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Abstract 

Model Predictive Control (MPC) can be described as a method in which a model of the 
process that must be controlled is used to predict the future effect of possible changes to the 
process. A practical performance criterion is minimized in order to calculate the optimal 
inputs, bringing the process behaviour very near to the preferred behaviour. This procedure of 
finding the optimal control steps is repeated every time step of the process. Contrary to most 
other control strategies, MPC can very easily deal with constraints put on the inputs and 
outputs of the process. This report is the result of a study to the possible application of MPC 
in cantrolling the melt index (or equally the melt flow rate) during grade changes at polyethy­
lene production. 

Before starting out on MPC, a model descrihing the quantity to be controlled (the melt index) 
as a function of the manipulated variables (modifier concentration in the tube reactor, the total 
reactor mass flow, and the temperature profile in the reactor) had to be developed. A statistica! 
model was developed descrihing the melt index directly after the tube reactor as a function of 
the modifier concentration, the peak temperatures in the tube reactor, the temperature after the 
preheater and the pressure and temperature in the suction section of the compressor unit. The 
last two variables uniquely determine the total reactor mass flow. 

For the MPC controller design, step responses were estimated for all the temperatures. This 
was done by step experiments on the plant. The step responses for the modifier concentration 
were calculated from a second order model, descrihing the modifier concentration as a functi­
on of the modifier flow into the system ,the flow of the purge and the ethylene conversion in 
the tube reactor. The step responses of the pressure and temperature in the suction section of 
the compressor were found to be of the same order as those of the temperatures. 

In Matlab an MPC simulation was built and simulations were performed for investigating the 
optimal setting for the MPC controller in cantrolling the melt index during grade changes. The 
plant was taken the same as the model found by identification. The performance of the MPC 
controller with the optimal settings was then compared with the present, manual operator 
control of the plant. From the simulations performed in Matlab it can be concluded that an 
MPC controller will decrease the time needed for grade changes with 20%. Furthermore the 
simulations showed that the MPC controller is also applicable to steady state control of the 
plant. 

It should be noted that in the simulations the melt index directly behind the tube reactor is 
calculated, and not the melt index at the extrusion die-plate of the extruder (the actuallocation 
of the melt index measurement). This implies that the dynamic behaviour (residence time and 
partial mixing) of the separator and extruder was not taken into account. And an optimal 
control strategy would be to lower the level in the separator before and during a grade change, 
resulting in minimum off-spec production during grade changes. 
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Chapter 1 Introduetion 

This report is the result of the author' s final degree project as a graduate student in Applied 
Physics at Eindhoven University of Technology. The project was carried out at a real-life 
polyethylene plant from September 1995 to J uly 1996. The goal of the project is to investigate 
the application of MPC in Melt Index control during grade changes and normal control during 
the production of polyethylene. 

The aim of this project is to study the applicability of MPC on chemica! plants. By applying 
MPC to a reallife plant one can learn from all the practical advantages and difficulties of 
MPC. First of all a model of the polyethylene plant was made by means of dynamic black box 
modelling tools PRIMAL and Matlab. Although a lot of experiments had been performed, it 
didn't seem possible to identify proper dynamic black box models from these experiments, 
due to unpredictable reactor pollutions. Furthermore the insight was gained that the producti­
on of polyethylene is a very fast process with regard to the sampling time at which the plant is 
operated. Thus so satisfactory statistica! models could be used, and were made with SPSS. In 
Matlab an MPC controller was designed for simulating the polyethylene plant and centrolling 
it by means of MPC. The results of the simulations are shown in this report, and also some 
general conclusions about the applicability of MPC in chemica! plants are drawn. 

In Chapter 2 of this report a general description of the polyethylene production process and the 
Melt Index are given. A short outline of MPC is given in Chapter 3, and the application of 
MPC on the Melt Index control is shown in Chapter 4. The results of the simulations are 
shown in Chapter 5 and the conclusions are drawn in Chapter 6 of this report. 
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Chapter 2 polyethylene production 

2.1 History of polyethylene production 

In 1933, chemists of the Imperia! Chemica! Industries laboratories were elaborating on the 
reaction between benzaldehyde and ethylene at a pressure of 1500 bar and temperatures 
between 100°C and 160°C. Without their knowledge, traces of oxygen had been enclosed in 
the reaction unit, enough tostart polymerisation of ethylene. The chemists discovered a wax­
like powder: polyethylene. Soon they also discovered that the () polyethylene had very useful 
mechanica! properties (e.g. thermal and electrical insulation). 

ICI managed to develop a reaction based on the compression of ethylene at high temperatures 
into a tank reactor together with peroxydes and oxygen. During the Second World War, the 
German company BASF applied tube reactors to manufacture polyethylene in a continuous 
process. In 1954, Ziegier discovered high density polyethylene through production at low 
pressures and temperatures, using special catalysts. 

As different production processes for polyethylene were developed several types of poly­
ethylene were discovered. The different types of polyethylene can be classified as shown in 
Table 2.1. 

Table 2.1: Overview of the different types of polyethylene, their densities and the total year 
production in 1989 [RAY85]. 

. :·.·'·· :. ··.=::= .. : .·:=::.·:·' ,::::· 

type of p()lY~~~iY!~IlÓ t ······ 
lldpe (linear low density polyethylene) 0.880 g/cm3

- 0.950 g/cm3 

ldpe ( low density polyethylene) 0.910 g/cm3
- 0.940 g/cm3 

hdpe (high density polyethylene) 0.940 g/cm3
- 0.980 g/cm3 

············M@.wqrld~d~·ïit.· .. 
4.700.000.000 kg 

10.000.000.000 kg 

8.300.000.000 kg 

In Figure 2.1 a schematic al overview of the molecular chain structures of the different types of 
polyethylene is given. 
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11dpe: 

Figure 2.1: schematic overview ofthe molecular chain structure ofpolyethylene [ART93]. 

2.2 General description of the plant 

In the following a, schematic overview of the plant and a description of the different parts of 
the plant will be given by means of Figure 2.2. 

Figure 2.2: schematic overview ofthe polyethylene plant. 
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2.2.1 The ethylene inlet 

Before the fresh ethylene is fed to the compressor, a modifier is added to the process gas. 
Since there are inert pollutions in the ethylene inlet such as methane, ethane and carbon 
dioxide, a purge is installed at the recycle coming from the separator unit in order to reduce 
the impurities and modifier concentration when necessary. 

2.2.2 The compression unit 

In the compression unit the process gas is compressed to a very high pressure. This is the 
pressure in which the polyethylene is formed in the tube reactor. 

2.2.3 The preheating units 

Before the process gas is led into the tube reactor, the temperature of the gas is increased to 
the desired inlet temperature of the tube reactor by the preheating unit. After gas has passed 
the preheater, the inlet temperature of the reactor is measured. Thus the temperature of the 
preheater can betaken as the first bottorn temperature of the reactor, and is a controllable 
quantity. 

2.2.4 The tube reactor 

The tube reactor is embedded in a cooling jacket. The cooling jacket is divided in several 
regions. The total flow of chilled water flowing through each region of the cooling jacket can 
be controlled. This way only the parts of the reactor are cooled where the strong exothermic 
polymerization reactions are taking place. Furthermore, the process runs at very high pressures 
and thus the tube jacket has to be rather thick, which has a daropening effect on the heat 
transfer through the tube jacket. 

In the tube reactor there are two reaction zones in which initiator is fed to the process by 
plunger pumps. The added initiator will stimulate the polymerization reaction and thus raise 
the temperature. Since the polymerization reaction is exothermic, the peak temperatures 
occurring after the initiator feed, directly depend on the amount of initiator added to the 
process. The peak temperatures are controlled variables: the amount of initiator is PID-eon­
trolled with the setpoint of the peak temperatures. When all the radicals introduced by the 
initiator are used up, the polymerization reaction will stop. At this point the process gas is fed 
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through a cooling zone (i.e. the cooling jacket around the tube reactor). Since cooling of the 
process gas is required after each initiation, there are also two cooling zones. This results in 
the temperature profile inthereactor as shown in Figure 2.3. Summarizing the temperature 
profile is controlled by the initiator feed, the temperature of the cooling water and flow of the 
cooling water through the cooling zones. 

Î 

initiator 
fccd 

cooling 
zone 

/~\ 
I . 

initiator 
fccd 

cooling 
zone 

reactor lenght 

Figure 2.3: the temperafure profile inside the tube reactor. 

The total reactor mass flow is defined as (see Figure 2.2): 

with: • <Pm,R 
• <P m,ethylene . "" . 'l'm,mod•fier 
• <P m,recycle 
• <Pm,purge 

<Pm,R = <Pm,ethylene + <Pm,modifier + <Pm,recycle - <Pm,purge 

the total reactor mass flow, 
the ethylene mass flow into the system, 
the modifier mass flow into the system, 
the total recycle flow from the separator, 
the purge mass flow. 

