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Summary

Wittrock, E.P.;
Sensor Fusion
M.Sc. Thesis, Measurement and Control Group MBS, section ER, Electrical Engineering,
Eindhoven University of Technology, The Netherlands, Oct. 1996.

Sensor fusion is used to combine sensor measurements with different properties to form a
resulting measurement that may not be possible from one single sensor alone. Objective of
this report is to find methods, and compared them with each other, to fuse several sensor
signals. Applications in the section ER are in two projects. The first project needs to measure
the deck position of a schip and the second project needs to measure the position of a bus on
a bus lane. This report describes discrete time Kalman filter based algorithms used for Sensor
Fusion. Several approaches have been proposed and defined. The covariance based algorithms
are used to fuse two or more separate sensor measurements and merge them to one entity. The
various fusion algorithms are implemented in Matlab files and the performance of the
algorithms are evaluated through computer simulations with a one-dimensional dynamic
model, with a assumed acceleration acting on the position and speed. It is shown that the
defined fusion algorithms give similar results under various sensor configurations and sensor
variances. Also investigated is the effect of bias on the various fusion algorithms. A proposal
is done to solve the sensor fusion problem with a H", filter, to enable us to take into account
the sensor properties with weighting functions in the frequency domain.

Samenvatting

Wittrock, E.P.;
Sensor Fusie
Afstudeerverslag, vakgroep MBS, sectie ER, Faculteit Elektrotechniek, Technische Universiteit
Eindhoven, Okt. 1996.

Sensor fusie word gebruikt om verscheidene sensor metingen met verschillende eigenschappen
te combineren tot een resultaat dat niet kan worden bereikt met een enkele sensor.
Doelstelling van dit raport is methoden te vinden, en met elkaar te vergelijken, om
verschillende sensor signalen the fuseren. Toepassingen voor deze vakgroep zijn er voor een
tweetal projecten. Het eerste project is de bepaling van een dekstand van een schip en bij het
tweede project is het van belang de positie van een bus op een busbaan zeer nauwkeurig te
bepalen. Dit rapport beschrijft Kalman filter algoritmen, in de discrete tijd, gebruikt om de
sensor metingen te fuseren. Verscheidene methoden zijn voorgesteld en gedefinieerd. De op
covariantie gebaseerde algoritmen worden gebruikt om twee of meerdere verschillende sensor
metingen te fuseren tot een gezamenljjk resultaat. De verscheidene fusie algoritmen zijn
gei"mplementeerd in Matlab files en de prestaties van de algoritmen zijn geevalueerd met
behulp van computer simulaties met een 1-dimensionaal dynamisch model, met een
versnelling die inwerkt op de snelheid en de positie. De simulaties laten zien dat de
algoritmen hetzelfde resultaat geven met verscheidene sensor configuraties en sensor
varianties. Ook is er gekeken naar het effect van bias op de verscheidene fusie algoritmen.
Er wordt een voorstel gedaan om het sensor fusie probleem op. de lossen met een Hoo filter,
op een equivalente manier als het Kalman filter, waardoor we de sensor eigenschappen in het
frequentie bereik kunnen meenemen in de weegfuncties.
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List of abbreviations

Sensor Fusion 5

JCk : state vector at time k, with dim(JCk)=n
JCik : local state vector at time k, with dim( JCi )= n j

• k : known state transition matrix, possible time varying
wk : white Gaussian vector noise with variance matrix 'h
r k : known process noise transition matrix, possible time varying

z1 : measurement vector of sensor i at time k

Zk : global measurement vector at time k, by combining z1
v1 : white Gaussian vector noise of sensor i with variance matrix R k

Hi : observation matrix of sensor i
Xk / k : global state estimate at time k

Xk / k - : predicted global state estimate at time k

Pk / k : global covariance of sensor i at time k
Pk / k-l : predicted global covariance of sensor i at time k

Xik/
k

: local state estimate of sensor i at time k

Xik/
k

_
1

: predicted local state estimate of sensor i at time k

Pik/
k

: local covariance of sensor i at time k

Pi / : predicted local covariance of sensor i at time k
k k-l

n : dimension of the state vector
N : amount of sensors
R : sensor noise variance matrix
R i : sensor noise variance vector of sensor i
Ok : process nOise
n i : dimension of the state vector of sensor i
'I'i : nodal transformation matrix
Ci : local state observation matrix, of the distributed model architecture
1pk : known input transition matrix, possible time varying.
Uk : system input vector.
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Using different types of sensors to obtain information allows the advantages of one sensor
type to compensate for the disadvantages of another and further provides redundancy,
increasing system robustness.
In this report different kinds of architectures for multi-sensor data fusion will be discussed:
• In the centralized fusion architecture [chapter 3] all the raw sensor data is transmitted to
the fusion agent. The main advantage is that the algorithm is simple and is conceptually
similar to single sensor algorithm. A disadvantage of this approach may be the high
computational load of the central processor.

Figure 1, centralized
fusion

• The hierarchical architecture [chapter 4], frequently referred to as the sensor level tracking
in which each sensor maintains its own track full based on its own data.

FigUl'e 2, hierarchical
fusion

The tracks from the various sensors are transmitted to a single central processor which is
responsible for fusing the tracks to form a global estimate. An advantage is that it is easier
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to detect errors in the sensors by checking the sensor-level tracks with the central tracks. A
disadvantage of this approach is the need for two types of algorithms: one for sensor level
tracking and the other for data fusion. Another disadvantage is that the system model in the
fusion centre is of the same size as in the local filter/local tracker, what leads to a bigger
computational load as compared to the hierarchical distributed model architecture.
• In the hierarchical architecture with feedback [chapter 5] the global state estimate is fed
back to the local agents, then each sensor maintains its track based on its own data and the
data communicated back from the fusion centre to the local filter. The disadvantages of this
method are that there is the need for two types of algorithms (as in the hierarchical method)
and the need for extra communication between fusion centre and local filters.
In [8, Alouani-AT] this method is modified so that the communication requirements between
the central processor and the local sensors is reduced.
• In the hierarchical distributed model architecture [chapter 6] the global model is distributed
through the different nodes, so that the models at the local nodes are smaller and more
appropriate to the dynamics of its observation. The advantage of this method is that because
of the reduced order of the system model in the local nodes the computational load is smaller
as compared to the hierarchical architecture.
• In the decentralized architecture the central processing is absent but all nodal processors
implement the same model yielding a robust but greatly complicated network requiring full
connectedness and excessive computation and communication. In this architecture no central
processor is necessary, globally estimates are obtained at each node.

x

Figure 3, decentralized architecture

• In the decentralized distributed model architecture the global system model is distributed
among a decentralized network. Model distribution reduces the computational burden
compared to the decentralized architecture, also the communication between the nodes will
be reduced.

In this report both the decentralized architectures are not discussed. Because of their
decentralized architecture they offer reduc.ed vulnerability as compared to their centralized or
hierarchical counterparts. This reduced vulnerability is of main interest in the military
command and control, but no advantage is found for the applications in our faculty. The
references to this fusion architectures can be found [10] and more in its bibliography.
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Chapter 2. System model

The multi-sensor system is modeled as:

Xl< : state vector at time k, with dim(xk)=n.

• k : known state transition matrix, possibly time varying.
wk : white Gaussian vector noise with variance matrix 'h.
r k : known process noise transition matrix, possibly time varying.
'1' k : known input transition matrix, possibly time varying.
Uk : system input vector.

The process noise wk is described by a gaussian random process
with zero mean and known variance:

E[wk ] =0

E[WkW1 ] =(J~Okl=QkOkl

The measurement equation of the N sensors is given by:

(2,1)

j=l,,,.,N (2,2)

vj : white Gaussian vector noise with variance matrix R k .

Hi : sensor observation matrix, with dim(H i)=(1 *n) .

The noise vj is described by a gaussian random process with zero mean and known variance:

E[vj] = 0

E[vj (v/) T] =(J~iOkl=R~Okl

The noises are assumed to be uncorrelated.

If there is a bias in the sensor measurement then this can be expressed by non zero mean
noise E[Vik];t:O. What the effect of bias is on the sensor fusion will be investigated in the
simulations. The question here is that either the bias will be amplified or weakened in the
fused sensor signal. We also want to look what happens with an bias in one of the sensor
signals.
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Chapter 3. Central fusion

In [5, page.250] the central fusion is discussed. In the central fusion approach the sensor
measurements are fused to provide the optimal state estimate. Optimal in this case means that
the state vector X k is reconstructed so that the square mean value (the covariance) of the error
will be minimal. The central fusion architecture is shown in Figure 4. As described in [3, page
275] an input vector Uk is added to the Kalman filter. This input vector Uk is only used in the
equation for the predicted state estimate (3,6) and because of this there is no effect in the
fusion algorithms derived in this report.

Uk-l 1 1Vk 1

Zk
c*

raw A
~/ksensor ...

N
data Pk/kVk N fusion

y Zk

Figure 4, central fusion method

With central fusion all the sensor data is collected by the fusion agent, the global observation
would be:

(3,1)

Where:

(3,2)

The noises are independent so the covariance matrix of the noise v k is given by the
diagonal matrix:

(3,3)
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The global estimate and covariance with all the sensor data is given by:

Xk/k=Xkjk-l +Kk(Zk-HXk/k-l)

with Kk=Pk/kHTR-1

and:

(3,4)

(3,5)

The predicted estimate and the predicted covariance can be computed from the extrapolation
equations:

and:

X =() x +. Uk/k-l k-l k-l/k-l k-l k-l
(3,6)

(3,7)

The Kalman gain K k and the covariance matrix Pk / k can be written in two ways. In the way

used above the Kalman gain K k = Pk / kHT R-1 is calculated with the covariance matrix. So the

covariance matrix is calculated first. These equations are derived from the equations below,
where the Kalman gain has to be calculated first with the predicted covariance matrix.
Subsequently the covariance matrix can be calculated with the calculated Kalman gain.

