
 Eindhoven University of Technology

MASTER

Decomposition of sequential machines into PLAM networks

Kolsteren, M.A.J.

Award date:
1997

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8f3bdda2-9b8f-4792-a420-a4537219b987

Decomposition
of Sequential Machines
into PLAM Networks

graduation report
by 1J.A..J. Kolsteren

Supervision: dr.ir. 1. Jozwiak
Ordered by: prof.ir. M.P.J. Stevens

October 1994,
Eindhoven University of Technology,
Faculty of Electrical Engineering,
Section of Digital Information Systems.

The faculty of Electrical Engineering of the Eindhoven University of
Technology does not accept any responsibility regarding the contents of
student project and graduation reports.

Abstract

The growing complexity of sequential control and processing units of
digital systems, and the increasing use of field programmable devices to
implement them, has yielded a great demand for logic synthesis tools
that are able to decompose large sequential machines into networks of
limited building blocks. In the Section of Digital Information Systems of
the Eindhoven University of Technology, a method has been developed
that is able to decompose a given sequential machine into a network of
Programmable Logic Arrays with Memory (PLAMs) with limited maxi
mal size, such that the number of PLAMs and the number of connections
in the network are minimized. This method solves the problem rather
good, but is not suitable for sequential machines with large states (i.e.
states with many outgoing transitions and many input bits and output
bits occuring in these transitions) and not good for delay. The aim of the
reported research was to develop a modified method which eliminates
these drawbacks.

For realising the aim, we have derived a new decomposition model, that
describes PLA~1 network decompositions in terms of task distributions.
This new decomposition model solves the problems with large states,
is good for delay, and yields not only sequential, but also simultaneous
decompositions. The decomposition model describes a large subclass of
all possible decompositions of a certain sequential machine.

\Ve have also developed a new decomposition method. This method
determines a good subtask set of the sequential machine, such that
the sub tasks in this set together cover all elementary tasks of the se
quential machine. Afterwards, a good distribution of these subtasks is
constructed. Finally, the task djstribu tion is translated into a PLAM
network.

A formal framework has been designed for presenting our new model
and method in a precise way. The formal treatment not only facilitates
final software implementation of the method, but also makes it possi
ble to prove that the method yields correct decompositions under all
circumstances.

11

Contents

1 Introduction 1

2 Problem Analysis 4
2.1 Sequential "Machines 4
2.2 PLAM Networks 12
2.3 Decomposition. 21
2.4 Precise Problem Sta.tement 21

3 Decomposition Model 24
3.1 Overview of the Model 24
3.2 Determination of Subtasks 25
3.3 Distribution of Subtasks 28
3.4 Construction of the PLAM Network 29

4 Decomposition Method 46
4.1 Overview of the Method... 46
4.2 "Modeling lIard and Soft Constraints... 47
4.3 "Ma.cromolecule Construction 52
4.4 Macromolecule Splitting...... 63
4.5 Usage of Beam Search.... 64

5 Conclusions

Notation

Bibliography

JJI

66

67

72

1 Introduction

Logic synthesis is an important stage in the design process of digital
systems. It consists of decomposing a functional module into a network
of logic building blocks that realizes the behaviour of the functional
module. The functional module can be seen as a black box, for which
only the inputs, outputs and functionality are defined. The network
of logic building blocks that implements the functional module must be
suitable for direct implementation with a chosen technology, for example
as a custom integrated circuit or a field programmable device.

Usually, the network of logic building blocks is constrained in many
ways. These constraints are not only imposed by the specification of the
functional module, but also by the technology which has to be used to
implement the module. The specification may limit the area, delay and
power dissipation of the network. The technology may demand that
the logic building blocks are chosen from a limited set. This limited
set can be a standard cell library when aiming at ASIC realization, or
a set of programmable logic blocks of a certain family when aiming at
realization with field programmable devices. The technology can also
impose restrictions on t he way of cOllnecting t he building blocks. For
example, a connection restriction can consist of a limited fan-in and
fan-out of each building block.

In addition to these 'hard' constraints on the network of logic building
blocks, there may also be 'soft' constraints, i.e. optimization objectives.
Example objectives are area minimization, delay minimization, power
dissipation minimization, minimization of the number of building blocks
and minimization of the number of connections between building blocks.

For solving logic synthesis problems with soft constraints, some specific
methods are available. For problems with hard constraints, very few
methods are available. which is not surprising because problems with
hard constraints are more difficult to solve. The introduction of field
programmable devices, which are important for rapid prototyping and
application specific digital systems, has increased the need for logic syn
thesis methods that can solve problems with many hard constraints. In
this report, a method is proposed that can cope with many hard and soft
constraints simultaneously. The proposed method is restricted to solv
ing one practical logic synthesis problem with many constraints, but the
basic ideas behind the method can be used as a framework for designing
methods that solve other problems with many constraints.

This report focusses on logic synthesis for control units, aiming at imple
mentation with a network of Programmable Logic Arrays with Memory
(PLAi\fs). The control unit is described as a sequential Mealy machine

1

with encoded inputs, symbolic states, encoded outputs and a possibly
incompletely specified next state function. A restriction on the PLAM
network is that all PLAMs in this network must have the same maxi
mal dimensions, i.e. the same maximal number of input bits, state bits,
output bits and term lines. Chosen maximal dimensions of the PLAMs
in the network form hard constraints. In addition to these hard con
straints, two soft constraints are introduced. The first soft constraint is
that the number of PLAMs in the network should be as small as possi
ble. The second soft constraint is that the number of connections in the
network should be as small as possible. These soft constraints are not
of equal importance. The second soft constraint must be fulfilled under
the conditioll that the first one is fulfilled.

The problem of implementing a sequential machine with PLAMs has
been previously considered by Levin. In his article [6], he proposes
a method which makes it possible to translate a sequential machine
into a PLAM network that realizes the behaviour of the sequential ma
chine. This method is based on partitioning the symbolic states of the
sequential machine, and constructing a PLA~!J for each block of this
state partition, such that this PLAM computes all next state and out
put information for the states that are contained in the correspond
ing block. The communications between the PLAMs in the network,
which are needed to exchange next state information, are based on a
hierarchy. Levin only describes how a network of PLAMs can be de
rived from a given partition on the states of a sequential machine. The
problem of multi-constraint optimization for PLAM networks has been
stated more recently by .Jozwiak and I\olsteren [4J. They developed a
complete method and automatic synthesis tool for solving the problem.
For a given sequential machine, and given maximal PLAM dimensions,
the method describes how to find a state partition such that the corre
sponding network satisfies aJl hard constraints and requires a minimum
number of PLAMs and a minimum number of interconnections. This
tool has proven to be efficient and effective for many practical examples.
Another tool, which is also based on state partitioning, but uses di
rect communications between PLAI\Is instead of communications along
a hierarchy tree, is presented in [1J.

The method which is described ill [4J was developed in the Section of
Digital Information Systems of the Eindhoven University of Technology.
The good results of this method motivated further research.

The aim of the reported graduation project was to modify the existing
method, in order to make it suitable for large states and better for delay.

A state is called large if the number of outgoing transitions from this
state and the number of inputs and outputs for all these transitions are
close to, or even larger than the chosen PLAM dimensions. A known
drawback of the existing method is that large states of the sequential ma
chine can have great ncgative impact 011 the quality of the final PLAM
network, and even on the existance of a decomposition of the described
type. This problem follows from the fact that the decomposition is

2

based on state partitioning and aU the transitions from a certain state,
i.e. computations of the next state and output values defined by these
transitions, must be completely implemented in the PLAM which im
plements the state. Thus, improvement of the method for large states
is possible by allowing the various next-state and output computations
for a certain present-state to be implemented in various PLAMs. This
means replacing the existing decomposition model which is based on
state partitioning by a new decomposition model based on a more ele
mentary computation partitioning.

The existing method constructs a network which is based on a hierarchy.
In a hierarchy, communication between PLAMs takes place along the
edges of the hierarchy tree. The ad vantage of using a hierarchy is that
the number of communication lines is relatively small when compared
to the number of commllnication lines needed for direct communications
between PLAMs and that the number of PLAJvls' inputs used for com
munications can be much smaller. However, hierarchical communication
causes long dela.ys. especially when the hiera.rchy tree has many levels.
The existing method can be made better for delay, by using direct com
munication bet\\'('('n P LA l\Is.

In order to realize the aim of the project, it was necessary to analyze the
problem, to develop a modified decomposition model, and to construct
a modified decomposition method.

The first chapter of this report ana.lyses the problem of decomposing a
sequential machine into a PLAM network that realizes the behaviour of
the sequential machine and satisfies the hard and soft constraints. In
chapter two, a new decomposition model is proposed which is based on
elementary computation task distribution. It is described how the task
distribution can be mac!p for a given sequential machine, and how this
task distribution can be translated into a PLAM network that imple
ments the sequential machine. Chapter three gives an algorithm that
constructs a PLA:l\I network that satisfies all hard constraints and soft
constraints, based on the task distribution model of chapter two. The
conclusions are given in chapter five.

The decomposition model and method are presented in a formal frame
work. The main reason for the frequent use of precise forma.l notation, is
that it facilitates future software implementa.tion. For the convenience of
the readers, this report contains a complete list of all formal notations.

3

2

2.1

2.1.1

Problem Analysis

The analysis of the problem consists [or a great part of deriving pre
cise and consistent definitions [or all notions on which the problem is
based. The main notions are the ones that occur in the title of this
report: sequential machines, PLAM networks and decomposition. The
first three sections of this chapter work out precisely these three main
notions. The fourth section gives a precise problem statement, based on
the definitions that are introduced in the first three sections.

Sequential Machines

Terms over Sets of Bits

Let us begin with defining what we mean precisely when we talk about
a term. A term is always defined over a set of bits. A term over a set of
bits B is an assignment of the bits of B. Bits of B can be assigned the
value zero (0), one (1) or don't care (x or -). The following definition
gives a formal description of a term.

Definition 2.1 A term]J over a set of bits B is a function]J : B -+

{O, 1, x}. The set of all terms over B is denoted with 7(B).

We define the 0- bits of a term as the bits that are assigned the value 0
by the term, and we define the 1-bits and x-bits of a term in the same
way. The O-bits and the 1-bits are called the care bits, and the x-bits
are called the don't care bits.

Definition 2.2 Let t be a term over a set of bits B, and let a be an
element of the set {O, 1. x}. Then a bit b E B is an a-bit of a term t if
t(b) = a. The set of all a-bits of term t is denoted with Ba(t). A bit
bE B is a care bit of t if b is a O-bit or a 1-bit of t, otherwise b is a don't
care bit of t.

A k-term is a term for which the number of don't care bits equals k. A
minterm is O-term.

Definition 2.3 Let t be a term over a set of bits B and let k be a
nonnegative integer. Then t is a k-tC1'1H over B iff IBx (t)! = k. The set
1k(B) is used to denote the set of all ',:-terms over B. A minterm over
B is a O-term over B.

4

2.1.2

A term over B that assigns a to all its bits, is called an all-a-term over
B. In the same way, all-I-terms and all-x-terms are defined.

Definition 2.4 Let B be a set of bits. Let a be an element of the set
{a, 1, x}. Then the all-a-term over B, which is denoted with ta(B) is
the term over B which assigns a to each bit in B: "IbEB ta(B)(b) = a.

Two terms which are defined over disjunct sets of bits can be combined
into a new term, which is called the concatenation of both terms.

Definition 2.5 Let Band B' be two disjunct sets of bits, and let
t E T(B) be a term over B and let t' E T(B') be a term over B'. Then
the concatenation of t and t', which is denoted with t· t', is a term over
BuB' defined by

{
t(b) if b E B;

"IbEBUB' t· t'(b) = t'(b) if bE B'.

The set of bits over which a term is defined can be reduced by projecting
the term on a subset of this set of bits.

Definition 2.6 Let t be a term over a set of bits B, and let B' be a
subset of B. Then the projection of term t on B' is a term over B' which
is denoted by [t]BI and given by

'Vhen two terms t and t' are defined over the same set of bits, and it
holds that each a-bit of t is also a a-bit of t', and each I-bit of t is also
a 1-bi t of t', then we say that term t covers term t'.

Definition 2.7 Let B be a set of bits. Then a term t E T(B) covers a
term t' E T(B) iff

Bo(t) ~ Bo(t') /\ BtCt) ~ Bdt')

and this will be denoted with t ~ t'.

Definition 2.8 Let t be a term, and let k be an integer such that
a ~ k ~ IBx(t)I. Then the set of covered k-terms of t, which is denoted
wit h Ck(t), is defined by

Ck(t) = {t' E T,.(B) I t' ~ f}.

Sequential Machine Definition

In this report, we will use the term sequential machine for a sequential
1\1ealy machine with binary encoded inpnts, symbolic states, binary en
coded outputs, a next state function which may be incompletely specified
and all output function which may be incompletely specified.

5

Definition 2.9 A sequential machine is a structure

(IB, S, OB, D, b,)..),

where

• IBis the finite non-empty set of input bits;
• S is the finite non-empty set of states;
• OBis the finite set of output oits;
• D ~ S X 10(IB) is the machine domain;
• b : D ---> S is the next-state function;
•)..: D -+ T(0 B) is the output function.

Example 2.1 Consider the sequentia.l machine which is given by the
structure (IB, S, OB, D, b,)..), where

IB {XI,X2}'

S {SI,S2,S3},

OB {YI,Y2,Y3},

and D, band)" are given by table 2.1. It should be clear that D consists
of all (s, x) pairs that appear in this table.

Table 2.1 Next state and output function of 111

05 x D(S,X))..(s, x)

·1:1 x2 YI Y2 Y3

8) 0 0 81 1 0 0

0 1 8) 1 0
1 0 S2 1 0 0

82 0 0 sl 0

0 1 S3 1 0 1
1 0 82 0 1 0

1 1 83 1 0 1
S3 0 0 S2 0 1 0

0 1 S3 0 0

1 0 S2 0 1 0
1 1 S3 0 0

For a sequential machine AI, it may he the case that the values that
are assigned to a subset 0 B' of output bits are exactly known when the
current state is known and the values of a subset I B' of the input bits
are known. In this case, we sa.y tha.t the sequential machine A1 contains
a functional dependency from I B' to 0 B'. This is formalised in the next
definition.

Definition 2.10 Let 111 = (JB,S,OB,D,b,)")beasequential machine,
and let I B' and 0 B' be su bsets of I Band 0 B, respectively. Then M
contains a functional dependency from [B' to 0 B' iff the following two

6

conditions are satisfied:

• 'tI(s.X)ED OB' n Bx(>'(s,x)) = 0;
• 'tI(s,x),(s,x')ED [X]IBI = [X']IB' =? [>'(S,X)]OB' = [>'(S,X')]oBI.

Example 2.2 The sequential machine of example 2.1 has a functional
dependency from {X2} to {Y3}, and from {Xl, X2} to {Y3}'

When we want to consider the behaviour of a sequential machine when
we apply a. sequence of input minterms to the machine, we need to in
troduce the notion of sequences, together with the corresponding formal
notations.

Definition 2.11 Let A be a. set of arbitrary elements. Then a sequence
o\'er A is a possibly empty succession of elements of A, denoted with £

if it is empty and with

where n > 0 and aj E A for 1 ~ i ~ n, if it is non-empty. The set of all
sequences over A is denoted with Qo(A), and the set of all non-empty
sequences over A is denoted with Q(A). Two sequences X and X' over
the same set A can lw concatenated. The result is written as X . X' and
consists of the sequence which is formed by appending the sequence X'
to the tail of X.

The extended next state function of a sequential machine will be defined
as the function that, given a certain start state and a certain sequence of
input minterms which is offered to the machine, computes the resulting
state of the machine. This resulting state may be undefined (equal to
D), when the domain of the sequential machine does not contain all
possible state-input combinations.

Definition 2.12 Let M = (f B. S, OB, D, 6, ,\) be a sequential machine.
Then the e.l'tended ne:rt state functJ:on of i11 is the function

8: S x Qo(Yo(JEl) - S u {D},

which is defined by

8(s,£)

ll(s, X . (:1:))

s,

{ ~(ll(s,X),x) if (b(s,X),x) ED
otherwise

for s E S, X E Qo('l[J(f lJ)) and .1: E Yo(J B).

Example 2.3 Consider the sequential machine of example 2.1. For this
machine, application of the extended next state function is demonstrated

7

2.1.3

by

6(8],E)=8];
6(8], (10)) = 82;
6(s] , (10, 00)) = 8];

6(s], (10,00,11)) = o.

