
 Eindhoven University of Technology

MASTER

LOGiT, development of a video analysis tool

Tjin-Tham-Sjin, A.M.

Award date:
1994

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9caef110-7bd5-48a8-857b-86582f0e5826

Institute for Perception Research
PO Box 513, 5600 MB Eindhoven

Rapport no. 1018

LOGIT, development of
a video analysis tool

A.M. Tjin-Tham-Sjin

21.11.1994

LOGiT, development of a video analysis tool

Master's thesis by A.M. Tjin-Tham-Sjin

TEXTCATEGORY

Logging Setup Name: 1'Hard iestUl'e
r--...;....---...;.......;....~

Description' }Any siinificant novenent
~ I th the hand

Experiment: '0 I a I0i Expel'i "i?nt

Description: 'F I nd out any cOl'l'e I at IonS
bet~een iestUl'e, tal k and eno­
t I 01',

END

LOGiT - 10git/Dia10g Experiment/Subject3/S3mine
Edit Categories View Video Tools Help

'--- 1

51 -- Hand i Open log fi 1e
-----------..,_153-- Face i r:::r-----..u....---....&..

Rootcat [,] 55 -- TI'uN< Filler
GestUl'e [,]

Hand iestUl'e fF2, F2
Face iestUl'e F3, F3
TI"U1k iestUl'e [F4,F

folk [,]
Talk loudly [F6,F6J
Talk softly [F7,F7

Eoot Ion [F8, F8]
Aniel' [F9, F9]

Report on graduation project
performed from November 1993 to October 1994
as appointed by Prof. Dr.lr. F.L. van Nes (IPO)
and Prof. Dr.lr. ~I.E.W. Beneken (TUE-EME).
Supervised by Ir. J.H.M. de Vet (IPO).

INSTITUTION OF PERCEPTION RESEARCH and
SECTION OF MEDICAL ELECTRICAL ENGINEERING
FACULTY OF ELECTRICAL ENGINEERING
EINDHOVEN UNIVERSITY OF TECHNOLOGY

Summary

Within the research field of information ergonomics video-equipment is often used to record
the behaviour of subjects, in order to make a behavioral analysis later. For this purpose it is
important to make adequate textual representations of the video tape content, the log files. A
small literature research showed that no commercially available logging tool fitted the video
laboratory at the Institute for Perception Research (IPO). A special logging tool has been
developed.

By means of interviews with the potential users the user requirements were established. It
turned out that different approaches of logging, user definitions of categories and (option­
ally) the control of the VCR had to be supported. From the user requirements a concept
model of the tool was built and evaluated with the potential users. After the concept had
been adapted to the users' wishes, an object-oriented model of the logging tool could be fin­
ished. This object-oriented model was the starting point for the implementation of LOCiT
with XDesigner in C++ and Xmotif.

The tool developed retrieves the time code from a VCR and lets the experimenter type in
text and/or define behavioral categories. The log-file format is prescribed as a standard text
file, so that the file can be analyzed in more detail with other applications.

Evaluation of the tool proved that it could be improved on some user-interface details, of
which some have already been adapted. On the whole the tool turned out to be living up to
the expectations of the users. Three of the four logging approaches are currently being sup­
ported. Although the video control and the timeline features of LOCiT are not finished yet,
LOCiT has now been installed in the IPO video laboratory and is ready for video analysis.

Samenvatting

Binnen het onderzoeksveld van informatie-ergonomie wordt vaak video-apparatuur
gebruikt om het gedrag van proefpersonen op te nemen, zodat er later een gedragsanal­
yse gemaakt kan worden. Voor dit doel is het belangrijk dat er geschikte tekstuele repre­
sentaties van de inhoud van de videoband worden gemaakt, de logging-files. Een klein
literatuuronderzoek wees uit dat geen enkel commercieel verkrijgbare logging-tool
geschikt was voor het videolaboratorium op het Instituut voor Perceptie Onderzoek
(IPO). Daarom is een speciale logging-tool ontwikkeld.

Door middel van interviews met de potentiele gebruikers werden de gebruikerseisen
vastgesteld. Het bleek dat verschillende logging-benaderingen, gebruikersdefinitie van
categorieen en (eventueel) de besturing van de videorecorder moesten worden onderste­
undo Vanuit de gebruikerseisen werd een conceptmodel van de tool gemaakt en geeval­
ueerd met de potentiele gebruikers. Nadat het concept werd aangepast aan de wensen
van de gebruikers kon het objectgeorienteerde model van de logging-tool worden vol­
tooid. Dit objectgeorienteerde model was het uitgangspunt voor de implementatie van
LOCiT met XDesigner in c++ en Xmotif.

De tool leest de tijdcode uit een videorecorder en de experimenteerder hieraan tekst
laten toevoegen en/of gedragscategorieen laten definieren. Het log-fileformaat is voorge­
schreven als een standaard tekst-file, zodat de file gedetailleerder geanalyseerd kan
worden met andere applicaties.

Evaluatie van de tool toonde dat het op sommige user-interface-details kon worden ver­
beterd; sommige daarvan zijn al aangepast. Over het geheel bleek de tool de verwachtin­
gen van de gebruikers na te leven. Drie van de vier logging-benaderingen worden op dit
moment ondersteund. Hoewel de videobesturings- en de tijdslijnfuncties van LOCiT
nog niet voltooid zijn, is LOCiT nu ge'installeerd in het videolaboratorium van het IPO
en klaar voor video-analyse.

Table of contents

1 Introduction J

2 The Logging Tool Project. 3
2.1 Introduction to logging 3

2.2 Existing CAUSE tools 6

2.3 General concept 7

3 User requirements 9
3.1 Task analysis 9

3.2 Execution of the task analysis 9

3.3 Tool requirements 10
3.3.1 Approaches of logging 11
3.3.2 Set-up of categories 12
3.3.3 Videocontrol. 13
3.3.4 Analysis support 13
3.3.5 Conceptual design 14

4 The object-oriented model 21
4.1 Object-oriented design and programming 21
4.2 Objects in the design of the Logging Tool.. 23
4.3 State transition diagrams 25
4.4 The object methods 28

5 Implementation 31
5.1 Graphicallayout. 31
5.2 Functionality 32

5.2.1 Callbacks 32
5.2.2 The EventsField 34
5.2.3 The CategoryTree 35
5.2.4 File management 38

6 Evaluation 39

6.1 Evaluation of the tool.. 39

6.2 Evaluation of the programming material .40

6.3 Future prospects 41

7 Conclusion 43

8 Bibliography 45

8.1 References 45
8.2 Programming Literature .46

Appendices:
A. Object descriptions .47

B. LOGiT manual 53

C. Changing functionality in the Logging Tool 55

D. Experiences with XDesigner 3.0 and C++ 57

E. Video Control 59

CHAPTER

1 Introduction

In these days of fast improving technology mankind is increasingly making use of
electronic devices. Many of those devices are complicated in use and because even
the most gifted technical designer can overlook features of the user interface, the
importance of user interface evaluation and research in man-machine communica­
tions is growing.

The main research field of the Infonnation Ergonomics research group (lnfoErgo
group) at The Institution of Perception Research (lPO) in Eindhoven, is the field of
man-machine communications. In their research video equipment is often used to
record the behaviour of subjects, in order to make a behavioral analysis later. In
this way for example bottle-necks in the user interface of a device may be found.

One of the most important kinds of data which are attained during the video expe­
riments is temporal data. With the video recordings time instances and time inter­
vals of user actions are often measured to make conclusions on the subject's
behaviour. At each time instance or time interval the experimenter can add some
interpretation or description of what happened then. This process is called logging.
Thus during the logging, the video data is transformed into readable text data.

The measuring of time instances and time intervals can be done in several ways.
One can simply take a stopwatch and write down the relative time instances during
display of a video recording. One can also record a time code on the video tapes
and copy it into the data file manually. In this case we see a clear cross reference.
Every time code in the data file is referring to a specific and exact point on the
video tape and every time code on the video tape can be placed in the context of
the data file. The third way of measuring is letting the time code on the video tape
be retrieved automatically when an experimenter thinks it is necessary.

To support this last way of logging, a special video analysis tool is required. The
tool has to be able to read a time code from a video player, display it and offer the
user of the tool a possibility to add some comment to each time code. Although a
lot of logging is being done in the InfoErgo group, a video analysis tool is not yet
available. This report describes the development of a video analysis tool for the
equipment that is being used currently at the IPO, I named the project The Logging
Tool Project.

CHAPTER

2 The Logging Tool Project

2.1 Introduction to logging

Let me describe the process of logging and the process of behavioral analysis with
video recordings. As I describe the process of logging, I will introduce some log­
ging specific definitions which are marked in italics.

Observation
Room

Test Room I
Figure 1. Hypothetical usability laboratory

A floor plan of a typical experiment setting is pictured in figure 1. In the test room
one or more subjects are placed with some tasks to perform. During the tasks all
subject actions are video taped with video cameras and in some usability labs a
one-way mirror is placed between the observation room and the test room, so that
the experimenters can look into the test room, but the subject cannot see the obser­
vation room. In the observation room the experimenters are controlling the video
recording equipment and annotating what happens in the test room, possibly using
workstations.

Because the information on the video tape is hard to handle for experimenters, all
this information must be converted into readable (textual) data. This is done by
marking every event on the video tape or simply writing down the time an event
takes place. Optionally interpretation or descriptions can be related to every event.
This process is called logging.

3

4

Tape contents
An event is merely an occurrence that happens during the experiment. Therefore
an event is sufficiently defined by a time instance or a time interval on the video
tape. Sometimes several events have such similarities that they can be clustered
into categories. Thus a category is a name for a collection of all possible events
that suffice to certain constraints. These constraints are defined by the experi­
menter. For example one can imagine that during one experiment two subjects are
asked to perform tasks with a new device. During those tasks the subjects may talk
to one another. Two obvious categories would be TALK I , for every event that sub­
ject I is speaking, and TALK2, for every event that subject 2 is speaking.

Several categories can imply a bigger category and thus one category can exist of
smaller subcategories. For example the two example categories TALK 1 and
TALK2 could be subcategories of a category TALK, which indicates speech by
any of the subjects. An example of a possible category tree can be found in
figure 2. In this figure the root category is called "Event".

