=         (6.94) 

 
Eq. (6.86) gives in most cases an overestimated critical load, because the individual bending critical 
load (see eq. (6.88)) and the global bending critical load (see eq. (6.89)) are overestimated by 2.1% in 
the stick-spring model. If the actual values for individual bending (see eq. (6.91)), global bending  
(see eq. (6.92)) and racking shear (see eq. (6.93)) are substituted into eq. (6.87) the critical load is now 
conservative (see eq. (6.94)), because the overall bending buckling shape (see fig. 6.30a) is not 
identical to the racking shear buckling shape (see fig. 6.30b).  

 70



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

              

     
( )a     ( )b   
Figure 6.30 Buckling shapes for loadcase . F
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6.4.3 Load combinations 
In fig. 6.31a a braced frame with continous columns is subjected to vertical point loads  accept for 
the point load at the roof, which is  and the load at the bottom, which is   

vF

dF vF5.0 .
In a similar way a stick-spring model can be used here to obtain an approximate solution for the 
overall critical load of a braced frame. First a braced frame subjected to vertical point loads is 
transformed into a shear-flexure cantilever subjected to a vertical top load P  and a UDL   f
(see fig. 6.31b), which then can be transformed into a stick-spring model (see fig. 6.31c).  
 

 
 
         
        
         
                           
                        

            
          
 
 
 
        
 
       

                
 y            y         y  
 

dF        P       P   
 bA         dF             Q  

vF        dA      
cc IA ,    vF        

vF                     ( )GAEIfk ,0=  
    vF   f             w       f            l  

vF  vF    ( )cc IAfEI ,0 =    ∞=0EI  
     ( )db AAfGA ,=    ∞=GA   

vF5.0          vF5.0  
                              
  

      ( )a ( )b       ( )c
Figure 6.31 Transformation braced frame (continous) into stick-spring model (load combination). 
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Figure 6.32 Deformations X-braced frame (continous) caused by load combination. 
 
The first-order deformation at the top of the braced frame is (see fig. 6.32a/b): 
 

GA
wl

GA
Ql

EI
wl

EI
Qlyyy GAEI 283

2

0

4

0

3

0 0
+++=+=        (6.95) 
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The overall bending stiffness is [5]: 
 

EIEAcEI += 2
0           (6.96) 

 
By substituting eq. (4.9), eq. (4.25) and eq. (6.96) into eq. (6.95) the first-order deformation at the top 
of he braced frame can be rearranged into: 
 

GA
Wl

sGA
Wl

EAcEI
Wl

sEAcEI
Wly

2
5.0

88
5.0

33 2

3

2

3

0 +⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

γγ    (6.97) 

 
It has been shown that the first-order deformation at the top of the stick-spring model is  
(see eq. (4.30) and fig. 6.32c): 
 

k
Wy
ω20 =            (6.98) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : k
 

GA
l

sGA
l

EAcEI
l

sEAcEI
l

k 2
5.0

88
5.0

332
1

2

3

2

3

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

γγ
ω

   (6.99) 

 
It has been shown that the critical load of the stick-spring model is (see eq. (4.28)): 
 

klFcr ω2=′           (6.100) 
 
After substituting eq. (6.99) into eq. (6.100) the critical load of the stick-spring model is: 
 

GAsGAEAcEI
l

sEAcEI
l

klFcr 2
15.01

88
5.0

332
11

2

2

2

2

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
==

′
γγ

ω
  (6.101) 

 
In general, the critical load in eq. (6.101) can be written as:  
 

GAcrGAcrEAccrEIcrEAccrEIcrcr FsPFFsPPF ;;;;;;

15.0115.011
22

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

′
γγ   (6.102) 

 
Where the critical loads obtained from the stick-spring model are for: 

• Individual bending for loadcase P [1, 2] 
 

2;
3
l
EIP EIcr =          (6.103) 

 
• Individual bending for loadcase P  [1, 2] 
 

2;
3
l
EIP EIcr =          (6.104) 

 
• Global bending for loadcase F  [1, 2]:  

 

2

2

;

8
2

l
EAcF

EAccr
=         (6.105) 
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• Global bending for loadcase P  [1, 2]: 
 

2

2

;

8
2

l
EAcF

EAccr
=         (6.106) 

 
• Racking shear for loadcase P  [5]:  

 
GAP GAcr =;          (6.107) 

 
• Racking shear for loadcase F : 

 
GAF GAcr 2; =          (6.108) 

 
But the actual critical loads are for: 

• Individual bending for loadcase P  [4]: 
 

2

2

; 4l
EIP EIcr

π
=          (6.109) 

 
• Individual bending critical load for loadcase F  [5]: 

 

2;
837.7
l

EIF EIcr =         (6.110) 

 
• The actual global bending critical load for loadcase P  [4]: 

 

2

22

; 4
2

l
EAcP

EAccr

π
=         (6.111) 

 
• The actual global bending critical load for loadcase F  [5]: 

 

2

2

;

837.7
2

l
EAcF

EAccr
=         (6.112) 

 
• Racking shear for loadcase P  [5]:  

 
GAP GAcr =;          (6.113) 

 
• Racking shear for loadcase F : 

 
GAF GAcr 2; =          (6.114) 

 
Eq. (6.101) gives an overestimated critical load, because the individual bending critical loads  
(see eq. (6.103) and eq. (6.104)) and the global bending critical loads (see eq. (6.105) and eq. (6.106)) 
are overestimated in the stick-spring-model. If the actual values for individual bending (see eq. (6.109)  
and eq. (6.110)), global bending (see eq. (6.111) and eq. (6.112)) and racking shear (see eq. (6.113) 
and eq. (6.114)) are substituted into eq. (6.102) the critical load can be rearranged into: 
 

GAsGAEAcEI
l

sEAcEI
l

Fcr 2
15.01

837.7837.7
5.041

2

2

222

2

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

+⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

′
γγ

ππ
 (6.115) 
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The ratio for the individual bending critical loads is:  
 

176.34837.7
2

2

2
;

; ==
EI
l

l
EI

P
F

EIcr

EIcr

π
       (6.116) 

 
The ratio for the global bending critical loads is:  
 

176.34837.7
22

2

2

2

;

;

2

2
==

EAc
l

l
EAc

P

F

EAccr

EAccr

π
      (6.117) 

 
The ratio for the racking shear critical loads is:  
 

GA
GA

P
F

GAcr

GAcr 2

;

; =           (6.118) 

 
By substituting eq. (6.116), eq. (6.117) and eq. (6.118) into eq. (6.115) the critical load is: 
 

GAcrEAccrGAcrEAccrcr FFsFsFF ;;;;

1115.02115.0176.311
22 βα

γγ
′

+=⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

+⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

=
′

 (6.119) 

 
In general, the critical load of eq. (6.119) can be written as:  
 

GAcrEAccrEIcrcr FFFF ;;;

111
2 ′

+
′+′

=
′

        (6.120) 

 
Where the actual critical loads are for: 

• Individual bending [17]: 
 

2;;
837.7

l
EIFF EIcrEIcr

αα ==′        (6.121) 

 
• Global bending [17]: 

 

2

2

;;

837.7
22

l
EAcFF

EAccrEAccr

αα ==′       (6.122) 

 
, where α  is a reduction factor for the bending critical load, which takes the influence of the 
vertical top load P  into account is:   
 

( )5.0176.3 −+
=

γ
α

s
s         (6.123) 

 
• Racking shear:  

 
GAF GAcr β ′=′ 2;          (6.124) 
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, where β ′  is a reduction factor for the racking shear critical load, which takes the influence of 
the vertical top load P  into account is:   

  

( ) 1212
1

15.02

1
−+

=
+−

=
+⎟

⎠
⎞

⎜
⎝
⎛ −

=′
γγγ

β
s

s

s
s

s

     (6.125) 

 
The racking shear critical load of eq. (6.124) is mathematically exact, because the racking shear 
buckling for loadcase P (see fig. 6.26b) is identical to the racking shear buckling shape for loadcase 
F (see fig. 6.30b). 
 
If the actual values for individual bending (see eq. (6.121)), global bending (see eq. (6.122)) and 
racking shear (see eq. (6.124)) are substituted into eq. (6.120) the critical load of a braced frame is: 
 

 
GAEAcEI

l
Fcr βαα ′

+
+

=
′ 2

1
837.7837.7

1
2

2

      (6.126) 

 
Formula (6.126) gives now a conservative critical load, because the overall bending buckling shape 
(see fig. 6.33a) is not identical to the racking shear buckling shape (see fig. 6.33b).  
 

              

     
( )a    ( )b   

Figure 6.33 Buckling shapes for loadcase FP + . 
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6.5 Lateral stiffnesses of braced frame with continous columns 
 

6.5.1 Individual bending stiffness 
The individual bending stiffness caused by individual single curvature bending of the individual 
columns is (see fig. 6.34): 
 

∑= ciEIEI           (6.127) 
 

     

    
    
    
    
    

    

 
 frameNA    

1NA     2NA   
 
 
 

1cI     2cI   
        
 
 
         
 
         
 
           
         1c       2c          

Figure 6.34 Individual bending stiffness braced frame with continous columns. 
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6.6 Accuracy 
To establish the accuracy of the stick-spring model, critical loads of a number of one-bay X-braced 
frames were estimated using the stick-spring model and a finite element analyses. Finite element 
program ANSYS was used to obtain the eigenvalues of the braced frames. The braced frames have  
continous columns and pinned supports and the height of the frames varied from eight to forty stories. 
The X-braced frames are subjected to three different loadcases (see fig. 1.5): 

• Vertical top loads (see fig. 1.5a). 
• Uniformly distributed vertical loads (see fig. 1.5b). 
• Load combinations (see fig. 1.5c). 

Three different cases will be investigated for one-bay X-braced frames: 
• Overall bending deformation only (see fig. 6.35a).  
• Racking shear deformation only (see fig. 6.35b). 
• All deformations together (see fig. 6.35a/b). 
 

    

 

     
        
 

cA          dA     
        
    
                
 
  
    

∞=dA   ∞== cc IA  
   

  

( )cc IAfEI ,0 =  ( )db AAfGA ,=      
 

( )a     ( )b      
Fig 6.35 Cases to investigate for braced frames with non-continous columns. 

 
The first two cases only represent theoretical cases, but the inclusion of them is very important to 
make a well-based judgement on the accuracy of the stick-spring model.  
The critical loads found with the finite element method are assumed to be exact.  

The errors are calculated as follows %100
)(

)( ×
−

=∆
ANSYScr

ANSYScrcr

P
PP

.  

If the error is negative the stick-spring model gives a conservative value for the critical load.  
 

6.6.1 Numerical model 
The numerical model is built up from LINK1 and BEAM3 elements (see fig. 6.36). LINK1 elements 
can only sustain normal forces and BEAM3 elements can sustain normal forces, bending moments and 
shear forces. The continous columns are BEAM3 elements with a cross-sectional area  and a 
second moment of area . The beams and diagonals are LINK1 elements with only a cross-sectional 
area  and . The connections between the BEAM3 and LINK1 elements are hinged.  

cA

cI

dA bA
The columns are pin-connected to the base. In this investigation it is assumed that the braced frame 
has an uniform cross-sectional area of the columns , of the diagonals  and of the beams  up 
the height and an uniform second moment of area of the columns up the height .  

cA dA bA

cI
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 9 bA  18    

    cc IA ,     dA   
 7   16  

BEAM3 5  14   LINK1

 3   12  

     
   1   10    

 
Figure 6.36 Numerical model for a braced frame with continous columns.  

6.6.2 Example 
An example is given for the three loadcases to demonstrate the simplicity and the accuracy of the 
stick-spring model. An eight storey high one bay X-braced frame with continous columns  
(see fig. 6.37) has an individual bending stiffness EI , a global bending stiffness ,  2EAc
a racking shear stiffness  and is subjected to three different loadcases.  GA
The characteristics of the braced frame can be found in table 6.1. 
 

 

 
     
           
     
     
     

    

               
          dA   

 
 

         cc IA ,    bA    
 

24=l  
  
 
 
 
 
 
 
 
   

         
    3=h  

   
  3=a  

 
Figure 6.37 Example of braced frame with continous columns. 
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6.6.2.1 Stiffness parameters 
The individual bending stiffness is (see eq. (6.127)): 
 

MNEIEIEI cici 2.13110281.310222 45 =××××==∑= −  
 
The global bending stiffness is (see eq. (6.60)): 
 

MNcEAcEAEAc icici 156965.110744.110222 225222 =×⋅×××==∑= −  
 
The ratio between the bending stiffnesses: 
 

120
1

2 ≈
EAc

EI  

  
The racking shear stiffness is (see eq. (6.61)): 
 

( )
MN

d
hEAa

GA d
X 3.530

23

1075.31023322
3

352

3

2

=
××××××

==
−

 

6.6.2.2 Vertical top load 
The individual bending critical load is (see eq. (6.76): 
 

MN
l
EIP EIcr 56.0

244
2.131

4 2

2

2

2

; =
×
×

==
ππ . 

 
The global bending critical load is (see eq. (6.77)): 
 

MN
l

EAcP
EAccr

24.67
244
15696

4 2

2

2

22

; 2 =
×
×

==
ππ  

 
The overall bending critical load is: 
 

( ) MN
l
EI

P EIcr 80.67
244

156962.131
4 2

2

2
0

2

; 0
=

×
+×

==
ππ

 

 
The racking shear critical load is (see eq. (6.78)): 
 

MNGAP GAcr 3.530; ==   
 
The critical load is (see eq. (6.72)): 
 

MN
PPP

P
GAcrEAccrEIcr

cr 11.60
3.530

1
24.6756.0

111 1
1

;;; 2

=⎥⎦
⎤

⎢⎣
⎡ +

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
=

−
−
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6.6.2.3 Vertical UDL 
The individual bending critical load is (see eq. (6.91)): 
 

MN
l

EIF EIcr 79.1
24

2.131837.7837.7
22; =

×
==  

 
The global bending critical load is (see eq. (6.92)): 
 

MN
l
EAcF

EAccr
6.213

24
15696837.7837.7
22

2

; 2 =
×

==   

 
The overall bending critical load is: 
 

( ) MN
l

EI
F EIcr 3.215

24
156962.131837.7837.7

22
0

; 0
=

+×
==  

 
The racking shear critical load is (see eq. (6.93)): 
 

MNGAF GAcr 6.10603.53022; =×==  
 
The critical load is (see eq. (6.87)): 
 

MN
FFF

F
GAcrEAccrEIcr

cr 0.179
7.565

1
6.21379.1

111 1
1

;;; 2

=⎥⎦
⎤

⎢⎣
⎡ +

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
=

−
−

  

  

6.6.2.4 Load combinations 
Assume the vertical top load is 4 times the floorloading.  
Factor γ  is (see eq. (4.18)): 
 

4==
v

d

F
F

γ           

 
Reduction factor α  is (see eq. (6.123)):  
 

( ) ( ) 4185.0
5.04176.38

8
5.0176.3

=
−+

=
−+

=
γ

α
s

s  

 
The individual bending critical load is (see eq. (6.121)): 
 

MNF
l

EIF EIcrEIcr 75.079.14185.0837.7
;2; =×===′ αα .  

 
The global bending critical load is (see eq. (6.122)): 
 

MNF
l

EAcF
EAccrEAccr

91.740.1794185.0837.7
22 ;2

2

;
=×===′ αα .  
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The overall bending critical load is: 
 

( ) MN
l

EI
F EIcr 12.90

24
156962.1314185.0837.7837.7

22
0

; 0
=

+××
==′

α
 (see table 16). 