(3,8)

(3,9)

With the equations above the result are two slightly different recursive loops for calculating
the global estimate and the global covariance. With simple substitutions it can be seen that
the result is the same. The equations for the two slightly different recursive loops are given
in this report because in the literature they are both used in the referred literature. The order
of calculating is shown in Table I.
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Table I,Difference between recursive calculations

method 1 equations 1 method 2 equations 2

~k/k-l (3, 6) ~k/k-l (3, 6)

P k/k - 1 (3, 7) P k/k - 1 (3, 7)

Pk / k (3, 5) Kk (3, 8 )

Kk (3, 4 ) Pk / k (3, 9)

~k/k (3, 4 ) ~k/k (3, 4 )

3.1. Selection calculation method

Selecting one of the two recursive calculation, method 1 and method 2 can be based on two
criterion namely the numerical stability of the equations and the difference in calculation time
necessary for one calculation loop.

A disadvantage of method 1 can be the extra inverse of Pk/k-t introduced in equation (3,5).
If Pk/k-, becomes very small this inverse can lead to numerical instabilities, and method 2 will
have the preference. A reason to choose for method 1 can be a smaller calculation time
compared to method 2.

To calculate the difference in calculation time we want to look at the proportion (V) between
one calculation loop of method 1 and one calculation loop of method 2. The calculation time
exist of a collective part (A) that exists of the calculation made by equations (3,4), (3,6) and
(3,7). The additional calculations (B) for method 1 that are given by K k in equation (3,4), and
equation (3,5) and the additional calculations (C) for method 2 are given by the equations
(3,8) and (3,9). A multiplication of (m*n) matrix with a (n*p) matrix is of the order O(m*n*p)
and the inverse of a (n*n) matrix is of order 0(0.7*n3

). The value 0.7 is estimated with help
of Matlab. Addition of matrixes are not taken in account because they are of lower order and
faster than multiplications.

A=2n 3 +2n 2 +n+2Nn
B=2N2n+2Nn 2+1.4n 3

C=3Nn 2 +2N2n+0.7N 3 +n 3

V Gl Tmethod2 =A +C
T method 1 A + B

(3,10)

The proportion V is defined by the time necessary for method 2 divided by the time necessary
for method 1. With the proportion V we can easily conclude whether method 1 or method 2
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is faster, as a function of system order n and amount of sensors N.
With the matlab file in Appendix A the proportion V as a function of system order n IS

calculated for various amount of sensors N, the result of this can be seen in Figure 5.

2.2 loId

10\
order n

lr4 ~ 1

, ,

<, .6 IoI:J

--c.

:1 1

- N: 2-
I 1

N: 1

O. ,
0

Figure 5, Calculation time proportion method I / method 2

If V> 1 method 1 is faster and if V<1 method 2 is faster. From the figure can be seen that for
growing amount of sensors (N) method I is computational more efficient.

So in case there is a risk for numerical instability method 2 has a preference. Risk for
numerical instability is can be caused in the case that the process noise variance Q is equal
to zero. In that case the covariance matrix P klk will go to zero and so the inverse of Pkik-1 will
lead to numerical instability. In the case that there is no risk for numerical instability the
calculation time is the motive for selecting a method. If the proprotion V is bigger than 1 we
prefer method 1 and if the proportion V is smaller than I we prefer method 2. In Figure 5 we
see that if we use a lot sensors and the order of the system is limited than V> 1 and so method
1 is prefered.
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Chapter 4. Hierarchical fusion

In [9, Sun-H] an algorithm for the hierarchical fusion is proposed. The new fusion algorithm
is obtained by further derivation of the centralized fusion algorithm. First the algorithm will
be presented and discussed, subsequently the algorithm will be derived and also compared
with the central fusion algorithm.

Vk

1

All

'~ ~*\}----j-I-=-Z-=kl:~'-:Io::c~a-I~~X
k
/
k Pk/kI ~J 'filter 1 All

Xk/k-1 Pk{k-l

Figure 6, hierarchical fusion method

1

fusion
center

A
x.vk

The hierarchical fusion method needs two types of processing nodes:
• Local tracking node. The purpose of the local tracking node is to obtain a local state
estimate and a local covariance. The local state estimates are all of the same order as the
global state estimate, namely order n. A way of reducing this order is discussed in chapter 6.
• Data fusion centre. This centre fuses the local estimates to a global estimate, with help of
the local covariances.

In the local node the filter processes data from a local sensor to generate a local state estima­
tion. At each time k the local agents transmit the local state estimate and the predicted local
state estimate, as well as the corresponding covariances to the fusion agent. It is not necessary
to communicate the predicted local state estimate and predicted local covariance to the fusion
centre because they can also be calculated in the fusion centre with the local state estimate
and the local covariance. If the predicted local state estimate and the predicted local
covariance are calculated in the fusion center you make a trade between extra calculation at
the fusion center and less communication between local filter and the fusion center.
In the fusion centre, the local state estimates are fused with the predicted global state estimate
to produce a global state estimate. This fusion is weighted with the local covariances and the
global covariance. The predicted global state estimate and the predicted global covariance are
obtained with the extrapolation equations (3,6) and (3,7). To calculate the predicted global
state estimate you need to connect the input Uk to the fusion center, this is caused by the need
for Uk in equation (3,6)..
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According to [5, page 255] the data fusion equations in the data fusion centre can be written
as:

N

P;~Xklk=P;~-l Xk/k-l +L (P~J-l X~k - (p~k_lrl X~k-l)
j;l

N

P;~ =P;~-l +L (P~J-l -(P~k_l)-l)
j;l

(4,1)

(4,2)

Further derivation [9, Sun-H] the data fusion equations will give the following equations for
the global state estimate:

This equation expresses that the global state estimate equals the sum of the global state
prediction and an update. This update involves two terms. One is the sum of the differences
between each local state estimate and fusion prediction, weighted by the inverse of the
corresponding local sensor covariance. The other one is the sum of the differences between
the fusion prediction and each local sensor prediction, weighted by the inverse of the
corresponding local sensor prediction covariance. The sum of the two terms is weighted by
fusion state covariance. '

The global covariance is calculated according to equation (4,2) , and the predicted global
estimate and the predicted global covariance are calculated with the extrapolation equations
(3,6) and (3,7).

4.1. Derivation of the hierarchical fusion algorithm

The purpose of the fusion centre is to calculate the global estimate and the global covariance
with help of the local estimates, local covariances, predicted global estimate and predicted
global covariance. The hierarchical fusion algorithm can be derived by substitutions of the
local estimator equations in the central fusion equations.

The local estimate and covariance are calculated with:

(4,4)

(4,5)

The global estimate is calculated with equation (3,4) and the global covariance is calculated
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with equation (3,5).
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The equation (3,2) can be written in the following form.

1

~~]
R1 0 ... 0

[' [1 0 If- ... 0

Z.' :N HA :N VtA RA
~.. -

"t 0 0 ... RN.

With (4,6) it can easily be shown that:
N

H T R-1 H=}::; (Hi T (R i ) -1 Hi)
~=1

Rewriting (4,5) and combining this result with the equation above will give:

(P;/k) -1 = (P;/k-1) -1 +Hi T (R i ) -lHi

Hi T (R i ) -1 Hi = (P;/k) -1 - (P;/k-1) -1
N

H T R-1 H= L (Hi T (Ri ) -lHi )
i=l

N

=}::; ((P;/k) -1 - (P;/k-1) -1)
~=1

(4,6)

Filling in this result in equation (3,5) will give equation (4,2), where the global covariance
is calculated with the predicted global covariance, the local covariances and the predicted
local covariances.

With (4,6) it can easily be shown that:
N

H T R- 1 Z
k

=}::; (HiT(Ri)-lZ~)
~=1

Rewriting equation (4,4) with help of (4,5) and combining this result with the equation above
will give:
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Now we will rewrite equation (3,4) so that we can fill in the equation above. The result is
equation (4,1).

With help of equations (4,1) and (4,2) and a more convenient equation for the global state
estimate is derived:

N
-1 -1 ~ (( i ) -1 (i ) -1)Pk/k =Pk/ k -1 +~ Pk/ k - Pk/ k -1

~=1

N
-1 A _ -1 A ~ (( i ) -1 (i ) -1) A

Pk / k A.k/k-1 -Pk/k-1Xk/k-1 +.(..J Pk/ k - Pk/ k - 1 A.k/k -1
~=1

N

P -1 A _ p-1 A ~ ( (pi ) -1 Ai (pi ) -1 Ai )
k/k-1 A.k/k-1 - k/kA.k/k - .(..J k/k A.k/k - k/k-1 A.k/k-1

~=1

N

P -1 A -1 A ~((pi )-lAi (i )-l A i )
k/kXk/k =Pk / kXk/k-1 + .(..J k/k Xk/ k - Pk/ k-1 A.k/k-1 +

~=1

N

-l: ((Pt/k) -litk/ k _1 - (Pt/k-1) -litk/ k _1)
~=1

N N

itk/k=Xk/k-1 +Pk/k~ ((Pt/k) -1 (Xt/k-Xk/k-J )+Pk/k~ ((Pt/k-1) -1 (itk/ k- 1 -itt/k-1))
~=1 ~=1

The result of this derivation is equation (4,3), and so we showed how the fusion equations of
chapter 4 are derived.
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4.2. Comparing the hierarchical fusion with the central fusion

In this section the global state estimate and the global covariance of the central fusion
algorithm will be compared with the global state estimate and the global covariance of the
hierarchical fusion algorithm in the two sensor case with equal observation matrixes and equal
sensor noise variances. The assumptions done for comparing the central fusion with the
hierarchical fusion are that we use two similar sensors, consequently: N=2, H]=H2 , R]=R2.

The comparison in this section is done for a very special case. If we compare other cases like,
more than two sensors (n>2), different observation matrices Hi';t:Hj or different sensor
variances Rj:;t:Rj the equations would be to extensive to be compared as in this section. So the
other cases are examened with simulations further on in this report.
With the assumptions done we will show that the global state estimate of the central fusion
algorithm is equal to the global state estimate of the hierarchical fusion algorithm, as well that
the global covariance of the central fusion algorithm is equal to the global covariance of the
hierarchical fusion algorithm:

?
~..central :..- L'-.hier.
Kk/k -Xk/k

?
,...central :..- ..hier.
rk/k -.Yk/k

First we will calculate the global covariance with the central fusion equation (3,5).
-1 -1 T -1

Pk / k =Pk/ k -1 +H R H

[R-
1

0 ][H]-1 -1 T 1 1

Pk/k=Pk/k-1 +[H1 Hi) 0 R~l H
2

-1 -1 T -1 T -1
P k/ k =Pk/ k -1 +H1R 1 H1 +H2 R 2 H2

-1 -1 T -1
Pk/ k = Pk/ k -1 + 2 H1R1 H1

Then the global covariance is calculated with the hierarchical fusion equation (4,2). As
expected the result is the same as calculated before with the central fusion equation.