•
•
•

Figure 2. Possible category tree

Process
During one experiment several video recordings are made in which one or a few
experimental variables are varied. Experimental variables are for example the sub­
jects and the setting. Each separate video recording is called a session.

Each session can be logged during the actual time a session is recorded, which is
called on-line or real-time logging, or after the session already has been recorded
on video tape, which is called off-line logging. The main difference between on­
line and off-line logging is the possibility to stop and rewind the video tape during
off-line logging.

One logging phase is a whole run through the video recording of one session, dur­
ing which new logging information is added or updated. So one experimenter can
log a session in as many phases as he would like to. An on-line logging phase is
always the first phase in a logging session (if it is applied at all, of course).

It's possible for different users to log one session. All logging information of one
session of one user is stored into one log file. So several log files can describe one
session. One experiment consists of several sessions and on each session several

users make their log files (see figure 3). Most of the time one session will be
recorded on (a part of) one video tape, but because of efficiency in use of the tapes
one session might be recorded on (parts of) two tapes.

EXPERIMENT

Figure 3. Experiment construction

Tool to support process
Each session might be edited into a summarizing compilation. Therefore a script
must be written. A script consists of several clips (= time intervals in the video
tape), which can be played consecutively. A clip can be an event if that event is a
time interval, or a time interval around one event if that event is a time instance.

Nowadays several computer based tools exist to support the process of logging in
behavioral analysis with video recordings. Such tools are generally called Com­
puter-Aided USability Engineering tools, or CAUSE tools. Some of these CAUSE
tools will be described in the following section. The reason for usability engineers
to use computer-based tools are depicted in [Hoiem, 94]:

Computer-based tools are more convenient and less time-consuming than
paper-based approaches for viewing video segments, as well as for recording
and organizing annotations to the segments (Kennedy 1989, Roschelle and
Goldman 1991)
Computer-based tools enable data analyses that would be impossible or at least
very time-consuming to do manually (Hammontree et al. 1992, Kennedy 1989,
Kinoe 1989, Roschelle and Goldman 1991, Sanderson 1990)

5

2.2 Existing CAUSE tools

A small literature research shows that logging tools already exist, but only few are
commercially available. Many professional usability engineers try to find better
and more efficient ways of collecting and analyzing their data. In a current survey
of 33 Usability Professionals Association members, over 70% currently use some
form of software data collection tool. Of these 80% have created their own tool
while 20% have purchased one [Weiler, 93]. In this chapter a short summary of
some of the tools will be given. This will give an image of what logging tools can
offer at the moment.

The simplest logging tool one could use is a text editor or word processor. Simple
"keystroke" logging in Table 1 does not mean that logging the subjects' keystrokes
is possible, it means that the experimenter can simply use one keystroke to log an
event, rather than having to position the mouse pointer and click the mouse button.

The term Category logging in Table I, implies offering the user an option to regis­
ter user defined category code with one simple action like a keystroke or a mouse
click.

Reference

[Rochelle.
91] &
CVideo
brochure

[VI 92]VCRdPC

Table 1. Comparison of CA USE tools

Simple Category Text
Computer "keystroke" logging comment Video File export
Systems logging possible possible Control for convenience

all no no yes none yes

Mac yes. start and yes yes* Sony VCR's, no
end times. Pioneer

Laserdisc.

Text editor

Tool name

amera yes, start an yes no any yes ugt. I

end times

DRUM Mac no, with but- yes yes Sony VCR's yes [Macleod.
tons 93] & i

DRUM
brochure

Observer PC no, with but- yes yes Panasonic yes [Hoiem.
& tons 7300 AG 94] I

Reviewer 7350 AG I
I

OCS-tools PC ? yes no Panasonic yes OCS-tools
I

incl 7500 brochure
AG '93

VANNA Macintosh no, with but- yes yes any VCR yes [Harrison.
tons 92] !

IdealIPO- SUN yes. start and yes yes* Panasonic yes --
Itool end times 7500 AG

CVideo &
Video-

I Noter

I C

As can be seen in Table 1, what we wanted of the new tool was not available at that
moment. I must add that at the end of the development process of our new tool.
another tool drew our attention that coincidentally (?) looked very similar to the

6

tool we had built. That tool is called Timelines [Owen, 94], it has all the features
that the ideal IPO tool in Table 1 has and even turned out to work in a similar way,
except that it runs on an Apple® Macintosh instead of a SUN®workstation.

The * in the "Text comment possible"-column means that links can be created to
non-textual information. This is of course also the case in the ideal situation, but
not taken into account in this report and left for further development of the tool.

2.3 General concept

So as we couldn't find a suitable existing tool, a new logging tool had to be deve­
loped. The main purpose of the logging tool is support of the logging phase in
behavioral analysis with video-recordings by means of linking events to descrip­
tions or interpretations of these events. The result should be a log file in a simple
data format, which is easily linked to other data processing tools.

The optional purposes are control of the VCR by the tool and support of the
detailed analysis. The latter means that the tool offers possibilities to view log data
in several formats, so that the user can draw conclusions on the subject's behaviour
more easily.

SUN-station
c

VCR
•

I O()OO 00 I

Video monitor

Figure 4. Configuration ofthe VCR-system

The tool must fit in the configuration of the VCR-system and SUN computer net­
work at the IPO. This means that the tool is developed for:

1 or 2 Panasonic AG-7500 VCRs with TV-monitor
1 Fostex 4010 Time Code Reader & Generator
1 SUN-station, in an X-windows environment.

In figure 4 a camera video-signal (Vin) is recorded on tape in the VCR. The VCR
sends video signal on tape (Vout) to the television monitor. The VCR-time code
(TCJ) is read and reformatted by the time-code reader which sends the reformatted
version (TC2) to the computer. Optionally the VCR can be controlled by the com­
puter with a control signal (C) .

7

CHAPTER

3 User requirements

Some requirements had already been expressed a few years ago, when a group of
experimenters on the IPO established some demands for a logging tool. Because
this tool had to be designed from the drawing board it could as well satisfy the spe­
cific needs of the IPO InfoErgo group. Therefore a user analysis and task analysis
was performed first. After that, as the tasks for the tool were established, a model
for the user interface of the tool could be made.

3.1 Task analysis

A few questions needed to be answered before the technical design of the tool
could start. Jakob Nielsen gives an overview of the usability engineering lifecycle,
which can be seen as a guideline for developing a usable tool [Nielsen, 93]. The
first step in the overview is get to know the user in order to acquire a feel for how
the product will be used. Since the exact definition of the logging tool was not
known at the start of this project, Nielsen's first step was followed. Inspired by
Nielsen, a few guidelines for finding out the tasks of the tool were made:

Know the user:

a. Individual user characteristics. Who are the users?
b. The user's current and desired tasks. What do they need? How do the future

users want to be supported in their tasks? Do different users want different pos­
sibilities for the tool?

c. Functional analysis. How should the tool help them? What are the exact tasks
that the logging tool has to be able to support?

d. Conceptual design.
e. Evaluation of the conceptual design. How will future users make use of several

features?

After these points the design is ready for implementation. After implementation
even more evaluation can be done to see if the tool is exactly what the users want.

3.2 Execution of the task analysis

Establishing the group of potential end-users wasn't very hard, since the tool
would be built for a specific group of users: the InfoErgo group members at the
IPO. Though the tool will eventually be constructed to be implemented easily on
different platforms, for the task analysis and user interface design interviewing
several InfoErgo group members would suffice.

9

Because the group of users was known, some presuppositions could be made. All
users are familiar in the field of behavioral experiments, are familiar with window
based platforms on computers, have at least one university degree and have no
eye-sight problems. Most of the future users will be using the tool in the observa­
tion room or in their own rooms where other group members could be present.
Therefore the tool must not hinder other persons in the room.

11 experimenters were asked:

Question: What is your field of work? (to understand for what purposes the
tool would be used)
Answers: From the answers one could conclude that logging is used for funda­
mental behavioral research - such as dialogue research -, transcriptions of
speech and man-machine interaction evaluation and research.
Question: How do you perform logging without a logging tool?
Answers: All experimenters simply copy the time code of the VCR by hand.
Some of them simply use pen and paper for this purpose.
Question: Do you use categories during logging? If so, how?
Answers: Some experimenters don't use categories at all, for example the tran­
scribers. Some experimenters don't use categories in their first logging phase
but use the first phase to establish the categories and use the categories later.
Some experimenters make a hypothesis before starting the experiment. From
the hypothesis they can derive expected categories, so that they even use cate­
gories during the first phase of logging.
Question: Do you structure your categories (in case they used categories)?
Answers: Most of the category-using experimenters do not. Some used the
category tree as described in section 2.1.
Question: How do you think you would use the logging tool and what are your
expectations?
Answers: Most of the potential users already had an idea of how the time code
should be retrieved and that category or comment would automatically be
filled out. If they didn't have an idea, a possible plan of logging was presented
and the future users could give positive or negative feedback on that.

From the results of the interviews a paper mock-up of the tool was designed. This
paper mock-up was shown to all interviewees, so that they could comment if their
wishes were presented correctly and so that they could get a chance to come up
with new ideas after their initial ideas were shown in a more concrete form. As the
tool would be designed for an X-windowslUNIX environment, the paper mock-up
contained all the windows of the user interface of the tool with all their foreseeable
features (mostly menu items). Finally a presentation of the final paper mock-up to
the whole group of future users was given to evoke last user wishes and needs. The
final windows that were presented are given in the figures of section 3.3.

3.3 Tool requirements

The future users' wishes and needs and the functional general concept (Chapter 2)
lead to the draw up of the tool requirements, which will be described in this sec-

10

tion. To understand all tool features one should have a look at figure 6, which
shows the main

window design of the tool, but before the window will be elucidated, a few impor­
tant user requirements are discussed.

3.3.1 Approaches of logging

Among the future users preferences for 4 different logging approaches could be
distinguished. These approaches all imply different scenarios of working with the
tool and therefore have to be supported by the tool:

I. Text-oriented
Goal:
This approach is used to create a quick table of contents of the video tape. The
focus is on unstructured textual comments.
Operation:
No time code is retrieved until the first key on the keyboard is pressed. Then
the text which is typed in is immediately connected to the time code of the first
keystroke and both time code and text are shown on the screen. The text-entry
is closed by pressing the [enter]-key.