 
Reduction factor β ′  is (see eq. (6.125)): 
 

5333.0
1428

8
12

=
−×+

=
−+

=′
γ

β
s

s    

 
The racking shear critical load is (see eq. (6.124)): 
 

MNGAF GAcr 7.5653.5305333.022; =××=′=′ β    
 
The critical load is (see eq. (6.120)): 
 

MN
FFF

F
GAcrEAccrEIcr

cr 74.77
7.565

1
37.8975.0

111 1
1

;;; 2

=⎥⎦
⎤

⎢⎣
⎡ +

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′
+

′+′
=′

−
−

  

 
All critical loads in this example calculated by the stick-spring model are in bold type and can be 
found in tables 6.12-6.17.     
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6.6.3 Results 
The figures and tables below present the results of the critical loads obtained from the stick-spring 
model and the numerical analysis. Table 6.12 shows the accurracy of the global bending critical loads  

0;EIcrP  and  and table 6.13 of the racking shear critical loads  and  and table 6.14 of 

the critical loads  and . Table 6.15 shows the accuraccy of the global bending critical load 
 ,  table 6.16 of the racking shear critical load 

0;EIcrF GAcrP ; GAcrF ;

crP crF

0;EIcrF ′ GAcrF ;′  and table 6.17 of the critical load crF ′ .  
 
Table 6.12. Critical loads for braced frames with continous columns, overall bending deformation only. 

Vertical top load P  with 

2
0

2

; 40 l
EI

P EIcr
π

=  

 

UDL ( )5.0=γF  

2
0

;
837.7

0 l
EI

F EIcr =  

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 67.80 68.14 -0.5 215.3 216.4 -0.5 
16 16.95 16.97 -0.1 53.84 53.87 -0.1 
24 7.53 7.54 0.0 23.93 23.93 0.0 
32 4.24 4.24 0.0 13.46 13.46 0.0 
40 2.71 2.71 0.0 8.61 8.61 0.0 

 
Table 6.13. Critical loads for braced frames with continous columns, racking shear deformation only.  

Vertical top load P  with 
GAP GAcr =;  

(see eq. (6.78)) 

UDL ( )5.0=γF with 
GAF GAcr 2; =  

(see eq. (6.93)) 

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 530.3 530.3 0.0 1060.7 1060.6 0.0 
16 530.3 530.2 0.0 1060.6 1060.5 0.0 
24 530.3 530.3 0.0 1060.6 1060.3 0.0 
32 530.2 530.2 0.0 1060.5 1060.0 0.0 
40 530.2 530.2 0.0 1060.4 1059.7 0.1 

 
Table 6.14. Critical loads for braced frames with continous columns, all deformations together. 

Vertical top load P   
(see eq. (6.72)) 

UDL ( )5.0=γF   
(see eq. (6.87)) 

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 60.11 60.41 -0.5 179.0 180.0 -0.6 
16 16.43 16.44 -0.1 51.24 51.37 -0.3 
24 7.43 7.43 0.0 23.40 23.43 -0.1 
32 4.20 4.20 0.0 13.29 13.30 -0.1 
40 2.70 2.70 0.0 8.54 8.55 0.0 
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Table 6.15. Critical loads for braced frames with continous columns, FP + , overall bending deformation only. 

Load combination FP +  with 2
0

;
837.7

0 l
EI

F EIcr
α

=′  

Critical loads crF ′ [MN] 

1=γ  4=γ  16=γ  64=γ  

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 179.7 181.9 -1.2 90.12 91.73 -1.8 30.10 30.44 -1.1 8.22 8.27 -0.7 
16 48.98 49.23 -0.5 31.77 32.22 -1.4 13.21 13.35 -1.1 3.96 3.98 -0.5 
24 22.44 22.52 -0.3 16.35 16.56 -1.2 7.84 7.94 -1.3 2.55 2.56 -0.5 
32 12.82 12.86 -0.3 9.99 10.10 -1.1 5.30 5.37 -1.4 1.84 1.86 -0.7 
40 8.29 8.30 -0.2 6.74 6.81 -0.9 3.86 3.92 -1.4 1.43 1.44 -0.8 

 
Table 6.16. Critical loads for braced frames with continous columns, FP + , racking shear deformation only. 

Load combination FP +  with GAF GAcr β ′=′ 2;  
(see eq. (6.124)) 

Critical loads crF ′ [MN] 

1=γ  4=γ  16=γ  64=γ  

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 942.8 942.8 0.0 565.7 565.7 0.0 217.6 217.6 0.0 62.85 62.85 0.0 
16 998.2 998.1 0.0 737.8 737.8 0.0 361.1 361.1 0.0 118.7 118.7 0.0 
24 1018.2 1017.9 0.0 821.1 821.0 0.0 462.8 462.8 0.0 168.6 168.6 0.0 
32 1028.4 1027.9 0.0 870.2 869.9 0.0 538.7 538.6 0.0 213.4 213.4 0.0 
40 1034.6 1033.9 0.1 902.5 902.0 0.1 597.4 597.3 0.0 254.0 254.0 0.0 

 
Table 6.17. Critical loads for braced frames with continous columns, all deformations together.  

Load combination FP +   
Critical loads crF ′ [MN] 

(see eq. (6.120)) 
1=γ  4=γ  16=γ  64=γ  

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 150.9 154.0 -2.0 77.74 80.31 -3.2 26.44 26.94 -1.9 26.44 26.94 -0.9 
16 46.69 47.06 -0.8 30.46 31.04 -1.9 12.74 12.93 -1.5 12.74 12.93 -0.6 
24 21.96 22.06 -0.5 16.03 16.27 -1.4 7.71 7.82 -1.5 7.71 7.82 -0.6 
32 12.67 12.71 -0.3 9.88 9.99 -1.0 5.25 5.33 -1.5 5.25 5.33 -0.7 
40 8.22 8.24 -0.3 6.69 6.76 -0.7 3.84 3.89 -1.5 3.84 3.89 -0.8 
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Observations 
• The buckling behavior of a braced frame with non-continous columns can be divided 

into individual bending, global bending and racking shear.  
 

• The dominant buckling shape for highrise braced frames is global bending. 
 

• The racking shear buckling shape of a braced with continous columns for loadcase P , 
F  and FP +  has a definite buckling shape, which means the racking shear buckling 
shape can assume only one form. Therefore the racking shear buckling shape has one 
eigenvalue and one critical load. 

 

• The overall bending critical loads 2
0

2

; 40 l
EI

P EIcr
π

= , 2
0

;
837.7

0 l
EI

F EIcr =  and 

2
0

;
837.7

0 l
EI

F EIcr
α

=′  are conservative, because all errors are negative  

(see table 6.12 and 6.15).  
 

• The racking shear critical loads are GAP GAcr =; ,  GAF GAcr 2; =  and GAF GAcr β ′=′ 2; , 
because the errors are zero (see table 6.13 and 6.16). This is because the racking shear 
deflection shape of the braced frame is identical to the racking shear buckling shape of the 
braced frame.  

 

• The critical loads 
1

222

2 14
−

⎥
⎦

⎤
⎢
⎣

⎡
+

+
=

GAEAcEI
lPcr ππ

, 
1

2

2

2
1

837.7837.7

−

⎥
⎦

⎤
⎢
⎣

⎡
+

+
=

GAEAcEI
lFcr  

and 
1

2

2

2
1

837.7837.7

−

⎥
⎦

⎤
⎢
⎣

⎡
′

+
+

=′
GAEAcEI

lFcr βαα
are conservative, because the errors are 

negative (see table 6.12-6.17). This because the overall bending buckling shape is not identical 
to the racking shear buckling shape.  
 

• The stick-spring model compares very well to the numerical results for the three 
loadcases (see table 6.12-6.17). 
The highest conservative error for loadcase P  is      -0.5 %.  
The highest conservative error for loadcase F  is     -0.6 %. 
The highest conservative error for loadcase FP +  is:      -3.2 %. 

 
• All suggested formula give good results for the preliminary design of highrise braced 

frames with continous columns within a maximum error of 3.2%. 
 
• All observations are only valid for X-braced frames of eight till forty stories  

pin-connected to the base with continous columns.  
 
• All observations are only valid for the investigated cases in this parameterstudy.    
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6.7 Comparison between the two investigated braced frames  
This section compares a braced frame with non-continous and continous columns (see table 6.18). 
 
Table 6.18. Comparison between braced frames with continous columns and non-continous columns. 

 Non-continous Continous 
Columns non-continous continous 

Lateral stiffnesses 2EAc ,  GA EI ,  and GA  2EAc
Individual bending critical load 

for loadcase P  
0; =EIcrP  

2

2

; 4l
EIP EIcr

π
=  

Global bending critical load for 
loadcase P  2

22

; 4
2

l
EAcP

EAccr

π
=  2

22

; 4
2

l
EAcP

EAccr

π
=  

Racking shear critical load for 
loadcase P  

GAP GAcr =;   GAP GAcr =;  

Racking shear buckling shape 
for loadcase P  

can assume any form assumes one form 

Critical load 
for loadcase P  

GAcrEAccrcr PPP ;;

111
2

+=  
GAcrEAccrEIcrcr PPPP ;;;

111
2

+
+

=  

Individual bending critical load 
for loadcase F  

0; =EIcrF  
2;

837.7
l

EIF EIcr =  

Global bending critical load for 
loadcase F  2

2

;

837.7
2

l
EAcF

EAccr
=  2

2

;

837.7
2

l
EAcF

EAccr
=  

Racking shear critical load for 
loadcase F  

GAF GAcr η=;   GAF GAcr 2; =  

Racking shear buckling shape 
for loadcase F  

assumes one form assumes one form 

Critical load 
for loadcase F  

GAcrEAccrcr FFF ;;

111
2

+=  
GAcrEAccrEIcrcr FFFF ;;;

111
2

+
+

=  

Individual bending critical load 
for loadcase FP +  

0; =′ EIcrF  
2;

837.7
l

EIF EIcr
α

=′  

Global bending critical load for 
loadcase FP +  2

2

;

837.7
2

l
EAcF

EAccr

α
=′  2

2

;

837.7
2

l
EAcF

EAccr

α
=′  

Racking shear critical load for 
loadcase FP +  

GAF GAcr βη′=′ ;   GAF GAcr β ′= 2;  

Reduction factor for racking 
shear critical load 5.0−+

=
γ

β
s

s  
12 −+

=′
γ

β
s

s  

Racking shear buckling shape 
for loadcase FP +  

assumes one form assumes one form 

Critical load 
for loadcase FP +  

GAcrEAccrcr FFF ;;

111
2 ′

+
′

=
′

 
GAcrEAccrEIcrcr FFFF ;;;

111
2 ′

+
′+′

=
′
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Conclusions: 

• The errors of a braced frames with continous columns are lower then of braced frames 
with non-continous columns for loadcase F  and FP +  , because the global bending and 
racking shear buckling shapes of a braced frame with continous columns (see fig. 6.38a/b)  
are more identical to each other then the global bending and racking shear buckling shapes of 
a braced frame with non-continous columns (see fig. 6.38c/d). 

               
 
 
 
 
 
 
 
 
 

    
     ( )a ( )b    ( )c      ( )d

Figure 6.38 Buckling shapes of braced frames for loadcase F  and  FP + . 
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7 One bay rigid frames  
 

7.1 Fixed rigid frames 
A rigid frame is a structure which consists of columns and beams (see fig. 7.1). The joints of a rigid 
frame are moment resistant. The boundary conditions at the base of a rigid frame can be pinned, fixed 
or flexible. In this investigation the boundary conditions are fixed (see fig. 7.1). This fixed connection 
at the base introduces a new mode of deformation to the buckling behavior, which is individual 
bending.    
 
 

    
    
    
    
    

    

     
      bI5.0    
         
       bI    h  
      

cc IA ,        bI     
     l
       bI  
 

       
 

 
        a  
      

Figure 7.1 Fixed rigid frame. 
 
The buckling behaviour of a fixed rigid frame can be divided into 4 modes of deformation: 

• Individual bending of the columns ( )EI : single curvature bending of the vertical members 
(see fig. 7.2a).  

• Global bending ( )2EAc : axial deformation in the columns (shortening of the columns at one 
side of the rigid frame and lengthening at the other side) (see fig. 7.2b).  

• Racking shear of the columns ( )cGA : double curvature bending in the columns (see fig. 7.2c). 
• Racking shear of the beams ( )bGA : double curvature bending in the beams (see fig. 7.2d).  
 
               
 
 
 
 
 
 
 
 
 

    
 
  
 

            
     
     
           
 

cI    cA         cI      bI    
        
    
                
 
  

0=bI    ∞=bI   ∞== bc IA   ∞== cc IA   
( )cIfEI =   ( )cAfEAc =2   ( )cc IfGA =   ( )bb IfGA =  

     ( )a ( )b    ( )c      ( )d
Fig 7.2 Modes of behavior of a fixed rigid frame. 
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Assumptions: 

• The column-beam connections are fully moment resistant. 
• The rigid frame is fixed to the base. 
• The columns are continuous up the total height of the structure.   
• The fixed rigid frame has four lateral stiffness parameters ( )cIfEI = ,  , ( )cAfEAc =2

( )bb IfGA =  and ( )cc IfGA = .  
• For the racking shear buckling shape of the beams it is assumed that the column-base 

connections are pinned (see fig. 7.2d). 
• The cross-section of the beams is infinite ∞=bA  for all modes of behaviour. 
• Shear deformations in the beams and columns are neglected, which means 

∞== shearcshearb AA ;; . 
 

7.1.1 Vertical top loads  
A stick-spring model is introduced here to obtain an approximate solution for the overall critical load 
of a one-bay fixed rigid frame (see fig. 7.3a). It is first suggested to transform a rigid frame subjected 
to vertical top loads into a multiple stick model (see fig. 7.3b).  
In a multiple stick model a pinned column is supported by a flexural cantilever with individual 
bending stiffness EI  and by a shear-flexure cantilever with global bending stiffness , racking 
shear stiffness of the columns  and racking shear stiffness of the beams . 

2EAc
cGA bGA

The flexural cantilever can be transformed into a stick-spring model with horizontal translational 
spring stiffness ( )EIfk =1  and the shear-flexure cantilever can be transformed into a stick-spring 
model with horizontal translational spring stiffness ( )bc GAGAEAcfk ,,2

2 = . The multiple stick model 
can then be transformed into a stick-spring model, where the horizontal translation spring 

( )21 , kkfk =  (see fig. 7.3c).  
The justification for this suggestion is that the shear-flexure cantilever can be seen as a quasi-braced 
frame with the flexural cantilever adding an individual bending stiffness EI  of the rigid frame.  
If the beams of a rigid frame are cut through it can still develop individual bending (see fig. 7.2a), 
because of the fixed connection at the bottom and the continuous columns.  
 

        
        
         
                           
                        

            
          
 
 
 
      
 
 

      
          P          P  
  Q             Q       
                    
         ( )21 , kkfk =   

       
EI   2EAc     ∞=EI   

       cGA             ∞=2EAc        l       
            bGA    ∞=cGA    

          ∞=bGA       
     1k   2k             

     
       ( )a ( )b      ( )c

Figure 7.3 Transformation of fixed rigid frame into stick-spring model (vertical top loads). 
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 0y     01y           02y             0y  

         
21 QQQ +=  1Q    2Q   Q           

                   
           
      

EI   2EAc      
     cGA                         l  
           bGA       
                    
   1k   2k       
 

           ( )a ( )b
Figure 7.4 Deformations caused by load Q . 

 
The horizontal beams are rigid links and therefore the first-order deformation at the top of the multiple 
stick model is (see fig. 7.4a): 
 

02010 yyy ==            (7.1) 
 
The horizontal load  at the top of the multiple stick-model is (see fig. 7.4a): Q
 

21 QQQ +=            (7.2) 
 
 
The first-order deformations at the top of the stick-spring models are 
 

k
Qy =0             (7.3) 

 

1

1
01 k

Q
y =             (7.4) 

 
and 
 

2

2
02 k

Q
y =             (7.5) 

 
Substituting eq. (7.3), eq. (7.4) and eq. (7.5) into eq. (7.2) leads to: 
 

0220110 ykykky +=           (7.6) 
 
Sustituting eq. (7.1) into eq. (7.6) yields the horizontal translational spring stiffness : k
 

∑=+= ikkkk 21           (7.7) 
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The critical load of the stick-spring model for the rigid frame is (see eq. (4.3)): 
 

klPcr =            (7.8) 
 
The critical loads  and  of the stick-spring models shown in fig. 7.5b and 7.6b 1;crP 2;crP
for the separate cantilevers can similarly be obtained from:  
 

lkPcr 11; =            (7.9) 
 
and 
 

lkPcr 22; =            (7.10) 
 
Substituting eq. (7.7) into eq. (7.8) leads to: 
 

lklkPcr 21 +=            (7.11) 
 
Substituting eq. (7.9) and eq. (7.10) into eq. (7.11) leads to: 
 

∑=+= icrcrcrcr PPPP ;2;1;          (7.12) 
 
The flexural cantilever, with individual bending EI , is assumed to be standing alone so   02 =k
(see fig. 7.5a). This can be modelled into a stick-spring model with horizontal translation spring 
stiffness ( )EIfk =1  (see fig. 7.5b).  
 

