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Summary

Kamps, E.J.F.;
Robust two-loop control of the double inverted pendulum.

In this report a H oo design and the two-loop control is applied to the double inverted pen­
dulum. The double inverted pendulum consists of an inverted pendulum with a deliberately
included flexible mode. With the two-loop control, the controller can be designed in two
design steps.

First, H oo design is used to stabilize the pendulum. The design is focused on robustly
stabilizing the pendulum with respect of the flexible mode frequency. A control scheme
with a feedforward and a feedback controller and stable factor perturbations is applied to
the pendulum. This has yielded a controller which could only guarantee stability for small
flexible mode frequency perturbations.

The next step is to identify the stabilized pendulum and obtaining an accurate model of
the pendulum. With this accurate model a new controller is designed with the H oo design
procedure. Due to the bad model estimation and the used controller design, the two-loop
design will not converge to an optimal controller.

M.Sc. Thesis, Measurement and Control Section (ER), Faculty of Electrical Engineering, Eindhoven
University of Technology, The Netherlands, December 1994.
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Chapter 1

Introduction

1.1 Flexible structures

Consider a system with an actuator, a mechanical beam and a sensor like in figure 1.1. One
can recognize this construction in many mechanical servo systems like an arm in a CD player,
the driving gear of a nozzle of a printer but also the dynamics of rockets etc. If the beam is
excited, it will vibrate at its eigenfrequencies. These frequencies are called the flexible modes
of the beam.

The position of the sensor is very important in the design of a servo controller of the beam.
If the sensor is collocated with the actuator, the stability of this system can be guaranteed
rather easily. However, if the sensor is moved along the beam, the flexible modes of the beam
will become more important in the stability analysis [4]. In general, the stability of the beam
is guaranteed by choosing a low bandwidth, which is far below the lowest flexible mode of the
beam.

The question arises if it is possible to increase the bandwidth of the controlled beam across
the lowest flexible mode. For this, an accurate model of the controlled beam is required. If no
accurate model of the beam is available, we could obtain such a model with an identification
procedure.

I

:... H I.'
I
I
I......

Po8tIoD.
eeosor

Figure 1.1: Actuator, beam and sensor configuration.

The flexible beam has theoretically an infinite number of flexible modes. If we want to
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8 CHAPTER 1. INTRODUCTION

obtain a linear model of the beam, we have to approximate the nonlinear spatial model. We
can only take a finite number of flexible modes into account. In [11] the effects of such an
approximation is shown. The most important effect is the position of the system zeros. If
an extra flexible mode is added to the linear model, an extra pole pair near the imaginary
axis is appearing at the matching frequency of the flexible mode. However, the placement of
all zeros of the model will change significantly. This is also the case for the zeros in the low
frequency range of the model. Even zero pairs can swap from the imaginary axis to the real
axis and vica versa. From this we conclude that beforehand the positions of the zeros are
very uncertain.

To avoid problems described above, we will not only use an approximated model, but also
an approximated experimental system. This is a lst order approximation of a flexible beam
and is described in chapter 2. In this way we can concentrate on stabilizing and optimizing
this particular flexible beam. In a sequential stage, we can try to apply these results to a real
flexible beam.

1.2 Two-loop control

There are many control design procedures which are based on a linear model. For an accurate
model it is often necessary to run an identification procedure on the plant involved. However,
it is sometimes not possible to run such experiment. This is for example because of economical
reasons or because the plant is unstable. Here it can be advantageous to use a two-Ioop control
scheme.

Figure 1.2 shows the principle of the two loop control. Because the plant Po can or may
not be identified in an open loop structure, an initial feedback controller C takes care of the
stabilization or quality control of the output. The plant Po and the feedback controller Care
now treated as a new plant Pc,

Pc = Po ,Po = Pc .
1 +CPo 1- PcC

(1.1 )

Zhu [15] showed that if the dynamics of the fed back system are known, it is possible to
design a new controller which can optimize the plant's performance. First the fed back system
is identified. Then a new controller /).C is designed, which optimizes the fed back system.
The two controllers C and /).C are combined to a new controller C. Now we can repeat the
procedure described above until the controller C will converge to a final controller.

After some time, the dynamics of the plant can change. If the procedure is repeated we
find a new controller adapted to the new dynamics of the system. In this way we get an
adaptive controller.

The two loop control structure has even some advantages over other schemes:

• When the available model of the system gets more accurate, better control can be
achieved with the second loop controller .

• If the first loop controller is implemented, the identified system model Pc will be more
accurate because the new controller will improve the effect of linearization, stationar­
ization, effective order reduction and transient time reduction even more.
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Figure 1.2: Principle of two loop contra!.

According to Zhu [15] the variances of the estimated system model Pc is proportional to
the square of the sensitivity of the system. So if we achieve a low sensitivity in the band of
interest, it will result in an accurate model.

• CO) n ~d 2
var[Pc(e JW ] ~ -- I SI

N~u
(1.2)

With:

Pc Estimated closed loop system.
~d, ~u : Power spectral density of d and u respectively.
n Model order.
N Number of samples.
S : The real sensitivity: S = (1 +POC)-l.

Thus far, we have put no constraints on the initial controller. Vidyasagar [13] showed
that the first loop controller puts no constraints on the effect of the second loop controller if
the process is strongly stabilizable. Strongly stabilizable means that the number of all real
poles between two zeros in the Right Half Plane (RHP) is even (including zeros at infinity).
In this way, it is allways possible to draw all unstable poles to the Left Half Plane with a
stabie controller.

More generally, a controller can consist of both a feedforward and a feedback controller.
This configuration is shown in figure 1.3. In this figure, the updating of the controller is also
generalized. It now consist of an identification block, a controller design block and a controller
update block.

If a new controller is designed, we get the structure of figure 1.4. The plant Po is provided
with a new feedback controller èi.CJb and a new feedforward controller èi.CJj' The former
feedforward controller CJj will be replaced by èi.CJj and the feedback controllers are added.
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Figure 1.3: General two loop adaptive control scheme.

A straightforward adding of transfer functions will blow up the order of both controllers. The
order of the controllers will grow without bound. To limit the order of the controllers, we
have to use an order reduction method. This order reduction is the main function of the
controller updating block.

1.3 Problem definition

A flexible Inverted Pendulum (lP) as described in chapter 2 is an application which concerns
both the flexible structure problem and the two-loop contro!. Because the lP is unstable, it
is difficult to identify this system. This can be solved by using an initial robust controller
and applying the two-loop structure. The lP is an approximation of a real flexible beam. We
hope, however, to get some insight in the problems concerning such a beam.

Chapter 2 concerns with the modelling of the flexible Inverted Pendulum system Po based
on physical parameters. In chapter 4 an initial stabilizing controller C is designed. Both a
classical and a H00 robust design method are considered. For a better understanding of the
H00 robust design method applied, chapter 3 introduces this method. Chapter 5 describes the
identification procedure and chapter 6 the second loop controller design. In chapter 7 some
conclusions and recommendations are connected with these results.
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Figure 1.4: Updating the feedforward and the feedback controller.



Chapter 2

Derivation of the flexihle inverted
pendulum model

2.1 Introduction

This ehapter deals with the structural modelling of the inverted pendulum (lP). After this
introduction, a nonlinear model is derived. This model will he used for simulation purposes.
This model is then linearized and diseretized, so that it ean he used as ahasis for designing
the first loop controller. Like figure 2.1 shows, the lP consists of 2 rods, which are connected
at eaeh other with a spring. This is mounted on the arm ofaxy-recorder in sueh a way that
the flexihle rod ean move in one plane only. Finally, a feedhaek signal must he availahle for
controlling the lP. Therefore, the position of the second rod at height H is measured with a
position sensor.

D

Figure 2.1: Experimental system.

The nonlinear model will he used to simulate the lP. In this way, the various designed
controllers ean he tested. The nonlinear model will also he used for the derivation of the
linear model.

