
 Eindhoven University of Technology

MASTER

Implementing a critiquing system to provide decision support in the ICU : the CritICIS system

de Clercq, P.A.

Award date:
1996

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/aba68a70-5fcb-481f-918b-d27cea551f4f

Eindhoven University of Technology
Department of Electrical Engineering
Division of Medical Electrical Engineering

Implementing a critiquing system
to provide decision support in the leu

the CritICIS system

By P.A. de Clercq

M.Sc. thesis
Carried out from January 1996 to October 1996
In order of:
Dr. Ir. P. Cluitmans
Under supervision of:
Dr. Ir. J.A. Blom

The department of Electrical Engineering of the Eindhoven University ofTechnology
accepts no responsibility for the contents of M.Sc. theses or reports on practical
training periods.

Abstract

Due to the development of new technology for diagnostic and therapeutic purposes,

combined with the introduction of microprocessor technology, the amount of data

collection in Intensive Care Units (lCUs) has increased enormously. In order to

collect, store and manage this flow of information, Patient Data Management Systems

(PDM-Systems) were introduced. An example of such a system is the Intensive Care

Information System (lCIS). ICIS is a PDMS, designed to process data at the ICU of

the Catharina hospital, situated in Eindhoven, the Netherlands.

To improve the quality ofthe data, stored in ICIS, a critiquing system was

implemented to provide decision support to the users oflCIS. This system, called

CritICIS, accepts a medical protocol as well as data from the ICIS database and

verifies 1) the consistency of the database itself and 2) the consistency of certain

treatments (e.g., it is recommended not to administer penicillin to a patient that is

allergic to penicillin). CritICIS is implemented using the SIMPLEXYS toolbox, a set

of tools to design real time expert systems and Borland Delphi, a Rapid Application

Development (RAD) tool. Although implemented as a separate application, CritICIS

acts as an integrated part ofICIS: the user selects a patient in ICIS, after which ICIS

activates the critiquing system. The selected patient's data is then gathered and

processed by CritICIS and possible inconsistencies are shown as warnings to the user.

The system is currently in the development phase and is now tested by the medical

staff. The first results are promising: as a result ofthe integrated user interface of

CritICIS as well as the utilized critiquing approach, the users of ICIS are satisfied

with the critiquing system. Therefore, the conclusion is drawn that it is possible to

successively implement a critiquing system that provides decision support to the

medical staff of the above-mentioned ICU.

This paper describes the development of the CritICIS system. It provides information

about the problem domain, ICIS and the SIMPLEXYS toolbox as well as the internal

functioning of CritICIS, it's means of communication with (the users of) ICIS and the

knowledge acquisition process.

Acknowledgments

First, I would like to thank the people at the ICU of the Catharina hospital for their

hospitality and for allowing me to use their facilities, especially Jan v.d Berk and

Hannie Megens for testing CritICIS and providing me with invaluable feedback.

Furthermore, I would like to thank Onno van Zinderen from INAD, for providing

information about ICIS and for helping me with some problems, regarding Delphi and

Access.

Several people from the section Medical Electrical Engineering assisted me during the

development of CritICIS. I would like to thank Hennie v.d. Zanden for general

support, Sjoerd Ypma for helping me with some network problems and Harrie

Kuipers for answering several SQL questions and for suggesting an appropriate

format for the CritICIS database.

I would especially like to thank Luc Cluitmans for answering all my Delphi related

questions and more. I enjoyed working together with him.

Last, but not least, I would like to thank Erik Korsten from the ICU for supplying

various rules and for his enthusiastic comments and suggestions to improve CritICIS,

and especially Hans Blom, for his guidance and support during my theses work.

Contents

1. Introduction 1

1.1. Patient monitoring 1

1.2. Decision support based on computer-stored medical records 2

1.3. Overview of the text 4

2. Expert systems in medicine 6

2.1. From computer understanding to knowledge representation 6
2.1.1. The early years 6
2.1.2. Expert systems 7

2.2. Components of an expert system 8

2.3. Production systems 10
2.3.1. Syntax 11
2.3.2. Communication between rules 11

2.4. Real time expert systems 13
2.4.1. Expert systems operating in dynamic environments 13
2.4.2. The difference between traditional and real time expert systems 14

2.5. Expert systems in medicine 16
2.5.1 Critiquing systems 16
2.5.2. Exploring the critiquing approach 17

3. The Intensive Care Information System (ICIS) 19

3.1. Patient Data Management Systems (pDM-Systems) in intensive care 19
3.1.1. The pros and cons of a PDMS 20
3.1.2. Classifications of PDM-Systems 22

3.2. ICIS 22

3.3. The monitoring equipment 27
3.3.1. The SDN Monitoring network 28
3.3.2 The ICiS graphics server 29
3.3.3. Current stage in development 29

4. Development tools and techniques 30

4.1. Developing clinical systems using rapid prototyping 30
4.1.1. Evolutionary rapid prototyping 31
4.1.2. The path from prototype to application 32
4.1.3. Developing a critiquing system by means of rapid prototyping 33

4.2. The Borland Delphi programming environment 34
4.2.1. Component technology 34
4.2.2. Visual development environments 36
4.2.3. Building applications by means of Delphi 36

4.3. The SIMPLEXYS toolbox 37
4.3.1. The SIMPLEXYS programming language 37
4.3.2. The SIMPLEXYS rule compiler and extensions 41
4.3.3. The SIMPLEXYS inference engine 44
4.3.4. Adapting the SIMPLEXYS inference engine to object-oriented environments __ 45

5. Critiquing ICIS: The development ofCritICIS 47

5.1. An introductory example 47

5.2. An overview of CritICIS 50
5.2.1. The user interface 51
5.2.2. The data acquisition components 52
5.2.3. The SIMPLEXYS module 56

5.3. Executing the critiquing system 61
5.3.1. Initializing CritlCIS 61
5.3.2. Activating CritlCIS 62
5.3.3. Processing the warnings 69
5.3.4. Ending CritlCIS 72

5.4. Structure of the knowledge base 72
5.4.1. Warning classification 73
5.4.2. Utilizing the context number 75
5.4.3. Executing warnings through strategic rules 76
5.4.4. Adding warning records by means of THELSEs 76

5.5. Developing CritICIS by means of rapid prototyping 77
5.5.1. Developing the CritlCIS module 77
5.5.2. Developing the knowledge base 78

6. Conclusions 80--------------------------
REFERENCES 83

APPENDIXA: The knowledge base ofCritICIS 85

APPENDIXB: Developed Delphi components 91

Introduction

1. Introduction

1.1. Patient monitoring

1

Patient monitoring is an important process in specialized hospital departments such as

the Intensive Care Unit (lCU), where the patient's condition is often very dynamic

and unstable. Patient monitoring is a complex process that includes observation

(measurement), interpretation, evaluation (diagnoses) and control (therapy) of the

patient's condition (figure 1.1).

____----"""~--_, Measurement ~~ __

Therapy ! Interpretation

--- ~----------~..~~
---- Diagnosis ..--------

Figure 1.1: The patient monitoring process, adaptedfrom [Reader Mel- rd Gen. II]

The first step in the patient monitoring process is the measurement of the patient's

physiological variables. Examples of these variables are:

• the electrocardiogram (ECG)

• the patient's blood pressure

• the patient's temperature

The treating physicians interpret and evaluate these variables and suggest a suitable

therapy. The patient's response on this therapy is monitored again, so that it is

possible to make alterations or adjustments if necessary.

Patient monitoring is a continuous process. It is essential that the acquisition of the

physiological variables takes place fast and accurate in order to keep the patient's

condition stable. This aspect of patient monitoring is called real time monitoring. Real

time monitoring is crucial in hospital departments such as the ICU (Intensive Care

Unit).

2 CritICIS

1.2. Decision support based on computer-stored medical records

When monitoring a patient, a number of physiological variables are measured. The

number of measured variables depends on the patient's condition; a patient that

undergoes a surgical operation requires more monitoring than a recovering patient.

Other aspects, such as the patient's age or medical history and the fact that some

measurement methods are more expensive than others also determine the quantity of

measured variables.

In the past, these variables were written down on paper. Every patient had a form,

containing the patient's data. Apart from the physiological variables, the form also

included personal information, such as the height, weight and religion of the patient as

well as comments from the treating physicians and the medical staff.

In addition to these paper forms, patient data is nowadays also stored in computer

records, forming a medical database. An example, taken from the Intensive Care

Information System (lCIS), is shown in table 1.1.

Patient- Admission- Admission- Room- Discharge- Urgent
number date time number date admission

51165635 1996-01-28 01:56:39 2 1996-01-28 FALSE
123456789 1996-06-11 15:58:33 3 FALSE

2053793518 1996-01-24 11:15:09 1 1996-01-25 FALSE
2083279510 1996-01-24 18:59:49 3 1996-01-25 FALSE
3024670526 1996-01-25 16:07:13 1 1996-01-26 FALSE
4056983510 1996-01-28 19:03:32 3 1996-01-28 TRUE
4106993522 1996-01-25 13:26:06 1 1996-01-26 FALSE
4113543529 1996-01-29 13:42:41 2 TRUE
5092910519 1996-01-23 14:35:50 4 1996-01-25 FALSE
6032333018 1996-01-25 15:27:26 2 1996-01-28 FALSE

Table 1.1: A (small) section ofthe lCIS database

In many cases, the monitoring equipment is connected to the medical database.

Because of this, the data obtained from the monitoring equipment is stored directly

into the database without human intervention (figure 1.2)

Introduction

,--- yyy

~------~

3

--------------.-i:----------------­
!

Filter
-----~!~ --,

Medical
database

non machine-interpretable
:.-- data

---------.--------'----
machine-interpretable data

Figure 1.2: Information sources ofthe medical database

The amount of transferred data from the monitor to the database varies with the

measured physiological variable (for example, the patient's blood pressure is

sometimes measured once every 5 minutes, whereas the patient's ECG is measured

continuously). Especially regarding variables that are measured continuously, a filter

is usually placed between the monitor equipment and the database to reduce the

amount of (real time) data. The output ofthe filter usually consists of average values,

calculated between two points oftime.

The medical database contains not only the monitoring data, but also data from the

treating physicians and the medical staff. This data classifies into 2 categories:

• machine-interpretable data: the data in this category is interpretable by an

automaton (computer) and it is possible to use it in calculations. Often the data in

this category consists of numbers (such as the patient's age or height), but

sometimes also text (for example, the name ofa prescribed medicine). Usually in

the second case, the text is internally encoded into a numerical value or code. Note

that the data from the monitoring equipment also falls into this category.

• non machine-interpretable data: data in this category usually consists of so-called

'free text'; comments about the patient and/or the patient's environment, such as

4 CritICIS

phone numbers of relatives. A computer cannot process this data or use it in

calculations.

Using this (machine-interpretable) data, one could ask the question if it is possible to

construct an automaton that supplies some sort of decision support to the treating

physicians. Research showed that this question can be answered in the affirmative

[VanDer Lei, 1991]. Based on a model of the patient, a so-called critiquing system is

able to supply critique, using data from a medical database.

Critiquing systems are usually realized as expert systems. The research of expert

systems derives from the longer existing research ofArtificial Intelligence (AI). The

main difference between expert systems and 'traditional' AI-programs, is that expert

systems tend to concentrate on narrow domain problem areas, whereas AI research

tries to solve a larger class ofproblems (using so-called general problem solvers).

Because critiquing systems are narrow domain area experts, they fall into the same

class as expert systems.

1.3. Overview of the text

This paper describes the development of a critiquing system, called CritICIS. CritICIS

is able to critique the actions of the treating physicians and the medical staff at an

ICU, situated at the Catharina hospital in Eindhoven, the Netherlands. In the ICU,

patient data is collected and stored into a medical database, using a Patient Data

Management System (PDMS), called ICIS (Intensive Care Information System).

CritICIS has access to the medical database and critiques the user, based on the

obtained data from ICIS.

Chapter 2 presents a general overview of (real time) expert systems and critiquing

systems in medicine. Chapter 3 gives some background information about the

problem domain. It describes ICIS and it's environment, such as the monitoring

equipment. Chapter 4 describes the tools and techniques, used in the development

process. The internal structure of CritICIS and its functioning is described in chapter

5, along with the structure of the knowledge base of CritICIS. The knowledge base

Introduction 5

contains the expert knowledge that CritICIS needs in order to critique the actions of

the treating physicians. Finally, this chapter provides information about the

knowledge acquisition process (the elicitation and encoding of the expert's knowledge

into the knowledge base). The last chapter, chapter 6, contains results, conclusions

and further recommendations.

6

2. Expert systems in medicine

CritlCIS

2.1. From computer understanding to knowledge representation

The research of expert systems is relatively new. It derives from the longer existing

research of Artificial Intelligence (AI), which is often described by [Barr and

Feigenbaum, 1981]:

AI is the part ofcomputer science concerned with designing intelligent computer

systems, that is, systems that exhibit the characteristics we associate with

intelligence in human behavior - understanding language, learning, reasoning

solving problems, and so on.

2.1.1. The early years

The history of AI (Artificial Intelligence) started in the 1950s, when AI researchers

wrote symbolic programs to solve problems that normally required human

intelligence. These programs were called general problem solvers and they were able

to solve puzzles and prove simple theorems. In the 1960s and 1970s, the emphasis in

AI research shifted from general problem solving to the development of

computational models of human intelligence, including both its cognitive and

perceptual aspects [Duda and Shortliffe, 1983]. The beliefthat a few reasoning laws

(similar to human reasoning) could produce intelligent behavior, dominated this

period. People were asked to think aloud when they solved a problem, after which the

AI researchers tried to analyze and formalize the used reasoning strategies. Computer

understanding and heuristic search were the main research topics in this period.

But in the last two decades it turned out that this approach would not lead to any

breakthroughs, mainly because the problem independent reasoning methods were

generally too weak to solve complex individual problems. It became clear that

expertise implies more than utilizing the public knowledge and strategies, known to

AI programs [Hayes-Roth et aI., 1983]. Human experts possess various kinds of

Expert systems in medicine

knowledge, such as clarifying the problem, judging the reliability of facts and

deciding whether a solution is reasonable [Duda and Shortliffe, 1983].

7

2.1.2. Expert systems

Disappointed with general problem solving methods, the research concentrated more

on knowledge representation, rather than computer understanding. This new approach

led to the development of specialized computer programs, called expert systems.

Expert systems are designed for representing and handling knowledge in a narrow

problem area, in contrast to the above-mentioned general problem solvers. Other

differences between traditional AI and expert systems are [Hayes-Roth et aI., 1983]:

• Expert systems are able to perform difficult tasks at expert levels of performance.

• Expert systems provide explanations and justifications about their own inference

process.

• The tasks of an expert system often classify into one of the following categories:

interpretation, prediction, diagnosis, design, planning, monitoring, debugging,

repair, instruction and control.

In the last years, the expert systems research has proved to be a successful one. Expert

systems are nowadays frequently used in various fields, such as in medicine and in

measurement and control. Besides expert systems there are also 'conventional'

programs active in these fields, but there are a number of differences between these

programs and expert systems [Jackson, 1990]:

• Conventional programs reason about the problem domain, whereas an expert

system simulates human reasoning.

• In an expert system, the knowledge is separated from the reasoning strategy that

utilizes the knowledge, whereas in a conventional program they are interlaced.

The knowledge part is usually referred to as the knowledge base and the reasoning

part is called the inference engine. The separation of knowledge and reasoning

strategies makes it easier to maintain the system, because it is possible to modify

each part separately. The knowledge in the knowledge base exists in different

8 CritICIS

forms, such as production rules (the most popular), predicate logic, semantic nets

orframes. It depends on the nature of the problem and the experience of the

designer, what knowledge representation is the most favorable.

• The knowledge in the knowledge base is usually some kind of heuristic. A

heuristic is a 'rule of thumb'; it does not guarantee a solution but often gives an

acceptable one. This is unlike an algorithm, that always reaches an (optimal)

result.

2.2. Components of an expert system

Figure 2.2 shows a characteristic expert system that is decomposed into several

modules [Chytil and Engelbrecht, 1987]:

• User Interface: Although often not recognized, the user interface plays a very

important role in the various communication processes between the user and the

expert system. Using various techniques, such as graphic displays, menus, icons,

mouse operations and voice control, the user is able to establish a dialogue with

the expert system. Important requirements of a user interface are uniformity and

comprehensibility throughout all the dialogues. Because the operating speed ofthe

expert system usually differs from the user's operating speed (especially when

dealing with real time expert systems), the user interface is sometimes realized as

a separate program or task that runs in parallel [Langlotz and Shortliffe, 1983].

• Inference Engine: This module is (besides the knowledge base) the basic part of

an expert system. As mentioned in the previous paragraph, the inference engine is

the part that performs the reasoning. It can employ various strategies, such as state

space searching (solving problems by means of searching through state spaces),

pattern matching (solving problems by means of identifying patterns) or parsing

(solving problems by means of grammatical analysis).

• Knowledge Base: This module contains the knowledge about the problem domain

and is utilized by the inference engine's reasoning strategies. Because this module

is the core of an expert system, expert systems are also referred to as knowledge

based systems. Figure 2.3 shows some examples of different knowledge

representations in a knowledge base.

User interface

Expert systems in medicine 9

User
-----_.-----.... - ------

-~--_.---------- _._--------- -----,
II

----- -----------.-

,

y

Explanation
and ~

justification

...
i

y

Inference
engIne

,

I

~..

------.-----

y

Data
acquisition

____...Y..y __ y _ .Y. _

Knowledge
base --~,

I
Database

Figure 2.2: Components ofan expert system

• Explanation and justification: The purpose of this module is to explain the

inference engine's reasoning strategies to the user. The ability of clarifying the

steps that led to the solution of a problem is one of the most important

characteristics of an expert system. This, because the design of a knowledge base

is a difficult process, especially the testing and debugging phases [Blom, 1990]. A

common feature of the explanation or debugging module is the ability to

reconstruct the inference chain after it has been completed. This makes it easier

for the system developer to build, test and maintain the knowledge base.

