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Abstract

Distance-transitive graphs stand out from the crowd by their high degree of symmetry. Thanks
to this symmetry such graphs can be described very efficiently. A distance-transitive graph is
determined uniquely by its automorphism group, a corresponding subgroup that stabilizes a vertex
in the graph, and an arbitrary edge. The question arises for which simple groups and corresponding
subgroups, there exists a distance-transitive graph in which these groups play the roles as described
above. Using the classification of all finite simple groups, many researchers have tried to answer
this question. Much work has already been done. There exists, however, a small list with hard
cases, that still need to be investigated. _

In this thesis we examine one of these cases. We create a general graph structure with au-
tomorphism group E-(g) and vertex-stabilizer A7(g) - 2 over a field of characteristic 2. Using
character theory, we show that such a graph cannot be distance-transitive. In this manner this
thesis contributes to the classification of all primitive distance-transitive graphs.




Abstract

Afstands-transitieve grafen vallen op door hun hoge graad van symmetrie. Dankzij deze symmetrie
is het mogelijk om deze grafen op een zeer efficiénte manier te beschrijven. Een afstands-transitieve
graaf wordt uniek vastgelegd door middel van zijn automorfismengroep, een bijbehorende onder-
groep die een punt van de graaf stabiliseert, en een willekeurige kant in de graaf. Dit roept de
vraag op, voor welke combinaties van een enkelvoudige groep en een ondergroep, er een afstands-
transitieve graaf bestaat, waarop deze groepen werken zoals hierboven is beschreven. Door gebruik
te maken van de classificatie van de eindige enkelvoudige groepen wordt er al lang hard gezocht
naar een antwoord op deze vraag. Er is al veel werk verzet, maar er zijn nog enkele moeilijke
gevallen over.

In deze thesis construeren we een algemene graaf met automorfismengroep E7(q) en puntsta-
bilisator A7(g) - 2 over een lichaam met karakteristiek 2. Met behulp van karakter-theorie tonen
we aan dat een dergelijke graaf niet afstands-transitief kan zijn. Hierdoor draagt deze thesis bij
aan de classificatie van alle primitieve afstands-transitieve grafen.
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1 Introduction

People have always been fascinated by symmetry. Symmetry plays a role in nature, in art, and
also in mathematics. Famous historical examples of symmetrical mathematical structures are the
great pyramids and the Platonic solids. These structures can be represented by graphs. Although
all of the mentioned examples have a high degree of symmetry, some of them are more symmetric
than others. The Platonic solids belong to a class of graphs that we call distance-transitive graphs.
They are considered to be the most symmetric (non-trivial) graphs around.

AH>@

Figure 1: The Platonic solids

A graph T = (V, E) is called distance-transitive (see [3], [5]) if for every two pairs of vertices
(v,w) and (z,y) of the graph, such that v and w are at distance ¢ of each other and vertices z .
and y are at distance i from each other, there exists a symmetry of the graph that takes (v, w) to
(z,y). More formally we say that the automorphism group of I' acts transitively on all distance
sets of V x V. A nice property of these distance-transitive graphs is that there is an efficient way
to describe them. The stabilizer of an arbitrary vertex v in the graph I is a subgroup G, of the
automorphism group G := Aut(I'). It acts transitively on all sets of vertices at a fixed distance
of v. Hence the groups G, G,, and a group element g € G such that v and v9 are adjacent, are
enough to describe I

A result by Cameron, Praeger, Saxl, and Seitz [6] tells us that the number of distance-transitive
graphs of any given degree d > 2 is finite. Since there are only finitely many of them, for any given
degree, it is a logical step to aim for a classification of all of them. Indeed, a project was started to
classify all distance-transitive graphs (see the survey by A. M. Cohen [10])}. Thanks to a result by
D. H. Smith [28], we can interpret the primitive distance-transitive graphs as the building blocks
for all distance-transitive graphs, hence they are a good place to start this classification. Once all
the primitive distance-transitive graphs are classified, there are two techniques that can be used
to construct new distance-transitive graphs from these building blocks, namely bipartite doubling
and antipodal covering. Praeger, Saxl, and Yokoyama [25] showed that the automorphism group
of a primitive distance-transitive graph either acts distance-transitively on a Hamming graph, it
is affine, or it is almost simple.

Thanks to the classification of all finite simple groups, there is a finite list of groups and
corresponding maximal subgroups that might give rise to a primitive distance-transitive graph
(see [11]). For each of these cases it needs to be checked whether there exists a corresponding
distance-transitive graph. A lot of work has already been done (see [10]). The remaining cases
are mostly found among the exceptional Lie groups. In this thesis we investigate the open case
where the automorphism group is the group E7(g). We give an overview of all its possible maximal
subgroups that might give rise to distance-transitive graph. Focussing on the subgroup Az(g) - 2
we construct a general coset graph and show that this graph cannot be distance-transitive. This
is a direct result from the main theorem of this thesis:

INote that already before this project started, N. Biggs and D. H. Smith determined all trivalent distance-
transitive graphs. This result was extended to the classification of all distance-transitive graphs with valency < 13,
mostly thanks to work by D. H. Smith [29] (for valency 4), A. A.Ivanov, A.V.Ivanov, and I. Faradjev [15], [19)




Theorem 5.3 Let G be the Chevalley group of Lie type Er and of adjoint isogeny type over a
field GF(q) of characteristic 2. Let H be the subgroup of G of Lie type A;. Finally, let —Zq, be
the highest oot of the Lie algebra Lg, of adjoint isogeny type and define Y := {F29 lgeG}.
Then there are exactly 7 H-orbits on Y.

In Section 2 we introduce some basic concepts and notations that are necessary for the under-
standing of this thesis. This introduction will cover concepts from graph theory (2.1), Lie theory
(2.2), and character theory (2.3). Those familiar with these areas of mathematics can freely skip
this section and use it only as a reference.

In Section 3 we describe a distance-transitive graph by constructing a coset graph of its au-
tomorphism group and a maximal subgroup that stabilizes a vertex of the original graph. We
explain how this connection between graph theory and group theory makes it possible to classify
all primitive distance-transitive graphs.

Among the exceptional Lie groups there are still groups of which it is unknown if they can be
interpreted as the automorphism group of a distance-transitive graphs. One of these groups for
which there are still some open cases is E7(g). In Section 4 we discuss these open cases. We focus
on the maximal subgroup A7(q) - 2 of E7(q) and construct the coset graphs that can be obtained
from these groups. In Section 5 we state the main theorem of this thesis; this graph cannot be
distance-transitive. The proof relies on the fact that there are more than 5 different A7(q)-2 orbits
on the root elements of Lg,. This connection is explained. The rest of this thesis describes the
hunt for all 7 of these orbits, which can be divided in a number of steps.

In Sections 6 and 7 we set up representations for all groups and Lie algebras involved, which -
is convenient for computations. Sections 8 and 9 contain some more preparational work; some
theory is developed to determine the stabilizers of root elements.

In Section 10 we determine the stabilizers for representatives from each of the 7 A7(q) - 2 orbits
on the (conjugates of) root elements of Lg,. The results of Section 10 are summarized in Section
11 and used to compute the orbit sizes. From the results we conclude that the 7 orbits that we
found are indeed all orbits. In this manner, we finish the proof of Theorem 5.3 in Section 5.
Furthermore, this section contains some recommendations for further research.

This thesis contains 3 appendices. Appendix A contains some more detailed explanation of
theory used in this thesis, that goes beyond the scope of Section 2. In the other 2 appendices we
deal with subjects related to the research, but not necessary for the understanding of the main
results. In Appendix B we discuss some other methods that are widely used to determine if a
certain graph is distance-transitive. Finally, Appendix C contsins some comments on the benefits
and disadvantages of using MAGMA on this project.

2 Preliminaries

In this section some basic theory of graphs, some Lie theory, and some character theory is devel-
oped. We do not intend to give a complete treatment of these areas, but merely wish to introduce
some definitions and some theory, used in this thesis. We omit all proofs, but do refer to literature
where needed. In section 2.1 we introduce the concept of a graph. In particular we introduce
distance-transitive graphs. Section 2.2 deals with Lie groups and Lie algebras. In section 2.3 we
introduce some basic concepts from character theory. The reader who is familiar with these topics
can freely skip this section entirely, or use it for reference while reading the main part of this
thesis. :

2.1 An introduction to graphs

This section contains an introduction to graphs, and in particular, distance-transitive graphs. A
more elaborate introduction into algebraic graph theory can be found in for example 3] or [17].
A very nice and readable introduction to distance-transitive graphs can be found in [2]. :




Definition 2.1 A graph T = (V,E) consists of a set of vertices V = V() and a set of edges
E = E(I"). An edge is a pair of vertices from V.

We can represent a graph graphically by representing the vertices by dots, and drawing an arrow
from dot A to dot B whenever the pair {4, B} is an edge in E. We are only interested in a
subclass of graphs, namely in those graphs that

e are undirected, i.e., each edge is an unordered pair of vertices and therefore represented by
a line instead of an arrow;

e are connected, i.e., every two vertices of the graph are connected through a series of edges.
Such a series of edges is called a path;

¢ have no loops, i.e., there is no edge from a vertex to itself;
e have at most one edge in between of each pair of vertices;
¢ have a finite number of vertices.

Whenever we talk about a graph in this thesis, we mean a graph that satisfies these properties.

Let I = (V, E) be a graph. The number of edges incident to a vertex is called its valency or
degree. The maximum of all valencies in the graph is called the degree of the graph. Two vertices
v,w € V are called adjacent if {v,w} is an edge. We also denote adjacency between v and w by
v ~ w. The distance d{v,w) between v and w is the length of the shortest path between them.
This function is well defined since we assume I to be connected, and it induces a partition of the -
set V X V into distance sets '

D) :={(v,w) eV xV]|d(v,w) =1i}.

Note that D;(T") is simply the edge set as introduced before. If we fix a vertex v € V then, we
can define a partition of V' into distance sets by

D;(v):={weV|d,w)=1i}.
The diameter of a graph is the maximum distance between two vertices.

Two graphs T'; = (W4, E1) and Ty = (V2, E») are equal if Vi = V; and Fy = E». They are
called isomorphic if there exists some bijection ¢: V3 — V3 such that ¢(vy) ~ ¢(ve) if and only
if v; ~ vy, The bijection ¢ is called an isomorphism. An isomorphism from a graph T' to itself is
called an automorphism of I'. Clearly the set of all automorphisms of I" form a group. We denote
it with Aut(T") and it is called the automorphism group of I. Note that the automorphism group
of T can be seen as a permutation group on the set of vertices V of T.

Let G := Aut(T") be the automorphism group of the graph I'. We denote the image of a vertex
v under the action of an element g € G by v9. By v we denote the G-orbit of v. By G, we
denote the set of group elements that stabilize v, thus G, := { g € G |v9 = v }. The following
lemma, which is known as the Orbit-Stabilizer-Lemma, will prove to be useful.

Lemma 2.1 Let G be a permutation group acting on 'V and let v be a point in V. Then
|Gy 1v€] = |G.

The group G is called vertez-transitive if for each v, w € V, there exists an element g € G such
that v9 = w. It is called edge-transitive if for all {v,w}, {z,y} € F there exists a g € G such that
v9 =z and w9 = y. Finally we get to the definition of a distance-transitive group and graph.

Definition 2.2 Let I = (V, E) be a graph and let G be a permutation group acting on'V. Then G
is called distance-transitive if it acts transitively on all distance sets of T, i.e. if for allv,w,z,y €
V such that d(v,w) = d(z,y) =i for some i € {0,...,d} there exists a g € G such that v9 =z and
w9 = y. The graph I is called a distance-transitive graph (or DTG) if its automorphism group
acts distance-transitively on it. .




For an arbitrary group G that acts on a vertex set V of a graph I, there is also a natural
action of G on the set V' x V. The orbits of G on V x V are called orbitals (of G). An orbital
O is called self-paired if for all v,w € V we have that (v,w) € O & (w,v) € 0. The number of
G-orbits on V' x V is called the permutation rank of G on V. If G is a distance-transitive group,
then the permutation rank is equal to the number of distance sets of I'. Thus if T has diameter d,
the permutation rank is equal to d + 1. :

Lemma 2.2 A graph T with diameter d and automorphism group G is distance-transitive if and
only if it is vertez-transitive and if G, is transitive on the set D;(v) for eachi =0,...,d and for
adlveV.

There are two special classes of graphs we introduce.

Definition 2.3 A graph T’ = (V, E) is called bipartite if there exists a partition V = V1 UV, such
that for every edge {v,w} € E, eitherve Vi andw € Vo orw e V; and v € Vo. This means that
there exists a colouring of the vertices using two colours, such that no two adjacent vertices have
the same colour.

Definition 2.4 A graph T' = (V,E) of diameter d is called antipodal if for allv € V and all
u,w € Dy(v), either u=w or d(u,w) =d.