(2.1) 

In Figure 2.4 a schematic overview is given of the reactor pressure control structure. At the 
beginning of the tube reactor the pressure is measure (PI in Figure 2.4). This pressure is held 
constant by PID-eontrol of the valve at the end of the tube reactor. An increase in the total 
reactor mass flow <Pm.R will thus result in a higher pressure drop over the tube reactor (~pR). 
Since the pressure before the tube reactor is held constant, the average pressure in the tube 
reactor will decrease (see Figure 2.4). 

The total reactor flow can be described as a function of the pressure and the temperature of the 
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suction section of the compressor. Since the volume of the suction section of the compressor 
and the speed of revolutions of the engine which moves the suction remain constant, the 
volume flow is uniquely determined by the temperature and pressure in the suction section of 
the compressor. Since the density of the ethylene I modifier mix going into the tube reactor is 
almost constant, and the inlet temperature is too, the volume flow can transformed to a mass 
flow. 

The total reactor mass flow can then be calculated from the following equation: 

with: 

"' - a *P - b * T + c 'V m,R - comp comp 

• <Pm,R 
• Pcomp 

• Tcomp 

the total reactor mass flow, 
the pressure in the compressor, 
the temperature in the compressor. 

Pr•h•~:t~t•r 
Compressor 

Tube reactor 

~ 
Sepal'tllor J 

r 

x 

(2.2) 

Figure 2.4: the increase in the pressure drop in the reactor, as a result from a higher total 
reactor mass flow, with PR the reactor pressure, x the place, and PI the pressure indicator at 
the beginning of the tube reactor. 

2.2.5 The cooling unit 

At the end of the tube reactor, there is an extrusion valve for cantrolling the pressure in the 
tube reactor. When the ethylene-polyethylene mixture leaves the reactor, an expansion takes 
place. Since the temperature might still be to high after the expansion, a cooling unit is 
installed to lower the temperature. 
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2.2.6 The separator 

In the separator, the ethylene is separated from the polyethylene. This is possible because at 
the lower pressure the ethylene-polyethylene mixture starts to separate into two phases. The 
polyethylene is fed to the extruder and the ethylene is fed back to the compressor unit via the 
recycle. In this recycle circuit the purge is situated, because at this stage the concentration of 
inert pollutions is at its maximum. This can beseen in Figure 2.2: in theseparator the separa­
tion between the polyethylene and the ethylene reaction mix is reached. Since the inert polluti­
ons are separated from the polyethylene here, the concentration of the pollutions in the remai­
ning ethylene mix will beat it's maximum. 

2.2. 7 The extruder 

In the extruder, the polyethylene melt is homogenized and degassed. In Figure 2.5 a schematic 
overview of the extruder is shown. 

,---------, 
1 Seiscor I 

Feed 

Syringe Gearing 

Figure 2.5: schematic overview of the extruder. 

The polymer melt is pressurized by the syringe at the beginning of the extruder and eventually 
fed to a syringe and then to the granulator. lt is here, at the end of the extruder that the melt 
index is measured by measuring the flow coming through a tube of a specified diameter at a 
standardized pressure and standardized temperature. The melt index is redprocal to the 
viscosity of the polyethylene. 

2.2.8 The granulator and dryer 

In the granulator the melt flow is converted to pellets by cutting the melt flow from the 
syringe to appropriate pieces and cooling these in water. The pellets are then transported to the 
dryer. Finally the polyethylene is filtered and packed for transportation. 
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2.3 Reaction types 

The polymerization of ethylene to polyethylene is a chain reaction. In the production of 
polyethylene so called radical initiators are used to start the polymerization. Several steps in 
the process can be identified: initiation, propagation and termination. Furthermore, some side 
reactions also take place, some of these are treated in this report. The reactions taking place as 
a result of the added radical initiators are described in Appendix A. 

Furthermore a modifier is added to control the average molecular lengthof the polymer. The 
reactions which involve the modifier are described below. For further reading the reader is 
referred to [KIP93]. 

2.3.1 Modifier reactions 

To the polymerization reaction the modifier mainly acts as an inert pollution, slowing down 
the rate of polymerization, which results in shorter chain lengths and therefore a lower viscosi­
ty. 
Actually, the modifier is not totally inert with respect to the polymerization reactor. Some of 
the modifier is built into the polyethylene. This can be written as follows: 

kmodifier 

Mx + modifier - Mx + modifier 

with: • Mx the polyethylene, 
• Mx+modifier the polyethylene with the modifier, 
• modifier the modifier, 
• k the reaction rate coefficient for the modifier reaction. modifier 

The reaction rate coefficient is found to be related to the ethylene conversion as follows: 

with: • kmodifier 

. " 

k =a*n +b modifier 'I 

the reaction rate coefficient, 
the ethylene conversion . 
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2.4 The melt index 

For commercial polyethylenes product properties are usually specified by melt index and 
density. As already described in the previous, the melt index is an important product quality 
which is measured online at the end of the extruder, before the granulator. The melt index is 
measured by a device in which the polymer melt is led through a tube of a certain diameter 
under standardized pressure and temperature. The melt index is now defined as the mass flow 
of polymer melt through the tube. The tube diameter to be used for melt index measurements 
is dependent on the operating range of the actual melt index. 

The melt index has a reciprocal relation to the average length of the molecules in the polyethy­
lene, since a long average chain length will result in a high viscosity of the polyethylene, 
which in its turn results in a low melt index (i.e. the melt flow through the melt index measu­
rer per unit of time). 

The melt index depends on three key quantities: the pressure and the temperature in the 
reactor and the modifier concentration. This can be expressed as: 

with: • mi 
• PR 
• TR 
• [modifier] 

the melt index, 
the average pressure in the tube reactor, 
the temperature profile in the tube reactor, 
the modifier concentration in the reactor. 

(2.5) 

lt is widely accepted that the melt index and the density of the produced polyethylene respond 
instantaneously to changes in the gas composition andreactor temperature and pressure (see 
[AUL93]). Since that radical polymerization reactions have stopped when the peak in the 
temperature profile is reached, it can be stated that the partial melt index is produced in the up 
going part of the temperature profile. The tube reactor can be divided into four parts: two up 
going parts and two down going parts according to the temperature profile. 

In the following, a qualitative description of the dependency of the melt index of the key 
quantities in the plant will be given. Fora clear understanding of the processes in the tube 
reactor, the melt index will bedescribed as being dependent on the average pressure in the 
reactor, the temperature profile inthereactor and the modifier concentration in the reactor. 

2.4.1 The pressure in the reactor 

As stated before, the inlet pressure in the tube reactor is held constant by means of a PID­
eontrolloop which operates a valve at the end of the tube reactor (see Figure 2.4). Because the 
pressure at the beginning of the tube reactor remains constant, the pressure drop over the 
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reactor is determined by the total reactor mass flow, <l>m.R. An increase in the total reactor mass 
flow will result in an increase of the pressure drop over the reactor and thus in a decrease of 
the average pressure in the tube reactor. An decrease in the average pressure in the tube 
reactor will generally lead to an decrease in the average molecular chain length, resulting in a 
higher melt index. Because of the properties of the gas mixture the effect often will reverse. 
This is the reason why an increase in the total reactor mass flow mostly lead to an increase in 
the melt index, and not a decrease. 

Since the total reactor mass flow is nota measured quantity, the relation between the total 
reactor mass flow and the temperature and pressure in the suction section of the compressor 
unit has to be used in predicting the influence of the average reactor pressure on the melt 
index. From equation 2.2 we see that the temperature of the suction section of the compressor 
has a negative influence on the total reactor mass flow, whereas the pressure in the suction 
section has a positive influence on the total reactor mass flow. Combining this with the 
knowledge that an increase in the total reactor mass flow will result in an increase inthemelt 
index, because of the harmonica effect on the peak temperatures, it can be stated that the 
temperature in the suction section of the compressor has a negative influence on the melt 
index, and the pressure in the suction section of the compressor has a positive influence on 
the melt index. 

2.4.2 The temperature profile 

The temperature profile (see Figure 2.3) in the reactor is determined by the amount of initiator 
added to the process at the two inlet points, the temperature of the chilled water, the flows of 
the cooling water into the cooling zones of the reactor jacket and the total reactor mass flow. 
The peak temperatures are PID-eontrolled by the amount of initiator, and the bottorn tempera­
tures are a result of the previous peak temperatures, the temperature and total flow of the 
chilled water in the cooling jacket around the tube reactor and the total reactor mass flow. The 
temperature after the preheater (i.e. the inlet temperature of the reactor) also is a controllable 
quantity. 

