
 Eindhoven University of Technology

MASTER

Hierarchical design flow methodology
reuse and standardisation

Vaassen, A.W.P.

Award date:
2003

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6d5a8e06-d8cc-40cc-bfea-19b92cdf8d10

TU/e technische un;vers;leit eindhoven

Faculty of Electrical Engineering
Section Design Technology For Electronic Systems (ICS/ES)

ICS-ES 836

Master's Thesis

HIERARCHICAL DESIGN FLOW METHODOLOGY.

Reuse and standardisation.

A.W.P. Vaassen

Supervisor:
Coach:
Date:

prof.dr.ir. P.R. Groeneveld
ir. J. Huisken (Philips Research Laboratories)
December 2003

The Faculty of Electrical Engineering of the Eindhoven University of Technology does not
accept any responsibility regarding the contents of Master's Theses

2003/677 Hierarchical design flow methodology

Authors' address data: ing. A.W.P Vaassen WDA2l; ad.vaassen@philips.com

© KONINKLIJKE PHILIPS ELECTRONICS NY 2003
All rights reserved. Reproduction or dissemination in whole or in part is
prohibited without the prior written consent of the copyright holder.

ii ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

Title: Hierarchical Design Flow Methodology

Reuse and standardisation.

Author(s): Ing. A.W.P. Vaassen WDA21 Ad.vaassen@philips.com

Reviewers(s): Prof. Dr. ir. P.Groeneveld, Jr. J. Huisken.

Technical Note: 2003/677

Version: 06, 28/09/2003 Status: On-going

Project:

Customer:

Keywords:

Abstract:

100cube, MoSAIC, Master of Science Thesis

Philips Research, Eindhoven University of Technology

Floorplan, CAD, hierarchical, design flow, clustering, partitioning, block
based, tile-based, flat.

In the IC design community, there is a productivity gap for large System-On
Chip (SoC) designs. This gap is the difference between design complexity and
design productivity. Physical design is one of topics responsible for that gap.

For physical design, flat and block-based design methodologies are commonly
applied. When looking at these methodologies, it can be seen that flat do not
scale with complexity, and block-based methodologies only scale with
increase in human and hardware resources. This means that neither of them
will bring the solution. From automation and performance point ofview flat is
the better methodology, but as chips get larger and larger it will run into
capacity problems. To solve this capacity problem without losing the
automation and performance advantages, a tile-based design methodology is
developed.

These standard tiles will look and behave as standard cells but significantly
larger. This method is based on the work that was carried out in the seventies,
when people changed from transistors to standard cells. Through this move
automatic place and route, and synthesis came available. At this moment, the
same kind of change could help to reduce the productivity gap and to make
automatic floorplanning possible.

The most important question this report addresses will be the size and
construction of the tiles.

© Koninklijke Philips Electronics N.V. 2003 iii

2003/677

Conclusions:

IV

Hierarchical design flow methodology

At this moment a complete automated hierarchical design flow is made
to convert a gate level netlist into a CoReUse database with gds2,
timing and physical verification, as a final result. This flow is based on
Cadence tools and contains about 30 makefiles, 2 Philips internal tools,
and 150 scripts. The processor array of the Xetal project is used as an
experiment. The result was that this design could be made 3 times
quicker compared to the flat layout style in the same area. This gain in
run-time gives a loss 17% in timing closure on the worst-case path. For
the rest of the paths the tile-based method is about 8% better. Besides
that also a flat run was done with minimum area. When comparing the
tile-based method against this result, it is still 3.5 times quicker with the
same timing result for the critical path. For the rest of the paths the
result is 15% better. On area the tile-based method is about 23% worse.
One reason for that is due to a bad area utilisation of the optimisation
tiles. If this could be solved without wiring congestion problems the
area is somewhat the same.

One of most important conclusions is that the tile-based method can handle
larger designs than flat. Besides that the tile-based method provides the
possibility to do design-space exploration.

Recommendations:

• More and different design cases,

• Clustering algorithm,

• Abstract modelling of layout,

• Optimal aspect ratio of tiles,

• Buffer insertion for pins,

• Choice between bottom-up or top-down design,

• Toplevel optimisation with regards to:

o Timing,

o Cross talk.

©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

Contents

2003/677

Acknowledgement viii

1. Introduction 9

1.1. Problem description 9

1.2. Objective 10

1.3. Approach overview 10

1.4. Related work 11

2. Digital Design flow 12

2.1. Flat approach 12

2.2. Hierarchical block based approach 13

2.3. Hierarchical tile-based approach 14

2.4. Design style summary 17

3. Partitioning I Clustering 18

3.1. Rents rule 18

3.2. Signal integrity constraint 20

3.3. Power grid constraint 22

3.4. Area ratio constraint 23

3.5. Clustering algorithm 23

4. Tile implementation 25

4.1. Timing propagation 25

4.2. Area estimation 25

4.3. Pin placement 26

4.4. Power strategy 28

4.5. Clock strategy 29

4.6. Timing optimisation 29

5. Model generation 30

5.1. Layout model 30

5.2. Timing model 30

6. Design Results 32

6.1. SIMD processor array 32

© Koninklijke Philips Electronics N.V. 2003 v

2003/677 Hierarchical design flow methodology

7. Conclusion 37

8. Future work 38

Glossary 39

References 40

A. Analysis/Clustering tel script 42

Vi © Koninklijke Philips Electronics N.V. 2003

2003/677

Acknowledgement

Hierarchical design flow methodology

Even though I had just graduated from the 'Hogere Technische School Eindhoven' in
1996, I still had a strong desire to continue studying electronics. At that time, I preferred
a job instead of a study at the University of Technology. After three years, the desire was
so strong that I still started this Master of Science study. The combination of work and
study has given me a better understanding of the lectures.

I would like to express my gratitude to my girlfriend, family and friends for their support
during the course of this study. Besides my family there are a number of people that I
would like to thank for realising this study. First of all, Engel Roza and Philips Research
for giving me the opportunity to start this study aside my normal work. During the last 4
years I have very much enjoyed the Fridays that I spent at the university attending lec
tures. Secondly, I would like to thank Erwin Waterlander, Marino Strik, John Dielissen,
Marc Heijligers, Paul Wielage, and Alexander Danilin for all the valuable discussions. A
special word of thanks goes to my supervisors Jos Huisken of Philips Research and
Patrick Groeneveld of the University of Technology Eindhoven for their confidence, co
operation, and guidance throughout the graduation project. Last but not least, I would
like to thank the reviewers of my report for their time.

Ad Vaassen
Eindhoven, September 2003

viii © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

1. Introduction

2003/677

This is the final report of a M. Sc. thesis project of Eindhoven University of Technology,
Department of Electrical Engineering, Information and Communication Systems group.
The research work is conducted within Philips Research Laboratory Eindhoven from
October 2002 until July 2003 as part of the MoSAIC project, which focuses on the semi
conductor engineering productivity gap and design regularity.

1.1. Problem description

In the IC design community, there is a widening productivity gap for large SoC designs.
This gap is the difference between design complexity and design productivity. The de
sign complexity is driven by the growth of integrating more and more functionality in a
product. This gives great pressure on the total time to create a chip for products, because
they should not be obsolete before being brought to the market. Investment in technology
improvements has dominated product creation resources. But design productivity has not
been able to keep track with technology improvements such as transistor density growth.
(See Figure 1.) One of the reasons for this is that broader ranges of design factors have to
be taken into account when designing in a new technology. For example timing, power,
reliability, manufacturability, signal integrity and testability requirements.

Figure 1: Design Gap

In the International Technology Roadmap for Semiconductors 1999 edition [1], figures
are given of 58% complexity growth against 21 % productivity growth per year. Most
important reasons for this growing gap are functional verification, logic synthesis and
physical design.

For physical design, flat and block-based design methodologies are commonly applied.
Where most CAD vendors are working on flat, only a few put emphasis on block-based
(2-level) design methodologies to succeed in designing (larger) chips. Instead of design
ing with a large number of cells, a small number of blocks are used, making manual
floorplanning necessary. From automation and performance point of view flat is the
better methodology, but as chips get larger and larger it will run into capacity problems.
The number of designable objects will exceed the maximum and the total CPU time
needed for design will be extremely large. Other observations that hamper this methodol-

© Koninklijke Philips Electronics N.V. 2003 9

2003/677 Hierarchical design flow methodology

ogy are the reuse of hard layout modules (IP) and the fact that design teams are becoming
multi-site, where each site designs a part of the layout. This implies that physical design
can only start if all the design teams have finished their part of the complete system.
Block-based is at this moment the only alternative, but is not very well automated. Main
reason is the absence of standardization. Besides that also more and different algorithms
are needed, for partitioning, pin assignment, and relative placement.

As a conclusion, flat methodologies do not scale with complexity, and block-based meth
odologies only scale with increase in human and hardware resources. This means that
neither of them will bring the solution to the productivity gap. Flat provides the most
automated simplest methodology with the best density result. Main reason is that global
and local optimisation can be performed at the same time. Block-based designs can ad
dress the capacity issue. However blocks are firm or hard which makes the floorplan a
puzzle; compacting, and timing closure are more difficult to achieve. It also requires a
floorplan methodology that is complex and inflexible because of heterogeneous sized
blocks, time budgeting and block estimations.

1.2. Objective
The objective of this thesis is to investigate the viability of a hierarchical based design
flow methodology based on reuse and standardisation, combining best of both worlds.
Trying to use automation, density, timing, and methodology properties of flat and the
capacity property of block-based. Main characteristic will be to use a standardized way
of design, together with a divide and conquer strategy, to break down the problem into
smaller suitable pieces (tiles). Most interesting question for this approach is the size and
construction of these tiles.

1.3. Approach overview
A complete design methodology contains an enormous number of design steps depend
ing on the layout approach. For this thesis the method of standard tiles will be used. More
information can be found in Chapter 2.3. These standard tiles will look as standard cells
but significantly bigger. This way of designing is based on work that was done in the
seventies, when people changed from transistors to standard cells. Through this move
automatic place, route, and synthesis came available. At this moment, the same kind of
change could help to solve the productivity gap and to make automatic floorplanning
possible.

In general, the enormous number of design steps can be clustered into a few basic topics:
planning, implementation, assembly and verification. Planning consists of multiple tasks
of which design partitioning is the most important step. Design partitioning breaks the
design down into partitions, taking into consideration chip performance requirements,
size, hard and firm core IP, and packaging. Besides partitioning also some library cells
are identified that are needed for global optimisation. In Chapter 3, a closer look will be
taken on this partitioning task.

After planning, work on the individual clusters and optimisation cells starts. The timing

10 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

constraints and size are determined for the implementation phase of each tile. Besides
that the technology also gives some extra constraints to the tile implementation. Specific
information about the tile implementations is described in Chapter 4.

When the tiles are ready, block models are created for toplevel assembly. See Chapter 5
for more information on the kind of models are needed and how they are created.

In the final step, the individual tiles and chip VOs are placed and connected using the flat
design style again. This toplevel assembly phase also encompasses power planning, clock
routing, cross talk reduction, and global optimisation. This cross talk reduction and
global optimisation is done via the use of optimisation tiles. More information on tile
based assembly can be found in Chapter 2.3.

The last phase is verification to checks if all the physical, and electrical rules are imple
mented in the right way. And to verify if the original netlist and the final layout have the
same functional behaviour. Chapter 6 shows results of using the hierarchical tile-based
design methodology versus the flat methodology. Finally, in Chapter 7 conclusions are
stated and recommendations for future work are given.

