
 Eindhoven University of Technology

MASTER

Simplexys for windows

de Bruin, J.L.M.

Award date:
1997

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0334ed24-7eba-4bde-aaa4-b87ad1eacf76

Eindhoven University of Technology

Faculty of Electrical Engineering

Division of Medical Electrical Engineering

Simplexys for Windows

by J.L.M. de Bruin

This report was submitted in partial fulfilment of the requirements for the degree of

Master of Electrical Engineering at the Eindhoven University of Technology.

The work was carried out from April 1994 until February 1995 under responsibility

of prof.dr.ir. J.E.W. Beneken and under supervision of dr.ir. IA. Blom.

The department of Electrical Engineering cannot be held responsible for the contents

of training and graduation reports.

Summary

This report discusses the development of a Windows version for Simplexys, an expert

system tooibox.

During the last eight years Simplexys has been developed at the Division of Electrical

Engineering of the Eindhoven University of Technology. This tooibox consists of a pro

gramming language, a rule compiler, an inference engine (reasoning mechanism) and some

debugging tools. To assist the programmer in using the tooibox, a user interface is avail

able. The tools and the user interface are designed for a DOS environment.

Graphical environments become more and more popular. For DOS based machines Win

dows has become the most popular one. Due to this rising popularity, a next step in the

development of Simplexys is the creation of a Windows version.

To fulfill this task, first some research was done into 'What is Windows'. This research

showed the essential ideas behind Windows and provided useful programming techniques.

This knowledge is used to develop a Windows interface for controlling the elements of the

tooibox. Also some chances are made in the existing tools to be compatible with Windows.

The Windows version of Simplexys was ~uccessfully developed. The created Windows

interface resembles other Windows applications, which makes it easy to use. To be flexi

bIe, the Windows interface allows the creation of DOS applications too.

Because Windows provides tools for easy data exchange and handling multimedia, the

applicability of Simplexys will increase.

- 111 -

Contents

1 Introduction - 1 -

2 SIMPLEXYS, an expert system tooIbox .. - 3 -

2.1 The Simplexys language .. - 3 -

2.2 The mie compiler - 5 -

2.3 The semantics checker - 6 -

2.4 The protocol checker - 6 -

2.5 The option builder .. - 6 -

2.6 The Simplexys inference engine - 7 -

2.7 The simulate and explain facility .. - 7 -

2.8 Programming a Simplexys expert system - 8 -

3 Windows .. - 9 -

3.1 Some Windows Essentials .. - 9 -

3.1.1 The graphical user interface (GUl) - 9 -

3.1.2 Windows and Multitasking - 10 -

3.1.3 Programming within Windows - 11 -

3.1.4 The message-driven architecture of Windows - 12 -

3.1.5 Windows and Dynamic-Link Libraries .. - 14 -

3.2 A sample application - 15 -

3.2.1 A Windows Skeleton .. - 15 -

3.2.2 A window-handling routine - 19 -

3.2.3 The Resource WorkShop - 22 -

3.2.4 The 'About Box' - 23 -

3.2.5 The main part - 24 -

3.3 Adding a Help system - 25 -

3.3.1 Designing Help topics - 26 -

3.3.2 Access to Help - 26 -

3.3.3 Creating the Help topic files .. - 29 -

- V-

4 The Windows version of Simplexys - 31 -

4.1 The Shell .. - 31

4.1.1 Error handling .. - 36 -

4.1.2 Introduced routines and variables .. - 38 -

4.2 The Expert System .. - 40

4.2.1 The DOS-version .. - 40 -

4.2.2 The Windows-version - 40 -

4.2.3 Memory usage - 44 -

4.3 The Simulate and Explain facility - 46 -

4.3.1 The DOS-version .. - 46 -

4.3.2 The Windows-version - 47 -

4.3.3 Changes in the DLL - 49 -

4.3.4 Memory usage - 52 -

4.4 New programming elements - 53 -

5 Conclusions and recommendations .. - 55 -

Appendix A

References .. - 57 -

Appendix B

List of files - 59 -

- VI-

1 Introduction

At the Division of Medical Electrical Engineering an expert system tooibox, called

Simplexys, has been developed. Because Simplexys is mainly designed for monitoring

tasks in medical engineering where efficiency and performance are required, key goals

during development were execution speed, compactness and correctness.

The tooibox consists of a rule compiler, asemantics and protocol checker, an inference

engine (reasoning mechanism) and some debugging tools. To be flexible, also an interface

to existing programming languages is available. To assist the programmer in controlling

these tools, a user interface was created. The just mentioned tools run in a DOS environ

ment.

During the last few years, graphical environments have become more and more popular.

For DOS-based machines, Windows has become the most popular environment. To be able

to develop Simplexys applications for Windows, the tooibox needed to be adapted to this

environment.

This report will first discuss the elements of the Simplexys tooibox. In chapter 3 the

graphical environment Windows is presented. The ideas behind Windows are introduced

and some programming techniques are explained. Chapter 4 presents the created user

interface and the changes made to the existing tools. Finally chapter 5 gives some conclu

sions and remarks.

- 2 - Simplexys for Windows

2 SIMPLEXYS, an expert system tooIbox

The SIMPLEXYS tooibox consists of a collection of tools that assist in the design of

expert systems. The purpose of the expert systems tooibox is to develop computer pro

grams that are capable of 'human reasoning' or 'thinking'. The expert system evaluates

input data and intermediate results using the implemented knowiedge. After evaluation,

conclusions can be derived. In the following sections, the tools of SIMPLEXYS will be

described. A thorough treatment can be found in [BLOM, 1990].

2.1 The Simplexys language

The Simplexys language is designed to formally describe human knowiedge. It is a

superset of the Pascal programming language. This offers an intuitive interface to Pascal

procedures, that can be used for data acquisition or to display results. Programs written in

this language are called 'knowledge bases' and describe the domain knowledge available in

the expert system. The simplicity of the language makes the programs easy to understand,

even for non-expert system programmers.

Simplexys is based on a three-valued logic. Arole's conclusion can have the value TR, the

conclusion is true, FA, the conclusion is false or PO, the conclusion is unknown (there is

no information available that allows to decide whether the value is true or false). This type

of logic is introduced to have a better approximation of human reasoning.

An essential part of a knowledge base is the RULES section. This part contains the rules

of the knowledge base, where each rule represents a 'chunk' of knowiedge.

- 4 - Simplexys lor Windows

Within Simplexys five primitive rule types are available:

1 FACf rules, that denote constants.

2 ASK mies, that ask questions from the user.

3 TEST rules, that test externally supplied data.

4 MEMO rules, that remember results.

5 STATE rules that denote the current context.

To combine the results of other rules, another rule type is available:

EVAL rules, that calculate higher level conclusions given an expression that

combines other rules.

The rules defined in the knowledge base are connected into asemantic network. This

collection of nodes and links, represented by the rules and the interrelation between several

rules, connects the 'chunks' of knowiedge.

Within Simplexys rules are evaluated only once, in a recursive way. To determine the

value of EVAL rules, first the values of the rules that define the EVAL rule must be

obtained. This process repeats itself, until the primitive rules are reached.

To specify that a certain action has to be taken if a rule gets a matching conclusion, a

construction with THEN, ELSE or IFPO (if possible) is used. This kind of construction is

called a THELSE.

To evaluate expressions, Simplexys uses a logic that is very much like boolean logic.

Simplexys expressions consists of two entities, propositions and operators. Propositions are

indicated by a name (P, q, animal, etc) and operators are indicated by special symbols (not,

and, or, etc.). The operators are monadic (having one argument) or dyadic (having two

arguments). Parentheses can be used to form sub-expressions.

In Figure 2.1 a small example is shown. To obtain a conclusion for rule 1, first the primi

tive rules 2 and 3, and rule 4 have to be evaluated. Rule 4 gets its value by evaluating

primitive rules 5 and 6. The semantic network is shown in Figure 2.2.

Simplexys - 5 -

Rule1: 'Rule text l'
Rule2 and Rule3 and Rule4

Rule4: 'Rule text 4'
RuleS and Rule6

Figure 2.1 Sample rules Figure 2.2 Semantic network of rules

- rtest.qqq:
- rhist.qqq:
- rdodo.qqq:
- rinex.qqq:
- ruses.qqq:

Another essential section of the knowledge base is the PROCESS section. In this section

the dynamics of the process are described. All state transitions or ON-statements are

inserted here. ON-statements are used to define context switches.

2.2 The mIe compiler

The Rule Compiler translates the knowledge base into an intemal representation that can

be processed by the inference engine. To prevent an enormous amount of searching

through the knowledge base at run time, searching and matching in SIMPLEXYS is done

by the compiler. The intemal representation consists of a set of tables, in which the rela

tions between the rules are represented by pointers. At execution time, these tables can be

traversed at high speed.

To represent the information, the rule compiler creates six qqq-files:

- rinfo.qqq: containing the arrays and tables used to represent the rules and their
mutual connectivity
containing the test sections, used in the test rules
containing information about the history
containing the DO sections
containing the initialization and exit sections
containing the Turbo Pascal units used in the knowledge base.

Besides this, the rule compiler checks the knowledge base for some semantic and syntactic

errors and generates wamings for incorrect or questionable higher level constructions that

cannot be checked at compiIe time.

- 6 - Simplexys for Windows

2.3 The semantics checker

The semantics checker performs several semantics checks on the file rinfo.qqq. If errors

are detected, appropriate error messages are created. The semantics checker is a powerful

tooI for partially proving correctness. Semantics errors, that can be detected, are self

referencing evaluations, loops in thelses, conflicting thelses, thelses to successors and

predecessors, and unconnected non-STATE rules.

The semantics checker runs without user interaction. lt provides additional checks, besides

those performed by the rule compiler. Running the program is not always necessary and

can be skipped if the structure of the knowledge base remains unmodified.

2.4 The protocol checker

The protocol checker is used to detect errors in the PROCESS description of the knowl

edge base. The ON-statements define the protocol. The protocols are translated into Petri

nets, that are ideally suited to describe systems in which concurrent events can occur. The

tests performed by the protocol checker are quite extensive and cover syntax, topology,

connectedness and dynamic errors.