12



2.2. THE NONLINEAR MODEL 13

The linear structural model will be used to design a nonoptimal robust controller. The
only purpose of this controller is to stabilize the lP.

Because both structural models will not be used to design an optimal controller, therefore
a identification procedure is used, a number of approximations are introduced in the nonlinear
model.

• The model contains only linear dynamical components. The nonlinearity of the lP will
be caused only by the kinematical properties of the lP. Actually the various body's of
the lP system are moving in various coördinate systems. There is a certain relationship
between these systems dependent on the angles I.{)l and 1.{)2' These relationships are
nonlinear. Further, the kinematical properties of the lP can also introduce nonlinear
centrifugal and coriolis forces.

• The internal behavior of the xy-recorder is unknown. Only the linear behaviour from
the input voltage to the position of the arm is available. However, the lP will apply a
force to the xy-recorder's arm but it is not possible to use this force as an input signal
of the xy-recorder. A solution for this problem is simply to neglect this feedback force,
which is altogether very small.

• The dynamical model of the xy-recorder. We assume that the xy-recorder is a sec­
ond order process, with the undamped frequency W r and the damping ratio f3r as the
characteristic parameters.

2.2 The nonlinear model

Because there is no feedback from the lP to the xy-recorder, we can separate these systems
and start with the lP. An important part of this derivation can also be found in [9]. The
starting-point is the model in figure 2.2. Note that an extra mass is added to the system,
which represents the cart on which the lP is mounted. The reason for this extra mass is that
later on we will use Lagrange's equation of motion. Essentially this is a set of equations,
which balances forces or torques on a mass. However, our system has as input signal the
reference position of the xy-recorder's arm. This signal will be introduced naturally.

The model in picture 2.2 has the following physical parameters:

mi

li
Ji

ei

M
L
F
g
K
Uo

:Mass of the i'th pendulum.
:Length between the i'th axis and the center of gravity.
:Moment of inertia about the center of gravity.
:Friction constant.
:Mass of the cart.
:Length of the first pendulum.
:Friction constant between the cart and the monorail.
:Acceleration of gravity.
:Spring constant
:Rest energy spring

[kg]
[m]
[kgm2]

[Nms]
[kg]
[m]
[Nm-1s]
[ms- 2]

[Nm]
[Nm]

And f is a force applied to the mass of the cart. This system has the following kinetic (T),
potential (U) and loss (D) energy: .
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H ------ ----------

f M ._-

I...

Figure 2.2: Approximated model of the inverse pendulum with a flexible mode.

T 1 ('2 '2) 1 ('2 '2) 1J'2 1J'2 LM "2-= 2m1 Xl + Y1 + 2m2 x2+ Y2 + 2 1<P1 + 2 2<P2 + 2 v,

U (m1l1 + m2L)gcos<p1 + m212gcos<p2 + ~]((<P2 - <pd2 + Uo,

Dl. 2 1 (' ')2 1F' 122C1 <P1 + 2C2 <P2 - <P1 +2 v .

Cl. 0i ~ Cl, co, . ,-, r ,--j

The variables Xl, X2' Y1' Y2 are dependent of the variables v', <Ph <P2

(2.1)

(2.2)

(2.3)

Xl = v' +11sin <P1,
Y1 = 11 COS(P1'

X2 = v' +L sin <P1 +12si~ <P2'
Y2 = L cos <P1 +12cos <P2'

(2.4)

The expressions for the various kinds of energies are substituted in Lagrange's equation
of motion:

!!.- 8T _ 8T + 8U ~ 8D = f
dt 8t 8~, 8~, 8i.., ~.

Here ~/ = [v', <P1' <P2J! is a state vector containing all independent variables and L
[f, 0, O]t is an exogene forcejtörque vector applied on the rigid bodies of the system.

The substitution of 2.1, 2.2 and 2.3 in 2.4 yields
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f

o

o

(mI + m2 + M)v' + (mlll + m2L) eos(<pd<pl + m2l2 COS(<P2)<P2-

-m2l2sin(<P2)<P~ +Pil, I

(mlll + m2L) eos(<Pl)V' + (mll~ + m2 L2 + Jd<Pl +

+m2 Ll2eos(<PI - <P2)<P2 +m2 Ll2sin(<PI - <P2)<P~ -

-(mlll + m2 L )g sin(<pd - K( <P2 '- <pd + (Cl + C2)<Pl - C2<Pl'

m2l2COS(<P2)V' + m2l2L eos(<PI - <P2)<Pl + (m2l~ + J2)<P2 ­

-m2l2L sin(<PI - <P2)<pi - gm2l2sin(<P2) - K( <PI - <P2) -

-C2(<PI - <P2)'

(2.5)

(2.6)

(2.7)

These equations are force and torque balanees on the cart, the first rad and the seeond
rad respectively. Beeause there is na struetural information available about the xy-reeorder,
it is not possible to implement equation 2.5. As stated earlier we know only the transfer
funetion from input voltage v to the position of the arm of the xy-reeorder v'. This is a
general equation of a linear seeond order proeess:

(2.8)

The only exogene signal in equations 2.6 and 2.7 is v'. This signal ean be derived with
equation 2.8. In this way equation 2.5 ean be replaced by equation 2.8. It is now possible to
plaee the equations 2.6, 2.7 and 2.8 in a state sp~g,ee setting. A general nonlinear state space
equation is:

E(;!<.)~

Jl.
(2.9)

The state vector is defined as:

J<. = [v' <PI <P2 v' <PI <P2] t •

Define:

(2.10)

o
mll~ +m2L2 + Jl

m2l2L eos(<PI - <P2)

(2.11)

(2.12)

v'
<PI
~

-2{3woV' - w5v' (2.13)

-m2l2Lsin(<pl - <P2)<P~ + (mlll + m2 L )g sin <PI + ...
+K( <P2 - <pd - Cl <PI +C2( <P2 - <pd

+m2l2L sin( <PI - <P2)<P~ +m2l2g sin <P2 - K( <P2 - <pd - C2( <P2 - <pd
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[0 0 0 w5 0 0] t ,

[v' +L sin <PI + (H - L cos <pt} sin <P2] .

(2.14)

(2.15)

This can be found straightforward with equations 2.6, 2.7 and 2.8. This nonlinear model
is implemented in SIMULINK for simulation purpose. The SIMULINK implementation can
be found in appendix B. For implementation, the matrix E(;r) has to be inverted. To simplify
this, we used a-priori knowledge of the physical system. We know beforehand that the xy­
recorder is separated from the lP. So we can cascade these two systems. In this case, the
dimension of the vectors and matrices are reduced with 2. The upper parts of the system
vectors are not needed in the implementation. The lower parts of the system vectors determine
<PI and <P2' From these signals we can derive the states by means of integration. In this way
we only have to invert a 2x2 matrix.

2.3 The linear model

The starting-point of the linear model is the nonlinear model. For a linearization around
a = 0 we use the following approximations:

sin(a)=a,
cos(a) = 1,

a2 = O.

Where a stands for <PI, <P2, <PI and <P2. This yields the linear state space system

E~ A;r +Bv
(2.16)

lJ ç;r. +Dv '
~_.::~-::

and the matrices are defined as:

E = [~ ~2] ,
(2.17)

[ mIl, ~ m,L
0

o ]E 22 mlli +m2P +J I m2l2L , (2.18)
m2l2 m2l2L m2l~ + J2

A
[ A~l ~2] ,

(2.19)

[-f~ 0
o ]A 21 (mlll +m2L)g - J( J( , (2.20)

J( -J( +m2l2g

[-r" 0

~ ],A 22 -Cl - C2 (2.21)
C2 -C2

B [0 0 0 W2 0 Or, (2.22)0

C [ 1 L H-L 0 0 o ] , (2.23)

D O. (2.24)
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Because the matrix E has to be inverted to find an explicit model, a comprehensive relation
between the physical parameters and the lP is lost. In figure 2.3 the influence of some physical
parameters on the dynamical behaviour is shown.