2. Fast category-oriented
Goal:
This approach is used for a detailed (partial) (on-line) analysis with pre-defined
categories, but without the need of textual comment. In this case events of dif­
ferent categories succeed one another very fast, so that no time is left for addi­
tional comments.
Operation:
No time code is retrieved until a predefined key is pressed. Then the category
belonging to the predefined key is immediately connected to the time code;
both are shown on the screen. Text-inputs can be entered and exited both by
striking the [enter]-key. Text is also shown on the screen. If the logged event is
time-interval dependent then pressing the end-of-interval key retrieves the time
code which will be shown on the screen.

3. Slow category-oriented
Goal:
This approach is used for a detailed (partial) (off-line) analysis with predefined
categories and additional textual annotations. In this case events of different
categories succeed each other rather slowly, so that there's enough time to log
textual comments between two succeeding events.
Operation:
No time code is retrieved until a predefined key is pressed. Then time code and
category are both shown on the screen. The cursor is immediately put in a text­
field where text can be edited. Closure of this text-field is done by striking the
[enter]-key. If the logged event is time-interval dependent then pressing the

11

end-of-interval key retrieves the time code and this will be shown on the
screen.

4. Function keys oriented
Goal:
This approach mixes approach 2 and 3, where categories can quickly be logged
by using the function keys as the predefined keys, and additional comments
can be added by using the rest of the keyboard. The main advantage is that,
while text is being added, categories can still be logged without leaving the
text-entry mode.
Operation:
Text-fields can be typed in by the alphanumeric keyboard. The category keys
are all defined under function keys. Pressing a predeifined category key
retrieves the time code, beginning and end of events are shown as well as the
category_ The advantage of this approach is that it doesn't need two different
modes for text-entry or category-key capturing.

As a default the text-oriented approach will be supported, because this is the only
approach with which the user can start logging without predefining keys.

3.3.2 Set-up of categories

Events can be of different kinds of categories. A possibility is offered to define
logging categories in the tool. Because users must be able to start with the tool
right away, the defaults are set in such a way that a category set-up is not required.

The properties of the categories are:

Name, this is the name of the category that will be shown in the tool, whenever
this category is referred to.
Description, this is the specification of the category by the user.

• Keys, one key can be assigned to the start of an event of this category, one key
can (in addition) be assigned to the end of an event of this category. These keys
can be the same key if the user wishes to toggle between start and end of an
interval event. Setting the end-key implies a time-interval event. The assigned
keys might not only be keys on the keyboard, but might be a button on an aux­
iliary input device. Key-assignment is not obligatory for the user; omitting
key-assignment simply means that this category is not selected for the current
logging phase.
Parent category. states whether a category has a parent category and the name
of that parent category. Recursively a parent category must also be a defined
category.

As a default there will be one predefined "root" category, called "Event", with as
default property settings (as mostly used for on-line logging):

• Name = Event
• Description = [empty]

12

Startkey = Fl
Endkey = [none]
Parent category = [none]

These settings must be easily alterable.

3.3.3 Video control

It's preferable to control the video recorder from within the tool. 'Ordinary' con­
trol functions, such as play, stop, fast forward and fast backward must be available.
Also logging-specific functions must be available:

Wind or rewind to time code t1.
Start playback at time code tl.
Play segment [t1. t2] from the video tape then stop.
Play or wind to one selected event from the log file.
Repeat selected segment N times.
Make a script, i.e. a file with clips from the video tape. A clip is a piece of film
on the video tape that is defined by its starting time code and its ending time
code on the tape. The time-instances in this file can e.g. be obtained by playing
the tape and pressing a button on the right time-instance.
Playa script on the video player.
Soundplay. This function rewinds the tape just for several seconds and then
plays the tape, so that the sound on the tape will start exactly where it was cut
off when the video player had stopped.

3.3.4 Analysis support

One of the most important features of the tool is that the log file is exportable in a
standard text format, from which the events' information can easily be derived,
such that detailed analysis (that is statistical analysis) can be done in external
applications. The archiving of the video tapes and log files is also supported in the
log-file format.

A time-line presentation of logged categories has to be obtainable from the log file.
In this way certain patterns of event-occurrence can be visualized. An example of a

13

time line presentation is shown in figure 5. Every time-interval is drawn as a rect­
angle, every time instance is drawn as a thick short line.

cat1 I,

cat2

cat3 I I I
cat4
catS L(

~time~

Figure 5. Example ofa time-line presentation

It has to be possible to perform some filtering and merging of the log files before
exporting the files to other applications.

3.3.5 Conceptual design

lOGiT - logit/exp/ses/noname. log
A _ File Edit Categories View Video Tools Help

B - 11 :59:10,-- LOGiTI
c - BEGIN END

11:5544.--
11:5606.-- 11:5635.--
11,56 48.--

D
E

F
G

CATEGORY
VERBAL
ERROR
DISTRACTION

TEXT
"Eureka, now I know it'"
\lr'ong tr'ack ch:lsen.'
SLbject looks outs i de of the r'00" becau;i
e of no i sy backir'OlXld'

Pr-ess l"1y key to add te~t, close with <retur-n)

/
H

S/ Q\4 cate\[Or'Y Or'i ented

/
I

Figure 6. Main window of the logging tool: the Logging Window

All functional characteristics of the main window are explained below:

A The Menubar
B The Current Time Display; this label shows the time code that the VCR is

displaying at the moment.

14

C Column names: the texts on this horizontal line give the titles of the columns
below them.

D The Begin Column; for the time codes which indicate the beginning of an
event.

E The End Column; for the time codes which indicate the end of an event.
F The Category Column; for the names of the categories of the event.
G The Text Column; for any textual comments on the event.
H The Guidance Label; this label shows all guidance texts. A guidance text is a

text which tells the user what can be done next.
I The Approach Label; this label shows the approach that the user has chosen.

D. E. F and G together will be called the EventsField.

All menu items in the menubar of the main window are described as follows:

Menu 1.

File

New Automatically starts Setup then makes new log file.

Open ... Opens file box, so that the user can enter or choose a log
file.

Save (needed/not n'eeded) Saves the current log file.

Save as .., Opens file box, so that the user can enter or choose a file-
name. Saves current file under that name.

Import ... Opens file box. Allows the current log file to be merged
with the selected log file

Setup ... Opens Setup dialog box. Allows to make changes in the
experiment setup

Use categories ... Opens file box. Allows for importation of category defini-
tion of another log file.

Exit Terminates the tool.

Menu 2.

Edit

Undo/redo

Cut

Copy

Paste

Split event

Undoes the last alteration in the log file.

Deletes the selected event or text part and copies it to the
clipboard.

Copies the selected event or text to the clipboard.

Pastes the clipboard after the selected event or cursor.

Allows one event to be split into two events of the same cat­
egory and time codes. The cursor in the text column decides
where the text of the initial event will be split.

15

Menu 2.

Edit

Connect events Allows two events to be merged into one event. The time
codes of the first event will be the resulting new time code.

Set approach ... Shows toggle menu with: Text oriented. Fast categories.
Slow categories. Function key oriented. Only one of these
approaches can be chosen at the same time (this is called the
Radio Box behavior).

Menu 3.

Categories

Show/hide tree Opens/closes window with the category tree information

Add category... Allows additions in category definitions in dialog box Edit
Category. As a default the category which is currently
selected will be the parent of the new category.

Change category Allows edits in predefined category definitions of the
selected category.

Delete category Deletes selected category from the user definition with con-
firmation from the user.

Menu 4.

View

16

Show/hide Begin-time col­
umn

Show/hide End-time column

Show/hide Category column

Show/hide Text column

Menu 5.

Video

Show/hide control panel

Speed ...

Soundplay on/off

VCR selection ...

Toggle item. Show or hide the Begin Column in the Log­
ging Window.

Toggle item. Show or hide the End Column in the Logging
Window.

Toggle item. Show or hide the Category Column in the Log­
ging Window.

Toggle item

(The toggle squares can also be functionalized by show/
hide. conform to the rest)

Opens/closes window with the video control buttons

Allows with dialog box for entering the speed of playing the
video tape.

Soundplay = rewinding the tape before playing it in such a
way that no sound on the tape is lost by the observer.

Shows toggle menu with: Player. Recorder. Only one these
approaches can be chosen at the same time.

Menu 6.

Tools

Script editor ...

Time line presentation ...

Opens Script window, with options to filter the current log
file with the script that is entered.

Opens dialog box for showing a time line presentation.

Logging Setup

.E~~~~.~ 'DialOi E~~~~t II
Description: 'Fird out .,.", correlations ~

between Ilestcre. talk ard eolO-
tion.

iii 'jSession: GubJect3 _
~======

Videotape': [1Max II2.3 I

Videotape 2: I- I
Log file: l's3_rd I

Author 11Jeroen Yi!lI' Zutpl-en I

Figure 7. The Setup Dialog Box

The italicized items in the dialog box Logging Setup of figure 7 must be filled out
if the user wants to log. All the other items are optional. This dialog box appears
when a new log file is wanted. It also appears to modify the setup of an already
existing experiment.

Edit Category Category tree
Rootcat [,]

VERBAL [Fl, Fl]
ERROR [F2, F2]

BUTTON ERROR [.]
TYPING ERROR c:J

"1$111[1 [F3. F3]

1l..-'F3 1

Start key

End key.

D
"'eaSmCerl'p' tlon ~ID=I3=TRA=CT=IoN=======iI~"'1

the sl.i:uect I s d I st~acted

I

~ 'jli3 _

~~m t
Category: LR_oo_t_C!l_t ---J1

B IApply I
1:!:l;;;;;;========~~=::Z:!] 8a) l!:l;;;;;;;=====~8b)

Figure 8. a) The Edit Category Dwlog Box, b) The Category Tree Window

The italicized items in the Edit Category Dialog Box in figure 8 must be filled out
if Apply is pressed. These items always have default values, so that defining cate-

17

gories should not be time consuming. All the items are optional. To select a cate­
gory, the category can be clicked on with the mouse within the Category Tree
Window as displayed in figure 8. Selected categories are always highlighted in the
display.

Video Control Panel

jj)O:oo:oo:oo I

PlAY REC STILL

~~[[]

ffiJ~~
PREV I REW STOP NEXT IFF

18

OS x normal speea on player, sounapray SCript

Figure 9. The Video Control Panel

The buttons on the Video Control Panel, figure 9, have the same functions as on a
normal VCR-system. On the status bar information is given about playing speed,
VCR selection and Soundplay.