Just like the semantics checker, the protocol checker performs additional test not performed

by the rule compiler, runs without user interaction and may be skipped if the structure of

the protocol in the knowledge base remains unmodified.

2.5 The option builder

The option builder is used to determine a number of runtime options. The options are used

in the inference engine. Options that can be set are about:

Time: lt is possible to choose between reaI time or simulated time. The option

'simulated time' lets the user specify the time between two successive runs

of the final system.

Simplexys - 7 -

Debugging: This option makes it possible to see intermediate results of the

inferencing process, which can be very helpful during design and testing

phases.

Dump results: This option makes it possible to store all results to disk to investigate the

results of the inferencing process at leisure. During design and testing

phases, this can be helpful.

2.6 The Simplexys inference engine

The inference engine is the experts system's reasoning mechanism. The purpose of the

inferencing process is to derive all possible conclusions (or goals) about data offered to the

system. Generally, the data will change over time, and the analysis will need to be re

peated. Each evaluation of all the goals is called a run.

The Simplexys inference engine is written entirely in Pascal. Compiling the qqq-files and

the inference engine into one executable program, a ready to run expert system is built.

The Pascal compiler is used to check for errors in the Pascal code of the knowledge base.

The created expert system is able to 'reason' by itself, using the knowledge specified in the

knowledge base. The experts system starts with evaluating STATE rules. At the end of a

run, when all the goals are evaluated, the ON-statements are executed, possibly causing a

context switch. As long as at least one STATE rule is TR, a new run is started.

2.7 The simulate and explain facility

The design of a correct knowledge base is difficuit. During the design process, testing and

debugging are the most difficult parts, because experts and knowledge engineers want to

know how the expert system came to a decision. To perform these tasks, some debug tools

have been developed.

The simulate facility provides a tooi to 'trace' through the inferencing process. The infor-

- 8 - Simplexys for Windows

mation, obtained during the inferencing process, is stored to disk. The simulate facility

traces this information and makes it possible to visualize the information. The explain

facility can be used for examination of the evaluation structure of the process. It shows the

links between rules graphically.

2.8 Programming a Simplexys expert system

To develop an expert system with the Simplexys expert system tooibox, the following

steps must be taken:

1. Acquire the knowledge to be implemented.

2. Implement the knowledge using the SIMPLEXYS language. The result of this pro

cess is a 'knowledge base' or 'knowledge program'. If the knowledge cannot be

formalized, go back to step 1.

3. Generate the intemal format of the knowiedge. This translation from knowledge base

to internal representation is done through compilation by the rule compiler. Also

some additional syntactic and semantic checks can be performed. lf errors or contra

dictions are signalled, go back to step 2 resp. step 1.

4. Select any runtime debug options.

5. Compile the expert system. The Simplexys expert system and the output files, gener

ated by the rule compiler, are combined by the Pascal Compiler. This produces a

ready to run expert system.

6. Run the expert system.

7. Correct imperfections and errors by repeating steps 1 to 5.

Whether an expert system is 'finished' is hard to say, because some errors or limitations

will only show up in the long term and the system will never be 'complete'. Practically, the

system is finished, when it is sufficiently 'useful'.

3 Windows

Since its introduction in 1985 Microsoft Windows has emerged as the most popular

graphical user interface environment for DOS-based computers. Windows provides a

multitasking (see 'Windows and Multistasking'), graphical-based windowing environment

that runs programs especially designed for Windows. The goal, of Windows is to enable a

person who has basic familiarity with the system to sit down and run virtually any applica

tion without prior training. Leaming a new program can be restricted to what the program

does, not how the user must interact with the program.

What Windows is depends, to some extent, upon whether you are an end user or a pro

grammer. For the end user, it is a shell with which he or she interacts to run applications.

For the program developer, Windows provides a collection of API (Application Program

Interface) functions that allow the use of menus, dialog boxes and other components of a

friendly user interface. Windows also contains an extensive graphics programming lan

guage.

3.1 Same Windows Essentials

3.1.1 The graphical user interface (GUl)

The concepts behind the graphical user interface date form the mid-1970s, with the

pioneering work done at the Xerox Palo Alto Research Center (PARC). The work done at

Xerox PARC was brought into the mainstream and popularized by Apple Computer, Inc,

with their introduction of the Macintosh. Since the introduction of the Macintosh, graphical

user interfaces have become more and more popular.

Graphical user interfaces make use of graphics on a bitmapped video display. Graphics

provides better utilization of screen real estate, a visually rich environment for conveying

information. In earlier days, the video display was used solely to echo text that the user

- 10 - Simplexys for Windows

typed using the keyboard. In a GUl, the video display is used interactively. The video

display shows various graphical objects in the form of icons, which are small symbols used

to represent functions or programs, and input devices, sueh as buttons and scroll bars. The

theory behind the use of graphical objects is found in the old adage:

la picture is worth a thousand words. I

Using the mouse or the keyboard, the user can directly manipulate these objects on the

screen. The interaction between the user and a program becomes more intimate. Rather

than the one-way cycle of information from the keyboard to the program to the video

display, the user directly interacts with the objects on the display.

The basic idea behind a window-based user interface is to provide the equivalent of a

desktop on the screen. On a desk one may find several different pieces of paper, one on

top of another, often with fragments of different pages visible beneath the top page. The

equivalent of the desktop in Windows is the screen. The pieces of paper are the windows

on the screen. Selecting a window and making it current, which means to put the window

on top of all the other windows, is like moving the pieces of paper on the desktop. In

short, it is possible within Windows to control the surface of the screen the way you

control the surface of your desktop.

3.1.2 Windows and Multitasking

Windows is a multitasking operating system. As multitasking system, it is somewhat

unique in that it uses non-preemptive multitasking. Non-preemptive multitasking means that

each program running in the system retains use of the processor until it relinquishes it.

Windows - 11 -

Contral over CPU:

Application

Operating System

o =Running task

Figure 3.1 Non-preemptive multitasking

This differs radically from the type of multitasking done by other operating systems that

employ preemptive task switching based upon time slices. In preemptive task switching,

the operating system simply stops executing one program and moves on to the next, in a

cyclic way.

Control over CPU:

Application

Operating System I idJel A lidJe I B I idJel A I idJe I

o = Running task

Figure 3.2 Preemptive multitasking

So one of the most important rules that a Windows program must follow is to return

control to Windows when it is inactive. This allows Windows to grant the processor to

another task. If this is not done consequently, it is possible for a program to monopolize

the processor, effectively halting all other tasks l
•

3.1.3 Programming within Windows

Programs written for Windows do not directly access the hardware such as the graphics

display or the 1/0 ports. Windows virtualizes the hardware. A program written in Windows

will run with any hardware, such as video boards or printers, for which a Windows device

driver is available. The program does not need to determine what type of device is at-

IIt is announced that in the new version of Windows, 'Windows 95', preemptive
multitasking is implemented, which prevents these problems.

- 12 - Simplexys for Windows

tached to the system, as is shown in Figure 3.3. Windows performs this task. So the

programs written in Windows will run on almost every system, independent of the hard

ware installed.

Hardware

output control

Application

program

Figure 3.3 Position of Windows

For programming graphics, Windows includes a graphics programming language (calied

the Graphics Device Interface, GDI) that allows the easy display of graphics and formatted

text.

3.1.4 The message-driven architecture of Windows

When starting to write a Windows application, one must bear in mind that the application

will not have full control over the machine all the time. Instead, it is given control by

Windows a great number of times. In particular, Windows has control during the time the

machine is waiting for a user response. Communication between Windows and an applica

tion is performed by a message-driven architecture. It is Windows that calls your applica

tion. A Windows application waits until it is sent a message by Windows. The message

driven architecture is presented in Figure 3.4. If any kind of input occurs, Windows

receives this input. Within Windows this input is translated into a message.

Windows - 13 -

~
~. .

.........
.........

.tI...••.

0,~
...

,-....-------,

Windows

........

Message Queue
Application 3

~ Window
Application 3

................................

'f

Message Queue
Application 2

~ Window
Application 2

..........
..................

,J,:.•••

Message Queue
Application 1

~ Window
Application 1

Figure 3.4 Message driven architecture

This message is passed to the application through a special function that is calIed by

Windows. The messages sent to an application are stored in a message queue associated

with the application until they can be processed. This prevents that messages wiII be lost

because an application is busy processing another message. The message wiII wait in the

queue until the application is ready for it. Mter receiving the message, the application is

expected to take appropriate action. It is the message-based interaction with Windows that

dictates the generaI form of all Windows programs.

This architecture is different from a conventional program, running under DOS, where a

main part exists that is calIed once and does not return until program execution terminates.

Any functions or procedures in such a program are called directly by the main part or by

other functions. It is the program that requests such things as input and output.

- 14 - Simplexys for Windows

3.1.5 Windows and Dynamic-Link Libraries

A Dynamic-Link Library (DLL) is an executable module containing code or resources (see

'The Resource Workshop') for use by other applications or DLLs. Conceptually, a DLL is

similar to a unit in Pascal: both have the ability to provide services in the form of proce

dures and functions to a program. There are, however, many differences between DLLs

and units. In particular, units are statically linked, whereas DLLs are dynamically linked.

DLLs permit several Windows and DOS protected-mode applications to share code and

resources.

When a program uses a procedure or function from a unit, a copy of that procedure or

fuoction's code is statically linked into the program's executable file.

In contrast to a unit, the code in a DLL is not linked into the program that uses the DLL.

Instead a DLLs code and resources are in a separate executable file with a .DLL extension.

This file must be present when the client program runs. The procedure and function calls

in the program are dynamically linked to their entry points in the used DLLs. Another

difference between units and DLLs is that units can export types, constants, data and

objects whereas DLLs can export procedures and functions only.

A DLL does not have to be written in the same language as the calling application. This

makes DLLs ideal for multi-language programming projects. Using DLLs also economizes

the memory usage, because the DLL is loaded into memory only when it is needed.