       
 

      
             
      
      
      

       

 
1P        1P       

           1Q  
       
    1k  

    
       

EI         ∞=EI      l  
       

 

         
 

( )a    ( )b   
Figure 7.5 Flexural cantilever subjected to top loads. 

 
The first-order deformation at the top of the flexural cantilever is (see fig. 7.5a): 
 

EI
lQ

yy EI 3

3
1

01 ==           (7.13) 

 
The first-order deformation at the top of the stick-spring model is (see fig. 7.5b): 
 

1

1
01 k

Q
y =             (7.14) 
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Both deformations are the same yielding the horizontal translational spring stiffness : 1k
 

31
3
l
EIk =            (7.15) 

 
After substituting eq. (7.15) into eq. (7.9) the critical load of the stick-spring model is: 
 

21;
3
l
EIPcr =            (7.16) 

 
In general, the critical load of eq. (7.16) can be written as:  
 

EIcrcr PP ;1; =            (7.17) 
 
The shear-flexure cantilever, with global bending stiffness , racking shear stiffness of the 
columns and racking shear stiffness of the beams  is assumed to be standing alone so 

2EAc
cGA bGA 01 =k  

(see fig. 7.6a). This can be modelled into a stick-spring model with horizontal translation spring 
stiffness ( )bc GAGAEAcfk ,,2

2 =  (see fig. 7.6b).  
  

 
         
  
       
            
       
       
       
 
 
        
 

  
2P        2P      

            2Q  
       
     2k  

    
       

2EAc         ∞=2EAc      l
cGA        ∞=cGA  
bGA       

 

∞=bGA  
 
         

 
( )a    ( )b   
Figure 7.6 Shear-flexure cantilever subjected to top loads. 

 
The first-order deformation at the top of the spring-flexure cantilever is: 
 

bc
GAGAEAc GA

lQ
GA

lQ
EAc

lQ
yyyy

bc
22

2

3
2

02 3
2 ++=++=       (7.18) 

 
The first-order deformation at the top of the stick-spring model is: 
 

2

2
02 k

Q
y =             (7.19) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : 2k
 

bc GA
l

GA
l

EAc
l

k
++= 2

3

2 3
1          (7.20) 
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After substituting eq. (7.20) into eq. (7.10) the critical load of the stick-spring model is: 
 

bccr GAGAEAc
l

lkP
11

3
11

2

2

22;
++==         (7.21) 

 
In general, the critical load of eq. (7.21) can be written as:  
 

1

;;;
2;

111
2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

bc GAcrGAcrEAccr
cr PPP

P         (7.22) 

 
After substituting eq. (7.17) and eq. (7.22) into eq. (7.12) the critical load of a rigid frame is:  
 

1

;;;
;

111
2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

bc GAcrGAcrEAccr
EIcrcr PPP

PP        (7.23) 

 
Where the critical loads obtained from the stick spring model are for: 

• Individual bending [1, 2]: 
 

2;
3
l
EIP EIcr =           (7.24) 

 
• Global bending [1, 2]:  

 

2

2

;

3
2

l
EAcP

EAccr
=          (7.25)

  
• Racking shear of the columns [5]: 

 

2;
24

h
EI

AGP c
cGAcr c

=′=          (7.26) 

 
• Racking shear of the beams [5]: 

 

ah
EI

GAP b
bGAcr b

12
; ==          (7.27) 

 
The actual critical loads are for: 

•  Individual bending [4]: 
 

2

2

; 4l
EIP EIcr

π
=           (7.28) 

 
• Global bending [4]:  

 

2

22

; 4
2

l
EAcP

EAccr

π
=          (7.29) 
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• Racking shear of the columns [27]: 
 

2

2

;
2

h
EI

GAP c
cGAcr c

π
==         (7.30) 

 
• Racking shear of the beams [5]: 

 

ah
EI

GAP b
bGAcr b

12
; ==          (7.31) 

 
The individual bending critical load of the stick-spring model (see eq. (7.24)) is 21.6% larger then the 
actual individual bending critical load of a rigid frame (see eq. (7.28)), because the individual bending 
deflection shape of a rigid frame is not identical to the individual bending buckling shape of a rigid 
frame. The deflection shape of a rigid frame is a third order function and the buckling shape of a rigid 
frame is a cosine function.  
 
Similar reasoning can be done for the global bending critical load (compare eq. (7.25) and eq. (7.29)). 
 
The racking shear critical load of the columns of the stick-spring model (see eq. (7.26)) is 21.6% 
larger then the actual racking shear critical load of the columns of a rigid frame (see eq. (7.30)), 
because the racking shear deflection shape of the columns of a rigid frame (see fig. 7.7a) is not 
identical to the racking shear buckling shape of the columns of a rigid frame (see fig. 7.7b).  
The deflection shape of a rigid frame is a third order function and the buckling shape of a rigid frame 
is a cosine function. 

      
           
 
                     
         
                
                                       
                   
                  
   

          
            
   
   
               

                               

  
cGAy      

cGAy          
 

Q5.0    Q5.0        P5.0    P5.0  
 
               
           h5.0  

∞=cA   ∞=bI       ∞=cA       ∞=bI  
        
 

cGAγ                         
cGAγ       h5.0   

  Q5.0   Q5.0  
  
                           

  a        P5.0       a   P5.0   
 

  ( )a       ( )b  
Figure 7.7 Double curvature bending of the columns. 

 
The racking shear critical load of the beams of a fixed rigid (see eq. (7.31)) is assumed to be the same 
as the racking shear critical load of the beams of a flexible rigid frame (see eq. (7.84)). 
 
If the actual values for individual bending (see eq. (7.28)), global bending (see eq. (7.29)),  
racking shear of the columns (see eq. (7.30)) and racking shear of the beams (see eq. (7.31))  
are substituted into eq. (7.23) the critical load of a rigid frame becomes: 
 

1

2

2

22

2

2

2

122
4

4

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

bc
cr EI

ah
EI

h
EAc
l

l
EIP

ππ
π        (7.32) 
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7.1.2 Uniformly distributed vertical loads 
In fig. 7.8a a rigid frame is subjected to vertical point loads  accept for the point loads at the roof 
and at the bottom of the frame which are . In a similar way a stick-spring model can be used  

vF

vF5.0
to obtain an approximate solution for the overall critical load of a rigid frame. First a rigid frame 
subjected to vertical point loads is transformed into a multiple stick model subjected to a horizontal 
UDL  and a vertical UDL  (see fig. 7.8b). The multiple stick model is then transformed into the 
stick-spring model (see fig. 7.8c).  

w f

         

        
         
                           
                        

            
          
 
 
 
      
 
 
 

     
      vF5.0  vF5.0                   

                    
vF  vF                     

          k   

vF  vF  w          f  EI   2EAc      w   f  
       cGA          l  

vF   vF      bGA            
                  

      vF5.0  vF5.0                 
      1k   2k  

                     
       ( )a ( )b     (   )c

Figure 7.8 Transformation of fixed rigid frame into stick-spring model (UDL). 
  
 
         
       
         
                           
                        

            
          
 
 
 
      
 
 

   0y     01y           02y             0y  
 
           

                       
                     
             

21 www +=    1w      2w      w  
   EI     2EAc      

         cGA                           l  
               bGA       

                    
                  

        

 

         ( )a ( )b   
Figure 7.9 Deformations multiple stick model caused by load . w

 
The horizontal beams are rigid links and therefore the first-order deformation at the top of the multiple 
stick model is (see fig. 7.9a): 
 

02010 yyy ==            (7.33) 
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The horizontal UDL  on the multiple stick model is (see fig. 7.9a): w
 

21 www +=            (7.34) 
 
The first-order deformations at the top of the stick-spring models are 
 

k
wly
20 =             (7.35) 

 

1

1
01 2k

lw
y =             (7.36) 

 
and 
 

2

2
02 2k

lw
y =             (7.37) 

 
Substituting eq. (7.35), eq. (7.36) and eq. (7.37) into eq. (7.34) leads to: 
 

l
y

k
l

y
k

l
y

k 02
2

01
1

0 222 +=          (7.38) 

 
Substituting eq. (7.33) into (7.38) yields the horizontal translational spring stiffness : k
 

∑=+= ikkkk 2222 21           (7.39) 
 
The critical load of the stick-spring model for a rigid frame is (see eq. (4.12)): 
 

klFcr 2=            (7.40) 
 
The critical loads  and  of the stick-spring models shown in fig. 7.10b and 7.11b 1;crF 2;crF
for the separate cantilevers can similarly be obtained from:  
 

lkFcr 11; 2=            (7.41) 
 
and 
 

lkFcr 22; 2=            (7.42) 
 
Substituting eq. (7.39) into eq. (7.40) leads to: 
 

lklkFcr 21 22 +=           (7.43) 
 
Substituting eq. (7.41) and eq. (7.42) into eq. (7.43) leads to: 
 

∑=+= icrcrcrcr FFFF ;2;1;          (7.44) 
 
The flexural cantilever, with individual bending EI , is assumed to be standing alone so   02 =k
(see fig. 7.10a). This can be modelled into a stick-spring model with horizontal translation spring 
stiffnes ( )EIfk =1  (see fig. 7.10b).  
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      1k  
       

EI     1f   1w         1f   ∞=EI     l  
       

 

         

 
( )a    ( )b   

Figure 7.10 Flexure cantilever subjected to UDL. 
 
The first-order deformation at the top of the flexural cantilever is: 
 

EI
lw

yy EI 8

4
1

01 ==           (7.45) 

 
The first-order deformation at the top of the stick-spring model is: 
 

1

1
01

2
k

lw
y =             (7.46) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : 1k
 

31
4
l
EIk =            (7.47) 

 
After substituting eq. (7.47) into eq. (7.41) the critical load of the stick-spring model is: 
 

21;
8
l
EIFcr =            (7.48) 

 
In general, the critical load of eq. (7.48) can be written as:  
 

EIcrcr FF ;1; =            (7.49) 
 
The shear-flexure cantilever, with global bending stiffness , racking shear stiffness of the 
columns  and racking shear stiffness of the beams , is assumed to be standing alone so 

2EAc
cGA bGA 01 =k   

(see fig. 7.11a). This can be modelled into a stick-spring model with horizontal translation spring 
stiffness ( )bc GAGAEAcfk ,,2

2 =  (see fig. 7.11b).  
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     2k  

       
     2f   2w       2f     

2EAc        ∞=2EAc     l  
cGA       

 

   

∞=cGA  
bGA      ∞=bGA  

 
          

 
( )a    ( )b   

Figure 7.11 Shear-flexure cantilever subjected to UDL. 
 
The first-order deformation at the top of the spring-flexure cantilever is: 
 

bc
GAGAEAc GA

lw
GA

lw
EAc

lw
yyyy

bc 228
22

2

4
2

02 2 ++=++=       (7.50) 

 
The first-order deformation at the top of the stick-spring model is: 
 

2

2
02 2k

lw
y =             (7.51) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : 2k
 

bc GA
l

GA
l

EAc
l

k
++= 2

3

2 4
1          (7.52) 

 
After substituting eq. (7.52) into eq. (7.42) the critical load of the stick-spring model is: 
 

bccr GAGAEAc
l

lkF 2
1

2
1

82
11

2

2

22;
++==        (7.53) 

 
In general, the critical load of eq. (7.53) can be written as:  
 

1

;;;
2;

111
2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

bc GAcrGAcrEAccr
cr FFF

F         (7.54) 

 
After substituting eq. (7.49) and eq. (7.54) into eq. (7.44) the critical load of a rigid frame is:   
 

1

;;;
;

111
2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

bc GAcrGAcrEAccr
EIcrcr FFF

FF        (7.55) 
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Where the critical loads obtained from the stick spring model are for: 

• Individual bending [1, 2]: 
 

2;
8
l
EIF EIcr =           (7.56) 

 
• Global bending [1, 2]:  

 

2

2

;

8
2

l
EAcF

EAccr
=          (7.57)

  
• Racking shear of the columns: 

 

2;
48

2
h
EI

AGF c
cGAcr c

=′=         (7.58) 

 
• Racking shear of the beams: 

 

ah
EI

GAF b
bGAcr b

24
2; ==         (7.59) 

 
The actual critical loads are for: 

• Individual bending [5]: 
 

2;
837.7
l

EIF EIcr =          (7.60) 

 
• Global bending [5]:  

 

2

2

;

837.7
2

l
EAcF

EAccr
=          (7.61)

  
• Racking shear of the columns (see eq. (6.21)): 

 

2

2

;
2

h
EI

GAF c
cGAcr c

π
ηη ==         (7.62) 

 
Where factor η  is (see eq. (6.22)): 

 

5.0−
=

s
sη           (7.63) 

 
• Racking shear of the beams: 

 

ah
EI

GAF b
bGAcr b

24
2; ==         (7.64) 
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The individual bending critical load of the stick-spring model (see eq. (7.56)) is 2.1% larger then the 
actual individual bending critical load of a rigid frame (see eq. (7.60)), because the individual bending 
deflection shape of a rigid frame is not identical to the individual bending buckling shape of a rigid 
frame. The deflection shape of a rigid frame is a fourth order function and the buckling shape of a 
rigid frame can be approximated by a cosine function.  
 
Similar reasoning can be done for the global bending critical load (compare eq. (7.57) and eq. (7.61)). 
 
The racking shear critical load of the columns of the stick-spring model (see eq. (7.58)) is 143% larger 
then the actual racking shear critical load of the columns of a rigid frame (see eq. (7.62), because the 
racking shear deflection shape of the columns of a rigid frame (see fig. 7.12a) is not identical to the 
racking shear buckling shape of the columns of a rigid frame (see fig. 7.12b).  
 

             

      ∞== bc IA    
 

( )a     ( )b  
Figure 7.12 Racking shear shapes of the columns caused by UDL. 

 
The racking shear critical load of the beams of a fixed rigid (see eq. (7.59)) is assumed to be the same 
as the racking shear critical load of the beams of a flexible rigid frame (see eq. (7.105)). 
 
If the actual values for individual bending (see eq. (7.60)), global bending (see eq. (7.61)),  
racking shear of the columns (see eq. (7.62)) and racking shear of the beams  
(see eq. (7.64)) are substituted into eq. (7.55) the critical load of a rigid frame becomes: 
 

1

2

2

2

2

2 242837.7
837.7

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

bc
cr EI

ah
EI

h
EAc

l
l

EIF
πη

      (7.65) 
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7.2 Accuracy 
To establish the accuracy of the stick-spring model, critical loads of a number of one-bay rigid frames 
were estimated using the stick-spring model and a finite element analyses. Finite element program 
ANSYS was used to obtain the eigenvalues of the rigid frames. The rigid frames have fixed supports 
and the height of the frames varied from eight to forty stories. The rigid frames are subjected to two 
different loadcases (see fig. 1.5): 

• Vertical top loads (see fig. 1.5a). 
• Uniformly distributed vertical loads (see fig. 1.5b). 

Six different cases will be investigated for one-bay rigid frames: 
• Individual bending deformation only (see fig. 7.13a)  
• Global bending deformation dominates (see fig. 7.13b).  
• Racking shear deformation of the columns dominates (see fig. 7.13c). 
• Global racking shear deformation dominates (7.13c/d). 
• All deformations together (see fig. 7.13a/b/c/d). 
• Influence individual bending stiffness on the critical load. 
 