When the VCR is not playing or winding (thus the time code is not running) the
time code can be entered in order to play or wind to a certain time code. Some
research had been done in order to find out how the VCR should be controlled
from the SUN-station. The 34-pin assignment table of the VCR is included in
appendix E.

Script editor - Noname.script
File Edit Commands

a I'
[Show events!1Save eventsI
o Script-P/8Y is on

Figure 10. Script Editor Window

With some kind of macro language the user can define a script with the Script Edi­
tor as shown in figure 10. One can think of if-statements, repeat loops, time con­
straints etc. that will define one unambiguous script of clips or events.

Table 2. The buttons in the Script Dialog box

Button name

Save events

Show events

Script-pIa)'

Description

Filters all time intervals implied by the script to the current
log file.

Mark all the events implied by the script in the current log
file.

Script-play means that the control panel behaves on the
script: plays and browses between all script events.

The File menu contains all standard file operations. The Edit menu contains all edit
functions that can be used for the script. It would also be possible to use the edit
menu in the main window for this purpose, but because this window should be
seen as a tool itself, the choice was made for an edit menu in this window as well.

When the script works on the control panel the Play Button will start playing all
events that are implied by the script, the Rec Button will start recording all events
that are implied by the script from the player to the recorder (the recorder will thus
be still when the player is searching for a next event). Both the FF and the Rewind
Button will wind the tape to the previous or next event.

The filebox in figure 11 was not included in the paper mock-up, for it was presup­
posed that all users were familiar with standard file boxes such as the Motif-feel
file box that was used for the tool. Because of completeness it is shown here, so all
the windows in the design of the logging tool will have been shown in this section.

Open log fi le

Filler

I1mp_mntlMmelalJlnlloglllexpl5e51" log I
Directories Files....-----,liiiiiiEllIIiiIiiI& ' Te 51 log
IMmelalJlnilogillexpl5e51 JaJa log

If log
noname log
lest log

~Iiii::==5.a> IiiiiCit»
Selecllon

Il1mp_mnllhOmelalJlnllOgllleXPlsesl

Figure 11. The File Box

19

20

A summary of all the windows in the final logging tool is given in table 3.

Table 3. All windows and dialog boxes in the logging tool

Name: Figure number: Finally implemented:

Logging Window 5 Yes

Setup Dialog Box 6 Yes

Edit Category Dialog Box 7a Yes

Category Tree Window 7b Yes

Video Control Dialog Box 8 No

Script Editor Window 9 No

File Box 10 Yes

CHAPTER

4 The object-oriented model

After the user requirements were established a design method had to be chosen in
order to come to the formal specifications of the tool. We chose for an object-ori­
ented design method. First of all the meaning of object-oriented design will be dis­
cussed. Then I will discuss the objects found for the Logging Tool Project and
eventually a more detailed discussion of the methods of the objects.

4.1 Object-oriented design and programming

The design method chosen for the Logging Tool Project is that of object-oriented
design. In an object-oriented approach (DDA), opposed to a conventional proce­
dural approach, all kinds of objects are being distinguished in the system that is to
be designed. The objects are defined in such a way that the whole system is
described by the objects and by the communication between those objects.

The very important properties of DDA are data abstraction, encapsulation and
inheritance. In [Coad, 1990] definitions of these terms are given:

Data abstraction = The principle of defining a data type in terms of the opera­
tions that apply to instances of the type, with the constraint that the values of
such objects can be modified and observed only by the user of the operations.
Encapsulation = Information hiding, a principle used when developing an
overall program structure, that each component of a program should encapsu­
late or hide a single design decision. The interface to each module is defined in
such a way as to reveal as little as possible about its workings. This DDA-cha­
racteristic is also often referred to with the more familiar but weaker term mod­
ularity, which alludes to the factoring of a large program into units that can be
modified independently [Tesler, 1986].
Inheritance =Properties or characteristics are received from an ancestor. It
simply means that a hierarchy of objects is possible, in which the children
inherit all characteristics of the parents but can also have new characteristics of
their own.

21

System

Object1

Value1
Value2
Value3
Value4

Method10
Method20
Method30
Method40
MethodSO

22

Figure 12. Data abstraction and encapsulation

All this is achieved by seeing your system as a whole and recognizing the objects
in your system. Every object is thus an encapsulation of attributes (or sometimes
called values) and exclusive methods (or sometimes called sefllices).Thus an
object is an abstraction of a part of your system, with some number of instances in
the system. By classifying the objects, you can model how objects relate to each
other. Via their methods objects can communicate with each other.

For example in figure 12 the system is described by three instances of objects,
which are called 01,02 and 03. 01 is an instance of Object 1. In the description of
Object 1, one can see how all the data concerning instances of Object 1 is encapsu­
lated. The methods of Object 1 are the only things that influence the values of
instances of Object 1. So if Method lOis usable by 02, 02 can communicate with
01. Let's assume that 02 is an instance of Object2 (which is not described in fig­
ure 11), and that Object2 is a child of Object 1. Then 02 will have the same struc­
ture of values and methods with possibly some additions. That's inheritance.

In object-oriented design objects can be related by friendship. This is depicted with
the arrows: 02 is a friend of 03. As the opposite may appear to people, friendship
does not need to be mutual for objects. One object is afriend of another if one can
use all the private information of the other.

This may all seem very abstract at the moment, but as I will describe the process of
my OOA in this chapter I'm sure it will all become clear. The greatest advantage of
OOP (object-oriented programming) is the very structured and uniform handling
of data structures. Once already made, objects are very easily used again for the
making of new objects that resemble the old objects. Rewriting pieces of code does
not affect code of other objects. Once the whole object model is made, the imple­
mentation should not be very hard to realize.

Now the decision for an OOA was made, it was almost obvious to decide to use
C++ as the programming language. C++ is a language that supports object­
oriented programming fully. Because not too much time was to be spent on deve-

loping the user interface, a high level user interface design program was used:
XDesigner 3.0.

4.2 Objects in the design of the Logging Tool

The first step in OOA is to recognize all the objects in your system. In this section
a summation of all the objects will be given (table 5). A more detailed description
of all the objects' attributes and methods as they are used in the final implementa­
tion is given in Appendix A. For clarity one example, that of the VideoSystem, is
given in table 4.

Table 4. Description of object Videosystem

Attribute: Description:

CurrentTime The time code, a time-variable attribute. This attribute can-
not be set by other objects.

Mode (Idle. Play. Record. FF. FB, SF, SB)

F: PIal () The VCR is set to playing the tape

F: FF () The VCR is set to fast forwarding the tape

F: Rewind () The VCR is set to rewinding the tape

F: Rec () The VCR is set to recording

F: SetSpeed (NewSpeed) The playing speed of the VCR is set to NewSpeed.

F: Stop () The VCR is set to idle state

F: Pause () Holds the video image on the VCR. The VCR is set to still.

F: GetCurrentTime () Retrieve the current time code and return it.

All values of the object are given first. The methods are preceded by "F:" .

Table 5. Summation of objects

[Object:

I VideoSystem

I Event

LogFile

Setup

Category

CategoryTree

Logging

VideoControl

TimeLine

Clipboard

Brief description:

Contains all data of the VCR that is to be connected to the tool.

Contains all data of one event. e.g. begin time. end time. cate­
gory and textual comments.

Actual external file(s) containing/to contain all information con­
cerning the current logging session.

Contains all experiment data, like experiment name. session
name. name of the log file and author.

All data that comes with the category. E.g. the parent category.
the category name, the category key definitions.

The data structure that keeps the organization of the categories
intact.

All logging tool settings.

All video control settings of the tool

All time line settings

Data concerning the last object that was copied or cut.

23

24

Except for all the objects described in table 5 there would of course appear a lot of
objects that are necessary for the screen layout of the user interface. Those are in
fact all the windows that are described in section 3.3. Those windows form the
interface between the user and the objects described above. Because the behaviour
of the windows would depend a lot on the design tool (Xdesigner) and the libraries
from which the windows would originate (Xmotif), none of the user-interface win­
dows were described at this point. It was assumed that the windows would show
the user correctly what the objects in the system needed.

Because the script handling objects were of lower priority and time constraints for
the Logging Tool Project had to be kept in mind, those objects were not considered
at this point.

The next step was to describe which objects were friends, as described in
section 4.1. How the objects of the Logging Tool relate to each other is shown in
figure 13.

VideoControl - Videocontrol- DialogBox

• Clipboard r
Vide;SystemV

Event - . Logging Logging - LogFile
Window

Setup - - SetupDialogBox

~CategoryT. CategoryTree . CategoryWindow - -
Figure 13. Object friendship diagram ofthe Logging Tool

In pure object-oriented programming objects are not allowed to observe or change
values of other objects, not even of friends. For this purpose special methods
should be constructed like GetValueO and SetValueO. Such methods would simply
return the wanted value or set the wanted value, which thus in fact has exactly the
same effect as direct access, except that the methods are a bit more inefficient by
charging the memory stack some more. For this reason I decided not to apply this

rule of OOP and just use direct access where simple get- and set-procedures would
else be called.

In the end it appeared not necessary to make a special separate object for an event.
The object Event was replaced by an object EventsField, which contains a string
existing of all events that currently are logged. In the model of figure 13 Event can
just be replaced by EventsField, which makes the model valid for this change.

4.3 State transition diagrams

The four logging approaches of section 3.3.1 can all be regarded as modes in the
tool. From one mode it is possible to switch to another mode with a menu manipu­
lation, and as a default the tool will start in Text Oriented mode, because that is the
only mode you can immediately use after start-up, without having to predefine
category keys.To make clear how the tool will react on user input some state tran­
sition diagrams were made. These transition diagrams give a structured representa­
tion of how certain parts of the tool will behave.

What actually happens in the tool during logging depends on the state of Logging
and can best be described by separate state transition diagrams. In these diagrams
<key> means a user action via the keyboard, \ is used to indicate exceptions. So
<key>\<enter> means all user keyboard actions except pressing the enter key. We
assume that one enters these diagrams when the approach of logging is set.

All Enter text-states can be entered by clicking the mouse in the Text Column (the
diagrams only depict keyboard actions). All other states can be entered by clicking
the mouse in all other columns but the Text Column.