1.4. Related work

At this moment, two other companies are also using comparable techniques a proposed:
Ammocore, and Telairity. Telairity tries to solve this by mapping designs on a fixed
library of functional (already physical implemented) blocks [12]. (See Figure 2)

Synthesis
-Uses Gas as Buldilg Etemenls
- Hasfo louts -I "slpe,gels

across 6 loyers of_'

TeJairlry Groups
• Wee GroUjl$ as S>Jllding EI~men1S

• -1,000 Gales pel GrolllJ
• f'1ll·Enljine...d in1~ 3Malall.yem
• Wetal 4 & 5to, Routing
• loletal e lo, Pawer &Ground

Figure 2: Telairity design style

Ammocores strategy [13][14][15], looks similar to what is going to be presented in this
thesis. First they partition the design by using the Fiduccia-Mattheyses (FM) partition
algorithm. After that, these partitions obtain an estimated area with a fixed height
constraint for that block; this fixed height is needed allowing every block to be placed on
a row-based grid. When this is done all, the toplevel constraints such as power
connection, pins assignment/placement and timing are propagated down onto the block.
After that, all blocks are made in parallel and incorporated back into the toplevel for
optimisation and final routing. Main difference between Ammocore and this thesis'
approach is the design flow, netlist partitioning, and tile implementation. The design flow
that is used by Ammocore is a hierarchical block-based methodology. (See Chapter 2.2.)

© Koninklijke Philips Electronics N.V. 2003 11

2003/677 Hierarchical design flow methodology

2. Digital Design flow
As mentioned in Chapter 1.3, the design flow is adapted to the layout style. In this Chap
ter flat, hierarchical block-based and tile-based layout styles, with their associating flow
are shown. At the end, pros and cons per approach are summarized.

2.1. Flat approach

The flat approach is the easiest way of designing a chip. It is relatively straightforward
and consists of only a few steps. See Figure 3.

-------------------------.

-------------------------.

Figure 3: Flat design flow

The first step is to synthesize the Register Transfer Level (RTL) description to a gate
level netlist using chip constraints such as area and/or timing. This mapping is done on
standard cells, which is the level of granularity for this layout style. Besides standard
cells the netlist could also contain memories, custom layouts or analogue IP blocks called
hard macros. After synthesis, floorplanning has to be done. Which is the most essential
step during backend design. It is manual work and requires infonnation such as the
power strategy, clock strategy and resources for place and route. After this step, the size
of the floorplan is determined and with that the cost of the chip.

Next step is placement of the standard cells on rows. After that, the drive strengths of the
cells are optimised. This is needed because the wire length estimation that was used
during synthesis was based on a statistical model. At this point in the flow the Steiner

12 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

tree calculation gives a better estimation. The design can now be routed such that all the
connections between cells and lor macros are made. Next step is design extraction to
allow verification of power, signal integrity and timing. If needed the violating wires can
be rerouted. If this did not solve the problem, the information can also be fed back higher
into the design cycle hoping that with this extra information the flow will converge to
design closure. The last step is to check the functionality of the layout against the original
description.

2.2. Hierarchical block based approach

The hierarchical block approach has a lot of similarities with the flat approach. The flat
approach is used for each block in the implementation phase. See Figure 4. Besides this
part the hierarchical flow also has toplevel flow containing a planning, assembly and
verification step. In the planning step: partitioning, time budgeting, synthesis and
floorp1anning are done, to start the divide and conquer strategy.

Global routing

auto

-............-

:..--

Verification
physicaUelectrical

1. Planning

2. Assembly

3. Implementation

4. Verification

Figure 4: Hierarchical block-based design flow

The common approach for partitioning is to make the partitions as big as possible,
preferable on the edge of what CAD tools can handle flat. This limit is about 1.2 Million
library objects; in basic gates this would be around 5 Million.

© Koninklijke Philips Electronics N.V. 2003 13

2003/677 Hierarchical design flow methodology

Before floorplanning can start, estimations have to be done for each partition on area,
power, and timing. The estimation of the design area for each partition is the most
difficult part, because this needs accurate models of all design steps. If the estimations
are not accurate enough the total area could be too large or too small, leading to wasted
area or to no solution at all. In both cases the floorplan has to be redone. This means that
some or all the partitions have to be done over again.

During floorplanning each partition obtains a shape and position within the total design
area. To guarantee minimum influence between global routing and local routing,
channels for global routing are reserved between the partitions. The shape and location of
these channels are based on the number of connections that run through a certain area.
After that, the pins of each partition get assigned to its boundary. To verify this
assignment, toplevel is routed and for each of the partitions the boundary constraints and
netlist is implemented using the flat layout approach.

The flat layout part of the hierarchical is extended with an additional step for generating
abstract views needed for toplevel design. The generated views resemble the standard
cell views. In which timing, power, signal integrity and physical layout are modelled in a
compact way, such that it will lead to an information reduction for toplevel. Only the
local information that is important for the global view is incorporated.

The blocks are read back and toplevel layout is ready. At the end, everything is verified
on toplevel. This verification can be done hierarchical or flat. Normally this is done flat
because of the CAD tools and accuracy. But this is not a necessity.

2.3. Hierarchical tile-based approach

The tile-based method is a hybrid form based on small-standardized blocks, which are
called tiles. The implementation of the tiles should be in such a way that it avoids
problems for toplevel, block level, or between both levels. Each Tile represents a small
part of the complete netlist and can be a unique part or a repetitive part. Since most
physical design problems are related to distance, the most important questions for this
approach will be on the size and the physical implementation of the tiles. For determining
the size of a tile some parameters could be used such as design hierarchy, timing, cross
talk, and power grid constraints. More on this topic will be explained in Chapter 3.

The tile-based flow starts with a hierarchical synthesis followed by an analysis. (See
Figure 7.) For all hierarchical levels parameters are calculated and together with
heuristics and physical design constraints the proper clusters are chosen. After that,
constraints per cluster are derived and each cluster is flattened and synthesized again for
a better and more accurate result. The clusters are then implemented in a standardized
way to form a new library of standard tiles. More detailed information can be found in
Chapter 4. Besides these tiles, also specific optimisation tiles are needed for global
timing improvement. (See Figure 5.) When tile A is communicating with tile C the wire
is routed over a certain distance and has to be buffered to meet the toplevel timing or
cross-talk constraints. So the best location for this buffering has to be found, for example
location B. Inserting this buffer can be done into an already designed tile or in a special
to create optimisation tile or on a different placement grid for optimisation. Inserting in a

14 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

designed tile can be difficult because of tile utilisation and timing influence. The use of a
second placement grid is not that easy because then also power and ground has to be
routed on that grid. And this would complicate the flat design approach on toplevel. The
use of special optimisation tiles influences the flow the least.

I~I

Global p'"'''' grid

Figure 5: Toplevel buffer placement

To be able to solve global timing issues, a toplevel synthesis with a wire load model
(WLM) is done up front, to see which buffers and inverters have to be created as tiles.
With this new library of standard tiles and optimisation tiles, the total chip can be
designed using the flat design style. Major reason is that the new library looks and
behaves as a standard cell library. So that the flat design approach can be reused at
toplevel. However, hard macros and analogue IP (Intellectual Property) still have to be
placed manually. Note that there is a possibility to convert hard macros into tiles as well.
This method is close to optimal if the area range of the macros and clusters are similar.
However for the chips that are designed at this moment, this is not the case. Most of the
designs have a few big-shared memories on chip instead of many small-distributed
memories. For the future, this number of small memories will increase because of
bandwidth and power requirements. Transporting data is more and more power
inefficient in newer technologies because of the wire capacitance increase. Wires are
dominating more and more.

After placing the hard macros, the rows are created, and placement of the tiles can be
done. One of the interesting possibilities is to ·see if the power grid on toplevel can be
reused as a parameter for the width of a tile. (See Figure 5) Each tile will then have a
fixed width and a variable height. (See Figure 6) In standard cells this is somewhat the
same but then the other way around, fixed height and variable width.

..
I
I

i Tile height (variable)
I

of-
I I I I.' ~,- ~.- .
Tile width (fixed)

Figure 6: Tile size variation

© Koninklijke Philips Electronics N.V. 2003 15

2003/677 Hierarchical design flow methodology

The lengths of the global wires are estimated with this placement and optimisation can be
done. For the timing optimisation and clock-trees synthesis the buffer and inverter tiles
can be used. Each design tile has its own clock-tree if that was needed, which is modelled
in a timing library file. This is done via an insertion delay and a skew value. The toplevel
clock-tree task is to unbalance the clock pins of the block in such a way that the
endpoints of the blocks are balanced over the complete chip.

Synthesis, Partitioning

...............................

.~....._.
I. Planning

2. Implementation

3. Assembly

4. Verification

Figure 7: Hierarchical tile-based designjlow

The toplevel routing is done over the tiles by using the top most routing layers that are
not used inside the tile. See Figure 8. If necessary also the rest of the routing layers can
be used, which means that the wires could run through the tile. As a draw back this
routing could affect the internal timing of the block. To verify the toplevel the tiles do not
have to be verified because they where already verified when designed. Only the
connections to and from the tiles have to be verified. Also design, electrical and antenna
rule checks (DRC, ERC, ARC) have to be done to guaranty manufacturability.

16 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

Figure 8: Toplevel routing over tiles

2.4. Design style summary

2003/677

When looking at the three layout styles it can be summarized that the flat layout style is
the easiest automated flow with the highest perfonnance and density figures. The
disadvantage is, that run-time increases, more than linear and sometimes even quadratic
with the number of objects or design parameters. For the hierarchical layout style this is
not a problem, because the netlist can be split up in smaller blocks. The disadvantage
however is that the search space is decreasing. As a result, this might reduce perfonnance
or increase the area. In addition, engineering change orders (ECO) are more difficult
because they could affect multiple blocks. See Table 1.

Automation Density / area Timing Capacity I run-time

Flat + + + -
Hierarchical +/- +- -
block-based

Hierarchical + +/- +/- +
tile-based

Table 1: Design style overview

The hierarchical tile-based design flow is a compromise of the flat and block-based flow.
It takes care of the flat disadvantage and tries to solve it by using knowledge of the
hierarchical block based design flow. Difference with the hierarchical block based
approach is that the layout construction is bottom-up, first the tiles are made and after
that toplevel. In this way, problems are not propagated down but up. The advantage is
that the optimisation space is much larger. And if needed, the critical tile can be
redesigned.

© Koninklijke Philips Electronics N.V. 2003 17

2003/677

3. Partitioning / Clustering

Hierarchical design flow methodology

The essence of partitioning is to divide a netlist into clusters/partitions in such a way that
it saves runtime and/or allows better search of the design space. Before the clusters can
be located some partitioning constraints are necessary. The choices for the clusters
should be in such a way that it avoids electrical, and physical problems for toplevel,
blocks, or between them. Some implementation issues that could help the partitioning are
signal integrity, power grid structures, area, timing closure, and design hierarchy. In this
Chapter some possibilities are evaluated.

3.1. Rents rule
Naveed Sherwani [6], shows that an important class of placement algorithms is based on
partitioning. One of the most popular algorithms is the quadratic placement procedure.
This is one of the algorithms used by Cadence. Another very popular algorithm in stan
dard cell placement is the bisection placement procedure. Recent trends show that place
ment algorithms have to optimise besides the traditional area and routability, also power
and signal integrity. As a result, algorithms that estimate wire lengths are becoming more
important, because they could help to fix problems in the placement step instead of in the
routing step.