2

P"k7k=Pk:7k-1 +.r: ((Pt;k) -1_ (P~/k-1) -1)
~=1

2

P"k7k=P"k7k-1 +~ (Hi T (R i ) -lHi )
~=1

-1 -1 ..PI T ( 1) -1 ..PIPk/k=Pk/k-1 +2n- R n-

If the global state estimate is calculated with the central fusion equation (3,4) in the two
similar sensor case the result will be as follows:
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With equations (4,4) and (4,5) we obtain the following expressions which will be combined
with the equation for the global state estimate of the hierarchical fusion algorithm.

(pi ) -lAi (pi ) -lAi Hi T (Ri) -1 ik/k A.k/k- k/k-1 A. k/k-1 = Zk
(P1/k-1) -1 - (P1/k) -1 = -Hi T (Ri ) -lHi

Then the global state estimate is calculated with the hierarchical fusion equation (4,3)

itk/ k =itk/ k-> + Pk/k(t (pLk) -> (itt/k - itk/k-» +t, (Pt/H) -> (itk/k-> -itt/H) J
2

Xk/ k ="k/k-1 + Pk/k.E (P1/k) -lx 1/k- (pLk-1) -1,,1/k_1 + ( (P1/k-1) -1_ (P1/k) -1) "k/k-1)
~=1

2

Xk/ k ="k/k-1 +Pk/kL (HiT (Ri ) -l z t-H
iT

(R i ) -lHixk/k_1)
i=l

"k/k="k/k-1 +Pk/ k (JtlT (R1) -1 (zl+z~) -2H
1T

(R1) -lJtl"k/k_1)

It can be seen that the result of the global state estimate with the central fusion algorithm is
corresponding with the result with the hierarchical fusion algorithm.
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Chapter 5. Hierarchical fusion with feedback

In [5, page 252] the hierarchical fusion with feedback is presented. The local estimates are
communicated to a central location where data fusion is performed, subsequently the fused
data is communicated back to the local agents where it is used as priori statistics.

Uk
1 All

Vk ~k Pk/k
local

filter 1
A
~k Pk/k

A

fusion xk/k
center Pk/kN AN N

Vk
ZN Xk/k Pk/k

localk

filter N
A
Xk/k Pk/k

Figure 7, hierarchical fusion with full feedback

The local state estimate and local covariance are calculated in the local filters with the same
equations as used in the hierarchical fusion method, namely equation (4,4) and equation (4,5).
The difference with the hierarchical fusion method is that in this case the local filters use the
global state estimate of the fusion center to calculate the predicted local state estimate.

The fusion equations with feedback are:

N

P;~XtJk=L ((P~J-I X~J - (N-l)P;~_1 XtJk-1
i=l

(5,1)

N

P;~= L ((P~J-I) -(N-l)P;~_1
i"'l

(5,2)

A more convenient way of writing the equation for the global state estimate is given in
equation (5,3).

N

XtJk =XtJk-1+PtJkL ((p~J-I(X~k-XtJk-I))
i"'l

(5,3)

The predicted global estimate and the predicted global covariance can be computed from the
extrapolation equations (3,6) and (3,7). Because of equations (3,6) the input Uk must be
connected to the fusion center.
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5.1. Derivation of the hierarchical fusion with feedback algorithm

After the global state estimate and the global covariance are calculated they are communicated
to the local agents where they are used to predict the local state estimates and the local
covariances. The result of this communication can be seen in equation (5,4) and (5,5).

Ai A
Xk-l/k-l =Xk- 1/k- 1

-
-

(5,4)

(5,5)

When we substitute the predicted local covariances by the predicted global covariance (5,4),
the fusion algorithm for the global covariance (4,2) can be rewritten as equation (5,2)

N

-1 -1 ~ (( i ) -1 (i ) -1)Pk/ k =Pk/ k-1 + 4.J Pk/ k - Pk/ k-1
~-1

N
-1 ~ (( i ) -1 -1 )=Pk/k-1 +.(....J Pk/k -Pk/ k-1

~-1

N

=I: ((Pt/k) -1)_ (N-l) Pic7k-1
~-1

Substituting the predicted local state estimate by the predicted global state estimate (5,5) and
substituting the predicted local covariances by the predicted global covariance (5,4), the
algorithm for the global state estimate (4,1) can be rewritten as (5,1).

N

pic7kXk/k=Pic7k-1 Xk/ k-1 +I: ((Pt/k) -1 Xt/k- (Pt/k-1) -1 Xt/k-1)
~=1

N
-1 on. ~ (( i ) -1 Ai -1 A )= Pk/ k-1 Ak/k-1 +.(....J Pk/ k Ak/k - Pk/ k-1 Ak/k-1

~=1

N

=I: ((Pt;k) -1 xt/k) - (N-l) Pic7k-1 Xk/ k-1
~=1

To get a more convenient equation for the global state estimate than equation (5,1) the
feedback equation are substituted in equation (4,3).

itk/ k =itk/ k-1 + Pk/k(t, (pf/k) -1 (itf/k - itk/ k-1) + t, (pf/k-1) -1 (itk/ k-1 - itf/k-1) J

=itk/ k-1 + Pk/k(t, (pf/k) -1 (itt/k - itk/ k-1) + t, PJ;7k-1 (itk/ k-1 - itk/ k-1)J
N

=Xk/ k-1 +Pk/kI: (Pt/k) -1 (Xt/k- Xk/k-1)
~=1

The 'result of this derivation is equation (5,3).



October 10, 1996 Sensor Fusion 23

5.2. Comparing the hierarchical feedback fusion with the central fusion

As seen in section 4.2 the hierarchical feedback fusion algorithm is compared with the central
fusion algorithm in the two similar sensor case. The calculated global state estimate and the
global covariance with the central fusion algorithm for the two similar sensor case are
calculated in section 4.2 and are as follows:

itk/k=itk/k-1 +Pk/ k (,HlT (R1) -1 (Zf + Z;) - 2,HlT (R1) -1,Hl itk/ k-1)

Pk7k=PJ::7k-1 +2,HlT(R1) -1,Hl

First we will calculate the global covariance with the hierarchical feedback equation (5,2). As
expected the result is the same as in the central case.

We also calculate the global state estimate with the hierarchical feedback equation (5,3). This
result is also the same as in the central case.

2

itk/k=itk/k-1 +Pk/kL ((Pt/k) -1 (Xt/k- Xk/k-1) )
i=l

2

=itk/ k-1 +Pk/kL (HiT (R i ) -1 (Z~-H1itk/k_1))
i=l

=itk/ k-1+Pk/ k (,HlT (R1) -1 (Z1-H1itk/k_1) +1P
T

(R2) -1 (zt-H2itk/k_1))

=itk/ k-1 +Pk/ k (H1T (R1) -1 (Z1+rk) _2H1T (R1) -lH1itk/ k_1) )

The result of the hierarchical feedback fusion the same as the central fusion in the two similar
sensor case.
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5.3. Reduced communication requirements

In [8, Alouani-AT] the communication requirements between central processor and local
sensors is reduced. In this paper the case of two sensors is considered. In the conclusions is
stated that this method can be extended to an arbitrary number of sensors. But nothing is
stated, for the case with more than 2 sensors, about the expected communication requirements.
Possibly only communications will be required to the first local filter and no communication
to the rest of the local filters or maybe only no communication will be required to the last
local filter ( local filter N) and communication to the rest of the local filters, is still necessary.

1 1 11.1 1
Vk Zl Xk/k Pk/k

~5
localk

filter 1
A

Pk/k
A

• • Xk/k ~kfusionxk
• •

center
Pk/k• 2 •

vk Z2
11.2 2

~~* local Xk/k Pk/kk

filter 2
Figure 8, two sensor hierarchical fusion with reduced communication requirements

Special equations for the fusion center are derived in the two sensor case, so that if the fused
global state estimate and the fused global covariance is communicated to local filter 1, which
uses this information as priori statistics, and no communication is required to local filter 2,
the result will be the same as with the hierarchical fusion with full feedback. The gain of this
method is that there is no communication from the fusion centre to local filter 2, with no
degradation of performance, what is possible by the special derived equations for the fusion
center.

The state estimate and its error covariance of sensor 2 is given by equations (5,6) and (5,7).

(5,6)

(5,7)

The predicted state estimate and the predicted covariance of sensor 2 are calculated with
equation (5,8).

(5,8)
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The state estimate and its error covariance of sensor 1 is given by equation (5,9) and equation
(5,10).

..I .. I .J. HIT(RI)-I( I HI .. I ) (5,9)
Xk/k =Xk/k-I +rk/k Zk - Xk/k-I

The predicted state estimate and the predicted covariance of sensor are calculated with
equation (5,11).

Note that in equation (5,11) the predicted state estimate and the predicted covariance are
calculated with help of the previous global state estimate and global covariance of the fusion
algorithm. This is because of the feedback of the fused global state estimate and the fused
global covariance.

The estimates and covariances of sensor I and sensor 2 are now communicated to the central
fusion agent where they are fused to a global state estimate and global covariance, with the
fusion algorithm for the two sensor case:

(5,12)

(5,13)

(5,14)

The difference with the hierarchical fusion with full feedback is in the algorithm of the fusion
center. In the hierarchical fusion with full feedback the number of sensors is not fixed, but
in the hierarchical fusion with reduced communication requirements the number of sensors
is fixed (N=2), so an extra sensor will also demand a new fusion algorithm.
The is no need to connect the input Uk to the fusion center because the predicted global state
estimate can also be calculated in local filter 1 with the global state estimate that is fed back.
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Chapter 6. Distributed model architecture

To reduce the computational load of the previous discussed methods, we looked for a way
of fusing reduced order models. The local filters and the fusion centre in the previous stated
methods are all of order n. Reduced computational load and reduced bandwidth requirements
from sensor nodes to the fusion centre can be reached by reducing the order of the local
filters. Subsequently the local states are fused with each other with help of the known models
to a global state estimate. This problem is referred to in the literature as the distributed model
architecture.