In the same way, an extended output function is defined. This function
determines the output term that results when a certain non-empty se
quence of input mintenns is applied to the sequential machine, starting
in a certain state. This extended next state function yields the result
undefined (0) if the input sequence can not be applied from the start
state, because the domain of the machine is exceeded.

Definition 2.13 Let./II = (IB,.5',OB,D,b,A) be a sequential machine.
Then the extended Olltput function of J\J is the function

"X:.5' x Q(7Q(IB)) ~ 7(OB) u {o},

which is defined by

"X(8,X.(X))= { /oX(6(s,X),:r) if(6(8,X),X)E D
otherwise

for 8 E .5', X E Qo(7Q(IB)) awl.'t E 70 (1B).

Example 2.4 Consider Ihe sequential machine of example 2.1. For this
ma.chine, applicatioll of the ('xtended output function is demonstrated
by

"X(8], (10)) = 100;
"X(8J, (10, 00)) = - - 0;
"X(8], (10,00, 11)) = o.

Transition Tables

\Vhen we want to present a. seq lIent-ial machine in a compact and clear
form, we mostly use transition tahles or transition graphs. In this report,
we only use transition tables. The next two definitions make clear what
a transition table is.

Definition 2.14 A Izori::ontal over a set of input bits I B, a set of states
S and a set of output bits °B, is a structure (C8, i, 118, 0), where

• C8 E S is the current state;
• i E 7(1B) is the input tel'm;
• n.s E .5' is the nfJ:t .state;

• 0 E 7(OB) is the Oil/put lcnll.

The set of aU horizontals over I B, .5' and °B will be denoted with

8

2.1.4

'Jt(IB, S, 0 B).

Definition 2.15 A tmnsition table is a structure (IB, S, 0 B, H), where

• IBis the set of input bits;
• S is the set of states;
• 0 B is the set of output bits;
• H ~ 'Jt(I B , S, 0 B) t he a set of hori::ontals.

It is required that all horizontals of H are orthogonal, i.e. for each
(s, x) E S x 70(IB) there is at most one horizontal h E H such that
h.es = s and x ~ h.i.

The next definition relates transition tables to sequential machines.

Definition 2.16 Let H = (IB,S,OB,H) be a transition table. Then
the described sequcntial machinc of H is the sequential machine given
by (IB,S,On,D,o,)..). D,o and)" are defined as follows. Let (s,x) E
S x 7O(IB). Then (8,.1:) is an element of D if and only if there is a
horizontal liE}] such that h.C8 = 8 and x ~ h.i. When this is the case,
o(s,x) equals h.ns, and)..(8,.1:) equals h.o.

Example 2.5 In table 2.2, a transition table is given. The described
sequential machine of this table is the sequential machine AI of example
2.1.

Table 2.2 Transition table of machine M

C8 n8 0

:1: I .1'2 YI Y2 Y3

.~ I 0 0 81 1 0 0

0 1 81 1 0

1 0 S2 1 0 0

82 0 0 81 0

1 S3 1 0 1
1 0 82 0 1 0

S3 0 S2 0 1 0
1 83 0 0

Realization

One can think about sequential machines at different levels of abstrac
tion. A sequential machine description can be very close to a physical
implementation in hardware, but it can also be a machine specifica
tion at a high abstraction level. Realization can be seen as a process

9

of transforming a machine to a machine at a lower abstraction level,
thereby introducing more specific implementation details and limiting
the freedom that is left in the sequential machine. During the realiza
tion process, it is important to preserve the output behaviour of the
original sequential machine.

The decomposition of sequential machines into PLAM networks is a
special case of realizing a sequential machine with another sequential
machine, because we can determine the sequential machine that is im
plemented by a PLAM network. So, when we describe precisely the
conditions that must hold to obtain realization, we can verify the cor
rectness of the PLAM network decompositions that are generated by
the decomposition method.

A sequential machine AI' realizes a sequential machine lvl if and only
if for each input sequence applied to M and Af', it holds that when M
gives a defined output, machine "H' gives a defined output that is covered
by the output of M. The following definition gives further details.

Definition 2.17 Consider two sequential machines with the same set
of input bits and the same set of output bits: M = (lB,S,OB,D,S,>..)
and M' = (lB, 8', OB, D'. fI'. N). Then M' rcali::f.5 the output behaviour
of M iff for each stat(' .5 E 8 there exists a state s' E S' such that for
each non-empty inpnt sequence X E Q('To(JD)):

"X(s,X) i' 0 => P'(s'.X) i' 0 A "X(s,X) 2 ,\'(s',X))

In this report, a sequential machine will be realized by a PLAM network
in a special way, that is by constructing a state homomorphism from the
sequential machine M to the implemented machine 111' of the PLAM
network. A state homomorphism is a function that assigns a state of
Af' to every state of .U. such that this function preserves the next state
function and almost preSNves the output function.

Definition 2.18 Consider two sequential machines with the same set
of input bits and the same set of output bits: !If = (IB,S,OB,D,S,>..)
and M' = (IB,S',OB,D',8',>..'). Then a state homomorphism from M
to AI' is a function 4> : S --+ S' which maps states of M on states of M',
such that for aU (s, x) E D:

(¢(s),x) E D' A q'(8(o5.X)) = 8'(¢(s),x) A >..(s,x) 2 >"'(¢(s),x)

It can be proved that exist('nce of a state homomorphism is a sufficient
condition for output behaviour realization. The next two theorems-the
first being just a, preparation for the second-work out this statement.

Theorem 2.1 Consider two sequential machines with the same set of
input bits and the same set of output bits: M = (I B, S, OB, D, 8, >..) and
M' = (IB,S',OB,D',8',>..'). Let ¢ be a state homomorphism from M
to M'. Then for each state 8 E S and input sequence X E QoCTo(IB)):

(1)

10

Proof: Suppose that there is a state homomorphism ¢ from M to M'.
Let s E SO be a state of machine Af. Now we prove by induction that
(1) holds for earh X E Qo(,To(IB)).

\\Then X is the empty sequence, it IS very straightforward that (1)
holds:

6(S,E)::j=D
~ {¢(s) = <;&(s) is true, and P ~ trl1,e holds for every P}

<;&(s) = ¢(s)
~ {deflllition 2.12}

¢(6(S,E)) = b'(<;&(S),E)

Now, suppose that (1) holds for a sequence X E Qo('Ta(IB)). We derive
now that in this case, equation (1) also holds for X· (x), with x E 'Ta(1B):

6(s,X' (x))::j= 0

~ {definition 2.12}
(6(s,X),x) ED !\ 6(s,X)::j= 0

~ {definition 2.18 and induction hypothesis}
(6(s,X),x) ED !\ (<;&(-;5(8,X)),:r) ED'
!\ ¢(b(6(8,X).:r))= b'(<;~(6(s,X)),x)

!\ <;&(6(s, X)) = P (<i'('~), X)
~ {rewrit.ing}

(6(8, X), :r) E D !\ (p(¢(s), X), :r) E D'
!\ 4>(b(6(s, X),:r)) = b'(b'(¢(s), X), x)

~ {definition 2.12}
<;&(6(8, X . (x))) = b'(¢(s), X . (.r))

Thus, we have proved that (1) holds. Q.E.D.

Theorem 2.2 Consider two sequential machines with the same set of
input bits and the same set of output bits: M = (I B,.5', OB, D, b,'x) and
Af' = (IB,.5".OlJ,D',b',/\'). Then ill' realizes the output behaviour of
I'll if there exists a state Iiomornorphism from Al to kl'.

Proof: Suppose that 4> is a state homomorphism from Al to AI'. Let
s E S be a state of machine M, and let X E Q('Ta(1B)). Then X can be
written as X = X'· (.r), with X' E Qo('Ta(1B)) and x E 'Ta(1B). Then
we derive:

:\(s, X) ::j= 0

~ {X=X'·(x)}
:\(8,X'· (.1:))::j= 0

~ {definition 2.1:l}
(6(8, X'), x) E D !\ -;5(8, X') ::j= 0

~ {definition 2.18 and theorem 2.1}
(6(8,X'),X) E D !\ (¢(6(s,X')),x) ED'
!\ 'x(6(s,X'),x) 2: N(¢(6(s,X')),x)
!\ 4>(6(8, X')) = b'(¢(8),X ')

~ {rewriting}

11

(6(s,X'),:r) ED 1\ (6'(¢(s),X'),:r) ED'
1\ .-\(b(s,X'),x) ~ A'(6'(1>(s),X'),x)

~ {definition 2.13}
N(1)(s),X'· (x)) f 0 1\ 1(s,X'. (x)) ~ N(1)(s),X'· (x))

~ {X = X' . (x)}
N (1>(s), X) f 0 1\ "X(s, X) ~ N(1>(s), X)

From definition 2.17 and the previous derivation, we can conclude that
indeed M' realizes the output behaviour of M (take s' = 1>(s) in defini
tion 2.17). Q.E.D.

2.2 PLAM Networks

2.2.1 PLAMs

One of the possible illlplcll1entation structures of a sequential machine
is the PLAM (Programmable Logic Array with Memory). A schematic
view of a PLAM is presented in fLgure 2.1.

AND-PLANE OR-PLANE
r--------------,
I I

I
I

I

I
I
I

I

I

I
I

I

I

I

I,
I
I

I

I

I
_ J

I
I

L J

I I

I I

I I

I I

I I

I I

I I
I I

I I

I I
I I

I I

- - - - - - -- - - - _ J l __ - - - - - - - --

~ IT~ IT
:MEMORY

r---------,
I I
I ,
I I
I b} I

I I

Xl x2 I I YI Y2 Y3
I I

I
,----

I
I I

I I

I
b2 I

I
l-

I

r---------------------,
I

Figure 2.1 Schematic view of a PLAM

12

Let us explain how such a PLA~I operates, and how it can be used to
implement a sequential machine. The PLAl\1 contains memory in the
form of a limited number of clocked flipflops. These flipflops are used
to store the current state of the implemented sequential machine. Each
flipflop contains one state bit. The state bits are supplied to the AND
plane, in position as well as in negation. In addition, input bits are
supplied to this AND-plane, in position and negation. The AND-plane
consists of a matrix, with term lines as rows and literals over the input
and state bits as columns. At each intersection of lines, a connection
can be made. The value which is assigned to a term line by the matrix,
is the logical AND of all literals of the AND-plane that are connected
to this term line. \Vhen the term line has the value 1, we say that this
term line is active. The term lines are used as inputs of the OR-plane,
which consists of a matrix with term lines as rows, and next state bits
and output hits as columns. At each intersection of lines, a connection
can be made. The value which is assigned to a next state or output bit
equals the logical OR of the values of the term lines that are connected
to this next state or output bit. So, a state or output bit is one if and
only if at least one of the term lines to which it is connected, is active.
The next state bits are connected to the flipflops.

\Ve will give a method that can be used to derive the sequential machine
which is implemented by a given PLAM. Before we do so, we make a
formal description of a PLAt\L

Definition 2.19 A term line over a set of input bits I B, a set of
state bits SB and a set of output bits OB, is a structure (cs,i,ns,o),
where

• cs E T(SB) is the ClllTent state term;
• i E T(I B) is the il/jJut term;
• '/IS E 'To(SB) is the lIe.1:t state term:
• 0 E 'JO(() n) is the Oil/put term.

The set of all term Jines over I B, S Band 0 B will be denoted with
T£(IB,SB,OB).

Definition 2.20 A PJ'Ogrammable Logic Army with Memory (PLAM)
is defined as a structure (I B, 5' B, ()B, T L), where

• IBis the finite non-empty set of input bits;
• 5'B is the finite non-empty set of state bits;
• OB is the finite non-empty set of outjJut bits;
• TL ~ T£(IB.SIJ,OB) is a finite set of term lines.

Example 2.6 The PLA M which has been presented in figure 2.1 is
given by]J = (I B, SB, OB, T L), where

IB {Xl,X2},
BB {b 1,b2 },

oB {Yl , Y2, Y3}.

The term line set T L is presented in table 2.3.

Table 2.3 Term lines of PLAM p

C8 n8 0

bl b2 Xl :1:2 bl b2 Yl Y2 Y3

o 0 0 0 o 0 1 0 0
o 0 0 1 o 0 0 1 0

o 0 1 0 0 1 1 0 0

0 1 0 0 o 0 0 0 0
0 1 1 1 0 1 0 1

0 1 1 0 0 1 0 1 0
1 0 - 0 0 1 0 1 0
1 0 - 1 1 0 0 0 0

Using this definition of a PL.-\1\L the implemented sequential machine
of a PLAM can be easily defined.

Definition 2.21 Let p = (lB,5'B,OB,L) be a PLAM. Then the im
plemented machine of p is the sequential machine (lB,S,OB,D,b,>.),
where the state set S is given by S = Ta(SB), the domain D is given
by 5 X Ta(l B) and the next state and output function are defined as
follows, for (8, X) E D:

VsbE8B b(8, .1:)(8b) = { 0

VobEOB >.(.s,x)(ob) = { ~

if 3/ETL 8 ~ l.c.s/\ x ~ l.i /\ I.ns(sb) = 1
otherwise

if 3/ETL 8 ~ I.c.s/\.1: ~ I.i /\ I.o(ob) = 1
otherwise

The implemented machine of PLAM p is denoted with Mimp/(P).

Example 2.7 Consider the PLA1\I of example 2.6. The transition table
of the implemented machine of this PLAM is given in table 2.4.

14

Table 2.4 Transition table of the implemented machine of PLAM p

o

o 0
o 0
o 0
o 0
o 1
o 1
o 1
1 0
1 0
1 1

o 0
o 1
1 0
1 1
o 0

1
1 0

o
1

o 0
o 0
o 1
o 0
o 0
1 0
o 1
o 1
1 0
o 0

Yl Y2 Y3
100
010
100
000
000
101
010
010
000
000

vVhen a sequential machine is implemented with a PLAM, it must be
so that the implemented machine of this PLAM realizes the output be
haviour of the sequential machine. Suppose that a sequential machine M
is given, together with a PLAl\I p. Then we can prove that p implements
AI, by giving a state homomorphism from M to Mimp[{P)' Remember
from theorem :2.:2 that existence of a sta.te homomorphism is a sufficient
condition for output behaviour realization. Because we have not proved
that it is a necessary condition-which is probably not true anyway-the
non-existence of a state homomorphism does not imply that the output
behaviour is not realized.

Example 2.8 Consider the sequential machine 111 of example 2.1, and
the PLAM p of example 2.6. Define the function ¢> : M.5' ~ Mimp/(P).5'
by

¢>(sd 00:
¢>(S2) 01;
¢>(S3) 10.

By comparing table :2.:2 with 2.4, it can easily be checked that ¢> is a state
homomorphism from AI to Mimp/(P)' Thus, the output behaviour of M
is realized by the implemented machine of PLAM p. Thus, p implements
M.

In this report, we especially aim at the realization of sequential machines
with constrained PLAMs. The constraint limits the number of input
bits, the number of state hits, the number of output bits and the number
of term lines for the PLAl\Is that may be used.

Definition 2.22 A PLAAI-si::e constraint c consists of a structure

(nrIB, n7'SB, nrOB, n7'Ttl, where

• n1'IB is a positive integer, called the input bit constraint;
• nrSB is a positive integer, called the state bit constraint;
• 1IrOB is a positive integer, called the output bit constraint;

1.5

2.2.2

• 1l1'TL is a positive integer, called the term line constraint.

A PLAivI p satisfies constraint c iff Ip.IBI ~ nrlB, Ip.SBI ~ nrSB,
Ip.DBI ~ nrOB and Ip.TLI ~ m'TL·

When it is not possible to implement a given sequential machine with
one PLAM satisfying the constraint, a network of PLAMs can be used.
This is the subject of the next section.

Output Independent PLAM Networks

\Vhen a sequential machine is large, compared to the constraint, it can
be tried to implement it with a number of cooperating PLAMs, which
all satisfy the constraint. These cooperating PLAi\1s form a PLAM
network. In the following example, we will make clear what has to be
understood by a PLAM network.

Example 2.9 In figure 2.2, an example of a PLAM network is given.
This network contains two PLAMs. named PI and P2. The term lines of
these PLAi\Is are given in tabk' 2.5 and 2.6, respectively.