2.2 An introduction to Lie algebras and Lie groups

In this section we borrow freely from Carter [7]. Other nice introductions to Lie algebras are [21]
and [32]. For a nice glossary of the terminology of Lie algebras, see [18].

2.2.1 Roots

Let V' be some finite dimensional Euclidean space, equipped with an inner product {-,-). For each
non-zero vector v in V' the reflection of some vector u in the hyperplane orthogonal to v is given
by

. 2(v,u)
wv(u) =Uu-— _(T’U)_v'

Definition 2.5 A subset ® of V is called a root system (of V) if
o O is a finite set of non-zero vectors;
o & spans V;
o for every o, 8 € ®, %z—(gl is a rational integer;
o for every o, € ®, also wa(B) € &;
o for every a € ® it holds that Aa € ® if and only if A = +1.

The elements of @ are called roots. We usually denote them with the Greek letters a, 3.
Definition 2.6 A subset IT of @ is called o fundamental system if
o II is linearly independent;

e cach element from ® can be expressed as an integral sum of elements from I1 with either all
non-positive coefficients or all non-negative coefficients.




Let ®* denote the set of all positive roots in ®; these are the roots that can be expressed as
a positive linear combination of fundamental roots. In a similar way &~ denotes the set of all
negative roots.

We can describe the positions of a set of fundamental roots with respect to each other by
means of a Dynkin diagram. This is a graph in which the nodes represent the fundamental roots
and in which adjacency between two nodes -depends on the position of the corresponding roots.
The nodes with the labels o and 8 are

* not connected if the vectors @ and § are perpendicular;
e connected by a single line if Z(a, 8) = 27/3;

e connected by a double line if Z(e, 8) = 37/4;

e connected by a triple line if Z(e, 8) = 57/6.

All simple Lie algebras (see section 2.2.2) have a fundamental system that can be described by a
connected Dynkin diagram as defined above. In particular, the angles mentioned above are the
only possible angles that can occur between two fundamental roots of a simple Lie algebra.

Example:
Let @ C R? be a root system with fundamental roots e, 8, which are inclined at 27/3.
Its Dynkin diagram is given by

——y

a B

The corresponding root system ® consists of the roots a, 8,a+ 3, —a, 3, —a— 3 and
their positions with respect to each other are shown in the figure below.

Ao+

-o—B¥ B

In this thesis 3 different types of root systems will play a role. Here we give the Dynkin
diagrams of the types Ay, (n > 1), Dy, (n > 4), E7. For more information on each of these root
systems and their corresponding Lie algebras and Lie groups, see for example [7].

Ag TR T .
n~1
D e = = - - - - —
n 1 2 n—<
n
IZ
E, .

The nodes are labeled by the indices of the fundamental roots in the corresponding root systems
(assuming that enumeration of the roots starts with the fundamental roots) and follow Bourbaki’s
convention [4].




We next introduce the concept of a root datum, which roughly consists of a pair of root systems
in duality. The following definition is from [12).

Definition 2.7 Let X and Y be free Z-modules of finite rank such that there exists bilinear
pairing (-, +),: X xY — Z putting them in duality. Now let ® be a root system of X and let d*
be the dual root system of Y. For each o € ® we denote its dual by o*. We call R = (X,9,Y,9%)
a root datum if forall o € ®

e the linear maps wo: X — X given by z — z — (z,0"),a and wa: Y — Y given by
y—y—(a,y),a* are both reflections;

o O is closed under the action of wy;
o O* is closed under the action of wy-.

The elements of ®* are called coroots. Note that if R = (X,®, X, ®*) and we define the coroots
o* tt.)y ot = (3,%) for each o € @, then (a, 8*), = ﬂ(:_c%l just as we saw in the beginning of this
section.

The group generated by all reflections wq, for a € @ is called the Weyl group of ® and denoted
by W(®) or simply W.

Lemma 2.3 The Weyl group W(®) is generated by the fundamental reflections wy, a € II. More-
over, all roots B € ® can be obtained from a fundamental root by applying a finite number of
Sfundamental reflections. ~

Lemma 2.4 Each Weyl group contains a unique longest element, which is an involution that
maps all positive roots to negative roots. It is usually denoted by wy.
2.2.2 Lie algebras

Definition 2.8 A Lie algebra is a vector space g over a field K, that is equipped with a product
[,]: 8 x g — g, called the Lie bracket, such that

1 [z,z] =0 for all x € g;
2. [z,y] is bilinear for all z,y € g;
3. [le, vl 2] + [ly, 2], 2] + [[2,2],9] = O for all z,y,z € 5.

The Lie multiplication is easily seen to be anti-commutative. Given some associative algebra A
where the product of x,y € A is given by zy, one can turn it into a Lie algebra by equipping it
with the Lie bracket [z,y] = zy — yz. For g a Lie algebra and g,, g, two arbitrary subspaces of g,
we define [g;,0] := {[z,y] |z € 61,4 € 52 }. Now g, is called a subalgebra of g if [g,,8,] C g;. It is
called an ideal of g if [g;,5] C g,. We call a Lie algebra stmple if it has no non-trivial ideals and if
" its dimension is greater than 1.

Let g be a Lie algebra. Then we can define the following concepts.

® The lower central series: D1g D Dag D ... D Dgg D ... where Dy is defined by Dig = [g, g]
and Dig = [g, Dx—14]. Thus ’

[3.6) >[5, (5. 9] O [g, [s, [5. 0] O ...
We call the Lie algebra g nilpotent if Dig = 0 for some k € N.

* The upper central series: D'g > D?%g > ... D D¥g D ... where D* is defined by D'g = [g,g]
and D¥g = [D*~1g, D*~1g). Thus '

(6,8 O [[g,5], 8.5 O ...
We call the Lie algebra g solvable if D*g = 0 for some k € N.




Note that D*g ¢ Dyg for all k. (proof: [5,5] C 8 — [[3,8), [8,8]] C I8, [8,5]]; etc.)
Thus nilpotency implies solvability.

A subalgebra § of g is called a Cartan subalgebra of g if it is nilpotent and moreover, there does
not exist a proper subalgebra of g, other than § itself, that contains § as an ideal.

Let the field K be algebraically closed and be of characteristic zero. Then each simple Lie
algebra g has a Cartan decomposition g =h & Daocso 8o Where g, is a one dimensional subspace
for all & € & and where [f,8,] = g, for all @ € ®. Here ® is the set of roots corresponding to the
simple Lie algebra; the roots can be interpreted as the weights of the spaces g, under the action
on §. There now exists a nice basis for g, associated to this Cartan decomposition.

Definition 2.9 The simple Lie algebra with root system ® and fundamental set of roots I1 has a
Chevalley basis ‘

{za | €®}U{ha|aecIl}
where z4 € g, for each a and hq = [To,ZT—q] sSuch that
L [za,z8)=0ifa+ B¢ P;
2. [za,z5] = £(p + 1)zo+4 where p is the greatest integer such that a — pB € ®.
3. [hashg) = 0;

2 ] .
4. [ha,z8] = %ﬁ,%’}:cg,

Note that all of the structure constants are integral, hence the Lie algebra can be defined over
Z and by tensoring (with an arbitrary field K) it can be defined over any field K. We call the
elements z, for a € ® root elements.?

The above mentioned construction can also take place in a more general context, where the
root datum is used.

Definition 2.10 Let R = (U, ®,Y,®*) be a root datum. Then there is a Lie algebra with root
system ® and fundamental set of roots Il with a basis

{zala€@}U{ha|aecll}

such that the basis elements satisfy conditions (1),(2) and (3) from Definition 2.9 and moreover
also satisfy the following conditions:

1. [ma,hg] = (a, ﬁ*)ﬂxa,

2. [Za,ZToqo) = 27 1 (wi, @ Ygho,, where wy,...,wr are such that they satisfy (wi, o)y = 6ij.

i=

They are called the fundamental weights.

According to Chevalley [9], again all structure constants are integral.

2.2.3 Lie groups and Chevalley groups

The map ad,: g — g is defined for arbitrary g € g by adgh := [g,h] for all h € g. For the root
elements z,(a € ®) the maps ad;, (which are nilpotent), give rise to automorphisms of the Lie
algebra,

exptady, : g — g+ t[Zar g] + t2/(2)[Za, [Tar g]] + - - -

for all g € g.
Definition 2.11 The Chevalley group G corresponding to the Lie algebra g, is the automorphism

group of ¢ and is generated by { Xo(t) |a € ®,t € K}, where Xo(t) := exptad,,. If K has
characteristic 0, we call G g Lie group.

2More generally, the term root elements is also used to denote the elements from the Aut(g)-orbit of zo for
a€ed




The subgroups ({ Xa(t) [t € K},{ X_a(t) |t € K }) are called the root s.ubgroups.

The Lie group G has a subgroup that can be related to the Weyl group W of the root system
®. Define ng :=nq(1) and hq(t) := ne(t)na(~1), where

na(t) = Xg(t)X—a(—t™DXs(t)  foralloe ®.

Now let N be the subgroup of G, generated by all n, (a € @) and all ha(t) (@ € ®,t € K). Let
H be the subgroup of N, generated by all hq(t) (o € ®,¢ € K). The elements n, act in-the same
way on b as w, € W do. Moreover, they permute the root spaces {858 € ®} in the same way
that w, permute the corresponding roots { 8|8 € ® }. We have the following lemma.

Lemma 2.5 There is an isomorphism of groups between W and N /H, given by we — noH, for
alla € ®. Let n, denote an arbitrary representative of the coset noH.

We call the elements n, (a € II), fundamental reflections, just like the elements We, ¢ € II.

2.3 An introduction to character theory

We introduce some character theory that is used in the remainder of this thesis. For a more
detailed treatment of the theory of characters we refer to the very nice and readable books [20]
and [22].

Given a group G acting on a set X and a representation p of G, the character X corresponding
to this representation p is defined to be the function x: G — C that maps every g € G to Tr(gp).
The function Tx(-) is the well known trace function of a matrix, returning the sum of the diagonal
entries in an arbitrary representation. The easiest example of a character is the trivial character 1
which corresponds to the trivial linear representation mapping all elements g € G to the element
(1) € GL(1,C). Characters belong to the more generally defined space of class functions. A class
function is a function from a group G to C that is constant on conjugacy classes. Our interest lies
with characters and more in particular, in permutation characters. A permutation character = is
a character corresponding to the permutation action of a certain group G on a set X. Let p, be
the permutation representation of G. Then the matrices gpr (¢ € G) will be permutation matrices
and we obtain a useful property of permutation characters. For each g € G, the corresponding
character 7 is determined by

7(g) = the number of fixed points of X under the action of g. -

Let H C G be a subgroup. For a character x of G, we define x|z to be the restriction of x to
H, which is defined in the obvious way: x|m(g) = x(g) if g € H. One nice property of characters
is that this process can sort of less be inverted. Thus starting out with a character ¥ of H we
introduce the induced character 9 to be the corresponding character of G defined by

1 N -
99(9) = == 3 9" (wga™),
l I e
where 9 is defined by ¥*(h) = 9(h) if h € H and ¥*(g) =0ifg ¢ H.
On the space of class functions in general and the subset of characters in particular there is
the concept of an inner product.
Definition 2.12 Let x and 9 be class functions on a group G. Then the inner product of x and
9 is given by
1 —_—
(60) =1 > x(9)5(9)
Gl =2
where * represents complezr conjugation.




The notation for this inner product is the same as the notation of the product on the root space.
This should not lead to any confusion.

Definition 2.13 In the vector space of class functions there exists a basis of characters x1,. - ., Xk
which is orthonormal with respect to the inner product defined in Definition 2.12. This means that
{(Xi»Xx;) = 65 for all i,5 € {1,...,k}. A character x is called irreducible if it is the trace function
of an irreducible representation.

Now y is irreducible if and only if (x,x) = 1.

We state a few lemmas about characters without proof. The lemma’s including their proofs
can be found in [20]. We start by introducing the Frobenius reciprocity which will prove to be
very useful later on. '

Lemma 2.6 Let H C G and suppose that x and 9 are characters (or more generally class func-
tions) corresponding to G respectively H. Then

(XlH, 19) = (Xa ,19G)
where (-,-) is the usual inner product defined on the space of class functions.
The next lemma shows a useful connection between computations with characters, and orbits.

Lemma 2.7 Let G act on a G-module X with permutation character x. Then (x,lq) equals the
number of G-orbits on X. This number is called the permutation rank of x. :

3 An introduction to distance-transitive graphs

The main purpose of this thesis is to deliver a contribution to the classification of distance-transitive
graphs. Remember that a graph I' = I'(V, E) is distance-transitive if its automorphism group G
acts transitively on all of its distance sets D;(T). It is possible to describe I' in terms of groups.