These physical variables are respectively the spring constant, the sensor height, the axis
height (the totallength remains constant) and the totallength of the pendulurn. The 'b' and
'e' indicates the beginning and ending of the root locus as far as they are shown on the plots.
The 'ix' indicates a pole which is not moving. If the axis height is varied in the second plot,
the totallength remains constant. In the last plot, not only the totallength is varied but also
the masses of the rods are changing proportionally.

Especially the zeros in these plots are interesting. If, for example the sensor height is
moved along the beam, we observe that a RHP zero pair becomes a LHP zero pair, and
finally reaches the real axis. Here it seems a logical choice to pIace the sensoi as high as
possible.

If the sensor height is changed from Om to l.4m, the zero pair near the imaginary axis
remains approximately at the same frequency, but the damping of the zero becomes less. So
the higher the sensor is placed, the more this frequency is damped.

Further, it can be observed that the root locus of the spring constant looks alike the root
locus of the rod length. Only the direction of the locus is inverted. This can be explained
that if the rod length is increased also the mass and inertia of the rod is increased. If the
spring constant remains the same, the resonance frequency will be lowered. Apparently this
has approximately the same effect as remaining the mass and inertia the same and lowering
the spring constant.

The lP is a SISO sytem. So from the state space model we can obtain a transfer function.
We denote this transfer function as Hp(s) = Y(s)/U(s).

For controlling the lP, we will use a discrete-time controller. So the finallinear model has
to be discretized. An important parameter in the discretizing process is the sample frequency.
The sample frequency has to be chosen such that all the relevant dynamics are not lost during
the transformation. We will find this frequency with the help of the bode plot of Hp(jw) in
figure 2.4. We choose a 1% criterium: if the transfer of a frequency is less than 1%, we will
neglect the dynamics. From figure 2.4 we notice that this frequency is 30/21r ~ 4.8Hz. If
we use Shannon's theorem and take a safety margin of at least a factor 2, we find a sample
frequency of 20H z. A pole zero diagram of the discretized model can be found in figure 2.5.

In this plot we can assign some properties of the lP to the poles of the zero pole diagram.
We recognize the 2 inverted pendulum poles at the real axis. Further, we can distinguish
both a zero and pole pair near the unit circle. These represent the flexible mode of the lP
caused by the deliberate inserted spring. Finally, we can also recognize the poles caused by
the dynamics of the xy-recorder.
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Figure 2.3: lnfluence of some physical parameters on the dynamical lP behaviour.
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Bode ampl. diagram continous inverted pendulum system.
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Figure 2.4: Bode plot continous-time inverted pendulum model.

Pole zero diagram discrete inv. pend. system (fs=20Hz).
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Figure 2.5: Pole zero diagram of the discrete-time model.



Chapter 3

Robust control

3.1 Introduction

As stated earlier, the main goal of the first loop controller is to stabilize the pendulum.
In chapter 4 a stabilizing controller will be designed with classical design too1s. With

the classical technique however, it is not possible to specify explicitly the robustness of the
system. With an Hoo approach, it is possible to specify both robustness and performance in
the frequency domain.

In the second section of this chapter, the concept of the Hoo design is presented. The
main goal of this section is to give a background for the design procedure in the next sections.
The 3rd section puts the inverted pendulum system in a Hoo setting, while in the 4th section
the stabie factor perturbations are discussed. Finally in the 5th section the flexible mode
perturbations are modelled.

3.2 The standard problem

The starting-point for the Hoo design is depicted in figure 3.1. This is a general MIMû control
structure. A number of exogene input signals w(t) are applied to the plant G. This plant has
a number of measured output signals y(t). These output signals are fed back to the plant via
a controller C. The control object for the controller C is to minimize the energy of the output
signals ~(t). All signals in figure 3.1 are assumed to be L 2 finite energy time functions. Note
that in this chapter time functions and frequency functions are mixed. The time dependence
is explicitly denoted but the frequency dependence is omitted for notational reasons.

The general plant G can be partitioned as:

[ ~ ] = [g~~ g~~] [: ].
Minimizing the energy of ~(t) is equivalent to minimizing ex in:

ex := inf [sup 1111

z
1

1

1

1

2] = inf 11 Me 1100
e wEL, W 2 e

and Me is defined as

20

(3.1)

(3.2)

(3.3)

•
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Figure 3.1: The standard problem.

The Hoc norm of Me is defined as

IIMell oc = sup(Ö"(Me )).
wER

21

(3.4)

Here Ö" (Me) denotes the largest singular value of Me. It is now possible to define the
standard problem:

Standard problem: Find a real rational proper controller C to minimize the Hoc norm of
the transfer matrix Me frow w to i}.. under the constraint that C stabilizes G:

The used solution of the standard problem is described by Glover [8]. The solution is
based on putting the plant G in a state-space setting. Given a state-space characterization
of all stabilizing controllers Cst such that

(3.5)

and , is the Hoc-norm of the transfer matrix Me (G, Cst). The optimal solution is then
defined by: a := min(,).

3.3 Structuring the inverted pendulum

In this section, we put the pendulum in a Hoc setting. The control scheme is depicted in
figure 3.2. The scheme consist of the nominal process Po, a feedforward and a feedback
controller C// and Cjb and finally four loop shaping filters. Descriptions of these filters can
be found in table 3.1. A structure with 2 controllers is chosen. With this extra degree of
freedom, we enlarge the set of possible controllers which could result in a better robustness
or performance.

The loop shape filters are augmented to the plant to put a constraint on the input and
output signaIs. In this way it is possible to shape the input signals and weight the output
signals in the frequency domain.

The configuration of figure 3.2 is now put in a standard problem setting of figure 3.3. This
results in the following general plant:
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+

I We I

Figure 3.2: Two-degree of freedom configuration.

(3.6)

(3.7)

(3.8)
ilMcll oo 11 Z:: Z:: IL

I

-We (1 - poGlbr
l
Vd We [1 - (I - PoGI.brl PoGil ] Vr 11

W"Glb (I - poGlbr
l

Vd W" (1 - PoG~b)-l Gil Vr 00

For ca1culating the rohust controller, the transfer functions of equation 3.8 have to he
transformed to a state space model. This is descrihed in [6]. Here also are discussed the
conditions for the transfer functions and loop shaping filters.

The various transfer functions and weighting functions can he found in tahle 3.2. If the
controller is designed such that / = 1, the weighting and shaping filters put a direct constraint
on the transfer functions of the controlled pendulum.

From tahle 3.2 the following relation hetween the transfer functions can he recognized:

(3.9)
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Figure 3.3: Controlling scheme in general problem setting.
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Filter Description
Po Nominal process model
Vd Shaping model disturbances
v,. Shaping reference signal
We Weighting error signal
Wu Weighting actuator signal

G/b Feedback controller
GJf Feedforward controller

Table 3.1: SISO transfer functions of the augmented controlling scheme.

Criterion Description Weighting function Transfer function
(scaled)

Mll = ...L Disturbance reduction lWVd M;l = - (I - POG/b) -I
nd 'Y e

Ml2 = ...L Signal tracking ~WeVr M;2 = I - (I - poG/brl PoGJfn r

M2l = u Model robustness lW Vd M;l = G/b(I - poG/brlnd 'Y u

M22 = u Input saturation ~Wuv,. M;2 = (I - poG/brl GJfn

Table 3.2: Optimization critera of the robust design.

Which can be verified by substitution. With this relation we try to put a extra constraint on
the weighting and shaping filters. In this way we try to restrict the set of allowable filters, so
designing these filters will become easier.