              
 
 
 
 
 
 
 
 
 

    
 
  
 

            
     
     
           
 

cI    cA         cI      bI    
        
    
                
 
  

0=bI    ∞=bI   ∞== bc IA   ∞== cc IA   
( )cIfEI =   ( )cAfEAc =2   ( )cc IfGA =   ( )bb IfGA =  

       ( )a ( )b ( )c      ( )d
Figure 7.13 Cases to investigate for fixed rigid frames. 

 
The first four cases only represent theoretical cases, but the inclusion of them is very important to 
make a well-based judgement on the accuracy of the stick-spring model.  
The critical loads found with the finite element method are assumed to be exact.  

The errors are calculated as follows %100
)(

)( ×
−

=∆
ANSYScr

ANSYScrcr

P
PP

.  

If the error is negative the stick-spring model gives a conservative value for the critical load.  
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7.2.1 Numerical model 
The numerical model shown in figure 7.14 is built up from BEAM3 elements. BEAM3 elements can 
sustain normal forces, bending moments and shear forces. All the connections at each node are 
moment resistant. The columns and beams are divided into three BEAM3 elements.  
In this investigation it is assumed that the columns have an uniform cross-sectional area  and an 
uniform second moment of area  up the height and the beams have a uniform second moment of 
area  up the height except for the roof beam, which has a second moment of area   

cA

cI

bI bI5.0 .
The rigid frame has no uniform racking shear stiffness of the columns  up the height,  cGA
because of a discontinuity at the bottom caused by the fixed connection at the base.  
This discontinuity can`t be solved and causes a larger racking shear stiffness at the bottom of the rigid 
frame. If the number of stories increases the influence of this discontinuity decreases.  
The cross-section of the beams is assumed to be infinite ∞=bA .  
Shear deformations in the beams and columns are neglected, i.e. ∞== shearcshearb AA ;; . 
 

    
    
    
    
    

    

   
bI5.0    

  
cc IA ,     bI                

    
    
   bI               

   
    bI       BEAM3 

           
          

Figure 7.14 Numerical model for a rigid frame fix-connected to the base.  
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7.2.2 Example 
An eight storey high one bay fixed rigid frame (see fig. 7.15) has an individual bending stiffness EI , 
global bending stiffness , racking shear stiffness of the columns , a racking shear stiffness 
of the beams  and is subjected to two different loadcases. The characteristics of the rigid frame 
can be found in table 6.1. 

2EAc cGA

bGA

 

   

 
 

     
           
     
     
     

    

      
        bI5.0    

                          
  bI  

 
cc IA ,   bI    

 
bI    24=l

 
bI  

 
bI  

 
bI  

 
bI  

 
3=h  

   
         
   
  3=a  

 
Figure 7.15. Example of fixed rigid frames. 

 
 
 

7.2.2.1 Stiffness parameters 
The individual bending stiffness is (see eq. (6.127)): 
 

MNEIEIEI cici 2.13110281.310222 45 =××××==∑= −  
 
The global bending stiffness is (see eq. (6.60)): 
 

MNcEAcEAEAc icici 156965.110744.110222 225222 =×⋅×××==∑= −  
 
Ratio between the bending stiffnesses: 
 

120
1

15696
2.131

2 ≈=
EAc

EI  
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7.2.2.2 Vertical top load 
The individual bending critical load is (see eq. (7.28)): 
 

MN
l
EIP EIcr 562.0

244
2.131

4 2

2

2

2

; =
×
×

==
ππ . 

 
The global bending critical load is (see eq. (7.29)): 
 

MN
l

EAcP
EAccr

24.67
244
15696

4 2

2

2

22

; 2 =
×
×

==
ππ  

 
The racking shear critical load of the columns is (see eq. (7.30)): 
 

MN
h

EI
P c

GAcr c
9.143

3
10281.310222

2

452

2

2

; =
×××××

==
−ππ

  

 
The racking shear critical load of the beams is (see eq. (7.31)): 
 

MN
ah
EI

P b
GAcr b

19.32
33

10207.11021212 45

; =
×

××××
==

−

  

 
The critical load is (see eq. (7.23)): 
 

MN
PPP

PP
bc GAcrGAcrEAccr

EIcrcr 47.19
19.32

1
9.143

1
24.67

1562.0111 1
1

;;;
;

2

=⎥⎦
⎤

⎢⎣
⎡ +++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

−
−

 

  

7.2.2.3 Vertical UDL 
The individual bending critical load is (see eq. (7.60)): 
 

MN
l

EIF EIcr 786.1
24

2.131837.7837.7
22; =

×
==  

 
The global bending critical load is (see eq. (7.61)): 
 

MN
l
EAcF

EAccr
6.213

24
15696837.7837.7
22

2

; 2 =
×

==  

 
Factor η  is (see eq. (7.63)): 
 

0666.1
15
16

5.08
8

5.0
==

−
=

−
=

s
sη    

 
The racking shear critical load of the columns is (see eq. (7.62)): 
 

MN
h

EI
F c

GAcr c
5.1539.1430666.1

2
2

2

; =×==
π

η   
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The racking shear critical load of the beams is (see eq. (7.64)): 
 

MN
ah
EI

F b
GAcr b

37.64
33

10207.11022424 45

; =
×

××××
==

−

  

 
The critical load is (see eq. (7.55)): 
 

MN
FFF

FF
bc GAcrGAcrEAccr

EIcrcr 20.39
37.64

1
5.153

1
6.213

1786.1111 1
1

;;;
;

2

=⎥⎦
⎤

⎢⎣
⎡ +++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

−
−

 

 
All critical loads in this example calculated by the stick-spring model are in bold type and can be 
found in tables 7.1-7.7.     
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7.2.3 Results 
The figures and tables below present the results of the critical loads obtained from the stick-spring 
model and the numerical analysis.  
 

7.2.3.1 Individual bending deformation only 
The second moment of area of the beams is assumed to be zero 0=bI , which leads to a zero racking 
shear critical load of the beams . The structure no longer behaves as a rigid frame, but as 
two independent flexural cantilevers, which develop single curvature bending deformation only.  

0; =
bGAcrP

Therefore the rigid frame cannot develop double curvature bending of the columns, which leads to a 
zero racking shear critical load of the columns 0; =

cGAcrP  and the rigid frame cannot develop global 
bending, which leads to a zero global bending critical load 02;

=
EAccr

P .  

Substituting ,  and 0; =
bGAcrP 0; =

cGAcrP 02;
=

EAccr
P  into eq. (7.23) leads to: 

 

EIcrEIcrEIcrcr PPPP ;;

1

; 0
0
1

0
1

0
1

=+=⎥⎦
⎤

⎢⎣
⎡ +++=

−

.  

 
Now the rigid frame can develop individual bending deformation only.  
Table 7.1 shows the accurracy of the individual bending critical loads  and .  EIcrP ; EIcrF ;

 
 
Table 7.1. Critical loads for fixed rigid frames, individual bending deformation only. 

Vertical top load P  with 

2

2

; 4l
EIP EIcr

π
=  

UDL ( )5.0=γF  with  

2;
837.7
l

EIF EIcr =  

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 0.562 0.562 0.0 1.786 1.774 0.6 
16 0.141 0.141 0.0 0.446 0.446 0.2 
24 0.062 0.062 0.0 0.198 0.198 0.0 
32 0.035 0.035 0.0 0.112 0.112 0.0 
40 0.023 0.023 0.0 0.071 0.071 0.0 

 
 
Observations 

• The rigid frame develops one mode of deformation: individual bending only  
(see fig 7.13a). 
 

• The individual bending critical loads can very well be predicted by 2

2

; 4l
EIP EIcr

π
=  and 

2;
837.7
l

EIF EIcr = , because all errors are nearly zero (see table 7.1).  
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7.2.3.2 Global bending deformation dominates 
The second moment of area of the beams is assumed to be infinite ∞=bI , which leads to  
an infinite racking shear critical load of the beams ∞=

bGAcrP ; .  
Substituting  into eq. (7.23) leads to: ∞=

bGAcrP ;

 
1

;;
;

1

;;
;

11111
22

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∞
+++=

cc GAcrEAccr
EIcr

GAcrEAccr
EIcrcr PP

P
PP

PP .  

 
Now the rigid frame can develop individual bending, global bending and racking shear deformation of 
the columns. Global bending dominates, because  and . 2;; EAccrGAcr PP

c
> EIcrEAccr

PP ;; 2 >

Table 7.2 shows the accurracy of the global bending critical loads  and .  2;EAccr
P 2;EAccr

F

Alternative 1 is introduced to show that more identical buckling shapes lead to lower errors. 
 
 
Table 7.2. Critical loads for fixed rigid frames, global bending deformation dominates. 

Vertical top load P  UDL ( )5.0=γF  UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN]  crF
with cGAcr GAF

c
η=;  and 

bGAcr GAF
b

2; =  

Alternative 1 
Critical loads [MN] with crF

cGAcr GAF
c

2; =  and 

bGAcr GAF
b

2; =  

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS  Error
[%] ∆

Stick-
spring 
model 

ANSYS Error
∆ [%] 

Stick-
spring 
model 

ANSYS  Error 
∆ [%] 

8 46.39 48.20 -3.8 91.10 124.3 -27 124.4 124.3 +0.1 
16 15.19 15.44 -1.6 39.72 46.61 -15 45.48 46.61 -2.4 
24 7.16 7.22 -0.8 20.63 22.43 -8.0 22.12 22.43 -1.4 
32 4.12 4.14 -0.5 12.34 12.98 -4.9 12.87 12.98 -0.9 
40 2.66 2.67 -0.3 8.14 8.42 -3.3 8.37 8.42 -0.6 

 
 
Observations 

• The rigid frame develops three modes of deformation: individual bending (see fig. 7.13a), 
global bending (see fig. 7.13b) and racking shear of the columns (see fig. 7.13c). 

 
• Global bending dominates the buckling behavior. 

 
• Rigid frames subjected to vertical top loads P  give lower errors then rigid frames 

subjected to vertical UDL`s F  (see table 7.2), because the buckling shapes of the first  
(see fig. 7.16) are more identical to each other then the buckling shapes of the second  
(see fig. 7.17). 

 
• Rigid frames subjected to vertical UDL`s F give lower errors if the buckling shapes are 

more identical (compare fig. 7.17/7.18 and table 7.2). 
 

• The global bending critical loads 2

22

; 4
2

l
EAcP

EAccr

π
= and 2

2

;

837.7
2

l
EAcF

EAccr
= are 

conservative, because all errors are negative (see table 7.2).  
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  ( )a    ( )b    ( )c     

Fig 7.16 Modes of behavior of a fixed rigid frame subjected to top loads. 
  

               
 
 
 
 
 
 
 
 
 

     
   ( )a    ( )b    ( )c     

Fig 7.17 Modes of behavior of a fixed rigid frame subjected to UDL`s. 
  

               
 
 
 
 
 
 
 
 
 

     
  ( )a    ( )b    ( )c  

Fig 7.18 Modes of behavior of a fixed rigid frame subjected to UDL`s (alternative 1). 
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7.2.3.3 Racking shear deformation of the columns dominates  
The cross-sectional area of the columns is assumed to be infinite ∞=cA  and the second moment of 
area of the beams is assumed to be infinite ∞=bI . The first leads to an infinite global bending critical 
load . The second leads to an infinite racking shear critical load of the beams ∞=2;EAccr

P ∞=
bGAcrP ; . 

Substituting  and  into eq. (7.23) leads to: ∞=2;EAccr
P ∞=

bGAcrP ;

 

cc
c

GAcrGAcrEIcr
GAcr

EIcrcr PPP
P

PP ;;;

1

;
;

111
≈+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∞
++

∞
+=

−

.  

 
Now the rigid frame can develop individual bending and racking shear deformation of the columns. 
Racking shear of the columns dominates, because  . EIcrGAcr PP

c ;; >

Table 7.3 shows the accurracy of the racking shear critical loads of the columns  and .  
cGAcrP ; cGAcrF ;

 
 
Table 7.3. Critical loads for fixed rigid frames, racking shear deformation of the columns dominates. 

Vertical top load P   UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN]  crF

Number 
of 

storeys 
s  [-] Stick-

spring 
model 

ANSYS Error
[%] ∆

Stick-
spring 
model 

ANSYS Error
∆ [%] 

8 144.5 144.2 +0.2 155.3 153.8 +1.0 
16 144.1 144.2 -0.1 149.0 148.8 +0.1 
24 144.0 144.1 -0.1 147.2 147.2 0.0 
32 144.0 144.1 -0.1 146.3 146.4 -0.1 
40 143.9 144.1 -0.1 145.8 146.0 -0.1 

 
 
Observations 

• The rigid frame develops two modes of deformation: individual bending of the columns 
(see fig. 7.13a) and racking shear of the columns (see fig 7.13c). 

 
• Racking shear of columns dominates the buckling behavior. 

 
• The stick spring model gives good results (see table 7.3).  

 
• The racking shear critical loads of the columns can very well be predicted by 

2

2

;
2

h
EI

P c
GAcr c

π
=  and 2

2

;
2

h
EI

F c
GAcr c

π
η= , because the errors are very low (see table 7.3). 

This is because the racking shear buckling shape of a cantilever is identical to the racking 
shear buckling shape of the columns of a rigid frame.    

 

• If the number of stories increases to infinite the reduction factor 
5.0−

=
s

sη  decreases to 

1 and the racking shear critical load of the columns becomes  2

2

;
2

h
EI

F c
GAcr c

π
=   

(see table 7.3). 
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7.2.3.4 Global racking shear dominates  
The area of the columns  is assumed to be infinite, which leads to an infinite global bending 
critical load . Substituting 

∞=cA
∞=2;EAccr

P ∞=2;EAccr
P  into eq. (7.23) leads to: 

 

GAcrGAcrEIcr
GAcrGAcr

EIcrcr PPP
PP

PP
bc

;;;

1

;;
;

111
≈+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++

∞
+=

−

.  

 
where 
 

1

;;
;

11
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

bc GAcrGAcr
GAcr PP

P  

 
Now the rigid frame can develop individual bending deformation and global racking shear 
deformation. Global racking shear dominates, because  . Table 7.4 shows the accuracy 
of the global racking shear critical load  and . For rigid frames subjected to UDL two 
other alternatives will be presented here. Alternative 1 and 2 are introduced to find upper and lower 
bound solutions for the actual global racking shear critical load. 

EIcrGAcr PP ;; >

GAcrP ; GAcrF ;

 
 
Table 7.4 Critical loads for rigid frames fix-connected to the base, global racking shear deformation dominates. 

Vertical top load P  UDL ( )5.0=γF  UDL ( )5.0=γF  UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN]  crF
with cGAcr GAF

c
η=;  and 

bGAcr GAF
b

2; =  

Alternative 1 
Critical loads [MN] with crF

cGAcr GAF
c

2; =  and 

bGAcr GAF
b

2; =  

Alternative 2 
Critical loads [MN] with crF

cGAcr GAF
c

η=;  and 

bGAcr GAF
b

η=;  

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS  Error
[%] ∆

Stick-
spring 
model 

ANSYS Error
∆ [%] 

Stick-
spring 
model 

ANSYS  Error 
∆ [%] 

Stick-
spring 
model 

ANSYS Error 
∆ [%] 

8 26.87 27.60 -2.7 47.14 44.95 +4.9 54.39 44.95 +21 29.84 44.95 -38 
16 26.44 27.19 -2.7 45.36 36.95 +23 53.05 36.95 +44 27.60 36.95 -27 
24 26.37 27.11 -2.8 44.96 34.23 +31 52.80 34.23 +54 27.06 34.23 -22 
32 26.34 27.08 -2.8 44.80 32.82 +37 52.72 32.82 +61 26.83 32.82 -19 
40 26.33 27.07 -2.8 44.72 31.93 +40 52.68 31.93 +65 26.71 31.93 -17 
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Observations 

• The rigid frame develops three modes of deformation: individual bending of the columns 
(see fig. 7.13a), racking shear of the columns (see fig 7.13c) and racking shear of the 
beams (see fig. 7.13d).  