The temperature profile inthereactor actually determines the conversion rate of ethylene to 
polyethylene by means of its absolute height and gradient in the up going parts. In general it 
can be stated that a larger temperature range in the up going part of the temperature profile 
will result in a higher conversion rate, and thus in more polymerization reactions, resulting in 
a lower average molecular chain length and a higher melt index. So it follows that an increase 
in the peak temperatures and a decrease in the bottorn temperatures ( or equally a decrease in 
the temperature after the preheater, which can beseen as the first bottorn temperature) both 
will result in an increase of the melt index. 
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2.4.3 The chain transfer agents 

In the third place, the concentrations of the modifier affects the melt index. An increase of the 
modifier concentratien will result in shorter ebains in the polymer and thus in a higher melt 
index. The concentratien of the modifier can be calculated from the total reactor mass flow, 
the ethylene conversion, the fresh modifier flow and the flow of the purge. A model was 
deduced descrihing the modifier concentratien as a function of the given quantities. 

2.4.4 The melt index model 

From the previous paragraphs it can be concluded that a model descrihing the melt index as a 
function of the properties of the gas mixture in the tube reactor is should contain the following 
quantities: the temperature and pressure in the suction section of the compressor, the peak 
temperatures and the bottorn temperatures in the tube reactor, the temperature after the 
preheater and the modifier concentration. This results in a model for the melt index of the 
following form: 

with: •mi 
• Pcomp 

• Tcomp 

• Tpreh 

• Tpeakx 

• Tbottom 

• [modifier] 

mi = f(p comp, Tcomp' Tpreh, Tpeakl ,2' Tbottom, [ modifier]) 

the melt index, 
the pressure in the suction section of the compressor unit, 
the temperature in the suction section of the compressor unit, 
the temperature after the preheater, 
the x-th peak temperature, 
the bottorn temperatures, 
the modifier concentration. 

(2.6) 

Later on we will see that implementing the bottorn temperatures in the model for the melt 
index is very difficult, since the bottorn temperatures are not controlled variabie (see above). 
Furthermore the modifier concentratien is controlled by the fresh modifier flow and the flow 
of the purge, thus these quantities are taken as controlled variables, rather than the modifier 
concentration. 
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Chapter 3 Model Predictive Control 

3.1 Introduetion 

During the last decade Model Based Predictive Control (MBPC, or generally MPC) has 
emerged as a powerlul control technique, especially in (petro-) chemica! industry. The 
strength of MPC is that it can deal with processes which are multi-variabie and have con­
straints in a very clear way. The first ideas about MPC emerged in the early 1960's, when 
Zadeh, Whalen and Propoi [ZAD62] and [PR063] started out on linear programming and 
moving liorizons in time for optima! control purposes. Further work was done in the 1970's 
and at the end of that decade MPC was stimulated even further by the application of MPC in 
the petrochemical industry by Richalet et al. [RIC78] and Cutier and Ramaker [CUT79]. 

In short MPC can be described as a metbod in which a model of the process that must be 
controlled is used to predict the future effect of possible changes to that process. A practical 
performance criterion is minimized in order to calculate the optima! inputs, bringing the 
process behaviour very near to the preferred behaviour. This procedure of finding the optima! 
control steps for the process by minimizing a performance criterion is repeated every time a 
new control move is implemented to the process (e.g. each sampling time ofthe process). 

3.2 OutJin es of MPC 

In general MPC can handle constrained multi-input-multi-output (MIMO) processes. The 
inputs of the process usually are called manipulated variables (MV' s) and in the case of 
disturbances which can be measured from the process: measured disturbances (MD's). The 
outputs of the process usually are the quantities to be controlled, or the controlled variables 
(CV's). Forthermore there are the preferred reference trajectories for the CV's, or just the 
reference trajectories. 
As an example we will now consicter a SISO process (see Figure 3.1). 
In an MPC controller a discrete time model is used to predict the future outputs (CV's) ofthe 
process p steps ahead (the crosses and circles in Figure 3.1). At each time step (k ~ k+l) a 
sequence of m control actions on the inputs (MV's) is calc.ulated which satisfies the perfor­
mance criterion best (the solid lines in Figure 3.1), taking into account the measured distur­
bances (MD's) and the desired reference trajectories (PV's, the upper solid line in Figure 3.1). 
In this example the performance criterion is taken to be the squared deviation of the output 
from the desired reference trajectory. 
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Figure 3.1: MPC control moves implemented on a SISO system. The preferred output is a unit 
step at time=], the control moves calculated by the MPC algorithm are shown by the solid 
line, the estimated response at the previous time step by the circles and the estimated response 
at the actual time step by the crosses. 

Since MPC uses models to predict future responses of the process for possible inputs it is very 
important to have reliable models. Furthermore MPC is a discrete time metbod and thus the 
choice of the sampling time also is of great importance. Too small a sampling time will drive 
the computing effort to astronomical height, where as too large a sampling time will result in 
poor control of the process since important features (short in time) areleftout of the models. 
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Generally each model predictive controller consists of the following parts: 
• a model of the process to make predictions; 
• a desired reference trajectory (or setpoint); 
• a performance criterion which has to be minimized; 
• a computational algorithm for finding the optimal control moves. 

The model of the process needed for MPC usually is in the form of step responses or impulse 
responses (but parametrie models such as ARMAX modelscan also be used). In essence 
MPC is designed to handle linear, time invariant processes, but extensive research is done on 
modified versions of MPC can be set to handle non-linear, time variant processes. 

3.3 The MPC algorithm 

A short description of the MPC algorithm will now be given, but first the concept of step 
responses will be treated. 

Consicter a linear, time invariant process with inputs u(k) and outputs y(k). Each possible 
input sequence over the total control horizon can be described as a sum of shifted step inputs, 
and the output is a sum of the corresponding step responses over the total prediction horizon. 
Let usCk) denote the unit step function. Then any input u(k) can be written as: 

k 

u(k) = L ó.u(i) us(k-i) 
i=-oo 

where ó.u(k) = u(k)-u(k-1). The output can be denoted as: 

k 

y(k) = L ó.u(i) sk-i 
i=-oo 

00 

L si ó.u(k-i) 
i=O 

ç!. 
"' L si ó.u(k-i) 

i=l 

(3.1) 

+ SP u(k-p) (3.2) 

with: • sx the step response of the output y to a step on the input u at time step x, 
• sP the step response of the output y toa step on the input u at the prediction hori­

zon, p. 

The last relation is used for the prediction part of MPC. 

Let y*(klk-1) be the predicted value ofy(k) at a time k-1, using all the data available before 
time k-1. The influence of ó.u(k-1) on y(k) is s16.u(k-1). So the prediction can be written in 
matrix notation as: 
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y *(klk-1) 0 1 0 ... 0 0 y(k-llk-1) SI 

y *(k+ 11k-1) 0 0 1 ... 0 0 y(klk-1) sz 

+ ~u(k-1) (3.3) 

y *(k+n-21k-1) 0 0 0 0 1 

y *(k+n-llk-1) 0 0 0 ... 0 1 y(k+n-21k-1) s n 

or in more simple form: 

Y(klk-1) = M Y(k-llk-1) + su ~u(k-1) (3.4) 

lf the process also has some measured disturbances and the step responses of the output y to 
the MD's (d) are known (Sct), Equation 3.4 becomes: 

Y(klk-1) = M Y(k-llk-1) + su ~u(k-1) + Sd ~d(k-1) (3.5) 

An important feature of MPC is the predietien horizon p; this is the number of steps over 
which the responses to manipulated variables (MV's) and measured disturbances (MD's) are 
calculated. Another basic feature of MPC is the control horizon m, this the number of steps 
over which the inputs are varied in order to gain an appropriate control sequence. In general 
only the first calculated control step is applied to the system, and after that a next control step 
is calculated again. Generally the predietien horizon is about ten times as big as the control 
horizon. 

In order to find the appropriate ( or the optima!) control sequence a performance criterion is 
defined. Usually a desired trajectory ofthe output is given for the first p time steps; R(k+1) = 
[r(k+1),r(k+2), ... ,r(k+p)]T. A possible performance criterion would be: 

p 

minllu(k).llu(k+i), ... ,<\u(k+m-1) L ((y/k+ilk) - r(k+i))
2 = minW(k)IIY/k+ 1)-R(k+ l)f (3.6) 

•=i 

A more general approach is to also take into account the magnitude of the control steps to be 
made and the pathof the trajectory compared with the desired trajectory, both weighed by a 
factor which can be tuned to each specific problem. This results in the following criterion: 

min6 v(k) 11 ry [Y/k+ 1) - R(k+ 1)] f + 11 ~u ~U(k) f 

where: • ry weight factor for the following of the desired trajectory 
• rctu weight factor for the magnitude of the control steps 

(3.7) 

The weighing of the step size of the inputs rather than the absolute value of the input was 
chosen, because the first option results in a more fluent control of the plant, whereas the 
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second option will drive the inputs to their lower constraints. In other words: weighing of the 
absolute value of the inputs will constrain the possible solutions by putting the inputs as close 
as possible to their minimum, which is not necessarily the optimal solution in terms of pro­
duction. 