The upper and lower boundery for IM;21 are:

IM;21 < IM;2M;ll + IM;lM22!+ IM;ll
IM;21 > IIIM;2M;ll-IM;lM;211-IM;lll

(3.10)

(3.11)

The reciprocal scaled weighting functions are an upper bound for the transfer functions.
In the design procedure one of the design aims is to minimize the distance between the
transfer functions and their upper hounds. If this distance is zero, the transfer functions
may he replaced hy their upper hounds. In this way we find two sufficient conditions for the
weighting filters:

2,
IVdl ~ lv,.I + IWel'
IVdl ~ 1v,.1·

(3.12)

(3.13)

Again these are no neccesary hut sufficient conditions: They give an initial indication for
the weighting filters and the 'optimal' weighting functions are likely to satisfy the conditions.
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Figure 3.4: Stable factor perturbation.

3.4 Uncertainty modelling

For modelling the uncertainty of the plant, we have to introduce some model perturbations.
For this purpose we will make use of the stabIe factor perturbation. If Po is the nominal plant
and Po is the perturbed plant, we can divide this plant in a stabIe and unstable part,

Po PNPM, (3.14)

PN
na

(3.15)= dNdJ '

PM = !!:L (3.16)
dM

where dN are the stabIe poles and dM the unstable poles of the model. Further dj is a
stabIe polynomial to make PM proper. The model perturbations can now be defined as in
figure 3.4. The perturbed model is expressed as

(3.17)

Now we can give a robustness constraint by considering the Hoo bounds of the perturba­
tions on the coprime factors PN and PM •

IILlMWi/ LlNWN1 1100 < E, WN, WN1
, WM, Wi/ E RHoo­

A controller C will stabilize all perturbed plants Po if and only if:

(3.18)

(3.19)

(3.20)

11

WM (I - poCr
1

PM <-1
WNC(I - poCr1 PM 00 - E •

Optimization of the plant robustness with respect to stabIe factor perturbations is equal
to:

. 11 W M (I - poCr
1

PM
11mm -1

c WNC (I - PoC) PM 00

This optimization criterium can be compared with the optimization criteria of table 3.2.
If we now choose Vd = p1';'ir), Wu = WN and We = WM then the optimization of the plant
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robustness with respect to stabie factor perturbations is equal to the disturbance reduction
and the model robustness criterion oftable 3.2. pj;ir) is PM with all unstable parts mirrowed
with respect of the imaginary axis. This is allowed because in equation 3.20 and equation 3.8
only the H 00 norm is considered. The mirrowed poles are chosen because Vd should be stabie
and minimal phase. In this way, we lose some degrees of freedom by this choice of Wu and
We, but solving the problem will become much easier.

The nominal and perturbed plant can be written as polynomials:

Po

This results in:

(3.21)

(3.22)

(3.24)

(3.23)
~n

dNdJ '

~d

dNdJ '

The derived descriptions of the uncertainties ~N and ~M can be used in the design of
the weighting filters:

IIW;1~M W;1 ~Nlloo < E, Vd = PM' (3.25)

If a boundary for ~n and ~d is defined, we can find a lower boundery for the weighting
filters:

> supld~dn I,
A.. N J

~d
> supl-dd /'

Ad N J

In the next section we will derive an expression for ~n and ~d'

3.5 Plant perturbations

(3.26)

(3.27)

With the stability analysis, we will take only the perturbation of the pole pair and zero pair
near the unit circle into account. These pairs are further on treated as ordinary second order
sections with a undamped frequency and a relative damping as parameters. The disturbed
parameters can than be written as a nomina! part and a deviation part:

Wd = Wd (1 +~Wd) ,
Sd ,Bd (1 + ~,Bd)'
wn Wn (1 +~wn) ,
Sn ,Bn (1 + ~,Bn) .

(3.28)
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The perturbed plant becomes

n~j (82+2i3nWn8 +W~)

dnj (82+ 2i3dWd8 +W~) ,

(1 +~Wd)2

nnj (1 + ~wn)2'

27

(3.29)

(3.30)

Here nnj and dnj are the not perturbed parts of the transfer function of the model, al­
though a perturbed n~j is used. This is because the statie gain of the pendulum is independent
of the flexible mode. However, if we deviate the undamped frequency's in equation 3.30, the
static gain will deviate also. To overcome this problem, the statie gain is compensated. This
becomes clear in equation 3.31

_ nnj (1 +~Wd)2 [82+ 2f3n (1 + ~f3n)wn (1 +~Wn)8 +w~ (1 + ~Wn)2]

Po = dnj (1 +~Wn)2 [82+ 2f3d (1 + ~f3d) Wd (1 +~Wd)8+wHI +~Wd?]
(3.31)

It is now possible to distinguish a nominal part and a perturbed part in both the numerator
and denominator

(3.32)

(3.33)

(3.34)

Figure 3.5 shows I~nl as function of the perturbations ~wn and ~f3n' This function is
evaluated at the resonance frequency 8 = jWd of the flexible mode. The figure shows a convex
function.

As long as I~wn I and I~Wdl are smaller than 1 (100% deviation), I~nl and I~dl will
be convex for all w. This can be comprehended as follows: Both absolute values of the
perturbed polynomial coefficients in equation 3.33 are convex and have the same minimum
(I~wnl, 1~f3nl) = (0,0). lf 2 convex functions with the same minimum are weighted and
added, also the new function will be convex with the same minimum.

For calculating the supremum of the weighting functions of equations 3.26 and 3.27, we
will evaluate I~nl at the 4 bounderies points (±~wn' ±~f3n) and use the maximum of these
values for calculating the supremum. For I~dl, the same argumentation can be used.

We have now presented the analytical tools with which Hoc controllers will be designed
in chapter 4 and chapter 6.
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Figure 3.5: I~nl as function of ~Wn and ~(3n at s = jWd.



Chapter 4

Initial controller design

4.1 Introduction

There are 3 candidate design methods for the fi.rst loop controller: an LQR method, the
classical design methods and a robust control design method.

The LQR method is based on the availability of the states of the lP. If these are not
available, we can find them with an observer. So from a single output signal with an a-priori
unknown noise signal, we have to extract 6 states. We expect the reliability of the states to be
poor. Further, it is generally known that the LQR design method is only reliable if the states
are reliable. This is in contrast with the classical methods with gain and phase margins and
the robust design methods with explicit defined plant deviations. So in section 4.2 we will
design the first loop controller with a classical method and the robust controller in section 4.3.

4.2 Classical first loop controller design

A classical controller can be designed in the s-domain, z-domain or w domain. Because we
have a discrete model that is already described in the z-domain and we will use a discrete
controller, we will design the controller in the the z-domain.

RootloCUll lP.

0.2 .

~
.~ 0

.§
-0.2 .

-OA

-0.6 .

-0.8

-tL---+_t -----,..'tf<,--=-*""o.-::::~o....., -----:-----'
Reel

Figure 4.1: Root locus controllor and system with pole zero cancellation.

29
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The design of the feedback controller CJb is based on placing extra poles and zeros in the
open loop transfer function. This will influence the root locus of the open loop system. With
the help of this root locus we will choose the loop gain such that we can achieve our control
goals.

For the first loop controller we have only one control goal: stabilizing the lP. The lP has
5 poles and 4 zeros inside and 1 pole and 1 zero outside the unit circle. For stabilizing the lP
we choose for a pole zero cancellation approach. All poles and zeros inside the unit circle are
compensated. If the poles or zeros are very close to the unit circle, exact compensation can
be dangerous because it can lead very easily to instabilities. In that case, the compensation
pole or zero will be put in the neighbourhood of the pole or zero. Then we try to draw the
unstable pole inside the unit circle. Because we have to compensate more poles than zeros,
the corresponding regulator will not be proper. To overcome this problem we add an extra
pole in z = 0 (an extra time delay). The root locus of this compensated system is shown in
figure 4.1. From this root locus we conclude that pole zero cancellation is enough to stabilize
the lP.