 
• Global racking shear (racking shear of columns and beams) dominates the buckling 

behavior. 
 

• The actual global racking critical load lays between:  
GAFGA actualGAcr 2;; <<η  (see tabel 7.4 and fig. 7.19).  

           GAF GAcr 2; =  (alternative 1) 

 
GAF GAcr η=;  (alternative 2) 

actualGAcrF ;;  (ANSYS) 
      

 
Figure 7.19 Global racking shear buckling shapes for load case F . 

 

• The global racking shear critical load  
1

2

2

; 122

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

bc
GAcr EI

ah
EI

hP
π

  

is conservative, because all errors are negative (see table 7.4).  
 

• The global racking shear critical load  
1

2

2

; 242

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

bc
GAcr EI

ah
EI

hF
πη

  

is unconservative, because all errors are positive (see table 7.4).   
 
• If global racking shear is dominant, which is the case if  2;; EAccrGAcr FF < , formula 

1

2

2

2

2

2 242837.7
837.7

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

bc
cr EI

ah
EI

h
EAc

l
l

EIF
πη

 gives unconservative critical loads 

(see table 7.4). 
 

 111



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

7.2.3.5 All deformations together 
Table 7.5 shows the accuracy of the critical loads  and .  crP crF
 
 
Table 7.5. Critical loads for fixed rigid frames, all deformations together. 

Vertical top load P  UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN]  crF

Number 
of 

storeys 
s  [-] Stick-

spring 
model 

ANSYS Error
[%] ∆

Stick-
spring 
model 

ANSYS Error
∆ [%] 

8 19.47 19.85 -1.9 39.20 40.34 -2.9 
16 10.40 10.51 -1.1 24.84 26.15 -5.0 
24 5.88 5.92 -0.7 15.71 16.60 -5.4 
32 3.66 3.67 -0.4 10.39 10.84 -4.2 
40 2.46 2.47 -0.3 7.24 7.48 -3.1 

 
 
Observations 

• The buckling behavior of a fixed rigid frame can be divided into individual bending, 
global bending, racking shear of columns and racking shear of beams (see fig. 7.13).  

 
• The critical loads  and  are conservative, because the errors are negative  crP crF

(see table 7.5).  
 

• Formula 
1

2

2

2

2

2 242837.7
837.7

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

bc
cr EI

ah
EI

h
EAc

l
l

EIF
πη

can only be used  

for tall rigid frames dominated by global bending, which is the case if   

(see table 7.5), because it then gives conservative critical loads.  
GAcrEAccr

FF ;; 2 <

 
• The maximum errors for the theoretical tall building structures are (see table 7.1-7.7). 

The highest conservative error for loadcase P  is:    -3.8 %.   
The highest conservative error for loadcase F  is:    -27 %. 
The highest unconservative error for loadcase P  is:    +0.2 %.   
The highest unconservative error for loadcase F  is:    +40 %. 

 
• The extreme cases (see table 7.1-7.4 and table 7.6-7.7) are normally of theoritical interest, 

because there is always a combination between individual bending, individual rotation, global 
bending, racking shear of the columns and racking shear of the beams. For practical tall 
building structures, therefore only table 7.5 is important.  

 
• The maximum errors for the practical tall building structures are (see table 7.5 in red). 

The highest conservative error for loadcase P  is:    -1.9 %.   
The highest conservative error for loadcase F  is:    -5.4 %. 

 
• All suggested formula give good results for the preliminary design of practical highrise 

fixed rigid frames of 8 till 40 stories within a maximum error of 5.4% . 
 
• All observations are only valid for one-bay fixed rigid frames of eight till forty stories. 
 
• All observations are only valid for the investigated cases in this parameterstudy.    
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7.2.3.6 Influence of the individual bending stiffness on the critical load 
The influence of the individual bending stiffness EI  on the overall critical will be investigated.  
This will be done by increasing the second moment of area of the columns. Therefore the individual 
bending stiffness EI  and the racking shear stiffness of columns will also increase. All other 

parameters remain constant. The global bending stiffness is  and the racking 

shear stiffness of the beams is . Very important in this matter is the 

cGA
22 15696MNmEAc =

MNGAb 19.32= 2EAc
EI  ratio. First 

the practical limits of the 2EAc
EI  ratio will be defined.  

A lower bound can be found by assuming a rigid frame with weak columns (see fig. 7.20a):    
 

1369
1

5.1002124.0
000003492.0

2
2

2222 ≈
×

===
ic

c

ic

c

cA
I

cEA
EI

EAc
EI  

 
An upper bound can be found by assuming a coupled wall with very stiff columns (see fig. 7.20b):    
 

14
1

5.104442.0
007223.0

222 ≈
×

==
ic

c

cA
I

EAc
EI    

 
Practical limits:  

14
1

1369
1

2 ≤≤
EAc

EI  

   
        
                          
                       

           
         

       

 
 
HE100A         HE1000M 
 

002124.0=cA      12=l     04442.0=cA  
000003492.0=cI          007223.0=cI   

             
 

3=h  
       

    
    
   3=a      3=a  
            
         5.1=ic             5.1=ic

   ( )a       ( )b  
Figure 7.20 Practical limits. 

 
Table 7.6 shows the influence of the individual bending critical load on the overall critical load by 

varying ratio 2EAc
EI with . Table 7.7 shows the influence of individual bending stiffness 8=s EI  on 

the critical loads  and . crP crF
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Table 7.6. Influence individual bending critical load on the overall critical load by varying 2EAc
EI

ratio, 8=s . 

Critical loads [MN] 

2EAc
EI

 

[-] 

ANSYSEIcrP ;;  ANSYScrP ;  
[%]

;

;;

ANSYScr

ANSYSEIcr

P
P

 

0.001 0.13447 14.08 1 
0.01 1.3447 22.00 6 
0.1 13.447 35.08 38 
1 134.47 156.21 86 

 
Table 7.7. Critical loads for fixed rigid frames, influence of the individual bending stiffness EI  on the critical 
loads  and , . crP crF 24=s

Vertical top load P  UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN]  crF2EAc
EI

 

[-] Stick-
spring 
model 

ANSYS  Error
[%] ∆

Stick-
spring 
model 

ANSYS Error
∆ [%] 

0.001 5.17 5.29 -2.3 11.66 13.90 -16 
0.01 6.11 6.12 -0.3 17.00 17.44 -2.5 
0.1 7.55 7.55 0.0 22.00 22.48 -2.1 
1 21.00 21.00 0.0 64.79 65.78 -1.5 

 
Observations 

• If the ratio 2EAc
EI  is higher the influence of the individual bending critical load on the 

overall critical load is larger (see table 7.6).  
 
• The individual bending stiffness EI  can have a big influence on the critical load and 

therefore can`t be neglected (see table 7.7).  
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7.3 Rigid frames flexibly connected to the base 
A rigid frame is a structure which consists of columns and beams (see fig. 7.21). The joints of a rigid 
frame are moment resistant. The boundary conditions at the base of a rigid frame can be pinned, fixed 
or flexible. In this investigation the boundary conditions are flexible (see fig. 7.21). This flexible 
connection at the base introduces a new mode of deformation to the buckling behavior, which is  
individual rotation of the columns.    
 

     
        
                       
              
           
         

       

 
  

      
      bI5.0                 
         
      bI        h  
     

cc IA ,        bI         
         l  
      bI  

 bI5.0    
     C  

 
    

a        
       

   Figure 7.21 Flexible rigid frames. 
 
The buckling behaviour of a flexible rigid frame can be divided into 5 modes of deformation: 

• Individual bending ( : single curvature bending of the vertical members (see fig. 7.22a).  )EI
• Individual rotation ( )C : caused by double curvature bending of a groundfloor beam  

(see fig. 7.22b).  
• Global bending ( )2EAc : axial deformation in the columns (see fig. 7.22c).  
• Racking shear of the columns ( )cGA : double curvature bending in the columns  

(see fig. 7.22d). 
• Racking shear of the beams ( )bGA : double curvature bending in the beams (see fig. 7.22e).  
               

 
 
 
 
 
 
 
 
 

    
 
  
 

     
     
           

cI   
  
             cA        cI      bI  
        
               C                
  
 

0=bI , ∞=C     0=bI , ∞=cI   ∞== CIb   ∞=== CIA bb  ∞== cc IA
( )cIfEI =     ( )bIfC =   ( )cAfEAc =2   ( )cc IfGA =   ( )bb IfGA =

      ( )a ( )b ( )c   ( )d      ( )e
Fig 7.22 Modes of behavior of a flexible rigid frame. 
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Assumptions: 

• The column-beam connections are fully moment resistant. 
• The rigid frame is flexibly connected to the base. 
• The columns are continuous up the total height of the structure.   
• The flexible rigid frame has five lateral stiffness parameters ( )cIfEI = , ( )bIfC = , 

, ( )cAfEAc =2 ( )bb IfGA =  and ( )cc IfGA = .  
• The cross-section of the beams is infinite ∞=bA  for all modes of behavior. 
• Shear deformations in the beams and columns are neglected, which means 

∞== shearcshearb AA ;; . 
 

7.3.1 Vertical top loads  
A stick-spring model is introduced here to obtain an approximate solution for the overall critical load 
of a one-bay flexible rigid frame (see fig. 7.23a). It is first suggested to transform a rigid frame 
subjected to vertical top loads into a multiple stick model (see fig. 7.23b).  
In a multiple stick model a pinned column is supported by a spring-flexure cantilever with individual 
bending stiffness EI , individual rotational spring stiffness  and by a shear-flexure cantilever with 
global bending stiffness , racking shear stiffness of the columns  and racking shear stiffness 
of the beams . The spring-flexure cantilever can be transformed into a stick-spring model with 
horizontal translational spring stiffness 

C
2EAc cGA

bGA
( )CEIfk ,1 =  and the shear-flexure cantilever can be 

transformed into a stick-spring model with horizontal translational spring stiffness 
( )bc GAGAEAcfk ,,2

2 = . The multiple stick model can then be transformed into a stick-spring model, 
where the horizontal translation spring ( )21 , kkfk =  (see fig. 7.23c).  
The justification for this suggestion is that the shear-flexure cantilever can be seen as a quasi-braced 
frame and the spring-flexure cantilever can be seen as a flexible column adding the individual bending 
stiffness EI  and rotational spring stiffness of the rigid frame. If the beams of a rigid frame are cut 
through it can still develop individual bending (see fig. 7.22a) and individual rotation of the columns 
(see fig. 7.22b), because of the flexible connection at the bottom and the continuous columns.  

C

 
 
         
        
         
                           
                        

            
          
 
 
 
      
 
 
 

      
   Q        P         Q  P  
                    
                    
          k   
       

EI   2EAc     ∞=EI   
       cGA             ∞=2EAc        l      

            bGA    ∞=cGA    
          ∞=bGA     
          ∞=C          

    C  

      ( )a ( )b       ( )c
Figure 7.23 Transformation of flexible rigid frame into stick-spring model for loadcase P . 
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It has been shown that (see eq. (7.12)): 
 

2;1; crcrcr PPP +=           (7.66) 
 
The spring-flexure cantilever, with individual bending EI  and individual rotational spring stiffness 

, is assumed to be standing alone so C 02 =k  (see fig. 7.24a). This can be modelled into the  
stick-spring model with translation spring ( )CEIfk ,1 =  (see fig. 7.24b).  
  

 
         
  
       
             
       
       
       
 
 
        
 

  
1P        1P      

            1Q  
       
     1k  

    
       
EI         ∞=EI  l  
       ∞=C  
  
 
C          

 
( )a    ( )b   
Figure 7.24 Spring-flexure cantilever subjected to top loads. 

 
The first-order deformation at the top of the spring-flexure cantilever is: 
 

C
lQ

EI
lQ

yyy CEI
1

3
1

01 3
+=+=          (7.67) 

 
The first-order deformation at the top of the stick-spring model is: 
 

1

1
01 k

Q
y =             (7.68) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : 1k
 

C
l

EI
l

k
+=

3
1 3

1

           (7.69) 

 
The critical load of the stick-spring model is: 
 

lkPcr 11; =            (7.70) 
 
After substituting eq. (7.69) into eq. (7.70) the critical load of the stick-spring model is: 
 

CEI
l

lkPcr

1
3

11 2

11;
+==           (7.71) 
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In general, the critical load of eq. (7.71) can be written as:  
 

1

;;
1;

11
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

CcrEIcr
cr PP

P          (7.72) 

 
It has been shown that the critical load of the shear-flexure cantilever is (see eq. (7.22)): 
 

1

;;;
2;

111
2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

bc GAcrGAcrEAccr
cr PPP

P         (7.73) 

 
After substituting eq. (7.72) and eq. (7.73) into eq. (7.66) the critical load of a rigid frame is:   
 

1

;;;

1

;;

11111
2

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

bc GAcrGAcrEAccrCcrEIcr
cr PPPPP

P      (7.74) 

 
Where the critical loads obtained from the stick spring model are for: 

• Individual bending [1, 2]: 
 

2;
3
l
EIP EIcr =           (7.75) 

 
• Individual rotation [1, 2]: 
 

l
CP Ccr =;           (7.76) 

 
• Global bending [1, 2]:  

 

2

2

;

3
2

l
EAcP

EAccr
=          (7.77)

  
• Racking shear of the columns [5]: 

 

2;
24

h
EI

AGP c
cGAcr c

=′=          (7.78) 

 
• Racking shear of the beams [5]: 

 

ah
EI

GAP b
bGAcr b

12
; ==          (7.79) 

 

 118



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 
The actual critical loads are for: 

• Individual bending [4]: 
 

2

2

; 4l
EIP EIcr

π
=           (7.80) 

 
• Individual rotation [1, 2]: 
 

l
CP Ccr =;           (7.81) 

 
• Global bending [4]:  

 

2

22

; 4
2

l
EAcP

EAccr

π
=          (7.82)

  
• Racking shear of the columns [27]: 

 

2

2

;
2

h
EI

GAP c
cGAcr c

π
==         (7.83) 

 
• Racking shear of the beams [5]: 

 

ah
EI

GAP b
bGAcr b

12
; ==          (7.84) 

 
The individual rotational spring critical load of the stick-spring model (see eq. (7.76)) is equal to the 
actual individual rotational spring critical load of a rigid frame (see eq. (7.81)), because the individual 
rotation deflection shape of a rigid frame (see fig. 7.25a) is identical to the individual rotation buckling 
shape of a rigid frame (see fig. 7.25b).  
 

              

    

 

  0=bI , ∞=cI     
( )a    ( )b      

Figure 7.25 Individual rotational spring shapes for top loads. 
 
The racking shear critical load of the beams of the stick-spring model (see eq. (7.79)) is equal to the 
actual racking shear critical load of the beams of a rigid frame (see eq. (7.84)), because the racking 
shear deflection shape of the beams of a rigid frame (see fig. 7.26a) is identical to the racking shear 
buckling shape of the beams of a rigid frame (see fig. 7.26b). 
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  ∞== cc IA   
( )a     ( )b      

Figure 7.26 Racking shear shapes of the beams caused by top loads. 
 
If the actual values for individual bending (see eq. (7.80)), individual rotation (see eq. (7.81)),  
global bending (see eq. (7.82)), racking shear of the columns (see eq. (7.83)) and racking shear of the 
beams (see eq. (7.84)) are substituted into eq. (7.74) the critical load of a rigid frame becomes: 
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7.3.2 Uniformly distributed vertical loads 
In fig. 7.27a a rigid frame is subjected to vertical point loads  accept for the point loads at the roof 
and at the bottom of the frame which are . In a similar way a stick-spring model can be used  

vF

vF5.0
to obtain an approximate solution for the overall critical load of a rigid frame  
First a rigid frame subjected to vertical point loads is transformed into a multiple stick model subjected 
to a horizontal UDL  and a vertical UDL  (see fig. 7.27b).  w f
The multiple stick model is then transformed into the stick-spring model (see fig. 7.27c). 
 