3.1 From graphs to groups

Let T be a distance-transitive graph. First fix a vertex v € V. Then obviously G acts transitively
on all sets { (v,w) |w € V,d(v,w) = i }, hence G, acts transitively on all distance sets D;(v).
Define H := G,,. Finally let r € G such that v" € Dy(v). Then G, H and T fully determine the
graph I'. We make this concrete.

Definition 3.1 Let IV :=I"(G, H,r) be the graph with vertex set H\G in which two vertices Hz
and Hy are adjacent if and only if y € HrHz.

The theorems in this section are elaborate versions of theorems in [10].
Theorem 3.1 The graphs T and I are isomorphic.

Proof: Clearly V = {v9|g € G} = {v¥9|Hg € H\G} thus there is a one to one correspondence
between elements v9 € V and Hg € H\G. In particular, the element v corresponds to H. By
definition, for two vertices Hx, Hy € H\G, we have Hz ~ Hy exactly when v* ~ vf¥%. Since
v~ v™ for all h € H, we see that v"% ~ v™M% for all h € H and hence v"1% ~ vH™'z for 4l
h' € H, hence Hx ~ Hy if and only if Hy € HrHz, hence if and only if y € HrHz. |

This way of describing a distance-transitive graph, suggests that we check whether the opposite
route can be followed as well; given a group G with a subgroup H, what are the conditionson G
and H such that it is possible to construct a distance-transitive graph that is isomorphic to the
graph I'(G, H,r) for some r € G? Many conditions exist (see {10]) and two of them are stated in
the following theorem. :




Theorem 3.2 Let G be a group, with a subgroup H. Consider the graph I’ as defined in 8.1 for
somer € G. Then

o T is connected if and only if (H,r) = G;
o I is undirected if and only if the G-orbit on H\G x H\G containing (H,Hr) is self paired.

Proof: The subgroup (H,r) is strictly smaller than G if and only if it does not work transitively
on the set of right cosets of H in G. Thus if and only if it stabilizes some subset of H \G. But
this means that no vertex in this subset is connected to a vertex outside of the subset, hence that
I'" is not connected.

Next, a graph I'(V, E) is undirected if and only if the edge set is self paired. The edge set of
I' is exactly the G orbit on H\G x H\G containing (H, Hr). m]

Corollary 3.1 For H a mazimal subgroup of G, the graphTV(G,H,r) is connected for all r €
G,r ¢ H such that r—! € HrH. :

3.2 Towards a classification

We introduce the concept of primitivity of a graph. For this we need to introduce blocks first. A
block B of a vertex set V' under the action of G is a subset of V' such that B and B¢ are either
disjoint or identical for all g € G. It is called trivial if B =0, [B| =1 or B = V. The group G
is called primitive if the only blocks are trivial ones. It is called imprimitive if there exists a non
trivial block.

Example:

Consider the cube-graph in Figure 2. Let G be its automorphism group. It is easy to verify that
the vertex set {1,...,8} can be partitioned in the 4 blocks {1, 7}, {2,8}, {3,5} and {4,6} under
the action of G. Moreover, there is yet another partitioning into the two blocks {1,3,6,8} and
{2,4,5,7}. Hence G is imprimitive and according to the following definition, the cube graph is
imprimitive,

8 7 8 7
5 6 5 6
4 3 4 3
1 2 1 2
4 blocks: {1,7},{2,8},{3,5},{4.6) 2 blocks: {1,3,6,8},{2.4,5,7}

Figure 2: Partitioning of the vertex set into two respectively 4 blocks.

Definition 3.2 A graph is called (im)primitive when its automorphism group is (im)primitive.

The next theorem, which is due to Smith [28], is very useful in the classification of distance-
transitive graphs.

Theorem 3.3 An imprimitive distance-transitive graph T' with degree k > 3 is either bipartite or
antipodal (or both).
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Theorem 3.4 Suppose that G acts distance-transitively on a graph T with diameter d.

1. IfT is antipodal, then G acts distance-transitively on the antipodal quotient of I, whose
vertices are the equivalence classes of Do(I') U Dg(T") and in which two vertices are adjacent
whenever they contain adjacent vertices in T.

2. IfT is bipartite, then G acts distance-transitively on the halved graphs of I, which are the
two graphs obtained from T by taking one of the two bipartite classes and letting two vertices
be adjacent if they are at distance 2 in T,

Proof: See Theorem 4.1.10 in [5]. ' g

Example:

In the previous example, we saw that the vertex set of the cube graph consists of two blocks, hence
it is imprimitive. The cube graph obviously is distance-transitive. Thus Theorem 3.3 tells us that
it is bipartite or antipodal. In fact it is both. Thus we can apply Theorem 3.4. By taking the
antipodal quotient or by halving the graph, we obtain smaller distance-transitive graphs (see Figure
3). Note that in this example the antipodal quotient and the halved graph(s) are isomorphic. They

6 : {46}
8 {3.5}
1 {1.8)
3 {27}
Halving of the cube Antipodal quotient of the cube

Figure 3: Primitive distance-transitive graphs, obtained from the cube graph

are both tetrahedra. The tetrahedron is easily seen to be a primitive distance-transitive graph.
Thus the primitive distance-transitive graphs can be considered to be the building blocks of all
distance-transitive graphs. The key to the classification of all distance-transitive graphs lies in
classifying these building blocks. The next theorem gives us more information on the groups
related to these primitive distance-transitive graphs.

Theorem 3.5 Let I’ be a graph with automorphism group G, which acts transitively on the verter
set of I'. The graph T is primitive if and only if the stabilizer G, is a mazimal subgroup of G for
each x in the vertez set of I.

Proof: This theorem follows directly from Theorem 9.15 in [27]. o

Thanks to the classification of all simple groups, there exists a finite® list of pairs of groups and
corresponding maximal subgroups that might give rise to a primitive distance-transitive graph.
There is hope that all primitive distance-transitive graphs will be classified. A lot of work has
already been done. See [10] for a good overview. Also [5] is a good reference for known distance-
transitive graphs, or more generally, distance-regular graphs. Lists of both the open cases, and the
cases that are already dealt with can be found on the website [11]. For the open cases, it remains
to be shown that a related distance-transitive graph does (not) exist. In this thesis we investigate
one of these cases, namely that of an automorphism group E7{q).

3This list is only finite if we allow parameters in the entries.
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4 Graphs related to E;(q)

As mentioned in section 3.2, a lot of work has already been done to classify all primitive distance-
transitive graphs. Especially amongst the exceptional Lie groups there are still some hard open
cases. One of them is the question whether there exists a distance-transitive graph with automor-
phism group E7(g). In section 3.1 we have seen that the maximal subgroups of E7(g) play the
role of a vertex stabilizer in such a graph. Hence we first need to know more about the maximal
subgroups of E7(g).

4.1 ‘Large’ maximal subgroups .

In case the maximal subgroup is par'abolic, everything is known and an overview of the results
can be found in [5). Hence we limit ourselves to the non-parabolic case. Furthermore, there is a
lower bound on the size of the maximal subgroup. The following theorem comes from [24].

Theorem 4.1 Let G be a simple Chevallley group with a Borel subgroup B and let W be the
corresponding Weyl group. Furthermore, let H be a mazimal subgroup of G. If there ezists a
distance-transitive graph with automorphism group G and vertex stabilizer H, then |H| > |G :
B|/|W|.

Hence the only maximal subgroups that are eligible to function as a vertex stabilizer in a
distance-transitive graph, are the ones of small index. In our case this means that we are only .
interested in maximal subgroups H of size |H| > ¢% for ¢ > 2 or |H| > ¢*° for ¢ = 2. A list of
large maximal subgroups for all exceptional groups is derived in [23]. Note that this reference does
not contain the most up-to-date information; in the case of E(q), [23] only mentions the maximal
subgroups with an order exceeding ¢®. The table in [11], contains all non-parabolic maximal
subgroups of E7(g) with an order exceeding ¢%. From this table, we obtain the information in
Table 1, which contains all non-parabolic maximal subgroups of E7(g) that might function as the
vertex stabilizer in a distance-transitive graph, with automorphism group E7(q).*

Maximal subgroup of E7(q) DTG
N(Be(a) = (Be(@)Ty—r) - @ =T,3)2 |7
N(*Es(q)) = (*Es(9)Tg41) - (g +1,3)-2 | ?

N(A1(q)Ds(9)) no
Eq(q"/?) no
N(A7(q)) = A7(q) -2, ¢ =2,4 no
N(%Az(g)) = %A(q) ?

Table 1: The ‘large’ maximal subgroups of E7(q)

A case-by-case study needs to be performed for the open cases in Table 1. In the remainder of
this thesis we contribute to this work. In accordance with Theorem 3.1, we prove that the graph
I'"(E7(g), A7(q) - 2,7) is not distance-transitive for any r € Eq(q), r & Az(q) - 2, where all groups
are defined over the field GF(q) of characteristic 2.

4.2 Construction of the maximal subgroup 4;(q) - 2 of E;(q)

First the Chevalley groups A7(q) and E-(q) are introduced and their subgroup relation is shown.
Next the symmetry of the Dynkin diagram of type Ay is used to construct the maximal subgroup
Az(q) - 2 of E7(g). In this section knowledge of some basic concepts from Lie theory, like root
systems, Dynkin diagrams, Chevalley groups and Lie algebras, is required. We refer to section 2.2
for a short introduction into Lie theory.

41t is currently still unclear to the author, why one is not interested in groups H over GF(2) such that 24° <
|H| < 268, '
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4.2.1 Construct A;(K) as a subgroup of E;(K)

Consider the group of Lie type E7 over some field K, for which the root datum has adjoint isogeny
type (see e.g., [12],[30]); we call this group E7(K). This group is characterized by the following
Dynkin diagram®. The nodes i = 1,...,7 in this diagram correspond to the fundamental roots
01,...,a7 € ® where ® is the root system of type Er.

I

1 3 4 5 6 7

From the Dynkin diagram we construct the so-called ertended diagram; there exists a root
op € P that is (of course) linearly dependent on the fundamental roots a;,..., a7 such that the
Dynkin diagram can be extended to the following one:

¢

0 1 3 4 5 6 7

We compute coefficients ay,. . ., a7 such that ap = 2;1 aio; satisfies the relations on the roots
imposed by the extended Dynkin diagram above. In this way we prove the existence of this root
Qgp.

From the extended Dynkin diagram, it follows that the root ap should have zero inner product
with the roots ag,...,a7. All inner products between fundamental roots are imposed by the
Dynkin diagram through the following set of rules

2 if z = j;
(as,a5) = 0 if node i and node j are not connected;
—1 if node 7 and node j are connected.

In order to find the coefficients, we first set a; = €. Then we easily obtain values for a1,..., a4
expressed in &.

0 = (ap, a7) = ag(as, a7) + ar(ar,a7) = —as + 2a7 — ag=2§ .

and similarly

0 = (a0, a6) = as(as, o) + ag(as, @) + ar(az, as) — a5 =3¢
0 = (o, a5) = a4, as) + as(as, as) + as(as, o) — ag=4¢
0 = (ap, a2) = az(az, a2) + a4y, a2) — ap=2¢
0 = (o, 04) = a2(a2, a4) + az(03, 04) + as(0g, 04) + as(as,04) — a3 =3¢
0 = (o, a3) = ar{a1, a3) + az(as, oz) + aglay, az) - a3 =2
—1= (ap, 1) = a1, 1) + az(as, a1) - £=-1
Thus we obtain a9 = —(2a; + 202 + 3a3 + 4a4 + 3o + 206 + ar). There is one more relation

that is imposed by the extended Dynkin diagram, namely that (ap, ag) = 2. But we easily show
that
(a0, o) = a1y, 00) = ~2a; = 2

thus also this relation is satisfied. Note that ag € ®~. The root —ag € ®* is known as the highest
(long) root of Ex.

It is not hard to see how the Dynkin diagram Ay appears in the extended diagram E7 as the
subdiagram on the nodes 0,1, 3, 4, 5, 6, 7. This implies that in order to obtain A(K) within E,(K),
we restrict ourselves to the roots ag, o1, a3, oy, as, o, 7.

5The numbering of the nodes is in accordance with Bourbaki’s convention. See [4].
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More formally, we consider the so-called smallest closed set of roots ¥ C ® which contains
these roots ag, o1, a3, a4, a5, a6, a7 (see A). ¥ is a root system of type A7. The group 4,(K) is
generated by the root subgroups X, for a € ¥. See also appendix A.

In the remainder of this thesis we limit ourselves to the case where K = GF(g) for ¢ = 2P for
some p. We also use the notation F, for GF(g). We define G := E;(g). Moreover, we define L E,
to be the Lie algebra with root system @ over GF(q) of adjoint isogeny type (see Section 4.3). Let
L4, be the subalgebra of Lg, of type A7 that is obtained from the root system .