Finally we have to choose the loop gain. If the gain is chosen to low or to high, the lP is
unstable. We denote these gain boundaries a ](/ and ](h. So there is a range of gains where
the lP is stabIe.

In general, the robustness of a classical designed controller is improved, if the loop gain
is lowered. We can apply this rule of thumb also in this case. If the flexible mode frequency
deviates from it 's nominal value, the lower gain boundary ](/ remains almost the same, while
the upper boundery ](h changes dramatically. For this reason, the loop gain is chosen 10%
above the lower gain boundary.

Next, the feedforward controller CJf is designed. With this controller it is possible to
adjust the tracking error and the actuator saturation. The controller is chosen such that the
steady state error is zero. This can be achieved by choosing CJf as a constant gain. This
gain is the reciprocal value of steady state gain of the fed back inverted pendulurn.

4.3 Hoo robust design procedure

In this section a first loop robust controller is designed. With Hoc-control, this designing is
equivalent with designing the loop shaping filters We, Wu, Vd and Vr. In chapter 3 we have
already found constraints for these filters:

IVdl < 21'
(4.1)IVrl + IWel'

IVdl > \v.. I, (4.2)

Vd
dj

(4.3)d(mir) ,
M

IWul > sup Id~~ I, (4.4)
A n N J

IWel > s~; Id~~J I, (4.5)

with constraints 4.1 and 4.2 as sufficient conditions. As stated earlier, we will concentrate
on the robustness properties of the controller. These are specified by the weighting filters for
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Choose v;. small

31

Choose Vd

Optimize high freq. We

Optimize high freq W"

Optimize low freq We, W"

Adjust v;.

Determine perturbations

Figure 4.2: Robustness optimization design procedure.

the disturbance reduction --.::i.-v:wand the model robustness rw.
d e d v

In general, the order of the controller is the sum of the order of the plant and the orders
of the weighting and shaping filters. For this reason, we will choose the order of the filters as
low as possible and start with 1st order filters.

As pointed out in Falkus [6] pp27, The weighting filters Vd , Vr and W" have to be biproper.
This is because the state space solution method puts constraints on the augmented plant G,
which on their turn puts constraints on the weighting filters.

Because there is a dear relation between the weighting filter parameters and the magni­
tude frequency function of these filters, the filter design is performed in the continous-time.
However, the controller will be designed in discrete-time. So the filters have to be trans­
formed from the continous-time to the discrete-time. For the transformation algorithm, the
bilinear transformation with frequency prewarping is used. This transformation maps the
imaginary axis on the unit cirde and only the frequency axis is deformated. To compensate
this deformation a prewarping frequency can be entered. By means of frequency scaling be­
forehand, this frequency is not deformed during the transformation. We consequently used
the resonance frequency as prewarping frequency, because this frequency is very sensitive for
the deformation. A small frequency deviation at this frequency will cause a large magnitude
deviation of the model.
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Figure 4.3 shows the used design strategy. First, an initial v;. is designed. We will first
try to optimize the robustness demand and next the performance demand. Because Vr has
no influence on the robustness demands , the gain Kr is chosen small. In this way, both
the tracking and the actuator saturation transfer functions are not the limiting weighting
functions in the H 00 norm. v;. is chosen lowpass, because this is conform to the applied input
signal.

v(ini) = K r ( 8 - Zr) = 0.003(8+ 0.5) .
r (8-Pr) (8+0.005)

The next step is to define the disturbance weighting filter Vd •

(4.6)

v _~ _ K d(8 - Zd) _ (8 +0.2) ( )
d - dC;;ir) - (8 + 3.2) - (8 + 3.2)' 4.7

Because dM has an unstable pole and the weighting filters have to be stable RH2 , the pole
is mirrowed with respect of the imaginary axis. This is allowed because only the magnitude
of the weighting filters is considered in the H oo design.

The next parameter to be chosen is Zd. We will choose Zd smaller than the unstable
pole, because this allows a higher robustness for higher frequencies. This is conform to the
specified model perturbations, which show a relative large deviations for high frequencies (the
resonance frequency).

The gain of the scaled weighting functions vJv:- and v;w; is dependent on Ii!K: and
~ respectively. During the design, K" and K e are used to change the gain of the scaled
weighting functions. K d is only used to avoid numerical problems and is set to the value l.

Equation 4.4 and 4.5 implies that the disturbance reduction weighting function~ puts
a constraint on the flexible mode pole (at 13.3 r / s) perturbation and the model robustness
weighting function vJv:- puts a constraint on the flexible mode zero (at 5 r / s) perturbation,
.0.d and .0.n are dependent on these pole and zero perturbations respectively. The design of
We and W" is now divided in two steps. First we will perform a maximum effort to weight
the disturbance reduction and model robustness at the pole and zero frequencies respectively.
This is denoted as the high frequency optimization of We and W" in figure 4.3.

The next step is to weight also the low frequency range of the transfer functions. This
results in the following shaping filters:

0.5144(8 + 3.1)

(8 +0.2)
1.12(8 + 0.1)

(8 +40)

(4.8)

(4.9)

Then the performance demand will be satisfied, without changing the robustness of the
system achieved thus far, the performance is increased by increasing the gain of v;. until "y

will change. This results in the following input shaping filter:

v;. =
0.2025(8 + 0.5)

(8 + 0.005)
(4.10)

The shaping filters are shown in figure 4.3 and the various transfer functions are shown
in figure 4.4.
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Weighting filters (dwC!=0.lB5, dbd=O.l. dwn=0.075. dbn=O.l).
10' ............,.--~~~....,.-~--~........,r------.......,r-------.-,

Figure 4.3: Weighting filters: b..j3n = 10%, b..wn = 7.5%, b..Wd 18.5%, b..j3d = 10%.
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Figure 4.4: Transfer functions with robust controller.
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With the obtained shaping functions We, W" and Vd it is possible to derive the maximum
allowable perturbation of the flexible mode pole and zero. This relation is derived via equa­
tions 4.3, 4.4, 4.5, 3.33 and 3.34.The design will only guarantee a stabie pendulum, if the
resonance frequency deviation is smaller than 18.5%.

The disturbance reduction (sensitivity) shows an amplification of 6dB of the noise. This
is rather high.

Figure 4.4 shows that we have achieved a very good tracking. This implies that it is
possible to find a more robust controller because in general a good tracking requires a small
model perturbation.

4.4 Simulation results

In this section the robust and the classical designed first loop controller are compared.
The design procedure described in section 4.2 results in the feedforward controller Cff

and the feedback controller Cfb :

Classical lst loop controller:

-0.1014

-1.54z& + 4.03z4
- 4.52z3 + 2.49z2

- 0.63z + 0.09
z& - 1.63z4 +0.45z3 +0.30z2 - 0.05z

(4.11)

(4.12)

Hoc robust lst loop controller:

0.1 -3.95z7 + 5.85z6
- 0.64z& - 4.97z4 + 4.07z3

- 1.12z2 + 0.29z + 007 (4.13)
Z7 - 2.05z6 + 1.19z& + 0.37z4 - 0.88z3 + 0.58z2 - 0.16z + 0.030

-1.07z7 + 1.58z6
- 0.17z& - 1.35z4 + 1.1Oz3

- 0.30z2 + 0.08z + 0.0018 (4.14)
Z7 - 2.05z6 + 1.20z5 + 0.37z4 - 0.88z3 + 0.58z2 - 0.16z + 0.03

To illustrate how the controller has stabilized the pendulum, the pole zero diagrams of
the controllers are shown in figure 4.5 and figure 4.6.
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Figure 4.5: Pole zero diagrams classical designed controller.

To evaluate the robustness of the controlled pendulum, figure 4.7 and figure 4.8 show the
stability area. These figures show for which values of absolute spring damping and spring
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Figure 4.6: Pole zero diagrams Hoo designed controller.

constants, the linear pendulum model remains stabIe. All other physical parameters are
assumed to be exact. The 'x' denotes the nominal model.