In [6, page 68] a schematically representation for the distributed model fusion is introduced.
The architecture looks the same as the architecture of the hierarchical fusion method in
chapter 4, but the difference is that the order of the local filters are of order n j and the fusion
centre is of order n. In [l0] the problem of data fusion in a distributed architecture is
considered.

Uk

Al I

local ~ Pk/k

filter 1 Al I

~-l Pk/k-l A

fusion xk/k
x k

•
center

Pk/k
AN N

local ~ Pk/k

filter N AN N

Xk/k-l Pk/k-l

Figure 9, distributed hierarchical fusion architecture

The local state vector Xi is related to the global state vector X by the nodal transformation
matrices T.

(6,1)

The nodal observation equation is based on the global state vector and based on the local state
vector.

(6,2)

The nodal state transitIOn equation with the nodal state transItion matrix and the noise
transition matrix is given by the following equation, where the nodal state transition matrix
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can be obtained from the global state transition matrix using the nodal transformation matrix.

i ii ii ii
Xk+1=()kxk+rkwk+tkuk

()i = T~+l ()k(~.J­

r~=r:+1rk(~.J­

ti =T~+l t k(T~-

(6,3)

The inverse of the nodal transformation matrix is taken as the Moore-Penrose generalized
Inverse.

• • T •• T

(T~) - =T~ [T~T~ ] -1

EveI)' reduced order Kalman filter has two stages, which are prediction:

(6,4)

(6,5)

and update:

(6,6)

(6,7)

The fusion equations consist of a global state estimate equation and a global covanance
equation:

N

p;ixk/k =P;i-1 Xk/k-1 +L (TiT«p~.J-1X~k -(p~k_1r1x~k_1»
i=l

N

p;i=p;i-1 +L (TiT«p~.J-1_(p~k_1r1)T~
i=l

(6,8)

(6,9)

The predicted global estimate and the predicted global covariance can be computed from the
extrapolation equations (3,6) and (3,7).
Similar to the hierarchical fusion algorithm a more convenient equation for the global state
estimate is derived

I N T·· T . . (6,10)
" _" p- ~ (Ti (pI )-1('" Ti" ) T i (pI )-l(Ti " _ "I »xk/k -Xk/k-1 + k/kLJ k/kJ Xk/k - Xk/k-1 + k/k-1 Xk/k-1 Xk/k-1

i=l

It can be seen that if the transformation matrix is unity, equation (6,10) is similar to the
hierarchical fusion equation (4,3).
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6.l.Derivation of the distributed fusion algorithm

The global and nodal noise matrices are related via:
N

H TR-1H=:r; ('I'i TCi T (Ri) -1 Ci'I'i)
~=1

With the help of this relation a global state covariance equation (6,9) can be derived:

Pk/k =Pk/k-1 +HTR-1H
N

Pk/k =Pk/ k-1 +L ('I'i TCi T (R i ) -1 Ci 'I'i)
i=l

N

Pk/k=Pk/k-1 +L ('I'i
T

((Pt/k) -1_ (pf/k-1) -1) 'I'i)
i=l

The global observations and the local observations are related via:
N

H TR-1Zk =:r; ('I'i TCi T (R i ) -1 zt)
~=1

With help of this relation a global state estimate equation (6,8) can be derived:
,.-i _ ... i pi Ci T (Ri ) -1 ( i C 1 Ai )Xk/k-Xk/k-1 + k/k Zk- A.k/k-1
(pi )-l(Ai Ai ) CiT(Ri)-lC1Ai CiT (R i )-l ik/k A.k/k - A.k/k-1 + A.k/k-1 = Z k

(Pt/k) -lSCt/k+ (Ci T (R i ) -lC 1 - (pf/k) -1)SCf/k_1 =CiT (R i ) -l z t
(pi ) -lAi (pi ) -lAi Ci T (R i ) -1 ik/ k A.k/k - k/k-1 A.k/k-1 = . Z k

N

HTR-1 ~ 'I'i T((pi ) -lAi (pi ) -l Ai )Zk=~ k/k A.k/k- k/k-1 Ak/k-1
~=1

With the rewritten equation (3,4) put in the equation above, we get an equation for the global
state estimate.

itk/k=itk/k-1 +Pk/ k H TR-1 (zk -Hitk/ k-1 )

Pk/kitk/k=Pk/kitk/k-1 + H TR-1 (zk -Hitk/ k-1 )

= (Pk/ k -1 +HTR-1H) itk/ k -1+HTR-1Zk-HTR-1Hitk/k_1
_ -1 A T -1
-Pk/ k-1A.k/k-1 +H R Zk

N

=Pk/k-1 itk/ k-1 +L ('I'i T( (pf/k) -liCf/k- (Pt/k-1) -liCf/k_1) )
i=l
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Now with help of equations (6,8) and (6,9) a more convenient equation for the global state
estimate is derived,

N

Pl/ik=Pk/k-1 +~ (TiT ((Pt/k) -1_ (Pt/k-1) -1) T i )
~=1

N
-1 A -1.... ~ (Ti T (pi ) -1 T i A Ti T (pi ) -1 T i A )

Pk/k Ak/k-1 =Pk/k-1Xk/k-1 + L k/k A k/k-1 - k/k-1 Ak/k-1
i=l

N
-1.... -1 .... ~ (T;T(pi )-IT;A TiT(pi )-IT;A )

Pk/k-1 X k/ k-1 = Pk/kXk/k-1 - L ~ k/k ~ Ak/k-1 - k/k-1 ~ Ak/k-1
i=l

N

P -1 A -1 A ~ (Ti T (pi ) -lAi T i T (pi ) -l A i )
k/kAk/k =Pk/k-1Ak/k-1 + L k/k Ak/k- k/k-1 Ak/k-1

i=l
N

-1 A -1 .... ~ (Ti T (pi ) -1 Ti A T i T (pi ) -1 T i A )
Pk/kAk/k =Pk/kXk/k-1 - L k/k A k/ k-1 - k/k-1 Ak/ k-1 +

i=l
N

" (Ti T (Pt/k) -lRi/k- T i T (pi/k-l) -lRt/k_1)+f;f
X k/ k = Rk/ k -1 +

N

+Pk/k~ (TiT (Pt/k) -1 (ftt/k-TiXk/k_1) +T
iT

(Pt/k-1) -1 (Ti ftk/ k _1 -Ri/k-1))
~=1

So in this section the fusion equations (6,8), (6,9) and (6,10), for the distributed model
architecture that is represented in chapter 6, are derived.
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Chapter 7. Hoo filtering

The aim of this section is define an estimator, dual to the Kalman filters in the previous
chapters, that takes into account the frequency dependent properties of a sensor. Such kind
of estimator is found in the Hoo filter. So we try to find a way of designing a Hoo filter that
takes into account the frequency dependent properties of a sensor. We are looking for a way
to define a Hoo filter in similar way the central filter (chapter 3) is defined for fusing
measurement data.

We looked in the literature if Hoo filtering was used in combination with sensor fusion, but
no efforts in that direction were found.

Just like the Kalman filter, The Hoo filter is a causal, linear mapping taking the control input
u and the measurement y as its inputs, and producing an estimate 2 of the signal z in such
way that the Hoo norm of the transfer function from the noise w to the estimation error e=z-2
is minimal. We want to design a filter mapping (u,y)~2 such that the for overall configuration
with transfer function E:(w,v)~e the Hoo norm is less than or equal to some pre-specified
value l. In this way the Hoc, filter is defined, we need access to the input u.

We consider the state space equations:

i =Ax +B)w +B2u
z=C)x+D2 )u

Y =CzX+v

(7,1)

The Hoo norm is defined by:

2
Ileib
2 2Ilwlb + Ilvlb

(7,2)

The configuration of the Hoo is:

1\
Z

)-----. ez-- ~
plant

<:r!--1.----.. Hinf filter -

i
v

w

u

Figure 10, The Hoo filter configuration
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The solution to this problem is given by the following theorem:
Theorem of the H oo filter:
There exists a filter which achieves that the mapping E:(w,v)--,;e in the configuration of
Figure 10 satisfies

IIEII"" <y

if the following Riccati equation has a stabilizing solution y= yT~O.

O=AY + YA T - Y[C2
T
C

2
-y-2CtCI]Y+BIBt

In that case one such filter is given by the equation

. 2 T
~ =(A+y- BIBI X)~ +B2u+L(C2~-Y)

Z=CI~ +D21u

L=YC;

For the Roo we assume that the following assumptions hold:
A-I D ll = 0 and D22 = O.
A-2 The triple (A, B 2, C2) is stabilizable and detectable.
A-3 The triple (A, B l , C l ) is stabilizable and detectable.
A-4 DT

I2 (C l D 12 ) = (0 I).
A-5 D\I (BTl D\l) = (0 I).

(7,3)

(7,4)

Assumption A-I states that there is no direct feedthrough in the transfers w --'; z and u --'; z.
The second assumption A-2 states that internally stabilizing controllers exist. Assumption
A-3 is a technical assumption made on the transfer function. Assumptions A-4 and A-5 are
just scaling assumptions that can be easily removed. Further explanation on the assumptions
can be found [11, page 64].

The resulting filter is a filter like the Kalman filter but the difference is that there is no real
covariance estimated, but the resulting matrix L (the H oo filter gain) depends on the value of
y and y depends on Y.

The computation of H,,, filters can be done with the various routines included in the Matlab
Robust Control Toolbox. For the Roo filter design is of importance the Matlab routine hinf
and the time discrete variant dhinf.

For the time discrete domain we consider the state space equations:

Xk+1 =Axk +BI wk +B2uk

Zk=CIXk +D12 uk

Yk=C2X k +vk

(7,5)
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We define Yk , C2 and V k equal to the difinition in chapter 3 to allow several sensor
measurements into the system.