        
        
         
                           
                        

            
          
 
 
 
      
 
 
 

     
      vF5.0  vF5.0                   

                    
 

vF  vF                     
          k   

vF  vF  w          f  EI   2EAc   w   f   l  
       cGA       

vF   vF      bGA            
                  

      vF5.0  vF5.0                 
      C  

                     
       ( )a ( )b     (   )c

Figure 7.27 Transformation of flexible rigid frame into stick-spring model (UDL). 
 
It has been shown that (see eq. (7.44)): 
 

2;1; crcrcr FFF +=           (7.86) 
 
The spring-flexure cantilever, with individual bending EI  and individual rotational spring stiffness 

, is assumed to be standing alone so C 02 =k  (see fig. 7.28a). This can be modelled into the  
stick-spring model with translation spring ( )CEIfk ,1 =  (see fig. 7.28b).  
 

       
 

      
            
      
      
      

       

     
             
       
      

1k  
       
 1f    1f  
EI            1w               ∞=EI   l
        ∞=C  
  
 
C        

 

  
 

( )a    ( )b   
Figure 7.28 Spring-flexure cantilever subjected to UDL. 
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The first-order deformation at the top of the spring-flexure cantilever is: 
 

C
lw

EI
lw

yyy CEI 28

2
1

4
1

01 +=+=          (7.87) 

 
The first-order deformation at the top of the stick-spring model is: 
 

1

1
01

2
k

lw
y =             (7.88) 

 
Both deformations are the same yielding the horizontal translational spring stiffness : 1k
 

C
l

EI
l

k
+=

4
1 3

1

           (7.89) 

 
It has been shown that the critical load of the stick-spring model is: 
 

lkFcr 11; 2=            (7.90) 
 
After substituting eq. (7.89) into eq. (7.90) the critical load of the stick-spring model is: 
 

CEI
l

lkFcr 2
1

82
11 2

11;
+==          (7.91) 

 
In general, the critical load of eq. (7.91) can be written as:  
 

1

;;
1;

11
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

CcrEIcr
cr FF

F          (7.92) 

 
It has been shown that the critical load of the shear-flexure cantilever is (see eq. (7.54)): 
 

1

;;;
2;

111
2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

bc GAcrGAcrEAccr
cr FFF

F         (7.93) 

 
After substituting eq. (7.92) and eq. (7.93) into eq. (7.86) leads to the critical load of a rigid frame:   
 

1

;;;

1

;;

11111
2

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

bc GAcrGAcrEAccrCcrEIcr
cr FFFFF

F      (7.94) 

 
Where the critical loads obtained from the stick spring model are for: 

• Individual bending [1, 2]: 
 

2;
8
l
EIF EIcr =           (7.95) 
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• Individual rotation [1, 2]: 
 

l
CF Ccr

2
; =          (7.96) 

 
• Global bending [1, 2]:  

 

2

2

;

8
2

l
EAcF

EAccr
=         (7.97) 

  
• Racking shear of the columns [5]: 

 

2;
48

2
h
EI

AGF c
cGAcr c

=′=        (7.98) 

 
• Racking shear of the beams [5]: 

 

ah
EI

GAF b
bGAcr b

24
2; ==        (7.99) 

 
The actual critical loads are for: 

• Individual bending [5]: 
 

2;
837.7
l

EIF EIcr =         (7.100) 

 
• Individual rotation [1, 2]: 
 

l
CF Ccr

2
; =          (7.101) 

 
• Global bending [5]:  

 

2

2

;

837.7
2

l
EAcF

EAccr
=         (7.102)  

 
• Racking shear of the columns (see eq. (6.21)): 

 

2

2

;
2

h
EI

GAF c
cGAcr c

π
ηη ==        (7.103) 

 
Where factor η  is (see eq. (6.22)): 
 

5.0−
=

s
sη          (7.104) 

 
• Racking shear of the beams: 

 

ah
EI

GAF b
bGAcr b

24
2; ==        (7.105) 

 123



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 
The individual rotational spring critical load of the stick-spring model (see eq. (7.96)) is equal to the 
actual individual rotational spring critical load of a rigid frame (see eq. (7.101)), because the 
individual rotation deflection shape of a rigid frame (see fig. 7.29a) is identical to the individual 
rotation buckling shape of a rigid frame (see fig. 7.29b).  
 

              

    

 

   0=bI , ∞=cI    
 

( )a     ( )b      
Figure 7.29 Individual rotational spring shapes for top UDl. 

 
The racking shear critical load of the beams of the stick-spring model (see eq. (7.99)) is equal to the 
actual racking shear critical load of the beams of a rigid frame (see eq. (7.105)), because the racking 
shear deflection shape of the beams of a rigid frame (see fig. 7.30a) is identical to the racking shear 
buckling shape of the beams of a rigid frame (see fig. 7.30b).  
 

               
 
 
 
 
 
 
 
 
 

    

 

  ∞== cc IA     
 

( )a     ( )b      
Figure 7.30 Racking shear shapes of the beams of rigid frames caused by UDL`s. 

 
 
If the actual values for individual bending (see eq. (7.100)), individual rotation (see eq. (7.101)), 
global bending (see eq. (7.102)), racking shear of the columns (see eq. (7.103)) and racking shear of 
the beams (see eq. (7.105)) are substituted into eq. (7.94) the critical load of a rigid frame becomes: 
 

1

2

2

2

212

242837.72837.7

−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++⎥

⎦

⎤
⎢
⎣

⎡
+=

bc
cr EI

ah
EI

h
EAc

l
C
l

EI
lF

πη
   (7.106) 
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7.4 Lateral stiffnesses of a flexible rigid frame 
 

7.4.1 Individual rotational spring stiffness 
The individual rotational spring stiffness of the columns caused by double curvature bending of the 
groundfloor beam can be obtained from (see fig. 7.31). 

C

 

a
EI

EI
aM

MMcC b

b

6

5.03
5.0

222 =

×
×

==′=
φ

       (7.107) 

 
where E  is the elastic modulus,  is the second moment of area of the groundfloor beam and  is 
the distance between the neutral axis of the columns.  

bI a

 

 

    

  
      

   
           

         
              
          l  

 
               

        bEI5.0   c′  c′    C  

                   
 a5.0  

 
Figure 7.31 Individual rotational spring stiffness of a flexibe rigid frame. 
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7.5 Accuracy 
To establish the accuracy of the stick-spring model, critical loads of a number of one-bay rigid frames 
were estimated using the stick-spring model and a finite element analyses. Finite element program 
ANSYS was used to obtain the eigenvalues of the rigid frames. The rigid frames have flexible 
supports and the height of the frames varied from eight to forty stories. The rigid frames are subjected 
to two different loadcases (see fig. 1.5): 

• Vertical top loads (see fig. 1.5a). 
• Uniformly distributed vertical loads (see fig. 1.5b). 

Eight different cases will be investigated for one-bay rigid frames: 
• Individual bending deformation only (see fig. 7.32a)  
• Individual rotational spring deformation only (see fig. 7.32b).  
• Global bending deformation dominates (see fig. 7.32c).  
• Racking shear deformation of the columns only (see fig. 7.32d). 
• Racking shear deformation of the beams only (see fig. 7.32e). 
• Global racking shear deformation dominates (7.32d/e). 
• Individual bending and individual rotational spring deformation (see fig. 7.32a/b).  
• All deformations together (see fig. 7.32a/b/c/d/e). 
                

 
 
 
 
 
 
 
 
 

    
 
  
 

     
     
           

cI   
  
             cA        cI      bI  
        
               C                
  
 

0=bI , ∞=C     0=bI , ∞=cI   ∞== CIb   ∞=== CIA bb  ∞== cc IA
( )cIfEI =     ( )bIfC =   ( )cAfEAc =2   ( )cc IfGA =   ( )bb IfGA =

   ( )a ( )b    ( )c    ( )d    ( )e  
Figure 7.32 Cases to investigate for flexibly rigid frames. 

 
The first seven cases only represent theoretical cases, but the inclusion of them is very important to 
make a well-based judgement on the accuracy of the stick-spring model.  
The critical loads found with the finite element method are assumed to be exact.  

The errors are calculated as follows %100
)(

)( ×
−

=∆
ANSYScr

ANSYScrcr

P
PP

.  

If the error is negative the stick-spring model gives a conservative value for the critical load.  
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7.5.1 Introduction numerical model 
The numerical model shown in figure 7.33 is built up from BEAM3 elements. BEAM3 elements can 
sustain normal forces, bending moments and shear forces. All the connections at each node are 
moment resistant. The columns and beams are divided into three BEAM3 elements.  
In this investigation it is assumed that the columns have an uniform cross-sectional area  and an 
uniform second moment of area  up the height and the beams have a uniform second moment of 
area  up the height except for the groundfloor- and roof beam., which has a second moment of area 

. The cross-section of the beams is assumed to be infinite 

cA

cI

bI
bI5.0 ∞=bA .  

Shear deformations in the beams and columns are neglected, which means . ∞== shearcshearb AA ;;

 

    
    
    
    
    

    

  
   bI5.0    
  

cc IA ,     bI                
    
   bI               

   
   bI       BEAM3 

   bI5.0             
                

     
 

Figure 7.33 Numerical model for a rigid frame flexibly connected to the base.  
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7.5.2 Example 
An eight storey high one bay flexible rigid frame (see fig. 7.34) has an individual bending stiffness 
EI , individual rotational spring stiffness C , global bending stiffness , racking shear stiffness of 
the columns , racking shear stiffness of the beams  and is subjected to two different 
loadcases.  The characteristics of the rigid frame can be found in table 6.1. 

2EAc
cGA bGA

 

 
 

     
           
     
     
     

    

        bI5.0     
                       
  bI  

 
cc IA ,   bI     

 
bI    24=l  

 
bI  

 
bI  

 
bI  

 
bI  

 
3=h  

bI5.0     
          
   
  3=a   

Figure 7.34. Example of flexible rigid frames. 
 

7.5.2.1 Stiffness parameters 
The individual bending stiffness is (see eq. (6.127)): 
 

MNEIEIEI cici 2.13110281.310222 45 =××××==∑= −  
 
The individual rotational spring stiffness is (see eq. (7.107)): 
 

MNm
a
EI

C b 28.48
3

10207.110266 45

=
××××

==
−

 

 
The global bending stiffness is (see eq. (6.60)): 
 

MNcEAcEAEAc icici 156965.110744.110222 225222 =×⋅×××==∑= −  
 
Ratio between the bending stiffnesses: 
 

120
1

15696
2.131

2 ≈=
EAc

EI  
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7.5.2.2 Vertical top load 
The individual bending critical load is (see eq. (7.80)): 
 

MN
l
EIP EIcr 562.0

244
2.131

4 2

2

2

2

; =
×
×

==
ππ . 

 
The individual rotational spring critical load is (see eq. (7.81)): 

 

MN
l
CP Ccr 01.2

24
28.48

; ===           

 
The global bending critical load is (see eq. (7.82)): 
 

MN
l

EAcP
EAccr

24.67
244
15696

4 2

2

2

22

; 2 =
×
×

==
ππ  

 
The racking shear critical load of the columns is (see eq. (7.83)): 
 

MN
h

EI
P c

GAcr c
9.143

3
10281.310222

2

452

2

2

; =
×××××

==
−ππ

  

 
The racking shear critical load of the beams is (see eq. (7.84)): 
 

MN
ah
EI

P b
GAcr b

19.32
33

10207.11021212 45

; =
×

××××
==

−

  

 
The critical load is (see eq. (7.74)): 
 

11
1

;;;

1
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1
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1
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1

01.2
1

562.0
111111
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⎥
⎥
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⎢
⎢
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bc GAcrGAcrEAccrCcrEIcr
cr PPPPP
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MNPcr 35.19=   
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7.5.2.3 Vertical UDL 
The individual bending critical load is (see eq. (7.100)): 
 

MN
l

EIF EIcr 786.1
24

2.131837.7837.7
22; =

×
==  

 
The individual rotational spring critical load is(see eq. (7.101): 

 

MN
l
CF Ccr 02.4

24
28.4822

; =
×

==          

 
The global bending critical load is (see eq. (7.102)): 
 

MN
l
EAcF

EAccr
56.213

24
15696837.7837.7
22

2

; 2 =
×

==  

 
Reduction factor η  is (see eq. (7.104)): 
 

0666.1
15
16

5.08
8

5.0
==

−
=

−
=

s
sη    

 
The racking shear critical load of the columns is (see eq. (7.103)): 
 

MN
h

EI
F c

GAcr c
5.153

3
10281.310220666.1

2
2
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2

2

; =
×××××

×==
−ππ
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The racking shear critical load of the beams is (see eq. (7.105)): 
 

MN
ah
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F b
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33

10207.11022424 45
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××××
==

−

  

 
The critical load is (see eq. (7.94)): 
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+=
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MNFcr 65.38=  

 
All critical loads in this example calculated by the stick-spring model are in bold type and can be 
found in tables 7.8-7.12.     
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7.5.3 Results 
The figures and tables below present the results of the critical loads obtained from the stick-spring 
model and the numerical analysis. 
 

7.5.3.1 Individual bending deformation only 
For results and observations see section 7.3.3.1. 
 

7.5.3.2 Individual rotational spring deformation only 
The second moment of area of the beams is assumed to be zero 0=bI  and the second moment of area 
is assumed to be infinite . The first leads to a zero racking shear critical load of the beams 

. The second leads to an infinite individual bending critical load  and an infinite 
racking shear critical load of the columns 

∞=cI
0; =

bGAcrP ∞=EIcrP ;

∞=
cGAcrP ; . The structure no longer behaves as a rigid 

frame, but as two independent spring-cantilevers, which develop individual rotational spring 
deformation only only. Therefore the rigid frame cannot develop global bending, which leads to a zero 
global bending critical load . Substituting 02;

=
EAccr

P 0; =
bGAcrP , ∞=

cGAcrP ;  and  into  02;
=

EAccr
P

eq. (7.74) leads to: 
 

CcrCcr
Ccr

cr PP
P

P ;;

11

;
0

0
11

0
111

=+=⎥⎦
⎤

⎢⎣
⎡ +

∞
++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

∞
=

−−

.  

 
Now the rigid frame can develop individual rotational spring deformation only.  
Table 7.8 shows the accurracy of the individual rotational spring critical loads  and .  CcrP ; CcrF ;

 
 
Table 7.8. Critical loads for flexible rigid frames, individual rotational spring deformation only. 

Vertical top load P  with 

l
CP Ccr =;  

UDL ( )5.0=γF  with  

l
CF Ccr

2
; =  

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] 

Stick-
spring 
model 

ANSYS Error
[%] ∆

Stick-
spring 
model 

ANSYS Error
∆ [%] 

8 2.01 2.01 0.0 4.02 4.02 0.0 
16 1.01 1.01 0.0 2.01 2.01 0.0 
24 0.67 0.67 0.0 1.34 1.34 0.0 
32 0.50 0.50 0.0 1.01 1.01 0.0 
40 0.40 0.40 0.0 0.80 0.80 0.0 

 
 
Observations 

• The rigid frame develops individual rotational spring deformation only  
(see fig 7.32a). 

 

• The individual rotational spring critical loads are equal to 
l
CP Ccr =;  and 

l
CF Ccr

2
; = ,  

because all errors are zero (see table 7.8). This is because the rotational spring deflection 
shape of the rigid frame is identical to rotational spring buckling shape of the rigid frame. 
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7.5.3.3 Global bending deformation dominates 
For results and observations see section 7.3.3.2. 

 

7.5.3.4 Racking shear deformation of the columns dominates  
For results and observations see section 7.3.3.3. 
 

7.5.3.5 Racking shear deformation of the beams dominates  
The cross-sectional area of the columns is assumed to be infinite ∞=cA  and the second moment of 
area of the columns is assumed to be infinite ∞=cI . The first leads to an infinite global bending 
critical load . The second leads to an infinite individual bending critical load ∞=2;EAccr

P ∞=EIcrP ;  

and an infinite racking shear critical load of the columns ∞=
cGAcrP ; . Substituting , 

 and 
∞=EIcrP ;

∞=2;EAccr
P ∞=

cGAcrP ;  into eq. (7.74) leads to: 
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P ;;;
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;
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11111
≈+=
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Now the rigid frame can develop individual rotational spring and racking shear deformation of the 
beams. Racking shear deformation of the beams dominates, because  . Table 7.9 shows 
the accurracy of the racking shear critical loads of the beams  and .  