For a module to use a procedure or function in a DLL, the module must import the func

tioo using an extemal declaration. In imported procedures and functions, the external

directive takes the place of the declaration and statement parts that would otherwise be

present. Imported procedures and functions use the far call model, but otherwise they

behave no differently than normal procedures and functions.

Windows - 15 -

3.2 A sample application

To illustrate the essential steps in the creation of a Windows application, a sample program

is used. The sample program creates a window like Figure 3.5 and uses the menu structure

of Figure 3.6.

Menu Opdon 1

Figure 3.5 Output window of example program

The available options are:

- Option 1: show the text 'Menu Option l'

- Option 2: show the text 'Menu Option 2'

- About: show the 'About box'

t--~Menu

~ Option 1
~Option 2

L....--~About

Figure 3.6 Menu structure

The following sections describe the program parts, necessary to run the sample program.

3.2.1 A Windows Skeleton

All Windows programs must perform some general steps. These steps are:

1. Define a window class

2. Register that class with Windows

3. Create a window of that class

4. Display the Window

5. Begin running the message loop

When a Windows program first begins to execute, it will need to define and register a

- 16 - Simplexys lor Windows

window class. Registering the window class tells Windows about the form and function of

the window. However, registering the window class does not cause a window to come into

existence. For registering a procedure named Register is introducedl.

{---Register--}
PROCEDURE Register(P: Pointer; Name: PChar; Menu: PChar);
VAR

WndClas: TWndClass; { Structure for class inforrnation }

BEGIN
IF hPrevInst <> 0 THEN Exit; { Check if instance is already available }
WndClas.Style := CS_HReDraw OR CS_VReDraw;{ Window will be repainted }

{ if size is changed }
WndClas.lpfnWndProc:= P; { Set pointer to handling routine}
WndClas.cbclsExtra := 0; { No additional allocation needed }
WndClas.cbWndExtra := 0; { No additional allocation needed }
WndClas.hInstance := HInstance; { Define handle to Instance }
WndClas.hIcon := LoadIcon(O, Idi_Application); { Define default icon}
WndClas.hCursor := LoadCursor(O, Idc Arrow); { Define default cursor}
WndClas.hbrBackground := GetstockObject(White_Brush);

{ Define default background }
{ Define menu structure }

{ Define class name }
WndClas.lpszMenuName := Menu;
WndClas.lpszClassName := Name;
IF NOT RegisterClass(WndClas) THEN
BEGIN

MessageBox(GetFocus, 'Can not Register Class', 'Error " MB_OK);
Halt;

END;
END;
{---Register END--}

Figure 3.7 Procedure Register

The procedure needs three parameters. The meaning of the parameters is as follows:

P: Points to a window function. This is the function that handles all the

input and output of the window class to be defined.

Name:

Menu:

Points to a null-terrninated string that specifies the name of the window

class.

Points to a null-terrninated string that specifies the resource name of the

class menu (as the name appears in the resource file). The resource file is

defined with the Resource Workshop of Borland Pascal, which will be

discussed later.

1All the code parts presented in this report are written in Borland Pascal

Windows - 17 -

When the procedure is called, the registration process is started. The procedure initiates a

window class with some common features and provides each window class with a pointer

to a routine that will handle all messages delivered to windows of that class.

After defining and registering a window class, the application can create a window of that

class using the Create function.

{---Create--}
FUNCTION Create(Name:PChar; Style:Longint; XI,YI,Width,Height:Integer;

Parent: Word): Word;
VAR

Wnd: Word; { Handle to window }
BEGIN

Wnd := CreateWindow(Name, Name, Style, Xl, YI, Width, Height,
Parent, 0, hInstance, nil); { Create window}

ShowWindow(Wnd, SW_ShowNormal); { Make window visible }
UpDateWindow(Wnd); { Repaint window}
Create := Wnd; { Give handle to function }

END;
{---Create END--}

Figure 3.8 Function Create

To caU the function Create seven parameters are needed. These parameters are:

Name: Points to a null-terminated string specifying the window class. It must be

a name registered with the Register procedure. This string also represents

the initial window name.

Style:

Xl:

Yl:

Width:

The style of the window to be created. This parameter can be a combina

tion of the window styles and control styles. Some often used styles are:

WS_HSCROLL (a window with a horizontal scroll bar),

WS_MAXIMIZEBOX (a window with a maximize button),

WS_OVERLAPPED (a window with a title and a border),

WS_SYSMENU (a window with a system-menu box in its title bar).

The initial X-position of the window. If this value is

CW_USEDEFAULT, Windows selects the default position for the win

dow's upper-left corner and ignores the y parameter.

The initial Y-position of the window.

The width, in device units, of the window. If width is

CW_USEDEFAULT, Windows selects a default width and height for the

window (the default width extends from the initial X-position to the right

- 18 - Simplexys for Windows

Height:

Parent:

edge of the screen, and the default height extends from the initial

Y-position to the top of the icon area). If the width is set to

CW_USEDEFAULT, Windows ignores Height.

The height, in device units, of the window.

The parent or owner window of the window being created. A valid win

dow handle must be supplied when creating a child window or an owned

window. An owned window is an overlapped window that is destroyed

when its owner window is destroyed, hidden when its owner is mini

mized, and that is always displayed on top of its owner window.

The function creates the window, shows it at the given position and returns a number that

can be used for referencing the created window.

Because Windows communicates with a program by sending it messages, all Windows

applications must establish a message loop. This loop reads any pending message from the

application's message queue and then dispatches that message back to Windows, which

calls the program's window function with that message as a parameter. This may seem to

be an overly complex way of passing messages, but it is the way that all Windows pro

grams must function. A reason for this is scheme is to force the application to return

control to Windows from time to time, thus supporting Windows' non-preemptive

multitasking. The task of a message loop is performed by the procedure Loop and pre

sented in Figure 3.9 .

{---Loop--}
PROCEDURE Loop~

VAR
Msg: TMsg~

BEGIN
WHILE GetMessage(Msg, 0, 0, 0) DO
BEGIN

TranslateMessage(msg)~

DispatchMessage(msg)~

END~

END~

{---Loop END--}

Figure 3.9 Procedure Loop

The procedure Loop initiates the message loop, which revolves around three functions:

GetMessageO, TranslateMessage °and DispatchMessage 0;

Windows - 19 -

GetMessage receives an event message from the Windows kemel. The message is passed

to TranslateMessageO, where any key-down messages are translated to their appropriate

ASOI equivalents. Finally the message is handed to DispatchMessage 0, which caUs the

window's associated handling routine, and passes in detailed information about the message

as arguments.

3.2.2 A window-handling routine

A window-handling routine is built around a case statement. The routine is caUed by the

procedure Loop and the posted message is passed as a parameter. A typical Windows event

message is composed of four fields:

a 16-bit handle to a Window, that points to the window the message belongs to

a 16-bit message type, which identifies the kind of message

a 16-bit and a 32-bit parameter, that contain data specific to the message.

Within the case statement, the messages which need a specific action, are stated. The

handling routine for the sample program is shown in Figure 3.10.

The routine shows some frequently used messages.

wm Command: This message is sent to a window when the user selects an item

from a menu, when a control sends a notification message to its

parent window, or when an accelerator keystroke is translated.

WParam specifies the control or menu item identifier.

wm LButtonDown: This message is sent when the user presses the left mouse button.

The horizontal position of the cursor is given by LOWORD(IParam)

and the vertical position by HIWORD(IParam).

wm Move: This message is sent after a window has been moved. The new x

position is (int) LOWORD(LParam) and the new y-position is

(int) mwORD(LParam).

wm Paint: This message is sent when Windows or an application makes a

request to repaint a portion of an application's window.

- 20 - Simplexys for Windows

{---HandlingRoutine---}
FUNCTION HandlingRoutine(Window: HWnd; Message, WParam: Word;

LParam: Longint): Longint; EXPORT;

CONST
X = 10;
Y = 10;

{ initial X position }
{ initial Y position }

AboutProc : TFarProc;

VAR
DC
PS

: HOC;
: TPaintStruct;

{ handle type for device context handles }
{ structure that can be used to }
{ paint the client area of the window }
{ Pointer to a procedure }

{ About }

{ Option 2 }

{ Option 1 }

Window moved }

Repaint of Window }

{ Left mouse button clicked }

{

{

BEGIN
HandlingRoutine := 0;
CASE Message OF

wm Command:
BEGIN

CASE WParam OF
idm_MenuOption1 :

BEGIN
strCopy (TextArray, 'Menu Option 1');
InvalidateRect (Window, NIL, TRUE);

END;
idm_MenuOption2:

BEGIN
StrCopy (TextArray, 'Menu Option 2');
InvalidateRect (Window, NIL, TRUE);

END;
idm About:

BEGIN
AboutProc := MakeProcInstance(@About, HInstance);
DialogBox(HInstance, 'AboutBox', Window, AboutProc);
FreeProcInstance(AboutProc);

END;
END;

END;
wm LButtonDown:

Exit;
wm Move:

Exit;
wm Paint:

BEGIN
DC := BeginPaint (Window, PS);

TextOut (DC, X, Y, TextArray, StrLen (TextArray»;
MoveTo (DC, X, Y+1S); LineTo (DC, X+9S, Y+1S);

EndPaint (Window,PS);
END;

wm Destroy: { Quit application }
BEGIN

PostQuitMessage(O);
Exit;

END;
END;
HandlingRoutine := DefWindowProc(Window, Message, WParam, LParam);

END;
{---HandlingRoutine END---}

Figure 3.10 A sample window-handling routine

Windows - 21 -

This message is sent when a window is being destroyed. It is sent

to the window procedure of the window being destroyed after the

window is removed from the screen. This message is sent first to

the window being destroyed and then to the child windows as they

are destroyed.

ad wm Command:

To start the program, it is assumed that a resource file is available with some menu options

(MenuOption1, MenuOption2 and About). Depending on the menu option last chosen the

text printed on the screen will be 'Menu Option l' or 'Menu Option 2'. More information

about creating a menu structure can be found in the section 'The Resource Workshop'.

If About is chosen, a dialog box is presented with some information about the program.