The solution of this minimization problem can be expressed analytically by setting the deriva­
te of the performance criterion to zero. The solution is: 

!::..U(k) = cs;Tryrrys; + pturptu)-1s;TrY'I'rY(MPY(klk) + s:!::..d(k) - R(k+1)) (3.8) 

The MPC algorithm can be summarized as follows: 

1. Do not vary the inputs and disturbances for at least p time steps 
2. Measure the outputs and initialize the prediction as 

3. Measure the change in disturbance !::..d(O), set k=O 
4. Set k=k+l 
5. Measure the outputs and the changes in disturbance !::..d(k) 
6. Calculate the predicted output 
7. Correct the prediction for the measurement of the actual output: 

Y(klk) = Y(klk-1) + KF (j(k) - y *(klk-1)) 

8. Determine the optima! control action sequence 
9. Apply the first control action of the sequence to the process 
10. Goto step 4 

The previous can easily be adapted to MIMO systems by changing the ones in the M matrix to 
unity matrices and the zeros to ny x ny matrices of zeros. In the same manner the matrices su 
and sct consist of matrices instead of scalars. In the computation of the optimal control all 
inputs and outputs are considered simultaneously and no decoupling is needed. 

3.4 Constrained MPC: the QP problem 

As noted before MPC is a technique that can handle constraints. In case of a constrained 
problem the optimisation is not an analytica! solution, but at least a linear programming 
problem solving algorithm is needed to find the optima! control moves. The advantage of 
using a quadratic programming problem (QP) instead of a linear programming problem (LP) 
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is that the QP algorithm tends to be easier to tune andresultsin smoother responses than the 
LP problem (see [BOS91]). Furthermore the QP problem allows the MPC controller also to 
take into account the absolute value of the inputs (i.e. llull 2

) by setting a weight factor ru for 
the magnitude of the inputs. This tuning parameter is not used if the control problem does not 
ask for a minimization of the input variables. 

Three type of constraints can be incorporated: constraints on the inputs, the outputs and on the 
changes in the inputs at each time step: 

ulow ~ u(k) ~ uhigh 

I àu(k) I ~ àumax 

Ytow ~ y(k) ~ Yhigh 

k= 1,2,-·· 
k= 1,2,-·· 
k=1,2,-·· 

The upper and lower bounds may vary with time, but they usually will be constant. 

(3.11) 

The constraints can be made soft by defining an extra border, say E and analogously a weight 
factor. This allows the MPC controller to be more flexible when needed. 

The QP problem can be described as follows: 

with: • H the Hessian matrix, 
• g the gradient vector, 

min lxrHx - gTx 
x 2 

so that Cx ~ c 

• C the inequality constraint matrix, 
• c the inequality constraint vector. 

(3.12) 

The salution vector x minimizes Y2xTHx- gTx, satisfying the inequality constraint Cx~c. The 
salution to this problem does not always exist, therefore the QP problem is called a feasible 
path problem. 

The QP formulation for the constrained MPC problem is: 

min~u(k) llrY[Y (k+ 1) - R(k+ 1)]11 2 + llptuàU(k)f p 

so that cuàU(k) z C(k+ lik) 
(3.13) 
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From this it follows that: 

C(k+ I ik) = 

u(k-I)-uhigh(k) 

u(k-l)-uhigh(k+m-1) 

u10w(k-l)-u(k-I) 

U10w(k+m-I)-u(k-I) 

- !J.umax(k) 

-!J.umax(k+m-I) 

-!J.umax(k) 

-!J.umax(k+m-I) 

MPYCklk) + s:tJ.d(k) - Yphi)k+I) 

-M Y(kik) - SPd!J.d(k) + Y (k+I) 
P Phiw 

' 
cu = 

-[L 
(3.14) 

IL I 0 0 0 ···0 
-I 

' IL = I I 0 ... 0 

-Su 1 I I ... I p 

u 
SP 

1t is this form of the MPC controller that is implemented in the simulations further on in this 
report. 
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Chapter 4 Outlines of MPC for melt index control 

4.1 The goal ofthe MPC control scheme 

The goal of designing the MPC control scheme is to design an automatic controller for the 
melt index during grade changes and normal operation at the plant. The MPC controller 
should reduce the costs involved in the grade changes by decreasing the time needed for a 
grade change and thus decreasing the amount of degraded product. 

4.2 ModeHing the melt index 

From literature it is known that designing a white model for the melt index is very difficult 
[AUL90]. Since white rnadelling ofthe melt index is still not possible, dynamic black box 
rnadelling has beentried as an altemative. It proved to be very difficult to reach good dynamic 
black box models because the available data was closed loop plant process data. The dynamic 
rnadelling was almost impossible because of strongly variabie time delays imposed on the 
system caused by different ways of operating the separator level in effort to control the extru­
der as constantly as possible (also see Chapter 2). Also, it was not possible to do a wide range 
of new experiments at the plant for identification purposes. For these reasons, trying to build a 
dynamic black box model descrihing the melt index was discarded as a possible modeHing 
option after considerable effort. It appeared that the residence time and mixing effects in the 
separator were too time-dependent, and thus too great a disturbance for proper dynamic black 
box modelling. 

From the rnadelling effort on dynamic black box models, more and more insight was gained 
in the process of producing polyethylene in a tube reactor. It became clear that, because of the 
speed of the polymerization reaction, alocal melt index was produced in the reaction zones of 
the tube reactor, dependent on local reactor quantities such as peak- and bottorn temperatures, 
the modifier concentration and the total reactor mass flow (i.e. pressure drop). The assumption 
that the melt index directly follows from the properties of the gas mixture is in agreement with 
results of others, see [AUL91]. The dynamica! behaviour of the melt index can thus be redu­
eed to the dynamica! behaviour of the properties of the gas mixture in the tube reactor, and of 
course the dynamica! influence of theseparator and extruder (i.e. holdup and mixing effects). 
This is the reason why a statistica! melt index model is developed, descrihing the melt index 
directly after the tube reactor. 

It should also be noted that an extensive part of the dynamic behaviour of the melt index that 
is measured at the end of the extruder is determined by the residence time and mixing effects 
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introduced by the separator and extruder. These dynamic influences can be estimated from 
experiments performed at the plant in order to estimate the PID-eontrol behaviour of the peak 
temperatures (see later on in this chapter). From the experiments the dead time introduced by 
theseparator and extruder can be estimated. This gives information about how totransfarm 
the melt index directly after the tube reactor in order to compare this melt index with the melt 
index measured at the end of the extruder. 

In a statistica! model the signs of the parameterscan be technologically explained. The modi­
fier concentration should have a positive influence on the melt index, since more modifier will 
lead to smaller polymer chains and shorter chain branches, resulting in a higher melt index. 
The length of the up going parts of the temperature profile in the tube reactor should also have 
a positive influence on the melt index. This can be explained from the fact that the inlet 
temperature of the tube reactor is constant, and thus a longer up going part will result in a 
higher average temperature in that part of the temperature profile, which results in more 
reactions and thus shorter polymer chains, and a higher melt index. The temperature after the 
preheater can be seen as the zeroth bottorn temperature. The pressure in the suction section of 
the compressor should have a negative influence on the melt index, since increasing the 
pressure in the suction section will result in a higher total reactor flow, which in its turn is 
responsible for a lower average pressure in the tube reactor. The total effect of this on the melt 
index is negative (see also Chapter 2). The opposite goes for the temperature in the suction 
section of the compressor, because a rise in the temperature in the suction section will result 
in a lower total reactor mass flow. 

Statistica! analysis of plant process data over a 4 months period has led us to the following 
model for the melt index as a function of the reactor properties: 

with: •mi 
• [ modifier] 
• Tpeakx 

• Tbottom 

• Pcomp 

• Tcomp 

• Tpreh 

ln(mi) = a* [modifier] 

+ b * (Tpeakl- Tpreh) 

+ C * (Tpeak2- Tbottom) 

-d * Pcomp (4.1) 
+e *T preh2 

+f*T comp 

-g 

the melt index, 
the modifier concentration, 
the peak temperatures, 
the bottorn temperature, 
the pressure in the suction section of the compressor, 
the temperature in the suction section of the compressor, 
the temperature after the preheater. 

The statistica! properties of the presented model are shown in Appendix B. This model was 
accepted because both the coefficient of determination (0.97597)and the adjusted coefficient 
of determination (0.95251) are close to the maximum value of 1, and the T-values we see that 
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all the model coefficients are significant within 5%. Furthermore none of the variables are 
significantly correlated. From the varianee inflation factorit is clear that the constant term is 
by far the variabie responsible for the varianee in the model. Thus in case of an offset of the 
model, this parameter should be adapted. 