<key>

<enter>

<key>\<enter>

mouse click

Figure 14. State transition diagram when LoggingApproach = Text oriented

When the logging approach is set to Text Oriented then the user enters the state
transition diagram in figure 14.

a. Wait for first key: In this state the tool is waiting for a key to be pressed by the
user. Once a key is pressed, the time code is retrieved and the pressed key is
put in the text field.

b. Enter text: In this state the tool puts every pressed key, except for <enter>. in
the text field. Once <enter> is pressed, the tool goes back to state a.

25

<end key>, <begin key>

<key>\<enter>

mouse click
<enter>

Figure 15. State transition diagram when LoggingApproach = Fast category oriented

When the logging approach is set to fast category oriented then the user enters the
state transition diagram in figure 15.

c. Wait forCat.key: In this state the tool is waiting for a category key, predefined
for the beginning of an event, to be pressed by the user. Once such a key is
pressed, the time code is retrieved and the matching category name is put into
the category field. If a category key for the end of an event is pressed then the
time code is retrieved and put into the end-time field of the first event of the
same category of which the ending time code hasn't been filled out yet.

d. Enter text: In this state, the cursor is always in the text field. Anything typed by
the user appears in the text field until <enter> is pressed, then the tool returns
to state c. This state can only be entered by mouse click in the Text Column,
not by a keyboard action.

<begin key> <key>\<enter>

mouse click

26

<enter>
Figure 16. State transition diagram when LoggingApproach = Slow category oriented

When the logging approach is set to Slow Category Oriented then the user enters
the state transition diagram in figure 16.

e. Wait for Cat. key: In this state the tool is waiting for a category key, predefined
for the beginning of an event, to be pressed by the user. Once such a key is
pressed, the time code is retrieved and the matching category name is put into
the category field. If a category key for the end of an event is pressed then the
time code is retrieved and put into the end-time field of the first event of the
same category of which the ending time code hasn't been filled out yet.

f. Enter text: In this state, the cursor is always in the text field. Anything typed by
the user appears in the text field where the cursor is, until <enter> is pressed,
then the tool returns to state e.

Figure 17. State transition diagram when LoggingApproach = Function key oriented

When the logging approach is set to Function Key Oriented then the user enters the
state transition diagram in figure 17.

g. F-ke)/text: In this state the tool is waiting for a key. This can be a function key
(F-key), predefined for the beginning of an event, being pressed by the user.
Once such a key is pressed, the time code is retrieved and the matching cate­
gory name is put into the category field. If a function key for the end of an
event is pressed then the time code is retrieved and put into the end-time field
of the first event of the same category of which the ending time code hasn't
been filled out yet. In this state, the cursor is always in a text field. Anything
typed by the user, which is not a F-key, appears in the text field until <enter> is
pressed, then the cursor appears in the next text field.

27

Figure 18. State transition diagram ofattribute ColumsPref

The attribute ColumnsPref of the object Logging contains references to the names
of the columns that are being shown on the screen. In figure 18 one can see how
the content of ColumnsPref changes as a result of user actions. The actions are:

e for the EndColumnToggle in the ViewMenu
c for the CategoryColumnToggle in the ViewMenu
t for the TextColumnToggle in the ViewMenu.

Thus the combination of the user action and the state of ColumnsPref decide what
actually happens on the screen. The Begin-time Column is always shown on the
screen.

4.4 The object methods

So now we know what objects are in the system and we know what values and
methods they accommodate. The next step towards a real program is specifying in
a more detailed way how each of the most important methods will be working.
This is not done in some special programming language. but just in some pseudo
language which makes the algorithms clear and could even still contain functions
that still had to be worked out. In this way this step is still not dependent on the
programming language that is used for the implementation of the tool.

28

I'll give an example of how the methods were described in this pseudo language.
Let's take the object VideoSystem again (table 4) for a small example. This object
has the method GetCurrentTimeO, which always gives the current time that's on
the video system. The pseudo code for the method looks like this:

char Videosystem::GetCurrentTimeO
{

if F40 lOis connected
{
F401O~ettime(String TC);
reformat time code TC for display;
}
else
{
getlocaltime (String TC);
reformat time code TC for display;
}
return TC;

29

CHAPTER

5 Implementation

So, now we have an object-oriented model of the logging tool and some descrip­
tions of the methods of the objects. The next and final step in the design is then of
course the programming code. As was mentioned before, the choice was made to
use C++ as a programming language and XDesigner as a high level user-interface
design tool. Because XDesigner uses Motif - and Xtool Intrinsics libraries, these
libraries were also used for implementation.

5.1 Graphical layout

XDesigner (in short XD) lets one design a graphical user interface with a minimum
of functionality and generates this interface in a programming language C or C++
with the use of Motif and Xtool Intrinsics libraries. One big advantage of XDe­
signer seems to be the possibility to define every separate user interface part as a
separate object. In this way the object-oriented design of the previous chapter
could still be regarded. Another advantage was that all objects could be generated
and made functional one at a time; so it is easy to produce different segments of
code at a time.

XD is in fact a graphical interface for designing Motif user interfaces. One can
easily establish a hierarchy of so called widgets, which are any part of the user
interface with a functionality of its own. Widget examples are windows, menu
bars, buttons, text fields, labels etc. The hierarchy that was used for the Logging
Window is given in figure 19.

[j
LO?glngwlndow

~
Formwldget n

ScrolledWlndow

~ ~ I T
HorScroliBar VertScroliBar EventsFleld

Figure 19. XDesigner hierarchy of LoggingWindo w

A short explanation of figure 21: The LoggingWindow exists of several widgets.
As one can see, the root in the layout is also called Logging Window. This widget
is the widget that keeps all the other widgets together and controls all window
decisions. The only child of Logging Window is FormWidget. This widget can be

31

installed to hold all other widgets in their right places, even if the window is
resized or reopened.

Then you see a lot of labels; labels only indicate an amount of text or bitmap and
are allowed to be changed during their life. The ColumnsField contains all the col­
umn indicators. Widget2 is the menubar, which in fact contains lots of other wid­
gets (which are all buttons in cascade or sub menus), but those have beenfo/ded
for the sake of the overview. Widget2 need not have a special name assigned to,
because the menubar itself is not used in the code of the tool.

ScrolledWindow is a standard scrolling text window in Motif, that can be adapted
to the wishes of the programmer. It contains two scroll bars and one text field, that
are functionally linked to each other. Several editable text field configurations had
been tested to be used for the implementation of the Logging Window. In the end
this configuration was the only one that sufficed the requirements.

The graphical result of the hierarchy displayed in figure 19 has already been dis­
played in figure 6. Compare these two figures and see the link between hierarchy
and graphical display. All windows in the user interface have been designed with
XDesigner and have already been shown in section 3.3. in figure 6 to figure II.

For all clarity I want to stress the fact that, although all windows have been
designed with XD and therefore ready for use within the tool, not all of the win­
dows have been integrated into the tool yet. Not yet integrated are: the Video Con­
trol Panel of figure 9 and the Script Editor Window of figure 10.

5.2 Functionality

After the graphical design had been generated by XDesigner, the functionality of
all the widgets could be added. This is done by altering and adding C++ code to
the code that was generated by XDesigner. This C++ code is using Xtool Intrinsics
and Motif libraries.

5.2.1 Callbacks

An example of functionality: what should happen if the user of the tool presses the
button Open in the File menu? A separate function should be written for the reac­
tion of the tool to this user action. All those functions that react to a special user
action in the application are called callbacks.

The first thing that comes to mind is that those callbacks should all be methods of
the objects. Unfortunately, Motif cannot make an object's method a callback. So
separate callbacks had to be made for every action. An example of a callback is
NewCallback.

32

This callback is automatically called every time the New button in the File menu is
pressed:

void
NewCallback (Widget, XtPointer, XtPointer)
{

if (SaveButton->SaveNeeded)
{

NewFormWidget->ShowMe(O) ;
}
else
{

XmTextSetString(EventsField, "");
SetupFormWidget->Manage() ;

}
}

Some explanation: The arguments of NewCallback need to be of the types Widget,
XtPointer and XtPointer for administrative reasons, but as they are not used in this
callback, they are not given names (they are left undefined). SaveButton is another
button in the File menu; it contains information whether the current log file has
been changed in its attribute SaveNeeded. NewFormWidget is the Form Widget in
a small window that asks the user if the last changes in the current log file should
be saved. Because it has different questions to pop, depending on the button that
calls NewFormWidget->ShowMe(integer). XmTextSetString is a Motif procedure
that fills a text field with a certain string. In this case it clears the EventsField.
ManageO is a method that all XD-widget objects have to make it appear on screen.

To be working in a totally object-oriented way this callback should actually be
appointed to an existing object, in this case the most obvious object would be the
XD-object NewButton. But then one callback could not be used for other user
actions and that would be unpreferable. Furthermore it would have been a bit more

33

inefficient, because the XD-callback would merely call the object's method which
would contain exactly the same code. The code would then look like:

void
NewCallback (Widget, XtPointer, XtPointer)
{

NewButton->Action();
}

void
NewButton: :Action ()
{

if (SaveButton->SaveNeeded)
{

NewFormWidget->ShowMe(O);
}
else
{

XmTextSetString(EventsField, "");
SetupFormWidget->Manage();

}
}

So it was decided that the callbacks would not be totally object-oriented. The call­
backs would still make use of all the objects' methods and values (in the pieces of
code indicated by "->"). Thus the decision can be justified by the fact that you
could see all the callbacks as methods of the matching window (in this case the
Logging Window, because that's where the New button is) and as long as they
would be used as such, the object-oriented approach would not be lost.

Callbacks that still have to be implemented are the ones for editing the Text
Column in the EventsField of the main window and the Import function in the File
menu. This is why the Cut, Paste and Copy functions in the Edit menu are not
totally functional yet.

5.2.2 The EventsField

Functionality can also be found in the behaviour of the Motif text-field that was
chosen to hold and show all the events. This was the hardest part of the assign­
ment: how to adapt an existing standard Motif widget into an editable scrollable
text field that complies to the wishes of the Logging Tool. However the functional
specification of this particular field was not given, it was not very hard to make
some guidelines which had to be followed when building the field, which I called
EventsField:

EventsField should contain a maximum of four columns: Begin, End, Category
and Text.
None of the columns should be editable, except for the Text Column.