I)T N)T- TYk Gt. [(Yk , •••• , (Yk ]

Cz Gt.[(C~l , .... , (C:)7]T

Vk Gt. [(Vi)T , •... , (vtlf

This is equal to:

(7,6)

(7,7)

The discrete time R"" filter is now configured by:

Wk

Uk ~
x.c C1

Z
+ Z .- + e

LG= YkC2
1\

+ z
Hinf filter

~
vk

L

Figure 11, The discrete time Roo filter configuration

With this definitions it must can construct a filter with a structure that looks like the central
fusion structure. The construction of the Roo filter is not carried out yet because we want first
look to the simulation results of the previous found fusion algorithms.
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Chapter 8. Sim ulations

Sensor Fusion 35

In this chapter we carry out simulations with the various fusion algorithms on a simple model
with inputs vectors and noise vectors generated by matlab. The reason for using data
generated by matlab is that it is easier to compare the fusion algorithms. We want to
investigate the effect of various sensor measurements and sensor noises on the fusion
algorithms. We are also interested in the effect of bias in a sensor measurement and the
possibility of detecting a defect or inaccurate sensor.

8.1. Simulation model

The model used is a vehicle moving in one direction, namely position x. The input vectors
of the model are the control input u and the process noise w.

u-------.·I/LJG~
w_______.. ID ~OJ

position x
~

Figure 12, vehicle

The state vector is assumed to consist of position and velocity.

(8,1)

The control input u and the process noise ware entered in the system as an acceleration a.
where the a is the damping of the system, in our simulations equal to zero.

(8,2)

Measuring the position x is done by:

(8,3)

Measuring the speed v is done by:

(8,4)

Because all the fusion algorithms are derived for the discrete time the model is converted to
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a discrete time model. This conversion is performed with the matlab conversion program
C2DM, which converts the continuous time state-space system to a discrete time state-space
system. The conversion method used is a zero order hold. The discrete time state space
system is now defined.by ( in this case the damping a. is equal to zero):

(8,5)

Where T is the sampling period.
The measurement equations for measuring the position and the speed are the same as in the
time continuous case with as only difference the time indices k.

position measurement:

(8,6)

speed measurement:

(8,7)

First we make a matlab file (Appendix B: makedat.m) that produces measurement data of the
position and the speed and also some sensor noise and with process error. Assumed is that
the initial state at t=O is known, the position and speed at t=O are equal to zero.
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Figure 13, Position arid speed of vehicle

From t=O sec to the input u is a constant acceleration of 10 mis, then the acceleration is zero
for 2 seconds, then the acceleration is -20 mls for 2 seconds next the acceleration is zero for
2 seconds and the last 2 seconds the acceleration is 10 m/s. The sampling time T=0.2 sec is
equal to 10 sec divided by the amount of samples (l0 sec I 500 = 0.02 sec).
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The syntax for makedat.m is makedat(samples,Q,RI ,R2,R3,R4), where samples is the amount
of samples taken, Q is the process noise variance and Rl through R4 the variances of four
sensor noises which can be added on a position or speed measurement. The m-file makedat.m
returns a vector that consists of a position (measure(:,l» and a speed measurement
(measure(2,:) without noise and 4 independent sensor noises with variances given at the input
of the m-file. The shape of the return vector is [measure, nl, n2, n3, n4, A, B, C, Q, u]. The
m-file resets the seed of the random generation every time it is used, because of this the
random noise generators (RANDN) will give the same result and so will not influence the
result of the different fusion algorithms.

We made Figure 13 with 500 samples, a process noise variance of 0.1. In the figure the
position and the speed are represented without the sensor noise added. Because of this setup
we make position and speed measurements by adding sensor noise (nl to n2) to the
observation.

The syntax in the matlab command window is:
»[measure,n 1,n2,n3,n4,A,B,C,Q,u] = makedat(500,0.1, 1,1,1,1);

The mean values and variances of the returned noises are:
» mean(nl)= -0.0779 var(nl) = 1.1028
» mean(n2)= -0.0174 var(n2) = 1.0272
»mean(n3)= 0.0058 var(n3) = 1.0020
» mean(n4)= -0.0112 var(n4) = 1.1010

As seen the mean value of the returned noises are not completely zero and the variances
differ a little from each other and the value at the input. This is caused by the finite length
of the noise vector, namely 500 samples.

8.2. Two position sensors

In this section we compare the result of the fusion algorithms when we have two position
measurements. The measurement equations of the two sensors are given by:

Z~=[1 O]Xk+V;

z~= [1 0] x k +V;
(8,8)

With the measurement data generated in section 8.1 we can define the two measurement
vectors Zl and Z2 by adding two uncorrelated noises (e.g. nl and n2) on the position
measurement vector measure(:,l). With the resulting measurement vectors Zl = (position +
n 1) and Z2 = (position + n2) we investigate the result of the different fusion algorithms.

First we looked what happens in the 2 position measurements are added and divided by 2.
The error n of the fused signal can be calculate with n = ( Zl + Z2 )/2 - measure(:,l). Where
measure(:,l) represents the original position vector, not corrupted with noise.
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The mean value of error n ( mean(n) ) can be calculated with
N

~ (mean (nJ)
mean (n) = ----:-::---­

N

The variance of n ( var(n) ) can be calculated with
N

.!L (var (ni) )

()
Ni=lvar n = -...::.....::------

N

In Figure 14 the mean values and the variances of the nOIses nl, n2 and error n are
represented.
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Figure 14, Sensor noises nl and n2 with addition noise
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We also looked with matlab to the behaviour of the variance of error n as a function of the
proportion of the variance of n1 and the variance of n2. The variance of n1 is set to 1 and
the variance of n2 is calculated with a proportion V=var(n2)/var(nl) vary from 1 to 10.

;'.5

',5

, 5 6 1
II r GflO r I I I) n '!f (II:.' ) I Wll f (II 1)

a 5 '------'-_---'-_--'-_-'-----_'-------'-_----'-_---'------J,

Figure 15, variance n versus proportion V

In Figure 15 is expressed that if the variance of n2 more than 3 times the variance of n1 the
resulting error variance becomes bigger than the noise variance of n1, so if one only looks
at the variance there is no profit in that case.
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8.2.1. Central fusion with 2 position sensors

In this section we investigate the result when the two position measurements Zl and Z2 are
fused with the central fusion method. The equations of the central fusion algorithm are placed
in the matlab file central.m and this file is used in the matlab file centr82.m to produce the
simulation results that can be compared with the results of the measurement addition in the
previous section and the fusion algorithm in the next section. Both the matlab files central.m
and centr82.m are presented in appendix C. In Figure 16 the position error after fusing Zl and
Z2 is displayed, the mean value and the variance are calculated after 2 seconds when the
covariance matrix Pglob almost reached his final value.
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Figure 16, Central fusion with 2 position measurements

You can see that the mean(noise)=-0.07667, this value is larger than the mean value after
simple measurement addition (-0.04766). The variance (var(noise)=0.001183) is much smaller
than the variance after simple measurement addition (0.5259), this effect is also due to
averaging the measurements over more samples. So one can not compare this two results with
each other.

Now we investigate what the effect is when the variances of the sensor noises are different.
The variance R2 was increased from 1 to 10 and the variance Rl hold to 1. The mean and
variance were compared to the mean and variance of a filtered addition measurement, the
results are represented in Figure 17. We found that the mean and the variance of the error
with the central fusion increased less than the mean and variance of the filtered addition



October 10, 1996 Sensor Fusion 41

measurement. This is because the central fusion algorithm weights the update of the sensor
with the high variance less than the sensor with the low variance in contrast to when both the
measurements are just added and divided by 2.

Figure 17, Fusion of sensors with different variances

From Figure 17 we conclude that in the case of two similar sensors with different variances
the central fusion will give a smaller mean value of the position error and a smaller variance
on the position error than when the signals are added before filtering with a Kalman filter
with a known input vector Uk. Maybe a weighted addition, weighted by the sensor variances,
before filtering will give the same result as the central fusion algorithm.

We also look what the effect is when a constant value (bias) is added to one of the sensor
noises. Therefore a bias from 0.25 m to 10m is added to one of the measurements and the
mean value of the resulting noise after fusion is calculated. The result is displayed in
Figure 18 where the bias added to measurement 1 ( Zl = Zl + bias) is displayed versus the
mean value of the error after fusion.
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Figure 18, Bias versus mean(noise)

Half the bias added to a measurement returns in the mean value of the noise after the central
fusion. This is the same result as if the two measurements are simply added and divided by
2.

The same simulations done with the central fusion algorithm and two position sensors are
performed with the other fusion algorithms, namely:

-Hierarchical fusion with two position sensors. (Appendix D)
-Hierarchical fusion with feedback and two position sensors. (Appendix E)
-hierarchical fusion with reduced feedback and two position sensors. (Appendix F)

The results of these simulations are exactly the same as the fusion with the central fusion
algorithm. Therefore this results are not represented in this report. At this moment the
different fusion algorithms show no difference in the resulting state vectors with different
noise variances and different biasses. Therefore we look in the next section how the different
fusion algorithm respond to one position measurement and one speed measurement.
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8.3. One position sensor and one speed sensor

In this section we compare the result of the fusion algorithms when we have one position
measurement and one speed measurement. The measurement equations of the two sensors are
given by:

(8,9)

With the measurement data generated in section 8.1 we can define the position measurement
vector Zl and speed measurement vector z~ by adding two uncorrelated noises (e.g. nl and
n2) on the position measurement vector measure(, 1) and the speed measurement vector
measure(,2). With the resulting measurement vectors Zl = (position + nl) and Z2 = (speed
+ n2) we investigate the result of the different fusion algorithms. As in section 8.2 adding the
two position measurements is not possible in this setup, so a comparison with a equivalent
method is not possible when fusing a position and a speed measurement.

With some small changes in the files of appendix C through F used in section 8.2.1 we
looked at the resulting noise in the fused position and the fused speed vector. Also the mean
value and the variance of the noise are calculated. First we investigate if the different fusion
algorithms will give the same result if the sensor noises are the same (R 1=R2). The position
noise and the speed noise and their properties are represented in Figure 19.
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Figure 19, Central fusion with one position and one speed measurement
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The simulation of Figure 19 is performed with the central fusion algorithm, the same
simulations were performed with the hierarchical fusion, hierarchical fusion with feedback and
the hierarchical fusion with reduced feedback fusion algorithms. They all show in the case
of Rl =R2 exactly the same result.