4.2.2 Using the diagram automorphism to obtain 47(q) - 2

We just constructed A-(q) within E;(q). However, we are not directly interested in the subgroup
Az(q) of E7(g), but in the maximal subgroup A7(q) - 2 of E4(g). This group is twice as big and is
obtained from A7(q) by adding a graph automorphism on top of A7(qg).

The extended Dynkin diagram of E is clearly symmetrical; accordingly there exists a diagram
automorphism ¢ of the extended Dynkin diagram.

—— -
- T - T~ .

One easily sees that J is an involution. It induces a permutation of & determined by its right
action on the fundamental roots and on agp; apd = ar,a18 = as, 006 = 2,038 = as,asé =
4,050 = a3, 066 = o, anid a7é = Qg. '

The diagram automorphism 4 induces a graph ailtomorphi_srn os of group elements. The action of
o5 on the group elements is defined by the action on the generators;

05 Xa(t)os := Xas(t) for every o € ®.

Our definition of a graph automorphism differs only from the one in Carter ([7]) in that we use
right actions and that we work over a field of characteristic 2, hence the sign of ¢ in the above
equation is irrelevant. Now let H := A7(q) - 2 be the group generated by A(gq) and os.

There is also another way to interpret the extension of Ay(g). Let wy and w® be the longest
elements of the Weyl groups W(¥) and W (®) respectively. It can easily be seen that w®: a — —a
for all o € ®, since all reflections leave the relative position of the roots invariant and the root
system ® has no symimetries.

Note that due to the symmetry of ¥ there are exactly two candidates for the longest Weyl
group element wy; either wy: @ ~— —a or w¥: & — —ad for each & € ¥. The former option
implies that w§ is the product of an odd number of reflections, but since the length of a reflection
equals the number of positive roots it maps to negative roots, it should also be the product of
|¥*| = 28 reflections. This is a contradiction hence w¥ : a — —aé for all a € .

Thus § = wy'w§. Now note that wy € W(¥) C As(q) thus H is generated by Az(q) and
Tuqy Where o4, is the graph automorphism induced by wd|y in a similar way as above, thus

Ond Xa(t)ow, = Xowg (t) for every a € 0.
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4.3 The structure of Lg, of adjoint isogeny type

Over a fleld of small characteristic, there might exist more Lie algebras of the same Cartan type,
that are mutually non isomorphic. This is related to the fact that the corresponding root data can
have different isogeny type. First we give a small example, showing three different Lie algebras of
type A; in characteristic 2. Next we look at the Lie algebra of type E7, corresponding to a root
datum of adjoint isogeny type and we study its structure. More information on the isogeny type
of root data can be found in [30] and [8].

4.3.1 An example: the different appearances of L4, over GF(q)

When we study the Lie algebra L 4, over C, we know from theory ([18],[32],[31]) that its Chevalley
basis B; is given by z,y, h that satisfy the following commutator relations.

[:Z:, y] = h
h,z] = 2z
hyl = -2

Still considering L4, over C we can perform basis transformations yielding similar bases. For
example, we can perform the substitutions '’ = z, y’ = y, ' = h/2, giving us the basis B, such
that the basis elements satisfy the commutator relations:

[ml’yl] = o
[hl’zl] = IE'
.yl = -¢

Yet another substitution we can perform is £’/ = z, y" = y/2, h” = h/2, giving us a basis B; such
that the basis elements satisfy the commutator relations:

[:L‘”, y//] = R
[ h”, .’1:”] = 7
[h”, yu] = _yn

Note that all the multiplication constants are integral. Hence for each of these bases, we can
construct a Lie algebra of type A; over the ring Z, by taking all linear combinations of the basis
elements of By, By, and Bs respectively, with coefficients in Z. Let L;(Z) be the Lie algebra over
Z with the basis B; for i =1, 2,3, constructed in such a way.

We next construct the Lie algebras L1,L2, and L3 over the field GF{g) from L1(Z),L2(Z), and
L3(Z), respectively. Remember that here ¢ = 2 for some p, hence GF(g) is a field of characteristic
2. The construction makes use of tensoring and is explained well in {7]. We define

Li = Li(Z) ® GF(q) for i = 1,2,3.

The basis B, of L; is now defined by B = {b®1gr(q) b € B;} for i = 1,2,3. The Lie multiplication
between two elements z ® 1gr(q) and ¥ ® 1gr(g) in L; is given by

[z ® 1ar(g): ¥ ® lar(g) = [z,Y] ® lar(y)-

It follows that the multiplication constants of L; can be interpreted as elements from the prime
subfield GF(2) of GF(q). Hence the commutator relations of L1, L2, and L3 simplify to:

Ll L2 L3
[x,y] =h [z’,y’] =@ [:L‘”, y//] = K"
[h,IL'] =0 [h',.'l,"] =z [h",x”] =z
[h,y] =0 [h',y’] — y/ [h", yn] — yn
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Note that the Lie algebras obtained here are all three essentially different. L, contains a one
dimensional center consisting of the basis element h and has decomposition structure % In L,
the elements z’ and y’ generate an ideal and L has decomposition % Finally, L3 is simple. Thus

these three Lie algebras are not isomorphic over GF(q).

4.3.2 Analogy between Lie algebras of type E; and A;

As seen in the previous section for the L 4,-case, working with Lie algebras over finite fields with
small characteristic can cause some anomaly; different representations of the same Lie algebra
might give rise to different structures when considered over a field of small characteristic. Let us
consider Lie algebras Lg, over GF(q).

There are more ways to construct a Lie algebra, related to the isogeny type of the corresponding
root datum (see [30],[8]). Onme can create a so-called Simply Connected version or an Adjoint
version. The Simply Connected version of creating a Lie algebra results in a Lie algebra with the
standard Chevalley basis (which we call Lsc). Since all multiplication constants are integral, we
can consider Lge over GF(g).

We now explicitly construct the Adjoint version L4 from the root datum. We study the
commutator relations of the basis elements of L4q and we obtain a 1/132-structure of L 44 over
GF(g).

In MAGMA , we constructed the Lie algebra L 44 explicitly over the field GF(2). In appendix
C.2 we use MAGMA to check that this construction indeed returns a Lie algebra.

Consider the root datum R = (U, ®,Y,®*), for U and Y free Z-modules and & a root system
of type Ey. Remember that there is a bilinear pairing (-, ); between U and Y, putting them in

duality (see section 2.2.1). The fundamental roots are ay,..., o7 € ®, where «; is the #’th unit
vector of U. The corresponding fundamental coroots, with respect to the standard basis y1, . .., yr
of Y, are:

o] = (20-10000);

a; = (020-1000);

a3 = (-102-1000);

o = (0-1-12-100);

o = (000-12-10);

og = (0000 -12-1);

o} = (00000 —12).

Now let Laq be the Lie algebra with root system ® and basis elements
{2a|a€e®  YU{hy |i=1,...,T}U {20 |ac dt}

such that the relations in Definition 2.10 are satisfied. For every a, the element h, = 2;1 Aihy,
whenever the corresponding coroot a* = 3°7_ \;y;. According to Chevalley [9], all the structure
constants are integral, hence we can consider the Lie algebra over any field. In the remainder of
this section we assume that L 44 is a Lie algebra over GF(q).

One easily checks that the Cartan matriz ({(os, a})4)1<i,j<n, the rows of which are exactly the
fundamental coroots, has determinant 2, hence the coroots form a dependent set when considered
over a field of characteristic 2. In particular we see that o +of + o = (020 —22 —22), hence
has + hag + hay = 2hy, — 2hy, + 2hy, — 2Ry, + 2h,, = 0 since GF(g) is a field of characteristic 2.

So the root elements generate a Lie algebra Ly of dimension 132. Clearly Ly is a subalgebra
of Lag. The element v := hy, is easily seen to be in the complement of Lg in Lag4. Since v is
a Cartan element, it commutes with all other Cartan elements. Moreover, it commutes with the
elements from ({ z | € ¥ }) and it stabilizes the elements from {z4 | € &\ ¥ }. Thus clearly -
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[Lo, v} € Lo. But then also [Lo, L ad) = [Lo, (v, Lo)] € Lo so Lo is an ideal of L4 Hence Laq has
a 1/132-structure over GF(g). Whenever we write Lg, we refer to the Lie algebra L a4 of adjoint
isogeny type.

4.4 Construction of the graph I" & I"(Eq(q), A7(q) - 2,7)

In section 3.1 the graph structure originating from a group G and a maximal subgroup H has
as vertex set X' the set of right cosets of H in G, X' = { Hg|g € G }. By letting an element
r € G,r ¢ H determine adjacency H ~ Hr, we obtain.a graph I from this general graph
structure. In this manner we can construct a graph I''(E7(q), A7(q) - 2,7) for arbitrary r € F7(q)
and r € A-(g) - 2. However, this graph is not pleasant to work with. The definition of the vertex
set X' is a very general one, that does not use any special structure that occurs in our case, where
G = E7(q) and H = Ay(q) - 2.

Consider the Lie algebra element v € Lg,, defined in section 4.3. Clearly (v) € CL,(La,).
Using MAGMA , we have seen that (v) = CL,, (La,). We define the vertex set X of a graph I by
X :={Fqv9|g € H\G}. There is a clear one to one correspondence between X' and X given by
g € X' < Fqv9. The elements of X can be seen as one dimensional vector spaces with respect to
the Chevalley basis of Lg,. Then X is a 133 dimensional vector space over the field GF(g) and
X1 =|G|/|H| = ¢'3/¢%® = ¢™°.

Now adjacency in the graph I' is fully defined by selecting the H-orbit of v" for some r € G,
r € H as the neighbour set of v. Let w € X. Then |Hw| = |H|/|Staby (w)| thus its size is bounded
from above by |H| ~ ¢53. This means that the number of distinct H-orbits on X is bounded from -
below by |X|/|H| ~ q". These numbers indicate that even for small values of g, this problem is
much too big for a computation of all orbits and for an exhaustive computer search of a possible
distance-transitive graph structure that originates from E7(g) and A7(g) - 2.

5 The graph I' cannot be distance-transitive

In this section we use the theory of characters to conclude that there cannot exist a distance-
transitive graph I’ with automorphism group G and a vertex set X, as defined in section 4.4. Recall
that X is the G-orbit of the unique one dimensional Lie algebra F,v for which v = Ci,, (L4,).
Also remember that H is the stabilizer of Fqv. Thus we can consider Fqv as an H-module. Now
let 7 be the permutation character of the action of G on X. The subgroup H also acts on X.
The corresponding permutation character is 15 which denotes the identity function on H. Then
7= (15)% (see [20]).

Theorem 5.1 If the graph T with automorphism group G and verter set X is distance-transitive,
then the permutation character m of the G-action on X is multiplicity free. Moreover, if I' has
diameter d, then (m,7) =d + 1. :

Proof: IfT has diameter d, then there exists a partitioning of X into d+1 distance sets with respect
to the element v € X. Since I' is assumed to be distance-transitive, the point stabilizer H of v acts
transitively on all the distance sets, hence they correspond to d + 1 distinct H-orbits on X. Thus
using Frobenius reciprocity and Lemma 2.7 we see that (7, 7) = (m,(15)%) = (7|g,1g) =d + 1.
Now let Xo,. .., xa be the characters corresponding to the d+1 different H-orbits on X. (Note that
we do not assume these characters to be distinct at this point.) Thus we can write 7 = Zf=0 Xi-
Then

d d d
d+l=(mm) =33 (xix;) =D (xix:) 2 d+1
i=0 j=0 i=0

from which it follows that all the characters x;,1 =0,...,d are distinct and irreducible. O

Thus we only need to show that the character 7 is not multiplicity free. We define a second G-set
Y, by Y := {Fg(za,)? | 9 € G }. Note that Y is the set of all (conjugate) root elements of Lg,. -
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Let K be the stabilizer in G of Fgz4,. Now 1 is the permutation character corresponding to the
trivial action of K on Y. Similarly as before p is the permutation character of the action of G on
Y. Again p = (1)€ holds.

Theorem 5.2 p is multiplicity free of rank 5.