The resonance frequency and the relative spring damping are strongly related to the
spring constant and the absolute spring damping. Figure 4.7 shows that maximum allowable
deviation of the resonance frequency before the pendulum becomes unstable is about 30%
in the classical case and about 16% in the robust case. Based on these figures, the classical
design is more robust than the H00 design.
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Figure 4.7: Stability area classic controlled pendulum.

Finally, the bode diagram of the controlled pendulum is compared for the two cases.
Figure 4.10 shows the classical design and figure 4.11 the Hoo design. The bandwidth of the
pendulum of the classical design is quite low: ~: ::::: O.l1Hz. This is a direct consequence
of chosing the loop gain as low as possible. The bode diagram of the Hoo design shows a
bandwidth of 2

3
". ::::: 0.48Hz. It also can be noted, that the flexible mode frequency is not very

strongly damped.
Another difference between the classical and the H00 design are the sensitivity functions

(figure 4.9 and figure 4.4). For low frequencies the sensitivity of the classica! design is about
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Figure 4.8: Stability area Hoo controlled pendulum.

5 times larger than the sensitivity of the H 00 design.
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Chapter 5

Identification

5.1 Introduction

In this chapter, the inverted pendulum which is stabilized In chapter 4 will be identified.
Our goal is to estimate an accurate black-box model, which can be used for the second
loop controller. The identification is performed both with the classical and robust designed
controller.The identification procedure can be separated in the following design steps

preliminaries and experiment Here the various experiment parameters are chosen such
as the sample frequency, the experiment duration, model choice, input signal, noises.

model estimation Based on the collected data of the experiment, a structural model is
estimated.

model validation The obtained model is validated and a decision is made whether or not
to accept the model. If the model is not accepted, a new model can be estimated, or
even the preliminaries could be changed.

5.2 Preliminaries

An important phase in the identification procedure is the preparation phase. In this phase
the following considerations are taken:

model choice: At this moment, two different structural models are available: the linear
model and the nonlinear model. We could ask ourselves if it is usefull to simulate with the
nonlinear model. The nonlinear model contains three different types of nonlinearities.

To simulate the input saturation of the xy-recorder, its input is clipped.
The harmonical nonlinear relations are due to the relations of the different coordinate

systems. The angles of these coordinate systems remain small « 15°), which results in a
reasonable accurate linearization.

There are centrifugal forces in the system. These cause small deviations with respect of
the linear system.

Because of the centrifugal forces it is useful to simulate with the nonlinear model.
noise parameters: We distinguish two noice sources: sensor noise and exogeneous forces

on the pendulum. We assume that we have an accurate sensor with only discretization noise.

38
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Reasonably, the used sensor will have a resolution of 0.5mm. We assume that the movement
of the rod will result in a uniform distributed white sensor noise.

It is difficult to estimate a-priory an exogeneous noise signal. Therefore it is irrelevant to
introduce this noise.

To identify the pendulum, a PRBNS signal is used as input signal. This signal can be
characterized by two parameters: The pulse width and the pulse height. The minimum
pulse width determines the bandwidth of the signal and the amplitude is a trade-off between
nonlinearity effects for large amplitude and a reasonable sensor Signal to Noise Ratio for small
amplitude. The input signa! and its spectrum are shown in figure 5.1. The chosen input signal
has a pulse width of 0.2s and an amplitude of lcm.

Time plolof .ignal rOe_ref.
0.01 ,,---,-,------,-,.-r-

:§: 0.005

..
:{ O·

E
« -O.OOS

.. . .,. .

... ... ., ..•...........

302510 15 20
Time [see].

Psclf of signal rOe_ret.

{'O·' L : : .
Cl :::

-g :::
!10-4 ) ; ) .

~

,0..0'-------'---2'-------'-3--4'---------'-5--6'------:':7--
8
.L.-----'-8----:"0

Frequeney (Hz).

Figure 5.1: PRBNS Input signal.

The next design parameters are the sample time and the experiment duration. For conve­
nience the identification sample time is chosen equal to the regulator sample time: 0.05s. For
the experiment duration, a rule of thumb is to choose the experiment time 5 - 10 times the
largest time constant of the proces. The largest time constant is in our case the flexible mode
time constant, which is ±0.6s. This results in an experiment duration of 6s or 6s ·20Hz ~ 120
samples. However, because this time constant is very uncertain, we will choose a much longer
experiment duration of 25.5s or 512 samples.

Everyexperiment data set includes both an estimation set and a validation set. Because of
zero-initial conditions, we will not execute one experiment and split the data in two sets, but
execute two different simulations with different input signaIs. The experiment setup is shown
in figure 5.2. The experiment contains 4 exogene signaIs. bin_e is the PRBNS input signal,
noise_e is the sensor noise and acc.phLl noise and acc.phi_2 noise are disturbances
on <PI and <P2'
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Figure 5.2: Experiment scheme.

5.3 The identification method

For identifying the pendulum, an output error model will be used. This is depicted in figure 5.3
The output error model can be written as:

y(t)

B(Z-I)
F(Z-I)

y(t) +€(t) = ;~:=: ju(t - td ) +€(t),

bI +b2z- 1 + +bnb z-nb+1,

1+ iIZ- 1 + + in,z-n,.

(5.1)

(5.2)

(5.3)

The model parameters [bI"'" bnb ] and [f1"", in,] are collected in vector !l.. and the
estimated output error model ~ is defined as:

" 1 N-I 1 N-l

!l.. = argmjn N I: (y(t) - y(t))2 = argmjn N I: €2 = argmjn Je. (5.4)
- t=o - t=o -

Here Je is the loss function of the model. This SISO nonlinear minimalization procedure
is performed by the OE.m function of the MATLAB identification toolbox.

To determine the order nJ of the model, figure 5.4 depicts the loss function Je as function
of the order nJ. Based on physical considerations, the delay time td is chosen O. The nonlinear
model contains no time delays. The order bJ of the model is determined by trial and error.
This order is chosen to minimalize Je for a given order nJ'

Both loss functions are monotonously decreasing functions. The loss function of the clas­
sical designed controller is about an order smaller than the loss function of the H 00 designed
controller.
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The following model order is chosen for the classical controlled model:

and for the H 00 controlled model

This results in the models of figure 5.5 and figure 5.6.

5.4 Model validation.

In the previous section a model is obtained based on the estimation data set. In this section,
we will validate these models with the validation data set and accept or reject the presented
models.
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lum.

An important method for validating the model is checking if arelation can be found
between the input signal and the residuals. To test the independenee of u and €, we proceed
as explained in Bosch [3]. If u and € are indeed independent, we have that

..fNRw(r) E A.N(O,P), (5.5)

where A.N(O, P) means that the given quantity asymptotically converges in distribution
to the normal distribution, with mean °and varianee P. Further on Na is used as the Ct: level
of the N(O, P) distribution and Rw is the cross covariance between € and u. PIs defined as

00

P = L: Rf(t)R... (t).
t=-oo

(5.6)

Here R... and Rf are the covariance functions of u and f-

It is stated that the input and the residuals are independent if
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I
Reu(r) 1<

VRf(O)R,,(O) -
(5.7)

To evaluate the modeIs, the normalized cross-covariance function of input and residuals
is plotted in figure 5.7 and figure 5.8, together with the confidence levels. The associated
confidence level used here is NO.Ol =2.58. This means that we have 99% confidence that the
model is good. In this way it is easily seen that both models satisfy condition 5.7. From these
figures we can see also a correlation between €(t) and u(t - r) for negative values of r. In
general, this indicates the presence of feedback. This is obviously the case for our model.

The figures also show the auto-covariance of € and a 95% confidence interval that the
signal is white. We conclude from this that the residual is certainly not white.
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Figure 5.7: Auto correlation residual signal and cross correlation between input-residual sig­
nals of the classical controlled pendulum.