In Table II we list the result of the simulation in Figure 19 with two other simulations, in one
of these simulations the position sensor is very bad (Rl = 10000) and in the other simulation
the speed sensor is very bad (R2= 10000). Again the results of all the fusion algorithms are
exactly the same. If we look at the difference between the case Rl=IIR2=10000 and
RI=11R2=1 we can see that a if we decrease the variance of the speed sensor the mean value
of the position error and the mean value of the speed error will increase, and the variance of
the position error and the speed error are both decreased. If we look at the difference between
the case Rl=100001R2=1 and Rl=11R2=1 we can see that if we decrease the variance of the
position sensor the mean value of the position error and the mean value of the speed error
will both decrease, and the variance of the position error and the speed error are both
decreased. From these simulations we can see that improving one of the sensors will decrease
the variances of the fused values. But the mean values not always decreases, this effect can
be due to bias in the measurements. This bias is a constant val ue.in the sensor noise caused
by the finite length of the noise vector.
Table II, Effect of a fault sensor

mean mean speed variance variance
position error position speed

error error error

R1=1, -0.0974 -0.0296 0.003879 0.001888
R2=10000

R1=10000, -0.2924 -0.0726 0.009442 0.001044
R2=1

R1=1, -0.1228 -0.0393 0.000908 0.000723
R2=1

We also looked what the effect of bias is in the case of one position sensor and one speed
sensor. In this case we can discern two cases, one when a bias is added on the position
measurement (Zl = Z' + bias) and one when a bias is added on the speed measurement (Z2 =
Z2 + bias ). The simulations were all done with the central fusion algorithm, but we also used
the other fusion algorithms and no difference was found. In Figure 20 the mean value of the
noise on the position vector and the mean value of the noise on the speed vector are displayed
versus a bias from 1 to 10 mls added on the speed measurement. It can be seen that the effect
of a bias on the speed measurement has an effect on the mean value of the position noise and
that the effect on the speed noise is decreased. So the position measurement reduces the
effect of bias in the speed measurement.
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Figure 20, Bias on the speed measurement

In Figure 21 the mean value of the position error and the mean value of the speed error are
displayed versus a bias from 1 to 10 m/s added on the position measurement. It can be seen
that the bias on the position measurement completely returns in the mean value of the position
error. So the mean value of position error is not decreased by the speed measurement. This
sounds logic, because the speed is the derivative of the position and so has no information
about a constand value in the position measurement.
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Figure 21, Bias on the position measurement
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8.4. multiple position sensors and unknown input u

In section 8.2 and section 8.3 we presented some simulations with the derived fusion
algorithms. In this cases the system input vector Uk was assumed to be known. In the projects
at our section this system input vector Uk is not known. That is the reason why we did more
simulations with multiple position sensors and unknown input vector Uk' We left the input
vector Uk out of the fusion algoritme through making the input vector Uk equal to zero after
generating the measurement data with makedat.m, this is done by adding u=zeros(size(u)); in
the matlab file.

medn position error =10.SS dnd ~(Ir position error =69.51
J 0 .-----r--.,....---r----.-----r----.---~----.--___,_-___,

E

_ 20

medn speed error =B.~BS I'nd Vdr speed error ::196.8
40

- J 0

20

- 10

::: -, 0
~
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o \ 1 0

t ( 50 C ]

Figu.oe 22, One position sensor, input Uk unknown, Q==O.1

In Figure 22 the position error and the speed error are presented, with one position sensor,
when we leave out the input vector Uk in the central fusion algorithm. In the simulation we
already increased the amount of samples to 2000 (sampling time T== 10sec/2000 == 5 mSec),
but the result is still useless. Further increasing of the number of samples will request too
much time for the simulations. In the central fusion algorithm the process noise variance was
unchanged (Q==O.I). Because of this the fusion algorithm takes the prediction too much in
account. We now investigate how to increase the process noise variance Q, such that the
variance of the position error is minimal. The process noise factor Q has to be increased to
take into account the unkown input vector ukin the central fusion algorithm.
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Figure 23, Variance position errror versus process noise Q

From Figure 23 we can determine the Q==14000 that will give a minimum variance on the
position error. This value doesn't have to bee exact 14000, and also depends on the used input
vector u. Now we do the same simulation as in Figure 22 with the same number of samples
(samples == 2000), one position sensor but the process noise Q==14000. In the resulting
Figure 24 we see that the resulting position error is improved by increasing the process noise
Q in the central fusion algorithm
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Figure 24, One position sensor, input Uk unknown, Q==14000

Now we have found how we can reach a minimum variance of the position error, we look if
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we can improve this result by adding more position sensors. Simulations were performed with
N=l to N=8 position sensors, and of each simulation the calculated mean value and variance
of the position error and the speed error are presented in table Table III.

Table III, Effect of N position sensors on error

N mean pOSe variance mean speed var.speed
error pOSe error error error

1 0.00668 0.0825 0.2724 4.548

2 -0.01573 0.0400 0.2161 3.319

3 0.01187 0.0235 0.2143 2.633

4 -0.00016 0.0214 0.2101 2.619

5 0.00002 0.0166 0.2101 2.396

6 0.00175 0.0137 0.2011 2.141

7 0.00136 0.0119 0.1939 2.027

8 0.00237 0.0114 0.1807 2.049

The simulation of eight position sensors is performed again, equivalent to Figure' 23, to
investigate if the used process noise Q=14000 will give the minimum variance on the position
error.
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Figure 25, Variance position error versus process noise Q, with
N=8
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4
N position sensors

In Figure 25 the variance of the position error is displayed versus the process noise Q. With
this figure we can determine that the process noise Q==5000 will give the minimum variance
in the position error. If we take Q=5000 the variance in the position error for N=8 position
sensors will become 0.0101 meter. The difference of the position error variances 0.0101 and
the position error variance calculated with Q=14000 in Table III (0.01143) is only 0.00142
meter.

With the data of Table III we make Figure 26, this figure reflects the position error variance
versus number of position sensors N. As concluded from Figure 25, changing the process
noise Q will give just a sma)) improvement.
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Figure 26, Position error variance versus N position sensors

We looked again to the variance of the postion error as in Figure 26, but with the difference
that for sensor I we used a speed sensor. One time a speed sensor with variance Rl == 1 mls
and one time a speed sensor with variance RI==IO m/s.
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Figure 27, Position error variance, one speed and N-l postion sensors

In Figure 27 we see that replacing position sensor 1 with Rl = 1 meter ( dashed line) by a
speed sensor with Rl=10 m/s will give a good improvement in the variance of the position
error. Decreasing the variance of this speed sensor to R1=1 m/s ( dotted line) will even give
a better result.

We now want to know if the used central fusion for 1 to 8 posItIOn sensors will give a
improvement over the case that the N positions are added before they are filtered. If there is
no improvement over the central fusion we could save us a lot of calculation time by first
adding the measurements before filtering filtering. The addition is done by:

N

L measurement i
addition measurement=-i-:-l--------

N

The variance Raddition , for filtering the addition, used in the central filter is calculated with:
1 N
-LRi_ N i : 1

Raddition - N

Now we added the N position measurements and devide them by N. This new measurement
is filtered by a central fusion algorithm for one sensor. The results of this are mean values
of position errors, position error variances, mean values of speed errors and speed error
variances, and they are exactly the same as the ones displayed in Table III acquired by the
central fusion algorithm. To show the result is exactly the same we compared the position
error of N=8 central fusion with the position error of the filtered addition of 8 position
measurements. This comparison is done by subtracting the position error of the N=8 position
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sensor central fusion result from the N=8 position measurements added before filtering. In
Figure 28 we can see that the difference is maximal 5* 10. 14

, so this is almost zero exept a
small error due to computer calculation accuracy.

E N:8 position sensors central fusion

~::~
o 1 2 ] ~ l 6 7 B 9 10

:[ N=B position measurements added before filtering
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Figure 28, Difference central fusion and filtered addition, N=8

So we can save a lot of calculation time if we just add the N position measurements, with
equal variances, before filtering. This is in the special case that all the sensor noise variances
are exactly the same, Figure 17 already showed that if the sensor variances are different the
central fusion algorithm gives a lower variance on the position error.
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In Figure 29, we compare the position error with N=8 posItIOn sensors fused with central
fusion algorithm and fused hierarchical fusion algorithm. Again there very small difference
caused by calculation accuracy. The strange schape of the difference can be explained by the
looking at the shape of position x in Figure 13. If the x becomes larger the calculation errors
also grow.
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Figure 29, Difference central fusion with hierarchical
fusion for N=8

In Figure 32 we investigate the difference between the central fusion and the hierarchical
fusion with feedback. Again the result of both the fusion algorithms is the same.

~ N: B po 5 I [ ion 5 ens 0 r 5 c e nt' s I Ius jon

<::~
- 0 1 2 J ~ j 6 ) B 9 10!. N=8 Rlerarchlcal fUSll1n _It" feedback

<::~
o I 2 l ~ 5 6 7 B g 1 0

: .5

5

:' 10'" differ"" bel."" pOSlli" erl""

.- . 0

·1
o I 2 l ~ 5 6 7 B 9 1 0

I (s,,)

Figure 30, Difference central fusion with hierarchical
fusion with feedbak for N=8 position sensors.
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8.5. Detecting a fault sensor

In this section we investigate if it is possible to detect, with help of the global measurement
and a sensor measurement, a fault sensor. In Figure 31 we show how a error signal with the
global state estimate and the sensor measurement is defined in the central fusion scheme.
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Figure 31, Error signal definition for fault sensor detection

The error signal ei is defined by:

(8,10)

We now do a simulation with the same one dimensional dynamic model as used in the other
sections, with unknown input vector Uk , three position sensors and 2000 samples (T=10 sec
12000 samples = 5 mSec). We will disrupt one of the position measurements with noise and
bias, whereafter we look at the effect on the error signal ei