Proof: By applying Frobenius reciprocity and Lemma 2.7 again, we obtain (P, 0y = (p,(1k)C) =
{(plk,1K) = n, where n is the number of K-orbits on Y. The set ¥ can easily be identified with
the set of right cosets { Kg|g € G }. Hence the number of K orbits on Y equals the number
of double cosets K\G/K. Since G is a Chevalley group it has a (B, N) pair and, using Bruhat
decomposition, we can write G = BNB. Since K is a parabolic subgroup of G of type Dg, we
can write K = BNp, B for some subgroup Np, of N. Thanks to knowledge on parabolic groups
we have K\G/K = BNp, B\BNB/BNp,B = Wp,\W/Wp, where W is the Weyl group of type
E7 and Wp, is the parabolic subgroup of W of type Dg. Using MAGMA it is easy to compute
the double cosets Wp,\W/Wp, and it follows that there are exactly five of them. Furthermore,
the coset representatives corresponding to these 5 cosets, let us say ri,...,Ts, are all involutions,
hence for all i = 1,...5 we have r;' € Wp,r;Wp,. Through the abovementioned isomorphism
and using the bijective correspondence between the G-orbitals on Y x Y and the double cosets of
G with respect to K, we can see this to be equivalent to the fact that the orbitals on Y x Y are all
self paired. But this implies that the permutation character consists of 5 irreducible characters,
hence it is multiplicity free (see [5, p. 63]). This completes the proof. 0

We can say a little bit more about these 5 orbits. Note that since |K\G/K| = |K\N/K| the ;
permutation rank of p is equal to the number of K-orbits on the set { Kn|n € N }, but this set
can be identified with the set Y’ := {F,z% |n € N}. For each element 25 € Y”, the inner product
(a0, B) returns a value in {~2,—1,0,1,2}. This is an invariant for the action of K on these pairs
of root elements, and since K stabilizes Fqzq, it is also an invariant for the action of K on the set
Y’ of root elements. Hence the values {—2,—1,0,1,2} correspond to the five distinct orbits.

It follows from the theorem that there are 5 irreducible characters P1,-..,Ps such that p =
Zf.__l pi- We extend py,...,ps to an orthonormal basis of irreducible characters py, ..., px for the
space of class functions and write 7 = Zi-“:l ¢ip; for some constants ¢; € N. The inner product
(m, p) can be rewritten as (m, p) = E:.;l 2]5-=1 ci{pi, pj) = Zf=1 ¢;. On the other hand, by applying
the theory of Lemma 2.7 and Frobenius reciprocity, we see that (r, p) = ((15)%, p) = (1, pln) =n
where n equals the number of H-orbits on Y. If n > 5 then ¢; > 1 for some i € {1,...,5} and 7
is not multiplicity free. It follows from the next claim that this is indeed the case. next claim.

Claim 5.1 There are at least 6 H-orbits on Y.

Proof: Note that the function DC(-) as defined in appendix B.2 is an invariant on the H-orbits
of Y. Thus the number of different values it takes on Y is a lower bound on the number of H
orbits on Y. Using MAGMA we found that DC(Y) 2 {30, 31, 34, 39, 46, 49}, proving the claim. O

Element y € Y DC(y)
Tag + Tea, 30
T-asy + Tazy + Toys + T—ay + Tage + T-ass + T-azz + T—ay 31
T—ae; oy + Toagp + Tmans : 34
Tog + Ty 39
Tay 46
Ty 49

Table 2: 6 different H-orbits on Y exposed

We now state the main theorem of this thesis.
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Theorem 5.3 Let G be the Chevalley group of Lie type Er and of adjoint isogeny type over a
field GF(q) of characteristic 2. Let H be the subgroup of G of Lie type A7. Finally, let ~z4, be
the highest root of Lg, of adjoint isogeny type and define Y := {Fozd, g€ G}

Then there are exactly 7 H-orbits on Y.

The proof of this theorem will cover the remainder of this thesis and consists of a few parts.
In section 6 we introduce a direct sum decomposition of Lg, into two H-modules. In section
7 we construct a nice representation of these H-modules, for which we can associate H with
the special linear group. In sections 8 and 9 we set up the theory to compute the stabilizers in
H of the elements from each of these two submodules. Finally, in section 10 we use the direct
sum decomposition to compute the stabilizers in H of 7 explicit elements from Y, each having a
different stabilizer, thus each in a different H-orbit on Y. In section 11 information on each of the
7 H-orbits is summarized. Since the sizes of the 7 H-orbits sum up to the size of Y, we conclude
that there are indeed no other orbits then these seven.

Given the contents of this section, the following Corollary follows from Claim 5.1 or Theorem
5.3.

Corollary 5.1 There does not erist a distance-transitive graph with automorphism group E»(q)
and vertex stabilizer Av(q) -2 over a field GF(q) of characteristic 2.

6 An A;(q)-2-decomposition of Lg, into Ly, & W

Since we want to find the H orbits on Y and Y is a subset of Lg,, we are interested in the action
of H on Lg,. We will show that Lg, decomposes into a direct sum of two H-modules. Hence the
study of the H-action on Lg, can be split up into smaller studies of the H-action on each of the
two summands. '

All roots in ® (and thus also those in ¥) can be expressed as a sum of fundamental roots
a1,-..,a7 € ®. Foreachi=1,...,7 we define ¢; : & — {£0, 1, £2, £3} as the function taking a
root a € ® to the coefficient of the fundamental root ¢; in a. The roots in ¥ can be characterized
by looking at their second coordinate. Clearly

UV={ae®|cax) =0mod 2} ‘

and
P\¥={a€d|cx(a)=1mod2}

Now it is easy to prove the following lemma:

Lemma 6.1 Lg, = La, & W, where L4, is the Lie algebra of type A7 embedded in Lg, and W
is a 70 dimensional H-module.

Proof: Remember that Ly, is the subalgebra of Lg, generated by the root elements zq, (@ € ¥).
We define W := (z, € Lg, |a € @\ ¥). The action of H on L4, and on W can be described by
the action of its generators on the root elements of L4, and W respectively.

e The action of o5 on the root elements Tay,...,Zq, is given by 238 = z4,5. It is clear that
co(a;) = co(a;6) forall i = 1,...,7. Since o5 permutes the root elements and all roots are
linear combinations of the fundamental roots we conclude that =3’ € Ly, if g € L4, and
zF eWifzgeW.

e Let X,(t) € H. Since a € ¥, this implies that cz(a) = 0. Let x5 be an arbitrary root

element of Lg,. Then 2%=® is a linear combination of terms Tio+p Where1=10,1,2,3 (not

all terms necessarily occur). Now cy(ia + ) = ico(a) + ca(B) = c2(f) thus if zg € L4, then
z3*® € L4, and if z5 € W then 2,2 e W.

Thus LY, C La, and WH C W and Ly, = La, ® W as H-modules. | o
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7 The use of matrix representations

We wish to study the H-action on Lg, = L A, ®W (as H-modules). In this section we translate
this into the study of the SLg(q) - 2-action on sls(q) ® A*V (as SLg(q) - 2-modules) where V is the
natural SLg(g) module.

7.1 An explicit identification between L,, and sls(q)

Let My,q4(q) denote the matrix algebra of all d x d matrices over GF(q). We introduce elementary
matrices E;; € Myq4(q) fori,j=1,...,d (i # J) which have an entry 1 on position (%, j) and are
zero on all other positions. Thus

(Eij)ot = 0505t s, t=1,....,d. (1)

where (E;;),: describes the element on the sth row and ¢th column of the matrix E,;. The é;
denotes the Kronecker delta, returning the value 1 if i is equal to j and the value 0 otherwise.

Recall that sly(q) is the algebra of all d x d matrices over GF(q) with trace zero, equipped with
the Lie bracket ([M,N] = MN — NM for all M, N € sly(q)). It is well known (see e.g. [7]) that -
sly(q) is a Lie algebra of type Ag—_1.

We are interested in the Lie algebra slg(g). A Chevalley basis for slg (g) is given by

{Ey|1<i,j<8,i#j}U{Hi;41]1<i<T},

where the matrices Hj ;11 are defined by H; ; = |Ey;, Ej;]. They generate the Cartan subalgebra,
which consists of all diagonal matrices of trace zero.

The Lie algebra slg(g) is isomorphic to L4, and the isomorphism ¢: L4, — slg(q) maps the
generating elements of L4, in the following way:

¢(m0to) = E1,2, ¢’( )

(Tay) = E23, @(T-0,) = Ezg,
¢(za3) = E3,4, ¢( )

$(Tay) = E45, $(T—a,) = Esy,
¢(za5) = E5,61 ¢(

B3(Zog) = Es7, ¢(T—0s) = Eqg,
¢(xa7) = E7,8a ¢(x—a7) = E8,7-

Using the fact that ¢ is invariant under the Lie bracket, this determines ¢ uniquely. One readily
checks that the positive root elements all correspond to elementary upper diagonal matrices and
the negative root elements all correspond to elementary lower diagonal matrices. This isomorphism
is also made explicit in for example [7].

7.2 An explicit identification between A;(g) -2 and SLg(q) - 2

The set-up of slg(g) also determines an explicit isomorphism ¢ between its automorphism group
SLs(g) and the group A-(g) of all automorphisms of L A,- Recall that the group A;(q) is generated
by the elements X, (t) fora € ¥ and t € F,. Now since ¢ respects the Lie bracket, SLg(q) is
generated by the elements

$(Xa(?)) = lexp(tads,)) = exp(tady(z,))
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for a € ¥ and t € F,. Note that all elementary matrices ¢(z,) are nilp‘otent. Furthermore, we
have (¢(z4))? = 0 for all elementary matrices. Thus

H(Xo(t)(M) = exp(tadsie))(M)

(exp(t¢(2a))) ™ M (exp(t(za)))

(I +t¢(za)) " M (I + t$(za))
MU+6(a))

I

for all M € slg(g). We also write Xo(t) := I + t(zo). Thus SLg(q) is generated by the elements
Xa(t), corresponding to the generators X, (t) of A7(q), and it acts on slg(g) by conjugation. This
action is called the adjoint action.

We now extend ¢ to an isomorphism of H to SLg(g)-2. We define ¢ := ¢(wg). From the simple
form of the elementary matrices, it follows immediately that ¢: M+ M T for all M € slg(q). We
write H := SLg(q)- < ¢ >. Then ¢ establishes an isomorphism

H~H. (2)

Thus we can interpret slg(g) as an H-module through the above identification.

Let II := IIy. Remember that II = {ao, @1, 03, a4, a5, 06,a7}. Now let i, @ € II be the
fundamental reflections in SLg(g) corresponding to the fundamental reflections n,, a@ € Il in
Ar(q). Then 3 3 _

fig = Xa(1)X-a(—1)Xa(1) for o € Ily

and we compute 7i,, o € II explicitly:

0 1000000 100000 0 0
-1 0 0000 0 0 010000 0 0
0 01000000 0010060 0 O
. 0 0010000 . _|looo 100 0 o0
Mww=1 9 0001000 || ™= 000010 0 0
0 000O0T1T00 000001 0 O
0 0000O0T10 0000O0TO 0 1
0 000O0TO0 01 000000 -1 0

7.3 A simultaneous identification between W and A*V

Let V be the natural SLg(g) module with a natural basis v;,...,vs. Then A%V is the fourth
~ exterior power of V. It has a basis given by {v;;, Avi, Avig Avy |1 <11 <ip<izg<ig <8}
Since we work over a field of characteristic 2, the wedge product is independent of the order of
the factors, thus v;, A vy, A vy A vy, = vig Avig Avig Avig for all o € Sym({i1,12,13,%4}) for
1 S i17i27i3,i4 S 8.

The right action of SLg(g) on V induces a natural action of SLg(g) on A*V. For M € SLs(g)
and v;, Avi, Avi; Avg, € A%V, the action is determined by

M My Mo, My M
(viy Aviyg Avig A )™ =0 Ay Ay Avg, .

This action is called the alternating action®. Note that both W and A*V are 70 dimensional over
the finite field GF(g). We determine an explicit isomorphism 6 of H-modules between W and
A*V. We use the symbol ~ to denote that two elements are isomorphic (through the isomorphism
6). Let zo, ~ v1 Ava AugAvy. Forall § € &\ U there exist fundamental reflections wg, i =1,...,k
such that 8 = w; ... wk(ay). According to Lemma 2.5, this implies that there exist fundamental
reflections ny, ..., ng such that zg = 3%, We write ng := ng...n1. We now use the action of
N on the root elements to construct the isomorphism 6.

6Since the elements in SLg(q) simply act on the elements v € V through right multiplication by a matrix, we
also use the normal script notation vM for the image of v under the action of M € SLs(g).
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For all € ®\ ¥ we have
0(zp) = 6(zas) = (V1 Avg Avg Auy)™e,

establishing the isomorphism between the generators of W and the generators of A4V. By con-
struction, the group N acts on W in the same way that ¢(N) acts on A4V. The action of ¢ on
A*V is easily seen to be given by

S Uiy AVig AUig AUy 5 0y Avgg Ay A Vig

for all distinct ,...4g such that 1 < 41,...,ig < 8. Thus the group H acts on W in the same
way that H acts on A*V. Thus we can interpret A4V as an H-module through the identification
in (2). '

Lemma 7.1 There ezists an isomorphism vy of H-modules between L A, @ W and slg(q) & A*V.