The dialog box needs its own window-handling routine. To initiate the dialog box, three

lines are executed. In the first line, AboutProc gets the pointer to the window-handling

function, called About. HInstance identifies the instance associated with the desired data

segment. The second line initiates the dialog box. The dialog box is called 'AboutBox'

(defined in the used resource file). It is a child window of the active window and the

window-handling routine is referenced by AboutProc. The instance is referred by

HInstance.

ad wm-Paint:

If this message is sent a device context De is defined. In this case, the device context is a

display context. The specified window is prepared for painting and the structure PS is

filled with information about the painting. Within this display context, one can write to

screen (TextOut) or draw graphics (LineTo).

ad wm_Destroy:

This message executes the command PostQuitMessage (0). The command posts a message

to Windows indicating that an application is requesting to terminate execution (quit).

- 22 - Simplexys fOT Windows

3.2.3 The Resource WorkShop

The Resource Workshop is used to define resources, such as menu's and dialog boxes

(Menu's are lists of commands the user can choose from and dialog boxes give the user a

way to interact with an application.). Resources contain data that define the visible portions

of a Windows program. The data is stored in the program's executable (.EXE) file, but

separately from the program's normal data segment. Resources are designed and specified

outside the program code, then added to the program's compiled code to create a program's

executable file. Within the Resource Workshop it is possible to create the resources inter

actively.

The resource file can be stored in two ways. As a file with the extension .rc, containing

ASCII text, or as file with the extension .res, containing a compiled version of the ASCII

text. To create an executable application, a compiled version of the resource file is needed.

To define the menu structure of the sample program, the resource script of Figure 3.11 is

used. The menu structure is graphically designed and the script is created by 'The Resource

Workshop'. Saving the menu structure with the extension .res creates the compiled resource

file.

SAMPLEMENU MENU
BEGIN

POPUP "&Menu"
BEGIN

MENUITEM "Option &1", 100
MENUITEM "Option &2", 101

END

MENUITEM "&About", 110
END

Figure 3.11 Resource script menu stnlcture

Because Windows application's resources are separate from the program code, it is possible

to make significant changes to the interface without even opening the file that contains the

program code. It is also allowed for different applications to share the same set of re

sources. To include a specific resource file in the Pascal code, the {$R FileName} direc

tive is used. FileName refers to the resource file to be used.

Windows - 23 -

3.2.4 The 'About Box'

The window-handling function of the dialog box is presented below.

{---About---}
FUNCTION About(Dialog: HWnd; Message, WParam: Word;

LParam: Longint): INTEGER; EXPORT;
BEGIN

CASE Message OF
WIn_InitDialog:

BEGIN
setwindowPos (Dialog, 0, 200, 100, 0, 0, SWP NOSIZE);
Exit; -

END;
WIn Command:

CASE WParam OF
idOk, id_Cancel:

BEGIN
EndDialog(Dialog, 1);
Exit;

END;
END;

END;
About := 0;

END;
{---About END---}

Figure 3.12 Window-hamlling routine dialog box

The structure of this window-handling routine is almost the same as the window-handling

routine presented in Figure 3.10 . The window-handling routine of a dialog box misses the

statement DetwindowProc, which caBs the default window procedure. The default window

procedure provides default processing for any window messages that an application does

not process. This function ensures that every message is processed. It should be caBed with

the same parameters as those received by the window procedure.

When the dialog box is initiated, the messages are sent to the window-handling function.

The first time this routine is called, wm_InitDialog will be executed. The command

SetWindowPos moves the window to the position (200, 100). Mter pressing the OK button

(idOK) or when the window is closed (id_Cancel), the dialog box will disappear.

The About dialog box is presented in Figure 3.13 This box is designed with the Resource

Workshop and saved as a .res file.

- 24 - Simplexys for Windows

Example program

belongs to document
'Slmplexys lor Windows'

codlng done by :

Johan de Bruin

Figure 3.13 About dialog box

3.2.5 The main part

To get a working example program, also some dec1arations and a main part are needed.

The code used to initiate the window and to start the message loop is given in Figure 3.14

After compiling all the code parts, the sample program is ready to run.

PROGRAM WindowsExample;
{ Sample program }
{ Johan de Bruin, February 1995 }

USES
winProcs, WinTypes, Strings;

CONST
idm MenuOption1 = 100;
idm=MenuOption2 = 101;
idm About = 110;

{ Used for handling Menu Option 1 }
{ Used for handling Menu Option 2 }
{ Used for handling About }

{ Resource file containing the menu definition }{$R Example}

VAR
ExampleWindow
TextArray

hWnd;
ARRAY [0 •• 13] OF CHAR;

{ Handle for Window }
{ Array used for storing }
{ some characters }

{---Main BEGIN--}
BEGIN

{Initialization of TextArray}
StrCopy (TextArray, ");

{Register Window Class}
Register (@HandlingRoutine, 'Sample Window', 'SampleMenu');
{Create Window}
ExampleWindow := Create('Sample Window', WS_SYSMENU,

10, 10, 300, 150, 0);
{Start MessageLoop}
Loop;

END.
{---Main END--}

Figure 3.14 Declarations and main part of example program

Windows - 25 -

3.3 Adding a Help system

A Help system provides the users with online information about an application. Creating a

Help system requires two skills: writing the Help text and programming the Help system to

ensure that it works properly with the application.

To the user, the Help system is part of the application, and consists of text and graphics

displayed in the Help window. To the programmer, Windows Help is a standalone Win

dows application. It is a program the user can run like any other application. The program

can call the WinHelp function to ask Windows to run the Help application and specify

which topic to display in the Help window. The topics of the Help system are stored in

text files that include special codes.

During the creation of a Help system, it is useful to pay some attention to the following

issues:

- The audience for the application: The audience determines what kind of information

must be available in a Help System and how the information needs to be presented.

- The content of the Help topics: The topics used in the Help system should be numer

ous enough and specific enough to provide the users with the help they need.

- The structure of the topics: Topics can be related hierarchically. Each successive step

takes the user one level down in the hierarchy of the Help system until the user

reaches the topic information.

Because users often know which feature they want help with, they can usually find

what they want faster using the search feature than they can by moving through the

hierarchical structure.

- The use of context-sensitive topics

Windows Help supports context-sensitive Help. When written in conjunction with

programming of the application, context-sensitive Help lets the user press Fl in an

open menu to get help with the selected menu item. Alternatively, the user can press

SillFf+Fl and then click on a screen region or command to get help on that item.

- 26 - Simplexys lor Windows

3.3.1 Designing Help topics

The appearance of the Help information to the users depends on the layout of the Help

topic. The Windows Help application supports text attributes and graphic images that can

be used to design the Help window.

Research on screen format and Help systems has produced generaI guidelines for present

ing information to users. Some results are summarized below:

- Use language appropriate for the audience the Help system is created for.

- Use a minimum of text. Studies have indicated that reading speed decreases by 30

percent when users read online text rather than printed text.

- Use short paragraphs. Online users become overloaded with text more easily than do

readers of printed material.

- Use whitespace to help group information visually. Whitespace is important to

making online text more readabie. Users tend to think there is more information on a

screen then exists.

- Use highlighting techniques judiciously. Using many devices will decrease the effee

tiveness of the visual presentation.

- Use graphics to support the explanation of visual events. Using appropriate images

can help to explain same elements of the application.

- Be consistent in your design. Consistent titIing, highlighting, fonts and positioning of

text in the window is essential to an effective Help system.

3.3.2 Access to Help

Users may access help from the Help menu, the Help key (Fl), or Help mode.

To enter Help mode, the user presses SIllFf+Fl, which changes the mouse pointer to the

Help pointer. To cancel Help mode, the user presses ESC.

In Help mode, the user positions the pointer over the interface element for which help is

desired. When the user clicks the mouse button, the Help window appears with information

appropriate to that element. Keyboard access to menu items is also available in Help mode.

Choosing a menu item with the keyboard in Help mode displays Help information for the

Windows - 27 -

menu item instead of initiating the item.

When using dialog boxes a Help command button can be provided in the dialog box.

To implement Help mode, the program must respond to Flor SHIFT+F1 and the help

cursor must appear, if necessary. The program code that performs this task is shown in

Figure 3.15.

WIn KeyDown:
IF WParam = vk Fl THEN
{ If Shift-Fl,-turn help mode on and set help cursor}

IF GetKeyState(VK shift) < 0 THEN
BEGIN -

Help := True~

SetCursor(HelpCursor)~

END
ELSE { If Fl without shift, call up help main index topic }
BEGIN

WinHelp(Window, HelpFileName, Help_Index, O)~

Exit~

END
ELSE { Escape during help mode: turn help mode off }
IF (WParam = vk Escape) AND Help THEN
BEGIN -

Help := False~

SetCursor (hCursor (GetClassWord (Window, GCW_HCursor»)~

Exit~

END;
WIn EnterIdIe:

IF «WParam = msgf_Menu) AND «GetKeyState(VK_Fl) AND $8000) <> 0»
THEN BEGIN

Help := True~

PostMessage(Window, WM_KEYDOWN, VK_RETURN, O)~

Exit~

END~

Figure 3.15 Code for entering Help mode

As long as the user is in Help mode, the cursor needs to be set to the help cursor.

Otherwise Windows will reset the cursor to the default cursor of the class. To perform this

task the code of Figure 3.17 is included. The helpcursor (Figure 3.16) is defined in the

resource file and loaded with the command:

HelpCursor := LoadCursor (HInstance, 'HelpCursor');

Figure 3.16 Help-cursor

- 28 - Simplexys lor Windows

WIn Setcursor:
IF Help THEN
BEGIN

SetCursor(HelpCursor);
Exit;

END;
WIn InitMenu :

IF Help THEN
BEGIN

SetcurSor(HelpCursor);
Exit;

END
ELSE
HandlingRoutine := 1;

Figure 3.17 Code for setting help-cursor

Finally the wm_Command of the window-handling routine has to be extended. If in Help

mode WinHelp must be called with the requested context.