. In Figure 32 the error signal that
is added on the position measurement of sensor 2 is displayed, also the three corresponding
error signals according to equation (8,10) are displayed. The error signal is a constand value
(bias) of 10 meter added from t=2 to t=4 seconds, and a zero mean noise with variance R=4
meter added from t=6 to t=4 seconds.
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Figure 32, Error signals of three position measurements
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It can be seen from the figure that the bias on position measurement 2 has infuence on all
three the error signals. But the effect is larger in the error signal of measurement 2 than on
the other measurements. The zero mean white noise is also visible in the error signal of
position measurement 2. From Figure 32 can be seen that the effect extra bias or extra noise
on a sensor measurement can be detected from the defined error signal. To do a correct fault
sensor detection, a norm for this has to be defined.
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A simple way in fusing sensor measurements is found in the central fusion architecture. If the
sensors process their data locally, and sending their estimates to a central processor,
alternative fusing algorithms are needed. A solution for this is found in hierarchical fusion
algorithm. The hierarchical fusion algorithm is compared algebraical to the central fusion
architecture in the two similar sensor case, which yields the same results. In the litarature was
stated that an advantage of the hierarchical fusion algorithms is that it is easy to detect sensor
failure by comparing the local estimate with the global estimate. This is not completely
correct, because with a defined error signal e, it must also be possible to detect a fault sensor
in the central fusion case. A disadvantage is the growing computational load, because the
same system model as the central fusion node is used in every local node.
The global state estimate in the hierarchical architecture can also be fed back to the local
nodes to be used as priori statistics. This method is also compared algebraical to the central
fusion architecture in the two similar sensor case, which yields the same results. The feedback
of the globel state estimate and the global covariance yields extra communication
requirements, these communication can by reduced by using the algorithm derived in [8,
Alouani-AT]. This algorithm is only derived for the 2 sensor case. The hierarchical
architectures with and without feedback are both derived from the central architecture. They
are also both compared algebraical with the central architecture in the two similar sensor case,
from which we conclude that in this case the result of the three architectures are the same.

Because of the growing computational load with hierarchical fusion algorithm we looked for
a way to reduce the order of the local filters (nodes). This approach, referred to as the
distributed model architecture, has the advantage of reduced computational load at the local
nodes and reduced communication bandwidth, compared to the hierarchical fusion
arch itecture.

The central fusion, the hierarchical fusion, the hierarchical fusion with feedback and the
hierarchical fusion with reduced feedback are also tested with a one dimensional dynamic
model. This tests with data generated with matlab showed that all the results of the fusion
algorithms are exactly the same, exept a small difference in the order of 10-14 that is a result
of calculation accuratie of the computer. The differences between position errors with cental
fusion, the hierarchical fusion, hierarchical fusion with feedback and hierarchical fusion with
reduced feedback are compared in the various cases, namely:

- Two position sensors, the same sensor noise variance
- Two position sensors, with different sensor noise variance
- One position sensor and one speed sensor, with different sensor noise variances
- Eight position sensors, with different sensor noise variances
- Various position sensors and various speed sensors, with different sensor noise

variances (number of sensors N=8).
In all this cases no difference between the global position estimate was detected. Explanation
for the fact that al the fusion algorithms give exactly the same result, is that the fusion
algorithms are all derived from, and under the same conditions, than the central fusion
algorithm.
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The simulation with the one dimensional dynamic model are done with and without
knowledge of the system input vector Uk. If the system input vector is known the resulting
variance on the posion error is smaller than when the system input vector is unknown.
Explanation for this is when the system input vector is known, we can make a better
prediction of the system state vector and so the gain of the Kalman filter can be smaller. If
the system vector Uk is unkown, the influence of his error has to be taken into account into
the system noise variance ( Q ). The system noise variance Q in the fusion algorithm has to
be increased so that the Kalman gain won't become too small, and so the fusion algorithm is
able to follow fast changes of the system caused by the input vector Uk.

Because all fusion algorithms show us the same result, fusion with the central fusion
algorithm is prefered over the other fusion algorithms because the central fusion algorithm
uses less calculation time than the other fusion algorithms. We also looked what happens if
we add sensor measurements, of the same quantity, before filtering by the central fusion
algorithm. Found is that if the variances of the sensor noises are all equal the resulting
variance of the position error is the same, compared to central fusion. So in this case we
could save us a lot of time by just adding the sensor measurements before filtering. In the
case the sensor variances are not the same the variance of the position error with central
fusion is smaller, compared to the case when we first add the sensor measurements before
filtering.

The simulations showed that the fusion algorithms are usefull when we want to fuse sensor
measurement of different quantities, for example in our simulations the quantities position and
speed. Also adding sensor measurements of the same quantity will decrease the variances of
the state estimate. This effect shows an inverse square effect, so the adding of extra sensors
of the same quantity has not a endless positive effect, because it also uses extra calculation
time.

Recommendations:
-The fusion algorithms can to be tested with models of larger order. In the case of a larger
model one could also pay attention to how a set of sensors should be selected.

-In this report a proposition is done to solve the sensor fusion problen with a Roo filter in a
equivalent way as the central filter. The Roo filter has to be completed, and than the results
can be compared with the fusion algorithms described in this report. Expected advantage of
the Roo filter is that the Roo filter could be able to take into account a coloured spectrum of
the sensor noise, in contrast to the Kalman filter that assumes white noise with zero mean and
known variance.
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Calculation of the proportion V as a function of system order n in section 3.1

for N=1:5
for n=1:10

A =(2*nI\3+ 2*nI\2+n+ 2*N*n);
B=(2*NI\2*n+ 2*N*n1\2+ 1411O*nI\3);
C=(3 *N*nI\2+ 2*NI\2*n+ 7110*NI\3+nI\3);
V(N,n)=(A+C)I(A+B);

end
end
hold
plot(V(1,:))
plot(V(2,:))
plot(V(3,:))
plot(V(4,:))
plot(V(5,:))
plot([O:1OJ.ones(11.1), '--?
text(0.2, V(1,1), 'N=1?
text(0.2, V(2,J), 'N=2?
text(0.2, V(3, 1). 'N=3?
text(0.2, V(4,1), 'N=4?
text(0.2, V(5.1). 'N=5?
axis([O 100.8 2.2j)
XLABEL('order n?
YLABEL('proportion V?
% TITLE('Calculation time proportion method 1 1 me'thod 2?
print -dhpgl kost
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Production of measurement data in section 8.1 of a vehicle moving in one direction

% Produces measurement data according to chapter 8.i

function[measure,snoise i ,snoise2,snoise3,snoise4.A.B. C,Q. uJ = makedat(samples.Q.Ri ,R2,R3.R4)

% Definitions
time=iO;
T=time/samples;

% Reset the seed to its startup value
randn(seed'.O)

A=[i T
o i];

% Bi presents the process noise
Bi=[0.5*F'2; T];

% B2 presel/ts the cOl/trol iI/put
B2=[0.5*TI\2 ; T];

B=[Bi B2J;

C=[i 0; 0 i];

D=[O 0 ;0 OJ;

X=zeros(2,J);

w =sqrt(Q) *randn(samples, i);

% define the input vector u
u=zeros(samples.i);
u(l :samples*0. 2) =i 0 *0Iles(wmples*0.2.i);
u(samples*0.4+ i :samples*0. 6) = (-20) *ones(samples*0. 2, i);
u(samples*0.8+ i :samples) = iO *0Iles(mmples*0.2. i);

U=[w u];

XO=zeros(2..i);
t=[i :samples];

slloisei =sqrt(Ri) *randn(samples,J);
snoise2=sqrt(R2) *ral/dn(samples, i);
snoise3 =sqrt(R3) *randn(samples.i);
snoise4=sqrt(R4) *ral/dn(samples,J);

subplot(2.i.i)
[measure,X]=DLSIM(A,B.C.D.U,XO);
plot(t*time/samples.measure(:. i))

xlabel('t(sec) J
ylabel('position (m) J
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subplot(2,l,2)
plot(t*time/samples,measure (:,2))

xlabel('t(sec) ')
ylabel('speed (m/s) ')
V=axis; V(3)=-40; axis(V);

print -dhpgl g:\verslaglchap81
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Appendix C: central.m and centr82.m

Matlab function containing the central fusion algorithm as described in this report
central.m:
% Central fusion. chapter 3 for N sensors

function [Xglob,Pglob,Xpred.Ppredj=centraI(A.B.H. Q. u,R.2.Xin i t.Pinit)

RINV=inv(R);

% calculations according to equations 3.6 alld 3.7
Xpred=A *Xinit+B(:.2) *u;
Ppred=A *Pinit*A'+B(:.I) *Q *B(:, I) ';

% calculation according to equation 3.5
Pglob=inv(inv(Ppred)+H'*RINV*H);

% calculation according to equation 3.4
Xglob = Xpred+ Pglob *H '*RIN F* (Z-H *Xpred);

Matlab file using function central.m in the 2 position sensor case.
centr82.m:
samples=500;
Q=O.I;
RI=1;
R2=1;
R3=1;
R4=1;
[measure,n 1.n2,n3.n4.A.B.C,Q,uj = makedat(samples.Q.R1.R2.R3.R4);
21 =measure(:,1)+n1;
22=measure(:.1)+n2;

2=[21 22]';
H=[l 0; 1 OJ;
R=diag([R1 R2j);

Xinit=ze ros(size (A,1).1);
Pinit=diag([Q Qj);
P(1)=Q;
X(1)=O;

for i=2:samples
[Xglob.Pglob,Xpred.Ppredj = central(A.B.H.Q.u(i-1).R,2(:.i),Xinit,Pi1lit);
Xi1lit=Xglob;
Pi1lit=Pglob;
X(i)=Xglob(1);
P(I} =Pglob(1. 1);

end

1loise =X'-measure(:, 1);
%mea1l(1loise (1 OO:samples))
%var(1loise(100:samples))

subplot(2,1 ,1)
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plot(!1:500j*0.02,noise)
Title(['Ri = ',num2str(Rl), ' and R2= ',num2str(R2)J)
xlabel('t(sec) J
ylabel('noise (m) J
text(1,O.I,['mean noise: ',num 2str(mean(noise(I OO:samples)))J)
text(6,0.I,['var noise: ',num 2str(var(noise(1 OO:samples)))J)

subplot(2,I.2)
plot(!1:500j*0.02,P)
xlabel('t(sec) J
ylabel('P(1,I))

%print -dhpgl g:\verslaglchap822
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Appendix D: hier.m and hier82.m

Matlab function containing the hierarchical fusion algoritm as described in this report
hier.m
% Hierarchical fusion, chapter 4 for N sensors

function[Xg10b.Pglob}=hier(A, B, Q.u.xinit,Pinit, P10c.Plocpred.xloc.xlocpred)

n=size (ploc, 2);
N=size(ploc, I)/size(ploc, 2);