Proof: Define the morphism v from L4, ® W to slg(q) ® A*V by its action on the generators:

_J #(za) ifae¥
V(xa)“{ Oee) foc®\ U

This morphism v is clearly bijective since both ¢ and @ are bijective. Both slg (g¢) and A%V can
be interpreted as H-modules through the same identification in (2) hence v is an isomorphism of
H-modules. (mi

Thus determining the H-orbits on Lg, is equivalent to determining the H-orbits on sls(q) DAV
Using the latter representation, in which H is almost” a matrix group, has the benefit that it allows
for easy and insightful calculations. ‘

8 The stabilizer in SLy(gq) of the adjoint action

The group SLq4(g) acts on slg(g) by conjugation. In the next subsection we look at the stabilizer in
SL4(g) of a matrix E;;. After that we determine the stabilizer in SL4(q) of & more general matrix
Eyj,+...+ E; ;, where all i) and ji are different and n > 1. Finally we determine the stabilizer
of the one dimensional vector space, spanned by such a matrix.

8.1 The stabilizer of E;;

Let Ej; be as in (1) for arbitrary but fixed 4,j = 1,...,d (i # 5). Since SLy(q) acts on sla{q) by
conjugation, its stabilizer in SL4(q) is given by

StabSLd(q) (Eij) = {M € SLd(Q) l MEij = EijM }

Now suppose M € Stabsy,g)(Ei;). Then in order for the two matrices M E;; and Ei; M to be
equal, they must be equal entrywise. Thus

(ME;j)st = (EijM)g

must hold for all s,¢ € {1,...,d}. Since E;; is very sparse we can simplify both sides;
8
(MEy)st = Y (M)ou(Bishue = (M)ai(Eij)iz = (M) iy
u=1

8
(EijM)st = Z(Eij)Su(M)ut = (Eij)sj(M)jt = (M)jt5is
u=1

"The involution ¢ on top, cannot be represented by a matrix.
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from which we obtain the simple constraint (M)g;6;: = (M);¢6is- Look'm'g at the possible values
of s and t this gives the following conditions on the stabilizing element M € SL4(q):

hd Miz':ij;
o M;; =0 for all t # j;
o My =0 for all s #1.

Since the elements E;; for ¢,7 € {1,...,d}, (¢ # j) are all conjugate in SLg(g), we can speak of
a standard form for the stabilizer in SL4(g) of an element E;;. We let this standard form be the
stabilizer of the element F; ; which is the subgroup of SLg4(g) consisting of matrices of the form

A ox ok % e %
0O X020 --- 0
0 =

Dol uM’

0 =

where X, p € FJ such that A2u%-2 = 1, the *-symbol denotes arbitrary values and the (d — 2) x
(d — 2) matrix M’ € SLg_5(q). This follows since det(M) = A2u?~2det(M') = det(M’).

8.2 The stabilizer of E; ;, +... + E;

We now describe the stabilizer of an element 7 := E; ;, + ... + E;_;, € slg(q) for distinct i, ji,
where k,l = 1,...,n. Note that 2n < d since all the indices must be different. Assume that
M € SL4(q) is the stabilizer of 5. Then M7 = TM and similarly to the computations in the last
subsection we obtain

(M)giy 615y + (M)giy Oty + - o« + (M)sin 0t5, = (M) 2051y + (M) jpe08i, + - + (M), t0si,

The conditions on M can be summarized as follows

ﬂjﬂ-

e M;;=0 forallke{l,...,n}, andt#j foralll € {1,...,n} (4)
. Mg, =0 forall k€ {1,...,n}, and s # 4, for alll € {1,...,n}; (5)
° Mikil = Mjkjl for all k,l € {1, . .,TL}. . (6)

In the previous subsection we introduced the notion of a standard form for the stabilizer of an
element E;;, being the stabilizer of the element Ej 2. (See (3).) In a similar way we now introduce
a standard form for the stabilizer of a general element E;,;, + ...+ Ej ;.

Lemma 8.1 LetT:= Eyon + Eson—1+...+ Enny1 for somen, 2 <2n < d. Then

AA *n,’r\l *n,d~2n
StabSLd(q) (5) = On,n AA On,d—2n

X ,d-2n _ \—2n
Od-2nn  *d—2n,n pM’ Ap ey, p =A

q

A€ SLn(g), M' € SLa_2n(a), } -

where 0; ; denotes the 1 X j zero matriz and *;; denotes an arbitrary i x j matriz over GF(g). The
matriz A is determined uniquely by the matriz A and is defined by

0 ... 0 1
A=NAN-!  uwhere N= o
0 1 .
1 0 ... 0

Note that the matriz A can be obtained from the matriz A by rotating it ovef 180 degrees.
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Proof: The general form of the first n columns of a stabilizing element follows from condition
(4). Moreover A € GL,(q) since the matrix has to have determinant unequal to zero. This is
equivalent to the condition that A € FX and A € SL,(q). The general form of rows n + 1 up to
2n of this matrix now follows directly from conditions (5) and (6). For each \ € Fx there is a
unique® element x € Fy such that the determinant of the total matrix A2 ud—2r = 1 Therefore
the sub matrix in the 1ower right corner has to have determinant u¢=2?", Hence the stabilizing
matrices have the above form. o

8.3 The stabilizer of the one dimensional vector space

In the specific cases that we study, we are not directly interested in the stabilizer of the mentioned
elements, but in the stabilizer of one dimensional vector spaces spanned by these elements. From
the above lemma we easily obtain the form of such a stabilizer.

Lemma 8.2 Let 0 be as in Lemma 8.1. Then the stabilizer of (¥) in SLq(q) is given by

AA *n.n *n,d—2n A !
) m , € SL,(q),M' € SLy_2.(q),
Stabgr,,(g)((0)) = On,n pA  Ong-2n A\ i, v enIF" At D O ®)
Od—2n,n *d—2n,n VM’ o . g |

where A is defined as in Lemma 8.1.

Proof: The matrices in Stabgy, () ({T)) map T onto a scalar multiple ¢ € Fy of itself. Thus for an
element M € Stabgy,,(4)((7)) it must hold that MT = &GM for some ¢ € F,. One easily sees that
condition (6) changes to

M. = EM, 5 for all k,l € {1,...,n},
introducing an extra degree of freedom into the matrix M. Note however, that since M needs to

be an invertible matrix we actually need ¢ € Fy, for if £ = O then for each k =1,...,n, the ix’th
column of M would consist of zeros only, and M would not be invertible. o

9 The stabilizer in SL;(q) of the alternating action

Let V' be the natural module of SLa(g). This action induces a right action of SL4(q) on A%V in
a natural way. In the next subsection, we investigate the stabilizer of an arbitrary basis element
Uiy A Vi, AV, Avi, € A*V (where the indices iy,..., 44 are all different). After that we determine
the stabilizer of sums of basis elements.

9.1 The stabilizer of v;, Av;, Avi; Ay,

Let v := v;; Avy, Aviy Avi, € A*(V) for arbitrary but fixed indices i1,...,44 (all different). Since
SLa(q) acts on A*V by right action, its stabilizer in SLy(q) is given by

Stabsy,(q)(v) = { M € SLa(g) [uM = v} (9)

8This element is unique up to a factor %~ 2¥/1.
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Suppose that M = (mur)1<k,i<s € SLa(g) stabilizes v. Then v M = g. Writing this out, we see
that

v M = (v A, Avgg Avi )M
= vy, MAv, M ANvi; M Ao, M
d d d d
= (Z mt’xklvkl) A ( Z mizkzvkz) A ( Z miskavka) A (Z mi4k4vk4)
k=1 ka=1 ka=1 ka=1

d d d d
= Z Z Z Z (T4 ky Wiy by Mhig ks Mhighea) Vs A Uk A Vkg A Uiy
ki=1ka=1ka=1ks=1

Let K denote the set of all (2) combinations of 4 elements from the set {1,...,d}. Since we work
over a field of characteristic 2, we can rewrite the above sum further;
Mk, Migky  Migky  TMijky

Mirk Misk Mink Misk, '
v M= E 2h etz TR TR Uk, A Ukg A Ukg A Uk, (10)
ks oo P B} EK Migk; Mligky Migky Migky
U1 kzka ke} Migky Tigky  Migks Mgk

We have used here that we are working over GF(q) which is a field of characteristic 2. Hence there
is no difference between addition and subtraction.

Now since the condition is that ¥ M = v, from (10) we obtain (%) different equations, one for -
each basis element. Thus

Miyky MMijky  Mhijky  Mijky

Mgk, Migk; Migks Migky | _ { 1 if vk, AUk, AUkg AUky = Uiy AUy AUig A, (1)
Mgk, Miigk, Migks Mgk, 0 otherwise
Migky Migky  Migky  Mighy
This means that the columns 4y, ..., 44 of M limited to the rows 4y,. .., 14 are linearly independent.
Moreover, all other 4-tuples of columns, limited to these rows, are linearly dependent. From this
it follows that column iz, k & {1,...,4}, limited to rows 4,...,144, is all zero, since this column is
dependent on every 3-tuple of the linear independent columns ¢1,...,44. As a standard form of
M we consider the stabilizer of the first basis element of A%V, v; A vy A vz Avg. This gives us the
standard form Mo
M = ( *d—4,4 j\’;;‘i )’ (12)

" where M’ € SL4(q) and M" € SLqg-4(q).

9.2 The stabilizer of vy, Avi,, AV, AV, + ...+ Vi, AV, AV, AViyy,

In this subsection we will look at the stabilizer in SL4(g) of a general element of A?V. Let
U= Uiy, AUy AViy g AUiy g+ o+, AVi, , AV 3 Avg, , be an arbitrary but fixed element from
A*V. Suppose that M = (mi)1<k,1<a € SLa(q) stabilizes v. In a similar way to the computations
in the previous subsection, we obtain an equation similar to (10):

mij 1k mij 1k2 mij 1k3 m’ij 1kg

7
v M= E E Mhijghy  Thijaks  Tijoks Ty kg Ugy A\ Uky A Ugy A U (13)
- K ko FokabeK i1 Mijaky  MMijgky  Mizgks  MMhijgky ! 2 s 4
{k1,ka, ks, ka} €K j= 'mij ak1 mij 4k2 mij ak3 mij akq

This again gives us one condition for each basis element;

n | saks Mhjiks Mijiks Mgk 1 if vy A vk, Avgg Avgy =
Z Mijoky Mok Mijoka  Mijokq | _ Vipa /\'Uipz /\’U,'pa A Vip 4 (14)
| Mk Mijgky  Mijgka  TMijzks for some p € {1,...,n}
Mij gk Mijgka Mijgks Mg gk 0 otherwise
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We do not work out this formula for all possible cases. We merely derived it to be able to use
it in specific cases we will encounter.

9.3 The stabilizer of the one dimensional vector space

Just as in the previous section we are not directly interested in the stabilizer of v itself, but in
the stabilizer of the one dimensional vector space (v). Since an element M = (mki)1<k,i<q from
the stabilizer must now satisfy vM = v for some £ € F, one easily sees that the conditions on M
described in (14) now changes into

n | MHjakr Mijaky Mijiky Mij kg § vk, Aviy Akg Avg, =
Mijoky  Mijaky  Mijaky  Ti; kg - Vipy NVip, A Vip g N4 4 (15)
Z 7| Migski Migks Mijaks Mgk for some p € {1,...,n} °
j= . . '
Mijgky  Mijaka Mijaky My 4k 0 otherwise
where £ € F,.

In the simple case, where v = v; A vy Avs A vy, it is easy to see that the stabilizer consists of
matrices M of the form

[ AM' 044-4
e i 16)

such that M’ € SL4(q), M" € SLa-4(q), and A, u € F) such that A\u?—4 = 1.

10 Representatives from the 7 A7(g) - 2-orbits on the root
elements of Lg,
We wish to determine the 7 stabilizers under the action of H of the one dimensional vector spaces

spanned by specific elements wy,...,wr, each isomorphic to an element from a different H-orbit
on Y through the isomorphism 7, introduced in section 7.3.

Name | Element y € Y ¥(y)
wy Tag Eq,
woy Tay v1 Avg Avg /\-v4
w3 Tag + T—as Eip4+vaAvsAvgAus
wy Togg T Zoy + Toagy + Toazg | Bra+ Eaa+vsAvgAvs Avg +v3 Avg Avr Avg
Ws Teagy T Tazy + Loy, + Teay+ | Vi AUs AUs AUz + 12 A s Avg Avg+
Tagy + Teogy + Teagy +T—ag | V3 AVs AV7 Avg + 13 Avg Avr A g
We Loy + Teq, ViIAUV AVIAVs+ 15 Avg Avr Avg
wy not explicitly known §vi Av2a AUz Avg +8%5 ANug Avg Awg, £ €EF2 \ Fy

Table 3: The correspondence between elements from Y and elements from slg(q) & A4V

The fact that the union of these 7 H-orbits on Y, corresponding to the elements wy, ..., wr
forms Y, follows from computing the corresponding H-orbit sizes and showing that these sum up
to the size of Y. Combining the results of the last two sections, we first determine the 7 stabilizers
under the action of SLg(g). In the end of this section we lift these stabilizers to stabilizers under
the action of H.
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e The element z,, corresponds to w; = E; . From (8) we obtain

( A X ok ok ok ok k% W
O o 0O0O0O0O0TO0
g* M € SLe(g),

%k
StabSLe(q)((wl)) = é 0 * AU,V E IF:, > .