34

• Comment in the Text Column should not be restricted to the width of the win­
dow. Whenever the text would be as long as the width of the window, the next
character is to appear on the next line, in the same column.

• One click of the mouse in the columns Begin, End and Category should result
in selecting and highlighting the relevant event. One click in the Text Column
should allow the user of the tool to change the text in this column.

• The second mouse button is used to place the current category in the columns
Text and Category.

• The third mouse button is used to place the current time code in the columns
Text, Begin and End.

Because all these features didn't exist in the standard Motif text field, all these fea­
tures of the EventsField had to be implemented by catching every cursor move­
ment and mouse click in the text-field. In this way the cursor could never appear in
the first three columns, but only in the Text Column. Some big advantages of the
standard Motif text-field were that it scrolls automatically and that it can contain as
many events as one would like to have. Furthermore no special data structure had
to be found for the contents of an Event, because the content of an event is now
established by some protocol, that demands that all events look like this:

TC-TAB-TC-TAB-CATNAME-TAB-TEXT-ENDOFEVENT

in which

TC = 11 characters which form a time code
TAB =ASCII character nr.9
CATNAME =16 characters which form the category name of the event's category.
TEXT = a sequence of standard text characters, which is not restricted in length. A

CR (Carriage Return) can occur (but cannot be added by the user of the tool)
and if it is not the last CR in the event it is always followed by 40 blank charac­
ters to make sure the next text will occur in the Text Column.

ENDOFEVENT = ASCII character nr. 182 (= nr. -74 and looks like <j[) followed by
aCR.

Almost the same protocol is used in the log files, except that in the log files TEXT
may not contain CRs and ENDOFEVENT is a carriage return. This is not only
easy for file manipulation, but also for compatibility with all other editors, word
processors, data bases and spreadsheets.

5.2.3 The CategoryTree

The category tree needed a special data structure. As the name and figure 2 may
already have suggested, the most obvious way to structure the category data is in a
tree. The object CategoryTree consists of an unrestricted number of objects Cate-

35

36

gory. Let's take a look at the C++ definition of the object class Category_c, which
was derived from its description in Appendix A.

class Category_c {
public:

Category_c* FirstChildi
Category_c* RightSibling;
Category_c* LeftSiblingi
Category_c* Parent;

Category_c() ;
void ShowValues() ;11 In the EditWindow
void StoreValues() ;11 From the EditWindow
void MakeRootCat();
-Category_c() ;

char Depth;
char* Name;
char* Description;
char* StartKey;
char* EndKey;
char* ParentCati

} ;

To make functions within the tree easier and memory problems would be out of the
question, every category has pointers to his first child, his right sibling, his left sib­
ling and his parent. The methods Category_cO and -Category_cO are the con­
structor, respectively destructor of the object. The constructor is automatically
called as an initializing method just before the object is declared in C++. The
destructor is called just before an object is deleted.

The code for declaring the whole tree data-type is (somewhat shortened):

class CategoryTree_c {
public:

Category_c *Root;
Category_c *Current;

CategoryTree_c() ;
Category_c *AddCategory(Category_c *ToParent);
Category_c *FindCategory(char* LookName);
Category_c *FindKey(char* LookKey);
void RemoveCategory(Category_c* DelCat);

II Remove DelCat
void SaveTree(FILE* CatFile);
void OpenTree(FILE* CatFile);
void ShowTree();

II Display tree in

-CategoryTree_c() ;

protected:

} ;

All instances of class CategoryTree_c have one pointer towards a root category
and one pointer towards a current category. The current category is the category
that is highlighted in the category tree and displayed in the edit dialog box. The
constructor of this class contains all initialization that should be done when declar­
ing an object of this class. The constructor defines a new category and makes it the
root of the tree. It also makes the root category the current category. The destructor
neatly removes every category that is part of the tree, so that no memory will
unreachably float.

For clarity the structure with pointers is given in figure 20. A pointer to NULL is a
pointer to nothing. The end of the tree is easily found by checking if a pointer
points to NULL. The pointer Current is coincidentally pointing to the second child
of the root, but this could of course be any category in the tree. All methods of the
class CategoryTree_c should maintain the structure of figure 20 and that's how the
methods have been written.

37

Parent

CATEGORY

First Right
Child Sibl.

O=NULL

_ =SUBTREE OF CATEGORIES

Figure 20. The category tree structure (sibl = sibling)

It is clear for example that in the method RemoveCategoryO of the object Catego­
ryTree this structure should be kept in mind. Here we see the advantages of so
many pointers towards parents, children and siblings. If one category is removed
from or moved within the tree, its left sibling gets another right sibling, its right
sibling gets another left sibling and its parent might lose its first child.

5.2.4 File management

To support the file management according to the experiment construction in
figure 3 the following protocol is used for the storage of the log files:

LOGiT makes a directory logit in the tool-directory. Then for every experiment a
directory is made in logit. For every session a directory is made in the experiment
directory. The session directory contains all log files concerning this session.

38

CHAPTER

6 Evaluation

This chapter will deal with how evaluation of the tool was done, what still has to
be done and what can be improved in the Logging Tool.

6.1 Evaluation of the tool

For evaluation several potential users were asked to try out the logging tool. Fur­
thermore the tool was tested in the observation room of the IPG. Several bugs were
found and some of them could immediately be recovered. All users involved in
this evaluation thought the tool was useful and thought that they would be able to
use the tool right away. Some usability remarks were made during the evaluation:

Problem: The function Split Event in the Edit menu resulted in a split of the
event on the position of the cursor at that moment. In this way it is not easy to
copy the time code to another event by splitting the event by standing on the
last character of the text, so that you could also use the Split Event function as
a function to mark several events at exactly one time code.
Suggested and implemented solution: It would be preferable to place the cursor
at the second part.

Problem: Whenever the user wants to make a category-tree definition in the
Edit Category Dialog Box, the user wants to see the category tree for an over­
view. This is also the case whenever a new category tree is loaded.
Suggested and implemented solution: Automatically show the Category Tree
Window whenever the Edit Category Dialog Box appears or another Category
Tree is loaded from disc. This makes the user aware of the structure of the cat­
egories.

Problem: A lot of users thought that the information on one category could be
shown by clicking that category in the Category Tree Window.
Suggested and implemented solution: A double click on one category in the
Category Tree Window should make the Edit Category Dialog Box appear
with all the selected category's information.

Problem: Right now the place of the cursor in the Text Field might suggest that
text can be typed at that place at that moment, while such is not the case when
the tool is waiting for the logging of a new event.
Suggested and implemented solution: The cursor may be replaced in more evi­
dent places after closing a text-entry with the [return]-key.

39

Problem: The user gets no feedback of the tool, whenever something wrong is
filled out in the dialog boxes or when something has been changed (by the
user) in the dialog boxes and the user forgets to apply the changes.
Suggested solution: Error messages have to appear whenever the user fills out
something wrong in the dialog boxes and also a warning when the fields in a
dialog box have been altered and not been applied.

Problem: Most users had trouble with typing the exact names of parent catego­
ries, although they had predefined them themselves.
Suggested solution: The Parent Category Field should preferably be a pull
down menu which contains al the valid categories; this would avoid charging
the user's memory and typing skills.

• Problem: The lines in the EventsField are too close to each other. When the log
file contains just that much information that little 'white space' is seen on the
screen, it might be uneasy to read.
Suggested solution: The line spacing may be increased.

6.2 Evaluation of the programming material

XDesigner is very adequate for building the graphical pan of a user interface. It
may be quicker to firstly use prototyping languages such as Visual C++ on a per­
sonal computer. In that way ideas and user requirements can be tested earlier in the
product development process. The way LOGiT was developed, i.e. without proto­
typing language because of lack of time, could have led to complex changes to an
already existing complex code. Fortunately this was not the case.

Despite of some warnings by fellow students and colleagues C++ turned out to be
rather easy to learn. Adding code in C++ and Motif to the XD-generated code was
not that hard at all either, but changing features of already existing widgets is
rather divergent and time consuming. A more elaborated evaluation of XDesigner
combined with C++ is given in appendix D.

Object-oriented programming is a widely accepted method of programming now.
The benefits of getting a good overview of large programs are not to be underesti­
mated and certainly proved its usefulness in this project. One must take in consi­
deration that although C++ is a fully object-oriented language, the Motif libraries
are not always tuned in on C++ features.

The concepts of object-oriented programming are not very hard to understand, but
it takes a while before these concepts can really be integrated in the design of a
tool. It takes another way of regarding programs than one might be used to.

40

6.3 Future prospects

To get a quick view of what is possible with the tool at this moment and what still
has to be made functional, one should take a look at figure 6. One can roughly say
that all features under the menu items File, Edit and Categories are functional and
that the items View, Video, Tools and Help still have to be implemented.

Not all features of the designed logging tool have been implemented yet. In fact,
the tool can be used for logging (with category support) right now, but the control
of the video recorders has to be researched more with respect to the communica­
tion protocols between VCR and computer. Once that is done, the Script Editor
Window and the Video Control window can be made functional and integrated into
the tool.

The Import function in the File menu still has to be made as well as Undo, Copy
and Paste in the Edit menu. Furthermore, some warnings that will appear when the
user does something that's not permitted, have to be implemented. This will
enhance the usability of the tool. Finally some minor alterations will have to be
made to suffice to the results of the user evaluation sessions.

Provisional plans also include porting the whole tool to a windows-platform on the
personal computer, so that the tool can be used in places where UNIX-stations are
not available.

What also needs some attention is researching the ways that a tool like LOGiT can
simplify analysis of the log files itself. One might think of finding repetitively
occurring patterns of events in log files and using the possibility of scripts control­
ling the VCR.

It can also be of use to do some research to find out how the analysis of video tapes
with LOGiT can be standardized.

41

CHAPTER

7 Conclusion

After a small literature research, it turned out that no commercially available log­
ging tool was suitable for the video laboratory at the IPO. By means of user-needs
analysis and task analysis user requirements were defined for the design of the log­
ging tool, LOGiT From the requirements the user interface for the logging tool
was designed with a high level user-interface design tool. An object-oriented
model was established before actual implementation.

LOGiT is installed and ready for use at the IPO video laboratory. From now on it is
possible to make log files of video-recorded experiments in a far more easy way
than before. The supporting features of the tool are in short:

Approaches of logging
The logging process is supported for three approaches: text-oriented, fast category­
oriented and slow category-oriented.