WIn Command:
{ Was F1 just pressed in a menu, or are we in help mode shift+F1 ? }
IF Help THEN
BEGIN

CASE WParam OF
idm_MenuOption1,
idm MenuOption2,
idm=About: HelpContextId := wParam;

ELSE
HelpContextId := 0;

END;

IF HelpContextId = 0 THEN
MessageBox(Window, 'Help not available for this item',

'Help', Mb_Ok)
ELSE
BEGIN

Help := False;
winHelp(Window, HelpFileName, Help Context, HelpContextId);
Exit; -

END;
END
ELSE { if not in help mode }

{ old code of ~Command }

Figure 3.18 Extended version of wm_Command

The WinHelp function starts Windows Help and passes optional data indicating the nature

of the help requested by the application. The function uses four parameters.

The first parameter refers to the window requesting Help. The WinHelp function uses this

handle to keep track of which applications have requested Help. The second parameter

points to a null-terminated string containing the path and the name of the help file that the

Help application is to display. The third parameter is the type of help requested. If this

parameter is HELP_CONTEXT, context sensitive Help is available and the last parameter

Windows - 29 -

is used. H this parameter is HELP_CONTENTS, the Help contents topic is displayed. The

last parameter is ignored. H used, the last parameter refers to the requested Help topic.

3.3.3 Creating the Help topic files

Help topic files are text files that define what information is presented to the user when

using the Help system. The topic files can define various kinds of information, such as an

index to information about the system, a list of commands, or a description of how to

perform a task. Besides the specific text for the topics, a topics file contains control codes

that determine how the user can move from one topic to another.

The text files for the Help system need to be written in a Rich Text Format (RTF) editor,

which has the capability to create footnotes, underlined text, and strikethrough (or double

underlined) text that indicate the control codes. The RTF capability allows to insert the

coded text required to define Help terms, such as jumps, keywords and definitions. Word

processors like Word 6.0 or WordPerfect 6.0 can perform this task.

Normally a topic file contains multiple Help topics. To identify the topics within the file

and to control the structure of the file, some control codes are used:

• Hard page break separates the topics

• Pound sign (#) footnote defines a context string that uniquely identifies a topic.

Because hypertext relies on links provided by context strings, topics without context

strings can only be accessed using keywords or browse sequences

• Dollar sign ($) footnote defines the title of a topic. Titles are optional.

• Letter "K" footnote defines a keyword the user uses to search for a topic. Keywords

are optional.

• Plus sign (+) footnote defines a sequence that determines the order in which the user

can browse through topics. Browse sequences are optional.

• Strikethrough or double-underlined text indicates the text the user can choose to

jump to another topic.

• Underlined text specifies that a temporary or "lookup box" box will be displayed

- 30 - Simplexys for Windows

when the user clicks the mouse button or presses the ENTER key.

• Bidden text specifies the context string for the topic that will be displayed when the

user chooses the text immediately preceding it.

The last step in creating a Help function is to compiIe the created Help text. This task is

performed by the Help Compiler included in Borland Pascal.

The Help text created for the example is shown in Figure 3.19. Four pages are defined.

The first page contains the index, and allows jumps to the specific topics. The other pages

contain the specific topic information.

,.,......:-:--.,....---=--=- page 1_
#$j(Main Index

To get help on an item, click the item or underlined text.
To get help on Help, press F1.

The available options are:
option 1idm_MenuOptionl: Help for Option 1
2Pt~on 2idm MenuOption2: Help for Option 2
~~am_About: Help for About

• Main Index
$ Main-Index
J: Main Index
=r=--,...,...._--;- -"page 2
·$\(Option 1

Help Text Option 1.

• idm_MenuOption1
$ Option 1
J: Option 1
=r=--,...,...._-=- -J:Page 3
·$\(option 2

Help Text Option 2.

• idm_Menuoption2
$ option 2
J: Option 2
,...,.,:-;----,,....- ,page 4
#$\(About

Help Text About.

• idm About
$ About
J: About

Figure 3.19 Help text for example
(!talie is used to show the bidden text)

4 The Windows version of Simplexys

In this chapter the created program parts for the Windows version of Simplexys will be

discussed. First the shell, which controls the creation, testing and debugging of an expert

system, is presented. Than the expert system and the debug facilities are discussed. Finally

the introduced programming elements are explained.

4.1 The Shell

The main goal of the shell is to assist the expert system programmer in creating, testing

and debugging the expert system. To fulfill these requirements, a list of necessary steps is

needed. To come to a good design, it is essential to know in what order the steps are

handled. The steps necessary to develop an expert system are depicted in Figure 4.1.

File

Edit

Options

Compile

Run

Debug
Figure 4.1 Necessary steps to
develop an expert system

Figure 4.2 Derived
menu structure

- 32 - Simplexys for Windows

The menu structure to execute these steps is defined in Figure 4.2. The item Compile

combines rule compilation and compilation of the expert system. When the shell is started,

the window of Figure 4.3 appears. lf the items are executed from left to right, all the

necessary actions are taken to create an expert system.
••••M'......- ..- ~""" _ -~__~~ ~ .

Simplexys Shell - (COINS.RUL}
file Edit .o.ptions ~ompile Bun D.ebug

Figure 4.3 Window showing the menu structure

lielp

Item File:

Activating File shows a submenu with the options New, Open, SaveAs

and Exit. New creates a new rule base. Open and SaveAs show the dialog

boxes for selecting and saving a file and Exit leaves the program. The

used dialog boxes are the common dialog boxes. These dialog boxes are

provided by Windows and used in almost every Windows program. Mter

choosing a rule base, the filename is presented in the window title be

tween brackets.

New

Open

SaveAs

Exit

To use a common dialog box the following steps have to be taken.

- Deciare a structure to hold information about a file and an array to hold the filename.

OpenFile : TOpenFileName;

FilePathName : Array [0..128] of Char;

- Initialise the structure with arguments as available data block, owner window, default

extension, default path name, structure sizes and an array that contains or receives

the chosen filename.

- Call the common dialog box with the created structure. To do this, the following

commands are available:

GetOpenFileName(OpenFile)

GetSaveFileName(OpenFile)

for opening a file

for saving a file

The exact program code is shown in Figure 4.4 Mter selecting a filename, the filename is

stored in the array FilePathName.

The Windows version ofSimplexys - 33 -

FillChar (OpenFN, SizeOf(TOpenFileName), #0);
strCoPY (FilePathName, '*.*');

{ initialize structure }
{ initialize filename }

END;

WITH OpenFN DO
BEGIN

hInstance :=
hwndowner :=
IpstrDefExt :=
IpstrFile :=
IpstrFilter :=
flags :=
IStructsize :=
nMaxFile :=

HInstance;
Window;
'rul' ;
FilePathName;
'* * I.. ,
ofn FileMustExist;
sizëof(TOpenFileName);
SizeOf(FilePathName);

{ datablock containing template }
{ owner window of dialog box }
{ default extension }
{ buffer that contains filename }
{ file filter}
{ initialization flags }
{ length of the structure }
{ size of the buffer pointed }
{ to by the IpstrFile }

GetOpenFileName(OpenFN); { invoke dialog box }

Figure 4.5 Program code to invoke a common dialog box

item Edit:

If a rulebase is active and the item Edit is chosen, the standard editor of Windows is

started. A new window is created and the selected rulebase is opened and can be changed.

item Options:

Activating Options shows two new items. The first item, System, shows

the dialog box of Figure 4.5. Here the options for the expert system

can be set.

In this dialog box three different types of buttons are used:

LSystem

CDirectories

I OK I

o

D

A command button contains a label that specifies the action or response repre

sented by that button. The user can activate the button by clicking the mouse.

An option button represents a single option in a limited group of mutually

exclusive options. Within such a group only one option can be selected. A

black dot denotes the selected option.

A check button controls options that can either be on or off. A 11' appears when

the option is selected.

- 34 - Simplexys lor Windows

Figure 4.7 Dialog box showing system options

After activating or deactivating an item, Windows updates the screen automatically. When

the dialog box is closed, the settings need to be checked. To do so, the following steps are

needed: - identify the object (item in dialog box)

- check the state of the object

- repeat for every object

The command to check the state of an item is IsDlgButtonChecked. The command returns

the value 0 if the item is not checked, and ~ 0 if the item is checked.

IsDlgButtonchecked (Dialog, { identifies dialog box}
id_DumpFile) {identifies item 'Make dump file' }

The second item provided by Options is Directories. Activating Directories shows a dialog

box to set the directories, used by the Simplexys tooibox. Specifying the directories

incorrectly can cause error messages.

To store the settings of System and Directories, an initialisation file is used. Because

Windows uses initialisation files frequently, some commands are provided to use these

files: WritePrivateProfileString, GetPrivateProfileString and GetPrivateProfilelnt.

The Windows version ofSimplexys - 35 -

item Compile:

The item CompiIe starts the compilation process. First the Rule compiler is started. The

Rule compiler is written for a DOS environment. Windows allows DOS programs to run in

the 'multitasking' environment, if a so called pif file is created. In this file some system

parameters are defined. These parameters provide Windows information about the memory

usage and the priority of the program. To start the program, Windows uses the

ShellExecute commando To start the rule compiler the following command is needed:

ShellExecute (Window,
'open' ,
'Ruc41.pif',
Pararns,
SimplexysPath,
SW_MINIMIZE);

{ owner window }
{ operation type }
{ file to open }
{ string containing paramaters of file }
{ string containing default directory }
{ window is minimized }

When a program is started, a window is created. This window is present as long as the

process is running. Mter the process has stopped, the window disappears. The availability

of the window indicates that the process is still working. Testing the availability of the

window is performed by the FindWindow commando The command returns 0, if the

window is not available. To check if rule compilation has finished, the following command

is used.

FindWindow (NIL,
'RUC41');

{ search for all window classes }
{ name of window to look for }

After running the rule compiler, the semantics checker and the protocol checker can be

executed. To run the check programs, the Pascal code of the programs has to be compiled

with the qqq-files, containing specific information about the expert system. The Pascal

compiler is a command Hne compiler and specific to the compilation, options are set. To

start the compilation process, a batch file is created and started. Checking the progress of

the process is performed by checking the availability of the window.

The generated check programs are executed as described for the rule compiler. If no errors

are detected, the expert system and the debug system can be built. The inference engine,

together with the qqq files, must be compiled. This is also done with the Pascal compiler.