The quality of a block-based layout is depending on the generated partitions. In [2],
Rents parameter is used for analysing partitioning algorithms. To see which of the tested
algorithms performed best for layout. In this paper [2], it is shown that spectral based
partitioning algorithms are better than the traditional iterative methods such as the Fiduc
cia-Mattheyses (PM) approach. Rents parameter (P) is the exponential part of Rents rule
and shows a power-law relation between T, the average number of pins/terminals per
module and C, the average number of cellslblocks per module in that same clus
ter/partition. Tpc is the average number of terminals/pins per cell.

T =fpc *cP

Equation 1: Rents rule

In 2002, P. Christie [3] gives an equation for optimised cell placement. Which is an
optimised Rents rule Equation.

TcJ =(fPC - T;op }~(l- CcJ JP + T;op CcJ
Clot) C IOI C IOI

Equation 2: Optimised Rents rule

Tel and Cel are respectively the number of terminals and the number of cells of a certain
cluster. Ttop and Ctot are the total number of terminals and cells of the complete design.

18 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

This final solution is a better approximation than Rents rule because it does not neglect
edge effects and pins, as is shown in Figure 9. The coloured points are extracted points
from the netlist; each colour gives a different starting point before growing to the edge of
the netlist. The average of these coloured points is the red line (curved line). The dashed
line is Rents rule and the dotted line is the optimised Rents rule. It can be seen that Rents
rule for the complete netlist is too optimistic. Main reason for this is that the netlist is not
homogeneous as expected and that the netlist is not infinite in size. When assumed that
the netlist would be infinite, Rents rule could be extracted. This also holds for Equation
2, when Clot goes to infinite this equation is equal to Rents rule. Leading to the blue
dashed line.

......: ,'; ...•... L i
'.c...· .-... ,·i··;···, ..,·, ..,·,· .. ··

100 pnllmean 1m,: 1."~2.:

10°
Components

Figure 9: Industry netlist example for Rent parameter extraction.

When using the optimised Rents rule on a hierarchical netlist, for each hierarchical level
the Rent parameter (P) can be calculated. It could also be done via Rents rule but it would
not be so accurate. The only problem with the optimised formula is that it cannot calcu
late the toplevel Rent Parameter. It can only be fitted to the average extracted curve.
Meaning that each cell in the netlist is used as a starting point for growing to the edge.
For a simple netlist this can be done.

Besides that Rents parameter can also be used as an indictor for placement, the lower the
Rent value of a cluster the closer the cells are placed together. This can be seen in the
combination of Table 2 and Figure 10. For a first test, 5 clusters where selected from the
Philips Network-on-Chip (NoC) router design [17] to give an impression. When looking
at the Rent parameter it seems that the lower the Rent parameter the closer the cluster is
placed together. Each region is a cluster in the design hierarchy.

©Koninklijke Philips Electronics N.V. 2003 19

2003/677 Hierarchical design flow methodology

Name Rent exponent Rent improved
Po Switch 0.64 0.66
PI Fastq (3-0-8) 0.19 0.25
P2 Ftfifo (34 bv 24) 0.37 0.27
P3 Ftfifo (34 bv 3) 0.49 0.47
P 4 hpu 0.60 0.58

PbacklITound toplevel 0.46 -
Table 2: Rent exponents per selected cluster

Some other experiments on different kind of designs where done and it seems that this
method of cross-linking is possible but not perfect. However in general, this method
might not be true for all cases, because it is highly dependent on the placement algorithm.
In our case qplace from cadence was used. Based on these experiences the method of
search, create, and design is introduced. So that the designed clusters can be used to
design toplevel, to get almost the same placement result as doing it completely flat.
Disadvantage here is that this method could cost some extra area, because the complete
design could not be broken into clusters that have a rent exponent lower than toplevel. To
minimize this disadvantage these clusters should be as small as possible. As conclusion it
can be seen that the chance is higher that the cells of a certain cluster will be placed close
together if the Rent parameter is low but there are exception.

3.2. Signal integrity constraint
Signal integrity is getting more and more important when feature sizes decrease. The
decrease in wire spacing and wire width, gives an increase in wire height because of the
current density. This leads to smaller bottom capacitances but bigger cross coupling
capacitances. To control the signal integrity the length of a cluster wire should not be
longer than a certain maximum length. This length also gives an indication on the size of
the cluster. A possible first order cross talk calculation is to look at the cross coupling
capacitance in relation to the ground capacitance of 2 wires floating above substrate.

20 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

x - ZViclim
lalk - ,

Z cross + Z'ViCtim

Z = 1
cross 2....1'r' '

~'d""'" cross

Z viclim =X Clol / / X Cload / / Rdriver'

Z Rdriver
victim - ,

1+ 21ifRdriver (Cload + C101)

1
X talk = 1 C C'

1+ + load + 101

21ifRdriverCcross Ccross

Ccross = a *C IOI '

C lood = fanout *C in

Equation 3: Cross talk

2003/677

substrate
A=aggressor
V-victim

Figure 11: Wire configuration

The J{,alk variable is the cross coupling value between aggressor and victim wire. In the
manual of Celtic, a tool for cross talk analysis, the default maximum value for J{,alk is
20%. This means that one-fifth of aggressor voltage is allowed to be injected on the
victim. Ccross is the cross coupling capacitance between the two wires, C IOI is the sum
capacitance of the bottom, fringe and cross capacitance. en is the input capacitance of a
cell.

Based on Equation 3 and the fact that capacitance grows linear with the distance, the
maximum wire length can be calculated for a certain technology to prevent cross talk
problems between global wires (toplevel wires) and/or cluster wires. Routing on a larger
pitch can solve cross talk problems on topleve1. The average number of tenninals per
wire minus one can replace the fanout variable. To find the average number of tenninals
per wire the netlist has to be analysed. See Equation 4. T~o is the number of terminals for

cluster (cl) and tpncl is the average number of terminal per net for that cluster.

- T~o +tpcc/ *Cc/

tpnc/ = N '
nets

fanout =~pnc/ -1)
Equation 4: Average terminals per net

With the given information, the maximum wire length for a certain technology can be
calculated depending on the aggressor signal slew (Tslew), Equation 5 shows the relation,
for a two-wire configuration, between aggressor slew and the length of the wire for a
certain J{,alk. It is derived from Equation 3 and the fact that wire capacitance grows linear

© Koninklijke Philips Electronics N.V. 2003 21

2003/677

with the wire length.

Hierarchical design flow methodology

I = 'l slf!W + Cload

2JrRdriver [Ccross (Xl -IJ- Ctot] Ccross(xl -IJ- Ctot
talk talk

Equation 5: Slew versus wire length for certain x'alk

Given the following parameters (TSMC O.12~ process, minimum width and minimum
spacing of the wires metal {2,3,4,5,6}, Ccross=lllfF, Ctot=125fF, Cin=9fF, fanout=3,
Rdriver=200n, Xtalk=20%.), Figure 12 shows the relation between aggressor signal slew
and the wire length. When taking the default slew of the library (Tslew=O.27ns) and the
least drive-strength for the victim (ivx05 Rdriver = lkSn) the maximum wire length would
be 104J.Ull. When calculating the wire length in the same situation but with the fastest
slew (Tslew=15ps) the length is 33J.lm.

10000

E
::::s.....

1000

100

10

1

1 10 100 1000 10000

-+-10%

--20%
- 30%

Signal slew [ps]

Figure 12: Signal slew versus wire length (log-log scale)

3.3. Power grid constraint

Regarding the power grid constraints for a tile, Philips EMC guidelines [4] are used.
They provide rules for supply bounce and global power dimensions. For a TSMC O.12~

process, the EMC guidelines state that each standard cell power rail can supply a
maximum length of 164~m. Meaning that this power rail can supply an N number of
cells that in total have a width of 164~m. Beyond this 164~m the power rail has to be
stitched to the global power grid. (See Figure 13.) So this length can be used as a width
constraint for the tile size. In this way the toplevel power grid can be used as placement
grid for the tiles.

22 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

Power stripes placed each 164~m

Figure J3: global power grid

2003/677

3.4. Area ratio constraint
When searching for clusters the area ratio of the smallest and biggest cluster should be as
small as possible because some placement algorithms are using move-based procedures
for solving the placement problem. Additionally small clusters have the advantage that
the use of a wire-load model is much more accurate. The ratio of the wire lengths is then
much smaller. At least our partitioning algorithm should try to find a solution that is in
the same range as the standard cell library. In this case the tools are performing some
what the same on standard cell level as on tile level. When looking at different standard
cell libraries the following ratios where found between the smallest and largest cell.

Table 3: Maximum standard cell area ratios in CMOS libraries

3.5. Clustering algorithm

Partitioning is a very complex topic with lots of room for optimisation. However, since
this was not the main focus of my thesis I decided to use a pragmatic partitioning rule.
Mainly based on technology parameters and the design hierarchy. From Chapter 3.2 it
can be seen that the maximum length of the cluster in relation to signal integrity is
104j.lm for a .12j.l process. Chapter 3.3 shows a maximum tile width of 164j.lm because of
the power rail within the standard cell library. This means that the minimum of these two
values determines the tile width. This leads to a maximum area of 10816j.lm2

. When
dividing this maximum area through the basic gate area for that technology, the
maximum number of gates per tile should be less then 1300. From Chapter 3.4 it can be
seen that the minimum number of gates per tile should be at least 25 basic gates, which is
around 7 standard cells. Table 4 shows for different designs the total number of leaf
clusters, and the number of basic gates for the largest and smallest leaf cluster. A leaf
cluster is defined as a group of basic cells that do not contain any children, only library
components.

© Koninklijke Philips Electronics N.V. 2003 23

2003/677 Hierarchical design flow methodology

CMOS Number Largest Smallest
Design name Technology of leaf leaf cluster leaf cluster

[~m] clusters [basic gates] [basic gates]
[#]

rdt demod 0.12 252 1289 1
rdt aeonic core 0.12 11155 1184 0

rdt xetatpparray 0.18 24 436 4

Table 4: Leafcluster overview

When partitioning the netlist, only the existing design hierarchy is used. Meaning that no
partitioning is done within a leaf cluster. Current status is that the Rent parameter of the
toplevel netlist is used to select all the hierarchical levels that have a lower rent parameter
than toplevel. After that the maximum numbers of cells is used to look which of the
selected clusters still comply with the both rules (Rent, maximum gates per tile). Finally
the list is checked to see which combinations of clusters fonn the complete netlist again.
If the result of this combination check fails, the Rent parameter of the toplevel is
increased and again the search process is started until a result is found. When multiple
solutions are possible with list the one that needs the lowest number of clusters is
selected.

24 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

4. Tile implementation

2003/677

After dividing the netlist into clusters, these clusters have to be implemented physically
to form a library of standard tiles. In this way toplevel floorplanning becomes a normal
standard cell place and route problem. However, some boundary constraints have to be
taking into account, for making this methodology feasible. Looking at the standard cell
library, some specific properties can be observed that are important. The most important
properties are: area, fixed height of the building blocks, 10 pin locations, and locations
for power connections. In normal hierarchical block-based designs methodologies these
properties are the most difficult ones to determine. Based on choices, the design will
become routable or not. In the next Chapters these basic properties are explained in more
detail and how they are estimated and implemented for the tile-based approach.

4.1. Timing propagation

Before an area estimate can be done the clusters have to be synthesized. For that, the
toplevel timing constraints has to be propagated down. This means that the clock period
and 10 timing have to be divided over the clusters depending on cluster area and logic
depth of paths and wire load models. One technique to do this is to place register
elements at the output of each tile l

. For the tile-based method we used the time budgeting
option of cadence. Background information on this command was not available.