% calculations according to equations 3.6 and 3.7
Xpred=A ·Xinit+B(:, 2) ·11;
Ppred=A ·Pinit·A '+B(:,I) ·Q·B(:, I) ';

% calculation accordillg to equation 4.2
Pglob =inv(ppred);
for i=I:N

Pglob =Pglob+ (inv (Ploc((i-I) ·n+ 1:i·n, .j) - inv(plocpred((i-I) .//+ 1:i·n,.j));
end
Pglob=inv(pglob);

% calculation according to equation 4.3
Xglob =Xpred;
for i=I:N

Xglob=Xglob+Pglob • (inv(ploc ((i-I) ·n+ 1:i·n,:)) • (Xloc((i-I) .//+ 1:i·n,.j-Xpred));
Xglob=Xglob+Pglob ·(inv(plocpred((i-I) ·n+ 1:i·//,)) • (Xpred-Xlocpred((i-I) ·n+ 1:i·n.)));

end

Matlab file using function hier.m in the 2 position sensor case.
hier82.m
samples=500;
Q=O.I;
RI=I;
R2=1;
R3=1;
R4=1;
[measure.nl.n2,n3.n4.A.B,C,Q,II} = makedat(samples.Q,RI,R2,R3,R4);
21 =measure(:,I)+nl;
22=measure(:, 1)+ n2;

XI init=zeros(size(A, I), I);
P linit=diag([Q Q});
X2init=zeros(size(A.I).I);
P2init=diag([Q Q});
Xinit=zeros(size(A.I).I) ;
Pinit=diag([Q Q});
X(l)=O;

for i=2:samples
%local filter 1
[XI,Pl.x1pred,PIpred}=central(A,B.[1 0},Q,II(i-I),RI,21 (i).xl init,Plinit);
XI init=XI;
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P 1init=P1;
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%10cal filter 2
[X2,P2,X2pred,P2predJ=central(A,B.[1 0J,Q,u(i-1),R2,Z2(i)'x2init,P2init);
X2init=X2;
P2init=P2;

Xloc=[X1; X2J;
Ploc=[P1; P2];
Xlocpred=[X1pred; X2predJ;
Plocpred=[P1pred; P2predJ;

%fusion of local filters with !tier.m
[Xglob,PglobJ=h ier(A,B.Q. u(i-1) ,Xinit,Pinit,P10c,Plocpred,Xloc,Xlocpred);
Xinit=Xglob;
Pinit=Pglob;
X(iJ =Xglob(1);

end

noise =X'-measure(:,1);
%mean(lloise (1 00:samples))
%var(lIoise(100:samples))

subplot(2,1,1)
plot([1:500]*0.02,noise)
Title(['R1=',num2str(R1),' and R2=',num2str(R2)J)
xlabel('t(sec) ')
ylabel('noise (m)')
text(1,O.1,['meall noise: ',lIum2str(mean(noise(100:samples)))J)
text(6,O.1,['var noise: ',lIum2str(var(noise (1 OO:samples)))J)

subplot(2,1,2)
plot([1:500]*0.02,P)
xlabel('t(rec) ')
ylabel('P(1, 1) ')
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Appendix E: hierfeed.m and hierfe82.m

Matlab function containing the hierarchical fusion algorithm with feedback as described in this
report
hierfeed.m
% Hierarchical fusion with feedback, chapter 5 for N sensors

function[Xglob ,Pglob)=hierfeed(A,B, Q, u,Xinit,Pinit,P10c,P10cpred,X10c,Xlocpred)

n=size(Ploc, 2);
N=size(Ploc,I)/size(Ploc,2);

% calculations according to equations 3.6 and 3.7
Xpred=A *Xinit+B(:,2) *u;
Ppred=A *Pinit*A '+B(:, I) *Q *B(-,I)';

% calculation according to equation 5.2
Pglob =(1-N) *inv(Ppred);
fori=I:N

Pglob =Pglob+ inv(Ploc((i-I) *1/+ 1:i*1I,:));
end
Pglob =inv(Pglob);

% calculation according to equation 5.3
Xglob=Xpred;
for i=I:N

Xglob=Xglob+ Pglob *i1lv(Ploc((i-l) *11+ 1:i*I/,:)) *(Xloc((i-I) *1/+ 1:i*1I,:)-Xpred);
e1ld

Matlab file using function hierfeed.m in the 2 position sensor case.
hierfe82.m
samples=500;
Q=O.I;
RI=I;
R2=I;
R3=I;
R4=I;
[measure,nI,n2,n3,n4,A,B,C,Q,u] = makedat(samples,Q,RI,R2,R3,R4);
ZI =measure(:,I)+nI;
Z2=measure(:, 1)+n2;

Xl in it=zeros(size(A, 1),1);
P1init=diag([Q Q));
X2init=zeros(size(A,I),I);
P2init=diag([Q Q));
Xinit=zeros(size (A, 1),1);
Pinit=diag([Q Q));
X(I) =0;

for i=2:samples
%local filter 1
[XI,P1,Xlpred,PIpred)=celltml(A,B.[1 O),Q,u(i-I),RI,ZI (i),):Iinit,P iiI/it);
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%Iocal filter 2
[X2,P 2,X2pred,P2predI=central(.4,B,[J 0I,Q,u(i-J),R2,Z2(i)'x2init,P2init);

Xloc=[XJ; X2I;
Ploc =[PJ; P2I;
Xlocpred=[XJpred; X2predI;
Plocpred=[P Jpred; P2predI;

%Jusion oj local filters with hier.m
[Xglob,PglobI=hierJeed(A,B, Q, u(i-J) ,XiIIit,Pillit,Ploc,P10cpred,Xloc,Xlocpred);

Xinit=Xglob;
Pinit=Pglob;

%Jeedback ojglobal state estimate and global covariance to the local
%estimators, according to equatiolls 5.4 and 5.5
X Jinit=Xglob;
P Jinit=Pglob;
X2init=Xglob;
P2init=Pglob;

X(i)=Xglob(J);
end

noise =X'-measure(:, J);
%mean(noise(lOO:samples))
%var(noise(J OO:samples))

subplot(2,J,l)
plot([J:500]*0.02,noise)
Title(['RJ = ',num 2str(RJ), ' and R2 =',num2str(R2)I)
xlabeI('t(sec) ?
ylabel('noise (m))
text(l ,0. J ,['mean noise: ',num2str(mean(noise(l OO:samples)))I)
text(6. O. J,['var noise: ',nllnt 2str(var(IIoise(l OO:samples))) I)

subplot(2,J,2)
plot([J :500]*0.02,P)
xlabel('t(sec) ?
ylabel('P(l,J))



October 10, 1996 Sensor Fusion 69

Appendix F: hierred.m and hierre82.m

Matlab function containing the hierarchical fusion algorithm with reduced feedback as described in
this report.
hierred.m
% hierarchical fusion with reduced feedback. chapter 5.3 for 2 sensors

function [Xglob.Pglob]=hierred(A.BH. Q, u,R2,Xini t.Pinit,Ploc,Plocpred,Xloc,Xlocpred)

n=size(ploc,2);
N=2;

% calculation equation 5.1"
Kfusion=Ploc(I :n,.~ *H (2.:) '*inv(H(2,) *Ploc(I :n.:) *H (2,.~ '+R2);

% calculation equation 5.13
Pglob=(eye(n)-Kfusion *H(2.)) *Ploc(l :n.);

% calculation equation 5.12
Xglob=Pglob *(inv(ploc(l:n,)) *Xloc(I :n,) +inv(ploc(n+ 1:2 *n,:)) *Xloc(n+ 1:2 *n,)-(inv(ploc(n+ 1:2 *n,:))-H(2.:) '*inv(R2) *H(2
,)) *Xlocpred(n+ 1:2*n,:));

Matlab file using function hierred.m in the 2 position sensor case.
hierre82.m
samples=500;
Q=O.I;
RI=I;
R2=I;
R3=I;
R4=I;
[measure.nI.n2.n3.n4,A.B,C,Q.u] = makedat(samples.Q.RI.R2.R3,R4);
ZI =measure(:,I) +nI;
Z2=measure(:,J) +n2;

XI init=zeros(size (A. 1), 1);
PI init=diag([Q Q]);
X2init=zeros(size(A, 1).1);
P2init=diag({Q Q]);
Xinit=zeros(size(.4, 1). 1);
Pinit=diag({Q Q]);
X(1)=O;

for i=2:samples
%local filter 1
{XI.P1,XIpred,PIpred]=central(A,B.{1 0}.Q,u(i-I),RI.ZI (i),Xlinit,Plin it);

%local filter 2
{X2,P2,X2pred.P2pred]=central(A.B.{1 0].Q. u(i-I).R2,Z2(i) ,X2init.P2init);
X2init=X2;
P2init=P2;

Xloc={XI; X2];
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Ploc=[P1; P2];
Xlocpred=[X1pred; X2pred];
Plocpred=[P1pred; P2pred];

Sensor Fusion 10 October 1996

%fusion of local filters with hierred.m
[Xglob,Pglob]=hierred(A,B.[ I 0 ;1 0],Q,u(i-1),R2,Xinit,Pinit,Ploc,Plocpred,Xloc,Xlocpred);

Xinit=Xglob;
Pinit=Pglob;

%feedback ofglobal state estimate and global covariance to the local
%estimators, according to equations 5.4 and 5.5
X1init=Xglob;
P linit=Pglob;

X(i) =Xglob(l);
end

noise =X'-measure(:, 1);
%mean(noise(lOO:samples))
%var(noise(lOO:samples))

subplot(2,l,1)
plot([l :500]*0.02,noise)
Title (['R1 = ',num2str(Rl), , alld R2= ',lIIlm2str(R2J])
xlabel(t(sec) )
ylabel(noise (m))
text(l,O.l,['mean noise: ',nllm 2str(mean(noise(l OO:samples)))J)
text(6,0.l,['var noise: ',nllm 2str(var(noise(l OO:samples)))])

subplot(2, 1,2)
plot([1:500]*0.02,P)
xlabel(t(sec) )
ylabel('P(l, l) ')
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