• Database: The database normally contains two types of data:

1. Static data: Facts and relations found in the problem domain. Examples are the

age or weight of a patient.

2. Dynamic data: Data, collected during a session. Examples are the patient's

blood pressure or ECG.

During or after a session, it is possible to transfer the dynamic data to the static

data area for further use.

10

a) predicate logic d) semantic nets

CritlC1S

BROTHER(Paul, Eric) = Paul and Eric are brothers

b) rules

IF battery is empty THEN car will not start

c) frames

------~---~------=---
name Peter
age i 35c~. .__~.. _

weight 83!
1--heIght~_==~-=--~ 185 __=-~
__ o~~upation ~!llde~ ~

Figure 2.3: Various knowledge representations

• Data acquisition: The inference engine activates this module whenever it

requires data. When activated, the data acquisition module tries to fetch the

requested data. This implies gathering the missing data from a database or asking

the user to supply the data if it is not available.

2.3. Prod uction systems

As already stated, there are various ways to encode the knowledge in a knowledge

base (figure 2.3), but the most popular are production rules. Expert systems that rely

on production rules are usually referred to as production systems. A reason for their

popularity is given by Newel and Simon, cited by [Blom, 1990]:

We confess to a strong premonition that the actual organization ofhuman

programs (i.e., in the human mind) closely resembles the production systems

organization.

and

In summary, we do not think a conclusive case can be made yet for production

systems as the appropriate form of(human) program organization. Many ofthe

arguments ... raise difficulties. Nevertheless, our judgment stands that we should

choose production systems as the preferred language for expressing programs

and program organization.

Expert systems in medicine

2.3.1. Syntax

In a production system, a single rule has generally the following syntax:

11

where Ph ... , Pm are called the premises or conditions and Qh ..., Qm are referred to as

the actions or conclusions. Whenever a single rule is chosen (for example as a result

of executing previous rules), the actions Q}, ..., Qm are carried out only if the

conditions Ph ... , Pm are satisfied (the rule then 'fires' or 'triggers'). These actions can

cause other rules to fire, thus producing a chain reaction that is called the inference

chain. This form of inferencing is called forward chaining or data-driven inferencing.

Forward chaining is very resource demanding. Due to the 'avalanche-effect', chances

are that in the long run (almost) every rule in the knowledge base will be checked.

Another form of inferencing is backward chaining or goal-driven inferencing. The

backward chaining algorithm starts with one or more actions ('goals') and checks if

all the conditions of the current rule are satisfied. If not, the algorithm searches for a

rule that contains an action part that will satisfy the conditions of the current rule.

When found, the (new) goal becomes to satisfy the condition part of the newly found

rule, continuing until the answer is found or there is no rule available with a matching

action part (indication that there is no answer to the problem). The majority of the

expert systems use forward chaining as an inference mechanism, but there are also

systems that are able to use both forward and backward chaining.

2.3.2. Communication between rules

Besides the rule interpreter (the part that decides when to select which rules), the

inference engine also contains a module that holds the data, goal, statements and

intermediate results that determine the current state of the problem [Jackson, 1990].

This module, called working memory, is the only means of communication between

the various rules (figure 2.4).

12 CritlCIS

Inference engine

Working Memory

-

-'---

-

,.-''-

.----- ---------------------- ----------- -----,,,
: -'--,,,,,,,,
I,,,,,,,,
, -,,
1 __ --

Knowledge base

Figure 2.4: Communication between the various rules

Normally, a rule is not aware of the other rules in the knowledge base. All that a rule

is capable of is modifying the data in the working memory en letting some other rule

react to it. Using rules, it is not possible to encode strategic knowledge or

metaknowledge (knowledge about the knowledge in the program) into the knowledge

base, such as the implementation of a search strategy. For this purpose, some

production systems expanded their syntax with so-called metarules. In contrast to

'normal' rules, metarules are able to direct the reasoning that is needed to solve a

problem, rather than just perform that reasoning [Jackson, 1990].

It seems that the separation of (domain) knowledge and global strategy makes it

easier to maintain or modify the knowledge base. However, adding or deleting rules

sometimes produces unexpected side effects. This is because the rules in the

knowledge base do not only express explicit knowledge but also contain some form of

implicit knowledge (this is especially true when working with metarules). Therefore,

modifying the knowledge base may not be as easy as it looks and should be done with

great care. In order to simplify the maintenance of a knowledge base, production

systems were developed that could decompose the knowledge into smaller parts

Expert systems in medicine 13

(called chunks). An example is the introduction ofgoal hierarchies [Blom, 1990].

This technique divides a goal into smaller goals (for example by using an AND

structure), thus making the knowledge base more orderly.

2.4. Real time expert systems

The execution speed of an expert system is usually low, compared to conventional

systems. A typical expert system spends 90 percent of its executing time searching

through the knowledge base. Forward reasoning, for example, is an algorithm that is

exponential time. The number of rules that will fire explodes exponentially with the

depth of the inference tree. Also the backward reasoning algorithm is very resource

demanding: every increment in the depth of the inference tree gives an exponential

increase in the number of tree nodes and a combinatorial increase of the number of

paths to search [Laffey et al., 1988]. This phenomenon is called combinatorial

explosion and has always been a controversial topic in AI research.

2.4.1. Expert systems operating in dynamic environments

According to [Laffey et al., 1988], 'traditional' expert systems are not suitable for

unstable and dynamic environments, such as the leu:

Knowledge based systems operating in a real time situation (for example crisis

intervention or threat recognition) will typically need to respond to a changing

task environment involving an asynchronous flow ofevents and dynamically

changing requirements with limitations on time, hardware and other resources.

Humans that operate in these situations, tend to overlook valuable information, react

too slowly or panicky when the flow of information becomes too great. The purpose

of so-called real time expert systems is to 'reduce the cognitive load on users or to

enable them to increase their productivity without the cognitive load on them

increasing' [Turner, cited by Laffey et al., 1988]. In contrast to 'normal' expert

systems, real time expert systems must be able to recognize and respond to an external

event within a certain period of time, called the response time.

14 CritICIS

There exist several definitions of real time in literature, but it is usually described as

'fast' or 'fast enough'. Other definitions are 'faster than a human can do it' or 'the

system processes incoming data faster than it is arriving'. More formal definitions are

found in [Blom, 1990].

2.4.2. The difference between traditional and real time expert systems

As stated above, real time expert systems operate in environments in which the data is

not static. As a result, these systems will encounter new and complex problems

[Laffey et ai., 1988]:

• Nonmonotonicity: During the execution of the program, the flow of incoming

(sensor) data will not remain static.

• Continuous operation: A real time expert system must be robust. The discovery

of a partial of complete failure of one or more parts of the expert system may not

result into a system shutdown.

• Asynchronous events: Incoming events are often not scheduled, but occur

randomly in time. Also, the events may differ in priority.

• Interface to external environment: Data is usually gathered from a set of sensors

and not supplied from the user.

• Uncertain or missing data: A real time expert system must be able to detect

uncertain, invalid or missing data.

• High performance: The system must respond rapidly to external events. This is

one of the most important requirements of a real time expert system.

• Temporal reasoning: In real time environments, time is a very important

variable. A real time expert system must be able to reason about past, present and

future events.

• Focus of attention: When receiving an external event, the system must be able to

focus its resources on the important goals, depending on the event.

• Guaranteed response times: The system must be able to respond by the time the

response is needed.

Expert systems in medicine 15

• Integration with procedural components: It must be possible to integrate the

real time expert system with 'conventional' software. This software will perform

tasks such as I/O-operations or providing a user interface.

Although considerable effort is being put into developing real time systems, there still

exist pressing problems that need to be solved:

• The system is not fast enough.

• The system has little or no capability for temporal reasoning.

• The system is difficult to integrate with conventional software.

• The system has little or no facilities to focus attention.

• There is no integration with a real time clock.

• There are no facilities for handling asynchronous inputs.

• The system is not equipped to handle software-hardware interrupts.

• The system can only efficiently obtain input from human sources.

• There are no methods for verifying and validating the shell or knowledge base.

• The system cannot guarantee response times.

• The system runs on hardware that was not built for harsh environments.

Considering the above-mentioned problems and limitations, the following features

must be expected of a real time expert system:

• An efficient integration of numeric and symbolic computing.

• Continuous operation

• A focus-of-attention mechanism.

• An interrupt-handling facility.

• Optimal environment utilization; i.e., compiled instead of interpreted code.

• Predictability.

• A temporal reasoning facility.

• A truth maintenance facility.

16 CritICIS

2.5. Expert systems in medicine

During the late 1960s and early 1970s, the field ofArtificial Intelligence in Medicine

(AIM) arose. Expert systems, such as MYCIN (deals with infectious disease) and

INTERNIST (models diagnostic reasoning performed by human clinicians) were

developed in order to assist physicians with medical decision making [Miller, 1988].

Nowadays, medicine occupies a leading place among the numerous different kinds of

expert systems now developed. Various prototypes of medical problem solvers have

been designed in the last two decades. However, the regular use of expert systems

operating in medicine is found only rarely, due to several reasons [Miller, 1988]:

• The human organism and human disease processes are very complex subjects.

• Currently, only a shallow knowledge exists on most diseases.

• Even constrained subspecialty areas of medicine require a huge amount of

knowledge.

• There exists a lack of familiarity with computers on the part of many health care

practitioners.

• Practicing physicians often have to deal with pressured time demands and legal

implications.

2.5.1 Critiquing systems

Considering the above-mentioned complexity of medical knowledge and medical

practice, it is very important to determine the best approach for an expert system to

assist a physician. Traditionally, expert systems in medicine have attempted to

simulate a physician's reasoning strategies. A typical expert system receives

information about a patient and then produces a number of conclusions and

recommendations, such as a list of possible diseases, a set of suggested tests or a

treatment plan (figure 2.5a). Such a system 'has the clinical effect of trying to tell a

physician what to do' [Miller, 1986]. A critiquing system, however, follows another

approach (figure 2.5b).

Expert systems in medicine

patient
description

---------------,

patient description or
medical protocol

physician's
plan

~

17

traditional
expert system

conclusions &
recommendations

critiquing
system

critique

Figure 2.5: Comparison between a traditional expert system and a critiquing system, adaptedfrom

[Miller, 1986J

Besides the patient description, a critiquing system also accepts a physician's

proposed plan or a medical protocol that must be carried out. The critiquing system

then critiques the plan. In this way, it structures its advice around the physician's own

thinking and style of practice. A critiquing system falls into the class of diagnostic

expert systems.

2.5.2. Exploring the critiquing approach

According to [Van Der Lei, 1991]:

Certain workers in medical informatics have argued that, for some medical

domains, critiquing the decisions ofa physician is a preferred approach in

providing decision support.

The question why critiquing may be preferable in some medical domains can be

approached from several perspectives [Miller, 1986]:

• The clinical perspective: The large amount of variation and subjectivity inherent

in medical practice makes it almost impossible to try to tell a physician what to

/8 C,itlClS

do. Using the critiquing approach, the advice given to the physician can be

presented in the form the physician can use best.

• Critiquing as a form of practice-based education: The critiquing approach

allows the expert system to structure the detailed information around a physician's

practice. As a result, critiquing is not only a form of decision support, but also a

form of practice-based continuing medical education.

• The computer science perspective: Critiquing also contributes to the field of

expert systems research. It is a way to structure explanation by an expert system of

its internal reasoning processes.

Some domains are better suited for critiquing than other. Domains that suit the

critiquing approach, possess the following characteristics [Miller, 1986]:

• There are a number of alternative choices.

• There are a number of different risks and benefits associated with the various

choices in different patients.

• New treatment choices and new knowledge about existing features periodically

alter the field.

An example of such a domain is the ICU, which is in practice a hybrid of various

subspecialty areas of medicine.

The Intensive Care Information System (ICIS)

3. The Intensive Care Information System (ICIS)

3.1. Patient Data Management Systems (PDM-Systems) in intensive

care

An intensive care unit (lCU) attends patients that require continuous observation

because their condition is often very unstable or even life-threatening. According to

[Skillman, cited by Groen, 1995]:

19

An intensive care unit is a special care unit in a designated area ofa hospital,

which supplies specially trained medical, nursing and other personnel and

diagnostic, monitoring and therapy equipment in order that seriously ill patients

may be provided with close observation, intensive care, and with immediate

recognition ofpotentially life-threatening complications, and prompt institution

ofindicated treatment.

The first rcus were constructed in the 1950 in the United States. At this time, rcus

were relatively simple units where there was no complex equipment available, such as

heart monitors, dialysis machines or intelligent alarms. According to [Fairman, cited

by Groen, 1995]: 'the nurses were the alarm'.

However, due to the development of new technology for diagnostic and therapeutic

purposes, combined with the introduction of microprocessor technology, the amount

of data collection in rcus has increased enormously [Metnitz and Lenz, 1995]. Tasks,

traditionally performed by nursing personnel are currently (partially) handled by

computerized systems (table 3.1).

Due to these technological changes, the point has already been reached where the

manual handling of these large amounts of data is very difficult to manage.

20 CritlCIS

Function Old Method Currently practice

Monitoring Direct observation by Continuous monitoring by

nurse machine and direct

observation by nurse

Delivery of medication Frequent interventions by Automated delivery

nurse systems and manual

delivery

Ventilation Flexible manual Flexible and versatile

ventilation and inflexible automated and manual

mechanical ventilation ventilation

Blood pressure Cuff and mercury gauge Direct and continuos

for on-off measurement measurement in the blood

stream as well as non-

invasive manual and

automated measurements

Oxygen levels in blood Blood sampled for analysis Continuous and non-

in laboratory invasive measurement of

saturation, backed up by

laboratory analyses.

Table 3.1: Technological changes in intensive care, adaptedfrom [Groen, 1995J

3.1.1. The pros and cons of a PDMS

The purpose of a so-called patient data management system (PDMS), is to process the

above-mentioned huge amount of data. According to [Metnitz and Lenz, 1995], these

systems have their pros and cons:

The Intensive Care Information System (ICIS) 21

• The collected data, combined with corresponding data (for example, data that is

collected at different times or sites) is presented in the most appropriate form to

the user in real time.

• The time, used for charting can be reduced up to 50 percent through computerized

charting systems. However, factors such as the severity of the patient's illness and

the amount of data documented through PDMS could result in increasing charting

times.

• Human errors are common in handwritten documents, such as arithmetic errors or

data omission. Computerized documentation, on the other hand is said to provide

completely and readable documentation. However, research showed that the

above-mentioned errors also exist in computerized documentation.

• The collected data may easily be processed for scientific analysis or quality

control purposes. An example is the calculating of the so-called patient scores.

The purpose of these scoring systems is to 'rate' a patient's disease and the

amount of required patient care. For example, the APACHE (Acute Physiologic

and Chronic Health Evaluation) and the SAPS (Simplified Acute Physiologic

Score) scoring systems both express the'amount of patient suffering' . Another

example is TISS (Therapeutic Intervention Scoring System), that has been

developed in order to determine the required workload.

• Medical computer systems are still expensive and the decision upon which system

is to be purchased needs to be made carefully. Also, secondary considerations are

necessary, such as 'what kind of peripheral equipment (ventilator, monitor) must

be purchased' and 'is it possible to connect the PDMS to the existing equipment'.

These decisions often are made by clinicians or managing directors that have no or

little expertise in medical informatics.

• Sophisticated computer systems, such as PDM-Systems, need maintenance by

specialized personnel, which may increase hospital costs.

• The implementation of a PDMS needs much time and resources and may decrease

the productivity of an ICU. The starting time ofa PDMS may be affected by first­

time faults and is surely a burden for the staff. Also, if the PDMS fails to satisfy

the customer's needs after implementation, it is very difficult to change to another

one.

22

3.1.2. Classifications of PDM-Systems

PDM-Systems are classified into 3 categories [Metnitz and Lenz, 1995]:

CritICIS

• Self-made-systems: These systems are developed by informatic specialists that

are working in the field of hospital communication as well as in the field of

computing. Most ofthese systems are adapted to local needs and can hardly be

transferred to other ICUs.

• Minimal PDM-Systems: Minimal PDM-Systems are able to collect information

from various sources, such as a Serial Distribution Network (SDN) or laboratory.

These systems, often PC-based, are usually easy to handle and cheap solutions for

ICUs that cannot afford a large PDMS. ICIS classifies into this category.

• Commercially available bedside-based PDM-Systems: These are the most

powerful PDM-Systems available today. The core ofthese systems is the

information, obtained from the bedside. To process this information, a fast

database response time is necessary, but often hard to achieve, especially when the

amount of data grows constantly. As a result, they are often not enough to cover

the demands of information management in an ICU. Further applications, such as

bedside display of X-rays will need even more computer power than that provided

by today's systems. Currently, there are just a few ofthese systems available in

Europe, such as Atlantis, Carevue 9000, Chartmaster, Clinicomp, Clinisoft and

Emtek. An overview of the current situation in Europe is presented by [Metnitz

and Lenz, 1995].

3.2. leIs

As stated above, ICIS (Intensive Care Information System) is a PDMS that falls into

the category ofthe 'minimal PDM-Systems'. Started as a simple medicine program,

ICIS has evolved into a complex database system that is now operating full-time in

the ICU ofthe Catharina Hospital, situated in Eindhoven, the Netherlands.

ICIS has been developed in association with the medical personnel ofthe ICU. As a

result, ICIS attempts to improve the communication between the various members of

the medical staff. This philosophy differs considerably from the viewpoint of the

The Intensive Care Information System (ICIS) 23

'bedside-based' PDM-Systems that are based on the information from the monitoring

equipment. ICIS is implemented in Microsoft Access and has a patient-oriented user

interface. Note: ICIS is developed in the Netherlands. Therefore, the language of the

user interface is entirely written in Dutch.