4.3 Using the melt index model in the model predictive controller 

The melt index model as described in Equation 4.1 contains the following variables: the 
modifier concentration, the temperature and pressure of the suction section of the compressor, 
the temperature after the preheater, the peak: temperatures in the tube reactor and the bottorn 
temperature in the tube reactor. The modifier concentration can be modelled by using the 
modifier model. Thus the modifier flow and the flow of the purge are used as manipulated 
variables (MV's). The peak: temperatures of the tube reactor are PID-eontrolled by setpoint, as 
is the temperature after the preheater. Thus the peak: temperatures and the temperature after 
the preheater also are MV' s. The temperature and pressure in the suction section of the 
compressor cannot be controlled, so these are used as measured disturbances (MD's) in the 
model for cantrolling the melt index. The bottorn temperatures are a result of the peak: tempe­
ratures, the temperature and flow of the chilled water in the cooling jacket around the tube 
reactor and the total reactor mass flow. Since the bottorn temperatures are largely dependent 
of so many variables, and a good model descrihing the bottorn temperatures was not available, 
it is not convenient to use these in a model of the melt index for MPC control structures for 

' simulation. Since the bottorn temperatures are measured at the plant, they rnight be used as 
measured disturbances (MD's) in an MPC control structure implemented at the plant. Summa­
rizing the following variables were used in the melt index model for the MPC controller: 

• MV's: • modifier flow, 
• flow of the purge, 
• averáge of the peak: temperatures, 
• temperature after the preheater unit, 

• MD's: • temperature in the suction section of the compressor, 
• pressure in the suction section of the compressor. 

This results in the following statistica! model descrihing the melt index: 

ln(mi) == a* [modifïer] 
+b * T ak pe 

-c*p comp 

+d*T h pre 

+e *T comp 

-J 
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with: •mi 
• [ modifier] 
• Tpeak 

• Pcomp 

• Tcomp 

• Tpreh 

the melt index, 
the modifier concentration, 
the average peak temperature, 
the pressure in the suction section of the compressor, 
the temperature in the suction section of the compressor, 
the temperature after the preheater. 

In order to get all the parameters acceptable in a technological way the peak temperatures 
were lumped together in the average of the peak temperatures. This was done because the 
peak temperatures usually are controlled by setting the same setpoint for all the peak tempera­
tmes at the same moment. The other parameters in the model were found to be technologically 
right. 

The statistica! properties of the model are described in Appendix B. This model is accepted 
since both the coefficient of determination (0.97598) and the adjusted coefficient of delermi­
nation (0.95254) are close to the maximum value of 1 and the T-values are significant within 
5%. From the varianee intlation factorit can beseen that the constant term in the model is by 
far the most responsible variabie for the varianee in the model. Thus in case of model errors 
this parameter should be adjusted first. Furthermore no significant correlations between the 
variables could be detected. 

4.4 Using step responsemodelsin controlling the melt index 

As stated above, the peak temperatures and the temperature after the preheater are controlled 
by setpoint, since the installed PID-eontroliers forthese variables are sufficiently well tuned. 
Experiments at the plant show that when a change in setpoint is made for the peak temperatu­
res, the setpoint is reached quite fast. This is due to the automatic PID-eontrol of the initiator 
pumps, fed by the preferred setpoint of the peak temperatures. For this reason, the step respon­
se of the melt index to a unit step in the peak temperatures is assumed to be a first order step 
response with a fast settling time and a gain which is equal to the constants found in the 
statistica! melt index model. It is assumed that the temperature after the preheater has the 
same kind of step response as the peak temperatures, and the same settling time as the peak 
temperatures, since the heating capacity of the preheater only operates in a very limited area, 
and its influence on the melt index is the same kind as that of the peak temperatures. 

As described in Chapter 2, the temperature and the pressure in the suction section of the 
compressor uniquely determine the total reactor mass flow. It is assumed that the settling time 
of these two quantities will be similar to that of the peak temperatures. This was done so 
because the total reactor mass flow can change almost instantaneously, and is only slightly 
dependent on the total residence time of the tube reactor. 

The modifier concentration are modelled by using the incoming modifier flow and the flow of 
the purge. By multiplying the step responses found from the modifier model with the parame­
ters from the statistica! model, the modifier flow and the flow of the purge are used directly in 
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cantrolling the melt index. 

The control design as describe above is schematically shown in Figure 4.5, the step responses 
referred to in Figure 4.5 are more explicitly shown in Figure 4.6. 
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Figure 4.1: the controller design for cantrolling the melt index by means of MPC. 
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The settling times of the flows were checked in an earlier study in PRIMAL. In these studies 
actual plant data was used, and the flows were filtered with a first order filter with the ap­
propriate settling times. This way the modifier concentration was predicted and showed a 
good fit on the actual measurements from the plant. Thus the settling times were accepted. 

4.5 The planned simulations 

As stated before, the goal of this project is to design an automatic model predictive controller 
for controlling the melt index during grade changes and steady state operation of polyethylene 
production. For this reason, the generallayout of the experiments is the following: starting out 
in a steady state production a change in setpoint is given forthemelt index and the constraints 
of the peak temperatures (according to the recipe of the next grade to be produced). After 
these changes the simulation continues until again a steady state production is reached. 

The most beneficia! aspect of model predictive control of the melt index during grade changes 
should be the use of the difference in the speed of changes in the modifier concentration and 
the temperatures in the tube reactor. Since the modifier concentration has a larger settling time 
than the peak temperatures, the effect of changes in the modifier concentration can easily be 
compensated by controlling the peak temperatures, resulting in very fast grade changes. 

This control strategy can be clarified by assuming a negative setpoint step on the melt index: a 
decrease in the melt index setpoint will ask for lower values of the modifier concentration and 
peak temperatures. A possible (perhaps optima!) control strategy would be to lower the 
modifier concentration at an early stage and keeping the melt index on the previous setpoint 
by means of increasing the peak temperatures. At the time of the setpoint change of the melt 
index, the peak temperatures can be lowered very fast in comparison to the rate of change in 
the modifier concentration, resulting in a fast decrease of the melt index towards the new 
value. Since the modifier concentration is already at the preferred lower level, the peak 
temperatures can be directed faster to their preferred setpoint, which in turn is optima! for the 
other product qualities such as density and brightness .. 

For finding the optima! control strategy for the grade changes attention had to be paid during 
the simulations to other tuning parameters for the MPC control problem, such as: 

• the influence of the setting of the weight factors on the outputs and the change in the 
inputs cry and P'u), 

• the influence of the length of the prediction and control horizon (p and m), 
• the necessity and influence of ramps on the constraints and reference trajectories, 
• the influence of errors in the measured disturbances. 

Experiments were performed according to the experimental design as show in Table 4.1. The 
most important results of the experiments are shown and discussed in Chapter 5. 
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Table 4.1: experimental designfor the simulations in Matlab. In the cells ofthe table all the 
possible values of the parameters are given. The experimental design exists of all possible 
combinations the 

1 to 4 30,10,5,1 10,1,0.1 a,b,c d,e,f g,h,i yes,no 

2 to 4 30,10,5,1 10,1,0.1 a,b,c d,e,f g,h,i yes, no 

6 to 2 30,10,5,1 10,1,0.1 a,b,c d,e,f g,h,i yes,no 

12 to 1 30,10,5,1 10,1,0.1 a,b,c d,e,f g,h,i yes,no 

Initially, all possible combinations of settings were used for simulation, but if the results of a 
simulation were very bad (i.e. infeasibility of the QP-problem in Matlab or the MPC controller 
was very sluggish) because of the parameter settings, this type of experiment was left out in 
forther simulations. So for example, if the settings like rY = 30 and p~u = 10 led to poor results 
in setpoint tracking of the MPC controller, then all the other experiments to follow with rY ~ 
30 and p~u = 10 were not performed. lt is thus assumed that the MPC controller will show the 
sameperformance for different control problems (i.e. different grade changes) under the same 
settings of the MPC controller. 

In order to see how the MPC controller responded to variabie measured disturbances, coloured 
noise was created on the temperature and the pressure in the suction section of the compres­
sor (i.e. the only two MD's). The noise was given an amplitude of 1% of the mean operating 
values at the plantand was generated by the random function in Matlab. This generally 
resulted in the signal drifting around the mean value with an amplitude of 5% of the mean 
value. 

An error in the measured disturbances was simulated by actding 1 time or 4 times the noise on 
the measured disturbances (i.e. the temperature and pressure in the suction section of the 
compressor) to the model descrihing the plant in the simulations. The model used for the MPC 
controller was not adapted for these additional disturbances, and thus a kind of model error 
was introduced. 

In total 148 experiments were performed. 
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Chapter 5 The simulations in Matlab 

5.1 General 

As described in Chapter 4 the simulations in Matlab were designed to gain more knowledge 
about the behaviour of the MPC controller in during grade changes in particular and more 
generally also during steady state operation of the plant. The influence of the tuning parame­
ters for the MPC control problem has also been investigated, since this is necessary for good 
MPC control performance. In this chapter also some other experiments are discussed in order 
to compare the performance of the designed MPC controller for the melt index with the way 
operators control the plant at present. The results conceming the performance of the MPC 
controller design for melt index control during grade changes and steady state operation of the 
plant are described in Chapter 5.6. 