4.2. Area estimation

A layout area is always described as a rectangle. The width divided by the height is the
aspect ratio. Aspect ratios vary between 2 and Y2, depending on the layout package. For
most of the chips, the aspect ratio is around one, because chip packages are often square.
For our cluster we also have to estimate the best aspect ratio. Shmuel Wimer et.a!. [9]
and Ralph Otten [10] present what the best aspect ratios for blocks are in a non-slicing
and a slicing floorplan. For our test case the aspect ratio of the tiles is chosen to be on
average, square. The column width or row height can then be calculated with Equation 6.
The Rowutil variable is the utilization factor for that cluster, to reserve area that is needed
for optimisation, clock-tree generation, decoupling and routability. An interesting way
for calculating the row utilization is to combine the average number of pins and nets per
unit of area. Also the use of the wire length distribution model based on Rents rule [7] [8]
gives extra information. How to use this is however still subject of further investigations.

I The disadvantage is a possible extra cycle and the way designers have to write their RTL description. It is even
not always possible to do registered output because of test infrastructure. This forces some outputs to have multiple
functions.

© Koninklijke Philips Electronics N.V. 2003 25

2003/677

H row =Weo/um" =

Hierarchical design flow methodology

1 Nc/uster

1--- LA" *Rowutil"
N cluster ,,=1

Equation 6: Row height / Column width

In our case, the column width has to be calculated instead of the row height, because the
clusters are placed on vertical rows (columns). The design of the cluster is done flat.
Therefore, inside the block the rows are horizontal because of the preferred routing
direction of metal 1. These metal1 stripes are needed for connecting power and ground to
the standard cells. (See Figure 16)

4.3. Pin placement
An issue that arises due to the tile-based methodology is the pin locations within the tile.
In a flat approach, these pins are somewhere on the wire but they do not have any physi
cal location. When making a tile, the pins should be placed on positions where they have
minimal influence on placement and routing of the tile. Besides that the influence of the
internal wires connected to those pins should be negligible when looking at the toplevel
wires. Some experiments were done to see how these pins influence placement and rout
ing. In the left pictures of Figure 14 all the pins are placed on the top boundary, and in
the right picture all the pins are placed on top of the connecting cell. The colour in both
cases gives the Rent parameter calculated when starting at that cell position. It can be
observed as a routing congestion map for the placed cluster.

l'I1t~.JlPO"IIe.wnMed.def(,o..'tb-ZOIm:8HSG'I'.clulI~il'tc:iuded1·'Ui/&7l

,..
..
III

.'"

Figure 14: Pin placement influence.

It can be seen that putting the pin on top of the connected standard cell gives an easier
routing solution. This method is similar to what is done in standard cells. It also eases
modelling of timing for that pin.

The pins are always placed on the highest metal layer that is used for designing the tile.
At this moment, 3 layers are used for routing within a tile. In this way, it is always

26 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

possible to connect the pins of the tile. Important for this method is that all the pins are
connected to only one cell? If this would not be the case the complete wire is becoming a
pin and will have more influence on the toplevel timing. (See Figure 15) The grey lines
are toplevel wires, black lines are internal wires, black dots are standard cell ports and the
grey dots are ports from inserted buffers. Figure 15a shows that the complete tile wire
becomes a pin for toplevel routing. In this way toplevel routing will connect somewhere
on the wire to try to minimize the toplevel wiring. In this case the influence of the
internal wires are dominating the total wire. In Figure 15b all the internal wires with
more than one connection have an extra buffer for disconnecting the pin from the wire. In
this way, the influence of internal wire is minimal in relation to the toplevel wire. The
internal wire for the pin connection is very small in relation to the toplevel global wire.
This also makes modelling of the tile timing easier; the information of the last cell can be
used directly.

(a) (b)

Figure 15: Pin influence

The worst pin location is in the centre of the tile, due to the fact that the drive strength
should be big enough to drive at least a wire that is going to the boundary of the tile. At
the boundary the wire will be buffered. For the worst-case situation the driver could be
the smallest cell of the library. This means that this cell has to drive a certain input load
(worst-case the biggest of the library) and the wire that is routed to this cell. This wire is
then at least half a tile length long. Equation 7 can be used as a first order estimate to
calculate how long such wire is allowed to be.

I. = CdriverlDJJX - Cloud input

wire C
wire Imm

Equation 7: Maximum distance to tile boundary constraint.

For a TSMC O.12~ process, minimum width and minimum spacing using meta13, 4, 5 or
6, (CembetF262.1fF/mm, C;n,tvxls=I02.8fF, Cdr;ver,tvxo5=120.2fF.) a maximum wire length of

2 If this is not the case inserting a buffer can solve this. When multiple pins are connected to one cell, the pins will
be placed with a certain minimum distance (DRC rule). (See Figure 16.)

© Koninklijke Philips Electronics N.V. 2003 27

2003/677 Hierarchical design flow methodology

66J.lm is calculated. From the timing library a delay of about l.2ns was then found for
this ivx05 cell.

4.4. Power strategy

The power and ground connections of a tile are similar to that ofa standard cell. Meaning
that power and ground stripes are placed on the boundary, in the column directions.
Within cadence the connections for power and ground in rows are made via a special
command called sroufe followpins. Meaning that following the direction of the pins
connects the power. In the tile implementation the power and ground wires/pins are
placed vertical, on the left and right sides of the rows. (See Figure 16.)

"-VDDpin
(stripe)

.:::.;: , '

O 'I , , -
I l::i:

" (< t >

Figure 16: Abstract view ofrdtyeta/yp/ogic cluster

In this way, the designed cluster does not have to be rotated by 90 degrees before it can
be placed on rows again. Although it could be done it can influence yield, since not all
structures/polygons are laid out in their preferred directions.[5] Besides the impact on
yield, the use of rotated clusters, influences the routing resources. To solve this problem
the library package file has to be changed for each level of the hierarchical design flow
methodology, which is cumbersome.

The power and ground wires are in metal 2 or metal 4 depending on the total area of the
chip. Metal 4 is the better choice because the resistance is lower than that of metal2. A
lower resistance gives a lower supply dip. But when using metal4, the number of
obstructions within the block is larger, since meta13 and metal2 are also blocked. The
width of these metal 4 or metal 2 stripes is dependent on the number of cells. The width
is also dependent on the maximum allowed supply bounce on these power tracks.

28 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

Within Philips, EMC guidelines [4] provide rules for supply bounce and global power
dimensions. The width of the global power grid can be calculated with the formula from
appendix B of the EMC guidelines, for a TSMC O.12f.1 process.

For a block of 750f.1m height, signal activity of a..fclock=60MHz and voltage drop of
LtV=lOmV the width of the global wire should be at least 15f.1m. For the tiles this means
that the width of power tracks within, is half of the calculated global wire width. When
using the flip and abut rows at floorplan level two rows together form the global width
agam.

4.5. Clock strategy

The clock strategy is the same for all levels, and based on an H tree for minimum skew or
zero skew. Each tree will be modelled as an insertion delay in the timing model of the
block; by doing this toplevel clock tree synthesis is just as doing clock insertion on block
level. As a consequence not all the cluster clock trees have to be matched; this can be
solved on toplevel or one hierarchical level higher.

4.6. Timing optimisation

On toplevel, optimisation is carried out to get timing closure. Main reason for this is the
fact that a WLM model was used, which is not accurate enough for large blocks/areas.
This means that extra buffers have to be inserted between the clusters. Because we only
have one row description, the buffers cells have to be implemented in a new buffer tile
for toplevel. Therefore we have to make an optimisation tile with one row to place the
buffers or inverters cells. A better solution would be not to place these optimisation cells
separately but to put these cells directly between the cluster rows. It is also possible to
place more than one buffer or inverter in the special optimisation cell. But if these extra
cells are not used, the inputs have to be connected to a constant since leaving them
unconnected violates design rules. An other solution could be to flatten the layout after
the tiles are placed and to perform an optimisation run on this layout.

© Koninklijke Philips Electronics N.V. 2003 29

2003/677

5. Model generation

Hierarchical design flow methodology

Models are needed for toplevel implementation and they need to be equivalent to
standard cells, to enable reuse of the standard cell flow on toplevel. Besides that, the
models should be as accurate as possible and only leave out information that is not
needed at toplevel. The minimum views that are needed are the layout/physical, timing,
and functional view.

5.1. Layout model

The easiest way of modelling tiles is to make a detailed abstract. This detailed abstract
models all the routing, pins and obstructions of the standard cells, leading to a lot of
information, which can be reduced significantly. For instances if two wires in a cluster
are routed on minimum distance, they can be merged into one obstruction. Also routing
area that cannot be used on toplevel can be merged into one polygon. Because the pins of
the cluster are in meta13, most of the toplevel wiring will also be in the higher metal
layers, metall could be blocked in total. This saves information and processing time
because the obstruction can be modelled into one polygon.

5.2. Timing model

Inserting metal fills, to improve manufacturability, on locations that are valid for global
routing, is a way of modelling global wires making timing verification/modelling of the
tile more accurate. However, this insertion should only be done for timing extraction
(DSPF or rSPF). After metal filling, the wires can be extracted into a rSPF model. RSPF
stands for reduced Standard Parasitic Format. With this rSPF and the timing models of
the standard cells, the timing of a tile can be verified. All paths that are connected to pins
have to be modelled for toplevel. The internal paths that are not connected to external
pins are verified and they do not need to be modelled. (See Figure 17)

Signal_in,

Figure 17: Timing model

30 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

But for paths that are connected to 10 pins, these still have to be modelled for different
loads and different input slews and for different Process, Voltage and Temperature (PVT)
comers. One of the possible solutions is to extend the set-up and hold times of the
register elements to the boundary. For the combinatorial paths, this is not possible and
those paths have to be modelled as a single element with the proper function, delay and
drive strength. Besides these 10 paths, also the clock has to be modelled for toplevel
clock-tree insertion. This means that the clock tree in this cluster has to be modelled as an
insertion delay with a certain deviation or minimum insertion delay together with a skew
value.

© Koninklijke Philips Electronics N.V. 2003 31

2003/677

6. Design Results

Hierarchical design flow methodology

Because the tile-based method can give the flat layout style a new impulse, the tile-based
method is compared to the flat layout style on multiple topics, such as run-time, area,
wire- length, capacitance and timing closure. The most important topics are area, run
time, and timing closure. For timing closure it is also important to look at the histogram
of all the paths, to get a better understanding of the result. To measure all these values,
the following approach is used: First the tile-based method is used to create a starting
point for the comparison. This point is then used to create a flat result. After that the
netlist is again made with the flat approach but then in the smallest possible area. The
tools and computer infrastructure used for both methods are the same, meaning same tool
versions and same computer queues. Unfortunately, the number of CPUs used per
computer could not be fixed.

6.1. SIMD processor array

The first design that was made was a Single Instruction Multiple Data (SIMD) processor
array. This array is part of a design project called Xetal within Philips Research [16]. The
array is made out of 320 processors and 1 global controller all running at 16.7MHz. The
design contains in total 120K CMOS 18 standard cells, equal to about SOOK basic gates.
When using the analysed parameters before and after synthesis the processor and control
ler where found as tiles. (See Figure 18.)