0 = vM Vo= Aty
0 =

L\ 0 = J

Thus
|Stabsy,(q) ((w1))] = (¢—1)%¢°q|SLe(9)| = (¢—1)%¢**(¢* ~ 1)(¢* — 1)(g* — 1)(¢° — 1)(¢® - 1)
e The element z,, corresponds to wy = v; A vz A vz Avs. From (16) we obtain

AM  0sq )| MM’ €SLy(q)
b = . '
Stabsy,(g) ((w2)) { ( *g4 ATIM' ) , AeFy

Consequently
|StabsL(q) ((w2))l = (g — 1)g**(ISLa(@)])* = (¢ — 1)g**(¢* = 1)*(¢* - 1)*(¢* ~ )™

e The element To, + T—qg corresponds to wz = Eyz + v2 A vz A vg Avs. From (8) we know '
that the stabilizer of (Ey2) is

A % x %X % ok k% }
0 w O 0 0 O0O0 O
g* M € SLe(q),
%
StabsLy)((E12)) = | o « AuveFX, 3.

0 x vM v =A"tp!
0 x*

L\ 0 * )

Note that an element of this form maps Ej2 to A~!uE; 2 (this follows immediately by
letting a matrix of this form act on E) ). Thus within this stabilizer we also want to map
vy A vz Avg Avg to (A\"1p)ug A vz Avg Avs. Condition (15) restricts the structure of rows
2,3,4, and 5. In particular the 4 x 4 submatrix

u- O 0 0

* VM3 Vmig vmas
¥ VMol VmMagy VMas
¥ VMay VMmay VYmMgz3

of the above form, where m;; is the top left corner of the submatrix M, needs to have
determinant A~!u. The other columns will consist of zeros. Thus it is easy to see that the
stabilizer is given by

A ok % ok ok x % %
O o 0 00O0O0O
0 [ [80 8 || 2 e
* v
StabSLg(q)((wS» = ﬁ 0 x 0 0 0 )\a Hy V, § € ]F;(a &
0 =* * VP = Aﬂ_zaﬁs = )\_2M
0 * * EM”
. 0 %* * %* J
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Thus
|Stabsy,(q) ((w3)] = (¢ = 1)°¢°(¢*)*q(ISLs(g)))? = (g — 1)%¢*%(¢* — 1)2(¢® - 1)

The element T_qq, + Tay + T~a4 + T-ays COrresponds to the element wy = wy + w4 where
Wy = E14+ E23 and wg = v3 Avg Avs A v + vz Avg Avr Avg. From (8) we know that the
stabilizer of (wg) is

)\M *9 9 *9 4 M
__ 22 2 € SL2(g), M’ € SLq(qg),
StabgLe(q) ((W5)) = 022 uM 024 ApveFr vh = \-2 (2
04‘2 *4,2 VMI 3 ks q° - ,LL
The matrices of this form map Wz to (A~ u)Ws thus we look for those matrices in this
stabilizer, that map wy to (A™!p)ws.

We can write wy = v3 A vg A (vs Avg +v7 Avs). Since a stabilizing matrix of the mentioned
form already maps v3 A v to uuz A vg, we only require that it maps @y := vs A vg + v7 A vg
to A~}@y. We can interpret g as an alternating bilinear form in the following way.

Let U be the 4-dimensional vector space over F, whose generators uj, ..., uq correspond to

Vs, ..., Vs respectively. Now A*U can be identified with the field F o in the following natural
way:

a 1,5k, are all different

0 otherwise aelq, i,5,kl=1,...,4

au; Auj Aug Aug = {
Let wq: U x U — Fq act on U x U by @Wa(aus, Bu;) = of(ug Aug + ug A ug) Ay A uj.
This map is clearly bilinear due to the multilinear character of the wedge product, and since
u; Auj = —u; Awuy it is also alternating.

The stabilizer of a bilinear alternating form is well known and is just (defined as) the sym-
plectic group. (See e.g. [7]). Thus the stabilizer of ¥ is Spy(g). It follows that

AM %32 %24
StabgL,(g) ((ws)) = 022 puM 04
042 *42 vM’

M € SLa(q), M’ € Sp4(q),
M v e FX vt =271

and hence that .
[Stabsr,(q) (wa)l = (g — 1)%¢%°SL2(q)] - [SPa(a)| = (g — 1)%¢®(¢® — 1)%(¢* - 1)

The element T_ g5 + Tagy, + Tayr + Toaq + Taso + Toags + T—agy + T—ay coIresponds to the
element ws = Ws + ws where W := E1g + E27 + E36 + E45 and ws = v1 AUs Avg AUz + V2 A
Us A vg Avg + v3 Avs Avr Avg +vg Avg A vy Avg. From (8) we know that the stabilizer of
(ws) is given by

- AM  *44 M € SL4(q),
StabgL,(q) ((T5)) = { ( 155 ) ' )
sie 044 A™IM A €Fy

where M is the matrix obtained from the matrix M as defined in Lemma 8.1. Note that
matrices of this form map s to A~2wW5. Now we look at those matrices within this stabilizer
that map ws to A™2ws.

Claim 10.1 The matrices of the form

MM 044 1
M 17
{ ( 044 A'M ) ‘M € SL4(g), A € F, } (a7

stabilize (v).
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Proof: Suppose we have a matrix as in (17) where M = (m;;)1<;,j<4.

We already know that this matrix maps W5 to A™2wWg so in order for it to stabilize (ws) it
also needs to map ws to A™2ws. Hence it needs to satisfy the condition in (14) for each
basis element of AV. Note that all of the determinants of the 4 x 4 submatrices that occur
in these conditions have a factor AA\~% = A~2, which we divide out to obtain the following
simpler conditions.

— Consider the condition for the basis element vy A vs A vg A vy (which is one of the basis
elements occurring in wg):

my 0 0 0 ma1 O 0 0
0 mas my3 mg + 0 mas muz ma2 +
0 mas maz ma 0 mas maz ma2
0 m24a m23 ma 0 mia iz mi2
ma1 0 0 0 may 0 0 0
0 m™mas ma3z Ma2 4 0 m3q maz maz = 1
0 m2s maz ma 0 m2s maz m22
0 mia miz mi2 0 mua miz mi2

Since our calculations are all over a field of characteristic 2, the left hand side is exactly
det(M). Since M € SL4(q) this condition indeed holds. In a similar way one easily
checks that the conditions imposed by looking at the other basis elements occurring in
ws (i.e. v2 Avs Avg Avg,v3 Aus Avr Avg, and va Avg Avr A vg) also hold, since in all
these conditions, the left hand side can be rewritten as the determinant of the matrix
M, which is 1 by our choice of M.

— Consider the condition for the basis element vy A vg A v7 A vg not appearing in ws:

mi1 0 0 0 ma1 0 0 0
0 mas maz ma " 0 ™44 maz ma +
0 mas maz mar 0 m3s ma ma
0 mo4 maz ma21 0 mus miz mn
m31 0 0 0 ™mgey 0 0 0
0 mas maz ma + 0 maa mazz ma = 0
0 m2a m23 m2n 0 mzs m2z m21
0 mia miz mn 0 miua muz mn

This time the left hand side is easily identified with the determinant

mq1 M44 MMa3z M4l
m31 M34 M33 M31
m21 M24 MM23 M2
mn M4 M1z M

which is clearly 0 since the first and the last column are equal. Thus this condition is
satisfied. In a similar way one can check the conditions hold for all basis elements not
appearing in ws.

Thus if we write S := Stabg(q)((ws)), then

< AM - 044 | MeSLa(e) | o ( AM *4,3\) M € SLa(q),
04,4 AIM )\GIF; - = 04,4 A M AE]F; '

Now suppose that there exist a matrix 4 := (ai;)1<s,j<4 7# 0, a matrix M € SLy(g) and an
M AM

element A € F; such that ( 0 17

) € Stabgyg(q)({ws)). Since Stabgyy(g)({(ws)) is a
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group, this holds if and only if

( /\éu ,\é%)( /\—léwl AJTS-I ) =( é /\;4 ) € Stabgy,(g) ((ws)).

We focus on a matrix of this form and obtain restrictions on A.

In a similar way as in the proof of claim 10.1, one can show that A automatically satisfies all
relations imposed by the conditions in (14), except for one. The coefficient of vs Avg Avg Avg
needs to be zero and this is not automatically taken care of. This condition translates to

air a1z a1z Q4 a21 Q22 . QA23 Q24
_ 1 0 0 0 1 0 0 0
=10 1 0 olTlo 1 o o]|*
0 0 1 0 0 0 0 1
as1 asz as3 Qs34 @41 Q42 Q43 Q44
1 0 0 0 + 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

= ajq+ a3+ azz + aq41.

Note that the factor ) is of no importance here. Thus the stabilizer of (v) is given by

M € SLi(q), A € My 4(q), }

M AM
AeFy Alg+ Az + Asz + Ag1 =0

Stabgpq) ((ws)) = { ( Oue A-1IT

and
|Stabs,(q) ((ws))] = (g — 1)¢**|SLa(g)| = (g - 1)¢**(¢* — 1)(¢* ~ 1)(g* — 1).
The element z,, + xb_az corresponds to the element we = v1 Avy Avs Avg+vs Avg Avr A vs.

Claim 10.2 The stabilizer in SLg(q) of (ws) is given by

M 0 0 I
Stabsy.s(q)(<w6)) = {( Ous J\?’l ) ‘ M, M' € SLy(q) } < ( }1;4 0444 ) >,

and thus , :
| Stabsis(q) ((we))| = ISLa(g)|* = 2¢"3(¢* —1)%(¢® — 1)%(¢* — 1)%

Proof: Let M € SLg(g) such that M maps wg to Awe for some A € Fx. Write

(M M,
w0 o )

and let d; be the determinant of M; for i = 1,2, 3,4. Then from the conditions in (15) we
know that d; + d3 = A and dg + dg = ).

We first assume that d; = d; = 0. By developing the determinant det(M) to rows 5,6, 7,
and 8 it can be written as a sum of the determinants of 4 x 4 submatrices of the first four
rows of M, but these are all zero, hence so is det(M). This is a contradiction with the choice
of M. In a similar way one can show that it is impossible that d3 = ds = 0. Thus at least
M; and M, are both invertible or My and Ms are both invertible.

Now assume that d; # 0 and dg # 0. We define M’ by
Mo [ My My Mt Ose \_ (&L A
T\ M My 04 SaM! B &y )
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where 6,84 € F, such that 6} = d; and 6} = d4 and where A = 64MoM; ! and B =
81 M3MT!. Since the matrices 6; M; ! and §4M; ! both have determinant 1, one easily sees
that M maps wg to dws if and only if M’ maps wg to Awe. We can express each entry ai;
of the matrix A in entries of the matrix B, by using some of the conditions in (15) that
we did not exploit yet. Writing out the condition that is imposed by the set of columns
{1,2,3,4,4+ 1} \ {i}, we can immediately relate a;; to a minor of B in the following way:

aij = 87384(—1)"" det(By;) for all 1 < 4,5 < n.

Here Bj; denotes the matrix B without the j'th column and the i’th row. Hence A turns
out to be a scalar multiple of the adjunct matriz adj(B) of B. (See e.g. [26])

If we write out the condition imposed by the set of columns {%,5,6,7,8} \ (4 + ¢), we can
relate b;; to a minor of A in a similar way. Thus

A = §7%6,adj(B) and B = 6,57 %adj(A).

Now assume that both A and B are non-singular matrices. Then adj(A) = det(A)A~?! and
adj(B) = det(B)B~!. But then det(A4) = det(57364adj(B)) = 671264 det(B)® and in a sim-
ilar way det(B) = 8465 12 det(A)3, hence det(A) = 5;1263(5;15;112)3 det(A)° = 6732 det(A)°.
It follows that det(A) = 0 or det(A4) = J;. However, det(A) = 0 contradicts our assumption
that A is non-singular. Hence det(A4) = &1 and in a similar way we obtain det(B) = 6. But
now

0l A
B b4y

611y 67384det(B)B!
B A

6114 51643—1 =0
B 841y -

det(M') =

which contradicts the non-singularity of M’. Thus our assumption that both A and B are
non-singular is false and at least A or B has to be a singular matrix. Without loss of
generality we assume that det(A) = 0. We now use the following lemma:

Lemma 10.1 Let A,B € Mpn(K) for some field K and some integer n > 2 such that
det(A) = 0. Let A = C1adj(B) and let B = Czadj(A)) for some scalars Cy,Co € K*. Then
A=0and B=0.