A PLAi\1 network contains three types of nets: external input nets,
internal nets and external output nets. To each net, a bit is associated.
The distinction between the three types of nets should be clear, given
that the example network contains external input bits Xl and X2, internal
bit ZS2 and external output bits YI, Y2 and Y3. The input bits of each
PLAM are external input bits or internal bits of the network, and the
output bits of each PLAM are external output bits or internal bits of the
network. \Ve assume that each internal bit and external output bit has
a default value of 0, and gets the value 1 if and onl.y if there is a PLAM
which assigns the value 1 to this bit. This can be implemented easily
by OR-ing the values that are assigned to the hit by different PLAMs.
The OR function can be implemented without costs if the PLAivis have
open-collector or three state outputs.

Since there are two state bits per PLAM, the network has 16 different
states. In general, a state of a PLAM network will be defined as a
function which assigns a state s to eadl PLAM p of the network, where
s must be a state of the implemented machine of p.

The number of connections of the network will be defined as the total
number of used input and output bits of all PLAMs in the network. For
the example network. PLAM PI has 6 connections, and PLAM P2 has 5
connections, so the num!wr of connections of the network equals 11.

The following clefi nitions gi \'e further details about the con cepts that
have been introduced in the previous example.

Definition 2.23 A PLAM netwod: is a structure (IB, EB, DB, P),

16

PI

P2

Y2

Y3

Figure 2.2 PLAM network n

Table 2.5 Component PLAM PI of PLAM network n

C8 n.s 0

bI b2 .1: 1 ;1:2 ZS2 &1 V2 VI Y2 ZS2

0 1 0 0 - 0 1 1 0 0
0 I 0 1 - 0 1 0 1 0
0 1 1 0 - 1 0 1 0 1
1 0 0 0 - 0 1 0 0 0
1 0 - 1 - 0 0 1 a 0
1 0 1 0 1 0 0 a 1

1 1 0 0 0 a

Table 2.6 Component PLArvi]J2 of PLAt"I network n

COS 1/8 0

VI b2 ·1:2 ZS2 VI &2 Y2 Y3 ZS2

0 1 a - a 0 1 a a
a 1 1 - 1 0 a 1 a
1 a 0 - a 1 1 a 1
1 a 1 - 1 a a 0 a

- 1 a 1 a a a

17

where

• IBis a finite non-empty set of external input bits;
• E B is a finite set of internal bits:
• 0 B is a fini I.e set of external output bits;
• P is a non-empty set of PLAMs, named component PLAMs, such

that for each component PLAM p, p.IB ~ I B U EB, and p.O B ~

EBUOB.

An implemented state s of this network is a function

s : P -+ U A1impi(P)'S
pEP

such that

The set of all implemented states of network n is denoted with Simpi(n).

Example 2.10 The PLAIVI network n of example 2.9 is given by

n.IB
n.EB
n.OB
n.P

{xl,xd;
{ ZS 2 };

{YI , Y2, Y:3} ;
{PI. P2}.

Definition 2.24 Let 11 be a PLAt\'I network, and lC't p be a component
PLAl'd of this network. Then the set of e.l:ternal input bits EIBn(p), the
set of intenwl input bits I l Bn(p), the set of internal output bits IOBn(p)
and the set of exterllal output bits EO B n(p) are defined as follows:

EIBn(p)
IIBn(p)
IOBn(p)
EOBn(p)

= p.IB n 1/.1B;
=p.IB n n.EB;
= p.OB n /l.EB;
=p.O B n n.OB.

The lwmber of connections of 11 is equal to

U Ip·IBUp.OB/,
pEn.P

and is denoted with nrconn(n).

18

Example 2.11 For the PLAIVI network n of example 2.9:

E1Bn(pd
11Bn(jJl)
1DBn(pd
EDBn(Pl)

E1 Bn (P2)
11Bn (P2)
1DBn(P2)
EDBn(P2)

nrconn(n) = 11.

{Xl,X2};
{ZS2} ;
{ZS2} ;
{Yl' Y2};

{X2};
{ZS2} ;
{ZS2} ;
{Y2, Y3};

In general. it is not guaranteed that a PLAM network behaves like a
sequential machine. I[ow('ver, the PLAl\'ls and their interconnections
ca.n be chosen such that sequential behaviour is guaranteed. For exam
ple, sequential behaviour is guaranteed if each PLAM output bit only
depends on the current state and external input bits of this PLAM. A
PLAM network that satisfies this condition, will be called an output
independent PLAM network.

Let us explain why an output independent network behaves like a. se
quential machine. Fralll the definition of an output independent net
work, it follows that th(' values of the internal bits and external output
bits of the network are completely determined by the current state and
external input bits of the network. Since the network state and input
uniquely determine all internal bit values, they also uniquely determine
the input bit values of all PLAMs, and thus also the next states of all
PLAMs, and thus also the next state of the network. Because of the fact
that the network state and input uniquely determine the values of all
external output bits, they also uniquely determine the network output.

In this report. \Ve will implement sequential machines with output inde
pendent PLAM networks. Note. that in an output independent PLAM
network, only direct COllllIIUl1icatiol1s between PLAMs a.re possible. When
a. PLA)\:J sends a message indirectly to another PLAM, there must be
a.n intermediate PLAl\'l for which the internal output bits depend on
the internal input bits. This is not possible when the PLAM network is
output independent. Remark that the delay of an output independent
PLAM network is at most equal to the maximum delay of a component
PLAM, multiplied by two.

Definition 2.25 A PLAM network n is output independent iff for ev
ery component PLAl'v[]J En.?, the implemented machine of P has a
functional dependency frolll £1 Bn(p) to p.DB. Let n be an output in
dependen t P LA ~I 11(\t\Vork. Then t he output function of net work n is
the function

cr ; 5'impl(11) X 'To(n.1B) -+ 10(n.EB U n.D B),

19

such that for each S E Simpl(n), x E To(n.IB) and b E n.EB U n.OB,
the value of a(s, x)(b) is 1 if

3pEn .p bE p.OB 1\ Mimpl(p).A(s(p), [X]EIBn(P) . to(IIBn(p)))(b) = 1

and 0 otherwise.

Definition 2.26 Let n be an output independent PLAM network. Then
the implemented nwchin.c of 11 is the sequential machine

(n.1 B, Simp/(n), n.O B, D, 8, A),

where D equals Simpl(n) X To(n.1 B). For each (s,x) E D, the next state
and output is given by

VpEn.P b(s,x)(p) = Mimpl(p).8(s(p),[x·n(s,x)]p.lB),
VobEn.OB A(s.:r)(ob) = n.o(s,:r)(ob),

where 0. is the output function of nctwork 11. The implemented machine
of network n is denoted wit h Afimp/(n).

Example 2.12 Consider the PL\l\I network n of example 2.9. The
transition tables of the implclllcnted machines of PLAM PI and P2 are
shown in table 2.7 and tablc 2.8. respectively. Using these transition
tables, it is easy to check that the PLAId network n is output inde
pendent. Thus, an output function n can be computed, which gives
the values of the internal bits and external output bits for each network
state and input. For a subset of network states, this output function is
presented in table 2.9. This table also gives partial information about
the next state and 01l1.pllt funcl i011 of the implemented machine of n, by
giving the next network state and network output for the same subset
of states.

The net\vork states which are placed in table 2.9 are not arbitrary chosen.
The reason for this choice is that these states correspond with states
of the sequential machine .U, which has been introduced in example
2.1. Compare the transition table of Al (table 2.2) to the table which
contains partial information about the implemented machine of PLAM
network n (table 2.9). Then, it is easy to check that the function <P from
the states of AI to the states of Mimpl(n), given by table 2.10, is a state
homomorphism from 1'1 to the implemented machine of n. According to
theorem 2.2, it Illay be concluded that the implemented machine of the
PLAtl'1 network n realizes the output behaviour of sequential machine
Af. Therefore, we know that the PLAM network n may be used to
implement AI.

In the section about PLAMs, we have already said that we will only
consider implementations based on restricted PLAMs, Le. PLAMs sat
isfying a predefined constraint. The constraint which must be satisfied
by each PLAM can easily be extended into a constraint which must be
satisfied by a PLA I'll network.

20

2.3

2.4

Definition 2.27 Let c be a PLAM-size constraint. Then, a PLAM
network n satisfies constraint c iff each component PLAM of n satisfies
constraint c.

Decomposition

Finally, we are able to define precisely what we mean with a decom
position of a sequential machine, using an output independent PLAM
network as the implementation structure.

Definition 2.28 Let Ai be a sequential machine. An output inde
pendent PLAlI! network decomposition of 111 is an output independent
PLAM network n such that the implemented machine of n realizes 111.

Precise Problem Statement

The decomposition problem which is handled in this report can now be
formulated in a very compact way, using the definitions that have been
given in this chapter. The problem is as follows.

Given: a transition table T and a PLAJvI-size constraint c.

Find: an output ind('pC'(H!ent PLATvI net\vork decomposition 11 of the
described machine of T such that 11 satisfies constraint c, n has a minimal
number of PLA!\Js. and - under the condition that n has a minimal
number of PLAMs-n has a minima! number of connections.

21

Table 2.7 Transition table of Mimpl(PI)

cs ns 0

bI b2 :1.:1 ·'1:2 ZS2 bI b2 YI Y2 ZS2

o 0 0 o 0 0 0 0
o 0 1 1 0 0 0 0
0 1 0 0 0 0 1 1 0 0
o 1 0 0 1 1] 1 0 0
0] 0 1 0 0] 0] 0
0 1 0 1 1 1 1 0 1 0
o 1 1 0 - 1 0 1 0 1
0 1 1 1 0 o 0 0 0 0
o 1]]] 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 0 0 0 1 1 1 0 0 0
1 0 - 1 0 o 0 1 0 0
1 0 -] 1 1 0 1 0 0
1 0 0 -] 0 0 0 1
I I 0 o 0 0 0 0

1 1 1 1 0 0 0 0

Table 2.8 Transition table of Mimpl(P2)

CS 118 0

b1 b2 ,1:2 ZS2 bI b2 Y2 Y3 ZS2

0 0 - 0 0 0 0 0 0
0 0 - j 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 1 0] 0 1 1 0 0
0 1] 0 1 0 0] 0
0 1 1 1 1 1 0 1 0
1 0 0 - 0 1 1 0 1
1 0 1 0 1 0 0 0 0
1 0 1 1 1 1 0 0 0
1 1 - 0 0 0 0 0 0
1] - 1 0 1 0 0 0

22

Table 2.9 Partial output function 0: of network n, and partial next
state function b and output function>' of the implemented machine of

n

8 x n.0:(8,x) b(8,X) >'(8,X)

Ih]J2 Ih]J2

b1 b2 b1 b2 ·1:1 ·1'2 ::S2 Yl Y2 Y3 b1 b2 b1 b2 Y1 Y2 Y3
0 1 o 0 0 0 0 I 0 0 o 1 o 0 1 0 0

0 1 o 0 0 1 0 0 1 0 0 1 o 0 0 1 0
0 1 o 0 1 0 1 1 0 0 I 0 0 1 1 0 0

0 1 o 0 1 1 0 0 0 0 o 0 o 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1 o 0 0 1 0
1 0 0 1 0 1 0 1 0 1 o 0 1 0 1 0 1

1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0
1 0 0 1 1 1 0 1 0 1 o 0 1 0 1 0 1

o 0 1 0 0 0 1 0 1 0 1 0 o 1 0 1 0
o 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0
o 0 1 0 0 1 0 0 0 0 o 0 1 0 0 o 0

o 0 1 0 1 1 0 000 o 0 1 0 o 0 0

Table 2.10 State homomorphism ¢ from AI to Afimp/(n)

8 ¢(8)

Ih]J2

b1 b2 b1 b2

81 0 1 0 0

82 1 0 0 1

83 0 0 1 0

23

3

3.1

Decomposition Model

In this chapter, a new decomposition model is proposed, which is based
on task distributions. With this new model, it is possible to describe
PLA1;f network decompositions of sequential machines in terms of task
distributions.

Overview of the Model

The main part of the research consisted of developing a new model for
decomposing sequential machines into PLAM networks, with which it
is possible to handle sequential machines with large states. First of
aU, it was important to have a good insight in decomposition problems.
Because of the huge cOlllplexity of decomposition problems, it is very
important to have a good feeling about decomposition. To obtain feel
ing about. decomposition, one needs a good decomposition model at. a
high level of abstraction. Such a Illodelmakes it possible to reason about.
decomposit.ions without seeing all complexity at. t.he lower abst.raction
levels. Hart.manis has designed such a model \vhich is based on informa
tion flows [2]. This model has proven to be very useful for thinking about
decomposit.ion. Decomposition can also be modeled as a distribution of
tasks. For the specific decomposition problem which is report.ed, we have
developed a new model which is based on task distribution concepts.

\\lith the new task distribution model, a decomposition can be made
by determining subtasks of a sequential machine, distributing them over
PLAMs, and const.ructing an output independent PLAM net.work de
composit.ion based on this t.ask distributioll. The model which is pro
posed in t.his report is more general than the model proposed by Levin
in [6]. The drawback of the Levin model, which causes t.he problems
wit.h large st.at.es, is that the task distribution is coarse grained. One
elementary subtask consists of compu ting aU information given a certain
current state, and such a subtask may be too large for one PLAM. The
proposed ne\v model uses fine grained subtasks called atoms. One atom
corresponds with the task of performing a single machine operation for
one current state and one input of the sequential machine. A machine
operation consists of determining the llext. state or determining the value
of an output bit.

It is important to note that when atoms are distributed over PLAMs
instead of states, the decomposition looses its sequent.ial behaviour, and
becomes simultaneous. The distinction between sequential and simulta
neous decomposition has been illtroduced ill [:3].

24

3.2

In the model of Levin, the state partition defines a task distribution
among the PLA!vIs. The current state of the sequential machine deter
mines which PLA~I computes the next state and output information.
This implies that only one PLA!vI is really active at a time, and therefore
the model of Levin describes sequential decompositions.

In the new model which is described in this report, atoms are distributed
over machines. Multiple PLAMs can be active simultaneously, because
for a certain current state and input, the corresponding atoms can be
assigned to different PLA!vls, and performed simultaneously. Therefore,
the decomposition model that is proposed in this report yields simulta
neous decompositions.

Determination of Subtasks

This section descrihes how we can distinguish su btasks of the prototype
machine, such that these suhtasks can be assigned to PLAMs of a PLAM
network. Firstl."·, we derine the operations that can be performed by a
PLAM in a PLAr--I-lletwork, in terms of the prototype machine M. We
distinguish operations rdat.ed to the next state and operations related to
the output. For the next state, an operation consists of making the next
state equal to a certain state, and for the output an operation consists
of setting a certain output bit at the value one. Making an output bit
equal to zero is not considered as an operation, because all output bits
of a PLAM-network are zero by default.

Definition 3.1 Let M = (ln, S, OB, D, 6, A) be a sequential machine.
A 6-operation 6s of M, where s E S, represents the operation of making
the next state equal to s. A A-operation Aob of A1, where ob E 0 B,
represents the operation of making the outpnt bit ob equal to 1. The set
of all operations of ill, which is denoted with Ope1'ations(M), is defined
as the set containillg all f,- and A-operatiolls of M:

Operations (ill) = {f,s I s E Jlf .S} U Pob I ob E M.O B}

An atomic task will now be defined as the performance of one operation
for a certain current state and input minterm.

Definition 3.2 Let ill = (lB, S, 0 B, D, 6, A) be a sequential machine.
Then an atomic task (abbreviated as atom) of Af is a structure (cs, x, op),
where

• cs E S is the current state;

• .1: E 'lO(JB) is the input mintenn:
• OJ) E OpemtirJlls (ill) is the opem.tion.

Atom (cs, x, op) represents the task of performing operation op when the
current state equals cs and the input equals :z:. The set of all atoms of

2.5

machine Ai is denoted with Atoms (Ai).

The atoms can be separated into three groups: required atoms, allowed
atoms and forbidden atoms. Required atoms are atoms that correspond
to tasks that must be performed by the PLAM network, allowed atoms
correspond to tasks that lllay be performed by the PLAM network but
are not required, and forbidden atoms correspond to tasks that must
not be performed by the PLAM network.

Definition 3.3 Let Al == (I B, S, 0 B, D, 0, A) be a sequential machine.
Then an atom (S,X,OSI) of 111 is

• required if (B,X) ED 1\ o(s,:r) == SI;
• forbidden if (s,x) ED 1\ 8(s,:r) -:f Sl;

• allowed in all other cases.