I rdt_xetaljlparray I
Rent 0.59 Cells: 513832

~ ~
I rdt_xetaljlpone I I rdt_xetaljlplogic I

Rent 0.43 Cells:1604 Rent: 0.39 Cells:552

rsh_uns_5_32 RentO.65 Cells:56 Ix Ix add_tc_lO Rent 0.58 Cells:50 ~ add_tc_32 Rent: 0.68 Cells:94

rsh_uns_6_32 Rent:O.64 Cells:61 Ix 8x add_uns_ci_9 Rent 0.53 Cells:37 ~ ~uns_ll0 Rent 0.21 Cells:4

rSh_uns_7_32 Rent:0.64 Cells:66 Ix 4x add_eCLtc_l Rent 0.21 Cells:4 elL eCLuns_lll Rent 0.71 Cells:4

rsh_uns_8_32 RentO.62 Cells:77 Ix lOx add_eCLuns_l Rent 0.21 Cells:4 elL eCLuns_19 Rent 0.21 Cells:4

rsh_uns_9_32 Rent:0.62 Cells:83 Ix 2x minus_tc_l Rent: 0.56 Cells:38 elL mux_2_32 Rent 0.92 Cells:32

mux _2_10 Rent:0.89 Cells: 10 Ix Ix minus_tc_9 Rent: 0.56 Cells:34 l..1L random_logic Rent 0.74 Cells: 161

mux _4_10 RentO.87 Cells:l0 2x Ix rsh_uns_2_32 Rent: 0.68 Cells:39

mux_8_10 RentO.77 Cells:50 Ix Ix rsh_uns_3_32 Rent 0.67 Cells:43

randomJogic RentO.93 Cells:436 Ix Ix rsh_uns_4_32 Rent: 0.65 Cells:51

Figure 18: Hierarchy processor array

32 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

After synthesis of the toplevel also four extra blocks had to be made for optimisation and
clock tree synthesis. Figure 19 and Figure 20 respectively show the flat and tile-based
layout and both are plotted on the same scale.

Figure 19: Flat processor array layout

Figure 20: Tile-based processor array layout

For comparing the tile-based with the flat layout approach on run-time there are multiple
possibilities depending on the computer infrastructure. In Table 5, the run-time is calcu
lated depending on the number of computers and tiles. In case 2 and 4 each

© Koninklijke Philips Electronics N.V. 2003 33

2003/677 Hierarchical design flow methodology

rdt_xetalypone processor is made unique. In case 3 all the rdt_xetalypone processors
are physical identical. Case 1 is flat in minimum area and case 5 is flat using the tile
based area.

Case Layout style Area Area Tiles Computers Cpu-time
[mm2

] [%] # # [s] [hI
1 Flat 4.23 100 120K 1 24990 6.94
2 Tile-based 5.21 123 325 325 7416 2.06
3 Tile-based 5.21 123 6 1 7834 2.18
4 Tile-based 5.21 123 325 1 160724 44.65
5 Flat 5.29 125 120K 1 22052 6.13

Table 5: Cpu-times overview

When designing with tiles instead of flat the cpu-time is about 7 times worse, but by
using the repetitive properties of the ppone or by using more computer resources the gain
can be turned around to 3 times better under the same conditions. Most of the time in the
tile-based layout style is used for toplevel, the design of the blocks is done in around 450
seconds. The rdt_xetat'ppone takes about 480 seconds and 420 seconds for the
rdt_xetat"pplogic. These 450 seconds are divided into two major parts, 250 seconds is
needed for implementation and the rest is taken by the verification and model generation.
Toplevel implementation takes the other 7000 seconds.

From Table 5 it can be seen that with the same timing result the tile-based layout needs
23% more area. Most of this extra area is caused by the way the toplevel optimisation
blocks are made. Each optimisation block is made out of one row containing only one
buffer or inverter and filled up with decoupling cells or filler cells. This means that the
row utilization of that optimisation block is very low, resulting in a lot of area loss. The
advantage of doing optimisation blocks, is that you only need one row description for
toplevel. The connections of the power pins is then done automatic via the sroute follow
pins command. The 1677 needed optimisation blocks at toplevel cost about 1.3mm2

• If
these blocks could be made with minimum overhead and still fit in an automated flow,
maximal area reduction to 1.26mm2 could be achieved. This is only true when there are
enough routing resources on top of the tiles.

Case 1 3 5
areautil [%1 80 65 63
Slack [setup wc, path 1] [ns] 10.86 10.88 13.19
Slack [setup we, path 21 [ns1 28.92 33.19 30.87

Table 6: Timing characteristics.

When extracting timing numbers for set-up and hold times some strange result where
seen. The critical path of the design is a wired OR over the 320 processors. This means
that the critical path in both layout styles do not differ that much. But if you take a look
at the setup slack histogram in Figure 21 of both cases (left flat and right tile-based) the
difference in timing is better visible. The tile-based method gives a 14% better result than
case 1 and a 7% better result than case 5. In overall the total slack in the tile-based
method is much higher. This slack could be sacrificed for reducing the total area.

34 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

... ,...,......... ",

''worst-case path (" "Worst-case path 2/

Figure 21: Slack histograms under worst-case conditions (/eftflat, right tile-based)

Besides timing and area also some design characteristics are extracted from the layouts.
Table 7 shows for case 1 the real values, and these values represent 100%. For the cases
3 and 5 the values are given in percents in relation to case 1. It can be seen that the tile
based method uses more metal2, meta13 and metal4. This could be explained by the fact
that standard blocks are only made with metal I , 2 and 3. Note that the standard cells use
most of the metal 1 routing resources. Leaving only metal 2 and 3 for interconnect rout
ing. (See Table 8.) For toplevel the same holds for metall and metal2 in relation to
blocking routing resources, but a low area utilization helps the interconnect routing. This
can also be seen when looking at design case 5.

Case 1 3 5
Irotal signal capacitance [pF] 4512.57 [%] 95.0 104.1
Total wire length [m] 13.92 [%] 98.7 107.6
vias # 1195875 [%] 70.7 93.5
Metal1 [urn] 685125 [%] 77.2 114.2
Metal2 fum] 1901676 [%] 125.1 119.6
Metal3 [urn] 3507721 [%] 109.1 109.9
Metal4 [urn] 4122462 [%] 100.2 116.6
Metal5 [urn] 2342918 [%] 95.2 106.6
Metal6 fuml 1360487 [%] 47.3 57.9

Table 7: Wire characteristics.

Table 8 shows a more detailed distribution for each level in the tile-based method. On
toplevel also metal1 is used. These metal1 wires are for solving local routing congestion
problems, and for connecting pins of tiles. This is possible because the tile pins are also
visible in metal2 and metal1. From the 13.74 meters of total wiring, 75% is used on
toplevel. These 75% is equivalent to 5% wires in the netlist. The total capacitance of the
tiles is equal to the toplevel capacitance. On toplevel 1677 components are used for

© Koninklijke Philips Electronics N.V. 2003 35

2003/677 Hierarchical design flow methodology

timing optimisation, which is about 1.4% of all the components in the design.

~ase pparray ppone pplogic
(toplevel)

Total signal capacitance [%] 48.8 51.1 0.1
Total wire lenqth [%] 73.9 25.6 0.5
vias [%] 19.4 80.5 0.1
Metal1 [%] 38.3 61.6 0.1
Metal2 [%] 19.8 80.1 0.1
Metal3 [%] 64.7 35.3 0.0
Meta14 [%] 100 0 0
Metal5 [%] 100 0 0
Metal6 [%] 100 0 0

Synthesis results
Nets [%] 5.6 94.3 0.1
Components [%] 0 99.9 0.1

Place and route results
Nets [%] 6.9 93.0 0.1
Components [%] 1.4 98.5 0.1

Table 8: Tile-based internal characteristics

When analysing the toplevel placement results for both approaches it can be seen that the
overall Rent exponent is lower in the tile-based method. See Figure 22. The red line
(marked A) is the found average for that layout style. The left picture is from flat and the
right from the tile-based method.

1"",,·,,·····iC ..

Figure 22: Rent exponent extraction

On the horizontal axes the number of instances are plotted and on the vertical axes the
number of 10 terminals for that given cluster. For the flat design the Rent parameter was
extracted from the average of 200 starting points. In both cases the Rent parameter was
about 0.643. When using Rents rule the calculated exponent is 0.636. This can be ex
plained by the fact that the netlist is very regular and has a lot of 10 pins.

36 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

7. Conclusion

2003/677

At this moment a complete automated hierarchical design flow is made to convert a gate
level netlist into a CoReUse database with gds2, timing and physical verification, as a
final result. This flow is based on Cadence tools and contains about 30 makefiles, 2
Philips internal tools, and 150 scripts. The processor array of the Xetal projects was used
as design case. The result is that this design could be made 3 times quicker in run-time
compared to the flat layout style, in the same area. This gain in run-time gives a loss of
17% in timing closure on the worst-case path. For the rest of the paths the tile-based
method is about 8% better. Besides that also a flat run was done with minimum area.
When comparing the tile-based method against this result, it is still 3.5 times quicker in
run-time with the same timing for the critical path. For the rest of the paths the result is
15% better. On area the tile-based method is about 23% worse. One reason for that is
because the optimisation cells have a very bad area utilisation. If this can be solved
efficiently, and assuming that this would not give a routing congestion problem, the area
is comparable.

One of most important conclusions is that the tile-based method can handle larger
designs than flat. Besides that the tile-based method provides the possibility to do faster
design-space exploration. For more reliable conclusions, exercises with the automated
hierarchical design flow on different designs are encouraged.

© Koninklijke Philips Electronics N.V. 2003 37

2003/677

8. Future work

Some interesting topics for further research are:

• More and different design cases,

• Clustering algorithm,

• Abstract modelling of layout,

• Optimal aspect ratio of tiles,

• Buffer insertion for pins,

• Choice between bottom-up or top-down design,

• Toplevel optimisation with regards to:

o Timing,

o Cross talk.

Hierarchical design flow methodology

Besides these topics the partition step could be done much higher in the design flow. At
this moment it is done after a hierarchical synthesis step, but it could also be done on a
generic netlist or on RT level. The scripts that are available have the possibility for
partitioning a generic netlist instead of a synthesised verilog. But some experiments
showed strange results. Main reason for that was the absence of technology information
and the way the generic netlist was created. To better show the value of this
methodology, more regular and non-regular designs have to be verified.

38 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

Glossary

2003/677

IC

MoSAIC

SoC

ITRS

ECO

EMC

SIMD

ACIVS

CAD

IP

I/O

RTL

WLM

DRC

ERC

ARC

LVS

ECO

NoC

TSMC

DSPF

rSPF

TLF

PVT

CPU

CoReUse

DATE

Integrated Circuit

Methodologies on Silicon Architecting for Integrated Circuits

System-on-a-chip

International Technology Roadmap for semiconductors

Engineering change order

Electro-Magnetic Compatibility

Single Instruction Multiple Data

Advanced Concepts for Intelligent Vision Systems

Computer Aided Design

Intellectual Property

Input-Output

Register Transfer Level

Wire Load Model

Design rule Check

Electrical rule Check

Antenna rule Check

Layout Versus Schematic

Engineering Change Order

Networks-On-Chips

Taiwan Semiconductor Manufacturing Company Ltd.

Detailed Standard Parasitic Format

Reduced Standard Parasitic Format

Timing Library File

Process, Voltage, Temperature

Central Processing Unit

Core Repetitive Use

Design, automation and Test conference in Europe

© Koninklijke Philips Electronics N.V. 2003 39

2003/677

References

Hierarchical design flow methodology

40

[1] Semiconductor Industry Association,
International Technology Roadmap for Semiconductors 1999.
http://public.itrs.netl

[2] Hagen, L., A.B. Kahng, F.J. Kurdahi and C. Ramachandran.
On the intrinsic parameter and spectra-based partitioning methodologies.
IEEE Transactions on computer aided design, january 1994, Vol. 13, p. 27-37

[3] Christie, P.
A differential equation for placement analysis.
IEEE Transactions on VLSI systems, December 2001, Vol. 9. nr. 6, p. 913-921.