First attention is paid to the influence of the setting of the weight factors on the outputs and 
the change in the inputs (fY and ptu), the influence of the length of the prediction and control 
horizon (p and m), the necessity and influence of ramps on the constraints and reference 
trajectodes and the influence of disturbances (or plant/model mismatch) in Chapter 5.2 to 5.5. 
Also some conclusions will be drawn. More general condusion and discussion of the imple­
mentation of the controller can be found in Chapter 6 of this report. 

5.2 The effect of the tuning parameters ry and ptu 

From the performed experiments it became clear that increasing the ratio fY I ptu will increase 
the setpoint tracking performance of the MPC controller. lt was also seen that the new steady 
state values for the inputs, after the grade change, are not the same. This is due to the fact that 
the control problem is not properly dimensioned: there are too manyinputs available to 
control one output. The over dimension over the control problem shows itself in the different 
end temperatures for the peak temperatures and the temperature after the preheater. This 
difference can be avoided by setting the very stringent constraints on several of the inputs, 
however, this would significantly diminish the possibilities of control for the MPC controller. 

lf the factor fY I ptu is too small, the speed of the grade change will be determined by the ramp 
set on the constraints of the melt index. In the experiments it was found that a value of 10 to 
100 for ry I ptu gives the best performance of the MPC controller during grade changes. 
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5.3 The effect of the tuning parameters p and m 

From the performed experiment it can concluded that selecting a too small control horizon 
with respect to the prediction horizon will decrease the performance of the MPC controller in 
terms of speed and accuracy of the setpoint tracldng of the output during grade changes. This 
is due to the fact that setting the prediction horizon much higher than the control horizon will 
give the MPC controller a large amount of evaluation points for the setpoint tracldng error and 
only a small amount of control moves to track the setpoint. During grade changes this mis­
match in the amount of control moves is clearly visible in terms of unstable behaviour of the 
MPC controller. 

lf the prediction and control horizon get too low, the performance of the MPC controller will 
significantly decrease. This can be explained by the fact that setting the prediction and control 
horizon below time needed to describe the dynarnic behaviour of the peak temperatures and 
the temperature after the preheater are not accounted for by the MPC controller. 

The unstable behaviour of the MPC controller arising from too small control horizons can be 
explained as follows. lf the control horizon is set too low with respect to the prediction 
horizon, the MPC controller cannot deal with the change in setpoint seen by the prediction 
horizon, since it only has very few control moves (i.e. the control horizon) to deal with it. 

Furthermore, increasing the prediction horizon, while keeping the control horizon at a con­
stant value, will improve the output setpoint tracking performance of the MPC controller. Yet, 
it should be noted, that if the prediction horizon is set very high this leads to poor performance 
during grade changes: due to the large amount of evaluation points for the setpoint tracking 
error the errors made just after the preferred grade change have significantly less influence on 
the control moves than the far greater amount of points further in (prediction) time. This will 
result in poorer setpoint tracking performance of the MPC controller during grade changes. 

5.4 The influence of ramps on constraints 

There are two reasoos for using ramp on constraints: 
• keeping the solution of the QP-problem in Matlab feasible. The ramp on the con­

straints of the melt index was necessary to prevent the QP-problem from getting 
infeasible, due to overly stringent constraints. This happens when the constraints also 
are changed stepwise and the implemented control moves are insufficient to direct 
the melt index between the new constraints (i.e. the constraints are overly stringent). 

• setting additional constraints of the peak temperatures and the flow of the purge. As 
stated before the peak temperatures do not only influence the melt index but also the 
density and brightness of the polyethylene, and thus should be exact at the value 
described in the recipe of the produced grade. 
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Since the QP algorithm in Matlab is a so called feasible path algorithm, the constraints put on 
the MPC problem should never be overly stringent. lf the constraints are overly stringent the 
QP algorithm in Matlab either Iets go of one or more constraints or becomes instable. Since 
almost none of the possible grade changes can be reached within one unit of sampling time 
setting the upper and lower constraints for the melt index to the recipe value directly after the 
grade change will result in an infeasible QP problem in Matlab. For this reason the relevant 
constraint for the melt index (i.e. the upper if a negative change in melt index required, and 
the lower if a positive change in melt index is required) is ramped to its new setpoint. The 
other constraint was set directly to its new setpoint. Several ramping times were placed on the 
ramps for the melt index constraint in the MPC controller. 

Setting a ramp on either the upper constraint of the melt index (in case of a decrease in the 
setpoint for the melt index during a grade change) or on the lower constraint (in case of an 
increase) shows us another aspect of ramps on constraints. When the tuning of the MPC 
controller is very sluggish, the constraints set on the outputs (and of course the inputs if 
relevant) will determine the speed of the control moves (and therefore also the setpoint 
tracking performance in terms of speed) during grade changes. 

5.5 The effect of measured disturbances 

In order to check the performance of the MPC controller under more realistic circumstances 
with respect to the measured disturbances, a coloured noise with an amplitude of 1% was put 
on the measured disturbances (the temperature and the pressure in the suction section of the 
preheater). From the performed simulations it became clear that the MPC controller can deal 
with measured disturbances quite adequately. 

In order to check whether the MPC controller can deal with an error in the measured distur­
bances by means of the filtering factor of the MPC controller, simulations were performed in 
which an error on the measured disturbances was introduced by additionally putting four times 
the measured disturbance on the plant measurement of the melt index, and not compensate for 
these disturbances in the intemal MPC melt index model.. The filter factor for correcting the 
plant/model mismatch was set on 1% and 10% of the model error. The model error is deterrni­
ned by subtracting the calculated value of intemal MPC melt index model from the measured 
value from the plant. Setting the filter factor for correction the errors due to plant/model 
mismatch high enough will result in good performance of the MPC controller. 
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5.6 Comparison between MPC control and present operator control 

In Figure 5.1 a simulation of a grade change is shown. As described before the melt index 
directly at the end of the tube reactor is simulated, and not the melt index as it is measured at 
the end of the extruder. In order to compare the behaviour of the MPC controller with operator 
control, the melt index is delayed and filtered according to the expected behaviour of the 
separator and extruder, as is described in Chapter 4. This way the dynamic influence of the 
separator and extruder is accounted for and the melt index resulting from MPC control can be 
compared with the melt index resulting from operator controL 

In Figure 5.2 the control performance of operator control at the plant is shown and compared 
with the adapted MPC control performance. 

From Figure 5.2 it can beseen that the performance of the MPC controller is about 2 times 
faster than the performance of the operator controL It is also clear that the ramping time for 
the upper constraint on the melt index is chosen to small, since the simulated melt index at the 
end of the extruder does not stay below this upper constraint. Thus for the application of the 
MPC controller at the plant the ramping time for constraints on the melt index should be 
higher (see Figure 5.2). Furthermore it is clear that in case of operator control the melt index 
does not necessarily has to be between the constraints, whereas this is always the case at MPC 
controL Thus MPC control will result in more pure grades during steady state production. 

From Figure 5.1 it can beseen that the melt index at the end of the tube reactor changes rather 
fast from one grade to another. lf the dynamic influence in terms of mixing effects in the 
separator could be minimized, then this speed of change of the melt index would also appear, 
with some delay, at the end of the extruder. This can be reached by minimizing the level in the 
separator before, during and after the grade change. This is a point for further investigation. 
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Figure 5.1: the performance during grade change ofthe MPC controller. The constraints are 
shown in the dashedldotted lines. The setpoint is shown in the dotted fine. 
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Meft index and reference Irajeetory during operator control and MPC control 
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Figure 5.2: the performance during grade change by operator control ofthe plant compared 
with the most probable MPC control performance. The setpoint is shown in the dotted line. 
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Chapter 6 Discussion and Conclusions 

6.1 Tuning of the MPC controller 

From the results of Chapter 5 we see that the setpoint tracking performance of the MPC 
controller is greatly influenced by the ratio of P and P'0

• Setting P above 10 and piu at 0.1 
gives a good performance ofthe MPC controller. When setting P' above 100, sometimes the 
performance of the MPC controller will decrease. This decrease is due to the settings of the 
prediction horizon: since the simulations are focused on melt index control during grade 
changes, setting the prediction horizon far greater than the average time needed for a grade 
change will result in infeasibilities of the QP problem in Matlab. This can be illustrated by the 
following example. Let the present simulation time be somewhere before the grade change 
and the prediction horizon stretch out all over the grade change, and the control horizon stops 
before the grade change. Then, generally, there won't be any set of control moves possible to 
set the output (the melt index) to the preferred value (reference trajectory) over the total 
prediction horizon. In Matlab this results in unstable control before and during the grade 
change, or even in an infeasible QP problem. 