Figure 3. I: The main screen ofleIS

Figure 3.1 shows the main screen. It presents the admission table, containing

information about the current administered patients, such as their room number, name,

gender, identification number, admission date, etc. When the user has gained access to

the system (by means of a login name and password), the user may request

information about a patient, such as the patient's medication, physical examinations or

complications. It is also possible to enter new information, such as adding a new

medicine, the result of an examination or administering a new patient.

ICIS is divided into several components (visualized to the user by means of

corresponding screens), all reachable from the main screen (figure 3.2):

24 CritICIS

• Admission and admission diagnosis screen: The purposes of the admission

screen are:

1. Administering a new patient.

2. Adding or changing the data of an already administered patient, such as the

patient's room number or allergies.

When administered, the patient receives an admission number or Ie-number that

is admission-specific. This, in contrast to the so-called patient number or IP­

number that is unique for every patient. When a patient is administered several

times, the IP-number always remains the same, whereas the admission number

changes with every admission.

After entering the patient's data, the user is presented with the admission

diagnosis screen. In this screen, the user may enter the patient's condition, active

and non-active problems and medical history.

• Discharge screen: The user chooses the discharge screen whenever a patient is

discharged from the leu. Before discharging the patient, the user may enter

discharge-specific data, such as the patient's condition or destination.

• Patient information screen: This screen presents an overview of the patient's

data. The screen's content is for inspection only and is useful whenever a quick

profile of the patient is desired.

Activating the Decursus button reveals a floating menu (figure 3.1) that provides

access to the following screens (figure 3.2):

• Overview medication and add medication screen: The purpose of the overview

medication screen is to present an overview ofthe patient's medications. By

means of the add medication screen, it is also possible to add new ones.

t t r
i Che:ist:Hbl:~g:SJ

t
lo~:r:iew• I

I I--
I I

overView I ove~iewj clinic
I I

TISScomplica- I treatments activities• I
hons i

-T-1
l__I i-J 1--J_.-

- ~ -

~

add

l:h:rt
complica-

add - ----- 1- -~ stop
treatment

I decubitus
activity ""tion scores ..."

I
_.J I ____ _ __

i
overview I

me~ica- I

hon I

~
add

medica­
tion

overview
examina­

tionsJ

--r
add

examina­
tion

admission
diagnosis

admission

... _ t
discharge Uadmission U

.fl ~:le I i

decursus

patient
data

26 CritlCIS

• Overview examinations and add examination screen: The overview

examinations screen shows the patient's current and previous medical

examinations. Whenever the patient's condition demands a new examination, the

user selects the necessary one by means of the add examination screen.

• Overview complications and add complication screen: The patient's

complications are presented in the overview complications screen. Furthermore,

the add complication screen enables the user to enter a new complication, along

with the complication's category, starting date and suggested treatment.

• Overview treatments and add treatment screen: The purpose of this screen is to

present an overview of the patient's treatments, including date, time and treating

physician. New treatments are entered by means of the add treatment screen.

• Clinic screen: The purpose of the clinic screen is to enter and present the clinical

variables and the Glasgow coma scale. These values are used to calculate the

APACHE II and SAPS II scores.

• Chemistry screen: The screen enables the user to enter the results of the

laboratory tests, such as the glucose, ASAT or ALAT values. Along with the

clinical variables and the Glasgow coma scale, the APACHE II and SAPS II

scores are calculated, using these values.

• Bloodgas screen: This screen shows the arterial and venous bloodgas values.

• Scores screen: ICIS is able to calculate several scores, such as APACHE II, SAPS

II and decubites. The scores screen presents an overview of these scores.

• Decubites screen: This screen presents a detailed overview of the decubites score.

• Chart screen: This screen presents a graphical overview of several values, taken

from the clinic, chemistry and bloodgas components.

• TISS screen: The TISS screen displays a detailed overview of the patient's TISS

score.

• Overview activities and stop activity screen: The overview activities screen

displays the activities of a selected patient that are to be carried out by the medical

staff, such as weighing the patient or turning the patient around. These activities

may be connected with other decursus items, such as the patient's medications or

examinations items. In the stop activity screen, the user may (temporarily) halt an

The Intensive Care Information System (ICIS) 27

activity. As a result, this activity will no longer be visible on the so-called activity

list.

In ICIS, each component is linked to a corresponding Microsoft Access table (for

example, table 1.1 shows a part of the admission table). All the actual data is stored in

these tables and is accessible by means of SQL (Structured Query Language)

statements.

3.3. The monitoring equipment

An overview of the ICU's monitoring equipment is shown is figure 3.3.

Display

Patient
Information

Center

SDN
I

Bedside !

Monitor

. SDN
! Bedside

Monitor

SDN
Bedside
Monitor

Display

~------

Patient
Information

Center

SDN
Bedside
Monitor

,-----_._- --.__ ._._-------- --------

see

Careplane
Interface

+
PC

ICIS graphics server

Figure 3.3: The monitoring equipment

ICIS

28 CritlCIS

3.3.1. The SDN Monitoring network

The Hewlett-Packard SDN (Serial Distribution Network) is a local area

communications network designed to share patient data among bedside monitors and

other information systems that are connected to the network. The SDN allows real­

time transfer of digitized patient data between the following components:

• The System Communications Controller (SCC): This component is the core of

the SDN. It collects the patient data and synchronizes all the instruments.

• Bedside monitors: The purpose of the bedside monitors is to measure and

transmit the patient's data onto the SDN. There are currently 22 bedside monitors

operating at the ICU, each of them capable of measuring the following

physiologic variables:

• HR (Heart Rate)

• ABP (Arterial Blood Pressure)

• PAP (Pulmonary Arterial Pressure)

• CVP (Central Venous Pressure)

• Sp02 (Oxygen saturation)

• RESP (Respiration frequency)

• NBP (Non Invasive Blood Pressure)

• PULSE (Pulse frequency)

• CO (Cardiac Output)

• BLOODT (Blood Temperature)

• Tb T2, Tr T I (various temperatures)

• Patient information centers: The patient information centers display the patient's

physiologic variables monitoring data graphically to the user, by means of a

display or terminal. At present, there are 4 patient information centers and displays

connected to the SDN.

After collecting, the SCC sends the monitoring data to the careplane interface, which

forms a bridge between the SDN and a personal computer. The purpose of this

The Intensive Care Information System (ICIS) 29

computer is to filter the data, after which it is send to the main network of the ICU. In

this network, the filtered data is collected and processed by other programs, such as

ICIS or the leIS Graphics server.

3.3.2 The ICIS graphics server

In order to display the (filtered) data in ICIS, the ICIS graphics server has been

developed which is capable of displaying the patient's physiologic variables (figure

3.4).

ABP
CVP
PAP
RESP
Tl

T2

CO
PAtJP
TBLD

PB
STl
Sp02

ST2

Figure 3.4: The ICIS graphics Server

3.3.3. Current stage in development

At present, the careplane interface is still in the development phase. As a result, it is

not possible to connect ICIS directly to the SDN or to the ICIS graphics server. The

physiologic variables are still entered manually into ICIS by the medical staff, using

the patient information centers. However, in the near future, the SDN network and the

ICIS graphics server will both become an integrated part ofICIS.

30

4. Development tools and techniques

CritICIS

4.1. Developing clinical systems using rapid prototyping

Software development is sometimes more considered an art than a science. However,

in the last two decades, various attempts were made to formalize the process of

developing correct commercial systems. This process, called software engineering,

usually consists oftive stages [Wyatt, 1994]:

• Capture the user's needs on paper.

• Write a detailed specification of the system's components and functions.

• Transform the specification into a program.

• Test the system and train operators.

• Maintain the system (correct 'bugs') and add new features.

However, this approach is often not a successful one. Research showed that a large

percentage oftoday's commercial systems 'simply don't work very well' [Andriole,

1992]. This conclusion is also true of many clinical systems, due to the following

reasons [Wyatt, 1994]:

• Clinical tasks and their environment constantly evolve. According to a developer:

'detailed plans prepared in advance are likely to be obsolete by the time the

programs are implemented'.

• Physicians often act upon incomplete and uncertain information. They need a

system that is easy to use: terminals must be ubiquitous, system response must be

immediate, necessary data should always be on-line, accessible and confidential,

and very little training should be required.

• It is not unusual to find poor communication or even distrust between physicians

and computer professionals.

• There often exists a lack of predictability. When operating a clinical system,

physicians look for predictability especially in the way their commands control the

system.

Development tools and techniques

• Clinical problems are usually viewed from the information technology

perspective, although in practice they often require a mixture of solutions. This

may result in a failure of evaluating the system's impact on clinical process and

outcome.

31

4.1.1. Evolutionary rapid prototyping

In order to develop systems that possess the above-mentioned characteristics, a more

flexible and dynamic developing strategy was created, called the evolutionary rapid

prototyping approach (figure 4.1).

-~ Design Derivation -~ ___

~ Pr~totypeyeration ~

/ / /~~~~~~~.~~" Tuning
, User (/ ~ncti~~ D~base ~'\ ~ \ ..

, APproval..~.~~= .. . Plan Creation' / /\ ~~ . ~ // /
~.... .. __ =~~~Mon", ? /

-~-------- ~_er~tio~~-~

Figure 4.1. The evolutionary rapid prototyping process, adaptedfrom {Connell and Shafer, 1989J

A model that is developed by means of the evolutionary rapid prototyping approach is

called an evolvable prototype. Two formal definitions of such a model are presented

in [Connell and Shafer, 1989]:

An easily modifiable and extensible working model ofa proposed system, not

necessarily representative ofa complex system, which provides users ofthe

application with a physical representation ofkey parts ofthe system before

implementation.

and

An easily built, readily modifiable, ultimately extensible, partially specified

working model ofthe primary aspects ofa proposed system.

32 CritICIS

4.1.2. The path from prototype to application

After analyzing and specifying the user's basic needs, the system developer creates an

initial prototype, sometimes called a demo. It is often nothing more than a skeleton

and its purpose is to give the user a basic idea of the system's user interface.

The next stage of the rapid prototyping strategy is the prototype iteration phase.

During this continuous iterative process, the prototype evolves with each iteration.

First, the user may suggest some modifications or enhancements, after which they are

implemented in a new version ofthe prototype (figure 4.2)

demonstrate

/~
modify specify

prototype +-4----- changes

Figure 4.2: The prototype iteration process

This process continues until the user is completely satisfied with the functionality

embodied in the refined prototype. According to [Connell and Shafer, 1989]:

This is a milestone that indicates that prototype iteration is over. Working

together, prototypers and users have discovered what information the system must

capture andproduce to make it optimally useful ... In other words, prototype

iteration is over when the user says, 'This version ofthe prototype does everything

I would like the system to do and does it just the way I would like things done '.

However, this does not mean that the system is ready for delivery. Usually, the system

is not adequately documented, the system's response is too slow and it is unknown

how it will perform under future loads of data and user volumes. In order to transform

the system prototype into a final application, two more steps must be taken:

Development tools and techniques 33

1. Design derivation: This step may include several tasks, such as encoding the

system in some low-level language, writing the final documentation and training

application users.

2. Performance Tuning: This includes tasks such as stressing the prototype

(determining and documenting the system's bounds, for example by increasing the

number of users), optimizing (and minimizing) the data structures and modifying

the configuration (for example upgrading the hardware).

The rapid prototyping approach is an excellent strategy for developing dynamic

applications, such as the above-mentioned clinical systems. However, sometimes

rapid prototyping turns into an other 'software developing strategy', called quick and

dirty prototyping. The term quick and dirty describes the approach of quickly bringing

up a version of the system and then modifying it until the customer can grant minimal

approval [Connell and Shafer, 1989]. The main difference between quick and dirty

prototypes and evolvable prototypes is that changes in evolvable prototypes are

usually temporarily, while in quick and dirty prototypes they are (mostly unintended)

often permanently. The resulting software is almost sure to be expensive to maintain

because the code has been patched many times, even before it is delivered.

A system developer that uses the rapid prototyping approach, must always keep in

mind that, although quick and dirty prototyping seems more beneficial at the start

(mainly because a working version will become rapidly available), further

development and maintenance become more difficult with each new prototype

upgrade.

4.1.3. Developing a critiquing system by means of rapid prototyping

In the last decades, a number of artificial intelligence programs were developed, using

rapid prototyping. The philosophy here is that is not possible to specify requirements

for AI applications, since there is no way ofknowing what can be accomplished until

something is tried. This philosophy is not always without risk because it may easily

lead to quick and dirty prototypes. However, with a well-devised project plan and

thorough analysis, it is possible to develop well-structured AI applications [Connell

and Shafer, 1989].

34 CritICIS

Besides analysis, an other important consideration when developing a evolvable

prototype is what kind of tools to use. As a development technique, rapid prototyping

is unique because it is very dependent on specific kinds of hardware and software

[Connell and Shafer, 1989]. The most common tools, used in rapid prototyping, are a

Rapid Application Development (RAD) tool and a DataBase Management System

(DBMS), but other tools are also used, depending on the nature of the application. For

example, a critiquing system must contain an inference engine, a knowledge base and

a debugger.

This paper describes the development of CritICIS. CritICIS is a critiquing system that

is developed by means of the evolutionary rapid prototyping technique as well as a set

of tools, consisting primarily of two elements:

• Borland Delphi: A visual programming environment, especially designed for

RAD (Rapid Application Development), particularly applications using database

access.

• The SIMPLEXYS toolbox: A collection of tools to design real time expert

systems. The toolbox contains an expert system programming language, a rule

compiler plus extensions, an inference engine and a Tracer/Debugger.

4.2. The Borland Delphi programming environment

Delphi is a graphical RAD tool, designed to build Microsoft windows applications.

Delphi includes an object-oriented (00) Pascal compiler and debugger, a visual

design environment and strong database tools. Borland designed Delphi for

developing prototypes and converting them into commercial products.

4.2.1. Component technology

Traditionally, software products were mainly composed of large amounts of code. As

a result, developing a commercial product usually required a considerable amount of

time and resources, especially maintaining the program or reusing program code.

However, in the last decade, the field of software development has shifted its focus

from 'traditional' programming to Object Oriented Programming (OOP). Software,

Development tools and techniques 35

developed by means ofOOP, no longer contains large blocks of code, but is

constructed of various objects that communicate with one another. Every object has a

clearly specified purpose, such as a list of records or a text file.

The two most important programming tools for writing Object-Oriented (00)

programs are encapsulation and inheritance. An object or class usually encapsulates

all its data and functions, dividing them into two categories:

• Private data: The data and functions in this category are hidden from the outside

world. As a result, they are also inaccessible outside the class.

• Public data: The data and functions in this category are visible outside the class

and are the only means of communication between the class and the outside world.

Public data and functions are also referred to as member data and member

functions.

The main advantage of encapsulation is that the exchange of information between the

class and its environment (usually consisting of other classes) takes place via a well­

structured interface. To obtain information about a class, the programmer just calls the

(visible) member functions, without paying attention to the internal functioning of the

class. As a result, encapsulation simplifies the maintenance and reusability of a class.

The second important OOP technique is called inheritance. To add new operations

and data to an existing class, the programmer derives a new class from the existing

one and inserts the needed data and functions. It is also possible to override existing

member functions, either to replace them or enhance their functioning. Using

inheritance, programmers are able to extent the functioning of an existing class,

without the necessity to develop everything from scratch.

The continuation of OOP is called component technology. The main difference

between OOP and component technology is that OOP software consists of one

program that is divided into various objects, whereas software that is developed by

means of component technology is composed of various modules, called components.

36 CritICIS

Component technology is a superset of OOP: components are extended objects and

present various levels of complexity. For example, a component may hold an

'ordinary' object, but it may also contain a word processor, a spreadsheet or a video­

player. Components communicate by means of various protocols, such as Dynamic

Data Exchange (ODE) or Object Linking and Embedding (OLE).

4.2.2. Visual development environments

A special type of components is the so-called visual element. Visual elements are

graphical components, such as windows, menus or buttons. Using visual elements, a

system developer is able to rapidly construct the program's user interface, serving as

an initial prototype (skeleton) for further development. During the prototype iteration

phase, the developer implements additional code and the prototype will gain

functionality with each iteration. Development environments that contain visual

elements are referred to as visual development environments.

4.2.3. Building applications by means of Delphi

As stated above, Delphi is a visual development environment. A Delphi application

consists of so-called forms that each may contain a set of components (figure 4.3).

Figure 4.3: A simple Delphi application

Figure 4.3 shows a simple Delphi application, consisting of a form and three

components: a memo field that provides an area for text manipulation, a video player

and a button. In Delphi, each component generally holds three attributes:

Development tools and techniques 37

• Properties: A property definition declares a named attribute for the component,

such as the caption of a form, the size of a font or the name of a database.

• Events: Events are connections between user actions (for example a mouse click)

and the code, written by the component developer.

• Methods: Methods are procedures or functions built into a component and their

purpose is to direct a component to perform a specific action or return a certain

value not covered by a property.

When comparing objects to components, properties are comparable to member data

and methods to member functions.

Delphi's components are all part of an object hierarchy, called the Visual Component

Library (VeL). Besides using Delphi's built-in components, it is also possible to

develop new ones or use third-party components.

4.3. The SIMPLEXYS toolbox

SIMPLEXYS is an expert system toolbox, designed for developing real time expert

systems. In order to accomplish fast response times, SIMPLEXYS was implemented

in the efficient programming language Pascal. This, in contrast to the majority of

today's expert systems that are usually implemented in LISP (LISt Processing), which

is 'the main programming language of artificial intelligence' [Jackson, 1990].

However, compared to Pascal, LISP programs are usually very slow and are therefore

not suited for real time applications [Blom, 1990].