[4] Wiel, P van de.
SI-EMC design rules and guidelines.
Philips Internal report: RWR-562-PVDW-02110-PvdW,16 July 2002.

[5] Liebmann, L., G. Northrop, J. Culp, L. Signal, A. Barish and C. Fonseca.
Layout optimisation at the pinnacle of optical lithography.
Proceedings of SPIE, Santa Clara, USA, Vol. 5042, 27 February 2003

[6] Sherwani, N.
"algorithms for VLSI physical design automation".
ISBN:65465475754, 3rd ed., Kluwer, 1999, Chapter 7.4, p. 236-240.

[7] Davis, J.A., K de Vivek and J.D. Meindl.
A stochastic wire-length distribution for gigascale integration (GSI)-part 1.
IEEE Transactions on electron devices, March 1998, Vol. 45, p.580-597.

[8] Dambre, J., P. Verplaetse, D. Stroobandt and J. van Campenhout.
Getting more out of Donath's hierarchical model for interconnect prediction.
In: Proceedings ofSLIP'02, San Diego, USA, 6-7 april 2002, p. 9-16.

[9] Wimer, S. and I. Koren, I. Cederbaum
Optimal aspect ratios of building blocks in VLSI.
IEEE Transactions on computer aided design, 1989, Vol. 8, p. 139-145.

[10] Otten, R.H.J.M.
Efficient floorplan optimisation.
IEEE International Conference on Computer Design, 1983, pp. 499-502.

[11] Groeneveld, P. and L. van Ginneken
"Method of designing a constraint-driven integrated circuit layout".
Patent W09952049, 14 October 1999.

[12] www.telairty.com

©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

[13] www.ammocore.com

[14] Katsioulas, A., S. Chow, J. Avidan and D. Fotakis.
"integrated circuit architecture with standard blocks".
Patent US6467074, 15 October 2002.

2003/677

[15] Liu, D.
"Integrated circuit block model representation hierachical handling of timing
exceptions".
Patent US6493864-Bl, 10 December 2002.

[16] Abbo, A.A. and R.P. Kleihorst.
"Smart Cameras: Architectural challenges".
In: Proceedings of ACIVS-2002, Ghent, Belgium, cd-rom, 9-11 Sep. 2002.

[17] Rijpkema, E., K. Goossens, A. Radulescu et.al.
"Trade offs in the design of a router with both guaranteed and best-effort services
for networks on chip".
In: Proceedings of DATE, Munich, Germany, p. 350-355, March 2003.

© Koninklijke Philips Electronics N.V. 2003 41

2003/677

A. Analysis/Clustering tel script

set_global echo_commands false
set tcl_precision 10

Hierarchical design flow methodology

proc largest_leaf cluster { mod max_cells
if {[llength [all_children $mod]] != O}
foreach i [all_children $mod] {
set max cells [largest_leaf_cluster $i $max cells

}

} else {
echo [get attribute $mod FOUND cellsnr flat] .. cells in =>" [get_name $mod]

» largest_leaf_cluster_info
if { [string range [get name $mod] 0 5] != "cells" } {
if { [get_attribute $mod FOUND_cellsnr_flatl > $max_cells } {
set max_cells [get_attribute $mod FOUND_cellsnr_flat]
echo $max cells "-- was bigger .. [get name $mod] » larg-

est leaf cluster info -
}

}

}

return $max_cells

proc toplevel_synthesis { mod } {
set current_module $mod
set top timing module $mod
do_optimize -priority area -effort medium
set children [all_children $mod]
set instances [find -instances *]
set instances new
foreach i $children {
set child_name [get_info $i name]
foreach j $instances {
set instance name [get info [get info $j cell ref] name]
if { $child_name != $instance_name } {

lappend instances_new $j
}

}

set instances $instances_new
set instances new

}

if { [!length $instances] ! = O} {
set opt_celIs_ref
set opt cells instance
foreach i $instances {
set instance_cellref [get_info $i cellref]
if { [lsearch $opt_cells_ref $instance_cellref] -I} {

lappend opt_celIs_ref $instance_cellref
lappend opt_cells instance $i

}

}

set db_units [get_attribute [find -top] db_units]
set db_pitch [get_attribute [find -top] db_pitch]
set db_height [get_attribute [find -top] db_height]
set height [get_attribute [find -top] db_cluster_height]
set nearest width [get attribute [find -top] db cluster nearest width]
for {set i O} {$i < [llength $opt_cells instance]} {incr i I} {-
do create hierarchy -module rdt xetal [get name [lindex $opt_cells ref $i]]

[lindex $opt_cells instance $i] -no feedthrough
set current module $mod

42 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

set top timing module $mod
set-rows [expr-ceil((([get_area -module rdt_xetal [get_name [lindex

$opt cells ref
$i]]]*$db units*$db units}/$nearest width)/($db height*$db units})]

set width [expr round ($db_height*$db_units*$rows+2*$db_pitch*$db_units)]
puts [concat coreuse cluster [find -module rdt xetal [get name [lindex

$opt_cells_ref $i]]] $height $width rdt_xetal_[get_name-[lindex $opt_cells_ref
$i]]]

coreuse cluster [find -module rdt_xetal [get_name [lindex $opt_cells_ref
$i]]] $height $width

set current module $mod
set=top_timing_module $mod

}

}

}

proc design_cluster target_libname mod } {
set cluster area 0
set tot rep factor 0
foreach-i $mod {
set rep_factor 0
foreach j [all parents $i] {
set rep factor [expr $rep factor+[get attribute $i FOUND REP $j]]
set tot=rep_factor [expr $tot_rep_factor+[get_attribute $i FOUND_REP_$j]]

}

set cluster_area [expr $cluster_area+$rep_factor*[get_area -module $i]]
}

set db tech info [get site info .. /lef/[lindex $target_libname 0] .lef]
set db-units [lindex $db tech info 0]
set db-pitch [lindex $db tech info 1]
set db=height [lindex $db=tech=info 2]

set tech_site [expr db_units*db_pitch]
set square length [expr ceil(sqrt{[expr $clus-

ter area/$tot rep factor)*$db units)]
set nearest width [expr round(ceil($square length/Stech site)*$tech site}
set xio [expr round(6*$tech site)] - - -
set height [expr round($nearest_width + 2*$xio)]

set attribute [find -top] db units $db units
set attribute [find -top] db=pitch $db=pitch
set attribute [find -top] db height $db height
set attribute [find -top] db=cluster_height $height
set attribute [find -top] db_cluster_nearest_width $nearest_width

#puts [concat $nearest_width $height $util $xio $db_tech_info [get_name $mod]]
foreach i $mod {
set rows [expr ceil((([get_area -module

$i]*$db units*$db units}/$nearest width}/($db height*$db units)}]
set width [expr-round($db height*$db units*$rows+2*$db-pitch*$db units}]
puts [concat coreuse cluster $i $height $width [get name $i]] -
coreuse cluster $i $height $width -

}

}

proc get site info { filename } {
set fileld [open $filename r 0600]
set found site core 0- -
set db units -1
set db_pitch -1
set db_height -1
while {[gets $fileld line] >= 0 } {
if { [lsearch $Ene "DATABASE") O} {
set db_units [lindex $line 2]

© Koninklijke Philips Electronics N.Y. 2003 43

2003/677 Hierarchical design flow methodology

found site core 0
- -

db_pitch [lindex $line 1J
db_height [lindex $line 3J

)

if {[llength $lineJ ==
"CORE" J == 1) {

set found site core 1
)

if {[llength $lineJ ==
1) {

set
set
set

2 & [lsearch $line "SITE"J

5 & [lsearch $line "SIZE"J

o & [lsearch $line

o & $found site core- -

)

)

close $fileId
return [concat $db units $db_pitch $db_heightJ

proc coreuse_cluster { mod height width) {
puts ,,------------- CoReUse DATA creating "
set path [pwdJ
puts $path
mkdir -p . . 1 .. 1 . . /[get name $modJ
cd . . 1.. 1 . . /[get name smod]
In -s Ihome/pirarnid/paradice/2.2h/flow/Makefile_coreuse Makefile
puts ,,------------- CREATING BLOCK LEVEL COREUSE DATA"
gmake data LEVEL=block
set current module $mod
set=top_timing_module $mod
puts ,,------------- GCF AND VERILOG IS CREATED"
write veri log NETLIST/[get name $mod] netlist scn nr.v
write=gcf_assertions -version 1.4 CONSTRAINTS7[get_name $modJ .gcf
cd sedsm ;
puts ,,------------- RUN SUBBLOCK FLOW"
set rowutil "Y $width"
puts "grnake change cmos1Bto12"
grnake change cmos1Bto12 tm QUEUE=lopes HOST=lion
puts "grnake sUbblock BLOCK_HEIGHT=$height HEIGHT_UTIL=$rowutil QUEUE=lopes

HOST=lion"
gmake subblock LEFVERSION=_S.3 BLOCK_HEIGHT=$height HEIGHT_UTIL=$rowutil

QUEUE=lopes HOST=lion
cd $path

)

proc coreuse_cluster_cmos12 { mod height width)
puts ,,------------- CoReUse DATA creating "
set path [pwdJ
puts $path
mkdir -p .. 1.. 1 .. /[get name $mod]
cd .. 1.. 1 .. /[get name smod]
In -s Ihome/pirarnid/paradice/2.2h/flow/Makefile coreuse Makefile
puts ,,------------- CREATING BLOCK LEVEL COREUSE DATA"
gmake data LEVEL=block
set current module $mod
set=top_timing_module $mod
puts ,,------------- GCF AND VERI LOG IS CREATED"
write verilog NETLIST/[get name $mod] netlist scn nr.v
write=gcf_assertions -version 1.4 CONSTRAINTS7[get_name $mod] .gcf
cd sedsm ;
puts ,,------------- RUN SUBBLOCK FLOW"
set rowutil "Y $width"
puts "gmake change_cmoslBto12"
grnake change cmoslBto12 QUEUE=lopes HOST=lion
puts "grnake sUbblock BLOCK_HEIGHT=$height HEIGHT_UTIL=$rowutil QUEUE=lopes

HOST=lion"

44 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

grnake subblock LEFVERSION=_5.3 BLOCK_HEIGHT=$height HEIGHT UTIL=$rowutil
QUEUE=lopes HOST=lion

cd Spath
}

proc coreuse_cluster_cmos18 I mod height width}
puts .. ------------- CoReUse DATA creating ..
set path [pwd]
puts Spath
mkdir -p .. / .. / .. /[get name $mod]
cd .. / .. / .. /[get name $mod]
In -s /home/piramid/paradice/2.2h/flow/Makefile coreuse Makefile
puts .. ------------- CREATING BLOCK LEVEL COREUSE DATA"
grnake data LEVEL=block
set current module $mod- -
set_top_timing_module $mod
puts .. ------------- GCF AND VERI LOG IS CREATED"
write verilog NETLIST/[get name $mod] netlist scn nr.v
write=gcf_assertions -version 1.4 CONSTRAINTS/[get_name $mod] .gcf
cd sedsm ;
puts .. ------------- RUN SUBBLOCK FLOW"
set rowutil "Y $width"
puts "gmake subblock BLOCK_HEIGHT=$height HEIGHT_UTIL=$rowutil QUEUE=lopes