Use of categories
The definition of categories is fully supported with the option to use the alpha­
numeric keyboard for a predefinition of category keys. A categories overview is
given as a category tree in a separate window, in which also the key definitions are
displayed.

Analysis support
The administration of video tapes and log files is supported in the Setup Dialog
Box. The log file is stored in a simple data format which is easy to use in other
applications.

What still has to be implemented is the function-key oriented approach, the time­
line presentation of the event data and the video-control functions. The tool turned
out to be living up to the expectations of the potential users. Still, the post-imple­
mentation evaluation resulted in a few adaptations that should be made to comply
with the usability wishes of the potential users.

43

CHAPTER

8 Bibliography

8.1 References

[Coad,90] Coad, Peter & Edward Yourdon (1990) Object-Oriented Analysis,
New Jersey, U.S. : Prentice-Hall.

[Harrison, 92] Harrison, Beverly L. & Ronald M. Baecker (1992) Designing
video annotation and analysis systems. Proc. Graphics Interface
'92, 157-166. (survey)

[Hoiem,94] Hoiem, Derek E. & Kent D. Sullivan (1994) Designing and using
integrated data collection and analysis tools: challenges and con­
siderations. Behaviour & Information Technology H(1&2), 160­
170.

[Macleod, 93] Macleod, Miles & Ralph Rengger (1993) The Development of
DRUM: A Software Tool for Video-assisted Usability Evaluation
(submitted for publication in 1993)

[Nielsen, 93] Nielsen, Jakob (1993) Usability Engineering. London, Great Bri­
tain / San Diego, U.S. : Academic Press.

[Owen,94] Owen, Russel N., Ronald M. Baecker & Beverly Harrison (1994)
Timelines: a Tool for the Gathering, Coding and Analysis of Tem­
poral HCI Usability Data. Conference Companion CHI '9424·28,
7-8.

[Roschelle, 91] Roschelle, Jeremy & Shelley Goldman (1991) VideoNoter: A
productivity tool for video analysis. Behavior Research Methods,
Instruments & Computers 23(2),219-224.

[Tesler, 86]

[Vlugt, 92]

Tesler, Larry (1986) Object-Oriented Languages, Programming
experiences. Byte 1986 august, 195.

Vlugt, Maarten 1. van der & al. (1992) CAMERA: A system for
fast and reliable acquisition of multiple ethological records.
Behavior Research Methods, Instruments & Computers 24(2),
147-149.

45

[Weiler, 93] Weiler, Paul (1993) Software for the Usability Lab: A sampling
of current tools. INTERCHI '93 Conference Proceedings, 57-60.

8.2 Programming Literature

[Ferguson,93] Ferguson, Paula M. (1993) Motif Reference Manual for OSF/
MotifRelease 1.2 (The Definitive Guides to the X Window System,
Volume Six B) USA: O'Reilly & Associates, Inc.

[Stroustrup, 91] Stroustrup, Bjarne (1991) The C++ Programming Language,
second edition. Addison-Wesley Publishing Company.

[Mattson, 89] Mattson, Jeff (1989) Think C™ Standard Libraries Reference.
USA: Symantec Corporation.

[1ST, 93] Imperial Software Technology (1993) XDesigner release 3 User's
Guide. VI-Corporation and 1ST.

46

APPENDIX

A Object descriptions

Object 1. VideoSystem

ASttribute: Description:

CurrentTime The time code. a time-variable attribute. This attribute can-
not be set by other objects.

Mode {Idle. Play. Record, FE FB, SF, SB}

F: Play () The VCR is set to playing the tape

F: FF () The VCR is set to fast forwarding the tape

F: Rewind () The VCR is set to rewinding the tape

F: Rec () The VCR is set to recording

F: SetSpeed (NewSpeed) The playing speed of the VCR is set to NewSpeed.

F: Stop () The VCR is set to idle state

F: Pause () Holds the videoimage on the VCR. The VCR is set to still.

F: GetCurrentTime () Retrieve the current time code and return it.

Object 2. Event

Attribute: Description:

TC_begin Time code of stan of event

TC_end Time code of end of event

Category-name Name of a category of an event

Text Text / interpretation

F: Show () Put all attributes of event on screen

Object 3. LogFile

Attribute:

F: Load

F: Save

F: Filter

Description:

Retrieve from disk

Store on disk. add to experiment

Use script to keep only events implied by the script.

47

48

Object 4. Session

Attribute: Description:

ExperimentName Name of the experiment. which is also the name of the
directory, in which all the log files will be situated. This
directory also contains a file which contains all experiment
data of all log files.(Except for event information)-

Description Description of experiment

SessionName Name of session

VideoTape! Name of tape on which the session is recorded

VideoTape2 Option for second tape name

LogName Name of the current log file

Author Name of logger

CurrentCategoryTree In actual file, but not in this object

CurrentLoggingApproach In actual file, but not in this object

F: Load () Retrieve from experiment data

F: Save () Save to experiment data

Object 5. Category

Attribute: Description:

Name Name of category

Description Text

StartKey Any alfanumeric key or function key or no key at all

EndKey Any alfanumeric key or function key or no key at all

ParentCat Name of parent category (recursive)

F: ShowValues () Show all the values in the Category Tree Window

F: MakeRootCat () Let this category be initialized as the root of all categories.
(This should be called only once in the lifetime of a cate-
gory tree.)

F: StoreValues () Adapt all the values of this category to the values in the Edit
Category Dialog Box.

Object 6. Clipboard

Attribute: Description:

Content Textual (actual) content of the clipboard item

Type Type of information that is saved in the clipboard. {Event.
Text, Script) I

F: Retrieve () Get content from the clipboard

F: Store (content. type) Save content and type on the clipboard.

Object 7. CategoryTree

Attribute: Description:

Root The root category.

Current The category that is currently shown in the Edit Category
Dialog Box.

NumberOfCats Number of categories in the list of categories

F: AddCategory (ToParent» Adds a category to the tree with ToParent as parent. Returns
the just added category.

F: FindCategory Returns the category by the name of LookName.
(LookName»

F: RemoveCategory (Del- Removes the category DelCat from the category tree.
Cat))

F: MoveCategory (Move- Moves the category MoveCat with all its descendants to the
Cat, ToParent) position of a child of ToParent.

F: SelectCategory (SeICat) highlights the category SelCat in the CatTreeWindow and
makes SelCat current.

F: ShowTree () Displays the whole tree in the Category Tree Window.

F: InstallKeys () Install all the predefined keys of the categories to operate
correctly.

F: UninstallKeys () Install all the predefined keys of the categories.

F: Open (CatFile) Load the file CatFile into this object

F: Save (CatFile) Save this object as file CatFile

Object 8. Logging

Attributes:

Approach

ColumnsPref

Saveneeded

TimeSource

F: ToggleSaveNeeded

Object 9. VideoControl

Attributes:

ScriptOn

SoundplayOn

VCRSeIection

Speed

Description:

{text. fast, slow, function I 'fast stands for 'fast category
approach', 'slow stands for 'slow category approach'.
'function' stands for 'function-key approach'.

P{ end, category, text}. the BeginColumn is always on the
screen.

I =the last save of the current log file has been changed.

{VCR, LOCAL I
Change SaveNeeded

Description:

Are the buttons acting on the script?

Does the play button also rewind the tape a little?

{Player. recorder I
The speed of playing a video tape. (Speed is negative when
the VCR is playing backwards)

49

50

Object 10. TimeLine

Attribute: Description:

SelectedCategories Categories that should appear in the time-line presentation

SelectedTime Time interval that should appear in the time-line presenta-
tion.

To_file Boolean: I =the graphic presentation will be saved. 0 =not

To_screen Boolean: I =the graphic presentation will be printed in a
window on the screen.

F: Print () Make the presentation and print it to file or screen or both.

Because the tool is implemented with the help of the high level user-interface
design tool, XDesigner, obvious elements of the V.1. are not discussed. Only
objects in the V.1. that will have to communicate with the transparent objects are
mentioned here with their relevant attributes:

Object 11. SetupDialogBox

Attribute: Description:

ExperimentField Widget for entering the experiment name.

DescriptionField Widget for entering the description of the experiment.

SessionField Widget for entering the sessioin name.

VideoTapelField Widget for entering the video tape's name or number on
which the session is recorded.

VideoTape2Fieid Widget for an optional second video tape.

LogFiJeNameField Widget for entering the log file's name.

Authorfield Widget for entering the author's name.

F:Get (Field, String) Access the contents of the fields.

Object 12. EditCategoryDialogBox

Attribute: Description:

NameField Widget for entering the name of the category

DescriptionField Widget for entering the description of the category

StartKeyField Widget for entering the definition of the key that registers
the beginning of an event of this category

EndkeyField Widget for entering the definition of the key that registers
the end of an event of this category

ParentCategoryField Widget for entering the name of the parent category.

F: Get (Field, String) Access the contents of the fields.

Object J3. LoggingWindow

Attribute:t Description:

CurrentFileName Name of the file that is displayed and of which the name
appears in the title bar.

F: SetCurrentFileName Not only changes the attribute CurrentFileName, but also
(String) changes the name in the title bar of the window.

F: GetCurrentFileName
(String)

F: ShowCurrentTime 0 Display current time code in CurrentTimeLabel. Current-
TimeLabel may be a seperate object.

Object 14. CategoryTreeWindow

Attribute:

TextField

F: Get (String)

F: Put (String)

Description:

In this field the construction of the category tree is described
with a single string.

I

51

APPENDIX

B LOGiT manual

LOGiT stands for Logging Tool, a tool which supports the logging phase in behav­
ioral analysis with video recordings.

B.1 Startup

Be sure the FOSTEX f4010 is connected to your SUN-station and to your VCR­
time-code output if you want to use the VCR's time code. Use XII as window
platform by typing -cadbin/startXll.

The tool is started by simply typing "lwd" in the directory of the tool. When the
VCR is not/wrongly connected to the SUN-station on which the tool is running.
then at startup you will see the message: "Iwd: Error initializing the f401O; check
the connections". (If this message occurs on startup the tool will be working with
local station-time.) Whenever a disturbance on the connection between VCR and
computer occurs this message will appear in the shell, but as soon as the connec­
tion recovers the tool will use the VCR-time. If the directory in which you are
starting up the tool does not contain the subdirectory "logit", this directory will be
made in the course of the program.