An atom (S,;l.',A"b) of}\f is

• requind if (8, :r) E D 1\ A(s.:/:)(ob) == 1;
• forbidden if (s,x) ED 1\ A(s,x)(ob) == 0;
• allowed in all other cases.

The notations

R(J{uiredAtoms (M), AllowrdAtom.s(M), ForbiddenAtoms (A1)

are used for the sets of required atoms, allowed atoms and forbidden
atoms of j1/, respectively.

Example 3.1 Let j\/ be the seqnential machine of example 2.1. The
number of atoms of machine ,~f is given by

IM.SI· 2IM,IBI. (IM.SI + IM.OBI) == 72.

Six of the 72 atoms of M are given below.

• (Sl, Xl :t°2, OSl) and (82, ,1:1 :1'2, Ay;,) are required atoms of Af;
• (SI,X1,'1:2,8 s2) and (83,Xl J'2.AYJ) are allowed atoms of lvl;
• (Sl, ,'1:1 x2, (jS3) and (.'i2, ,1'1 ,1:2, AYI) are forbidden atoms of A1.

When we want to obtain a PLAIvI network that realizes the prototype
machine, each required atom should be implemented by at least one
PLAi\,1 in the network, and each forbidden atom must not be imple
mented by any PLAM in the network. Thus, distribution of the required
atoms over PLA Ms seems to be a good way of obtaining a PLAM net
work that realizes the prototype machine. However, this method of atom
distribution has two large drawbacks.

• There is no direct. rclatio/l betwecn the structure of a PLAM and
the atomic tasks that are pcrformed by a PLAM. The absence of
this relation Illakt,s it difficult to predict the effect of assigning a
certain atom to a PLAi\I, i.e. the use of the input bit space, state

26

bit space, output bit space and term line space of this PLAM.
• The number of required atoms of the prototype machine can be

very large, resulting in a lot of possible distributions. This makes
it difficult to find an optimal distribution.

Looking at these drawbacks, we tried to improve the task distribution
model by defining a new sort of task, which is larger than an atomic
task (in the sense that it can cover many atomic tasks) and has a direct
relation with the structure of a PLAM. This new sort of task will be
called a cube.

Definition 3.4 Let AI = (IB,S,OB,D,b,A) be a sequential machine.
Then a cube of Mis a structure (cs,i,OP), where

• cs E 5' is the current state;
• i E T(113} is the injJut term;
• 0 P ~ OjJeratiolls (1\1) is the ope ration set;

Let us explain how such a cube should be interpreted. The cube performs
a task only if it is active. The cube is active only if the current state
is cs, and the input min(.erlIl of the sequential machine is covered by i.
Under the condition that the cube is acth'e, it performs all operations
that are contained in the set OP.

Knowiug how to i lit ('['(In't a cu be, it should be clear that we can define
the atoms that are covered by a cuhe as follows:

Definition 3.5 Let c be a cube of a sequential machine M. Then the
set of covered atoms of c, which is denoted with Cover'edA toms (c), is
given by

{a E Atoms(M} I (t.cs = C.C8/\ a.x::; c.i /\ a.op E c.OP}

vVhen cubes are used for being distributed over PLAMs, they may not
covel' forbidden atoms. Cubes which do not contain forbidden atoms
will be ca\l('<! molecul('s.

Definition 3.6 Let M be a sequential machine. Then a cube c of M
is a molecule of M iff

CoveredAtoms(c) ~ RequiredAtoms(M) U AllowedAtoms{M).

Example 3.2 Consider the sequential machine AI of example 2.1.
Three cubes Cl, C2 and C3 of .~.f are given below.

Cl (SI,;LIo{bsl });

C2 (SI,-,PVJ}};

C3 (82, :1:2, {bS[" A!I2})'

The covered atOl1lS of these cuhes are given by table :3.1. The cubes CI

and C2 are molecu les of 11/. The cu be C3 is not a molecule of AI, because
it covers the atom (82, XI X2, OS]), which is forbidden.

27

3.3

Table 3.1 Covered atoms of CI, Cz and C3

c Covel'edAtoms(c)

CI {(51,XIX2,bsl),(81.:I:IX2.0sl)}

C2 {(51, .1:1 .1:2, AY1), (81, :r I :1:2, /\ Yl), (51, XI XZ, AYI), (51, XI XZ, AYI)}

C3 {(52, XlX2, bSI), (8Z' X1X2, /\Y2), (52, XI X2, OSI), (5Z, XI X2, Ay2)}

It is stra,ightforward that the set of molecules which have to be dis
tributed, must be chosen such that each required atom is covered by at
least one molecule. A molecule set which satisfies this condition will be
called a molecule cover.

Definition 3.7 Let M be a sequential machine, and let C be a set of
molecules of M. Then C is called a molecule cover of 111 iff

RequiredA tom8 (M) ~ U CovcrcdA toms (c)
cEC'

Distribution of Subtasks

A distribution of tasks over PLA~Is will be described by a set of blocks,
where each block contains molecules that have to be implemented by a
single PLAM. Trivially. the ullion of all blocks I11USt be a 1110lecule cover,
for otherwise required a tOI11S are not im plemen ted.

Definition 3.8 Let l\l be a sequential machine. A molecule distribution

of 1'1 is a set containing nOIJ-('mpty sets of rllolecules called blocks, such
that the union of all blocks is a molecule cover of 111.

Example 3.3 Consider the sequential machine M which is described by
transition table :3.2. An ('xample molecule distribution 7i of this machine
is given by {BI , B2 }. where block B I and block Bz are specified in table
3.3 and 3.4, respectively. Note that B I U Bz is a molecule cover of M.

28

Table 3.2 Transition table of machine M

C8 128 0

:1,'1 :1,'2 X3 :1.'4 ,1:.5 X6 Xi Y1 Y2 Y3 Y4 Ys Y6 Yi Y8 Y9

81 0 1 1 81 1 o -
0 0 81 1 1 0
1 0 82 1 0 0 1

1 1 1 83 0 0 0
0 1 83 0 1 1 1

82 1 1 81 - 0 0 1
0 0 82 1 1 0 1
0 1 83 1 1 0

83 1 81 1 1 0
0 83 0 0 1

Table 3.3 I\[okcules that are contained in block B 1 of 7r

cs

011
1 1 - 1

0-1
1
o

OP

{Os!, AliI}
{OS3 }
{OS3' A113 , AlIJ

Table 3.4 Molecules that are contained in block 8 2 of 7r

C8

81 - - - 1
o 0
1 0

$2 1 1
o 0
01-

OP

{/\Y7 }
{OSI' Ay2 , AyJ
{OS2' Ay2 , Ay7 }
{OSI' Ays }
{OS2' Ay2 , Alip Ays }
{OS3' Ay4 , Ay7 }

3.4 Construction of the PLAM Network

The step which remains to be taken is to define an output independent
PLAM network. based on a certain molecule distribution of a sequential
machine M, This PLAM network mllst be such that it implements a
sequentia.l ma.chine that realizes sequential machine M. The network is

29

3.4.1

3.4.2

constructed such that each component PLAM performs the tasks cor
responding with the molecnles of a block of the molecule distribution.
When we talk about 'the PLAJvl of a block' or 'the block of a PLAM' in
the sequel, we aim at this one-ta-one correspondence between blocks of
the molecule distribution and PLA!v[s of the network. This correspon
dence also makes it possible to talk about 'the molecules of' a certain
PLAlvl or 'the molecules that are placed in' a certain PLAM, with which
we mean the molecules that ar(' contained in the block that corresponds
with the PLAIvL

Indirect Versus Direct Information Supply

"Ve observe that each compolH'nt PLA IvI needs information about the
current state and about til(' inpnt of the sequentiallllachine Ai, since it
must be able to determine which of its molecules are active and which
are not. In general, inforlllatioll can be be supplied to a component
PLAM in t\VO ways: by direct 01' by indirect information supply. Direct
information supply means that the PLAIv[gets information from its own
extemal inputs and its own current state, whereas indirect information
supply means that the PLAIvI gets information from other component
PLAMs via internal inputs. With regard to indirect information supply,
it should be remarked that the fact that the network must be output in
dependent prevents that a PLA~I gets information from another PLAM
via an intermediate PLA~r. Thus. each PLA]'vI can only receive indirect
information from its neigbour PLAt\fs.

"Vith regard to state and inJlut information of the sequential machine
Ai, we choose that every PLAM gets the information directly. Note that
this does not imply that the PLAMs work independently of eachother.
Later on, we have to introduce communication between PLAMs in order
to keep the state information of all PLAMs up-to-date: in certain cases,
next state information will be supplied indirectly.

Task Redundancy

It is important to note that it is possible that atomic tasks (atoms) occur
more than once in a molecule distribution. \-Vhen atoms occur more than
once, we say that there is task redundancy. Task redundancy can occur
within blocks (when an atom is covered by two or more molecules of
a block), or between blocks (when an atom is covered by two or more
molecules belonging to different blocks).

For the network construction. task redundancy is not taken into account.
This means that when a certain task has to be performed by a PLAM,
we don't look whether this task is already performed by another PLAM.
For example, suppose that PLAM p contains the molecule (81, Xl, {bS1 }),

:30

3.4.3

and PLAM p' also contains this molecule. \Vhen the current state is S1

and the input bit :1:1 is high, PLAivI p computes that the next state is SI,

and sends this message to PLAM p', although this is not strictly needed
because p' computes this information itself.

State Information Supply

Knowing that a component PLAi\1 derives all needed state information
from its own current state, we choose the states of a component PLAM
as follows. Each state of 111 appearing as the current state of at least one
molecule of a PLAiv!, is called a current state of the PLAM. The current
states of a P LA i\'I should all be available in this P LAM, since otherwise
it would be impossible for the PLAM to know which molecules of its
block are active. Therefore, the state set of a PLAM contains a copy
of each state that is contained in the current state set of the PLAM. In
addition, the state s('t of a P LA M con tai ns an extra state, called the
wait state. \Ve mnst 1)(' snre that at each moment the current state of
each PLAM really corresponds with the current state of the sequential
machine 111. In other words, when the sequential machine kf has s as
its current state, all PLAi\ls that have a copy of s should have this copy
as their current st.ate. and all other PLAMs should have the wait state
as their current state. Initiall,Y, it is easy to activate the correct state
in each PLAl\I, since we know the start state of the sequential machine
111. Afterwards, the next state information that is computed by the
molecules should he processed in such a way that at the next moment
each PLAi\I is still in the correct state. These problems will be discussed
later OIl. First. we will \\'ork out further how the state set of a PLAM is
translated in a spt of rod('d states.

As we know, the states of a PLAi\'I are not symbolic but binary encoded.
Thus, we must find a stat.e assignment for the symbolic state set of each
PLAM, which has heen defined previousl.y. The state set of a PLAM
contains copies of all cnrrent states of its block, and in addition a wait
state. Because we want to use as few state bits as possible, we choose
for minimally encoded states. Then, the number of state bits that is
needed for a PLAM equals the ceiled value of the 2-base logarithm of
the number of current. states in t.he PLAIVI. increased with 1 because of
the wait state. For the state bits of t.he PLAMs, we will use the symbols
b1, b2 , etcetera. We will use a special code for the wait state: the code
with all bits set to zero. This choice implies that for each PLAM, the
wait state will he the next state if no term line is active. Thus, the wait
state may be regankd as a sort of default next state for all the PLAMs.

The choice of the codes for other states than the wait state is not of
importance here. The only thing which we have to take into account
when we choose the state encoding, is t.hat the wait state receives the
code consisting of all zeros.

:31

vVe finish the investigations about the state sets of the PLAMs by for
malizing the previously described ideas, and giving an example of their
practical use.

Definition 3.9 Let 7r be a molecule distribution, and let B be a block
of 7r. Then the current slate set C S(B) and the state bit set S B(B) of
the PLAM of block fl are given by

CS(fl)
SB(B)

UcEB c.c.s;
{bi 11 ~ i ~ r210g(ICS(B)1 + 1)1}.

A state assignment of the PLAM of block B is an injective function (3 :
CS(B) --+ To(Sfl(B)) such that for all s E CS(B), (3(s) l' to(SB(B)).
A network assigment function for molecule distribution 7r is a function
, such, that for each block B E 7r, ,(B) gives the state assignment for
the PLA~I of block fl.

Example 3.4 Consider the IllO]PCU]c distribution 7r of example 3.3. For
this molecule distribution. the current state set and the state bit set for
the PLAMs of both blocks arc given by

CS(Bd
CS(B2)

Sfl(B I)

SB(fl2)

{81' 83};

{81. 82}:

{VI, V2}:
{VI, b2 }.

3.4.4

An example network state assignment l' for molecule distribution 7r is
given in table :3.5.

Table 3.5 EXcllllplC' network state assignment,

S l(flIl(8) 1 (fl2)(8)

VI b2 VI V2
8, 0 1 0 1
82 1 0
83 1 0

Input Information Supply

A PLAM not only requires information about the state of sequential
machine M, but also abollt the input of 111. Every PLAM should have
enough input information at its disposal to check for each of its molecules
whether it is active 01' not. A molecule may only become active if the
current input min term of scquential machine ,'I is covered by the input
term of the molecule. If 1'01' a certain molecule with input term i, it
has to be checked whetlwr i is covcred by the current input minterm of
machine 111, it suffices to COlllpa,re the tel' III i with the input minterm

32

of M only for the care bits of i. Remember that we have made the
choice that the needed input information will be supplied directly to
each PLAM, i.e. each PLAM derives its input information directly from
its external input bits, which belong to the input bits of the sequential
machine AI. Thus each PLAM receives enough input information, if we
make the external input bit set of each PLAM equal to the union of all
care bits occuring in the input terms of its molecules.

Definition 3.10 Let B be a block of a molecule distribution. Then the
external input bit set E JB(B) of the PLAM of block B is given by

ElB(H) = U Bo(e.i) U Bde.i).
cEB

Example 3.5 Consider the molecule distribution of example 3.3. For
this molecule distribution, the external input bit sets of the PLAMs of
both blocks are given by

EJB(Bd
EJB(B2)

{.1:I' .1:2, ;1:4, :I:'j};

{.1:3 , ,1.'4, :1:.5, J'G}'

3.4.5 Processing of Next State Information

We have already noted that the PLAMs have to communicate to keep
their current state information up-to-date. Now we will work out this
thought precisely. Suppose that at a certain moment, the state informa
tion of the PLAIds is correct. We must achieve that at the next moment,
the state information of all PLAMs is still correct. For each PLAM, next
state information of machine M must be available with which the PLAM
can determine what its nc'xt state is. Since each PLAM makes a tran
sition to its wait, state by default, it only has to take care of its next
state if one of its current states is the next state of M. Thus, when the
next st.ate of J1[is 8, all PLA~:[S that have .~ among their current states
should be in formed.

Before we answer the question how we inform PLAMs about the next
state of machine i'f, we should know where this next state information is
computed. According to the chosen distribution of tasks, the next state
of 111 is computed by the molecules which contain a D-operation. Con
sider such a molecule, which contains operation Ds • When this molecule
becomes active, it lllllst inform some PLAMs about the fact that the
next state of M equals 8. The PLAMs that must be informed are the
PLAl\'ls that have 8 in their set of current states, and that don't com
pute the next. state information theirselves. \Ve make the choice here to
inform all PLAMs that have s among their current states, regardless of
whether or not they already compu te the next state information them
selves. This can lead to redundant communications, but it simplifies the
model. Note that the PLAM that contains the molecule can be one of
the PLAMs that have to be informed. For informing this PLAM, no

communications are needed. In order to inform the other PLAMs, mes
sages need to be sended to t.hem. The data which is sent in the message
is the next state of the sequential machine .1'1. So, an active molecule
with operation bs sends stal.<' 8 to all PLAMs that contain current state
s, except the PLAM to which t.he active molecule belongs.

From the previous paragraph \ve conclude that a state s of AI is trans
mitted from a PLA1'1]J to another PLA~f p' if and only if p contains
a molecule that contains operation {js, and p' contains a molecule that
has s as current state. Define the next states of a PLAM as the states
that occur in a b-operation of at least one molecule of the PLAM. Then,
we can say that given a PLA1\l p and another PLAM p', the states that
have to be transmit.ted from the PLAM p to the PLAM p' are the states
of ,\1 that are next state of jJ aud current state of p'. This is formally
described in the nc'xt t.wo ckfinitiolls. Both definitions are followed by
an exam pie.

Definition 3.11 Let. B be a block of a molecule distribution. Then the
next state set N 5(B) of the PLAM of block B is given by

N 5(B) = {s I :leEB bs E c.OP}.