CcrGAcr PP
b ;; >

bGAcrP ; bGAcrF ;

 
 
Table 7.9. Critical loads for flexible rigid frames, racking shear deformation of the beams dominates. 

Vertical top load P  UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] Stick-spring model ANSYS  Error ∆ [%] Stick-spring model ANSYS Error [%] ∆

8 34.20 32.19 +6.3 68.40 64.37 +6.3 
16 33.19 32.19 +3.1 66.38 64.37 +3.1 
24 32.86 32.19 +2.1 65.71 64.37 +2.1 
32 32.69 32.19 +1.6 65.38 64.37 +1.6 
40 32.59 32.19 +1.3 65.18 64.37 +1.3 

 
 
Observations 

• The rigid frame develops two modes of deformation: individual rotation  
(see fig. 7.32b) and racking shear of the beams (see fig 7.32e). 

 
• Racking shear of beams dominates the buckling behavior. 

 
• The stick spring model gives good results (see table 7.9).  

 
• The racking shear critical load of the beams are very well be predicted by 

ah
EI

P b
GAcr b

12
; =  and 

ah
EI

F b
GAcr b

24
; = , because the errors are very low (see table 7.9).  
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7.5.3.6 Global racking shear deformation dominates 
The cross-sectional area of the columns is assumed to be infinite ∞=cA , which leads to an infinite 
global bending critical load . Substituting ∞=2;EAccr

P ∞=2;EAccr
P  into eq. (7.74) leads to: 
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where  
1
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+=
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Now the rigid frame can develop individual bending, individual rotational spring and global racking 
shear deformation. Global racking shear dominates, because . Table 7.10 shows the 
accurracy of the global racking shear critical loads  and . 

1;; crGAcr PP >

GAcrP ; GAcrF ;

 
 
Table 7.10. Critical loads for flexible rigid frames, global racking shear deformation dominates. 

Vertical top load P  UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] Stick-spring model ANSYS  Error ∆ [%] Stick-spring model ANSYS Error [%] ∆

8 26.74 27.05 -1.1 46.59 33.69 +38 
16 26.43 27.05 -2.3 45.28 30.96 +46 
24 26.36 27.05 -2.6 44.94 29.95 +50 
32 26.34 27.05 -2.6 44.79 29.41 +52 
40 26.32 27.06 -2.7 44.72 29.07 +54 

 
 
Observations 

• The rigid frame develops four modes of deformation: individual bending (see fig. 7.32a), 
individual rotation (see fig. 7.32b), racking shear of the columns (see fig 7.32c) and 
racking shear of the beams (see fig. 7.32d).  

 
• Global racking shear (racking shear of columns and beams) dominates the buckling 

behavior. 

• The global racking shear critical load  
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is conservative, because all errors are negative (see table 7.10).  
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is unconservative, because all errors are positive (see table 7.10).   
 

• If global racking shear is dominant, which is the case if  2;; EAccrGAcr PP <  , formula 
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 gives unconservative 

critical loads (see table 7.10). 
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7.5.3.7 Individual bending and individual rotational spring deformation  
The second moment of area of the beams is assumed to be zero 0=bI , which leads to a zero racking 
shear critical load of the beams . The structure no longer behaves as a rigid frame, but as 
two independent spring-flexure cantilevers, which develop individual bending and individual 
rotational spring deformation only. Therefore the rigid frame cannot develop double curvature bending 
of the columns, which leads to a zero racking shear critical load of the columns  and the 
rigid frame cannot develop global bending, which leads to a zero global bending critical load 

. Substituting , 

0; =
bGAcrP

0; =
cGAcrP

02;
=

EAccr
P 0; =

bGAcrP 0; =
cGAcrP  and 02;

=
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P  into eq. (7.74) leads to: 
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Now the rigid frame can develop individual bending and individual rotational spring deformation. 
Table 7.11 shows the accurracy of the critical loads  and .  1;crP 1;crF
 
 
Table 7.11. Critical loads for flexible rigid frames, individual bending and individual rotational spring def.  

Vertical top load P  UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] Stick-spring model ANSYS  Error ∆ [%] Stick-spring model ANSYS Error [%] ∆

8 0.439 0.454 -3.3 1.237 1.297 -4.7 
16 0.123 0.126 -2.1 0.365 0.378 -3.4 
24 0.057 0.058 -1.5 0.172 0.178 -2.6 
32 0.033 0.033 -1.2 0.100 0.103 -2.1 
40 0.021 0.022 -1.0 0.066 0.067 -1.8 

 
 
Observations 

• The rigid frame develops two modes of deformation: individual bending (see fig. 7.32a) 
and individual rotation (see fig. 7.32b).  

 
• The stick spring model gives good results (see table 7.11).  

 

• The critical loads 
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F  are conservative, 

because all errors are negative (see table 7.11). This because the individual bending buckling 
shape is not identical to the individual rotational spring buckling shape.  
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7.5.3.8 All deformations together 
Table 7.12 shows the accuracy of the critical loads  and . crP crF
 
 
Table 7.12. Critical loads for flexible rigid frames, all deformations together. 

Vertical top load P  UDL ( )5.0=γF  

Critical loads [MN] crP Critical loads [MN] crF

Number 
of 

storeys 
s  [-] Stick-spring model ANSYS  Error ∆ [%] Stick-spring model ANSYS Error [%] ∆

8 19.35 19.67 -1.7 38.65 32.12 +20 
16 10.38 10.50 -1.2 24.76 25.32 -2.2 
24 5.88 5.92 -0.7 15.68 16.54 -5.2 
32 3.66 3.67 -0.4 10.38 10.83 -4.2 
40 2.46 2.47 -0.3 7.24 7.47 -3.2 

 
 
Observations 

• The buckling behavior of a fixed rigid frame can be divided into individual bending, 
individual rotation, global bending, racking shear of the columns and racking shear of 
the beams (see fig. 7.32).  

 
• The critical loads  and  are conservative, because the errors are negative  crP crF

with  (see table 7.12).  16≥s
 

• Formula 
1

2
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can only be used  

for tall rigid frames dominated by global bending, which is the case if   

(see table 7.12), because it then gives conservative critical loads.  
GAcrEAccr

FF ;; 2 <

 
• The maximum errors for the theoretical tall building structures are (see table 7.8-7.12). 

The highest conservative error for loadcase P  is:    -3.8 %.   
The highest conservative error for loadcase F  is:    -27 %. 
The highest unconservative error for loadcase P  is:    +6.3 %.   
The highest unconservative error for loadcase F  is:    +54 %. 

 
• The extreme cases (see table 7.8-7.11) are normally of theoritical interest, because there is 

always a combination between individual bending, individual rotation, global bending, racking 
shear of the columns and racking shear of the beams. For practical tall building structures, 
therefore only table 7.12 is important.  

 
• The maximum errors for the practical tall building structures are (see table 7.12 in red). 

The highest conservative error for loadcase P  is:    -1.2 %.   
The highest conservative error for loadcase F  is:    -5.2 %. 

 
• All suggested formula give good results for the preliminary design of practical highrise 

flexible rigid frames of 16 till 40 stories within a maximum error of 5.2% . 
 
• All observations are only valid for one-bay flexible rigid frames of eight till forty stories. 

 
• All observations are only valid for the investigated cases in this parameterstudy.   
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8 Discussion and conclusions  
 

8.1 Comparison between suggested formulae and existing formulae 
In the literature several formulae can be found for estimating the critical loads of braced and rigid 
frames. In this section some existing formulae will be compared to the formulae derived with the  
stick-spring model to make a comparison. Only frames subjected to uniformly distributed loads will be 
compared, because this loadcase is only interesting for tall building structures.  
The characteristics of the frames can be found in table 6.1. 
 

8.1.1 Braced frames  

8.1.1.1 Uniformly distributed loads 
  
Zalka 
In 1999 Zalka [24] modelled a braced frame subjected to a vertical UDL by a sandwich column with 
thin faces and obtained a mathematically exact formula for the critical load by making use of a table or 
graph in which a critical load parameter λ  is a function of a stiffness parameter β  
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Where: 

• The stiffness parameter β  is: 
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Hoenderkamp [18-21] 
In 2002 [18-21] Hoenderkamp modelled a braced frame subjected to a vertical UDL by a stick-spring 
model and suggested an approximate formula for the critical load 
 

GAEAc
l

Fcr 2
1

837.7
1

2
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+=          (8.6) 

 
Stick-spring model  
The critical load for a braced frame subjected to a vertical UDL in this project has been derived from a 
stick-spring model and can be written as 
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Fcr η
1

837.7
1

2
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where reduction factor η  is 
 

5.0−
=

s
sη            (8.8) 

 
In tabel 8.1 Zalka`s formula (see eq. (8.1)), Hoenderkamp`s formula (see eq. (8.6)) and the stick-spring 
model (see eq. (8.7)) are compared. Formulae which are based on tables and graphs are given with 
capital letter T and approximate formula with capital letter A in table 8.1. 
 
 
 Table 8.1. Comparison of Zalka, Hoenderkamp and stick-spring model. 

Vertical UDL F  
Critical loads [MN] crF Error ∆ [%] 

Number 
of 

storeys 
s  [-] Zalka 

(sandwich column 
with thin faces) 

T 

Hoenderkamp 
 
 

A 

Stick-
spring 
model 

A 

ANSYS Zalka 
(sandwich column 

with thin faces) 
T 

Hoenderkamp 
 
 

A 

Stick-
spring 
model 

A 
8 153.4 177.8 155.0 179.7 -15 -1.1 -14 

16 46.89 50.83 48.65 51.04 -8.1 -0.4 -4.7 
24 22.02 23.21 22.73 23.26 -5.3 -0.2 -2.2 
32 12.63 13.18 13.03 13.20 -4.3 -0.1 -1.3 
40 8.16 8.47 8.41 8.48 -3.8 -0.1 -0.8 
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Conclusions: 

• If the approximate methods are compared to the FE method Hoenderkamps formula 
gives more accurate results then the stick-spring model (see table 8.1) if the buckling 
behavior is dominated by global bending which is the case if ,  GAcrEAccr

FF ;; 2 <

because the global bending and racking shear buckling shapes of Hoenderkamp  
(see fig. 8.1a/b) are more identical to each other then the global bending and racking shear 
buckling shapes of the stick-spring model (see fig. 8.1c/d). 

 
• The stick-spring model gives always conservative critical loads, but Hoenderkamp`s 

approximate method does not. If the buckling behavior is dominated by global bending 
 Hoenderkamps formula gives conservative critical loads, but if the buckling 

behavior is dominated by global shear  Hoenderkamps formula gives 

unconservative critical loads.    

GAcrEAccr
FF ;; 2 <

GAcrEAccr
FF ;; 2 >

 
• If the approximate methods are compared to the graphical method the approximate 

methods give better results then the graphical method and they are easier to use in the 
preliminary stages of the design (see table 8.1). 

               
 
 
 
 
 
 
 
 
 

    
     ( )a ( )b    ( )c      ( )d

Figure 8.1 Buckling shapes of braced frames for loadcase F  and  FP + . 
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8.1.2 Fixed rigid frames 

8.1.2.1 Uniformly distributed loads 
 
Zalka: continuum model  
In 1998 Zalka [28] modelled a fixed rigid frame subjected to a vertical UDL by a continuum model  
and obtained a mathematical exact formula for the critical load by making use of a table or graph in 
which a critical load parameter α̂  is a function of a stiffness parameter β̂  
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Where: 

• Individual bending critical load is: 
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• Global racking shear critical load is: 
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• Reduction factor sα  is:    
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=

s
s

sα           (8.13) 

 
• Stiffness parameter  is: β̂
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Zalka: sandwich column with thin faces  
In 1998 Zalka [28] modelled a fixed rigid frame subjected to a vertical UDL by a sandwich column 
with thin faces and obtained a mathematically exact formula for the critical load by making use of a 
table or graph in which a critical load parameter λ  is a function of a stiffness parameter β  
 

GAcrcr FF ;λ=            (8.16) 
 
Where: 

• The stiffness parameter β  is: 
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• Global bending critical load is: 
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• Reduction factor sα  is:    
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• Global racking shear critical load is: 
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Zalka: design formula (combination of sandwich column with thin faces and continuum model) 
As both the continuum and sandwich models approach the same problem from a different direction,  
it seems to be sensible to combine the two relevant formula. Zalka [28] combined both methods and 
obtained a design formula by making use of a table or graph in which a critical load parameter α̂  is a 
function of a stiffness parameter  and in which a critical load parameter β̂ λ  is a function of a 
stiffness parameter β  
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Where: 

• Individual bending critical load is: 
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• Global bending critical load is: 
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• Global racking shear critical load is: 
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• Reduction factor sα  is:    
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s
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• Stiffness parameter  is: β̂
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• Stiffness parameter β  is: 
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• Combination factor r  is: 
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Hegedüs and Kollár: sandwich column with thick faces  
In 1984 Hegedüs and Kollár [13] modelled a fixed rigid frame subjected to a vertical UDL by a 
sandwich column with thick faces and obtained a mathematical exact formula for the critical load by 
making use of a table or graph in which  is a numerical parameter 1c
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Hegedüs and Kollár  
In 1984 Hegedüs and Kollár [13] suggested an approximate formula for the critical load of a fixed 
rigid frame subjected to a vertical UDL  
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Stick-spring model  
The critical load for a fixed rigid frame subjected to a vertical UDL in this project has been derived 
from a stick-spring model and can be written as 
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     (8.31) 

 
In tabel 8.2 and 8.3 Zalka`s continuum model (see eq. (8.9)), Zalka`s sandwich column with thin faces  
(see eq. (8.16)), Zalka`s design formula (see eq. (8.21)), Hegedüs/Kollár`s sandwich column with 
thick faces (see eq. (8.29)), Hegedüs/Kollár`s approximate formulae (see eq. (8.30)) and the  
stick-spring model (see eq. (8.31)) are compared. Formulae which are based on tables and graphs are 
given with capital letter T and approximate formula with capital letter A in table 8.2 and 8.3. 
 
Table 8.2. Critical loads for fixed rigid frames. 

Vertical UDL F  
Critical loads [MN] crF

Number 
of 

storeys 
s  [-] Zalka 

(continuum  
model) 

 
T 

Zalka 
(sandwich  

column with 
thin faces) 

T 

Zalka 
(design 

formula) 
 

T 

Hegedüs/ Kollár 
(sandwich  

column with 
thick faces) 

T 

Hegedüs/ 
Kollár 

 
 

A 

Stick-
spring 
model 

 
A 

ANSYS 

8 34.70 26.05 31.10 39.55 25.20 39.19 40.34 
16 22.19 23.57 23.06 25.43 18.07 26.15 24.84 
24 14.74 15.52 15.21 16.11 12.67 15.71 16.60 
32 10.12 10.26 10.23 10.56 8.97 10.39 10.84 
40 7.23 7.13 7.21 7.35 6.52 7.24 7.48 

 
Table 8.3. Errors for fixed rigid frames. 

Vertical UDL F  
Error ∆ [%] 

Number 
of 

storeys 
s  [-] Zalka 

(continuum  
model) 

 
T 

Zalka 
(sandwich  

column with 
thin faces) 

T 

Zalka 
(design 

formula) 
 

T 

Hegedüs/ Kollár 
(sandwich  

column with 
thick faces) 

T 

Hegedüs/ 
Kollár 

 
 

A 

Stick-
spring 
model 

 
A 

8 -14 -35 -23 -2.0 -38 -2.9 
16 -15 -9.9 -12 -2.8 -31 -5.0 
24 -11 -6.5 -8.4 -2.9 -24 -5.4 
32 -6.7 -5.4 -5.6 -2.6 -17 -4.2 
40 -3.3 -4.7 -3.6 -1.8 -13 -3.1 
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Conclusions: 

• If the approximate methods are compared to the FE method the stick-spring model gives 
the most accurate results (see table 8.2/8.3).  