4.3.1. The SIMPLEXYS programming language

The programming language is the core of the SIMPLEXYS toolbox and was

originally developed to formulate and solve problems in the domain of patient

monitoring and clinical control systems. The SIMPLEXYS programming language is

rule based: the knowledge in the knowledge base is encoded into production rules. As

a result, expert systems that are build with SIMPLEXYS are so-called production

systems, similar to the ones described in section 2.3.1. However, SIMPLEXYS rules

are not realized as implications, but implemented as assignments. For example, the

38

production rule if A and B then C is most approximately translated into the

SIMPLEXYS format c : = A and B.

CritiCIS

SIMPLEXYS is based on a three-valued logic. Besides the logical values TR (true)

and FA (false), a SIMPLEXYS rule also may have the value PO (possible). According

to [Blom, 1990]: 'Three-valued is a better approximation of human reasoning,

because in many practical situations it will neither be possible to decide that a

proposition is true nor false'. There have been other attempts to represent uncertainty

in human reasoning, such as Fuzzy Logic or Certainty Factors. However, these

methods were not implemented in SIMPLEXYS, in order to increase efficiency.

Generally, a rule in SIMPLEXYS consists of two to four parts:

• rule header

• rule body

• initial condition (optional)

• THELSEs (optional)

L The rule header: The rule header contains the rule's symbolic name, followed by

a description of the rule:

EMPTY_BATTERY: 'The car's battery is empty' {rule header}

BTEST Voltage < minVoltage {rule body}

Rule 4.1: A simple SIMPLEXYS rule

The above rule checks whether the car's battery is empty, by means of measuring

the battery's voltage.

2. The rule body: The rule's body is the second line in a rule and indicates the rule's

type. The SIMPLEXYS programming language distinguishes two types:

Development tools and techniques 39

• Primitive rules: These rules are independent of other rules. The only means of

communication between primitive rules is to influence the working memory

(section 2.3.2). In SIMPLEXYS, primitive rules obtain their value by direct

assignment. There exist 5 different primitive rules:

1. FACT rules. The value of a FACT rule is a constant value (TR, PO of FA).

2. ASK rules: These rules obtain their value through communication with the

user, by means of the keyboard.

3. TEST rule: The value of a TEST rule is determined by means of one or

more Pascal statements. A special TEST rule is the so-called BTEST rule,

which obtains its value by means of a Pascal Boolean expression. An

example of such a BTEST rule is shows in rule 4.1. In this rule, Vol tage is

a Pascal function that returns the battery's current voltage.

4. Memo rules: These rules are often used for memory purposes.

5. State rules: State rules specify the current context. They are assigned either

as an initial conclusion or via the protocol: a set of ON statements that

describe so-called context switches (see also section 4.3.2).

• Evaluation rules: In contrast to primitive rules, evaluation rules are dependent

of other rules, either primitive or other evaluation rules:

FAULTY BATTERY: 'The car's battery is faulty'

EMPTY BATTERY or LOOSE WIRE

Rule 4.2: A SIMPLEXYS evaluation rule

The purpose of these rules is to direct the reasoning, required to solve a problem,

similar to the strategic rules, described in section 2.3.2.

3. Initial condition: The purpose of this (optional) section is to initialize the rule's

value (either TR, PO or FA):

40

LOOSE_WIRE: 'One of the battery's wires is loose'

BTEST CheckForLooseWires

INITIALLY FA

Rule 4.3: A primitive rule that is initially FALSE

CritlCIS

4. THELSEs: By means of THELSEs, it is possible to add consequences to a single

rule. There exist three types ofTHELSEs: THENs, ELSEs and IFPOs. The THEN

part is executed whenever the rule's value becomes TR, the ELSE part when the

rule's value becomes FA and the IFPO whenever the rule's value becomes PO.

LOOSE_WIRE: 'One of the battery's wires is loose'

BTEST CheckForLooseWires

INITIALLY FA

THEN GOAL: FASTEN LOOSE WIRE

Rule 4.4: Rule 4.3, expanded with a THELSE (THEN)

Whenever the result ofthe TEST rule becomes TR (i.e. one ofthe wires is loose),

the THEN part is carried out, firing another rule that fastens the loose wire.

Besides firing other rules, a THELSE can also be followed by a value (TR, PO,

FA), directly setting the value of another rule, or by a DO 'Pascal procedure',

executing some Pascal procedure or function.

The SIMPLEXYS language enables the programmer to perform various logic

operations with the rules. These operations include the familiar Boolean logic

operators, such as the monadic not operator and the dyadic and and or operators (see

for example the or operator in rule 4.2). However, besides the Boolean values TR en

FA, SIMPLEXYS also uses PO, representing 'possible' or 'unknown'. As a result, the

SIMPLEXYS programming language contains two additional monadic operators,

namely must, meaning 'guaranteed to be true' and poss, which means 'no definite

value can be determined'. Besides these monadic operators, SIMPLEXYS also

introduces the new dyadic operators ucand ('unconditional and'), ucor

('unconditional or') and alt ('logically equivalent alternative').

Development tools and techniques 41

4.3.2. The SIMPLEXYS rule compiler and extensions

In a SIMPLEXYS application, the knowledge base consists up to 7 sections. The first

5 sections are optional and contain Pascal code, necessary when one or more rules

need an interface with the outside world (for example, see rules 4.1 and 4.3).

The program sections and their corresponding keywords need to appear in the

following order:

1. DECL: Declarations (optional)

2. INITG: Global initializations (optional)

3. INITR: Run initializations (optional)

4. EXITR: Run exit initializations (optional)

5. EXITG: Global exit code (optional)

6. RULES: The rules

7. PROCESS: The protocol

The first section, called declarations, contains the types and variables that are used by

initializations, exit code, TEST rules and THELSE DOs. Program sections two

through five contain Pascal code, which is included into the SIMPLEXYS inference

engine by the rule compiler. The statements in the INITG section are executed when

the expert system starts up, whereas the EXITG section contains code that will be

executed whenever the system shuts down. In contrast to the INITG section, the code

in the INITR section is executed at the beginning of every run. Similarly, the EXITG

section is called at the end of each run. The concept of internal runs is explained in

section 4.3.3.

The RULES section contains the actual rules, such as the rules 4.1 through 4.4,

whereas the last section (PROCESS) contains the expert system's dynamics. A typical

SIMPLEXYS application consists of various contexts or states, determining the

system's current state. Each state holds a set of goals, only relevant in that particular

state. By means of so-called trigger rules or state transitions, the system is able to

change its active states. The PROCESS section contains all these state transitions, also

referred to as ON statements, because oftheir syntax:

42

ON Trigger FROM FromList TO ToList

CritICIS

Whenever the Trigger evaluates to TR and if all states in the FromList are active, the

transaction takes place, resulting in the activation of all the states in the ToList. This

process ends if there are no more active states left, resulting in the shutdown of the

expert system.

Once the knowledge base has been created, it is processed by the so-called Rule

Compiler. This tool, implemented as a separate program, compiles the rules into an

internal format, used by the inference engine. In contrast to 'conventional', expert

systems, all the searching takes place by the rule compiler during the compilation of

the knowledge base. As a result, the algorithm, employed by the inference engine is

linear with time. Expert systems, build with the SIMPLEXYS toolbox can be

executed at high speed, which is an essential aspect of real time expert systems.

The conversion process from knowledge base to expert system consists of various

steps, shown in figure 4.4.

First, the rule compiler translates the knowledge base into an internal format, saved in

six files. Each file contains a specific part of the knowledge base:

• rinfo.qqq: All the arrays and tables used for representing the rules and their

mutual connectivity

• ruses.qqq: The Turbo Pascal units, used by the knowledge base

• rtest.qqq: The sections, defined in the TEST rules

• rdodo.qqq: The collection of the DO sections

• rinex.qqq: The initialization and exit sections

• rhist.qqq: Information about the history sections

Development tools and techniques

Rule base

43

r-. .\
~tlOnS.qqq.J

Ii

C Options Builder -~

Figure 4.4: The path from knowledge base to expert system

During the translation process, the rule compiler checks for some syntax errors and

simple semantic errors. In order to perform a more thorough error checking, two

programs were designed to check the knowledge base for various errors, both using

the rinfo.qqq file as input:

• The semantics checker: This program checks the knowledge base for several

semantic errors

• The protocol checker: The protocol checker is used for the detection of errors in

the PROCESS section, including syntax, topology and dynamic errors

Another tool is the options builder, that provides a way for the user to select various

run-time options, such as debugging options.

The last step in the process is to combine all the various' .qqq' files with the

SIMPLEXYS inference engine, resulting in an executable expert system. The

combining process is carried out by the Turbo Pascal compiler, which automatically

checks the Pascal sections in the knowledge base for syntax errors.

44 CritlCIS

4.3.3. The SIMPLEXYS inference engine

As stated in section 2.2, the inference engine is the part of the expert system that

performs the reasoning. In a typical expert system, the data changes over time, making

it necessary to evaluate the various rules several times, perhaps including different

goals. In SIMPLEXYS, every evaluation of the goals is called a run and the

inferencing performed in one run is called a single run inference. During one run, all

primary goals of the current context(s) are evaluated and the next context is

determined, by means ofthe following steps:

• Update the time.

• Execute the run initialization code (lNITR procedure)

• Execute the matching THELSEs of all FACT, MEMO and finally those of all

STATE rules

• Try to perform a context switch

• Execute the run exit code (EXITR procedure)

• Undefine all TASK, TEST and EVAL rules for the next run

The inference process of a SIMPLEXYS expert system consists of a sequence of

single runs, called the global inference process. This process consists ofthe following

steps:

• Initialize the conclusions and history values of all rules

• Obtain the conclusions ofthose FACT rules, which did not obtain a value by

means of the INITIALLY keyword

• Initialize the time

• repeat

do a single run inference

until all stated are inactive

• Execute the global exit code (EXITG procedure)

Whenever the expert system has finished, it is possible to examine its reasoning

strategies. This is one of the most important features of an expert system: the ability to

Development tools and techniques 45

provide explanation and justification about its internal reasoning strategies. In

SIMPLEXYS, this is accomplished by means of the Tracer/Debugger. With this tool,

it is possible to examine the inference engine strategies, after as well as during the

inference process.

Production systems employ both forward reasoning and backward reasoning.

Generally, by means of the structure of the rules (using assignments instead of

implications), SIMPLEXYS is backward or goal oriented. This, in contrast to other

expert systems that usually employ forward reasoning. However, by means of

THELSEs, it is also possible to perform forward reasoning (for example rule 4.4).

Finally, the determination of context switches (by means of evaluating the trigger

rules) again is a form of backward chaining, making the total inference process rather

complex, but also suitable for solving various classes of problems.

4.3.4. Adapting the SIMPLEXYS inference engine to object-oriented

environments

In order to adapt the SIMPLEXYS inference engine to the above-mentioned object­

oriented environments, it was implemented as a Delphi component (called TInfer,

where the capital T stands for 'Type'). To accomplish this, the global inference

process is broken down into a set of methods and properties, consisting of:

• StartUp: Performing the necessary initialization tasks

• FirstRun: Performs the inference engine's first single run

• NextRun: Performs the next run (if any)

• CloseDown: Performs the necessary exit code

• Enabled: Indicates of the SIMPLEXYS inference engine is still active

A program that utilizes the Tlnfer class now calls the various methods until the

inference engine has completed its task (listing 4.1)

46

procedure GlobalInference
var

Infer: TInfer; {SIMPLEXYS inference engine class}
begin

{initialize inference engine}
Infer. Startup;

{perform single runs until the inference engine is ready}
if Infer.FirstRun <> ready then

while Infer.NextRun <> ready do;

{Execute exit code}
Infer.CloseDown

end;

Listing 4. I.: Global inferencing, using the TInfer Class

CritICIS

As shown in listing 4.1, the methods FirstRun and NextRun return a code (ready or

busy), indicating if the current run was also the last run. The purpose of the Enabled

property is to check (usually in multitasking environments) whether the inference

engine is still active.

Besides the above-mentioned member functions, the TInfer class also contains other

member functions, used for handling the data in the two buffers, and various private

data structures and functions that are called internally by the component's methods.

Critiquing ICIS: The development ofCritICIS

5. Critiquing ICIS: The development of CritlCIS

5.1. An introductory example

The main purpose of CritlCIS is to provide decision support to the users of ICIS. In

order to establish a straightforward communication with the users of ICIS, the user

interface of CritiCIS is integrated into the user interface ofICIS (figure 5.1).

Microsoft Access - [Opname]

Figure 5.1: A CritlClS warning

47

Whenever a user of ICIS wants to check a patient (for example, after administering

the patient), the user presses the 'Check patient' button CControleer patient' in

Dutch). For example, the user that operates ICIS in figure 5.1, wants to check the

patient, named Brouns, for inconsistencies. In order to accomplish this, the user

selects the patient in ICIS (indicated by the arrow before the patient's name) and

presses the 'Check patient' button, indicating that CritlCIS must be activated to check

48 CritiCIS

the selected patient. As a result, ICIS activates CritICIS by sending a 'wake-up'

signal, along with the admission number of the selected patient (in this example, the

admission number of the patient, named Brouns) and some additional parameters.

When activated, CritICIS gathers the required data for patient Brauns, supplies it to

the SIMPLEXYS inference engine and activates the inference engine (see section

5.3.2). The SIMPLEXYS inference engine then processes the knowledge base,

containing the rules that describe the various possible inconsistencies (see section

5.4). When an inconsistency is found, it is provided to the user as a warning. In order

to integrate the supplied warnings into the user interface ofICIS, the warnings are

implemented as so-called pop-up windows, floating above ICIS. An example is the

warning, shown in figure 5.1. This warning suggests to stop administering penicillin

to patient Brouns, because this patient is allergic to penicillin.

After the warning is shown to the user, the user has two options, indicated by the two

buttons in the pop-up window:

• Ignore the warning ('Negeer waarschuwing' in Dutch). When the user chooses

this option, the pop-up window disappears and the next warning is shown (if

available). However, the next time this patient is checked, the warning is shown

agam.

• Check the warning ('Controleer waarschuwing' in Dutch). When the user selects

this option, a new pop-up window appears (figure 5.2). The difference between

this pop-up window and the pop-up window in figure 5.1, is that the left button is

changed into a 'This warning is correct' button ('Deze melding is terecht' in

Dutch) and the right button has now become a 'This warning is incorrect' button

('Deze melding is onterecht' in Dutch). The second pop-up window always stays

on top of the screen and its purpose is too able the user to mark the given warning

as correct or incorrect. To accomplish this, the user checks the warning by

examining the data in ICIS.

Critiquing ICIS: The development ofCritICIS

Microsoft Access - [Mediclltie)

Figure 5.2: Marking a warning as right or wrong

49

For example, the user in the above-mentioned example has selected the

medication table to check whether patient Brauns has received penicillin. The top

raw of the medication table in figure 5.2 shows that this is the case. After

checking whether the patient is also allergic to penicillin (by examining the

allergies table) the user then marks this warning as correct or incorrect by pressing

the corresponding button. The pop-up window then disappears and the next

warning is presented (if there is one). The acquired information about this warning

is stored into a database in order to measure the performance of the warning (see

section 5.5.2).

Another possibility for the users of ICIS is to check all the patients that are currently

administered, by means of the 'Check all patients' button ('Controleer alle Patienten'

in Dutch). When this button is pressed, CritICIS is activated again by ICIS and checks

all the administered patients, also presenting the found inconsistencies as warnings.

50 CritlCIS

Finally, it is also possible to activate CritICIS automatically whenever a table in ICIS

has changed. However, this feature of CritICIS is disabled by default, in order to

increase the execution time ofICIS (section 5.3.2).

5.2. An overview of CritlCIS

Figure 5.3 shows an overview of the internal structure of the critiquing system.

SIMPLEXYS

r

CIS

Explanation
and

Justification CritI

1 warnings
-----j Buffer

Inference User:procedural interface

Engine Interface
~ Buffer patient data

I I
I

Knowledge Base I I
Data Acquisition

I
ISQL ISQL

!

CritICIS ICIS Monito
Database Database Data

Figure 5.3: The various components ofCritlCIS

In the remains of this chapter, the term CritICIS is used ambiguously. It normally

represents the entire critiquing system, but it may also refer exclusively to the

collection of components that is responsible for the user interface and the data

acquisition (figure 5.3). In order to prevent vagueness, the module, containing the user

interface and data acquisition components is referred to as the CritICIS module or the

main application, whereas the critiquing system itself is called the CritICIS system or

just CritICIS.

Critiquing 1CIS: The development ofCritIC1S 51

The CritICIS module is the critiquing system's main module. It is implemented (using

Delphi) as a Microsoft windows application and contains two elements: the user

interface and the data acquisition components.

The second module, containing the SIMPLEXYS inference engine component (called

the SIMPLEXYS module) is separated from the CritICIS module in order to simplify

the maintenance of the knowledge base as well as the components of the main

application. Communication between the two modules is realized by means of a

procedural interface and two buffers that are accessible by both the SIMPLEXYS

module and the CritICIS module.

5.2.1. The user interface

The user interface is the core ofthe CritICIS module and provides the user with a

means of communication. Considering two types of users (daily users on the one hand

and system developers and knowledge engineers conversely), the user interface

consists of two screens:

• The warning screen: The warning screen is the only means of communication

between the critiquing system and the daily users ofICIS (usually the medical

staft). Whenever CritICIS is activated by ICIS, this screen displays the warning

messages (in Dutch), reported by the SIMPLEXYS module. The warning screen is

implemented as a pop-up window, floating above ICIS (figure 5.1 and figure 5.2).

As a result, from the viewpoint of the daily users, the critiquing system behaves

like an integrated part ofICIS.