In case of an error in the measured disturbances, the setting of the filter factor for the model 
error is interesting. From the experiments it can be concluded that setting the filter factor at a 
higher value will result in a better adaptation of the intemal model, and therefore a better 
control performance. A good performance under realistic measured disturbances was found 
with a filter factor of 0.1; this means that the intemal model is adapted with 10% of the 
measured error. 

6.2 Performance of the MPC controller in simulations 

From the experiments shown in Chapter 5 it can be seen that when well tuned, the MPC 
controller is capable of perforrning every grade change within a very small amount of time 
relative to the time needed for grade changes under operator controL Even the peak: temperatu­
res can be directed to the preferred setpoint within the same time by setting a ramp on the 
constraints. It is here that appear some new tuning parameters for this specific MPC control­
ler. One could direct the peak: temperatures directly to the new setpoint by setting a direct 
ramp, but another strategy would be to set the constraints on the peak: temperatures to the 
maximum values, so that the peak: temperatures can be used to compensate for changes in the 
concentrations of the modifier and in a final instanee use the speed of change of the peak 
temperatures to get a very fast grade change. 
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Also the performance of the MPC controller in steady state operation was tested. Simulations 
were performed with 4% plant/model mismatch by feeding the MD's 4 time extra to the 
model of the plant. lt appears that the MPC controller easily can handle disturbances that 
might occur during steady state control of the plant. 

The ramps on the constraints are necessary to keep the QP problem in Matlab solvable. As 
stated before, the time needed fora grade change (which is partially determined by the settings 
of the ramp time of the constraints) arid the settings of the prediction and control horizon 
determine whether the MPC controller in Matlab will remain stable, and whether the QP 
problem will remain feasible. 

6.3 Implementing MPC in melt index control at the plant 

From Chapter 5 can be seen that in simulations the grade changes take place about 10 times 
faster than under operator controL This seems a lot, but it also is a wrong perception since the 
MPC simulation calculates the melt index directly behind the tube reactor and not at the 
extrusion di-plate of the extruder, so the residence time and the mixing effect occurring in the 
separator and the extruder are not taken into account. Compensating for these effects the time 
needed for the grade changes would be about 20% less then under operator controL Y et, an 
optima! control strategy would include lowering the level in the separator before and during a 
grade change, resulting in a plug flow. This plug flow has the positive effect that the grade 
change measured at the end of the extruder will show the same dynamic behaviour as the one 
realised at the end of the tube reactor. 

6.4 MPC control versus a multi variabie PID control structure 

An MPC control structure has some advantages in comparison with a multi variabie PID 
control structure: 

• the MPC controller can handle adaptation of the model parameters, which can be 
identified in an off-line application. This way the model used by the MPC controller 
will always be very accurate, 

• the MPC control structure is easily expandable to control more outputs than only the 
melt index, such as the brightness and density of the polyethylene. Implementing 
more controlled variables in a PID structure will ask for decoupling of variables, and 
will increase the complexity of the PID control structure, 

• the MPC controller can also be expanded to use more inputs. The only thing needed 
for implementing other inputs is the influence of these inputs on the melt index in the 
form of step responses. Again adding other inputs to a multi variabie PID control 
structure would imply a lot of additional rules and decoupling of PID control loops. 
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Another point of interest is that the MPC control structure will alway minimize the time 
needed for a grade change, whereas the time needed for a grade change in a multi variabie PID 
control structure is totally determined by the ramp time settings of the different control 
variables. 

6.5 Conclusions 

From the previous discussion it can be concluded that the exact tuning and design (i.e. the use 
of ramps on constraints) of an MPC controller is largely dependent on the kind of control 
problem that should be handled by the MPC controller. In this particular case the time needed 
forthegrade changes (which is actually determined by the ramp time of the constraints) 
determines the settings of the prediction and control horizon. Only the weight factors rY and 
p~u are seemingly independent of the structure of the control problem, but as described above 
these are related to the feasibility of the QP problem in case of badly chosen prediction and 
control horizons. 

MPC control of the melt index during grade changes will have two benefits for the control of 
the plant. In the first place all the grade changes become independent of the actual reactor 
settings and are performed in a reproducible way without operator interference. Secondly 
MPC in cooperation with optima! control of the separator and extruder will significantly 
decrease the time needed for grade changes. Dependent on the gain in time achievable by 
minimizing the level in the separator, the time needed fora grade change could be reduced 
with approximately 50%. 

6.6 Points for further investigation 

Before imptementing an MPC controller for cantrolling the melt index during polyethylene 
production some further investigations should be done, such as: 

• the exact settings of the constraints on the melt index and the input before, during 
and after grade changes, 

• the influence of the prediction and control horizon on the feasibility of the QP pro­
blem and the stability of the MPC controller, 

• development of an improved control strategy forthelevel of the separator, in order to 
reduce the residence time and mixing effects on the eventually produced melt index 
during grade changes, 

• the u se of the bottorn temperatures as measured disturbances in the melt index model 
could improve the performance of the melt index model. 
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Appendix A The radical polymerization reactions 

In this Appendix the reactions related to the radical initiator are shown. The following steps 
are present in the radical polymerization process: initiation, propagation, termination, inter­
transfer and intratransfer. Each of these reaction types is treated below. 

A.l lnitiation 

The initiators used for the production of polyethylene usually are organic peroxides which will 
separate into two radical composites at a sufficiently high temperature, and the radicals will 
react with the ethylene and start a polymer chain: 

R
1
-0-0-R

2 
.... R

1
-0• + •0-R

2 

Rx -0• + H 2C=CH2 .... Rx0-CH2 -CH2• 

This can also be denoted in the following way: 

kd 
Mo .... 2fMo* 

with: • M0 the initiator, 
• M0* the radical from the initiator, 
• M the monomer, 
• M 1 * the first step in the polymer chain, 

M* 
I 

(A.l) 

(A.2) 

• kd the reaction rate coefficient for the decomposition of the initiator into two 
radicals, 

• ki the reaction rate coefficient for the initial polymerization reaction. 

The reaction rate coefficients can generally be written as: 

(A.3) 
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with: • kx a reaction rate coefficient 
• koo a constant factor, 
• Ea the activating energy of the reaction, 
• R the gas constant, 
• T the absolute temperature. 

A.2 Propagation 

The propagation reaction is the main reaction in the reaction scheme for the production of 
polyethylene. By adding an ethylene molecule, a macro-radical is formed which is very 
reactive: 

(A.4) 

or alternatively: 

kp 

Mx* + M .... Mx*+I , x~l 
(A.S) 

with: the radical polymer containing x monomers, 

·~ the reaction rate coefficient for the propagation reaction. 

A.3 Termination 

Whenever two radicals meet a termination reaction will take place. There are two possibilities 
for termination reactions: 

Rx -CH2 -CH2• + •CH2 -CH2 -Ry .... Rx -CH2 -CH2 -CH2 -CH2 -Ry 

(A.6) 
Rx -CH2 -CH2• + •CH2 -CH2 -Ry .... Rx -CH2 -CH3 + Ry -CH=CH2 

or alternatively: 

kt 
M* + M* .... M x y x+y 

(A.7) 
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with: either a polymer with a chain length of x+y monomers or two polymers 
with chain lengtbs of x and y monomers respectively, 
the reaction rate coefficient for the terminatien reaction. 

The first reaction is called recombination, the second disproportioning. 

A.4 Intratransfer 

Reactions in which the radical is replaced within the same molecule are called intratransfer 
reactions. These reactions are an explanation to the existence of short and long chain branches 
(SCB's and LCB's, see also Figure 2.1): 

• (A.S) 

The amounts of long and short chain branches determine polymer qualities such as density 
and melt index. lf the radical is replaced to another carbide atom in the same molecule where 
the polymerization continues one speaks of intertransfer reactions. Intertransfer reactions 
merely replace the growing location of a polymer. 
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· Appendix B The statistical melt index models 

B.l Some statistical properties 

In determining whether to accept a model or not a number of statistica! properties were 
analysed. In the following a short description of the relevant statistica! properties will be 
given. 

The adjusted coefficient of determination, R2
actj, gives a value between 0 and 1. A high value 

of R2
actj indicates a good fit, a low value a poor fit. The adjusted coefficient of determination is 

defined by [MON91]: 

with: • R2 
adj 

•Mtot 

• Mres 

•o 
•d 
•q 
• R2 

Mtot - Mres = 
1 

_ (1 - R 2)(o - d) 

Mtot 0 - q 

the adjusted coefficient of deterrnination, 
the total mean square, 

the residual mean square, 
the number of experiments, 
1 if the model contains a constant term, otherwise 0, 
the number of model terms, 
the coefficient of deterrnination. 

(B.l) 

The V arianee lnflation Factor (VIF) gives information about the amount of varianee in the 
model explained by the different model parameters. lf VIF is big for one of the variables, this 
variabie is responsible for most ofthe varianee in the model (see [MYR86]). 