Example 3.6 Consider t.he molecule distribution of example 3.3. For
this mole'cule dist.ribut.ion fUliction, the next state sets of both blocks
are given by

NS(BI)

NS(B2) =
{oS I , 8:3} ;
{o51.o52,83}.

Definition 3.12 Let 11 be a molecule distribution, and let Band B' be
blocks of 11. Then the transmitted state set T S'B-B'(11) from the PLAM
of block B to the PLAM of block H' is given by

TS' () _ { NS(Il) n CS(B') if Il i- B':
. B B' 11 -- 0 otherwise.

Example 3.7 C'ousider tlte molecule dist.ributiou of example 3.3. For
this molecule distri bu tion, the t.ransmit ted state sets are given by

T SBr-B1(11)
T5B 1->B2(1I)

T5B2->B1 (1I)

T 5B2-B2(11)

0;
{3d:
{oSlo S:3};
0.

Knowing which commlIlticatiolls have to take place, we can investigate
how we should implement t.hese communications. \Ve have considered
two alternative imple1ll0ntations.

The first alternative goes as follows. Since we know that the messages
that are transmitted between PLAMs are states of the machine AI, we
can introduce a separate communication channel for each state 3 of
.1'1 that is transmitted at least between one couple of PLAMs. This

communication channel can be implemented with one internal bit Zs of
the network, which is one if the next state of Ai is s and zero otherwise.
All PLA!'.)s that have <~ a.mong their next states have Zs as internal
olltput bit. Each of th<.'sc PLAMs makes Zs one if it wants to transmit
state s, and zero otherwise. All PLAMs that have s among their current
states have Zs as internal input bit. Each of these PLAMs makes a
transition to its copy of state s if a one appears at its internal input bit

The second alternative goes as follows. Let p and p' be two different
PLAMs, and let S be the set of states that have to be transmitted from
p to p'. Then all states of S, and a special idle symbol, are coded on a
minimal number of intel'llal bits, and these bits become internal output
bits of PLAM q and internal input bits of PLAM q'. By repeating this
process for all pairs of different PLAMs, we can implement all needed
communications.

The first alternative has the characteristic that each state s of AI that
has to be transmitted between PLAMs, receives an own internal bit zs.
Because this resembks one-hot encoding of the states of .~I, the first
alternative will be called the one-hot coding method. The second alter
native COlllllluuicatioli method has the characteristic that it minimally
encodes the states COllllllllllicated between each pair of PLAMs. There
fore. the second alternativp will be called the rnininwl coding method.

Let us compare the one-hot coding method with the minimal coding
method. The one- hot codi ng method is good in the following cases:

• when one PLAM p must transmit the same state s to many other
PLAMs (in this case,]J uses only one internal output bit Zs to
transmit state 8 to many blocks);

• wl1<.'n many PLAi\/s transmit the sam<.' state s to one PLAM p (in
this case, flllS('S onl~' one internal inpl1t bit Zs to receive all states
.s comillg from J1\;llly other PLAI\Js).

The minimal coding method is good in the following cases:

• when one PLAI\! p must transmit a set S containing many states
to PLAM p' and there are no other PLAMs to which states from
S have to be transmitted (in this case, p only needs rZlog(ISI +1}1
internal output bits to send the states of S to p');

• when one PLAI\! p' mllst transmit a set S containing many states
to PLAM]J and no other PLAMs have to transmit states of S to
p (in this case, jJ ollly needs r:2log(ISI + III internal input bits to
receive the states of S from p').

\Vhen we observe the advantages of both methods, we see that we should
choose the best method depending on the communications that have to
take place betwe<.'n PLAMs. It may also be a good idea to combine the
two methods into a general method that can use the advantages of both
methods. These sugg<.'stions will be left for future investigations, and

:35

for the time being we \vill make use of the one-hot encoding method
because of its simplicity.

The next three definitions precisely describe the chosen first alternative.
Each definition is followed by an example.

Definition 3.13 Let 1r be a molecule distribution, and let Band B'
be blocks of 1r. Then the transmitted internal bit set T I B B-B'(1r) from
the PLAM of block B to the PLAM of block B' is given by

Example 3.8 Consider the molecule distribution of example 3.3. For
this molecule distribution, the transmitted internal bit sets are given by

TIBB1 _B2 (1r)
TIBB2 _B1(1r)

{ZSl };
{ZSI'ZS,,},

Definition 3.14 Let 1r be a molecule distribution. Then the network
internal bit set EB(1r) of molecule distribution 1r is given by

EB(1r) = U TI BB_B'(1r).
B,B'Err

Example 3.9 Consider the molecule distribution of example 3.3. For
this molecule distrihution. the network internal bit set is given by

Definition 3.15 Let 7i Iw a Illolecule distribution, and let B be a block
of 1r. Then the internal input bit set IIBrr(B) and the internal output
bit set IOBrr(B) of the PLAI\I of block B are given by

UB"Err TIBB"_B(1r);
UB"Err T I BB_B"(1r).

Example 3.10 Consider the molecule distribution of example 3.3. For
this molecule distrihution. the internal input and output bits of both
blocks are given by

IIB;r(Bd
I I B;r(B2)

IOB;r(Bd
IOB;r(B2)

{Z'Sl" ZS3};
{ZSI };
{ZSI} ;
{ZSl ., ZS,3}'

3.4.6 Processing of Output Information

The output bits of AI are computed as follows by the PLAMs of the
network. The external output bit set of the network is made equal to
the output hit set of the sequential machine Jl1. An external output
bit ob of the network becomes one if there exists a PLAM that has ob

36

among its set of external output bits, and this PLAM assigns one to ob.
In all other cases, the value of ob is zero. So, a PLAM needs to have
external output bit ob if and only if it contains a molecule c such that c
contains operation Aob. The next definition and example work out these
thoughts.

Definition 3.16 Let B be a block of a molecule distribution. Then the
external output bit sct EOB(B) of the PLAM of block B is given by

EOB(B) = {ob Il-EB Aob E c.OP}.

Example 3.11 Consider the molecule distribution of example 3.3. For
this molecule distribution, the external output bits of the PLAMs of
both blocks are given by

EOB(B1)

EOB(B2)

{Yl,Y2,Y3,YS,Y6,Y9};
{Y2.Y~,YS,Y7,Y8}'

3.4.7 Primary Term Lines

Now that we know how the state bits, input bits and output bits of each
PLAM are chosen, and how the external input bits, the internal bits
and the external output bits of the PLAM network are chosen, the only
thing that remains is to define the term lines of each PLAM precisely.
The term lines are separated into two groups: primary and secondary
term lines. The pri mary term lines of a PLA M perform the tasks of the
molecules in the corresponding block, and the secondary term lines are
used to keep the state information of the PLAM up-to-date.

This section (Jpscribcs how the primary term lines are determined. The
primary term lines of a P LAt\'1 are based on the molecules of the corre
sponding block. For every group of molecules that are active under the
same condition, one term line is reserved. One group of molecules that
are active under the same condition is represented with a pair (cs, i),
where cs is the current state and i is the input term for which the
molecules become active. Such a pair is called an activation condition,
and the corresponding group of molecules is called the activated molecule
set.

Definition 3.17 Let B be a block of a molecule distribution. Then the
activation condition sf! AC(B) of block B is given by

AC(B) = {(cs, i) I :JeEB C.cs = cs 1\ c.i = i}.

Consider an activation condition (cs, i). The term line corresponding
with the group of molecules which are active under that condition, is
constructed as follows.

The current state and the input term of the term line are chosen such
that the term line is active if and only if the current state of the prototype

:37

machine is c.s and the input minterm is covered by i. Thus, the current
state of the term line must be the copy of state c.s, and the input term
of the term line must be the same as i for all care bits of i. Remember
that the care bits of i are surely contained in the external input bit set
of the PLAM. For all other input bits of the PLAM, the input term of
the term line must be don't care.

The next state and the output term of the term line are chosen such
that all operations of the group of molecules are performed when the
term line becomes active.

Firstly, we describe how 8-operations are performed.

• \Vhen there are 8-operations among the operations that have to
be performed. we choose one of these operations. Let the chosen
8-operatioll be 8s" If 8' is a Clll'l'pnt state of the PLAM, the next
state of the terrn Ii Ill' is the encoded copy of the state .s', otherwise
it is the encoded wait state, which consists of all zeros. If the
PLA:M has an internal output bit Zs" this bit Zs' is made one in
the output term of the term line. All other internal output bits
have the value zero .

• If there are no 8-operations among the operations that have to
be performed, the term line may not illfluence the next state.
Therefore, we choose the next state of the term line equal to the
all-O-term, and We' choose the value 0 for all internal output bits
of the term linc'. This choice can be explained as follows. The
next state of a PLA!\I is determined by OR-ing the next states of
all active term jines. and the value of each internal output bit is
determined by OTI-ing the values that are assigned to this internal
output bit by all active term lines. Thus, an active term line that
has an all-O-term as next state and zeros for the internal output
bits, does not influence the next state of the PLAM nor does it
influence the states that are transmitted to other PLAMs.

Secondly, we describe how /\-operations are performed. For each A
operation /\0& that has to be performed, the term line must make output
bit ob equal to one. All output bits which mllst be made equal to 1,
are external output bits of the PLAM to which the term line belongs,
so the only thing which has to be done is making these external output
bits one in the output term of the term line. All other external output
bits of the term line are assigned the value 0, so that the value of these
external output bits is not influenced by the term line.

The following two definitions formalize the previously explained term
line choice.

Definition 3.18 Let 7i he a molecule distribution, let ~(be a network

state assignment of 7i, and let B be a block of 7i. Then the primary
term line function of lJ, which is denoted witlt ptlrr",B, is a function
that maps activation conditiolls of B to term lines of the PLAl\{ of B.
This functioll is defined as follows. Let (cs, i) E AC(B) be an activation

38

condition, and let 0 P denote the set of operations that are activated
when this activation condition is fulfilled:

OP = {op I 3cEB C.C8 = C8/\ c.i = i /\ op E c.OP}.

If 0 P contains 6-operations, then choose one 6-operation of 0 P, and
let 6S ' be this chosen 6-operation. Then, the term line to which the
activation condition (C8, i) is mapped, is the term line l which is specified
below, where OU E E08(B), and Zs E IOB;r(B):

I.C8 = I(B)(C8);

I. i [i] EI B (B) . t x (I I B;r (B));

,(B)(8')
to(SB(13))

l.n.'>

l.o(ou)

{

{~

{~

if 0 P has 6-operations and 8' E C S(B);
otherwise;

if,\,/'EOP;
otherwise;

if 0 P has 6-operations and s = 8';
otherwise.

Definition 3.19 Let 1i be a molecule distribution, let I be a network
state assignment of 1i, and let B be a block of 11'. Then the primary term
line 8et PTL:r.,,(8) of the PLAt-.I of block B is defined by

PTL;r,~I(B) = {ptl;r,-,.B(c8,i) I (c8,i) E AC(B)}.

Example 3.12 Consider the molecule distribution 1i of example 3.3
and the network state assignment I of example 3.4. Then the primary
term lines for the PLAt-.ls of block B I and block B 2 are presented in
table 3.6 and 3.7, respectively.

Table 3.6 Primary term lines of the PLA~I of block B I

C8 u.s 0

bI U2 Xl :1:2 ;Ll ;l:j ZSj ZS3 bI U2 YI Y2 Y3 Ys Y6 Y9 ZSj

0 1 0 1 1 - - - 0 1 1 0 0 0 0 0 1
0 1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 - 0 1 1 0 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0 0 1 0 1
1 0 0 1 0 0 0 0 0 0 1 0

39

3.4.8

Table 3.7 Primary term lines of the PLAM of block B2

cs ns 0

b1 b2 X3 ,1:4 ,1:5 ,1:6 ZSJ b1 b2 Y2 Y4 Ys Yi Ys ZSJ ZS3

0 1 1 0 0 0 0 0 1 0 0 0

0 1 0 0 0 1 1 0 1 0 0 1 0
0 1 1 0 1 0 1 0 0 1 0 0 0
1 0 1 1 0 1 0 0 0 0 1 1 0
1 0 0 0 1 0 1 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0 1 0 0 1

Secondary Term Lines

The primary term litH's aI'(' not the only term lines needed. As we have
observed earlier, each P LA 1\1 lllusl refresh its state informa.tion again
and again. To keep tIl(' stale' information up-to-date, the PLAM must
react on 1 values at its internal input bits. If an internal input bit Zs

is 1, the PLAM must make a transition to its copy of s. Therefore, we
introduce a secondary term line in the PLAM for each internal input bit
Zs of the PLA1v!. This term line is made as follows:

• The current state of the term line is an all- x-term.
• The input term of I he term line assigns 1 to input bit Zs and x to

all other input hits.
• The next stale of the term line is tIl(' coded state corresponding

with the copy of $. 'I'lw corl'(~spondence is given by the state
assignment function.

• The output term is an all-O-term.

The following definition formally describes the construction of these sec
ondary term lines. For each hlock. it gives a function that assigns a term
line to each internal input bit. of the block.

Definition 3.20 Let 7i" he a molecule distribution, let '/ be a network
state assignment of 7r. and let B be a block of 7i". Then the secondary
term line function of E, which is denoted with stlrr,'Y,B, is a function
that maps internal input hits of the PLAM of E to term lines of the
PLAM of B. This function is defined as follows. Let Zs EllBrr(B)
be an internal input bit of the PLAM of B. The term line to which
this internal input bit is mapped, is is the term line 1 which is specified

40

below, where ib EEl il(il) U f I fJrr(B):

l.cs

l.i(ib)

1.n8

1.0

tx(.S'B(fJ));

{
1 if ib = ZS;

X otherwise;

'"y(B)(8);

to(EOB(B)).

Definition 3.21 Let 11 be a molecule distribution, let 'Y be a network
state assignment of 11, and let B be a block of 11. Then the secondary
term line set STLrr,-y(B) of the PLAM of block B is defined by

Example 3.13 Consider the molecule distribution 11 of example 3.3
and the network state assignment 'Y of example 3.4. Then the secondary
term lines for the PLA~{s of block fJ, and block B z are presented in
table ;3.8 and :3.0, r('srwdivdy.

Table 3.8 Secondary term lines of the PLAM of block B I

C8 ns 0

bl bz Xl Xz X4 Xi ZSI 4-s3 b, b2 YI Y2 Y3 Ys Y6 Y9 ZSI

1 0 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

Table 3.9 Secondary term lines of the PLAM of block B2

C8

bj b2 X3 :1:4 :1~5 ·1:6 ZSI

- - - - 1 o 1

o

Y2 Y4 Ys Yi YB ZSI ZS3

0000000

3.4.9 The Complete PLAM Network

Now we have completely described how a network of PLAMs must be
constructed, provided that we dispose of a molecule distribution of the
sequential machine jU and a network state assignment for this molecule
distribution. The following two definitions precisely define this PLAM
network, in terms that have been introduced previously in the definitions
of the previous subsection.

Definition 3.22 Consider a molecule distribution 1r, a network state
assignment I of 1r, and a block 8 of 1r. Then the indllced PLAM of block
8 is the PLAM (IB,8B,OB,TL) given by

IE £IB(B)UIIB;r(B);
8B = 8B(8);
OB IOB;r(B) U £013(B);
T L PT L;r,,(B) U 8TL;r,,(B).

This induced PLAM will be denoted with P LAMJr",B.

Example 3.14 Consider the molecule distribution 1r of example 3.3
and the state assignment function I of example 3.4. Then the induced
PLAMs of block B I and block B 2 are given by

P LAi11;r,A;,B1.In
P LAi11;r.Af,B1.S lJ
P LAM;r.A/,B1.0 [J

P LAM;r",B2 .IB
P LilA!;r,A/,B2 .8B
P LAM;r",B2 .OB

= {,7'1"7'2.:L \ •.I',,Zsl, zs3}:

= {() I . b:z} :
{VI, ,'h, V3, ,1).5, VG, V9, ZSj};

{:l:3, :1:4, Xs, XG, Z'Sl};

= {b l , b2 };

= {YZ,Y.loY5,Y"YS,Z'Sl'Z'S3}·

The term lines of both PLAl\Is are given in table 3.10 a.nd 3.11.