• The debugging screen: This screen displays the current status of the critiquing

system and is divided into two windows, both used for debugging purposes (figure

5.3). The top window displays the currently checked patients (represented by their

admission numbers) and the warnings that were reported by the SIMPLEXYS

module (in Dutch), whereas the bottom window displays the patient's data,

extracted from the ICIS database. The information in the debugging screen is

useful for both system developers and knowledge engineers.

52

.11209 6/6/96

.11209t':'P;I .

.11209

.11209·

Amoxicilline

Amoxicilline

Penicilline

CritICIS

Figure 5.4: The debugging window ofCritICIS

System developers are able to verify the system's functioning, whereas knowledge

engineers may check the performance of the various rules in the knowledge base.

When CritICIS is activated by ICIS, the debugging screen is initially hidden from the

user.

5.2.2. The data acquisition components

The critiquing system (partially) has access to three sources of information: the ICIS

database, the SDN network and the critiquing system's own database, called the

CritICIS database or ruleinfo database. The ICIS database and the SDN network

contain the necessary data, required to supply decision support to the medical staff,

whereas the ruleinfo database contains information about the performance of the

various rules in the knowledge base.

At present, the data acquisition element consists of two components, ICISData and

ruleData. The ICISData component reads the data from the ICIS database and the

ruleData component is able to read data from and write data to the CritICIS

database.

Critiquing IClS: The development ofCritICIS 53

Using the inheritance technique, both the ICISData and the ruleData component are

derived from the TData base class. This class is a Delphi component, designed to

make a connection with a specified database. The TData class is not a fully functional

component. For example, it is not possible to open, close, read data from or write data

to a database, using the TData class. The only task, the TData class can to perform, is

establishing a connection with a specified database by means of setting various

properties, such as:

• aliasName: this is the alias of the actual database. The TData class communicates

with databases through the so-called Borland Database Engine (BDE), a

communication layer between a Delphi application and a database. Every

database, accessed through BDE is identified by an alias, which is stored into the

aliasName property.

• keepConnection: a Boolean property, indicating whether the connection between

the TData component and the actual database closes whenever there is no data

transfer between the component and the database. When the keepConnection

property is set to True, the rate of the data transfer increases but other programs

may not be able to communicate with the database at the same time.

• loginPrompt: this Boolean property indicates whether the user must provide a

login name and a password when connecting to the database.

In order to read data from and write data to a database, the TData class must be

extended with methods that are able to perform these tasks. Examples of these

extended classes are the ICISData class and the ruleData class. The ruleData class

is the simplest of the two components. Besides the properties, inherited from the

TData component, the ruleData class contains two additional methods, namely:

• openQueries: this method first establishes a connection with the database,

indicated by the aliasName property, after which all the required data is gathered

by means of a Structured Query Language (SQL) statement. SQL is a relational

54 CritlCIS

• openQueries: this method first establishes a connection with the database,

indicated by the aliasName property, after which all the required data is gathered

by means of a Structured Query Language (SQL) statement. SQL is a relational

database language, used to define, manipulate, search and retrieve data in

databases. For example, the SQL statement SELECT * FROM ruleinfo fetches all

the data from the CritICIS database.

• closeQueries: the method closes the connection between the ruleData

component and the CritICIS database, preserving the actual link between the

component and the database when the keepConnection property is set to True.

The ruleData component also contains a second component, called TICISQuery. This

component holds the actual data, gathered by the openQueries method. Additionally,

the TICISQuery component contains several methods to obtain the data that is stored

in the component. An overview of the TICISQuery component, along with the other

developed Delphi components, is presented in Appendix B.

The ICISData component is more complicated than the ruleData component.

Similar to the ruleData component, the ICISData component also contains a

openQueries function. However, the openQueries function also accepts a patient's

admission number as a parameter. For example, calling the method

openQueries (4209) opens a connection with the ICIS database and fetches all the

data of the patient with admission number 4209, also by means of SQL-statements.

Another difference between the two descendants of the TData class, is that the

ICISData class communicates through two communication layers with the ICIS

database. Besides the above-mentioned BDE layer, ICISData also utilizes the so­

called Open DataBase Connectivity (ODBC) protocol. This protocol enables an

application to establish a connection with a database, regardless of its nature. For

example, through ODBC, it is possible to establish a connection with a Microsoft

Access database, an Oracle database or a FoxPro database, without the necessity of

adapting the used SQL statements. A disadvantage of ODBC is a considerable time

Critiquing lCIS: The development ofCritlCIS

delay when reading data from the database. However, ODBC is the only means of

communicating with the ICIS database by means of SQL statements.

Besides the openQueries and closeQueries procedures, the ICISData component

contains various methods to search in, read from and write to the ICIS database:

55

• FindFirst: this Boolean function searches for patient data in a specified ICIS

table. For example, FindFirst (5, 4209) searches for the first record in the

medication table that contains all the medication, administered to the patient with

admission number 4209 (the first parameter in the FindFirst procedure is a

integer that stands for a certain ICIS table. For example, 5 represents the

medication table. The use of these numbers is more thoroughly explained in

section 5.3.2). If the specified table contains no records, regarding that patient, the

function returns False.

• FindNext: this is also a Boolean function, searching for the next record, indicated

by the FindFirst function. When no additional records are found, the FindNext

function returns False.

• Next: this procedure jumps to the next record in a specified table. For example,

Next (5) jumps to the next record in the medication table.

• GetField: this function returns a certain field from the current record in a

specified table. For example, GetField(5, admissionDate) returns the date, the

medication in the current record was administered.

The ICISData contains more functions and procedures, used for communication with

the various tables in the ICIS database. An overview of this component is shown in

Appendix B.

The third module, called monitorData, is still in the development stage. As a result,

obtaining data from the SDN network is not possible at the moment.

56 CritlCIS

5.2.3. The SIMPLEXYS module

This module contains the SIMPLEXYS inference engine. It is implemented as a

Delphi component and contains several methods and properties to communicate with

the outside world (see also Appendix B). When activated by means of the procedural

interface, the inference engine performs various actions, such as:

• Create two buffers, used for communication with the CritICIS module.

• Read the patient's data from ICIS (supplied by the CritICIS module).

• Execute the production rules in the knowledge base.

• Report detected warnings to the CritlCIS module.

• Write debug information to various files. This information is afterwards used for

explanation and justification purposes.

Usually, Delphi components are all integrated into one Delphi application. For

example, the main application contains several components, such as the data

acquisition components and various visual elements. However, in order to simplify

the maintenance of both modules, the SIMPLEXYS inference engine component is

separated from the other components. It is embedded in a Dynamic-Link Library

(DLL) and communicates with the CritlCIS module by means of the procedural

interface and two buffers, both created by the SIMPLEXYS module. The first buffer

contains the patient's data and is implemented as a list of records (figure 5.5).

This list, called dataList, consists of nine records, corresponding the nine ICIS

tables that are currently implemented. Besides a pointer to the next element, each

record contains three fields:

• name: This field contains the name of the record, equal to the name of the

corresponding ICIS table.

• changed: This field indicates whether the record's information has changed since

the last time CritICIS checked this patient.

Critiquing ICIS: The development ofCritICIS

oatientNumbcr 51165635
admissionNumber 4029
adrnissionDate 09-08-96
admissionTime 19:03
discharQ"cDate
dischari!cTime

~
un!ent True
diseased False

r
name Brouns
solvedDate
comnlication
endDate

dataList
treatment
testDate

1
lestTime
ASAT
kalium

I Admission I I Admission Record IrI ureum
medicine

~
a11ergylD
indicationI Patient I I Admission Record IrI examination

~
I Complication I I Admission Record I Admission Record Ir
~

I Treatment I I Admission Record I Admission Record I Admission Record IrI
.-------

I Chemical I Ir
~

I Medication I I Admission Record I Admission Record I Admission Record IrI
~

I Allergies I I Admission Record I Admission Record Ir
~

I Indication I IrI
~

I Examination IrI Admission Record IrI

Figure 5.5: Structure ofthe buffer, containing patient data

57

• patientData: This field points to a list of so-called admission records. Each

admission record contains information, extracted from the corresponding leIs

table. For example, the patientData field ofthe 'admission' element, points to a

list of admission records with the patient's admission data, extracted from the

admission table. This data includes information such as the patient's IP-number,

admission number and admission date and time. Another example is the

'medication' record that contains a list of the patient's medications.

Since each admission record is composed of identical fields, some fields are not

utilized (see for example the singled out admission record in figure 5.5, where

only 7 of22 fields are filled with data). Although this implementation uses more

memory than necessary (negligible, however, compared to the total amount of

required memory), it considerably simplifies the buffer's structure and the adding

of new tables.

58 CritICIS

The dataList list is implemented as a Delphi component and communicates with the

outside world by means of various methods, such as AddElement (add a new

admission record to a list), GetElement (get the contents of a admission record) and

GetCount (get the number of admission records in a list).

The other buffer, containing the warning messages generated by the SIMPLEXYS

inference engine, is also implemented through lists (figure 5.6).

warningList Warning Record ~
L

ruleNwnber 9
admissionNwnbcr 4209

wamin s

Warning Record ~
L

Warning Record

aticntNamc

Warning Recordpossib/eSo/ved­
WamingList

Figure 5.6: Structure ofthe buffer, containing warnings and possible solved warnings

This buffer consists oftwo lists, warningList and possibleSolvedWarningList.

The warningList list contains warning messages that are generated by the

SIMPLEXYS inference engine and shown to the user through the warning screen. The

properties of every warning are stored in a so-called warning record, which contains

four fields:

• warningMsg: This field contains the text ofthe warning message.

• ruleNumber: Every warning is identified by means of its identification number or

rule number. This number is stored into the ruleNumber field.

• admissionNumber: This field contains the admission number of the patient that

received the warning.

Critiquing ICIS: The development ojCritlCIS

• patientName: This field contains the name of the patient with the above­

mentioned admission number. The purpose of this field is to show the patient's

name to the user (along with the text of the warning message).

59

The second list, called possibleSolvedWarningList, consists ofa list of possible

solved warnings. Whenever the SIMPLEXYS inference engine reports a warning,

CritlCIS stores it, along with the admission number of the currently checked patient,

into the CritICIS database (see also section 5.3.2).

When this warning is not issued during the next time CritICIS is executed (probably

to check another patient), the SIMPLEXYS module adds it to the possible solved

warning list, after which CritICIS compares the admission numbers and the rule

numbers in the possible warnings list's records with the admission numbers and the

rule numbers in the CritICIS database. When equal, the warning in the CritICIS

database is marked as solved. Using this procedure, CritICIS is able to detect

whenever a reported warning is solved by the users of ICIS.

In order to simplify the buffer's structure, the possible solved warning list is also

composed of warning records. However, only the ruleNumber field and the

admissionNumber field are used, because the warning message and the patient's

name are not relevant when checking for solved warnings.

Both lists are implemented as (similar) Delphi components and communicate with the

outside world by means of various methods, such as Add (add new warning record to

list), Get (get next warning record from list) and Reset (reset list). An overview of

these components is shown in Appendix B.

As mentioned earlier, the SIMPLEXYS inference engine component is implemented

as a DLL (Dynamic-Linked Library). As a result, besides the data transfer through the

two buffers, all communication between the SIMPLEXYS module and the CritICIS

module takes place by means of a procedural interface. This, because it is not possible

to access a component's methods or properties in a dynamic library directly. The

60

SIMPLEXYS module's procedural interface consists of several pre-defined

procedures (exported by the DLL), such as:

CritlCIS

• InferCreate: Creates and initializes the SIMPLEXYS inference engine

component.

• InferGetDataList: Obtains the address of the buffer, containing the patient's

data by means of calling the GetDataList method of the SIMPLEXYS inference

engine component.

• InferGetErrorList: Obtains the address of the buffer, containing the warnings,

using the GetErrorList method.

• InferGetPossibleSolvedErrorList: Obtains the address of the buffer,

containing the possible solved warnings, using the

GetPossibleSolvedErrorList method.

• InferStartUp: Initializes the inference engine with the StartUp method.

• InferFirstRun: Executes the first run of the inference engine through the

FirstRun method.

• InferNextRun: Executes the next run of the inference engine through the

NextRun method.

• InferCloseDown: Closes the inference engine down, using the CloseDown

method.

• InferDisable: Aborts the inference engine.

• InferIsEnabled: Indicates if the inference engine is activated by means of

checking the enabled property.

• InferSetContext: Sets the context of the inference engine by means of setting

the context property.

• InferGetContext: Obtains the context of the inference engine through the

context property.

• InferFree: Deletes the inference engine component.

Although these procedures are often nothing more than a wrapper around the

component's methods, it is the only means of communicating with the SIMPLEXYS

Critiquing ICIS: The development ofCritICIS

module. The purpose of the above-mentioned procedures is explained more

thoroughly in the remains of this chapter.

5.3. Executing the critiquing system

One of the initialization tasks ofICIS is to launch the critiquing system. As a result,

whenever ICIS is executed, CritICIS is also launched. As an alternative, it is also

possible to launch CritICIS manually. This may be useful for system developers to

test the system's performance.

5.3.1. Initializing CritlCIS

When CritICIS is executed, it performs several initialization tasks, shown in listing

5.1 (presented in pseudo-code).

61

procedure Initialize;
var

dataList, {address of list with patient data}
ICISList: pointer; {address of list, containing messages from ICIS}

begin
{load the SIMPLEXYS 1 ibrary}
LoadLibrary(SIMPLEXYS) ;

{create inference engine and obtain address of list, containing
patient data}

InferCreate;
dataList := InferGetDataList;

{create list, containing messages from ICIS}
ICISList.Create;

{initialize user interface and hide debugger window}
InitializeUserInterface;
debuggerWindow.Minimize

end;

Listing 5.1: Initialization tasks ofCritICIS

First, the dynamic library, containing the SIMPLEXYS inference engine component

is loaded, after which the inference engine is created and the address of the dataList

component is obtained (and stored into a variable for further use). Next, the so-called

ICISList list is created. This list contains messages, implemented as Pascal strings,

from ICIS (explained in the next section). Finally, the user interface is initialized and

62 CritlClS

the debugger window is hidden from the user. After these initialization tasks, CritICIS

resides into the background until activated by ICIS.

5.3.2. Activating CritlCIS

All communication between ICIS and CritICIS takes place through DDE (Dynamic

Data Exchange), a Microsoft Windows protocol, used for sending data to and

receiving data from other applications. To activate CritICIS, ICIS passes a Pascal

string to the critiquing system by means of executing a so-called DDE-macro,

exported by CritICIS. The Pascal string is supplied as the macro's parameter, which is

then added by the macro to a list, called ICISList (figure 5.7)

ICISList

y

ICIS :_~~_9,2-,_2~ CritICIS \
DDE DDE-macro '

'[4206,1, 2)' ~

i -

-----y-------

'[4229,0,1]'

r ~ - - - -~ - - - - -

~---.. '[4209,2,2]' •

y

nil

CritlCIS
Module

Figure 5.7: Communication between lClS and CritlClS

The CritICIS module continuously checks this list whether it is empty. If not, the first

element is extracted, after which CritICIS fetches the necessary data and executes the

SIMPLEXYS inference engine, based on the obtained string.

As shown in figure 5.7, the Pascal string consists of the following syntax:

T + admission number + ',' + table number + ',' + context number + T

Besides the start marker (' ['), the end marker (T) and the separators (' ,'), the string is

composed of three integer values:

Critiquing ICIS: The development ofCritiCIS 63

• The admission number: The string's admission number is the admission number

of the current selected patient.

• The table number: The table number indicates which ICIS table has been

changed since the last time the selected patient was checked by CridCIS. Using

this value, it is possible to limit the execution time ofthe SIMPLEXYS inference

engine by means of solely executing the rules that require information from the

table, represented by the table number. For example, in order to check the warning

'A high ASAT value may indicate a myocardial infarction', CridCIS requires the

patient's current ASAT value (stored into the chemical table) as well as a list of

the patient's complications (stored into the complication table). Only when the

table number matches that of the chemical table or the complications table, the

warning is checked (through firing the rules that make up the warning). An

overview of the available ICIS tables with corresponding table numbers is shown

in table 5.1.

Table number ICIS table

0 All tables

1 Admission table

2 Complication table

3 Treatment table

4 Chemical table

5 Medication table

6 Allergies table

7 Indication table

8 Patient table

9 Examination table

Table 5.1: Table numbers ofthe various tables in ICIS

To indicate that all tables in ICIS have changed, the table number is set to zero. As

a result, CridCIS will check all warnings in the knowledge base (although the

actual number of checked warnings also depends on the current context).

64 CritICIS

• The context number: The context number indicates in what manner CritICIS is

activated by ICIS. Currently, it is possible to activate the critiquing system in three

ways:

• By means of selecting a patient and pressing the 'check patient' button in ICIS

(CritICIS then operates in the demand context).

• By means of an event from ICIS. This event takes place whenever the data in

an ICIS table has changed. However, in order to react to these events, CritICIS

must operate in the so-called online mode. When CritICIS is running into the

offline mode, these events are ignored. By default, CritICIS starts in the offline

mode, in order to save time (the processing of these events usually takes some

time, due to the slow execution of the SQL statements). When ICIS has been

activated through an event from ICIS, it operates in the event context.

• By means of a timer event or by pressing the 'check all patients' button. When

CritICIS is activated in this manner (called the interval context), it first adds

all the administered patients to the ICISList list, after which every patient is

checked sequentially. The interval context was initially meant for checking all

patients in ICIS in regular time intervals (for example, once a day), but it is

also possible to activate CritICIS in this context manually, by means of the

'check all patients' button in ICIS.

Table 5.2 shows an overview of the above-mentioned contexts, along with the

corresponding context numbers.

Context number Context

1 Demand context

2 Event Context

3 Interval context

4 End CritICIS

Table 5.2: Contexts in CritICIS

Critiquing ICIS: The development ojCritICIS 65

The last entry in table 5.2 (context number 4) is used to end the CritICIS application.