A batch file, containing the specific compilation options, is created and started.

- 36 - Simplexys for Windows

If the compilation processes have run without error, the menu-items Run and Debug

become active.

items Run and Debug:

With Run the created expert system is started and with Debug the debug facility is started.

The structure of these parts is discussed later.

4.1.1 Error handling

During the development of an expert system several errors can occur. Some of these errors

occur due to errors in the defined rule base (protocol or semantics errors) and others due to

errors in the included Pascal code.

If the rule compiler detects an error, the compilation process is stopped and the editor is

started. A message box appears showing the error and the offending line, and the cursor

jumps to this line. After editing the rule base, the editor must be closed and the compila

tion process can be started again.

Other errors in the rule base can be detected during tests done by the semantics checker

and the protocol checker. During execution these check mechanisms produce a textfile with

information about the performed checks. The results from these tests are presented in a

dialog box like Figure 4.6.

In the left upper corner some statistics, created by the rule compiler, are shown. The other

information is about the tests. To show the result of the tests, a green t/ (test passed) and

a red X (test failed) are used.

The Windows version ofSimplexys - 37 -

Figure 4.8 Dialog box showing results of perfonned checks

Drawing the markers in the dialog box is not directly possible. The dialog box contains

several objects as text linest buttons and group boxes. To draw a marker first the objectt

which needs a markert must be initialized. Then a brush needs to be defined with the

selected color. This brush must also be set active. Now the marker can be drawn and the

object can be released. The code performing these tasks is shown in Figure 4.7.

hctrlBlock := GetDlgltern (Window, idNumber);
hdcon := GetDC (hCtrlBlock);

hndPen := CreatePen (PS SOLID, 2, RGB (255,0,0»;
selectObject (hdcon, hndPen);
MoveTo (hdcon, 2,2);
LineTo (hdcon, 9,13);
MoveTo (hdcon, 2,14);
LineTo (hdcon, 9,2);
DeleteObject (hndPen);

ReleaseDC (hCtrlBlock, hdcon);

Figure 4.9 Code for drawing markers

{ identify object }
{ Select object }

{ Create red pen }
{ select pen }
{ Draw X marker }

{ Release pen }

{ Release object }

In the presented codet hCtriBlock is a handle to an objectt hdcon is a handle to a device

context (in this case a display) and hndPen is a handle to a type for pen drawing tools.

- 38 - Simplexys for Windows

When a test has failed and the red X marker is shown, the user can click on that error to

get specific information about it. H a critical error is found, the button Exit appears, as

shown in Figure 4.6. If no critical errors are detected, this button starts the building of the

expert and the debug systems.

Detecting and handling errors in the Pascal code, included in the rulebase, is more diffi

cuIt. The Pascal code is transferred to several qqq-files. These files are included in the

inference engine and compiled by the command line Pascal compiler. The results of this

compilation process are printed directly to screen. To check the results of the compilation

process, the output is redirected to a file. This file is checked and if an error has occurred,

the file is presented in a window. The file containing the mIe base is also opened and

ready for editing. Because the Pascal compiler reads the Pascal code from the qqq-files, it

is not simply possible to jump to the line with the error. To solve this problem, the mIe

compiler could provide the qqq-files with information about the linenumbers as used in the

original rul-file.

4.1.2 Introduced routines and variables

To fulfill the tasks described, a wide range of constants, variables, types, functions and

procedures is needed. They will be summarized below, besides the already mentioned ones.

The introduced constants are:

Timer/nterval sets the interval time used by some timers ~o test a process.

A set starting with id, idm, Option and Dir identifies menu items and objects in

dialog boxes.

The introduced type is:

ErrorLst = RECORD
Text STRINGi
ErrorType INTEGERi
Next ErrorLstPtri
Prev ErrorLstPtri

ENDi

{ Error message }
{ Type of error }
{ Pointer to next line }
{ Pointer to previous line }

AllCompiled:

BuildOnly:

The Windows version ofSimplexys - 39 -

The meaning of the variables is:

AetivityWindow, E"orWindow and ShellWindow are handles to windows.

AetionMessage contains the message for displaying in the activity window.

WaitCursor and HelpCursor are handles to the Wait- and the Helpcursor icons.

Help is TRUE if help-mode is activated, otherwise it is FALSE.

SerollBar defines the position of the scrollbar.

Lines defines the number of visible lines.

State defines the compilation state. Possible states are:

NewFile: The selected rulebase is new or has been changed. The rule

compiler must be executed.

Nothing has changed. No compilation is needed.

The rulebase is unchanged, but the system settings are

changed. The expert system and the debug system must be

recompiled.

A set of strings to store various file and path names.

A set of booleans to store the settings of the debug options.

A set of pointers to handle the errorlist.

The function of the routines are:

ErrorWindowProe, CompilerStatsProe, ShellWindowProe, AetivityWinProe, Compile

WinProe, OptionsWinProe and DireetoryWinProe are window-handling routines.

GetDefaults and WriteDefaults are used to read and write the settings used by the

Simplexys Tooibox.

GetOptions and SaveOptions are used to read and write the debug options.

GetFileName and SaveFileName are used to handle the Open File and the Save File

dialog boxes.

TestFile is used to check if a file is available.

SearehError checks if an error has occurred during rule compilation or during the

protocol or semantics check.

CompileError checks for errors generated by the Pascal compiler.

ReadCompilerlnfo reads the information generated by the rule compiler.

InvalidateWindow updates the screen partially.

- 40 - Simplexys for Windows

4.2 The Expert System

4.2.1 The DOS-version

The existing DOS-version of the expert system is built around the program part sim41.pas.

This file contains the inference engine. Mter compiling the inference engine and the qqq

files containing specific information about the expert system, the complete system is built

and ready to run.

4.2.2 The Windows-version

The structure of the Windows version can be found in Figure 4.8. The figure shows three

blocks.

Start -- -Write
~~ &

.... Ask Text- -
Figure 4.10 Windows structure of Expert System

H the block 'Start', together with the qqq-files, is compiled the system is ready to run. The

block 'Start' contains the window-handling routines and the inference engine. The block

'Ask' contains the input routines and the block 'Write & Text' contains functions and

procedures to write output to a file and to store text in a buffer. The arrows indicate that

there is communication between the blocks.

The block 'Start'

The block 'Start' consist of two files. The first file, startup.pas, contains the window

handling routine. During compilation, the inference engine (sim41.pas) is included. When

The Windows version ofSimplexys - 41 -

the program is started, a window Iike Figure 4.9 is created.

air FAlSE
Deletc Buffer eathers FALSE

1y FALSE
Dump resuhs ualuation of AHIMAl. TIME • •

f -) false (D) · the anilUI has hair
ExIt ·f -) false (D) the anilUI has feathers

1&: undef -) false (D) : the aniaal can fly
19: undef -) false (D) · it can fly weIl·21 : undef -) false (D) · RaMal·21&: undef -) false (D) : bird
36: undef -) false (D) · it is an (identifiable)·37: undef -) false (D) · it is an (identifiable)·38: undef -) false (D) : it is an (identifiable)
I&D: true =) true (1) : analyzing animals

Figure 4.11 Sample Simplexys output window

The available options are:

Start Simplexys: Restart the application.

Delete Buffer: Clear display buffer.

Dump results: Give an overview of reached goals

Exit: Closes application.

Info: Shows information about the expert system.

plexys

Start Simplexys

Delete Buffer

Dwnp results

Exit

Info

All the output generated during the inferencing process is directed to the window. To be

able to scroll through the generated output, the window provides a scrollbar. The routines

for handling this scrollbar are a part of the window-handling routine belonging to the

window.

The file sim41.pas has changed a Iittle. The routines to handle input are not included any

more. The routines are called from the block 'Ask'. Also the main part of the DOS-version

is transferred to a procedure in the Windows version. This procedure is started from the

window-handling routine in startup.pas.

- 42 - Simplexys tor Windows

The new types, variables, and routines introduced in startup.pas are:

Variables:

SimplexysWindow is the handle to the output window.

Lines holds the number of Hnes visible in the output window.

NumberOfEntries holds the number of Hnes in the text buffer.

Scrollbar holds the index of the scrollbar.

Running is TRUE, if the Simplexys system is active and FALSE if the Simplexys

system is inactive.

FirstEntry, LastEntry and PointedEntry are pointers to the first, the last and the

actual Hne in the text buffer.

TextString and Convert are variables used for creating strings to use with WritText.

Types:

List =
Text
Next
Prev

END;

RECORD
STRING[SO];
Listptr;
Listptr;

{ Storage for text }
{ Pointer to next line }
{ Pointer to Previous line }

The introduced functions are:

Simplexys: This routine starts the inferencing process.

The routines defined in the blocks 'Ask' and 'Write & Text'.

The Block 'Ask'

The routines used for data input during the inferencing process are stored in the block

'Ask'. This block is a DLL. The defined routines are called by the block 'Start'.

Creating a separate DLL for the ask-routines makes it possible for the programmer to

change the appearance of the routines without changing the main expert system. Several

sets of input routines can be used, without compiling the expert system again. Only the

DLL containing the ask-routines needs to be replaced.

The Windows version ofSimplexys - 43 -

When the block 'Start' initiates the ask-routines, a pointer to the function in the DLL is

provided. The created ask-routines use dialog boxes like Figure 4.10. For input some

pushbuttons are provided, but it is also possible to use the keyboard. The dialog boxes,

created for the ask-routines, are stored in the file ask.res.

A5Kvai

~e anlmal has halr

Figure 4.13 Ask input box

Introducing a DLL for the ask-routines gives also an advantage when using multiple

programming languages. The functions and procedures need to be defined once in the DLL

and can be used in all the programming languages. So when the C-version of Simplexys is

adapted to Windows, the ask-routines designed for the Pascal version can be used without

any changes.