HOST=lion"
gmake subblock BLOCK_HEIGHT=$height HEIGHT UTIL=$rowutil QUEUE=lopes HOST=lion
cd Spath

}

proc cluster_synthesis { mod }
set top [get current module]
foreach i $m;d I -
set current module $i
set-top timing module $i
reset d;nt modify $i
limit-900 do_optimize -priority area -effort medium
set dont_modify $i

}

set current module Stop
}

proc dissolve_clusters { mod }
set top [get current module]
foreach i $m;d I
set_current_module $i
do_dissolve_hierarchy -hierarchical

}

set current module Stop
}

proc rent clusters { mod debug max size clusters } {
if { $clusters != "NO_SOLUTION" }-I
if I [llength [all children $mod]] != O}

foreach i [all_children $mod] {
if { $clusters != "NO SOLUTION" }

if I [string range [get_name $i] 0 5] != "cells_" } {
if { [get_attribute $i FOUND_candidate] == 1 && $max size >=

[get attribute $i FOUND cellsnr flat]} I
- if { $clusters ==-.... } I -

set clusters $i
echo "Candidate oke, list empty :" [get_name $i] »

rent clusters info
echo [get_name $clusters] » rent clusters info
} else I
set clusters [linsert $clusters 0 $i]

© Koninklijke Philips Electronics N.V. 2003 45

2003/677 Hierarchical design flow methodology

echo "Candidate oke, list not empty : .. [get_name $i] »
rent clusters info

echo [get_name $clusters] » rent clusters info
}

} else {
echo "Candidate not oke (size or rent) descend .. [get_name $i] »

rent clusters info
-echo $clusters » rent clusters info- -
set clusters [rent_clusters $i $debug $max size $clusters]
}

} else {
echo "SPECIAL CLUSTER FOUND, STILL HAS TO BE CHECKED ." [get_name $i] »

rent clusters info
if { [get attribute $i FOUND candidate] == 1 } {
if { $clusters == } { -
set clusters $i
echo "Candidate oke, list empty :" [get_name $i] »

rent clusters info
echo [get_name $clusters] » rent clusters info
} else {
set clusters [linsert $clusters 0 $i]
echo "Candidate oke, list not empty : .. [get_name $i] »

rent clusters info
echo [get_name $clusters] » rent clusters info
}

} else {
echo "Candidate not oke (size or rent} descend .. [get_name $i] »

rent clusters info
echo $clusters » rent clusters info
set clusters [rent_clusters $i $debug $max size $clusters]
}

}
}

}

} else {
set clusters "NO SOLUTION"
echo "No children available!!!!!! Stop searching. < NO SOLUTION >" »

rent clusters info
}

}

return $clusters
}

if { $clusters == "NO_SOLUTION" I I $clusters == } {

proc cluster selection { mod debug cell_numbers
foreach i [all children $mod] {
if { [get attribute $i FOUND_candidate] != I}
cluster_selection $i $debug $cell_numbers

} else {
lappend cell numbers [get_attribute $i FOUND_cellsnr_flat]

}

}

set multiplier [lsort $cell numbers]
if { [expr [lindex $multipller [expr [llength $multiplier] - 1]] / [lindex

$multiplier 0]] <= 30 } {
if {$debug == I} {
echo "FOUND CLUSTERS FOR" [get_name $mod] .. : .. [get_names [all children

$mod]] » cluster_selection_info
echo "cluster numbers : .. $multiplier » cluster selection info

}

}

}

46 ©Koninklijke Philips E]ectronics N.V. 2003

Hierarchical design flow methodology 2003/677

proc rent candidates update { mod debug rentplusl
foreach i [all_children $mod] {
rent_candidates_update $i $debug $rentplus

I
if {$mod != [find -top] I {
set FOUND_rent [get_attribute $mod FOUND_rent]

if {$FOUND rent != 0 I {
if { [expr-[get_attribute [find -top] FOUND_rent] + $rentplus] >=

$FOUND rent I {
set attribute $mod FOUND candidate I
set-attribute [find -top] FOUND candidates [linsert [get_attribute [find -

top] FOUND_candidates] 0 $mod] -
I else {
set attribute $mod FOUND candidate 0

I
I else {
set attribute $mod FOUND candidate 0
I

if {$debug == II {
echo [get name $mod] [get attribute $mod FOUND_rent] [get_attribute $mod

FOUND_candidate] » candidates_update info
I

I
I

proc lib_names { mod I {
set current module $mod
foreach i [find -instances *] {

echo [get info $i name] » lib names
echo [get-info [get info $i cellref] name] » lib names

echo [get info [get_info $i cellref] library] » lib names
I

I

proc lib names hier { mod 1
set current module $mod
foreach i [find -instances -hierarchical *] {

echo [get info $i name] » lib names hier
echo [get-info [get info $i cellref] name] » lib names hier

echo [get info [get_info $i cellref] library] » lib names hier
I

I

proc rent candidates { mod debug 1 {
foreach i [all children $mod] {
rent_candidates $i $debug

I
if {$mod != [find -top] I {
set FOUND_rent [get_attribute $mod FOUND_rent]

if {$FOUND_rent != 0 I {
if { [get attribute [find -top] FOUND rent] >= $FOUND_rent 1 {
set attribute $mod FOUND candidate 1-
set-attribute [find -top] FOUND candidates [linsert [get_attribute [find -

top] FOUND_candidates] 0 $mod] -
1 else {
set attribute $mod FOUND candidate 0

1
I else {
set attribute $mod FOUND candidate 0
I

if {$debug == II {
echo [get name $mod] [get attribute $mod FOUND_rent] [get_attribute $mod

FOUND_candidate] » candidates info
I

© Koninklijke Philips Electronics N.V. 2003 47

2003/677

}

}

Hierarchical design flow methodology

(find -module $mod] $debug
{

for repetition "

proc create new hier { mod debug } {
foreach i [all=children $mod] {
create_new_hier $i $debug

}

if { [llength [all children $mod]] != O} {
set current module $mod
if {$debug ~= I} {
echo "old. -------------------------------------" » create hier info
echo [get name $mod] » create hier info
echo "children "[get_names [all_children $mod]) » create_hier_info
echo "parents =" [get_names [all_parents $mod]] » create hier info

}

set children [all_children $mod]
set instances [find -instances *]
set instances new""
foreach i $children {
set child_name [get_info $i name]
foreach j $instances {
set instance name [get info [get info $j cellref] name]
if { Schild_name != $instance_na;e } {
lappend instances new $j

}

}

set instances $instances_new
set instances new

}

if { [llength $instances] != O} {
do_create_hierarchy -module cells [get_names $mod] $instances

}

if {$debug == I} {
echo "new." » create hier info
echo [get_name $mod] » create hier info
echo "children "[get_names [all_children $mod)] » create hier info
echo "parents "[get_names [all_parents $mod]] » create hier info

}

}

}

proc hier_analysis { mod debug cell_numbers}
rrn -rf repetition_info
rrn -rf create hier info- -
rrn -rf pins_celIs_info
rrn -rf problem_info
rrn -rf traverse info
rm -rf rents rule info- -
rrn -rf rents rule info short
rrn -rf candidates-info
rrn -rf cluster selection info

if {$debug == I} {
puts "Creating new hierarchy .

}

create new hier
if {$debug == I}
puts "Searching

}

search_rep (find -module $mod] $debug
if {$ debug I} {
puts "Adding design properties "

48 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

pins_cells [find -module $mod] $debug
if {$debug == II {
puts "Searching for design info .

I
traverse hier [find -module $mod] $debug
if {$ debug == 1 I {
puts "Calculating Rents rule "

I
rents rule [find -module $mod] $debug
if {$debug == 11 {
puts "Searching for Rent candidates

I
rent candidates [find -module $mod] $debug
if {$debug == II {
puts "Cluster selection on instances "

}

cluster selection [find -module $mod] $debug $cell numbers

if {$debug == I} {
mv repetition info repetition info $mod
mv pins_celIs_info pins cells-info-$mod
mv problem_info problem info $mod
mv traverse info traverse info $mod
mv rents_rule_info rents_rule_info_$mod
mv rents rule info short rents_rule_info short $mod
mv create hier info create hier info $mod
mv candidates info candidates info $mod- -

mv cluster selection info cluster selection info_$mod
}

I

2003/677

proc rents_rule { mod debug I {
foreach i [all children $mod] {
rents_rule $i-$debug

}

set nivo cells [get_attribute $mod FOUND_cellsnr flat]
set nivo term [get_attribute $mod FOUND_npins]
set nivo tpc [get_attribute $mod FOUND_tpc]
if {$debug == 1} {
echo " " » rents rule info
echo "module ." [get name $mod] » rents rule info
echo "module ." [get=:name $mod] » rents=:rule=:info short
echo "nivo_cells ." $nivo_cells »rents_ru1e_info
echo "nivo_term ." $nivo_term »rents_rule_info
echo "nivo_tpc ." $nivo_tpc »rents rule info

}

if {$nivo_tpc O} {
set attribute $mod FOUND rent 0
if {$debug == 11 {

echo "Rents rule : ERROR (FOUND_tpc O}"» rents rule info
}

I else {
if { $nivo term == 0 } {
set attribute $mod FOUND rent 0
if {$debug == 1} {

echo "Rents rule : ERROR (FOUND_npins 0)"» rents rule info
}

I else {
if { $nivo_cells == 11 {
set attribute $mod FOUND rent 1
if {$debug == 1} {
echo "Rents rule : ERROR (FOUND_cellsnr flat 1)"» rents rule info

I

© Koninklijke Philips Electronics N.V. 2003 49

2003/677 Hierarchical design flow methodology

[find -top] FOUND_tpc]
[find -top] FOUND_npins]
[find -top] FOUND cellsnr flat]

[get_attribute $mod FOUND_rent] » rents rule info
[get_attribute $mod FOUND_rent] »

» rents rule info
» rents rule info- -» rents rule info

." $top tpc

." $top::::npins

." $top_cells

0)" » rents rule info

I else {
set attribute $mod FOUND rent [expr

(Iog($nlvo_term/$nivo_tpc)/log($nivo_cells»]
if {$debug == II {

echo "Rents rule ."
echo "Rents rule ."

rents rule info short
I

I
I

I
if {$mod != [find -top] I {
set top_tpc [get_attribute
set top_npins [get_attribute
set top_cells [get attribute
if {$debug == II {
echo "top_tpc
echo "top_npins
echo "top_cells

I
if { $top_cells == 0 I {
set_attribute $mod FOUND chris 0
if {$debug == II {
echo "Rent impro : ERROR (FOUND_cellsnr flat

I
I else {
set chris denom [expr ($nivo_cells-(($nivo cells*$nivo cellsl/$top cells»]
if { $chris denom == I I I $chris denom <= 0 I {
set_attrib~te $mod FOUND_chris 0
if {$debug == II {
echo "Rent_impro : ERROR (chris denom "$chris_denom "I" »

rents rule info
I

I else {
set chris num denom [expr ($top tpc-($top npins/$top_cells»]
if { $chris num denom == 0 I {
set_attrib~te $mod FOUND_chris 0
if {$debug == II {
echo "Rent impro : ERROR (chris num denom "$chris_num_denom "I" »

rents rule info
I

I else {
set chris num num [expr ($nivo term-($top npins*$nivo cells/$top cells»]
if { $chrls_nUm_num == 0 I { - - - -
set attribute $mod FOUND chris 0
if {$debug == II {
echo "Rent_impro : ERROR (chris num num "$chris num_num "I" »

rents rule info
I

I else {
set chris num num denom [expr ($chris num num/$chris num denom)]
if { $chris_num_num_denom <= 0 I (
set attribute $mod FOUND chris 0
if {$debug == II {

echo "Rent_impro : ERROR (chris num num denom "$chris_num_num_denom
"I" » rents rule info