 
• If the graphical methods are compared to the FE method the sandwich column with 

thick-faces gives the most accurate results (see table 8.2/8.3).  
 

• If the most accurate approximate method (stick-spring model) is compared to the most 
accurate graphical method (sandwich column with thick-faces) the graphical method    
gives more accurate results, but the approximate method is easier to use in the 
preliminary stages of the design (see table 8.2/8.3). 

 
• The differences between the approximate methods are the racking shear critical loads of 

the beams and the racking shear critical loads of the columns. The racking shear critical 

load of the columns of eq. (8.31) is a factor 
5.0−s

s  higher then the racking shear critical 

load of the columns of eq. (8.30). This reduction factor is of little importance for tall 
buildings, because it decreases to one if the number of stories increases to infinite. 
The racking shear critical load of the beams of eq. (8.31) is a factor two higher then 
racking shear critical load of the beams of eq. (8.30) and therefore is extremely 
important (see table 8.2/8.3).  
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8.1.3 Flexible rigid frames 

8.1.3.1 Uniformly distributed loads 
The methods introduced by Zalka for fixed frames are the same as for flexible frames. 
There are also some differences: 

• The bending critical loads of a fixed rigid frame (see eq. (8.22) and eq. (8.23)) are different 
from the bending critical loads of a flexible rigid frame (see eq. (8.33) and eq. (8.34)). 

 
• The critical load parameter α̂  of a fixed rigid frame is different from the critical load 

parameter pα̂  of a flexible rigid frame, because α̂  is based on a fixed connection to the base 

and pα̂  on a pinned connection to the base. 
 

• The supporting effect of the groundfloor beam has been taken into account in the design 
formula, but not in the continuum model and sandwich column with thin faces. 

  
Zalka: continuum model  
In 1998 Zalka [28] modelled a flexible rigid frame subjected to a vertical UDL by a continuum model  
and obtained a mathematically exact formula for the critical load by making use of a table or graph in 
which a critical load parameter pα̂  is a function of a stiffness parameter β̂  
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Where: 

• Individual bending critical load is: 
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• Global bending critical load is: 
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• Global racking shear critical load is: 
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• Stiffness parameter  is: β̂
 

EIcr

GAcr

F
F

;

;ˆ =β           (8.36) 

 144



CRITICAL LOADS FOR TALL BUILDING STRUCTURES 
 

• Combination factor r  is: 
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Zalka: sandwich column with thin faces  
In 1998 Zalka [28] modelled a flexible rigid frame subjected to a vertical UDL by a sandwich column 
with thin faces and obtained a mathematical exact formula for the critical load by making use of a 
table or graph in which critical load parameter λ  is a function of stiffness parameter β  
 

GAcrcr FF ;λ=            (8.38) 
 
Where: 

• The stiffness parameter β  is: 
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• Global bending critical load is: 
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• Global racking shear critical load is: 
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Zalka: design formula (combination of sandwich column with thin faces and continuum model) 
As both the continuum and sandwich models approach the same problem from a different direction,  
it seems to be sensible to combine the two relevant formula. Zalka [28] combined both methods and 
obtained a design formula by making use of a table or graph in which a critical load parameter pα̂  is a 

function of a stiffness parameter  and in which a critical load parameter β̂ λ  is a function of a 
stiffness parameter β  
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Where: 

• Individual bending critical load is: 
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• Global bending critical load is: 
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• Global racking shear critical load is: 
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• Stiffness parameter  is: β̂
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• Stiffness parameter β  is: 
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• Combination factor r  is: 
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Hegedüs and Kollár  
In 1984 Hegedüs and Kollár [13] suggested an approximate formula for the critical load of a fixed 
rigid frame subjected to a vertical UDL  
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This approximate formula can also be used for a flexible rigid frame.  
 
 
Stick-spring model 

 

The critical load for a flexible rigid frame subjected to a vertical UDL in this project has been derived 
from a stick-spring model and can be written as 
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In tabel 8.4 and 8.5 Zalka`s continuum model (see eq. (8.32)), Zalka`s sandwich column with thin 
faces (see eq. (8.38)), Zalka`s design formula (see eq. (8.42)), Hegedüs/Kollár`s approximate formulae 
(see eq. (8.49)) and the stick-spring model (see eq. (8.50)) are compared. Formulae which are based on 
tables and graphs are given with capital letter T and approximate formula with capital letter A in table 
8.4 and 8.5. 
 
Table 8.4. Critical loads for fixed rigid frames. 

Vertical UDL F  
Critical loads [MN] crF

Number 
of 

storeys 
s  [-] Zalka 

(continuum  
model) 

 
T 

Zalka 
(sandwich  

column with 
thin faces) 

T 

Zalka 
(design 

formula) 
 

T 

Hegedüs/ 
Kollár 

 
 

A 

Stick-
spring 
model 

 
A 

ANSYS 

8 28.15 26.11 27.26 25.20 38.65 32.12 
16 19.82 24.19 22.04 18.07 24.76 25.32 
24 13.64 16.19 14.94 12.67 15.68 16.54 
32 9.55 10.66 10.11 8.97 10.38 10.83 
40 6.84 7.37 7.11 6.52 7.24 7.47 

 
Table 8.5. Errors for fixed rigid frames. 

Vertical UDL F  
Error [%] ∆

Number 
of 

storeys 
s  [-] Zalka 

(continuum  
model) 

 
T 

Zalka 
(sandwich  

column with 
thin faces) 

T 

Zalka 
(design 

formula) 
 

T 

Hegedüs/ 
Kollár 

 
 

A A 

Stick-
spring 
model 

 

8 -12 -19 -15 -38 +20 
16 -22 -4.5 -13 -31 -2.2 
24 -18 -2.1 -9.7 -24 -5.2 
32 -12 -1.6 -6.6 -17 -4.2 
40 -8.4 -1.3 -4.8 -13 -3.2 

 
Conclusions: 

• If the approximate methods are compared to the FE method the stick-spring model gives 
the most accurate results (see table 8.4/8.5).  

 

 
• If the graphical methods are compared to the FE method the sandwich column with 

thin-faces gives the most accurate results (see table 8.4/8.5).  
 

• If the most accurate approximate method (stick-spring model) is compared to the most 
accurate graphical method (sandwich column with thin-faces) the graphical method    
gives more accurate results, but the approximate method is easier to use in the 
preliminary stages of the design (see table 8.4/8.5). 

• The differences between the approximate methods are the rotation spring critical load, 
the racking shear critical loads of the beams and the racking shear critical loads of the 
columns. Eq. (8.49) neglects the influence of the rotation spring critical load and eq. 
(8.50) not, but the influence of the rotation spring critical is of very little importance.  

The racking shear critical load of the columns of eq. (8.50) is a factor 
5.0−s

s  higher then 

the racking shear critical load of the columns of eq. (8.49). This reduction factor is of 
little importance for tall buildings, because it decreases to one if the number of stories 
increases to infinite. The racking shear critical load of the beams of eq. (8.50) is a factor 
two higher then racking shear critical load of the beams of eq. (8.49) and therefore is 
extremely important (see table 8.4/8.5).  
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8.2 Comparison of all investigated structures 
The following structures have been investigated: 

• X-braced frames with non-continous columns pin-connected to the base (see  fig. 8.2a). 
• X-braced frame with continous columns pin-connected to the base (see  fig. 8.2b). 
• Fixed rigid frames (see fig. 8.2c). 
• Flexible rigid frames (see fig. 8.2d). 

In this section these structures will be compared. The best way to do so is to compare their critical 
loads. In this way it can be concluded, which of the structures is the most effective.  
The characteristics of the frames can be found in table 6.1. The critical loads of these structures have 
been computed by a finite element method ANSYS and the results are given in table 8.6. 

 
   
                           
                        

            
          
 
 
 
        
 

       ( )a ( )b    ( )c    ( )d
      Figure 8.2 Investigated structures. 
 
Table 8.6 Critical loads of one-bay structures subjected to UDL. 

F  Vertical UDL

Critical loads  [MN] crF
Number of storeys s  [-] 8 16  24 32 40 

Braced frames with non-continous columns 180.0 51.37 23.43 13.30 8.55 
Braced frames with continous columns 179.7 51.04 23.26 13.20 8.48 

Fixed rigid frames 40.34 26.15 16.60 10.84 7.48 
Flexible rigid frames 32.12 25.32 16.54 10.83 7.47 

 
 
Conclusions: 

• Braced frame are more effective then rigid frames, because the critical loads are higher 
(see table 8.6). 

because the critical loads are nearly the same (see table 8.6).  

  
• If the number of stories increases the difference in performance of the structures 

becomes smaller, because the difference between the critical loads of the structures decreases. 
This is because all structures eventually develop global bending deformation only if the 
number of stories increases (see table 8.6).  

 
• The difference in performance of braced frames with non-continous and with continous 

columns is negligible for tall buildings which are dominated by global bending,  

 
• The suggested formula give good results for the preliminary design of practical tall 

braced and rigid frames within a maximum error of 10%. 
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9 Recommendations 
Many recommendations can be made for further research involving the critical load of a structure.  
In this chapter these recommendations will be summed up.  
 
In this project only frames have been investigated with a width of 3 m and a storey height of 3 m,  
but for tall buildings it would be better to investigate frames with a width of 7.2 m and a storey height 
of 3.6 m.  
 
The parameter study for frames is restricted in this project. It could be useful to expand this parameter 
study. 
 
The approximate formula for fixed and flexible rigid frames obtained by the stick-spring model gives 
high unconservative errors if these rigid frame are dominated by global racking shear  
(see table 7.4 and 7.10). It could be interesting to investigate the buckling behavior of fixed and 
flexible rigid frames which are dominated by global racking shear further.    
 
In this project only one-bay X-braced frames pin-connected to the base have been investigated.  
It could be useful to investigate one-bay braced frames with other types of bracing (see fig. 9.1).  
For example N-bracing (see fig. 9.1a), K-bracing (see fig. 9.1b) and Knee-bracing (see fig. 9.1c).  
 

 
 

   
              
       
       
        

       

  
( )a    ( )b    ( )c     

 

It can be interesting to investigate frames with more then one-bay (see fig. 9.2).  

Figure 9.1 Different type of bracing. 

Only one-bay X-braced frames and one-bay rigid frames have been investigated.  

 
              
        
        
        

       

  
Figure 9.2 Two-bay frames. 

 

It can be fascinating to investigate other types of rigid frames (see fig. 9.3). For example rigid frames  
Only one-bay rigid frames fix- and flexibly connected to the base have been investigated.  

pin-connected to the base. 
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Figure 9.3 Rigid frame pin-connected to base. 

 
For rigid frames shear deformations in the beams and columns will normally be neglected. 
For coupled walls the influence of the shear deformations of the columns and beams could be taken 
into account, because the beams and columns are compact. It can be useful to investigate the influence 
of the shear deformations of the beams and columns on the overall critical load of a coupled wall  
(see fig. 9.4). 
 

  
  
  
  

  

   

 
 

Figure 9.4 Coupled walls. 
 
Only regular structures have been investigated, which means structures with uniform stiffness up the 
height or uniform width up the height and all storeys have the same storey height.  
It can be interesting to investigate non-regular structures (see fig. 9.5). For example frames with 
varying width up the height (see fig. 9.5a), frames with varying stiffness parameters up the height  
(see fig. 9.5b) and frames with longer first storey columns (see fig. 9.5c). 
 

   
         
                
          
          
          
 
 
       
 

  
( )a     ( )b     (  )c

Figure 9.5 Non-regular structures. 
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In this project loads are applied symmetrically, but this is not always the case and sometimes columns 
are overloaded in comparison with others, which affects the critical load and the buckling shape.  
It could be interesting to investigate the influence of assymetrical loading on the critical load of frames 
(see fig. 9.6). 
 

  
  
  
  
  

  

  
Figure 9.6 Assymetrically loaded frames 

 
Only the buckling behavior of separate braced and rigid frames has been investigated.  
It can be interesting to investigate the critical load of a combination of structures.  
For example a combination of a core, braced frame, rigid frame and coupled wall (see fig. 9.7).  
 

   
                      
              
          
         

       

  
Figure 9.7 Combination of a core, braced frame, rigid frame and coupled wall.  
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Summary 
 
 
Introduction 
Tall buildings are usually subjected to horizontal wind loading and vertical gravity loading. 
The horizontal wind loading causes first-order deflections. These deflections cause eccentricities of the 
vertical loads, which cause additional bending moments and additional deflections. These additional 
deformations and additional bending moments are called second-order effects. Building space is scarce 
and therefore buildings become taller and slender and are more vulnerable to horizontal windloading 
and second order effects. It is possible to estimate these second order effects in the preliminary stages 
of the design by defining the elastic critical load of and the vertical load on the structure.  
 
Objective 
Obtain simplified equations for estimating the elastic critical load of lateral load resisting braced and 
rigid frames in the preliminary stages of design of tall buildings, which combine the major modes of 
behavior. 
 
Model 
The stick-spring model will be used to obtain this simplified equation for the elastic critical load.   
 
Structures to investigate 
The following one-bay sway structures will be investigated: 

• Braced frames (see fig. 0.1a).  
• Rigid frames (see fig. 0.1b). 
  

       
      
      
      
 
 
 
      
 

   

   
( )a     ( )b      
Figure 0.1 Structures to investigate. 

 
Loadcases to investigate 
The sway-structures are subjected to three different loadcases (see fig. 0.2): 

• Vertical top loads (see fig. 0.2a). 
• Uniformly distributed vertical loads (see fig. 0.2b). 
• Load combinations (see fig. 0.2c). 

For tall buildings only uniformly distributed vertical loads are interesting. 
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( )a    ( )b      ( )c

Figure 0.2 Loadcases sway structures. 
 
Braced frames 

• Global bending 
The buckling behaviour of a braced frame can be divided into 2 modes of deformation: 

( )2EAc : axial deformation in the columns (see fig. 0.3a).  
• Racking shear ( )GA : axial strains in the diagonals (see fig. 0.3b). 

 

  

    

 

     
        
 

cA          dA     
        
    
                
 
  
    

∞=dA   ∞=cA  
   ( )cAfEAc =2     ( )db AAfGA ,=       

( )a     ( )b      

 

The overall critical load of a braced can be obtained by combining all individual critical loads 

Fig 0.3 Modes of deformation of a braced frame. 

Each mode of deformation is related to an individual critical load and a buckling shape. 
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Where: 

• Global bending critical load is:   
 

2

2

;

837.7
2

l
EAcF

EAccr
=          (0.2) 

 
• Racking shear critical load is:       
 

GAF GAcr η=;           (0.3) 
  

where reduction factor η  is: 
  

5.0−
=

s
sη           (0.4) 

 

The buckling behaviour of a rigid frame can be divided into 4 modes of deformation: 
)

Rigid frames 

• Individual bending ( : single curvature bending of the vertical members (see fig. 0.4a). 
Global bending 

EI
( )2EAc : axial deformation in the columns (see fig. 0.4b).  

• Racking shear of the columns ( : double curvature bending in the columns (see fig. 0.4c). )
)

cGA
• Racking shear of the beams ( : double curvature bending in the beams (see fig. 0.4d).  bGA
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Fig 0.4 Modes of deformation of a rigid frame. 

 
The overall critical load of a rigid frame can be obtained by combining all individual critical loads 
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Where: 

• Individual bending critical load is:     
 

2;
837.7
l

EIF EIcr =          (0.6) 

 
• Global bending critical load is:      

 

2

2

;

837.7
2

l
EAcF

EAccr
=          (0.7) 

 
• Racking shear critical load of the columns:  
 

2

2

;
2

h
EI

F c
GAcr c

π
η=          (0.8) 

 
• Racking shear critical load of the beams:    
 

ah
EI

F b
GAcr b

24
; =          (0.9) 

 
The accuracy of the stick-spring model will be checked by a finite element analysis.  
 
 
Conclusion 

• All suggested formula give good results for the preliminary design of practical highrise 
braced and rigid frames within a maximum error of 10%. 
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