The functions and procedures, defined in the DLL 'Ask' are summarized below:

InitAsk: initializes the DLL with the debug options used in Sim41 and passes the

handle of the output window to the DLL

ASKyn: ask-routine with answers yes or no

ASKval: ask-routine with answers true, possible and false

ASKint: ask-routine requesting an integer value

ASKword: ask-routine requesting a word value

ASKreal: ask-routine requesting a real value

The block 'Write & Text'

The output to screen and file is performed by the block 'Write & Text'. This block is a

DeleteEntries:

WriteFile:

OpenWriteFile:

CloseWriteFile:

- 44 - Simplexys for Windows

DLL and can be accessed by the blocks 'Start' and 'Ask'. The routines cannot be stored in

the part 'Start', because 'Ask' must have access to them also (for a DLL it is not possible to

use functions or procedures of a calling part). To store text in the used textbuffer a linked

list is created in the DLL Text. The command WriteText (Text: String) is used for storing

information in the textbuffer. The pointers to the first and last line in the buffer are passed

to the block 'Start' when a display command is sent.

The WriteText command does not perform a repaint of the screen, because some actions

write more lines at once. If a repaint of the screen would be provided after every com

mand, the screen would start to flicker. Requesting a repaint of the screen is done by the

procedure InvalidateReet (Window, Reet, Erase). The parameter Window identifies the

window that needs to be repainted. Reet points to a structure that contains information

about the part that needs to be updated. If Reet is NIL, the whole window is updated.

Finally Erase specifies whether the background is to be erased. If Erase is TRUE, the

background is erased, otherwise the background remains unchanged.

The DLL 'Write & Text' exports the following functions and procedures:

InitText: Passes the handle of the output window to the DLL.

WriteText: Puts a string in the text buffer.

GetEntries: Gets a pointer to the first and the last entry in the textbuffer and

gives the number of lines in the buffer.

Deletes all the entries in the buffer.

Writes output to file.

Opens the output file.

Closes the output file.

4.2.3 Memory usage

When the DOS- and Windows-version are compiled, the sizes for data- and codesegment

of table 1 are created.

The Windows version ofSimplexys - 45 -

Table 1 Data comparison DOS and Windows version

animals.rul coins.rul
Rulebase

DOS Windows DOS Windows

Code segment 15728 15419 16240 17936
(in bytes)

Data Segment 5168 4964 2572 2368
(in bytes)

The knowledge bases animals.rul and coins.rul are small examples with 40 and 7 mies.

The sizes for DOS are obtained by compilation of the file sim41dos.pas, which creates an

executable DOS-file, and the sizes for Windows come from the file startup.pas, which is a

Windows application.

- 46 - Simplexys for Windows

4.3 The Simulate and Explain facility

4.3.1 The DOS-version

In the DOS-version of Simplexys the simulate and explain facility are separate programs.

The structures of these programs is shown in Figure 4.11.

Simulate facility
simu14

~ dumpbool
~ debug

~ debugmod

Explain facility
explain

~debugmod

Figure 4.14 DOS-structures of Simulate and Explain facility

The simulate facility consists of the files simul4, dumpbool, debug and debugmod. The

explain facility consists of the files explain and debugmod. The files simul4 and explain

are the main parts. They include the other files.

The file simul4 provides the inference engine. The file dumpbool contains the procedures

and functions to simulate the process with the data stored in the dumpfile. The file debug

contains the routines for tracing a simulation block and the file debugmod contains the

routines for changing the display options and explaining the evaluation structure of the

rules. This file also includes the routines for handling keyboard input. lt controls the

different processes and appropriate actions are taken until the program is finished. Finally,

the file explain makes it possible to examine Simplexys rulebases.

To simulate a specific expert-system, some qqq-fiIes (rinfo.qqq, ruses.qqq, options.qqq,

rdodo.qqq, rtest.qqq and hist.qqq) and the file simplex.sav with information about saved

runs are needed. To use explain, the file rinfo.qqq is needed. Mter compiling the files

simul4 and explain, the simulate facility and the explain facility are created and ready to

run. For more details see [Philippens, 1990].

The Windows version ofSimplexys - 47 -

4.3.2 The Windows-version

In Windows the simulate and explain facilities are combined into a single program. The

structure of the Windows program is shown in Figure 4.12.

startsim

simu14

~ dumpbool

~ debug
~ debugmod

Figure 4.15 Windows-strueture of simulate and explain facility

The program is started by the file startsim. This part initializes the used window classes

and makes some of them visible. Also the message loop is started. Information about the

used menu structure and the used dialog boxes is stored in the file simul.res. The part

startsim handles all user input and output to screen. It also controls the simulate and

explain processes.

The files simul4, dumpbool, debug and debugmod are placed in a DLL. Using a DLL

gives the advantages of an own data segment. In the DLL, the data segment is used to

store data for the simulate and explain processes. The variables needed to provide input

and output are declared in startsim.

When the program is started, a window like Figure 4.13 appears.

Four menu items are shown:

Simulate: After selecting the rules to examine, the simulation
process is started

Explain: Two options are available: displaying rule information
or displaying tree information.

Options: Settings of simulation time and some screen options
can be changed.

Exit: Quits the program.

Simulate

Explain

Options

Exit

- 48 - Simplexys lor Windows

Simulate Window
.simulale Explaln 2ptlons ExIl Help

• · • • · , I I , • , • ,
39: READYI · · I · ·· ·: · ·:.: • ·• • • , ·• , , · ·:, · • I I , I , I I , · •• • , · · · ·· ·· ·, •I • , • , ·, , · ·, ·, • 39: READY• • · I • I , · ·, • I , · •• • • • I I , · ·, I , , · •• • , • · · ·, ·· , · I I , • xx:xx:xx·• , , · , • c , · c ·· ·, •·• I ·, I • · I • · I I ·· •: c · ·I • , • · , · ·c ·• , , · •, ·• ·I · I ·, I · ·I ·I I , · , •

- True - Posslble Time 00:00:00- False- Undeflned

Figure 4.17 Options of showing tracer information

item Sinlulate:

Activating simulate starts the simulate facility. This options is only active if the file

simplex.sav is available. First a dialog box like Figure 4.14 is presented. This dialog box

shows specific rule information. By changing the rulenumber or using the buttons « and

», a specific rule can be displayed. The rule is selected by activating the OK button.

After selecting some rules, tracer information about these rules is shown.

Figure 4.18 dialog box showing rule infonnation

It is possible to show the rule value of a single run in two ways. First, the value of a run

is represented by a color. Every possible value has a own color. A block of several runs

appears as a single line with changing colors. The other option shows the value of a rule

by changing the position of the Hne. The height is an indication for the value. These

display options are shown in Figure 4.13.

item Explain:

Activating the item explain makes it possible to show rule information or to show tree

information. To show rule information, the dialog box of Figure 4.14 is used. Activating

the OK button returns to the main menu. Selecting a rule is done as described for the

The Windows version of Simplexys - 49 -

option simulate.

To show tree information, a separate window is used. This window includes a scrollbar to

view large trees. To store tree information, a linked list with pointers is used.

24""'---rAHD - 37

~·rR
3S
~2

iW,OR
:nJ

- 38

Figure 4.19 Window for showing trees
The affeeted ndes are represented by their mle
number. To evaluate mIe 37, mIes 24 and 33 or
34 or 35 or 32 need to be evaluated.

Every Hne of the tree is stored in a record. Using this structure makes it possible to store

tree information about several rules, without decreasing the size of the datasegment. The

routines for using the scrollbar are included in the window handling routine.

item Options:

This option allows the user to define some settings. 'Block Options' allows to select the

part that needs to be displayed in tracer mode. 'Screen options' allows to select the way of

displaying tracer information (by color or by Hne) and how many rules are examined at the

same time. Finally, 'Explain Window' enables the window to show tree-information. If

tracer information is shown, clicking on a rule shows the tree-information about that rule.

4.3.3 Changes in the DLL

In the DOS version simul4 was an executable program with a main part. In the Windows

version, this part is moved to a DLL. The main part of the DOS program is transferred to

a function, called Simplexys.

- 50 - Simplexys lor Windows

The control over the several processes is placed in the part startsim. Also the output to

screen is provided by that part. The program parts that provide screen output and perform

process control are not needed any more in the DLL. To specify the working mode a

variabie Mode is introduced. Setting this variabie makes the specific routines for the

requested action active. The values used to set Mode are shown in table 2.

Tabie 2 Values of variabie Mode

Mode Function

Mode Tracer Get tracer information of selected ruie

Mode_Tree Show tree of selected ruie

Mode End End application

Information created in tracer mode was stored in an array and short mie information was

directly printed to screen. Because the DLL does not perform screen output any more, it is

not necessary to store information about more than one rule. The array is deleted and all

the information created to show tracer info is stored in a record.

H a mie needs to be examined, the procedure Simplexys is called with the variabie Mode

set for the requested action. When the asked information is created, the record is trans

ferred to startsim. The created data is not needed any more in the DLL. If more mies need

to be shown, the procedure Simplexys must be called for every rule. The data, used to

display more mies is stored in startsim.

To be able to create all the information and to pass this information to the module

startsim, some new constants, variables, types, functions and procedures are introduced.

The usage of the constants is as follows:

Mode_Tracer, Mode_Tree and Mode_End are used for setting the operation-mode.

SizeBlock determines the maximum number of runs in a block.

The Windows version ofSimplexys - 51 -

The meaning of the variables is:

BlockCount determines the simulationblock that is in process.

SimulationBlock points to the simulation block the tracer asked for.

ColorOfl'ext stores the actual color of the text. This makes it possible to show the

value of a rule by color.

ShowRule holds the rulenumber whose information is asked for by startsim.

PointedRun holds the number of the run in the actual block.

Mode holds the operation mode of Simplexys.

Convert, ConvertString and ConvertPChar are used for building a string to show

with a MessageBox.

GlobalWindow is the handle to the main window in startsim.

Tracer/nfo is the record in which the tracerinformation is stored.

The introduced types are:

block }
LONGINT;
STRING[25];

Bist
Info

END;

TracerRec = RECORD { storage of Tracer Info }
id INTEGER; { Rule Number }
Values ARRAY [O •. sizeBlock] OF ShortInt;

{ TracerValues of actual
{ Bistory information }
{ short RuleInformation }

TreeBuf = RECORD
Text STRING[SO];
Color ARRAY [1 •• S0] OF

Next
Prev

END;

TreeBufPtr;
TreeBufPtr;

{ storage for line of tree }
{ string for line }

INTEGER;
{ Character color }
{ Pointer to next line }
{ Pointer to previous line }

The new introduced procedures and functions are summarized below. Most of the routines

are defined to allow startsim having access to variables dec1ared in the DLL.