Finally the estimated output signals are shown in figure 5.9 and figure 6.6. These figures
also show the spectra of the residuals. For the classical designed controller, the residuals have
a large amplitude for low frequencies. This can be explained by the large complementary
sensitivity for low frequencies of this design. This complementary sensitivity is shown in
figure 4.9.

The psdf of the residuals of the robust design is relatively large by frequencies around lHz.
It seems that the algorithm encouters difficulties by modelling the pole-zero configuration of
the closed loop system around this frequency.
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Chapter 6

Second loop controller

6.1 Introduction

In this section the two-Ioop control design is applied on the inverted pendulum. The design
procedure is depicted in figure 6.1. First we have to find the model of the system with
a simulation and a identification procedure. Based on this model a robust H 00 controller is
designed and with the updating mechanism a new controller is constructed. If the controller is
not significantly changed, the two-Ioop control design is finished. Otherwise a new iteration
can be performed. The simulation and identification blocks are already discussed in the
previous chapter. In this chapter we will confine ourselves in the controller design and the
update mechanism. These will be discussed with the first iteration step of the initially H00

controlled pendulum. Finally the results of the two-Ioop control will be discussed.

6.2 Robust design procedure

In chapter 4 we have concentrated the design on the robustness properties of the controller,
while in this section the performance of the controller is emphasized. The design is based on
the robust model obtained in the previous chapter.

The design of the weighting filter is divided in two parts. First the general shape and the
order of the weighting filters are derived. The goal of this part is to reduce the number of free
parameters in the second part of the design. This part is concerned with the optimalization
of the performance.

We will start with the design of the input shaping filters Vd and v,.. Figure 6.2 shows
the power spectral density functions of the reference signal and the output disturbance of
the first identification procedure. In future identification procedures, we will use the same
reference signal. v,. is now chosen as the upper bound of the psdf of the reference signal. For
Vd however, if a new controller is designed, the output disturbance will not remain the same
because the ouput disturbance is dependent on the used controller. To simplify the controller
design we will assume that the new controller will only affect the output noise level, but the
shape of the psdf will remain the same.

K (s +0.06)
d (s+5) ,

46

(6.1)
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Figure 6.1: Two loop design.

v,. = 0.125(s+40).
(s +10)

nificantly changed ?
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(6.2)

(6.4)

(6.5)

Next, We is designed. We specifies the performance of the system. After some trial and
error we will choose for a critical damped second order filter

We = K e S2 + ../2wes +w; . (6.3)
S2 + ../20.1s +0.12

The frequency in the denominator is chosen 'small' and the optimization uses 2 degrees
of freedom (Ke and we).

Next W" is designed. This filter determines the model robustness and the actuator sat­
uration. The shape of W" is chosen to optimize the model robustness. The robust design is
based on an additive model perturbation. Based on the identification procedure, it is possible
to estimate this additive model perturbation. This perturbation is shown in figure 6.3.

The estimation of the additive model perturbation l~p(w)1 can be found with:

<1>e = <1>d + <1>"I~p(wW,

l~p(w)1 = j<1>e - <1>d.
<1>"

Here <1>d is the spectral density function of an independent exogene output disturbance,
<1> e is the psdf of the estimation error signal and <1>" is the psdf ofthe input signalof Pc. The
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Frequency (Hz).

Figure 6.2: Psdf reference signal (left) and error signal (right) with their upper bounds.

Table 6.1: Parameters weighting filters.

spectral density functions ~ ... and ~e are obtained in the identification procedure and ~d is
unknown. If ~d is chosen zero, l~p(w)1 can be estimated as

(6.6)

(6.7)

A nonzero ~ d will result in a more conservative additive perturbation estimation.
The estimated additive perturbation ILip(w)1 and the reallinear additive perturbation

l~p(w)1 = IPc - Pcl can be found in figure 6.3. W... is chosen as a 3rd order filter to obtain
a small transition interval at 2Hz.

W... = J(... S3 +2 . 6.9 . S2 +2 . 6.92
• s +6.93

S3 +2 . 15 . S2 +2 . 152 • s + 153

The only degree of freedom of this filter is J(....

We have now defined the weighting filters and the filter parameters to optimize the per­
formance. With parameter We the bandwidth ofthe system can be adjusted. However, if We is
chosen too high, the robustness demands of figure 6.3 is violated. The ratio between J(... and
J(e is used to adjust the actuator saturation and finally the absolute gains J(... , J(e and J(d

are mainly used to avoid numerical problems. After some trial and error, the final paramater
values can be found in table 6.2.

These weighting filters results in the transfer functions of figure 6.4. Note that the x-axis
of these figures are relative frequencies of the fundamental interval, with a sample frequency
of 20Hz. Although the filter design is performed in the continous-time domain, the controller
ca1culation is performed in the discrete-time domain.
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Real and estimated add~ive model perturbation.
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Figure 6.3: Real and estimated additive model perturbation.
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Figure 1.4 shows that updating the controllers consist of adding the feedback controllers and
cascading the feedforward controllers. However the feedforward controller of the H 00 design
has as input the reference signal. In this way, the former feedforward controller has become
superfluous and the total feedforward controller can be directly obtained by the H 00 design.

Because C and fJ:.C do not have the same poles, the order of the controller will increase
with every iteration step. It is obvious that each iteration the order of the controller has to
be reduced.

For reducing the order of the controller, we will use a time-domain approach. The two
controllers are added and the matching impulse response is determined. Based on this impulse
response, a new controller is estimated. For estimating this controller, the Steiglitz-McBride
algorithm is used. This is a nonlinear least square estimation algorithm, which minimalizes
the error between a given impulse response and the impulse response of the estimated transfer
function in a least square sense.

Not only the order of the feedback controller has to be reduced, but also the order of the
feedforward controller. For this purpose, the same algorithm is used. The results of the order
reduction are shown in table 6.3 and table 6.3.

These tables shows the power of the estimation error, the Signal to Noise Ratio of the
estimation error power and the impulse response power and the absolute maximum difference
between the real and the estimated impulse response respectively. Based on these tables, the
order of the feedforward controller is chosen 5 and the order of the feedback controller 6.
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Figure 6.4: Transfer functions with robust controller.

~ order ~ Jerror I SNR [ maxlh - hl ~

1 4.7836e-002 1.1105e+000 6.7847e-001
2 1.2454e-003 4.2654e+001 4.4108e-001
3 1.1926e-003 4.4545e+001 4.2404e-001
4 4.6445e-004 1.1438e+002 2.1587e-001
5 2.8654e-004 1.853ge+002 1.1956e-001
6 1.9555e-005 2.7165e+003 2.3731e-002
7 1.9511e-005 2.7227e+003 2.3006e-002
8 6.1503e-006 8.6373e+003 1.3052e-002
9 3.3973e-006 1.5637e+004 1.0767e-002

Table 6.2: feedback controller order reduetion.
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~ order ~ Jerror I SNR I maxlh - hl ~
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1 l.0327e-003 2.2094e+OOO 2.1385e-OOI
2 5.9287e-004 3.8484e+OOO 1.3594e-OOI
3 2.4840e-004 9.1852e+OOO 1.2294e-OOl
4 1.9139e-004 1.1921e+OOl 8.0099e-002
5 2.4281e-006 9.3968e+OO2 8.3535e-003
6 2.1490e-006 l.0617e+OO3 8.8601e-003
7 8.1211e-008 2.8095e+OO4 8.1278e-004
8 2.1333e-009 1.0695e+OO6 3.5779e-004
9 3.2610e-OI5 6.9967e+Oll 5.5337e-007

Table 6.3: feedforward controller order reduction.

6.4 Simulation results

Two evaluate the two-Ioop control, figure 6.5 shows the impulse responses of the updated
controller after 1 iteration and figure 6.7 shows the impulse responses after 2 iterations.
These figures also show the impulse response of the added feedback controller !:lCfb • It can
be observed that !:lCfb of the 2nd iteration is smaller than the lst iteration and it seems that
the feedback controller will converge to a final controller.