Whenever ICIS shuts down, it calls the DDE-macro with context number 4 in order to

shut down CritICIS as well.

It is possible to define a set of warnings for each context separately. For example,

whenever CritICIS is activated in the demand context or in the interval context, all

warnings are checked (depending on the table number). However, when CritICIS

operates in the event context, only the warnings, regarding the patient's allergies are

checked, in order to limit the execution time of the inference engine. More

information about the assigning of warnings to the various contexts is found in section

5.3.2.

Figure 5.6 shows some examples of Pascal strings that are passed from ICIS to

CritICIS. For example, the first string in the list ('[4206, 1,2]') instructs CritICIS to

check the patient with admission number 4206 in the event context (context number

2). Also, only the warnings that require information from the admission table (table

number 1) are to be checked. The second element in the list ('[4229, 0, 1]') indicates

that the user of ICIS selected the patient with admission number 4229 and pressed the

'check patient' button (it is common that the table number is set to 0 when CritICIS is

activated in the demand context, ensuring the checking of all warnings). Whenever

CritICIS is activated in the interval context, the admission number is ignored, because

the critiquing system itself adds all the administered patients to the ICISLi s t list.

When available, CritICIS reads the first element of the ICISList list and extracts the

admission number, table number and context number from the element. Based on

these values, CritICIS fetches the required patient data and executes the SIMPLEXYS

inference engine (listing 5.2).

procedure Activate
const

Event = 2; {context number of event context}
var

ICISListElement: string; {first element from list}
admissionNumber,
tableNumber,

66 CritlCIS

contextNumber: integer; {values, extracted from ICISListElement}
begin

{look if list is empty}
if ICISList.count <> 0 then {list is not empty}
begin

{Get first element and extract admission number, table number and
context number}
ICISListElement:= ICISList.ltems[O];
ICISList.Delete(O) ;
ExtractValues(ICISListElement, admissionNumber, tableNumber,

contextNumber) ;

{abort if CritICIS is offline and context is 'event'}
if (offline = False) or (context <> Event} then {continue}
begin

{Read patient data and supply it to the SIMPLEXYS module}
FillDataList(admissionNumber, tableNumber)

{activate SIMPLEXYS inference engine, set context and initiate
first run}

InferStartUp;
InferSetContext(contextNumber) ;
if InferFirstRun = Ready then {SIMPLEXYS only needed one run}

{close down SIMPLEXYS inference engine}
InferCloseDown

end
end

end;

Listing 5.2: Starting up the inference engine

In order to store the patient data into the dataList structure (figure 5.5), the

ICISData component is utilized (section 5.2.2). By means of the component's various

methods, patient data is extracted from all tables and stored into the dataList list

(listing 5.3).

procedure FillDataList(admissionNumber, tableNumber: integer)
const

highestTableNumber = 9; {highest table number, see table S.l}
var

i: integer {counter}
nextAdmissionRecord: pointer; {pointer to admission record}

begin
{establish link with ICIS Database}
ICISdata.OpenQueries(admissionNumber) ;

{process all currently implemented tables in ICIS}
for i:=l to highestTableNumber do {process next ICIS table}
begin

{read first record with patient data from current table, if found}
if ICISData.FindFirst(i, admissionNumber) = True then
{first record found}
begin

Critiquing IClS: The development ofCritICIS 67

{create new admission record, fill it with patient data from all
required fields and append record to dataList}

nextAdmissionRecord := CreateNewAdmissionRecord;
FillAdmissionRecord(i, nextAdmissionRecord);
dataList.AppendAdmissionRecord(i, nextAdmissionRecord);

{process other records in table, if any}
while ICISdata.FindNext = True do {there is still a next record}
begin

NextAdmissionRecord := CreateNewAdmissionRecord;
FillAdmissionRecord(i, nextAdmissionRecord);
dataList.AppendAdmissionRecord(i, nextAdmissionRecord)

end
end

end;

{dataList list filled, set table number of changed table}
dataList.SetTableNumber(tableNumber) ;

{close connection with ICIS database}
ICISdata.CloseQueries

end;

Listing 5.3: Collecting and storing the patient's data

For each table in ICIS, all records that contain data, concerning the patient, specified

by the admissionNumber parameter, are fetched through the ICISData component.

For each record, information from the required fields is extracted through the

FillAdmissionRecord procedure and stored into the dataList list. In order to

acquire the data from the required fields, the FillAdmissionRecord procedure

internally calls the GetField procedure, described in section 5.2.2. However, the

number of required fields depends on the current ICIS table. For example, the required

fields of the admission table are the patientNumber field, the admissionNumber

field, the admissionDate and admissionTime field, the urgent field, the diseased

field and the patientName field (see also figure 5.5), whereas the required fields of

the medication table are the admissionNumber field, the medicationName field and

the endDate field (containing the date, medication treatment was ended). For this

reason, the number of the current table is supplied to the FillAdmissionRecord

procedure, which is internally translated into the amount of required fields.

After creating and filling the admission record, it is appended to the corresponding

element of the dataList list by means of the AppendAdmissionRecord method. In

68 CritlCIS

order to append the admission record to the right element, the number of the current

table is also supplied as a parameter (which is internally translated to the

corresponding element). Finally, the table number of the changed table is set and the

connection with the ICIS database is terminated.

Whenever the first run of the SIMPLEXYS inference engine was also the last one, the

inference engine is deactivated by the Activate procedure. However, a typical

SIMPLEXYS expert system (including CritICIS) usually requires more than one run.

In order to execute further runs, CritICIS utilizes the so-called Idle procedure. This

procedure is (continuously) executed by the operating system whenever the processor

is not used by another program. An overview of the Idle procedure (including

Activate) is shown in listing 5.4.

procedure Idle
begin

{look if inference engine is already activated}
if InferIsEnabled = False then {inference engine is not activated}

Activate

{look if it is necessary to execute a next run}
if InferIsEnabled = True then {inference engine is still activated}

if InferNextRun = Ready then {this was the last run}
InferCloseDown

endj

Listing 5.4: The Idle procedure ofCritlCIS

The first action of the Idle procedure is to check whether the inference engine is still

executing runs. If not, the Activate procedure is called to extract the next element

from the ICISList list (if possible). Next, the Idle procedure executes the inference

engine's next run, if necessary. If this run was also the last one, SIMPLEXYS is

closed down, automatically setting the enabled property to False.

By means of the Idle procedure, it is possible to execute CritICIS in multitasking

environments (for example in the background). However, in such an environment, the

Idle procedure must be considered a critical section. Otherwise, sequential runs may

overlap each other. At the moment, this is not a pressing problem, because the

operating system, currently used (Microsoft Windows 3.1x), utilizes the so-called

Critiquing IClS: The development ofCritICIS

cooperative multitasking algorithm, making it impossible for a procedure to overlap

itself.

69

5.3.3. Processing the warnings

After the inference engine is closed down, the CritICIS module processes the

warningList list, containing warnings, reported by the inference engine (listing 5.5).

procedure processWarningList
const

{conclusions}
Correct = 1;
Incorrect = 2;
Ignored = 3;

var
warningList: pointer; {pointer to list with warning messages}
i, {counter}
admissionNumber, {admission number of selected patient}
ruleNumber, {number of issued warning}
conclusion: integer; {conclusion of user that checked warning}
warningMsg, {text of warning message}
patientName: string; {name of selected patient}

begin
{get address of warning list}
warningList := InferGetErrorList;

{process all warnings in list}
for i:=O to warningList.count-l do
begin

{extract fields from warning record}
ExtractFields (warningList. Items [i] , warningMsg, ruleNumber,

admissionNumber, patientName);

{show warning to user: return code determines conclusion (Correct,
Incorrect or Ignored)}

conclusion := ShowWarningScreen(warningMsg, patientName);

{store warning, along with conclusion into CritICIS database}
ruleData.Add(admissionNumber, ruleNumber, conclusion)

end
end;

Listing 5.5: Processing the warning messages

After obtaining the address of the warning list, the ProcessWarningList procedure

processes each element sequentially. First, the four fields of the currently processed

record are extracted, after which the procedure shows the warning screen to the user

(figure 3.2). Using ICIS, the user then evaluates the warning, marking it Correct (the

70 CritICIS

warning was correct), Incorrect (it was a false alarm) or Ignored (the warning was

ignored by the user and will be shown again, the next time CritICIS checks this

patient). Finally, this evaluation or conclusion is stored into the CritICIS database,

along with the patient's admission number and the number of the warning, using the

ruleData component (described in section 5.3.2). A section of the CritICIS database

is shown in table 5.3.

Warning number Admission number Rule number Conclusion

1 4129 1 3

2 4129 7 2

3 4200 1 1

4 4200 4 4

5 4204 1 3

6 4204 1 4

7 4206 4 1

8 4206 8 1

9 4208 2 1

10 4209 1 4

Table 5.3: A section ofthe ruleinfo database

Besides processing the warning messages, CritICIS also checks for warnings that may

be solved, using the possibleSolvedWarningList (listing 5.6).

procedure ProcessPossibleSolvedWarningList
const

{conclusions}
Correct = 1;
Incorrect = 2;
Ignored = 3;
Solved = 4;

var
possibleSolvedwarningList: pointer; {pointer to list with possible

sol ved warnings}
i, {counter}
admissionNumber, {admission number of selected patient}
ruleNumber, {number of issued warning}
conclusion: integer; {conclusion of previously issued warning}

begin
{get address of warning list, containing possible solved warnings}

Critiquing ICIS: The development o!CritICIS

possibleSolvedWarningList := InferGetPossibleSolvedErrorList;

{process all warnings records in list}
for i:=O to possibleSolvedWarningList.count-l do
begin

{extract fields from warning record}
ExtractFields(PossibleSolvedWarningList.Items[i], ruleNumber,

admissionNumber) ;

{search for warnings in database with equal rule numbers and
admission numbers}

if ruleData.Find(admissionNumber, ruleNumber) = True then
begin {get conclusion of previously issued warning}

conclusion := ruleData.GetConclusion(admissionNumber,
ruleNumber) ;

{mark entry as solved, if conclusion was Correct or Incorrect}
if (conclusion = Correct) or (conclusion = Incorrect) then
begin

conclusion := Solved;
ruleData.Edit(admissionNumber, ruleNumber, conclusion)

end
end

end
end;

Listing 5.6: Checking whether warnings have been solved

Similar to the ProcessWarningList procedure, the ProcessPossibleSolved-

WarningList procedure first requests the address of the required list, after which

every warning record in the list is processed sequentially. Although each warning

record contains four fields, only two are utilized, namely the fields, containing the

admission number and the rule number. After these fields are extracted from the

warning record, the ProcessPossibleSolvedWarningList procedure first looks in

7I

the CritICIS database for an entry with matching admission number and rule number.

If the procedure finds such an entry, indicating that this warning was issued before, it

also requests the corresponding conclusion. If the conclusion was previously set to

Correct or Incorrect, the conclusion is marked as Solved.

After processing the warningList and the possibleSolvedWarningList, both lists

are cleared by the CritICIS module, along with the list, containing the patient data

(dataList list), after which CritICIS extracts the next element from the ICISList

list, if available.

72 CritlCIS

5.3.4. Ending CritlCIS

CritICIS ends whenever ICIS executes the DDE-macro while setting the context

number to 4 or whether the user presses CTRL-X when CritICIS is active (only meant

for system developers). Before CritICIS ends, it first performs some exit code (listing

5.7).

procedure Exit;
begin

{shut the SIMPLEXYS
if InferIsEnabled

InferCloseDown;

inference engine down, if still active}
True then {SIMPLEXYS still enabled}

{delete the list, containing the Pascal strings, added by the DDE­
macro}

ICISList.Free;

{delete SIMPLEXYS inference engine object and unload library}
InferFree;
FreeLibrary(SIMPLEXYS) ;

end;

Listing 5. 7: Exit code ofCritlCIS

First, the SIMPLEXYS inference engine is closed down, if still active. Next, the list,

containing the Pascal strings from ICIS is deleted. Finally, the inference engine

component is freed (automatically deleting the dataList, warningList and

possibleSolvedWarningList lists in the two buffers), after which the SIMPLEXYS

dynamic library is unloaded.

5.4. Structure of the knowledge base

The knowledge base of CritICIS currently contains 9 different warnings, encoded in

65 rules. Table 5.4 shows an overview of the current rules, along with their rule

numbers. An overview of the entire knowledge base is shown in Appendix A (in

Dutch).

Critiquing ICIS: The development ofCritiCIS 73

Rule Description of rule

number

I An abnormal admission time usually indicates an emergency

2 There is no explanation for a long administered patient

3 Patient is discharged, but still has an registered complication or treatment

4 A high ASAT value may indicate a myocardial infarction

5 Dioxin is restricted for patients with a low Kalium value

6 A low Kalium value may require administering KaliumChloride

7 A low ureum value requires a gentamycin examination

8 The patient is not allowed to receive amoxicillin, due to allergies

9 The patient is not allowed to receive penicillin, due to allergies

Table 5.4: Currently implemented rules and corresponding rule numbers

5.4.1. Warning classification

In order to structure the knowledge base, the various warnings are classified into

several categories (figure 5.8).