Simplexys: Starting the process to build tracer or tree information.

GetOptions: Get the options used by the procedure Simplexys.

SetOptions: Set the options for use with Simplexys.

SetShowRule: Sets the rule whose information is asked.

GetNumberOfRules:

GetRule/nfo:

GetTracerInfo:

Gets the number of rules used in the expert system.

Gets the rule information of the rule pointed to by showrule.

Gets the tracer information of the rule pointed by showrule.

- 52 - Simplexys for Windows

GetProees:

SetWindow:

SetPointedRun:

Gets number of simulated runs in actual block.

Passes handle of main window to DLL. So MessageBoxes can

be shown.

Sets the number of the run in the actual block whose infor-

mation is wanted.

GetTimeOjRun: Gets the time of the pointed run in the actual block.

SetSimulationBloek: Sets the simulation block whose information is wanted.

GetMaxBloeks: Gets the maximum number of blocks in the simulation pro-

cess.

SetMode:

WriteTreeBuf.

WritelnTreeBuf.

Sets the operation mode for Simplexys.

Adds a string to the open Hne of the TreeBuffer.

Adds a string to the open Hne of the TreeBuffer and opens a

new Hne.

4.3.4 Memory usage

When the DOS- and Windows-version are compiled the sizes for data- and codesegment of

table 3 are created.

Table 3 Data comparison DOS and Windows version

I I
animals.rul coins.rul

Rulebase
DOS Windows DOS Windows

Code segment 42460 29026 42544 28929
(in bytes)

Data Segment 25364 18098 19070 13422
(in bytes)

The sizes for DOS are obtained by compilation of the DOS file simuI4.pas, which creates

an executable file, and the sizes for Windows come from the changed file simuI4.pas,

which creates a DLL.

The Windows version ofSimplexys - 53 -

4.4 New programming elements

When programming a rulebase, a wide range of commands can be used. These commands

are provided by the Simplexys language or by the used programming language. The

creation of a rulebase for a DOS or a Windows environment differs only in the way input

and output to screen is managed.

To get input, the Simplexys language provides some ask-routines. These routines are

defined for both the DOS version and the Windows version. To usage of these routines is

independent of the environment. During compilation it is defined which set of routines

must be used.

The output to screen is more difficult. Within the DOS version, Write and Writeln are used

for output to screen. The parameters for these commands can be strings and/or numbers.

Type conversion is provided automatically.

In Windows, the above mentioned commands have no function. To write something to the

output window, the command WriteText (TextString: String) is defined. Because the used

parameter is a string, the programmer must take care of the necessary type conversion. It is

also possible to define a new window. The screen handling is performed by the window

handling routine of the new window.

The created user interface is suited to develop both Windows and DOS applications. To

combine both versions in a single rulebase, the {$IFDEF} compiler statement of the Pascal

compiler can be used. When compiling a DOS system, the DOS directive is set. For a

Windows system, the WINDOWS directive is set. The code specific for DOS is placed

between {$IFDEF DOS} and {$ENDIF} and the code specific for WINDOWS is placed

between {$IFDEF WINDOWS} and {$ENDIF}. Using this technique, universal rulebases

can be defined.

After successfully developing an expert system, the system needs to be exported. The files

needed to run the created expert system are summarized in table 4.

- 54 - Simplexys lor Windows

Table 4 Files belonging to expert system

Files Function

DOS sim41dos.exe executable expert system

Windows startup.exe executabie, containing expert system

write.dIl dIl containing write routines

text.dIl dIl containing text routines

ask.dIl dIl containing ask routines

Using the debug option 'dump results', the file simplex.sav is created. This file is needed to

run the simulate facility. The structure of the file is independent of the used environment.

This makes it possible to examine the results of both versions with the Windows simulate

facility. The files needed to run the simulate and explain facility are shown in tabIe 5.

Table 5 Files belonging to debug system

IFiles I Function

startsim.exe executabie, controlling the debug processes

simu14.dIl dIl, containing the debug system

bwcc.dIl dIl, cont~ining custom classes

..1 ..1 .

5 Conclusions and recommendations

With the Windows version of Simplexys it is possible to develop expert systems specially

suited for the Windows environment. To create these systems, a user interface is imple

mented to run the tools of the Simplexys tooibox. The user interface allows an easy access

to the rulebases and editing these rulebases. Further the rulebases can be compiled,

checked, executed and debugged. To reach flexibility, it is also possible to develop expert

system running in a DOS environment. To provide the user with information about the

menu commands, a context sensitive help-function is implemented.

The inference engine has changed a little. Within Windows, input and output is handled

differently. To be independent of the environment (DOS or Windows), the routines for

handling input are defined for both. During compilation, the required set of routines is

used.

The input routines for the Windows version are placed in a DLL. This makes the routines

accessible for other programming languages too. When the C-version of Simplexys is

adapted to Windows, these routines can be used, without any changes.

The debug utilities are combined into one program. The created information is stored and

presented graphically. In order to have no performance decrease (smaller data segment),

the debug facilities are placed in a DLL. The routines for displaying and handling the

several debug processes are placed apart. To exchange data a procedural interface is used.

In order to improve the Windows version of Simplexys some recommendations can be

made:

- The created Windows expert systems are specially set up for Windows. During

development of an expert system, some processes use DOS programs (Rule compiler,

additional checkers). These programs run in a so called DOS-box. To make the

tooibox more efficient, these processes can be adapted to Windows.

- 56 - Simplexysfor Windows

- To give the user more support while developing an expert system, the help function

can be extended with references about the Simplexys language.

- To simplify finding errors in the rul-file, the rule-compiler could provide the qqq

files with information about the original linenumbers in the rul-file. Mter detecting

an error in a qqq-file, the information about the linenumbers provides sufficient

information to find the line with the error in the original rul-file.

- Because Borland Pascal allows only a data segment of 64 kb, the additional check

programs (semantics and protocol checker) cannot test large mie bases. Because C is

more flexible in memory management, it could be possible to perform these checks

with a C program.

Appendix A

References

Blom, J.A

The Simplexys Experiment: Real time expert systems in patient monitoring

Thesis: Eindhoven University of Technology, 1990

Blom, J.A and G.A. van Poppel

SIMPLEXYS Reference

Faculty of Electrical Engineering, Eindhoven University of Technology, 1993

Internal manual

Blom, J.A. and G.A. van Poppel

Using SIMPLEXYS

Faculty of Electrical Engineering, Eindhoven University of Technology, 1993

Internal manual

Borland International

Borland Pascal manuals

Borland international, Inc., 1992

Edson, D.

Writing windows applications fiom start to finish

New York: M&T Books, 1993

Hair, P.J.A de

Realisatie van een uitlegfaciliteit voor Simplexys Expertsystemen

Thesis: Eindhoven University of Technology, 1988

Lammers, J.O.

The Use of Petri Net Theory for Simplexys Expert Systems Protocol Checking

Faculty of Electrical Engineering, Eindhoven University of Technology, 1990

EUT Report 90-E-238

- 58 - Simplexys for Windows

Lutgens, J.M.A

Knowledge Base Correctness Checking for Simplexys Expert Systems

Faculty of Electrical Engineering, Eindhoven University of Technology, 1990

EUT Report 90-E-240

Microsoft Corporation

The Windows interface: an application design guide

Redmond: Washington, Microsoft, 1992

Petzold, C.

Programming Windows, The Microsoft guide to writing applications for Windows 3.1

Redmond, Washington: Microsoft, 1992

Philippens, E.H.J.

Designing Debugging Tools for Simplexys Expert Systems

Faculty of Electrical Engineering, Eindhoven University of Technology, 1990

EUT Report 90-E-234

Poppel, G.A. van

A user interface for SIMPLEXYS Experts Systems

Faculty of Electrical Engineering, Eindhoven University of Technology, 1993

Swan, T.

Programmeren in Turbo Pascal voor Windows

Schoonhoven: Academie Service, 1991

List of files

ASK.DLL

ASK.PAS

ASK.RES

BATCH.BAT

BATCH.PIF

BWCC.DLL

CHK41.PAS

CHK41.PIF

DEBUG.PAS

DEBUGMOD.PAS

DUMPBOOL.PAS

HELP.HLP

HELP.HPJ

HELP.RTF

HELPIDS.H.

PET41.PAS

. PET41.PIF

RUC41.EXE

RUC41.PAS

RUC41.PIF

SIM41.PAS

SIM41DOS.PAS

SIMPLEX.RES

SIMSHELL.EXE

SIMSHELL.PAS

SIMSHELLRES

SIMUL.RES

SIMUL4.PAS

STARTSIM.EXE

STARTSIM.PAS

STARTUP.PAS

TEXT.DLL

TEXT.PAS

WRITE.DLL

WRITE.PAS

Appendix B

dil containing ask routines

source code of ask routines

resource information for ask routines

batch file for compilation process

file containing system options

dil containing custom classes

source code semantics checker

file containing system options to run semantics checker

source code debug facility

source code debug facility

source code debug facility

compiled version of help text

project file for help text

help text (Rich Text Format)

list of identifiers to get context sensitive help

source code protocol checker

file containing system options to run protocol checker

rule compiler

source code rule compiler

file containing system options to run rule compiler

source code inference engine used in Windows version

source code inference engine used in DOS version

resource information expert system

executable shell

source code shell

resources for shell

resources for debug facility

source code dil for debug facility

executable startup part debug facility

source code of executable startup part debug facility

source code startup part of expert system (Windows version)

dil containing text routines

source code text routines

dil containing write routines

source code write routines

	Simplexys for Windows
	Summary
	Contents
	1. Introduction
	2. Simplexys, an expert system toolbox
	3. Windows
	4. The Windows version of Simplexys
	5. Conclusions and recommendations
	References
	List of files