Table 3.10 TC'I"III lilies of the PLAl\I induced b.y B j

C8 ns 0

bl b2 J:I ,1'2 ,'1:'1 J', Z'sJ Z's.·\ bl bz YI Y2 Y3 Y5 YG Y9 Z'Sl

0 1 0 1 1 0 1 1 0 0 0 0 0 1
0 1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 - 0 I - - - 1 0 0 0 1 1 0 0 0
1 0 - - - 1 0 1 0 1 0 0 I 0 1
1 0 - - - 0 I 0 0 0 0 0 0 1 0

- - - - I - 0 1 0 0 0 0 0 0 0
- - - 1 0 0 0 0 0 0 0 0

Table 3.11 Term lines of the PLAM induced by B 2

cs ns 0

bl bz X3 X4 Xs XG Z'SI bl bz yz y,j Ys Yi Ys ZSl ZS3

0 1 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0 1 0
0 1 I 0 - - - I 0 1 0 0 1 0 0 0
1 0 1 I - 0 1 0 0 0 0 1 I 0
1 0 0 0 - 1 0 1 I 0 0 1 0 0
1 0 0 1 - 0 0 0 I 0 1 0 0 1

1 0 1 0 0 0 0 0 0 0

42

Definition 3.23 Consider a sequential machine M, a molecule distribu
tion 7l" of Ai, and a network state assignment I of 7l". Then, the induced
PLAAf network is the PLAM network n = (IB,EB,OB,P) given by

IB jJJ.JB;
EB EB(7l");
OB Ai.OB;
P {PLAM;r,'Y,B I BE 7l"}.

Example 3.15 Consider the molecule distribution 7l" of example 3.3
and the state assignment function I of example 3.4. Then the induced
PLAM network is the PLAM network (IB,EB,OB,P) given by

IB
EB
OB
P

{XI,X2,X3,X4,X5,X6,Xi};

{ - -}."';'Sl' ";'83 ,

{YI , !J2, Y:1· y" Y5. YG· Yi, Ys. Yn} :
{P LAM"....BI • P LAM;r.-y,B2}.

The PLA~'1s P LAM;r,-.,B J and P LAM",-I,B2 have already been presented
in example 3.14. A schematic view of this induced PLAM network is
given in figure 3.1.

r-----------------------------,
I I

x,

I I

I I

I I

I
I I

I
I I

I I

I]JI I

I I

I I
I, I

I -+ f------ I

I I

I I

I

r I f ZS3

, I

I
I

-SJ

I r
I

I I
I

I I

I ~ f------ I
I I
I I

I

I I

I
]Jz

I
I I

I I

I

I I

I I

I I

Yl
Y3
Y6
Y9

Y2

Ys

Y4
Yi

Ys

3.4.10

I I
L J

Figure 3.1 Induced PLAM network

Decomposition Theorem

It should be clear that the way in which a PLAM network is constructed,

43

based on a molecnle distribution, is such that the following theorem
holds.

Theorem 3.1 Consider a sequential machine 111 and a molecule distri
bution 1r of this sequential machine. Let 11, be a PLAM network that is
induced by 1r. Then n is all output independellt PLAM network decom
position of AI.

The formal framework makes it possible to really prove this theorem, but
we had not got the time to do so. It should be clear that the theorem can
be proved by proving that 11, is an output independent PLAM network,
and that the implemented machine rL~1 of 11, realizes 111, because there
exists a state homomorphism ~& : 1I1.S ~ SimrAn), which is defined, for
all S E lIf.S and B E 1r. by

{
~((LJ)(8) if S E CS(B);

O(8)(PLAMrr ,'"i.B) = to(SB(lJ)) otherwise.

The next example shows. for one sequential machine and molecule dis
tribution, that theorem 3.1 holds.

Example 3.16 Consider the machine M of example 2.1. A molecule
distribution 1r of this machine is given by 1r = {B 1 , B2 }, where B 1 and
B 2 are specified in table ;1.l2 and ;3.1:3, respectively. A network state
assignment I of 1r is given ill table :3.1·1. The PLAl\I network that is
induced b.y 1i and I is th(' 11('I\\"ork of" example 2.9. In example 2.12, we
have proved that this 1\('1 work is an output independent PLAM network
decomposition of J1.

Table 3.12 Molecules that are contailled in block B 1

cs OP
,rl .1:2

.~ 1 0 0 {Ds"A yJ }

0 I {b Sj , /\Y2}
I 0 {b S2 ' Ay1 }

82 0 0 {D s1 }
1 PYI}

1 0 { t582 }

44

Table 3.13 IVlolecules that are contained in block B2

c.s OP
Xl X2

.s2 - 0 {A Y2 }

- 1 {8 s3 ,A y3 }

.s3 - 0 {8s2 , Ay2 }

- 1 {8 s3 }

Table 3.14 Network state assignment I

s I(B1)(.s) I(B2)(.s)
bi b2 bi b2

81 0 1

81 1 0 0 1
83 1 0

45

4

4.1

Decomposition Method

The decomposition model which has been derived in the previous chap
ter, describes possible PLAt\'[-network decompositions of a given proto
type machine Ai in terms of task distributions. This chapter gives a
method for finding a decomposition among these described decomposi
tions, which satisfies the soft and hard constraints.

Overview of the Method

Because the decomposition task is a very com plcx, it is performed in a
number of consecutive steps. earh of which solves only a part of the prob
lem. Figure 4.1 gives an overview of the decomposition method. The
method consists of two top-down steps (macromolecule construction and
macromolecule splitting), followed by t\VO bottom-up steps (packaging
and net\vork construction). In the top down steps, a macromolecule
cover is constructe'(l. A macromolecule cover is a set of molecule sets,
called macromolecules, such that the lInion of these molecule sets forms
a molecule cover. In the' bottom up ste'ps, the macromolecules of the
macromolecule cover an' packaged into bigger molecule sets, which form
the blocks of the molecule dislribution which is lIsed to construct the
final PLUI network.

Afacromolecule constrllction starts with comparing the transition table
to the PLAM-size constraint. in order to determine \vhich of the four
parts of the PLAM-size constraint are most difficult to satisfy. After
wards, macromolecules arc constructed in such a way that each macro
molecule minimally claims the PLA!'.! spaces for which the constraint
is most difficult to satisfy. This increases the probabilit,Y that finally a
PLAM network is obtainc'd that satisfies the hard and soft constraints.

The probability of obtaining a PLAT\'l network that satisfies the con
straints is further increased by mac1'Omoiecuie splitting. In the macro
molecule splitting step, macromolecules that surely don't fit in one
PLAM, are split ted into smaller macromolecules, which claim a smaller
part of the PLAM spaces and thus have greater probability of fitting in
one PLAM.

Packaging consists of constructing a molecule distribution by placing
macromolecules into blocks. such that the constraints are satisfied by
the PLAM network that is induced by this molecule distribution. Each
block can be seen as a parket in which molecules can be placed such that
the corresponding PLAl\[does not violate the PLAM-size constraint.

46

transition table output independent
and

PLAM-size constraint PLAM network

1 f

macromolecule network constructionconstruction

1 f

macromolecule packagingsplitting

1 f

macromolecule cover

Figure 4.1 Overview of the decomposition method

The number of blocks (or. equivalently. the number of packages) which
is needed in ordN to obtain a mol('clIle distribution for which the in
duced PLAlvl network satisfies all constraints, is predicted before the
packaging process begins. Durillg the first packaging it is tried to put
all macromolecules in this number of blocks. If the first packaging suc
ceeds, the number of blocks is repeatedly decremented until the number
of blocks has become too small to package all macromolecules. If the
first packaging fails, the number of blocks is repeatedly incremented un
til the number of blocks has become large enough to contain all macro
molecules. This increment./decrement process can be seen as a search for
the decomposition with the least number of PLAMs. The minimization
of the number of connections between the PLA Ms is done during the
packaging algorithm.

The packaging algorithm will not be expla.ined further in this report,
because there are packaging methods available, for example the methods
described in [4] and [.5], that are efficient. and effective, and that can be
adapted for this specific packaging problem.

The neill'or/'; construction step is straightforward. It consists of the
translation of a molecule distribution into its induced PLAM network,
that has been described extensively in the previous chapter.

47

4.2 Modeling Hard and Soft Constraints

Because we want to make a molecule distribution that leads to a PLAM
network that satisfies the hard and soft constraints, we must have a
good view of the relation betwpen molecule distributions and the hard
and soft constraints on thpir induced PLAI\J network. This relation is
described in this section.

First, we will look at the hard constraint, which is given by the PLAM
size constraint (see definition 2.22). Every PLAM in the network has
only a limited number of input bits, state bits, output bits and term
lines. The limited number of state bits can also be expressed as a limited
number of states, taking into account that one of these states must be
reserved for the wait state. We introduce the concepts of PLAM spaces
and positions in the next definition.

Definition 4.1 The 50t of input bits, statp5, Olltput bits and term lines
of a PLAI\;I are resperti\'C'ly cal!0c! the input bit ,space, ,state space, output
bit space, and terrn line space of tltt' PLAM. The elements of these spaces
are called positions. So, the input bit space contains input bit positions,
the state space contains state positions, the output bit space contains
output bit positions and the term line space contains term line positions.

The cardinality of the four PLAM span's can he expressed in terms of
the PLAM-size constraint c: the input bit space contains C.111'IB posi
tions, the state space contains 2c.nrSll -1 positions, the output bit space
contains c.nrOB positions, and the tel'llI lillc space contains c.nrTL po
sitions.

vVhen molecules are placed ill a PLAI\I, the,v claim pOSitIOns in the
PLAM spaces. The following definition introduces the terminology that
will be used to describe the effect of molecules on the spaces of the
PLAM in which they are placed.

Definition 4.2 A set of molecules that is placed in a certain PLAM,
claims positions of this PLAI\J. A claim for a position is characterized by
the space to which the position belongs, and the demanded value for this
position. vVe distinguish I' types of claims. These types are summarized
in table 4.1.

The next two definitiolls clefille the claims of a set of molecules on the
PLAM in which they are placed. The first definition handles claims that
are independent of the whole molecule cover and the second definition
handles claims that are dependent of the whole molecule cover.

Definition 4.3 Let n be a. set of molecules. Then the set of external
input bit claims, the set of state claims, the set of external output bit
claims and the set of primary te'/'m line claims of the molecules of Bare

Table 4.1 Overview of the seven claim types

claim type
External Input
Bit (Em) claim
Internal Input
Bit (lIB) claim
State (S) claim
External Output
Bit (EOB) claim
Internal Output
Bit (IOn) claim
Primary Term
Line (PTL) claim

Seconda.ry Term
Line (S1'L) clai III

respectively giw'H by

space
input bit
space
input bit
space
state space
output bit
spare
output bit
space
term line
space

term lilw
space

claimed value
input bit of the prototype
machine
Zs, where 8 is a state of
the prototype machine
state of the prototype machine
output bit of the prototype
machine
Zs, where 5 is a state of
the prototype machine
primary term line for activation
condition (C5, i), where C8 is a
state of the prototype machine
and i is an input term of the
prototype machine
secondary term line for a bit zs,
where 8 is a state of the
prototype machine

CEfB(B)
Cs(B)
CEOB(B)
CPTdB)

{ib I :JcEB c.i(ib)::f: x};
{8 I :J cEB C.C8 = 8};

{ob I :JcEB c.o(ob) = I};
{(c.s, i) I :JcEB C.C8 = C8 1\ c.i = i}.

These claims are called indcpcndent.

Example 4.1 Consid('r the molecule distribution of example 3.3. For
the blocks lJ j and Ih of' this molecule distribution', the external input
bit claims, state claims, external output bit claims and primary term
line claims are gi ve n below.

CEfB(Bj)

Cs(Bd
CEOB(Bd
CPTdBj)

CEfB(fl 2)

Cs(B2)

CEOB(B2)

CPTL(B2)

{.1:1,X2,X4,:ri};
{81,53};
{YI, Y2, Y3, Yo5, Y6, Y9};
{(SI,.Tl :r2·T4),(8j,XI X2X4),(81,X2.'t4),
(83,:ri),(83,:ri)};

{:r3. :/',1 ..To5, .'t,,};

{81,8d;

{Y2' Y4, V,S, Yi, YS};
{(81, x,d, (81, x3 X4), (81, X3 X4), (82, ·'ts X6),
(82, Xs X6), (82, Xs X6)}.

Definition 4.4 Let C be a molecule cover, and let B be a subset of C.
Then the 8et of internal input bit claim8, the set of internal Olltput bit
claims and the 8el of .secondary le1'111 line claim.s of the molecules of B

49

in molecule cover C arc respectively given by

CIIB(B,C)
CIOB(B,C)
CSTL(B, C)

= {zs I :leEB C.cs = s 1\ :leEC\B bs E e.OP};
{zs I :leEB bs E c.O P 1\ :leEC\B c.cs = s};
CIIB(E, C).

These claims are called dependent.

Example 4.2 Consider till:' molecule distribution of example 3.3. For
the blocks B I and B2 of this molecule distribution, the internal input
bit claims, internal output bit claims and secondary term line claims are
given below.

CIIB(BI , B I U B 2)

CIOB(BI , E I U B 2)

CSTL(BI , B1 U B2)

CIIB(B2 , E I U B2)

CIOB(B2 , BI U Ih)
CSTdE2 .BI U lhl

For checking whether a certain molecule distribution leads to a PLAM
network that satisfies the hard constraints, we can look at the claims
of each block of the moll'cllll' distribution, and determine whether these
claims cause a violation of the PLA~I-size constraint.

Definition 4.5 Let C' bl' a molecule cover. let B be a subset of C,
and let c be a PLAr-J-size constraint. Then B violates the PLAM-size
constraint c if one of the follo\\'ing conditions is true:

c.m·lB
2e·n1

· SB - 1

c.nrOB

c.m'TL

< ICSlR(1J)I + [CllH(fJ.C')I:
< ICs(illl;
< /CEOR(illl + ICIOB(B,C')I:
< ICPTL(1J)! + ICSTdE, C)l·

Definition 4.6 Let 7r Iw a molecule distribution for a molecule cover
C, and let c be a PLAM-size constraint. Then 7r violates the PLAM
size constraint c iff there is a block of 7r that violates the PLAM-size
constraint c.

It should be clear that an induced PLAM network of a molecule distri
bution violates the PLAr-I-size constraint iff the molecule distribution
violates the PLANI-size constraint.

Example 4.3 Consider the molecule distribution 7r of example 3.3, and
consider the constraint c given by

c.m'IB 6;
c.nrSB 2;

c.nrOB 7;
c.nrTL 7

50

For each block of molecule distribution 1l", a schematic view of the in
duced PLAJvl is given in figure 4.2. The schematic PLAM on the left
side represents the induced PLANI of block B1 , and the one on the right
side represents the induced PLAM of block B2 • The positions in the
input bit space of the PLA1\Is are the ingoing arrows, the positions in
the state space are the circles, the positions in the output bit space are
the outgoing arrows and the positions in the term line space are the
rectangles. In example 4.1 and example 4.2, the claims of blocks B1

and B-2 have been given. The honouring of these claims is shown in the
schematic PLAMs by placing the values that are claimed in a certain
space at positions in this space. It can easily be seen that PLAM-size
constraint c is not violated by B1 nor by B2 • Thus, a PLAM network
that is induced by molecule distribution 1l" surely satisfies the PLAM-size
constraints c.

® @ 0 @ ® 0
Y2

I (81 , "~I X 2 ;1: ,1) I (SI,X4) I
Y4

I (ShXI":2X4)~ (SI,X3 X 4) I
Ys

I (SI,X2 X 4) I (SI,X3.'r4) I
Y7

I (·~3' :1:7)] (.52,xs:r6) ~
Ys

I (S;J. "·7) I (82,:rsxU
ZSI

I - I (82,·'rSX6)-SJ

ZS3

I ""S3] ZSI

Figure 4.2 Claims 01" the blocks of an example molecule distribution

It is also possihle to relate the soft constraints directly to a molecule
distribution, using claims. The number ofPLAMs in the PLA1\1 network
simply equals the number of blocks of the molecule distribution. The
number of connections in a PLAM network tha.t is induced by molecule
distribution 1l" is equal to

where C = U1l".

Example 4.4 Consider the molecule distribution of example 3.3. Filling

51

4.3

4.3.1

in the claim sets, that have been determined in example 4.1 and 4.2, in
expression (2) results in a number of connections equal to 2.5.

Macromolecule Construction

This section explains precisely the first step of the decomposition method.

Definition 4.7 Let.U be a sequential machine. A macromolecule of
III! is a set containing molecules of M. A set A of macromolecules of M
is a macromolecule cover of 1\1 iff UA is a molecule cover of AI.