---------~
miscel-
laneousscoresallergies

----------------- --------------

knowledge base

~~~ - --~:.--

medicine

Figure 5.8: Structure ofthe knowledge base

As shown in figure 5.8, the warnings (also called primary goals) are categorized in 4

classes:

• medicine: warnings in this class are issued whenever the patient's condition

requires a certain medicine treatment, such as administering or restricting a certain

medicine. An example is the following rule, which suggests administering

KaliumChloride when the patient's Kalium value is too low:



74

LOW_KALIUM_REQUIRES_KCL: 'A low Kalium value may require

administering KaliumChloride'

LOW KALIUM and not (KCL)

Rule 5.1: A rule from the medicine class

CritICIS

• allergies: the warnings in the allergies category are issued when the user ofICIS

administers a medicine to a patient that is allergic to that medicine. An example is:

PATIENT IS NOT ALLOWED TO RECIEVE PENICILLIN: 'The patient is not

allowed to receive penicillin, due to allergies'

ALLERGIC TO PENICILLIN and PENICILLIN

Rule 5.2: An allergy rule

• scores: warnings in this class are concerned with various aspects of the patient's

scores, such as the APACHE score and the TISS score (see also section 3.1.1).

Currently, the rules in this class are not encoded into the knowledge base,

although they exist on paper.

• miscellaneous: this class contains miscellaneous rules, implemented at the initial

stage of the knowledge base development, such as the following rule:

ABNORMAL_ADMINISTRATION_IS_URGENT: 'A patient that is administered

outside normal working hours, is usually marked as an emergency'

(NIGHTLY_ADMISSION or WEEKEND ADMISSION) and not (URGENT)

Rule 5.3: A miscellaneous rule

Whenever a patient is administered outside normal working hours or in the

weekend, it is usually marked as an emergency. The warning, encoded in rule 5.3,

is issued whenever such an administration is not marked as an emergency.

In the knowledge base of CritICIS, every class is implemented as a SIMPLEXYS

state rule. For example, the allergy state rule, representing the allergies class, currently

contains two warnings, implemented as goals:



Critiquing ICIS: The development ofCritICIS

ALLERGIES_CLASS: 'Check allergies'
STATE
THEN GOAL: PATIENT_IS_NOT_ALLOWED_TO RECIEVE_PENICILLIN,

PATIENT IS NOT ALLOWED TO RECIEVE AMOXICILLIN

Rule 5.4: The allergies class, implemented as a SIMPLEXYS state rule

Similar, the medicine class and the miscellaneous class are also implemented, using

state rules (see Appendix A).

75

5.4.2. Utilizing the context number

As stated in section 5.4.2, it is possible to assign a different set of warnings to each

context separately, by using a combination of state rules and trigger rules. When the

inference engine is executed, the system always starts in the so-called begin context: a

state rule that is initially set to TR. Depending on the context number (which was set

through the InferSetContext procedure), the inference engine then activates the

specified context by selecting the corresponding trigger rule:

ON CONTEXT NUMBER 1 FROM BEGIN TO DEMAND CONTEXT- -
ON CONTEXT NUMBER 2 FROM BEGIN TO EVENT CONTEXT- -
ON CONTEXT NUMBER 3 FROM BEGIN TO INTERVAL CONTEXT

Rule 5.5: Switching to the specified context, through trigger rules

Similar, the warnings, specified for each context, are also processed by means of

activating the corresponding states:

ON DEMAND CONTEXT FROM DEMAND CONTEXT TO MISC CLASS
MEDICINE CLASS
ALLERGIES CLASS

Rule 5.6: Processing warnings in the demand context

As shown in rule 5.6, when CritICIS is activated in the demand context, it

sequentially processes all available classes of warnings, in contrast to the event

context, which only processes the warnings in the allergies class:

ON EVENT CONTEXT FROM EVENT CONTEXT TO ALLERGIES CLASS

Rule 5.7: Processing warnings in the event context



76 CritlCIS

Finally, when CritIClS operates in the interval context, it processes all available

classes, but only if the patient is still administered:

ON PATIENT ADMINISTERED FROM INTERVAL CONTEXT TO ALLERGIES CLASS
MEDICINE CLASS
ALLERGIES CLASS

ON PATIENT DISCHARGED FROM INTERVAL CONTEXT TO *

Rule 5.8: Processing warnings in the event context

As shown in rule 5.8, whenever the patient is already discharged, the inference engine

deactivates all states, closing the inference process.

5.4.3. Executing warnings through strategic rules

Besides context numbers, the number of executed warnings also depends on the

number of changed lClS tables, indicated by the table number. This feature is

implemented through adding a strategic rule that operates on a higher level (see also

section 2.3.2):

FIRE_LOW_KALIUM_REQUIRES_KCL: 'Fire LOW_KALIUM_REQUIRES_KCL

warning if at least one of the required tables have changed'

(CHEMICAL_TABLE_CHANGED or MEDICINE_TABLE_CHANGED) and

LOW_KALIUM_REQUIRES_KCL

Rule 5.9: Adding strategic rules to the knowledge base

As stated in section 4.3.1, the and and or operators in SIMPLEXYS are conditional.

As a result, the LOW_KALIUM_REQUIRES_KCL rule (rule 5.1) is fired only when the

chemical table or the medicine table is changed. By means of adding a strategic rule to

every warning, it is possible to increase the execution speed of the inference engine

considerably.

5.4.4. Adding warning records by means of THELSEs

In order to add warning records to the warningList as well as the possibleSolved-

WarningList list, the rule body of each warning is followed by two THELSEs:



Critiquing ICIS: The development ofCritiCIS

LOW_KALIUM_REQUIRES_KCL: 'A low Kalium value may require

administering KaliumChloride'

LOW KALIUM and not (KCL)

THEN DO AddTowarningList('A low Kalium value may require

administering KaliumChloride', 6)

ELSE DO AddToPossibleSolvedWarningList(6)

Rule 5.10: Expanding a warning with THELSEs

77

Whenever the warning evaluates as TR, the THEN DO part is carried out, executing a

Pascal procedure with the warning message and rule number as parameters. This

procedure then adds a warning record to the warningList list, consisting of the

received parameters, along with the patient's name and admission number (obtained

by the procedure itself). Similar, if the rule evaluates as FA (indicating that there was

no warning), the ELSE DO part is carried out, resulting in the appending of a warning

record to the possibleSolvedWarningList list (in which the fields, containing the

warning message and the patient's name are omitted).

5.5. Developing CritlCIS by means of rapid prototyping

Although not entirely separable, the development of CritICIS can be divided into two

processes:

• Development of the CritICIS application (consisting of the CritICIS module as

well as the SIMPLEXYS module).

• Building and maintaining the knowledge base.

5.5.1. Developing the CritICIS module

The CritICIS module is developed, using the tools and techniques, described in

sections 3.1 (rapid prototyping) and 3.2 (Borland Delphi).

First, through interviews with the medical staff and some informal specifications on

paper, a project plan was drafted (consisting of an overview of required components



78 CritICIS

and their relations, and a suitable database structure). Next, based on the project plan,

an initial prototype was build and demonstrated to the users of the ICU. By means of

their feedback, the prototype was evolved in several iteration steps, varied from minor

enhancements ('bug fixes') to the adjustment of the project plan, which resulted in

(partially) rewriting the module(s). Currently, the development of the CritICIS

module is still in the prototype iteration phase.

5.5.2. Developing the knowledge base

The development of the knowledge base of CritICIS is merely begun. By means of

interviews with domain experts (the medical staff and physicians of the ICU),

knowledge has been elicited and encoded into the knowledge base. Similar to the

development of the CritICIS module, this process also consisted of several iterations.

As a result, a warning that started as a very simple rule evolved into a more complex

set of rules with each iteration step, based on the feedback of domain experts (see also

figure 4.2).

In order to assist the medical staff in the iteration process, a graphical overview,

showing the perfonnance of the various warnings, was implemented in CritlCIS

(figure 5.9).

In the graphical overview, each warning is represented by a histogram, showing the

total number of times each warning was issued. The histogram also shows the number

of incorrect warnings (bottom section of the histogram), correct warnings and ignored

warnings (middle sections), and solved warnings (top section). For example, the

warning with rule number 1 ('An abnormal admission time usually indicates an

emergency') has been issued 7 times, including 2 false alanns, 3 correctly issued

warnings, 1 ignored warning and 1 solved warning.

The graphical overview is used by the domain experts to evaluate and improve the

perfonnance of the various rules in the knowledge base. For example, if a warning's

histogram consists mainly of false alarms, the corresponding rule is removed or

adjusted. Using this aid, it might be possible for domain experts to implement,



Critiquing ICIS: The development ofCrit/CIS 79

evaluate and adjust their own rules. An advantage of this strategy is that a domain

expert also becomes the knowledge engineer. However, this strategy must be pursued

with great care, in order to prevent an inconsistent knowledge base.

Figure 5.9: A graphical overview ofvarious warnings



80

6. Conclusions

CritlCIS

At present, CritICIS is being tested by the users ofICIS. Considering their feedback,

the first results are promising: as a result of the integrated user interface of CritICIS as

well as the utilized critiquing approach, the users oflCIS are satisfied with the

critiquing system. Therefore, the conclusion can be drawn that it is possible to

successively implement a critiquing system that provides decision support to the users

ofICIS. However, in order to elaborate the functioning of CritICIS, it is very

important to develop the knowledge in knowledge base. Currently, the knowledge

base of CritICIS contains of rather simple validations and more interviews with the

treating physicians are necessary to acquire a more 'intelligent' system.

When developing a more elaborate system, a main advantage of the already utilized

critiquing approach might be the possibility of utilizing so-called medical protocols.

Nowadays, physicians increasingly try to structure their operating procedures, writing

them on paper as protocols. These protocols are well suited for implementation into

the knowledge base of CritICIS, because of their formal syntax. As a result, domain

experts perform their own knowledge elicitation process, probably simplifying the

entire knowledge acquisition process. Domain experts from the ICU have suggested

an even more straightforward knowledge acquisition process by encoding the medical

protocols in the CritICIS knowledge base themselves. Although this may be a very

efficient knowledge acquisition process, it must be carried out with great care,

because adding new rules may produce unexpected side-effects (see also section

2.3.2).

A solution might be to develop a second version of CritICIS. The domain experts are

able to add, modify and evaluate rules in this 'temporarily' version of CritICIS, after

which the rules are transferred to the 'real' CritICIS system if they prove to be correct.

The graphical overview, shown in figure 5.9 might be a helpful tool in order to

evaluate the various rules, as well as additional programs such as the semantics

checker, the protocol checker and the TracerlDebugger. However, the current



Conclusions 81

explanation facilities of these programs are rather poor: the representation format of

the data is not suitable for the domain expert and must be elaborated for this purpose.

Further, by means of the SIMPLEXYS inference engine, CritICIS operates in real­

time. Common expert systems employ an inference process that performs a great deal

of searching and matching, whereas the rule base of CritICIS is pre-compiled in order

to prevent searching at run-time. However, this inference strategy has a significant

disadvantage. The SIMPLEXYS programming language consists only of so-called

propositions. As a result, it is not possible to construct 'Prolog-like' queries, such as

parent (Ad, Paul)

parent (Thea, Paul)

? parent (X, Paul),

which provides a list of all known parents of Paul. These queries may be useful for the

search strategies, used by CritICIS (for example, to match an allergy with its restricted

medicines). However, it is not possible to implement this feature into SIMPLEXYS,

without holding on to the 'no-search' philosophy. A compromise might be reached by

means of implementing parameters into the syntax of SIMPLEXYS (for example the

rule ALLERGIC_TO_PENICILLIN( 'Brouns'), which means that patient Brouns is

allergic to penicillin). Internally, it is possible to encode these rules into so-called

hash-tables, in order to maintain the high execution speed of SIMPLEXYS. As an

alternative, it might be possible to use other knowledge representations, such as

frames or semantic networks.

At present, the SIMPLEXYS inference engine class must be developed again for

every SIMPLEXYS application. A better solution is the design a so-called base class,

consisting only of the methods and properties, described in 4.3.4. Whenever a new

SIMPLEXYS application must be developed, the programmer uses this base class,

along with the inheritance technique to create a more specific inference engine.

However, this is not possible as long as the various' .qqq' files are compiled into the

inference engine. A solution would be to retrieve the necessary variables and



82 CritICIS

functions at run-time, instead of compiling them into the inference engine (for

example by compiling the variables and functions into a dynamic linked library).

However, this requires a considerable adaptation of the SIMPLEXYS rule compiler.

Finally, although the SIMPLEXYS toolbox was not designed to develop critiquing

systems, it turned out that the programming language is well suited for this approach.

Especially the concept of state rules and concepts is a very powerful tool to develop

well-structured critiquing systems. Also the separation of the inference engine from

the user interface seems to enhance the usability of the system, as well as the real-time

aspect of SIMPLEXYS, which is of great importance in dynamic environments, such

as the ICU. Although there is still much research required on the development of

CritICIS, especially the expansion of the knowledge base and the development of the

SIMPLEXYS toolbox, CritICIS may become a very useful tool to provide decision­

support in the ICU.



References

REFERENCES

83

Andriole, Stephen 1. 1992. Rapid application prototyping: the storyboard approach to

user requirements analysis. QED Technical Publishing Group.

Barr, A and Feigenbaum, E.A. 1981. The Handbook ofArtificial Intelligence. Vol. 1.

Los Altos CA: Morgan Kaufmann

810m, JA. 1990. The SIMPLEXYS Experiment. Real time expert systems inpatient

monitoring. Eindhoven University of Technology

Chytil, MK and Engelbrecht, R. 1987. Medical Expert Systems using personal

computers. Sigma press.

Connell, John L. and Shafer, Linda. 1989. Structured Rapid Prototyping. An

Evolutionary Approach to Software Development. Prentice Hall.

Duda, Richard 0 and Shortliffe, Edward H. Expert Systems Research. Science 1983;

Volume 220; 261-268

Groen, Marjan AH. 1995. Technology, Work and Organization: A study ofthe nursing

process in intensive care units. Universitaire Pers Maastricht.

Hayes-Roth, Frederick, Waterman, Donald A and Lenat, Douglas B. 1983. Building

Expert Systems. Addison-Wesley

Jackson, P. 1990. Introduction to Expert Systems. Addison-Wesley

Laffey, Thomas J, Cox, Preston A, Schmidt, James L, Kao, Simon M and Read,

Jackson Y. Real-Time Knowledge-Based Systems. AI Magazine 1988; Volume 9, No

1; 27-45



84 CritlCIS

Langlotz, Curtis P and Shortliffe, Edward H. Adapting a consultation system to

critique user plans. International Journal of Man-Machine Studies 1983; Volume 19;

479-496

Lei, Johan van der. 1991. Critiquing based on computer-stored medical records.

Erasmus University Rotterdam

Metnitz, PGH and Lenz, K. Patient data management systems in intensive care - the

situation in Europe. Intensive care medicine 1995. Volume 21; 703-715.

Miller, PL. 1986. Expert Critiquing Systems, Practice-Based Medical Consultation

by Computer. New York: Springer-Verlag.

Miller, PL.1988. Selected topics in Medical Artificial Intelligence. New York:

Springer-Verlag.

Wyatt, Jeremy Crispin. Clinical Data Systems, part 3: development and evaluation.

Lancet 1994. Volume 334; 1682-1688.



APPENDIXA: The knowledge base ofCritlCIS

APPENDIX A: The knowledge base of CritlCIS

RULES {rules voor de leIS-database}

85

{*********************** CATEGORlE: OVERIGE REGELS ***************************}
ABNORMALE_OPNAMETIJD_IS_SPOED: 'Controleer CHK_ABNORMALE_OPNAMETIJD_IS_SPOED als
de betreffende tabellen veranderd zijn'
OPNAME_VERANDERD and CHK_ABNORMALE_OPNAMETIJD_IS_SPOED

CHK_ABNORMALE_OPNAMETIJD_IS_SPOED: 'Abnorrnaal opnametijdstip is meestal spoed'
(not(NORMAAL_OPNAMETIJD) or WEEKEND_OPNAME) and not(SPOED_OPNAME)
THEN DO AddErrorMessage('Opname op abnorrnaal tijdstip is meestal spoed', AB_TI_SP)
ELSE DO AddSolvedErrorCheck(AB_TI_SP)

GEEN_VERKLARING_VOOR_LANGE_OPNAMEDUUR: 'Controleer
CHK_GEEN_VERKLARING_VOOR_LANGE_OPNAMEDUUR als de betreffende tabellen veranderd zijn'
(OPNAME_VERANDERD or BEH_VERANDERD or COM_VERANDERD) and
CHK_GEEN_VERKLARING_VOOR_LANGE_OPNAMEDUUR

CHK_GEEN_VERKLARING_VOOR_LANGE_OPNAMEDUUR: 'Lange opnameduur heeft geen verklaring'
not(PATIENT_ONTSLAGEN) and not(PATIENT_OVERLEDEN) and OPNAME_LANGER_DAN_3 and
not(COMPLICATIE or BEHANDELING)
THEN DO AddErrorMessage('Een lange opnameduur moet een verklaring hebben', GE_VE_LA_OP)
ELSE DO AddSolvedErrorCheck(GE_VE_LA_OP)

PATIENT_ONTSLAGEN_MAAR_HEEFT_COMPLICATIE_OF_BEHANDELING: 'Controleer
CHK]ATIENT_ONTSLAGEN_MAAR_HEEFT_COMPLICATIE_OF_BEHANDELING als de betreffende