Figure 6.6 and 6.8 show the output signal and the psdf of the model error signal after 1
and 2 iterations respectively. These figures show that the model error has become worse and
therefore a more robust controller has to be designed to ensure stability. So the two loop
designed controller will not converge to an optimal controller.
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Chapter 7

Conclusions and recommendations

With a H oo rohust control technique and the two-loop control structure, we have tried to
optimize the performance. The design consists of two parts.

The first part is focused on rohustly stahilizing the pendulum, with respect of the flexihle
mode frequency. The H oo is compared with a classical pole zero cancellation design. The
flexihle mode frequency rohustness of hoth controllers are approximately the same.

The second part consist of an iteratively identification and control design procedure. Be­
cause of identification prohlems, the stahilized pendulum, the algorithm will not converge to
controller with optima! performance.

For further survey of the pendulum, the identification prohlems of the pendulum could he
more accurately investigated.
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A, B, C,D,E
13d, r3d' b.13d

Appendix A

List of symbols

Standard problem.
Linear state-space model pendulum.
Flexible mode pole (damping, perturbed damping
and relative damping).
Flexible mode zero (damping, perturbed damping
and relative damping).

13r Relative damping xy-recorder.
B(Z-l), bi Numerator polynomial and polynomial coefficients estimated model.
C, CJj, C fb General, feedforward and feedback controller.
C. t Stabilizing controller.
Cl, C2 Friction constant.
b.C, b.CJj, b.Cfb General, feedforward and feedback update controller.
b.N , b.M StabIe factor perturbations.
b.n , b.d Perturbation in numerator and denominator model.
b.p, Lip Additive perturbation and estimated additive perturbation.
D Loss energy pendulum.
d Output disturbance signal pendulum.
!1 Output disturbance vector.
df StabIe polynomial.
dN , dM Denominator stabIe coprime factors.
dnf , dnf Denominator polynomial not belonging to the flexible mode.
'TJ Sensor noise signal.
'!1 Sensor noise vector.
€ Estimation error signa!.
E(g<.) , t(~), !lJ~), !l.(~) Nonlinear state-space model.
e Augmented plant error signal.
F(Z-l), fi Denominator polynomial and polynomial coefficients estimated model.
f Actuator force.
L Forceftorque input vector.
/ Sealing factor state-space approach.
G Augmented plant.
Gu , G 12 , G 21 , G22 Partitioned augmented plant.
9 Gravity force.
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[Nms]

[Nm]

[N]
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H
J l , J2

Je
K
K d , K e, Kr, Ku

Kl, K h

L
/1, /2
Me
MIl

M 12

M2l

M22

M{I
M{2
M;l
M;2
mI, m2, M
N
Na
na
nb, nl
n r , nd

nni, nni
P
«ld, «le, «lu

'PI, 'P2
Po, Po, Po
Pc, Pc, Pc
PN , PM , PN , PM

Pd, Pe, Pr, Pu
ij(Me )

Re
Reu
Ru
S
e ê-,-
T
U
Ua
y.

u
U
Vd

v;.

APPENDIX A. LIST OFBYMBOLS

Sensor height.
Inertia lower and upper rod of the lP.
Loss function.
Spring constant.
Gain weighting and shaping filters.
Lower and upper controller gain stability boundary.
Length lower pendulum rod.
Distance joints to center of mass rods lP.
Optimization function.
Disturbance reduction criterion.
Signal tracking criterion.
Model robustness criterion.
Actuator saturation criterion.
Disturbance reduction.
Signal tracking.
Model robustness.
Actuator saturation.
Masses of lower and upper rod of the lP and cart.
Number of samples.
a level normal distribution.
Numerator polynomial of the nominal model.
Order numerator, denominator output error model.
Reference and disturbance signal augmented plant.
Numerator polynomial not belonging to the flexible mode.
Variance of the normal distribution.
Power spectral density functions output disturbance,
model error and stabilized pendulum input.
Angle of joint 1 and joint 2.
Nominal, perturbed and estimated pendulum.
Nominal, perturbed and estimated stabilized pendulum.
Stabie coprime factors and perturbed stabie coprime factors.
Poles weighting and shaping filters.
Largest singular value Me.
Auto-covariance function error signal.
Cross-covariance function error-input signal.
Auto-covariance function model input signal.
Sensitivity function.
Model parameters and estimated model parameters.
Kinetic energy pendulum.
Potential energy pendulum.
Rest energy spring.
Stabilized plant input vector.
Stabilized pendulum input signa!.
Augmented stabilized plant input signal.
Output disturbance shaping filter.
Reference shaping filter.

[m] I

[kgm1
I

[Nm]1

[m] I
[m]

[kg]

[rad]

[Nm
[Nm
[Nm



1L
V

V'

We

Wd, Wd, .ó.Wd

W n , W n , .ó.Wn

Wr

W"
We
WN,WM
W

(Xl,yd, (X2,Y2)
~I

Jl
Y, Y
!f.

Input vector plant.
Pendulum actuator signa!.
Position arm xy-recorder.
Bandwidth tracking error weighting filter.
Flexible mode pole (frequency, perturbed frequency
and relative perturbation).
Flexible mode zero (frequency, perturbed frequency
and relative perturbation).
Bandwidth xy-recorder.
Actuator saturation weighting filter.
Tracking error weighting filter.
Weighting filters on stabie factor perturbations.
Exogene input vector (augmented) plant.
Position center of mass lower and upper rod
Independent variables pendulum.
Output vector plant.
Output and estimated output pendulum.
Output vector augmented plant.
Zeros weighting and shaping filters.
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[rads-

[m]

[m]
[m]



Appendix B

The simulink nonlinear model

The functions of the simulink scheme of figure B.l are defined as:

fl(u)=-(ml*11+m2*L)*u[1]*cos(u[2])-m2*L*12*sin(u[2]-u[3])*(u[5])-2+ ...
(ml*11+m2*L)*g*sin(u[2])+K*(u[3]-u[2])-cl*u[4]+c2*(u[5]-u[4])

f2(u)=-m2*12*cos(u[3])*u[1]+m2*12*L*sin(u[2]-u[3])*u[4]-2+ ...
m2*12*g*sin(u[3])-K*(u[3]-u[2])-c2*(u[5]-u[4])

f3(u)= (ml*11-2+m2*L-2+Jl)*(m2*12-2+J2)-(m2*L*12*cos(u[2]-u[3]))-2
f4(u)= (u[1]*(m2*12-2+J2)-u[2]*m2*L*12*cos(u[4]-u[5]))/u[3]
f5(u)= ((ml*11-2+m2*L-2+Jl)*u[2]-u[1]*m2*12*L*cos(u[4]-u[5]))/u[3]
f6(u)=L*sin(u[1])+(H-L*cos(u[1]))*sin(u[2])

The functions f1(u) and f2(u) are parts ofthe system equation fÜ!2.). The inversion of E(~)
is accomplished with functions f3(u), f4(u) and f5(u). The output function hl~) is realized
with function f6 (u).

The following numerical values are used for the physical parameters:

g = 9.81;
K = 2;
L = 0.75; H= 1.4;
ml= 0.25; m2=0.25;
cl= 1.03e-2; c2=0.0225;
11= L/2; 12=L/2;
Jl=(ml*L-2)/12j J2=(m2*L-2)/12;
wO=sqrt(50/0.05); Y. undamped frequency xy-recorder
b=0.82; %damping ratio xy-recorder

Finally, the following noice varianees are chosen:

ace phi_l noice
ace phL2 noice
sensor noice

o
o
Uniform distributed noise between (-0.25mm, 0.25mm)
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Figure B.l: Nonlinear simulink scheme of the flexible inverted pendulum.
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