I
I else {
set attribute $mod FOUND chris [expr

log($chris::::num_num/$chris_num_denom)/log($chris_denom)]
if {$debug == II {

echo "Rent impro ." [get_attribute $mod FOUND_chris] »
rents rule info

50 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology

echo "Rent_impro ." [get_attribute $mod FOUND_chris] »
rents rule info short

I
I

I
I

I
I

I
I

2003/677

proc traverse_hier { mod debug
foreach i [all_children $mod]
traverse_hier $i $debug

I
if {$debug == II {
echo " " » traverse_info
echo "module ." [get names
echo "childs ." [get_names
echo "parents ." [get_names

$mod] » traverse_info
[all_children $mod]] » traverse_info
[all_parents $mod]] » traverse_info

I
set view_number [lsearch [get names [get info $mod views]] "netlist"]
if {$view number != -1 I {
set view-[lindex [get info $mod views] $view number]
set_attribute $mod FOUND_npins [llength [get=info $view ports]]
if {$debug == II {

echo "views ." [get names $view] » traverse info
echo "# _opt inst_count :" (get_attribute $view _opt_inst_count] » trav

erse info
echo "# ports ." [get_attribute $mod FOUND_npins] » traverse info

I
if { [llength [all children $mod]] == 01 {
set attribute $mod FOUND cellsnr flat [get attribute $mod FOUND cellsnr]
set=attribute $mod FOUND_cellpins flat [get_attribute $mod FOUND_cellpins]

I else {
set child cells [get attribute $mod FOUND cellsnr]
set child-cellpins [get attribute $mod FOUND cellpins]
foreach j-[all children-$mod] { -
set child pinsflat [expr [get attribute $j FOUND REP $mod]*[get attribute

$j FOUND cellpins flat]] - - - -
set child_flat [expr [get_attribute $j FOUND_REP_$mod]*[get_attribute $j

FOUND cellsnr flat]]
set child-cells [expr Schild cells+$child flat]
set child=cellpins [expr $child_cellpins+$child_pinsflat]

I
set attribute $mod FOUND_cellsnr_flat Schild_cells
set-attribute $mod FOUND_cellpins flat $child_cellpins

I
if {$debug == 1) {
echo "# level std ." [get_attribute $mod FOUND_cellsnr] »trav-

erse info
echo "# HIER std CALC ." [get_attribute $mod FOUND_cellsnr_flat] »trav

erse info
echo "# flat pin ." [get_attribute $mod FOUND_cellpins] »trav-

erse info
echo "# HIER pin CALC ." [get_attribute $mod FOUND_cellpins flat] »trav

erse info
I
if { [get attribute $mod FOUND cellsnr flat] != 0 I {
set attribute $mod FOUND tpc [expr double([get attribute $mod

FOUND cellpins flat])/double{[get attribute $mod FOUND cellsnr flat])]
if-{$debug ~= II {- --
echo "# tpc(hier)CALC :" [get_attribute $mod FOUND_tpc] »traverse info

© Koninklijke Philips Electronics N.V. 2003 51

2003/677 Hierarchical design flow methodology

I else {
set attribute $mod FOUND_tpc 0
if {$debug == II {

echo .. # tpc(hier)CALC : NO CELL(S)ON THIS HIERACHICAL LEVEL !" » trav
erse info

I
I

I else {
if l$debug == II {
echo "NO NETLIST VIEW AVAILABLE!" »traverse info

I
I

I

proc pins_cells { mod debug I {
foreach i [all_children $mod] {
pins cells $i $debug

I
set cellpins 0
set teller 0
set current module $mod
set children [all_children $mod]
set instances [find -instances *]
set instances new
foreach i $children {
set child_name [get_info $i name]
foreach j $instances {
set instance_name [get_info [get_info $j cellref] name]
if { $child name != $instance name I {
lappend instances new $j -

I
I
set instances $instances_new
set instances new

I
foreach i $instances {
set cellpins [expr $cellpins+[llength [get info $i pins]]]
set teller [expr $teller+l]

I
set attribute $mod FOUND cellpins $cellpins
set attribute $mod FOUND cellsnr $teller
if {$debug == II {
echo » pins_celIs_info
echo [get_name $mod] » pins cells_info
echo "children .. [all_children $mod] » pins cells info
echo "cellpins = .. $cellpins » pins cells info
echo "cellsnr =" $teller »pins-cells-info
echo "_opt_inst_count = .. [get_attribute (lindex [get info $mod views]

[lsearch [get_names [get_info $mod views]] "netlist"]] _opt_inst_count] »
pins_celIs_info

if { [llength [all_children $mod]] == 01 {
if { $teller != [get_attribute [lindex [get_info $mod views] [lsearch

[get_names [get info $mod views]] "netlist"]] _opt_inst_count] I {
echo [get_name $mod] » problem info
echo "children .. [all_childre~ $mod] » problem info
echo "cellpins = .. $cellpins » problem_info
echo "cellsnr =" $teller »problem_info
echo "_opt_inst_count = .. [get_attribute [lindex [get_info $mod views]

[lsearch [get_names [get_info $mod views]] "netlist"]] _opt inst_count] »
problem_info

echo "PROBLEM CELL : .. [get_name $mod] »problem_info
I

I
I

52 ©Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

proc search rep { mod debug I {
foreach i [all_children $mod] {
set count 0
foreach j [all children -instances $mod] {
if { [get names [get info $j cellref]] == [get_names $i] I {
set count [expr $count+1]

I
I
if {$debug == 11 {

echo " " » repetition_info
echo [get_names $mod] "=" $count "times" [get names $i] » repetition_info

)

set attribute $i FOUND REP $mod $count
search_rep $i $debug

I
I

set_global echo_commands true

END of clustering and analysis procedures

Begin of cadence ambit toplevel script

set BLOCK_NAME cell_name
set flow "map asic"
source .. /cmd/rtl list block.tcl
source .. /cmd/ac setup~tcl
read_adb $ {database_areal/${BLOCK_NAME) generic.adb

set current module ${BLOCK NAME)
set-top timing module ${BLOCK NAME)
source - ${co~straints areal/tech setup.tcl
source $ {constraints=areal/constraints.tcl
do optimize -effort medium -dont uniquify -target slack 0.1
write adb -hierarchical ${database areal/${BLOCK NAMEI mapped dont.adb
write_verilog -hierarchical ./${BLOCK_NAMEI_mapped~dont.v -

read adb

source .. /cmd/hdfm_functions.tcl;
set debug 1
set cell numbers " "
set global echo commands false
hier_analysis $[BLOCK_NAMEI $debug $cell_numbers
set_global echo_commands true

rm -rf largest_leaf_cluster_info
set tech size 1400
set max size [expr [largest leaf cluster ${BLOCK NAMEI $tech_size] + 1]
echo "Maximum leaf cluster ~ithout taking into account cells -clusters ."
$max_size » largest_leaf_cluster info

set max size [expr ceil([get_attribute [find -top] FOUND_cellsnr_flat]/15)]
set clusters "NO SOLUTION"
for {set delta_rent 0.001 {$clusters == "NO_SOLUTION" I {set delta rent [expr
$delta rent+0.5] I {

-echo "delta_rent is :" $delta rent
rent_candidates_update [find -module ${BLOCK NAMEI] $debug $delta rent
set clusters [rent_clusters [find -module ${BLOCK_NAME)] $debug $max size

nn]

set needed extra rent $delta_rent

© Koninklijke Philips Electronics N.V. 2003 53

2003/677 Hierarchical design flow methodology

echo "clusters found are ." [get_names $clusters] "with extra rent value of :"
$needed_extra_rent

echo [get_attribute [find -top] FOUND_rent] [get_attribute [find -top]
FOUND cellsnr flat] "INFO FROM: " [get_name [find -top]] » FOUND_SOLUTION.txt
forea~h i $clusters {

echo [get attribute $i FOUND rent] [get attribute $i FOUND_cellsnr_flat]
"INFO FROM : " [get_name $i] » FOUND SOLUTION-: txt

write adb -hierarchical ${database_area}/${BLOCK_NAME}_before_dissolve.adb

dissolve_clusters $clusters

set_current_module $ {BLOCK_NAME}
set top timing module ${BLOCK NAME}
source - ${constraints areal/tech setup.tcl
source ${constraints=area}/constraints.tcl

do_time_budget
set_global echo_commands false
cluster_synthesis $clusters
set_global echo_commands true

set current module ${BLOCK NAME}
set-top_timing_module $ {BLOCK_NAME}
do_xform_map

do change_name -use_rules -verbose -log .. /log/change_name.log

design the clusters, start the layout of the subblocks
#set global echo commands false
source .. /cmd/hdfm_functions.tcl;
design_cluster $target_Iibname $clusters
#set_global echo commands true

set current module ${BLOCK NAME}
set=top_timing_module $ {BLOCK_NAME}

write adb -hierarchical ${database_area}/${BLOCK_NAME}_mapped.adb
write_verilog -hierarchical ${ver-
ilog gates final area}/${BLOCK NAME} netlist syn.v
write verilog -hierarchical $!ver- - -
ilog gates final area}/${BLOCK NAME} netlist scn nr.v
write_gcf_assertions ${gcf_area}/${BLOCK_NAME}.gcf

report hierarchy> ${reports area}/${BLOCK NAME} mapped hier.rpt
report=area -cells -hierarchical> ${re- - - -
ports area}/${BLOCK NAME} mapped area.rpt
report_timing -late- -nworst 30 > ${reports area}/${BLOCK_NAME}_mapped_Iate.rpt
report timing -early -nworst 30 > ${re
ports_area}/${BLOCK_NAME}_mapped_early.rpt

cp ac_shell.log .. /log/ac shell map first.log
cp ac shell.cmd .. /log/ac=shell=map=first.cmd

set current module ${BLOCK NAME}
set=top_timing_module $ {BLOCK_NAME}

foreach targetlib $target_Iibname {
set_ceIl_property dont_utilize true -lib ${targetlib} [find -cellref *]
set_ceIl_property dont utilize false -lib ${targetlib} [find -cellref

bf*]

54 © Koninklijke Philips Electronics N.V. 2003

Hierarchical design flow methodology 2003/677

set_ceIl_property dont utilize false -lib $(targetlib) [find -cellref
iv*]
)

toplevel_synthesis $ {BLOCK_NAME}

set BLOCKS [get names [all children $(BLOCK NAME)] I
mv . . /cmd/rtl list.tcl .. /cmd/rtl_list.tcl_map_asic_used
set path [pwd]
cd .. ;
gmake change_rtl list BLOCKS=$BLOCKS
cd $path

mv ac shell.log .. /log/ac shell map.log
mv ac-shell.cmd .. /log/ac=shell=map.cmd
quit

END of cadence ambit toplevel script

© Koninklijke Philips Electronics N.V. 2003 55

	Voorblad
	Abstract
	Conclusions
	Contents
	Acknowledgement
	1. Introduction
	2. Digital design flow.
	3. Partitioning / Clustering
	4. Tile implementation.
	5. Model generation.
	6. Design results.
	7. Conclusions
	8. Future work.
	Glossary
	References
	Appendix