The objective of macromolecule cover construction is to find a macro
molecule cover which maximizes the probability that the final PLAM
network satisfies the hard and soft constraints. This is a difficult task,
because it is hard to pred iet t he effect of a certain macromolecule cover
on the final PLA1I network.

\Ve introduce four c1irrerent ways of constructing a macromolecule cover.
\Vhich of the four is chosc'n depends on I he part of the PLAM-size
constraint that seellls Innsl difficult to satisfy. All four ways of macro
molecule cover consl ruct ion arC' based all two-level minimization of a
task table. which is cIPrin'd rroln I hc' transition table. Therefore, we
first explain \vhat has t.o 1)(' 1)]"('cisely understood by two-level minimiza
tion and task tabks, and arterwards we explain how the macromolecule
construction method works.

Two-Level Minimization

Let Band JJ' 1)(' sets or hits. Theil. a lIlultiple output binary function
from B to JJ' is a runction that lIlaps complet.e assignments of the bits
of B to possibly incolll plete assi~nlllellts of the bi ts or B'. This can be
formalized as follows.

Definition 4.8 Let B, B' be two sets of bits. Then a multiple output
binary function f from B to B' is a function f : To(B) --;. T(B'). f is
called completely specified iff f(t) is a minterm for all t E To(B).

Example 4.5 Let B = {.l·I.:l'Z} and B' = {YI,YZ} be two sets of bits.
Then the function f : To(fl) - T(B'), which is defined by table 4.2,
is a multiple output binary fUllctioll from B to lJ'. For example, this

function expresses that. when .1"1 is 0 and .1:2 is 0, Y2 is assigned the value
1, and nothing is said ahout t.he value of Y1.

The next definition introduces the covering concept for multiple output
binary functions, basecl on the previously clefined covering of terms .

.52

Table 4.2 1'1ultiple output binary function f from B to B'

f(t)
Xl :/:2 YI Y2
0 0 1
0 1 0 0
1 0 0 1
1 1 1 -

Definition 4.9 Let B, B' be sets of bits, and let f, l' be two multiple
output binary functions from B to B'. Then, f covers l' iff

VtE'To(B) f(t):2: !,(t).

Example 4.6 Let n, B' be the sets of bits of example 4..5. Let 9 :
To(B) ~ T(B') be the multiple output binary function given by table
4.3. Then 9 is covered by the multiple output binary function f of
example 4 ..5.

Table 4.3 Mu1t:iple output binary function 9 from B to B'

.f(t)

.1'1 ·1:2 YI Y2

0 0 0 1
0 1 0 0
1 0 0 I
1 1 1 1

\Vhen we aim at realizing a multiple output boolean function with a
PLA, we express the function with a PLA table. The definition of a
PLA table, along with the definition of the flillction that is described by
the PLA table. are given now.

Definition 4.10 A PLA table T with input bit set B and output bit
set B' is a subset of T(B) X T(B'). T is called completely specified if t'
is a minterm for all (t, t') E T. A PLA table T has separated outpu.ts if

Definition 4.11 Let T be a PLA tahle with input bit set B and output
bit set B'. Then the described function of T, which is denoted by fT, is
a multiple output binary function from B to B'. For any t E 'To(B) and
bE B'. h(t)(b) is equal to

if 3(1\.t2)ET t ~ t l 1\ t2(b) = 1;

if 3(tlh)ET t ~ t l 1\ t2(b) = X 1\ V(tl,t2)ET t ~ t l ::} t2(b) i- 1;
otherwise.

.53

Example 4.7 In table 4.-1. three PLA tables are given, labeled A, B
and C. The described function of A and B is the multiple output binary
function f of table 4.2, and the described function of C is the multiple

output binary fUllction {} of table 4.3.

Table 4.4 PLA tables

A B C
t t' t' t t'

Xl X2 YI Y2 .1:1 X2 YI Y2 Xl X2 YI Y2

0 0 1 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0 1
1 1 1 1 1 1 1 1 1 0

The covering collcept for multiple output biliary functions can be trans
lated to the covering concept for PLA tables.

Definition 4.12 Let T and T' be PLA tables. Then T covers T' iff IT
covers fT'.

Example 4.8 Let:-l. Band (' be tl10 PLA tables that are presented

in table -1.4. Then, .4 mvers (' and B covers C.

It should be clear that. when a 1l1ultiple output boolean function f from

B to B' can be described b,va PLA table T, there exists a PLA with IBI
input bits, IB'I output bits and ITI terms such that this PLA realizes
the function f.

There are many tools availabl<' that can find a minimal PLA table that is
covered by a given PLA table. The minimality criterion depends on the
type of minimization. The followi ng list sum III a rizes t he most im portant

types of PLA table minimization. and gives their minimality criteria.

• Multiple output rOIl' minimization
The mininIized PL:\ table is a completely specified PLA table.

The number of rows in the minimized table is as small as possible.

• Single output row minimization
The minimized PLA table is a completely specified PLA table with

separated outputs. The minimized table satisfies the condition
that for each output bit, the number of rows that assign 1 to this
output bit is as small as possible.

• Multiple output support minimization
The minimized PLA table is a completely specified PLA table.
The number of care input bits in the minimized table is as small
as possible.

• Single output suppa/'t minimization
The minimized PLA table is a completely specified PLA table with
separated outputs. The minimized table satisfies the condition
that for each output bit, the number of care input bits for this

.5-1

4.3.2

output bit is as small as possible.

Task Tables

A task table is a PLA table that is derived from the transition table,
and it is used in order to construct a molecule cover. The following
definition describes precisely how a task table is defined.

Definition 4.13 Let l' be a transition table. The task table of l' is a
PLA table with input bit set E and ontput bit set E ' , where E and E'
are given by

B {.T s I 8 E 1'..5'} U {.T ,1i 1 ib E 1'.1B};
B' {.If"., 18 E T ..5'} U {.If.\0~ lou E T.OB}.

For each horizonl(JI h E '1'.11. the lask table contains a row (t, t'), where
t and t' are d('fined as follows, for 8 E 1'..5', ib E T.! Band ou E T.OB:

t(.) _ {a. if 1I.C8 i- s;
. ·(.s - •.

1 If lI.c$ = s;

t(Xib) = h.i(iu);

'() {o if h.1l8' i- s:
t .If", = 1 If h./I," = 8:

For each (C$, x) E 1'..5' x '10(T.! B) such that there is no horizontal h E H

with h.C$ = cs and .1: S; h.i, the task table contains a row (t, t') which is
defined as follows, for s E 1'.5', ib E 1'.1 Band ob E T.OE:

(.)_{o if cs i- s:
t .T s - 'f1 I C8 = 8;

t'(Y05.) = x;

Example 4.9 Consider the transition table 1', which has been presented
in example 2.5. Then the task table of l' is given in table 4.5.

If we construct a completely specified PLA table which is covered by
the task table, for exam pl(' by two-level minimizing the task table, this
compl(·tely specifi('d PLA tabh' is called a task cover table.

Definition 4.14 Let T be a transition table. A task cover table of l'

55

Table 4.5 Task table of transition table T

t'
X SI X S2 XS~ XXI XX2 YS'l YS s? YE S1 Y'\YJ Y,\y? YA Y1

1 0 0 0 0 1 0 0 1 0 0
I 0 0 0 I 1 0 0 I 0

1 0 0 1 0 0 I 0 I 0 0
1 0 0 1 1
0 I 0 0 0 I 0 0 0
0 I 0 I 0 0 1 I 0 1
0 I 0 I 0 0 I 0 0 1 0

0 0 I 0 0 I 0 0 I 0

0 0 I I 0 0 1 0 0

is a COlli pletel.y speci ricd P L\ t able' tb at is co\'ered by the task table of
T.

Example 4.10 llecollsid('r til(' transitIon table T of example 4.9. A
task table cover of this traJlsition table is gh'en in table 4.6.

Table 4.6 Task cO\w table of transition table T

t'

1 0 0 0 0
1 000 1
100 I 0
o 1 (J 0 0

o I 0 1

010 0
001 0
o 0 I 1

1 0 0 1 0 0
I 0 0 0 1 0

o 1 0 1 0 0

1 0 0 0 0 0
(JOII 0 I

o 1 0 0 1 0

o 1 0 0 1 0
o 0 1 0 0 0

There is a simple mapping /J from task cover tables of a transition table
to molecule covers of the described machine of this transition table. This

mapping is defined as follows. Let T be a transitioll table, and let J(

be a task cover table of T. Thcn j3(l\') contains a molecule for a row

(t, t') of](, if t satisfies the condition that there exists an 5 E T.S such

that t(xs) = 1, and t(:l:s/) = 0 for all 8' E T ..5' \ {5}. The molecule
that corresponds with this row (I, t') is the molecule c which is specified
below, for ib E 1'.]B:

cs s;
i(ib) t(Xib);

OP {op I YOI' E Ddt')}.

It can be shown that this lIlapping is correct, and that each molecule
cover of the prototype machine is the image of at least Olle task cover

56

4.3.3

table.

Example 4.11 Let [\' be the task cover table of example 4.10. This
task table cover [\' is mapped to the molecule cover which is presented
as table 4.7.

Table 4.7 Molecule co\'er corresponding with task cover table

cs i OP
Xl X2

Sl 0 0 {OSI' AY1 }

0 1 {OSI' Ay2 }

1 0 {OS2' Ay1 }

S2 0 0 {8S1 }

1 {8 s:,.• Ayl , /\yJ

1 0 {882 , /\Y2 }

"';3 0 {882 , Ay2 }

I {8s , }

Macrol11.0lecule Cover Construction Based on Two-Level
Minimization of Task Tables

Depending all thc' Slwcific characl<'ristics of the problem instance, which
consists of a transition table of the prototype machine together with a
PLAM-size constraint, we choose one of four possible ways of construct
ing macromolecules. The choice is based on an estimation of the relative
difficulty of satisfying each part of the PLAM-size constraint. This esti
mation is made by comparing the transition table with the PLAM-size
constraint in four dinlC'nsions: the input bit dimension, the state bit
dimension, tlte Olltput bit dimension and the term line dimension.

Definition 4.15 LN T be a transition table, and let c be a PLAM
sizp constraint. '1'lwn thp corresponding constraint e.reeeding factors for
the input bit, state, out.put bit and term line space are denoted with
EJB(T, e), Es(T, e), [OB(1" c), ETdT, e) respectively, and defined by

ElE(T,c)
Es(T, c)
EOB(T, c)
ETL{T,c)

IT.!EllC.117'lE;
IT.SI/(2c.nrsB - 1);

IT.O Bl/e.117'oB;
IT.ll IIC.117'n·

The macromolecules arc constructed as follows. First, we determine
which of the fOllr constraint exceeding factors is the largest. \Vhen this
is the fa.ct.or for t.he input. bit., t.he stat.e or the term line space, we
choose for state basrr! macromolecule construction, otherwise we choose
for opemtion based nwcro111.olccule eOH.'struetion. An explanation of these

57

two possible ways of macromolecule construction is given below.

• state based macromolec'llie construction means that the rows of the
task table are partitioned, such that rows with the same one-hot
encoded current state belong to the same block. Then, a sepa
rate multiple output minimization is performed on each block of
the partition, and afterwards the resulting rows for each block
are merged into a complete minimized task table, which forms a
task cover table. For each block of this task table cover, a macro
molecule is made that contains precisely the molecules that corre
spond with the rows of this block. State based macromolecule
construction guarantees that each macromolecule claims
precisely one state, at most one internal input bit, and at
most one secondary term line.

• operation ba8ed macromolecule con8truction means that the task
table is minimized in its entirety, but using single output mini
mization. For each output bit of the resulting task cover table, a
macromolecule is made tllat contains exactly the molecules which
correspond to rows that assign oIle to this output bit. Operation
based macromolecule construction guarantees that each
macromolecule claims at most one external or internal
output bit.

For state based as well as for operation based macromolecule construc
tion, we can still choose for row Im8ed macromolecule construction or sup
port ba8ed nwcromoifcule cO//'8ll'lIction. For row based macromolecule
construction, the two-level minimization step minimizes the number of
rows, and for support based construction, the two-level minimization
step minimizes the numlwr of input bits that are care. Row based
macromolecule construction results in a minimal number of
primary term line claims for each macromolecule, and support
based macromolecule construction results in a minimal number
of external input bit claims for each macromolecule.

Now we have 4 possibiC' ways of Illacromolecule construction, because we
must choose between state and operation based, and between row and
support based. The effects of each alternative on the claims made by
macromolecules have been given in the bold-faced parts of the previous
paragraphs. In table 4.8, the alternatives are compared with respect to
the claims that are made by the macromolecules. \Vhen an alternative
results in few claims of a c('rlain type, a. bullet is placed.

The choice betwe(1I1 til(' alteruati ves is made wi th the following basic
idea in mind. \Vhen a certain PLA 1\1 space probably causes the most
difficulties, we try to minimize for each macromolecule the number of
its claims in the problem-causing spaces. The problem causing spaces
are the spaces for which the constraint exceeding factor is high. Table
4.9 shows which altel'l1ative should be chosen, depending on the values
of the constraint exceeding factors. This table is made using table 4.8.
For example, when the constraint exceeding factor for the state space
is the largest constraint exceeding f<l.ctor, we try to minimize the state

.58

Table 4.8 Comparison of alternatives with respect to claims

claim alternative
type state state operation operation

row support row support

ElB • •
lIB • •
S • •
EOB • •
lOB • •
PTL • •
STL • •

claims for each macromolecule. Table 4.8 shows that in this case, state
and row based, or state and support based macromolecule construction
should be chosen. For making the choice between the remaining two
alternatives. we look at the second to largest constraint exceeding factor.
From table ,1.8, it follows that it is better to choose for state and row
based macromolecule> construction if the constraint exceeding factor for
the term line space is larg<'1' than that of the input bit space, and that it is
bet tel' to choose for s tat (' a I1d Sli pport based macromolecule construction
otherwise.

Table 4.9 Choict, of macromolecule construction method

largest constraint
exceeding factor

Es(T, c)

En(T, c)

macromolecule construction method

state s.: support

state & support if ETB(T,c) ~ ETdT, c)

statt' S,~ row if ETdT,c) ~ ETB(T,c)

operation & support if ETB(T,e) ~ ETdT,c)

opera,tion & row if ETdT,e) ~ ETB(T,e)

state & row

Example 4.12 Let the prototype machine be given by the transition
table T, which has been presented in example 2.5. The task table of T
is given in table 4.5. Let the constraint c be given by

e.m·TB

e.nrSB

c.m'OB

c.m'TL

2:
2;
4;
4.

59

Then, the const rai 11 I exc('edi Il~ faclors are as follows:

€lB(T, c)

€s(T, c)
€oB(T,c)
€TdT, c)

2/2 = 1:
3r~ = 1:
3/4 =0.75;
8/4 = 2.

In this case we choose for state and row based macromolecule construc
tion (see table 4.9). The resulting task cover table is given in table 4.10
and the resulting macromolecule cover is presented in table 4.11.

Now consider another constraint:

C.nTIB

c.nl'SB

c.nTOB

c.nl'TL

4',
2;
1;
G.

Now the constraint exceeding factors arc given by

€{B(T, c)

€s(T, c)

EOB(T,c)

ETdT,c)

2(1 = 0.5;
:3;:3 = 1;
:3/1 = :{:
8/fi ;::::: LH.

In this case we choose for opera! iOIl and row based macromolecule con
struction (see ta ble 4.9). I'll(' r('su IIi ng task cover table is given in table
4.12 and the resulting macromolecule covcr is presented in table 4.13.