tabellen veranderd zijn'
(OPNAME_VERANDERD or BEH_VERANDERD or COM_VERANDERD) and
CHK_PATIENT_ONTSLAGEN_MAAR_HEEFT_COMPLICATIE_OF_BEHANDELING

CHK_PATIENT_ONTSLAGEN_MAAR_HEEFT_COMPLICATIE_OF_BEHANDELING: 'Patient is
ontslagen, maar heeft nog complicatie of behandeling'
(PATIENT_ONTSLAGEN or PATIENT_OVERLEDEN) and (BEHANDELING or COMPLICATIE)
THEN DO AddErrorMessage('Patient is ontslagen of overleden, maar heeft nog steeds een compicatie of

behandeling',ON_EN_CO_OF_BE)
ELSE DO AddSolvedErrorCheck(ON_EN_CO_OF_BE)

HOGE_ASAT_IS_INFARCT: 'Controleer CHK_HOGE_ASAT_IS_INFARCT als de betreffende tabellen
veranderd zijn'
(CHEMIE_VERANDERD or IND_VERANDERD) and CHK_HOGE_ASAT_IS_INFARCT

CHK_HOGE_ASAT_IS_INFARCT: 'ASAT van meer dan 100 is waarschijnlijk infarct'
HOGE_ASAT and not(INFARCT)
THEN DO AddErrorMessage('Een ASAT van meer dan 100 is waarschijnlijk een infarct', HO_AS_IS_IN)
ELSE DO AddSolvedErrorCheck(HO_AS_IS_IN)



86 CritIC/S

{***************** CATEGORlE: MEDICA TIE ICM TOESTAND PATIENT *****************}
LAGE_KALIUM_SPIEGEL_VEREIST_KCL: 'Controleer CHK_LAGE_KALIUM_SPIEGEL_VEREIST_KCL
als de betreffende tabellen veranderd zijn'
(CHEMIE_VERANDERD or MED_VERANDERD) and CHK_LAGE_KALIUM_SPIEGEL_VEREIST_KCL

CHK_LAGE_KALIUM_SPIEGEL_VEREIST_KCL: 'Bij een lage kalium bloedspiegel moet Kaliumchoride
verstrekt worden'
LAGE_KALIUM_SPIEGEL and not(KCL)
THEN DO AddErrorMessage('Bij een lage kalium bloedspiegel moet Kaliumchoride verstrekt worden',

LA_KA_EN_GE_KCL)
ELSE DO AddSolvedErrorCheck(LA_KA_EN_GE_KCL)

DIGOXINE_GAAT_NIET_SAMEN_MET_LAGE_KALIUM_SPIEGEL: 'Controleer
CHK_DIGOXINE_GAAT_NIET_SAMEN_MET_LAGE_KALIUM_SPIEGEL als de betreffende tabellen
veranderd zijn'
(CHEMIE_VERANDERD or MED_VERANDERD) and
CHK_DIGOXINE_GAAT_NIET_SAMEN_MET_LAGE_KALIUM_SPIEGEL

CHK_DIGOXINE_GAAT_NIET_SAMEN_MET_LAGE_KALIUM_SPIEGEL: 'Bij een lage Kalium
bloedspiegel mag geen Digoxine gebruikt worden'
LAGE_KALIUM_SPIEGEL and DIGOXINE
THEN DO AddErrorMessage('Bij een lage Kalium bloedspiegel mag geen Digoxine gebruikt worden',

LA_KA_EN_DI)
ELSE DO AddSolvedErrorCheck(LA_KA_EN_DI)

HOGE_UREUM_SPIEGEL_VEREIST_GENTAMYCINEONDERZOEK: 'Controleer
CHK HOGE UREUM SPIEGEL VEREIST GENTAMYCINEONDERZOEK als de betreffende tabellen- - - - -
veranderd zijn'
(CHEMIE_VERANDERD or ON_VERANDERD) and
CHK_HOGE_UREUM_SPIEGEL_VEREIST_GENTAMYCINEONDERZOEK

CHK_HOGE_UREUM_SPIEGEL_VEREIST_GENTAMYCINEONDERZOEK: 'patient heeft hoge ureum en
geen onderzoek voor gentamycinespiegel'
HOGE_UREUM and not(GENTAMYCINE_TEST)
THEN DO AddErrorMessage('Patient heeft hoge ureum en geen onderzoek voor gentamycinespiegel',

HO_UR_EN_GE_SP)
ELSE DO AddSolvedErrorCheck(HO_UR_EN_GE_SP)

{**************** CATEGORlE: ALLERGIEEN PATIENT *******************************}
PATIENT_IS_ALLERGISCH_VOOR_AMOXICILLINE: 'Controleer
CHK]ATlENT_IS_ALLERGlSCH_VOOR_AMOXICILLINE als de betreffende tabellen veranderd zijn'
(MED_VERANDERD or ALL_VERANDERD) and
CHK]ATIENT_IS_ALLERGISCH_VOOR_AMOXICILLINE

CHK_PATIENT_IS_ALLERGISCH_VOOR_AMOXICILLINE: 'Patient mag geen amoxicilline, wegens
allergie'
ALL AMOXICILLINE and AMOXICILLINE
THEN DO AddErrorMessage('Patient is allergisch voor amoxicilline', AL_VO_AM)
ELSE DO AddSolvedErrorCheck(AL_YO_AM)



APPENDIXA: The knowledge base ofCritlCIS 87

PATIENT_IS_ALLERGISCH_VOOR_PENICILLINE: 'Controleer
CHK]ATIENT_IS_ALLERGISCH_YOOR]ENICILLINE als de betreffende tabellen veranderd zijn'
(MED_VERANDERD or ALL_VERANDERD) and
CHK_PATIENT_IS_ALLERGISCH_VOOR_PENICILLINE

CHK_PATIENT_IS_ALLERGISCH_VOOR_PENICILLINE: 'Patient mag geen penicilline, wegens allergie'
ALL PENICILLINE and PENICILLINE
THEN DO AddErrorMessage('Patient is allergisch voor penicilline', AL_YO]E)
ELSE DO AddSolvedErrorCheck(AL_YO]E)

{***** ********************* ** ******** sub rules ********* ********************}
PATIENT_ONTSLAGEN: 'Patient is ontslagen'
BTEST PatientDischarged

PATIENT_OPGENOMEN: 'Patient is opgenomen'
not(PATIENT_ONTSLAGEN)

PATIENT_OVERLEDEN: 'Patient is overleden'
BTEST PatientDiseased

OPNAME_LANGER_DAN_3: 'Opname is langer dan 3 dagen'
BTEST GetLengthOfAdmission > 3

COMPLICATIE: 'Er is een complicatie opgetreden'
INFARCT or COMA

BEHANDELING: 'Er is een behandeling gaande'
ARTERIE_LIJN or BALLONEREN or BEADEMING or CAVH_D or CVVH or IABP or SWAN_GANZ

NORMAAL_OPNAMETIJD: 'Opname tijdstip is binnen kantooruren'
BTEST (GetAdmissionTime> 800) and (GetAdmissionTime < 1800)

WEEKEND_OPNAME: 'Opname is in weekend'
TEST

dagnummer := GetAdmissionDay;
case dagnummer of

1: Opnamedag := zondag;
2: Opnamedag := maandag;
3: Opnamedag := dinsdag;
4: Opnamedag ;= woensdag;
5: Opnamedag:= donderdag;
6: Opnamedag := vrijdag;
7: Opnamedag := zaterdag;

end;
if (OpnameDag = zaterdag) or (OpnameDag = zondag) then
TEST :=TR

else TEST := FA;
ENDTEST

SPOED_OPNAME: 'Opname is spoed'
BTEST GetUrgencyStatus



88

{************************ veranderingen van tabel/en *************************}
OPNAME_VERANDERD: 'De opnametabel is veranderd'
BTEST dataList.IsChanged(OPNAMETABEL)

BEH_VERANDERD: 'De behandelingstabel is veranderd'
BTEST dataList.IsChanged(OPNAMEBEHANDELINGTABEL)

COM_VERANDERD: 'De complicatietabel is veranderd'
BTEST dataList.IsChanged(OPNAMECOMPLICATIETABEL)

CHEMIE_VERANDERD: 'De chemie tabel is veranderd'
BTEST dataList.IsChanged(OPNAMECHEMIETABEL)

MED VERANDERD: 'De medicatie tabel is veranderd'
BTEST dataList.IsChanged(MEDICATIETABEL)

ALL_VERANDERD: 'De allergie tabel is veranderd'
BTEST dataList.IsChanged(OPNAMEALLERGlETABEL)

IND_VERANDERD: 'De indicatie tabel is veranderd'
BTEST dataList.IsChanged(OPNAMEINDICATIETABEL)

ON_VERANDERD: 'De onderzoek tabel is veranderd'
BTEST dataList.IsChanged(OPNAMEONDERZOEKTABEL)

{***************** Mogelijke indicaties ************************************}
INFARCT: 'Indicatie is een infarct'
BTEST GetIndicationStatus('Acuut Myocard Infarct')

{********** ******* Mogelijke complicaties ******** ******** ******************* *}
COMA: 'Complicatie is coma'
BTEST GetComplicationStatus('Coma')

CritICIS

{****************** Mogelijke behandelingen **********************************}
ARTERIE_LIJN: 'Behandeling is Arterie lijn'
BTEST (GetTreatmentStatus('Arterie lijn op ICU)) or (GetTreatmentStatus('Arterie lijn op OK'))

BALLONEREN: 'Behandeling is ballonneren'
BTEST GetTreatmentStatus('Ballonneren')

BEADEMING: 'Behandeling is beademing'
BTEST GetTreatmentStatus('Beademing')

CAVH_D: 'Behandeling is CAVH(D)'
BTEST GetTreatmentStatus('CAVH(D)')

CVVH: 'Behandeling is CVVH'
BTEST GetTreatmentStatus('CVVH')

IABP: 'Behandeling is IABP'
BTEST (GetTreatmentStatus('IABP in op ICU)) or (GetTreatmentStatus('IABP in op OK'))

SWAN_GANZ: 'Behandeling is Swan ganz'
BTEST (GetTreatmentStatus('Swan Ganz op ICU)) or (GetTreatmentStatus('Swan Ganz op OK'))



APPENDIX A: The knowledge base ofCritICIS

{************************ Mogelijke onderzoeken ******************************}
GENTAMYCINE_TEST: 'Er is een gentamycine test aangevraagd'
BTEST GetExaminationStatus('Gentamycine dal / top')

{********************* Mogelijke lab testen **********************************}
HOGE_ASAT: 'ASAT is hoger dan 100'
BTEST GetChemicalResult('ASAT', 200) > 100

LAGE_KALIUM_SPIEGEL: 'Kalium spiegel lager dan 3'
BTEST (GetChemicaIResult('Kalium', 200) <> -1) and (GetChemicaIResult('Kalium', 200) < 3)

HOGE_UREUM: 'Ureum is hoger dan 15'
BTEST GetChemicaIResult('Ureum', 200) > 15

{******************** Mogelijke medicaties ***********************************}
KCL: 'Medicatie is KaliumChloride'
BTEST (GetMedicationStatus('Kaliumchloride iv'» or (GetMedicationStatus('Kaliumchloride po'»

DIGOXINE: 'Medicatie is Digoxine'
BTEST GetMedicationStatus('Digoxine')

AMOXICILLINE: 'Medicatie is Amoxicilline'
BTEST GetMedicationStatus('Amoxicilline')

PENICILLINE: 'Medicatie is Penicilline'
BTEST GetMedicationStatus('Penicilline')

{***** ********* ****** *** **** Allergieen *********************** ********* ******}
ALL_PENICILLINE: 'Patient is allergisch voor penicilline'
BTEST GetAllergyStatus(PENCILLINE_ID)

ALL_AMOXICILLINE: 'Patient is allergisch voor amoxicilline'
BTEST GetAllergyStatus(AMOXILLINE_ID)

{************************ STATE RULES***************************************}
BEGIN: 'Analyseer mogelijke [outen'
STATE
INITIALLY TR

CHK_INT: 'Controleer database na een periode van tijd'
STATE

CHK_EVENT: 'Controleer database na een event'
STATE

CHK_DEMAND: 'Controleer database na een demand van ICIS'
STATE

ALLERGIE_CON: 'Controleer op allergien'
STATE
THEN GOAL: PATIENT_IS_ALLERGISCH_VOOR_AMOXICILLINE,

PATIENT_IS_ALLERGISCH_VOOR_PENICILLINE

89



90

MEDICATION_CON: 'Controleer op medicatie i.c.m toestand patient'
STATE
THEN GOAL: DIGOXINE_GAAT_NIET_SAMEN_MET_LAGE_KALIUM_SPIEGEL,

LAGE_KALIUM_SPIEGEL_VEREIST_KCL,
HOGE_UREUM_SPIEGEL_VEREIST_GENTAMYCINEONDERZOEK

MISC_CON: 'Controleer overige regels'
STATE
THEN GOAL: ABNORMALE_OPNAMETIJD_IS_SPOED,
GEEN_VERKLARING_VOOR_LANGE_OPNAMEDUUR,
PATIENT_ONTSLAGEN_MAAR_HEEFT_COMPLICATIE_OF_BEHANDELING,
HOGE_ASAT_IS_INFARCT

CritlCIS

{************************** TRIGGER RULES **********************************}
INTERVAL_ENABLED: 'Aanvraag controle van de database op basis van een tijd-interval'
BTEST (context = interval)

EVENT_ENABLED: 'Aanvraag voor de controle van de database op basis van een event'
BTEST (context = event)

DEMAND_ENABLED: 'Aanvraag voor de controle van de database op basis van een demand'
BTEST (context = demand)

{*************************** PROCESS SECTION **************************** ***}
PROCESS

{Begin context}
ON INTERVAL_ENABLED FROM BEGIN TO CHK_INT
ON EVENT_ENABLED FROM BEGIN TO CHK_EVENT
ON DEMAND_ENABLED FROM BEGIN TO CHK_DEMAND

{Context: Bekijk database op tijd-basis}
ON PATIENT_OPGENOMEN FROM CHK_INT TO MISC_CON MEDICATION_CON ALLERGIE_CON
ON PATIENT_ONTSLAGEN FROM CHK_INT TO *

{Context: Bekijk database op event-basis}
ON CHK EVENT FROM CHK EVENT TO ALLERGIE CON- - -

{Context: Bekijk database op demand-basis}
ON CHK_DEMAND FROM CHK_DEMAND TO MISC_CON MEDICATION_CON ALLERGIE_CON

{Context: Bekijk medicatie i.c.m toestand patient}
ON MEDICATION CON FROM MEDICATION CON TO *- -

{Context: Bekijk a/lergieen}
ON ALLERGIE_CON FROM ALLERGIE_CON TO *

{Context: Bekijk overige regels}
ON MISC_CON FROM MISC_CON TO *



APPENDIX B: Developed Delphi components

APPENDIX B: Developed Delphi components

TData component

type
TData = class(TComponent)
private

queryDatabase: TDatabase; {database}
FDatabaseName: TFilename; {field for database name property}
FAliasName: TSymbolStr; {field for alias name property}
FKeepConnection: boolean; {field for keep connection property}
FLoginPrompt: boolean; {field for login prompt property}

protected
procedure SetDatabaseName(ADatabaseName: TFilename); {set the name of the database}
procedure SetAliasName(AAliasName: TSymboIStr); {set the alias name of the database}
procedure SetKeepConnection(AKeepConnection: boolean); {set the keep connection property}
procedure SetLoginPrompt(ASetLoginPrompt: boolean); {set the keep login prompt property}

public
constructor Create(AOwner: TComponent); override;

91

published
property databaseName: TFilename read FDatabaseName write SetDatabaseName; {the name of the
database}
property aliasName: TSymbolStr read FAliasName write SetAliasname; {the alias name of the
database}
property keepConnection: boolean read FKeepConnection write SetKeepConnection default
FALSE; {keep connection option of the database}
property loginPrompt: boolean read FLoginPrompt write SetLoginPrompt default FALSE; {login
prompt option of database}

end;

TRuleData component

type
TRuleData = class(TData)
private

procedure SetDatabaseName(ADatabaseName: TFilename);

public
regelInfo: TICISQuery; {rule info query}
constructor Create(AOwner: TComponent); override;
procedure OpenQueries(AAdmissionNumber: integer); {open queries}
procedure CloseQueries; {close queries}

published
property databaseName write SetDatabaseName; {the name of the database}

end;



92

TICISData component

type
TICISData = class(TData)
private

{ICIS database queries properties}
Opname: TlcisQuery;
Opnamecomplicatie: TlcisQuery;
OpnameBehandeling: TIcisQuery;
OpnameChemie: TlcisQuery;
Medicatie: TlcisQuery;
OpnameAllergie: TIcisQuery;
Opnamelndicatie: TlcisQuery;
Patient: TlcisQuery;
OpnameOnderzoek: TIcisQuery;
procedure SetDatabaseName(ADatabaseName: TFilename);

CritlCIS

public
constructor Create(AOwner: TComponent); override;
procedure OpenQueries(AAdmissionNumber: integer); {open queries}
procedure CloseQueries; {close queries}
function FindFirst(AQueryName: string; AAdmissionNumber: integer): boolean; {find first record
with admission numer in query}
function FindNext(AQueryName: string): boolean; {find first record with admission numer in
query}
function GetField(AQueryName, AField: string): TField; {get field in query}
procedure Next(AQueryName: string); {go to next record in query}
function EOF(AQueryName: string): boolean; {look if EOF is reached}
function GetQuery(AQueryName: string): TICISQuery; {get adress of query}

published
property databaseName write SetDatabaseName; {the name of the database}

end;

TICISQuerycomponent

type
TlcisQuery = class(TQuery)
private

admissionNumber: integer; {current admissionNumber}
FChanged: boolean; {Field for enabled property}

public
constructor Create(Owner: TComponent); override;

published
property changed: boolean read FChanged write FChanged default FALSE; {indicates if the table
has been changed by ICIS}
function FindFirst(currentAdmissionNumber: integer): boolean; {find next admission number in
list}
function FindNext: boolean; {find next admission number in list}

end;



APPENDIXB: Developed Delphi components

TDataList component

TDataList = class(TList)
public

destructor Destroy; override; {destructor}
procedure AddDataListElement(AName: string); {add element to list}
function GetElement(AName: string; Altern: integer): PAdmissionRecord; {get element from list}
function AddElement(AName: string; AAdmissionRecord: PAdmissionRecord): integer; {add
element to list}
function IsChanged(AName: string): boolean; {look if data list is changed}
procedure SetChange(AName: string; AChange: boolean); {indicate if the list is changed}
procedure Reset; {resets the list without deleting it}
function GetCount(AName: string): integer; {get the count of the list}

end;

TErrorList component

TErrorList = class
private

errorList: TList;
public

count: integer; {count in list}
constructor Create; {constructor}
destructor Destroy; {destructor}
function Add(AErrorListElement: PErrorListElement): integer; {add error message to error list}
function Get(Altems: integer): PErrorListElement; {get element from error list}
procedure Reset; {reset error list}

end;

93



94

TInfer component

TInfer= class(TObject)
private

dataList: TDataList; {list, containing the ICIS data}
errorList: TErrorList; {list with error messages}
possiblesolvedErrorList: TErrorList; {list with possible solved errors}

outputDir: string; {directory where simplexys writes the output files}

{private variables}
_errfile: text; {error storage file}
_timeO, _time: longint; {time keeping}
_dumpfile: text;

_busy: array [1..MAX_NUMBER_OF_RULES] of boolean;
_R, _S: array [l..MAX_NUMBER_OF_RULES] of booI;
_history: array [I ..MAX_NUMBER_OF_RULES] of longint;

_savfile: file;
_buf: array [0 .. 1023] of byte;
_bytcount: 0 .. 1024;
_bitcount: 0 .. 8;

function AskVal(s: str80): bool;
procedure skipexpr;
procedure dump_buf;
procedure dump_time (t: longint);
procedure dump_rule (R: bool);
procedure open_o_savfile;
procedure close_0 _ savfile;
procedure dump (s: string);
procedure fatal_inference_error (s: str80);
procedure nonJataUnference_error (typ: word; rule: word);
function sys_time: longint;
procedure init_time;
procedure update_time;
procedure show_value (rule: integer; value: booI);
procedure show-progress (typ: word; rule: integer);
procedure show_applied (s: str80; value: boo/);
procedure setrule (rule: integer; value: bool);
procedure thelse (rule: integer; value: bool);
function evalexp: bool;
function thelseb (rule: integer): bool;
function evalrule(rule: integer): bool;
procedure up_STATErules;
procedure up_MEMOrules;
procedure print_header;
procedure getFACTs;
procedure FDOSU: word);
function FTEST U: word): bool;
function FHIS U, j: word): boolean;

CritICIS



APPENDIX B: Developed Delphi components 95

{private query procedures}
procedure AddErrorMessage(AErrorMsg: string; ARuleNumber: integer); {add error message to
list}
procedure AddSolvedErrorCheck(ARuleNumber: integer); {check if error is solved}
function GetAdmissionTime: integer; {get admission time from database}
function PatientDischarged: boolean; {Is the patient already discharged}
function PatientDiseased: boolean; {is the patient deseased}
function GetAdmissionDay: integer; {get admission day of week from database}
function GetLengthOfAdmission: integer; {get length of admission}
function GetUrgencyStatus: boolean; {get state of urgence of patient}
function GetComplicationStatus(AComplication: string): boolean; {has the patient a complication}
function GetTreatmentStatus(ATreatment: string): boolean; {has the patient a treatment}
function GetChemicaIResult(ALabTest: string; ATimeInterval: real): real; {get the chemical status
of the patient, -1 if not present}
function GetMedicationStatus(AMedicine: string): boolean; {get the used medicine ofthe patient}
function GetAllergyStatus(AAllergyID: integer): boolean; {get the allergies ofa patient}
function GetIndicationStatus(AIndication: string): boolean; {get the indication ofa patient}
function GetExaminationStatus(AExamination: string): boolean; {Get status of examination}

public
enabled: boolean; {indicates if inference engine is running}
context: integer; {indicates the context of the inference engine}
constructor Create;
destructor Destroy;
function GetErrorList: TErrorList; {get adress of error list}
function GetPossibleSolvedErrorList: TErrorList; {get adress of solved error list}
function GetDataList: TDataList; {get data list}
procedure StartUp;
function FirstRun: integer;
function NextRun: integer;
procedure CloseDown;

end;


	Voorblad
	Abstract

	Acknowledgements

	Contents

	1. Introduction

	2. Expert systems in medicine

	3. The Intensive care information system ICIS
	4. Development tools and techniques

	 5. Critiquing ICIS: The development of CritICIS

	6. Conclusions

	References

	Appendix A: The knowledge base of CritICIS
	Appendix B :Developed Delphi components