B.2 Working with LOGiT

The main window of the tool looks like:

[II LOCH - logit/exp/ses/noname. log
II File Edit Categories View Video Tools Help

11 :59:10.-- LOGiT
BEGIN END CATEGORY TEXT
11' 55 44,-- VERBAL "Eureka, ncJ\O I krlOl' It'"
1156'06 -- 1156: 35,-- ERROR I¥rDni trllCk chosen'
1156 48-- DISTRACTICJIJ Slbject 100000s cuts i de of the rOOIl bec2lU:i

e of noisy backiround ~

Press ary key to add te~t, close wi th <return> SI 0" cateiory or I ented
;

Figure 81. The main LOGiT window

53

For now only the first three menu items on the menu bar are functional: File, Edit
and Categories. It is advisable to always use New or Open in the File menu to start
your LOGiT session (for your own administrational sake, otherwise the tool will
automatically save under a default name).

Editing in the text column is not yet perfect. Therefore the edit functions in the
Edit menu are only valid for whole events (event =begin-time, end-time, category
and text).

IMPORTANT!
There are several approaches of logging supported by the tool. Which approach is
valid is indicated in the Approach Field in the lower right corner of the main win­
dow. The approaches can be chosen out of the Set Approach submenu in the Edit
menu. The three approaches that are supported now are:

1. Text-oriented, no time code is retrieved until the first key on the keyboard is
pressed. Then the text which is typed in is immediately connected to the time
code of the first keystroke and both time code and text are shown on the screen.
The text is closed by pressing the [enter]-key.

2. Fast category-oriented, no time code is retrieved until a predefined key is
pressed. Then the category belonging to the predefined key is immediately
connected to the time code; both are shown on the screen. Text-inputs can be
entered and exited both by striking the [enter]-key. Text is also shown on the
screen. If the logged event is time-interval dependent then pressing the end-of­
interval key retrieves the time code which will be shown on the screen.

3. SImI' category-oriented, no time code is retrieved until a predefined key is
pressed. Then time code and category are both shown on the screen. The cursor
is immediately put in a text-field where text can be edited. Closure of this text­
field is done by striking the [enter]-key. If the logged event is time-interval
dependent then pressing the end-of-interval key retrieves the time code and
this will be shown on the screen.

MOUSE BUTTONS:
The first (or left) mouse button is used to select an event, if you click it in the three
left columns, or to place the cursor in the Text column. In the menubar it is also
used to select a menu item.

The second (or middle) mouse button is used to place the name of the current cate­
gory in the Text column or in the Category column. You can select a category by
clicking on the category in the Category Tree Window or by typing the name in the
Edit Category Dialog Box and pressing return.

The third (or right) mouse button is used to place the current time code in the Text
Column or in the columns Begin and End.

APPENDIX

C Changing functionality in the Logging Tool

C.1 File administration

All source files are saved in the directory logitsources and on the diskette by the
same name. A short description of the files:

hvd.c:

lwdexterns.h:
lwdstubs.c:

newwd.c:
setupwd.c:
filewd.c:
carn'd:

homemade.c:
j40JO.h:

j40JO.a:

makefile:

contains the main program and all methods concerning the main
window.
contains all the external declarations and all class definitions.
contains all callback definitions concerning the main window and
all actions.
contains all methods concerning the New Dialog Box
contains all methods concerning the Setup Dialog Box
contains all methods concerning the FileBox
contains all methods concerning the Edit Category Window and the
Category Tree Window
contains all methods concerning the non-Motif classes.
header file of all the functions needed for retrieval of the time code
from the VCR via the FOSTEX 4010.
library containing the actual functions needed for retrieval of the
time code from the VCR via the FOSTEX 4010.
information for compiling and linking the source files into one exe­
cutable.

C.2 Adding windows

To add extra windows in the tool, one should create a window with XDesigner.
Then make sure that every widget that needs easy access is installed as a global
C++-class. In this way the generated code will have proper overview and you will
be protected from unnecessary child information. If the widget class is to be
accessed by more objects than only its parent than make the class public. This can
all be done in the "Core resources"-window, which can be popped up in the "Wid­
get" menu-item.

If the window is ready you can pull down the "Generate"-menu and choose C++.
If you are adding functionality to your widgets it comes in handy to generate a
stubs file as well. In this file all the handlers will appear and the names of the call
data will already be filled out, so that you don't have to look them up in the man­
ual.

55

DON'T (!) make the top widget an application widget as is instructed in the XDe­
signer manual, for the tool already has an application widget. XDesigner will give
a warning after generating the source code which you can neglect.

Declare the new window in the file Iwdexterns.h and write the creation lines in the
method LoggingWindowJ::create in Iwd.c. All generated callbacks should also be
declared in 1~1!dexterns.h and the stubsfile should be included in Iwdstubs.c (except
for the external declarations of the stubsfile, which should all be present in Iwdex­
terns.h).

C.3 Adding actions

Actions are the tool-reactions to user input from the keyboard or the mouse. If you
want to use actions you will have to define them in Iwdstubs.c. You should also put
an external declaration in Iwdexterns.h. Be sure not to forget to install the new
action in the main program in Iwd.c.

C.4 Adding callbacks

You might want to add callbacks to a widget, which you haven't define in XDe­
signer yet. Firstly install the callback's name in the create-method of the widget
with the procedure XtAddCallback. Be sure to invent a name that refers to the wid­
get as well as to the functionality of the callback.

The callback should be defined in Iwdstubs.c and be of the form of an XtAppCall­
back (you might take other callbacks as an example). Don't forget to declare the
callback's name in Iwdexterns.h.

C.S Compiling the sources

If everything is installed correctly you can simply type make in the directory logit­
sources. The makefile is using CC for a compiler. Make sure that the Xtool Intrin­
sics and Motif libraries are accessible The XDesigner class definitions in the files
xdclasslh/xdclass.h, xdclasslliblxdxmdialog.c and xdxtclass.c should also be acces­
sible from the make directory. For retrieval of the VCR's time code the files
f40lO.h andf4010.a should be accessible.

To use the latest updates of the SUN-operating system files, compile your final ver­
sion on the prles22-machine.

56

APPENDIX

D Experiences with XDesigner 3.0 and C++

(

As I seem to be the very first person who developed a Motif application with XDe-
signer and C++ within Philips Research Laboratories, I was asked to write a small
summary on my experiences with this combination, which is only just recently
possible with the arrival of XDesigner 3.0.

Efficiency
XDesigner is a beautiful tool to quickly make a user interface in Motif. Of course.
as with any high level design tool, the finally generated code is not as efficient as it
would be in a lower level design. For every widget a separate class is generated in
C++, but the code would be much more efficient if the only one class was made for
every separate widget. What now happens is that every widget class has only one
object instance. This does not affects the speed of the application, only the code
length.

The speed efficiency of an XDesigner-generated code is just as efficient as a
"handmade" Motif code.

Object-oriented design
XDesigner allows the user to let every user-interface widget be an object in the
code. This is beneficial for the overview of the programmer, especially when an
object-oriented approach is used. It is advisable to make every single widget an
object. The latter can be done in the core resources of a widget, under section Code
generation. Simply choose C++ class as the structure. It is a pity that there is no
special feature on XDesigner that would make every widget an object in the code.
It's rather tiresome to do this by hand for every single widget.

What is needed?
First of all the XDesigner executable and the CC compiler are needed. Besides that
you need the files xdxtclass.c, xdxmdialog.c and xdclass.h for using the XDesigner
classes, so that all widgets become objects in the source code. If you are using pix­
maps for labels, then you also need the xpm-files.

And you need all libraries of MOllf, Xtool Intrinsics and Xll. As manuals I would
advise the Xtool Intrinsics User Reference and -Manual and the Motif User Refer­
ence and Manual. These are on-line available on the Silicon Graphic machines at
the IPO.

57

APPENDIX

E Video Control

The Panasonic AG-7500 has a 34-pins Remote Control Connector, which can be
used for video control from a computer. The pin assignments are listed in table E 1
and figure E 1. Normally the pins are all high, every function is invoked by making
the relevant pin low for 200ms. The pins 19, 30 and 33 determine the speed of the
VCR.

Table £1. Connector pin assignment

PIN no. Contents PIN no. Contents

1 REC SWITCH 18 CONTROL PULSE OUT

2 PLAY SWITCH 19 REMOTE 19

3 FF SWITCH 20 START MARK

4 REW SWITCH 21 EJECT SWITCH

5 STOP SWITCH 22 INSERT CHI

6 23 REC HOLD

7 PAUSE switch 24 PLAY HOLD

8 CASSETTE IN 25 FFHOLD

9 CUT IN SWITCH 26 REWHOLD

10 NOT SOURCE PLAY 27 INSERTCH2

11 SERVO LOCK 28

12 GND 29 PAUSE HOLD

13 FRAME AD\'. S\\lTCH 30 REMOTE 30

14 REVERSE COUNT 31 CUTIN HOLD

15 CUT OUT SWITCH 32 INSERT VIDEO

16 EDIT SWITCH 33 REMOTE 33

17 REVERSE 34 +12V

r 121 I I I I I I I I I I 11 '"'& 221 I I I I I I I I I 113 tQ
\...~341 I I I I I I I I I I 12~~

Figure £1. The remote control connector o/the Pallasonic AG 7500

59

Mailing list

Beun
Brouwer
Cremers
Freudenthal
Van Gelderen
Haakma
Van Hoe
Van Itegem
Kemp
Keyson
Majoor
Poll
Tang
Tjin (3 ex.)
Verheijen
De Vet
Westerink
Westrik

Vakgroep Medisehe Elektroteehniek, TUE, EH 3.05 (3 ex.)

Bibliotheek Elektroteehniek, TUE, EH 2.06

Mr. B. Thomas, PCD, SX

IPO-direeteur
A.c. der Kinderen, Bib!. en lnf. Nat.Lab., WY 1.36 (8 ex.)
Dr.ir. W. Strijland, Oetr. en Merken

5 arehief

	Voorblad
	Summary
	Samenvatting
	Table of contents
	1 Introduction
	2 The logging tool project
	3 User requirements
	4 The object-oriented model
	5 Implementation
	6 Evaluation
	7 Conclusion
	8 Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