GO

Table 4.10 Task cover table for constraint (2,2,4,4)

tl

:1: 81 :1:"2'/"".0, :I:J'I :r'''2 !JS'I Ys,? YS',1, Y'\~J YAy? Y'\Y,1

1 0 0 0 - 1 0 0 1 0 0

1 0 0 - 0 0 0 0 1 0
1 0 0 I - 0 1 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0
0 1 0 - 1 0 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 0
0 0 1 - 0 0 1 0 0 1 0
0 0 1 - 1 0 0 1 0 0 0

Table 4.11 l\lacrol1\olecule co\,('r for cOllstraint (2,2,4,4)

<:,~ OP
.r 1 .1:2

.S 1 0 - {bsp AYl }

- 1 {AY2 }

1 - {bS2 ,Ayl }

$2 0 0 {bsJ }

- 1 {bS2, , Ay !, Ay3 }

0 {bS2 ' AyJ
83 - 0 {bs2 ,Ay2 }

- 1 {bS2}

61

Table 4.12 Task cover table for constraint (4,2,1,6)

t f

.1: S \ .1:S2·1:.,.~;l:J'I·rX2 Ys" Ys," Ys., Y'\y! Y'\y? YAy,
0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 - 1 0 0 0 0 0

1 0 0 1 - 0 1 0 0 0 0

0 1 0 1 0 0 1 0 0 0 0

0 0 1 - 0 0 1 0 0 0 0

0 1 0 - 1 () 0 1 0 0 0

0 0 1 - 1 0 0 1 0 0 0

0 1 0 - I 0 () 0 I 0 0

I 0 0 () () 0 1 0 0

1 0 () - I 0 0 0 0 1 0
0 1 0 - 0 0 () 0 0 1 0

0 0 1 - 0 0 0 0 0 1 0

0 1 0 - 1 0 0 0 0 0 1

Table 4.13 l\Iacromokcule cover for constraint (4,2,1,6)

('8 OP

.1' 1 ·1'2

"2 0 0 {OS! }
81 0 - {bsJ }
'~l 1 - {b S2 }
'~2 1 0 {OS2 }
83 - 0 {OS2 }
82 - 1 {OS3 }
83 - 1 {OS3 }
82 - 1 PYJ}
8[{AYJ}
8J - 1 {AY2 }
82 - 0 Pi/2}
8:3 - 0 {;\/2 }
$2 - 1 {;\Y3 }

G2

4.4 Macromolecule Splitting

\Vhen the macromolecule cover has been constructed, it is not guaran
teed that it is possible to make a molecule distribution, based on this
macromolecule cover, that does not violate the PLA-rvI-size constraint.
Particularly, when one of the macromolecules violates the PLAM-size
constraint, then no molecule distribution can be made that satisfies the
PLAM-size constraint.

Definition 4.16 Let A be a macromolecule cover, let a E A be a
macromolecule, and let c be a PLA~J-size constraint. Then a violates
the PLA M-si::e construint c if for each set of macromolecules A' ~ A such
that a E A', the molecule set UA' violates the PLAM-size constraint c.

Using the fact that an independent claim of a set of molecules in a
molecule cover can not be eliminated by merging it with other sets of
molecules, we call easily derive that a macromolecule a violates the
PLAM-size constraints if one of the following conditions is true

C·1I1'18 < \CEIR(a)l:
2c.nrsH _ < ICs(all;

(3)
c.n1'OB < ICr;oB(a)[:
c.11.1'1'L < ICPTL(a11·

Remark tllat it is not true that one of these conditions must be true
when a violates the PLA!\I-size constraint.

If a macromolecule co\'er contains a macromolecule that violates the
PLAM-size constraint, then it is not possible to make a molecule dis
tribu tion, based on this III acrOillolecu Ie cover, su ch that this molecule
distribution satisfies the PLA!\f-size constraint. Therefore, we check for
each macromolecul<' \vh('1 her olle of the conditions of (:3) is true. If this
is the case, thclI til<' Illilcrolllolccu]e is splitted in the hope that the
resulting smaller macromolecules each make fewer claims than the orig
inal macromolecule. Each molecule in the macromolecule then becomes
a macromolecule on its own. Trivially, a macromolecule with cardinal
ity one cannot be splitted in this way. Such a macromolecule can be
split ted in another way. Suppose that the macromolecule is given by
{(cs,i,OP)}. Then, for each op E OP, we introduce a new macro
molecule {(cs, i, {op} 1}. When 0 P has a cardinality of 1, this way of
splitting does not have errect, and tlie macromolecule is called unsplit
table.

Algorithm 4.1 gives a ll1C'thocl for doing the splitting as has been de
scribed above, for a given macromolecule cover and a given PLAM-size
constraint. Remark that the algorithm may report that the macro
molecule cover is not usable. This happens when a macromolecule vi
olates the PLAM-size constraint, but is not splittable in the way that
we described. In this case, it docs not make sense to build a molecule

63

4.5

distribution based on the macromolecule cover, because this molecule
distribution surely violates the PLA~I-size constraint. The only possi
bility is to try Clnotlier macromolecule cover as input for the splitting
algorithm.

function SplitMamo8(.4: set of macromolecules;
c: PLAM-size constraint)
: set of macromolecules;

var
MamosToCheck: set of macromolecules;
MamosChec/,:ed: set of macromolecules;
a: macromolecule;

function Violalion(a: macromolecule;
c: PLUd-size constraint)
: boolean;

begin

Violation:= \CEfB(a)1 > C.IIl'fBV
1C.,da)! > 'ynrsB - IV

ICEoB(a)! > C. I1rOBV
ICpn(a)1 > C./ltn:

end;

begin

MamosToChcd:= A;
..,hile MamosToCluek f. 0 do begin

Choose macromolecule a E Mal/losToChed:;
MamosToChed:= MamosToChcek \ {a};
if Violation(a.e) then

if a is splittabk then

Split a;
Add resulting macroll1olecules to MOinosToCheck;

else

Heport that .-1 isn't llsable as nlacrol1lolccule cover
else

MamosChcckcd:= AlalllOsC'heded U {a}
end;

SplitMamos := MamosChccked;
end;

Algorithm 4.1 Splitting algorithm

Usage of Beam Search

The decomposition method wlIich ha.s been described can be seen as a
sequence of transformations. These transformations are the rectangles

64

of figure 4.1. Each transformation maps single elements of its domain
to single elements of its codomain. For example, the macromolecule
splitting transformation maps a, macromolecule cover to another macro
molecule cover.

In each transformation, some choices are made that can not be reversed
during future transformations. Therefore, good choices must be made
during aU transformations. However, most choices must be made us
ing incomplete information, It is very difficult to estimate the impact
of choices on the final result, especially at the beginning of the search
process. One way of coping with this lack of information is the use
of beam search [4] [.5]. The idea behind beam search is the following.
When it is hard to choose between alternatives, because there is too
few information to see which of the alternatives is the best, the choice is
postponed until enough information is available to choose the best alter
native. All alternatives al'l.' explored in parallel. These thoughts can be
put into correspondcnce with the transformations that take place during
the search process, by allowing multiple results of each transformation.
\Vhen a transformation is applied to a certain element of its domain,
multiple elements of its codomain reslilt. and each element corresponds
with an alternati\'{'. For exampl('. for macromolecule construction there
were four different ways. and we have given a table for choosing one of
these fo11l' ways, depend ing on the const raint exceeding factors . Using
beam search, we can choose more than one of the four possible ways, and
consider all l'('slilting macromolecule covers in parallel as alternatives.

\Vhen beam search is in tl.'grated in the decomposition method, each
stage of the process results in a set of objects instead of one object. These
objects can be ll1acronlo!ecnle covers, molecule distributions or PLAM
networks. In each sta/!;c. Ihe following is done. First, the transformation
is avplied to each objccl. This results ill a new generation of objects, all
belonging to tlw codonlaill of thc transformation. Secondly, a selection
of the most promising objects in the new generation is made. This is
called 'pruning', When the prtllling has taken place, the objects in the
new generation are used for the next stage of the search process.

5 Conclusions

Few years ago, in the Section of Digital Information Systems of the Eind
hoven University of Technology, a method was developed for decompo
sition of sequential machines into PLA~1 networks, with constraints on
the PLAM-size as hard constraints, and with constraints on the number
of PLAIVls and number of connections in the PLAM network as soft con
straints [4]. The aim of the reported graduation project was to develop
a modified method which would be able to process effectively sequential
machines with large states and which would use direct communications
between PLAMs to reduce the delay. This aim has been realized.

\Ne have developed a new decomposition moclel, that describes PLAM
network decompositions in tenllS of task distributions. The tasks that
are distributed can be smaller than the tasks composed of all the com
putations related to a single state. as it was in [4]. Therefore, the new
decomposition mo(k'l eliminate'S problems with large states. Tile model
describes PLAId network de'coll1positions that use direct communica
tions between PLA~ls. This results in delay reduction. A characteristic
of the decompositions that are described by the model, is that they are
simultancous: for one current state and input, multiple PLAI\ls can be
active simultaneously.

vVe have also developed a modified decomposition method, based on the
new model. This method finds. for a certain sequential machine and
PLAM-size constraint, anlollg all decompositions that are described in
the model, a decomposition that satisfies the hard and soft constraints.
The proposed decomposition 11IPthod dctNmitH's subtasks of the proto
type machine in such a way tltat distributing these subtasks over PLAMs
probably leads to a decolJlposition that satisfies the hard and soft con
straints. Afterwards, the sub tasks are distributed using a packaging al
gorithm, and finally the subtask distribution is translated into a PLAM
network. The method is described precisely, except the packaging part,
which is not explained here because the packaging methods given in [4]
and [5] can be applied to this specific packaging problem after some
slight modifications.

vVe have succeeded in dpsnibing the problem statement, the decom
position model and the (!Pcomposition method in a formal framework.
The formal treatment not only facilitates the final implementation of
the method in a software tool, but also makes it possible to prove that
the method yields correct decompositions under all circumstances.

GG

Notatioll

Boolean expressions

oP

PI\Q

pvQ

P~Q

P~Q

P{::}Q

Terms

x

7(B)

7k(B)

To(B)

Ba(t)

t a (B)

t . t'

[tJa

t ~ t'

t ~ t'

not P

P and Q

POI' Q

P implies Q

P is a consequence of Q

P is equivalent with Q

don't ca.rt'

all terms over set of bits B

/,:-tenns over set of bits B

lllinterms over set of bits B

set of a- bi ts of term t

all-a-term over set of bits B

concatenation of t0rm t and t'

projection of tenn t on set of bits B

term t covers term t'

term t is covered by term t'

set of covered k-terms of term t

set of covered min terms of term t

Sequential Machines

H(IB,S,OB) horizontals over set I B of input bits, set S of
sta.tes and set °B of au tpu t bits

PLAMs and PLAM Networks

67

T£(IB,SB,OB)

Mimpdp)

Mimpl(n)

EIBn(p)

IIBn(p)

IOBn(p)

EOBn(p)

termlines over set I B of input bits, set SB of
state bits and set OB of output bits

sequential machine implemented by PLAM p

sequential machine implemented by PLAM net
work 11

states that are implemented by PLAM network

'II

external input bits of PLAM p in network n

internal input bits of PLAM p in network n

internal output bits of PLAM p in network n

extprnal output bits of PLAM p in network n

n1lml)('r of connections of network n

Operations, Atoms and Molecules

Operations (M) operations of sequential machine AI

Atoms (M) atoms of spquential machine M

RC{juirulA toms (}1/) rl.'q 11 ired atoms of seq uenti<ll machine Al

AllowcdAtoJ//,8 (iU) allowed atonlS of sequential machine AI

ForbiddcnAtollls (:If) forbiddc'n alOlllS of spCj1lc'ntial machine M

CoveredAto17ls(c) atoms that aI'(' covered by cube c

Decomposition Model

CS(B)

SB(B)

NS(B)

TSB~B'(1r)

EIB(R)

IIB;r(B)

current states of the PLAl\! of block B

statl.' bits of the PLAJ'd of block B

next states of the PLAl\! of block B

transmitted states f!'Om the PLAlVI of block B to

the PLA ~d of block B' in a molecule distribu tion

transmitted internal bits f!'Om the PLAM of block
B to the PLAM of block B' in a. molecule dis

tribution 1r

exIl.'rllal input bits of the PLAJ'vI of block B

intc'l'Ilal inpul bits of thc' PLA!\1 of block B in
Illok'cllie distribution 1r

68

IOBrr(B)

EOB(B)

EB(1r)

AC(B)

ptl;r()',B

St!rr,"I,B

PLAMrr,)"B

Claims

internal output bits of the PLAM of block B in
molecule distribution 1r

external output bits of the PLAM of block B

network internal bits of molecule distribution 1r

activation conditions of block B

pri mary term line function for block B of molecule
distribution 1r, under network state assignment

1

secondary term line function for block B of molecule
distribution 1r, under network state assignment

I

primary term lines of the PLAM of block B of
molecule distribution 1r, under network state as
sip;lllllent l'

:'i('colldary ternl lillcs of the PLAM of block B
of tnoieclile distribution 1r, under network state

assignment 1

PLAl\'[that is induced by block B of molecule
distribu tion 1r, under network state assignment

I'

\'allics that an' claimed by the molecules of B
for a certain claim t,ype x

values that are claimed by the molecules of B
for a certain claim type x in a molecule cover C

Multiple Output Binary Functions

Illulti pIe Oll t pu t bi n<try function described by PLA
tahk'T

Constraint exceeding factors

CIB(T, c)

cs(T. c)

constraint exceeding factor for input space cor
responding with transition table T and constraint
c

constraint exceeding factor for state space corre
:'iponding \vith transition table T and constraint

69

cOB(T, c)

cTL(T, c)

Quantifications

Sets

{...}

{p I Q}

151
5 u 5'

5 n 5'

us

ns

Sequences

(...)

c

constraint exceeding factor for output space cor
responding with transition table T and constraint

c

constraint exceeding factor for term line space
corresponding with transition table T and con
straint c

IIl\lOn quantification with range R and term T

existt'ntial quantification with range R and term

T

"(herc' is ('xactly one' quantification with range

expression R and term expression T

universal C[uantiflcatiol\ with ra.nge R and term

T

addition C[ua.ntification with range R and term

T

powerset of set S

set containing elemel\ts]J such that Q is true

cardinality of s('(, S

lIliion of'st'(8 and set 8'

in(ersC'('(ion of set S and set S'

union of all elements of S, where S is a set of
sets

inters('ctioll of all elements of S, where S is a set

of sets

st'C[1I (' Jll' e

('Ill pty S('q uen ce

70

Qo(S)

Q(S)

Functions

J:A-B

flA

Miscellaneous

8.1

f:rl

lXJ

o

all sequences over S

all non-empty sequences over S

fllnction .f with domain A and codomain B

restriction of function f to subset A of its do
mam

field .f of structnre 8

("piling of :/.'

0001" of ,1"

undefined

71

Bibliography

[1] Baranov, S.l. and 1.. Bregman, Automata Decomposition and Synthesis
with PLAM. Microprocessing and Micmpmgm.mming. Proc. of 19th
EUROMICRO Symp08ium on Microprocessing and !llicroprogramming,
Barcelona, Spain, 6-9 September 1993. Vol. 38 (1993), No. 1-5. P.
759-766.

[2] Hartmanis, J. and R.E. Stearns, Algebraic Structure Theory of Sequen
ticd Machine8. Englewood CliITs, NJ, USA: Prentice-Hall, 1966.

[3] Jozwiak, 1., Silllllhallc'olls])(,COlllpositions or Sequential "Machines. Mi
cropl'ocessing {/lId MirTo/Jmy/"mllmillg. Proc. of EUROMICRO Sympo
sium on Jl!icrojJl'occs8ill[J alld :\ljcl'OfJmg/"m/l.ming. Amsterdam, Nether
lands, 27-30 August 1990. Vol. :10 (1090), No. 1-.5. P. :30.5-312.

[4] Jozwiak, L. and J.C. I\olstercn, An Efficient Ivlethod For the Sequential
General Decompositioll of Sequential IVIachines. .Hicroprocessing and
Microprogramming. Proc. of EUROMICRO Symposium on Micropro
ce88ing and Micmpl'Ogmmming. Vienna, Austria, 2-.5 September 1991.
Vol. 32 (1991), No. 1-5. P.657-66-1..

[5] .Jozwiak, 1. and F.A.?\l. VolL .-\n Efficicllt l\lc,thocl ror Dpcomposition of
Multiple Output Dookall FlllICliollS and Assignc'd Scquential IvIachines.
In: Pmc. of Eumpcan J)CSi[JI1 A ulomation ConfCl'cnce EDAC, Brussels,

Belgium, 16-19 11arch 1992. Los Alamitos, CA, USA: IEEE Comput.
Soc. Press, 1992. P. 1lei-ln.

[6] Levin, 1.8., A Hierarchical110clel of the Interaction of Microprogrammed
Automata.. A vtomatiJ.-c1 i l'ye-hislilel 'naya Td:hnika (A utomatic Control
and Computer Sciences). Vol. 21 (198.), No. :3. P. 77-83.

72

	Voorblad
	Abstract
	Contents
	1. Introduction
	2. Problem analysis.
	3. Decomposition model.
	4. Decomposition method.
	5. Conclusions
	Notation
	Bibliography