The T -value shows the significanee of the different model terms. The T -value is given by 
[DEM87]: 

T (B.2) 

with: the T-value, 
the ith coefficient of the model, 
the standard error of the ith coefficient in the model. 

Further more some graphical ways of analysing a model were used. The histogram shows the 
frequency distribution of the residuals. lf the model is proper, the peak of the histogram is at 
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zero, and the residuals normally distributed. In actdition with a normal probability plot (a plot 
in which the residuals areplottedon a cumulative normal probability scale) it gives informati­
on about systematic errors that might otherwise have been overlooked. The normal probability 
plot should show a straight line, indicating that the model is properly built. 

B.2 The general melt index model 

Below some results of a linear regression performed in SPSS for Windows [SPS88] are 
shown. The coefficients in the model are codes as follows: 

• LNMI the naturallogarithm of the melt index, 
• MODIF the modifier concentration, 
• DIFF1 the difference between peak temperature 1 and the temperature after the 

preheater, 
• DIFF2 
•TPREH 
•TCOMP 

the difference between peak temperature 2 and bottorn temperature 1, 
the temperature after the preheater, 

•PCOMP 
the temperature in the suction section of the compressor, 
the pressure in the suction section of the compressor. 

Equation Number 1 Dependent Variable .. 

Variable(s) Entered on Step Nurnber 
1.. TCOMP 
2.. MODIF 
3.. PCOMP 
4.. DIFF2 
5.. TPREH 
6.. DIFF1 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 

.97597 

.95252 

.95251 

.19185 

Analysis of Varianee 
DF 

Regression 8 
Residual 92250 

Sum of Squares 
68112.28087 

3395.36235 

F = 231321.33147 Signif F = .0000 

LNMI 

Mean Square 
8514.03511 

.03681 

----------- Variables in the Equation -----------

Variable VIF T Sig T 

MODIF 3.177 564.774 .0000 
DIFF1 25.317 156.830 .0000 
DIFF2 11.062 22.156 .0000 
PCOMP 1.097 -59.104 .0000 
TPREH 1. 366 60.536 .0000 
TCOMP 1.173 19.425 .0000 
(Constant) -81.857 .0000 
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From the model data above we see that both the coefficient of determination (0.97597)and the 
adjusted coefficient of determination (0.95251) are close to the maximum value of 1. This 
implies that the model fit is rather good. From the T-values we see that all the model coeffi­
cients are significant within 5%. lt can also beseen that the constant term is responsible for 
most of the varianee in the model. 

From the correlation diagram it is clear that none of the variables are significantly correlated. 
From the histogram and the normal probability plot of the general melt index model it can 
clearly be concluded that the residuals have a normal distribution, and that most likely the 
model does not have any systematic deficiencies. 

B.3 The melt index model used for MPC 

Below some results of a linear regression performed in SPSS for Windows [SPS88] are 
shown. The coefficients in the model are codes as follows: 

• LNMI the naturallogarithm of the melt index, 
• MODIF the modifier concentration, 
• SUMPEAK the average of the two peak temperatures, 
• TPREH the temperature after the preheater, 
• TCOMP the temperature in the suction section of the compressor, 
• PCOMP the pressure in the suction section of the compressor. 

Equation Nurnber 1 Dependent Variable .. 

Variable(s) Entered 
1.. TCOMP 

on Step Nurnber 

2.. MODIF 
3.. PCOMP 
4.. TPREH 
5.. SUMPEAK 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 

.97598 

.95254 

.95254 

.19135 

Analysis of Varianee 
DF 

Regression 6 
Residual 91702 

Sl.i.m of Squares 
67397.82063 

3357.82733 

F = 306771.52898 Signif F = .0000 

-43-

LNMI 

Mean Square 
11232.97011 

.03662 



----------- Variables in the Equation -----------
Variable VIF T Sig T 

MODIF 1.931 770.468 .0000 
PCOMP 1. 088 -52.696 .0000 
SUMPEA 2.439 621.692 .0000 
TPREH 1.103 5.099 .0000 
TCOMP 1. 071 24.297 .0000 
(Constant) -120.761 .0000 

From the model data above we see that both the coefficient of determination (0.97598) and the 
adjusted coefficient of determination (0.95254) are close to the maximum value of 1. This 
implies that the model fit is rather good. From the T-values we see that all the model coeffi­
cients are significant within 5%. lt can also beseen that the constant term is responsible for 
most of the varianee in the model. from the correlation diagram it can be seen that none of the 
variables are significantly correlated. From the histogram and the normal probability plot of 
the residuals of the melt index model used for MPC it is clear that the residuals are normally 
distributed and from that most likely the model does not have any systematic deficients. 
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Appendix C List of the used symbols 

Below an overview of the symbols uses in the report will be given. The symbols are given in 
alphabetical order, the Greek characters are placed first, the mathematica! symbols are at the 
end of the list. The variables used in the Matlab programs are not listed here, since those are 
explicated in the program listing itself. 

rdu 
ru 
ry 
6.d(k-1) 
6.u(k) 
6.umax 
E 

Tl 
<I:> m,recycle 

<I:> m,modifier 

<Pm,purge 

<Pm,ethylene 

<l:>m,R 
<I> modifier 

Bi 
c 
c 
d 
DIFF1 
DIFF2 
Ea 
g 
H 
k 
klk+1 

kd 

Kr 
ki 

kmodifier 

kp 

kt 

kx 
koo 
LNMI 
m 

weight factor on the change in the inputs for the MPC controller 
weigth factor for the absolute value of the inputs for the MPC controller 
weigth factor for the setpoint tracking for the MPC controller 
change in measured disturbances at time k-1 
change in inputs at time k 
constraint on the maximum change in the inputs 
weight factor for soft constraints 
viscosity 
recycle flow from the separator 
fresh modifier flow 
flow of the purge 

fresh ethylene feed to the system 
total reactor mass flow 
fresh modifier flow 
ith statistica! parameter in a statitstical model 
vector containing the constraint for the MPC controller 
matrix selecting the constrained variables for the MPC controller 
1 if the model contains a constant term, otherwise 0 
peak temperature # 1 - temperature after the preheater 
peak temperature # 2 - bottorn temperature # 1 
activating energy fora reaction 
vector for selecting the setpoint tracking in the MPC controller 
Hessian matrix for the MPC controller 
tirnek 
es tirnation of state on time k+ 1 at time k 
reaction rate coefficient for the decomposition reaction of the catalist 
filter factor for the error made by the MPC controller 
reaction rate coefficient for the initiation reaction 
reaction rate coefficient for the conversion of the modifier 
reaction rate coefficient for the propagation reaction 
reaction rate coefficient for the termination reaction 
general reaction rate coefficient 
general reaction rate coefficient at infinite temperature 
the naturallogatihm of the melt index 
control horizon for the MPC controller 
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M 
M 

Mo 
Mo* 
M* I 

mi 

Mres 

Mtot 

Mx+y 

M* x 

n 
0 

p 
Pcomp 

PCOMP 

PR 
q 
r(k+1) 
R(k+1) 
R2 

Rad/ 
sd 
SE(B) 
su 
SUMPEAK 

Tbottom 

Tcomp 

TCOMP 
T peaki,2 

Tpreh 

TPREH 
TR 
u(k) 
uhigh 
ulow 
usCk) 
y(k) 
Y(klk-1) 
y*(klk-1) 
yhigh 
ylow 
Yp(k+1) 
yP(k+ilk) 
[modifier] 

monomer ( ethylene) 
matrix putting all the predicted values on time step ahead in the MPC controller 
non-reactive initiator 
reactive initiator 
first step in the polymer chain 
melt index 
residual mean square 
total mean square 
polymer chain containing x+y monomers 
reactive polymer chain containing x monomers 
prediction horizon 
number of experiments 
prediction horizon 
pressure in the suction section of the compressor 
pressure in the suction section of the compressor 
pressure in the reactor 
number of model terms 
value of the reference trajectory for the outputs at time k+ 1 
matrix for the reference trajectory over the prediction horizon at time k+ 1 
coefficient of determination 
adjusted coefficient of determination 
matrix containig the step responses of the measured disturbances 
the standard error in the ith parameter of a statistica! model 
matrix containig the step responses of the inputs 
average of the two peak temperatures 
step response of the output to a step on input x 
T value of a parameter in a statistica! model 
bottorn temperature 
temperature in the suction section of the compressor 
temperature in the suction section of the compressor 
peak temperatures 
temperature after the preheater 
temperature after the preheater 
temperature in the reactor 
value of the inputs at time k 
upper constraints on the inputs 
lower constraint on the inputs 
unit step function 
output at time k 
prediction of the outputs for time k at k-1 
prediction of the outputs for time k at k-1 
upper constraints on the outputs 
lower constraints on the outputs 
prediction of the output for time k+ 1 
prediction of the output for time k+ 1 at k 
modifier concentration 
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