Proof: Since det(A4) = 0 we have rk(A) < n. If rk(4) < n —1 then A has at least two rows
that are linearly dependent of the other n — 2 rows. But that means that all the (n — 1)
dimensional sub matrices of A are singular, and hence that B = Caadj(A) = 0. Thus clearly
A = C1adj(0) = 0 and thus also B =0.

If tk(A) = n—1 then B has at least a n—1-dimensional nullspace since adj(4)A = det(A)I =
0. But then rk(B) <1 < n —~ 1. Hence A = C;adj(B) =0 and thus B =0. O (lemma 10.1)

From this lemma, it follows immediately that A = B = 0 and hence that My = M3 = 0.
Now det(M) = det(M;)det(M3) = A? thus A = 1 since M € SLg(q). Thus the matrices of

the form v 0
{( 01 M, ) Ml,M4 € SL4((1)}

stabilize v. Now if det(M3) # 0 and det(M3) # O then one can show in a similar way that

the matrices of the form
0 M
{( 0) |t st}

stabilize wg. These matrices can be obtained from the previous ones, by right multiplication

with the element ( 040 1o )

Iy 044
Since we covered all possible cases, the stabilizer in SLg(g) of wg consists of the matrices
described above, hence the claim is proven. 0.
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e Consider the element wy = €v; Ava A vz A vg + £%v5 A vg A v7 A vg where £ € IF(;‘Q. Then
wy € A%V’ where V' := Ing and V' has the same basis v1,...,vs as V. Note that for £,
we have £7 = £ and the element wy is a scalar multiple of v1 A vg A vs Avg+vs Avg Avr Avg
hence they have the same stabilizer. However, if ¢ ¢ F, then w, is different from wg. We
call wy a twisted element. We are interested in this element w; because there exists an
isomorphism under which wy can be interpreted as an element of AYV. We first introduce

the necessary automorphisms to be able to perform the twist under which this isomorphism
holds.

Let 7 be the involution that acts on V' by right multiplication with the matrix Ny, where
Oaa (9714 2 . 54
N¢ = ( 8y ) for ¢ determined b = Fe.
c=( iy, Sou, ) ord y{'=¢  CeFgp
Since 7 permutes the basis elements vy, ..., vg of V', we can write the action of 7 on the
indices. Then 7 has a natural action on A*V’; it takes an element Vi, AUy, Av Avg, to
Viyr AViyr AVigr AV, . Moreover 7 also has a natural action on SLg(V’) by conjugation with
the matrix N;.

Next, let o be the Frobenius map defined on F,. by
o+ 19,

This map o acts elementwise on the matrices in the matrix algebra Mg g(q?). The map o is
clearly an involution since 29° = z for all z € Fg2. Since ¢ and 7 commute, o7 is also an
involution. For every mathematical object S on which o7 has an action, we denote the fixed
points of & under o7 by S,-.

We now determine the set of o7-fixed points of A4V, In the following Z denotes the set of
all 70 4-tuples I = {41,12,13,%4} from {1,2,3,4,5,6,7,8}, such that i; < iz < i3 < 4. Let
7’ be a subset of T of size 35, such that Z = Z' UZ'". Such a subset clearly exists since 7 is
an involution that maps each element from A%V’ to a unique complementary element.

(A4V’)UT = ({ Zfivil Avip Avig Ay, |§1 € 1Fq"’ })U‘r

IeT

= {D &, Avi, Avig Avg, | €1 €Fge 6] = &p, forall T€ T}
IeT

= { Z E1vi; AVig Avig A Uiy + &7 Vi r AVigr AVigr AViyr | €1 € Fg2 }
IeT’

Note that w7 € (A*V"),,. It now follows that |(A*V"),,| = (%)% = ¢™°. Since we also have
|A*V| = ¢°, there exists an isomorphism between (A4V"),, and A4V under which we can
interpret wy as an element from A4V,

Now let the coefficient £ in w7 be arbitrary but fixed in F ¢ \ Fq. Then the stabilizer in
SLs(g?) of {(wr) is given by

M 0 . ’
StabSLs(qz)((w?-)) = { < 044 ﬁ‘} ) ‘ M,M € SL4(q2) } < Ne>.

The proof is completely analogous to that of claim 10.2, except for that we need N¢ here
so that the coefficients £ and £? are switched around using the Frobenius map whenever 7 -
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interchanges v; A v Av3 A vy and vs A vg A vy Avg. Clearly N is invariant under oT, SO
(StabsLs(qz)((wﬂ))”

{(Ag 1\3) M,M’ESL4(q2))} < Ne>

- {5 | esan (38 ) = (9 )}
= {( A(;I Aga)lMESL4(q2))}-<N5>

= SLy(g%)- 2.

Notice that indeed det(M?) = (det(M))? = 1, since the determinant is a polynomial function
in the matrix entries and o acts as a homomorphism on these entries.

We need the result of the following claim to find the stabilizer in SLg(g) of (ws), where
SLg(g) acts through the isomorphism described in (18).

1

Claim 10.3
StabSLs(q) (v) = (StabSLs(qz)(v)),,..
Proof: First note that (Stabgrg(g2)(v))or = Stabgpg(e2),, (v). Thus we only need to prove
that SLg (qz)o'r = SLg(q).
We can characterize SLg(g) and SLg(q?) by

SLs(q) ={g9€Glg° =g}
and
SLs(¢*)or = {9€G g =g}
Lang’s theorem now states that for each = € SLg(g?), the map z — z~1z7 is surjective. (See
e.g. [30],{14].) But that means that there exists an z € G such that z~'z° = 77!, Consider
this z. Then z=1z°7 = 1, thus for all a € SLg(g?) we have that z~'z°ra = az™ 1z, hence
that a7 07’27’ = ¢=”" Using this equality, we see that

-1

-1 -1 _—1_=1 -1
a’ T =aa’°=a" &a® T=a 7% T=g"

Thus if a is stabilized under o then a® is stabilized under o, hence

SLB(q2)a‘r = (SLB(q))z (18)
which shows that these two groups are conjugate under an action from SLg(g?) hence they
are definitely isomorphic. O

Thus the stabilizer of the element wy, which can be interpreted as an element of A%V, is
given by
Stabsi, (q)((wr)) 2 SL4(g?) - 2
and
|Stabsr,(q) ((w7))] = 2¢*%(¢* — 1)(¢® - 1)(¢® - 1).

Determining the H-stabilizers

Note that we are not directly interested in the stabilizers of the elements wj,..., w7 under the
action of SLg(g), but that we wish to find the stabilizers under the action of H. The action of
¢ on the elements wy,...,w7 is shown in table 4. From this table and from the way the explicit
SLg(q)-stabilizers are computed, it is immediately clear that

Stabgy,(g) (wf) = Stabsp(q) (w)) foralli=1,...,7.

Hence it follows that

Stab g(w;) = Stabgsy,(q) (wz) 2foralli=1,...,7.
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<

1| w; w;
1| B2 Ezq
2| viAvzAvz Avg Vs A\ vg AUy Avg
3| E1p+vaAvsAvgAus Ey1+viAvgAvr Aug
4| E14+ B3+ B4y + B30+
V3 ANUg AUs Avg +v3 Avg Av7r Avg N AV AV Atlg + V1 Avg Avg Av
51 vi Aus Avg A vy +va Avg Avg Avg+ Va AUz AUg AUg + U1 Aus Avg Avr+

V3 Avs Avg Avg +vg Avg Avp Aug
Vi Avg Avz Avg-+vs Avg Avr Avg
Evi Avg Avg Avg + E9%s5 A vg Avp A vs

V1 AV Avg Ave +v1 Avg Avg Avs
Vs Nvg Avp Avg +v1 Avg Avs Ay
Evs Nvg Avy Aug + €% Avg Avg A vy

Table 4: The action of ¢ on the elements wy, ..., ws.

11 Summary of the results

In section 10 we determined the H stabilizers of 7 distinct elements wi,...,wr which can be
interpreted as elements from the set Y through the isomorphism v (see section 7.3 and table 10).
A description of the elements and their stabilizers can be found in table 5.

Name | Description of w; Description of
Stabz ({w;))

wy E1,2 ]F;s (IF; )2SL6 (q)Zg
wo v1Av2 Aus Ay F1F ¥ SL4(q)SLa(q)Zo
w3 Eia+vaAvzAvg Avg 1F32(]F;< )2SL3 (q)SLg(q)Zz
wy Eia+Eo3+v3 Avg Avs Avg +v3 Avg Avr Avg ]Fgo(IF‘;‘)2SL2 (9)Sp4(q)Z2
ws v1 Avs Avg Avr +va Avs Avg A v+ F3°F X SL4(q)Z2

V3 AUs Avur Avg 4+ vg Avg Avr Aug
We v Avg Avg Avg+vs Avg Avr Avg » _ (SL4(q)SL4(9))Z2Z,
wy §v1 Ava Avz Avg + €%s Avg Avr Avs, where € € Fpz \Fy | (SLa(q?))Z2Z:

Table 5: The different stabilizers of elements from.Y under the action of H.

These stabilizers correspond to 7 H-stabilizers of distinct elements from Y. Once we know
these stabilizers and their orders, it is straightforward to compute the sizes of the 7 H orbits,
corresponding to these stabilizers. (Using the Orbit-Stabilizer lemma.) The results are shown in
table 6, where we interpret the elements w; as elements from Y through the isomorphism . We
write P, =1+ g+ ¢% +... + g™ as an abbreviation.

In section 5 the set Y is identified with the set of right cosets of K in G. Since G = E7(g) and
K is the stabilizer of Fyz4, in G, the group K is easily seen to be the parabolic subgroup of type
Dg in E(q). Thus K = De(g)parab- The orders of both K and H are well known and given by

|E7(g)] = (~2’—q1—_—7)6163(q2 = 1)(¢° = 1)(¢® — 1)(g"° — )(g"% - 1)(¢™* - 1)(¢** - 1)

and
| D6(g)parab| = (-2—(]1_—1)3463(4 - 1)(¢* - 1)(g* = 1)(¢® - 1)(¢® - 1)(¢"* = 1)(¢® - 1).
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Name | |H/Staby ((w;))]| Degree

wy (g+1)(g®> +1)(¢* +1)Ps 13
wy (@2 —q+1)(g* + 1)PsPs 16
w3 (- 1)(g+1)%(¢® - ¢+ 1)(¢® + 1)*(¢* + 1) P4 Ps 23

wy (@-12% g+ 1)(® — g+ 1)(*+1)(¢* + g+ 1)*(¢* + 1)P1Ps | 28
ws (-1 (g+1)%(@* - g+ (@ + 1)+ g+ 1)(¢* + 1) PaPs | 32
We (¢ —1)q*%(¢® — ¢+ 1)(¢* + 1) Py Ps 33
wy (g —1)*q"(g+1)(¢* + ¢+ 1)PsPs 33

Table 6: The sizes of the 7 H orbitson Y

Since ¢ = 2P for some p, the initial factors return 1 hence the order of Y is given by

)= @220 -1 1)
@- D@ - D@ -1

Summing up the orbit sizes |(w;)¥| for i = 1,...,7 we see that |Y| = Y_;_, |(w;)*|. Hence the 7
H-orbits that we found on Y, are the only 7 that exist. This finishes the proof of Theorem 5.3,
and by doing so, it shows that the permutation action of E+(g) on the set of right cosets of A7(q)-2
in E7(q)) is not multiplicity free. According to Theorem 5.1 this implies that there does not exist
a distance-transitive graph with automorphism group E7(q) and vertex stabilizer A(q) - 2 (see
Corollary 5.1. '

11.1 Recommendations for future research

It is conceivable that- the results obtained in this thesis, can be applied to investigate another
open case in Table 1, namely that of the maximal subgroup 2 A-(q) of E7(q). Note that 2A47(q) is
obtained from A-(g?), by looking at the fixed points under the product of a graph automorphism
of A, and the Frobenius map. There was no time to investigate this in this thesis. However, I did
create an explicit construction in MAGMA of 2A47(q) as a subgroup of a group isomorphic to E7(q).
This implementation might be useful and can be obtained from the author®. Built-in functions in
MacgMa for the construction of twisted groups can be expected in the not too distant future!®.

%email: C.Krook@student.tue.nl
10y A.M. Cohen, S. E. Haller, S.H. Murray, and D. E. Taylor
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Glossary

The first table is a glossary of the used symbols. Note that some symbols may have more than one
meaning. From context it will always be clear which interpretation should be used. The second
table is a glossary of used notations.

Symbol | Explanation p.
A7, Dg, E7 | Lie types 5
v the element v = C,, (La,) 17
G Lie group of type E; over GF(q) 14
H Lie group of type A7 over GF(g), extended by graph automorphism o5 | 14
Lg, adjoint Lie algebra of type E; over GF(q) with root system & 14
La, adjoint Lie algebra of type A7 over GF(q) with root system ¥ 14
N the anti-diagonal identitymatrix, in particular N = N; 23
N matrix holding an element invariant 32
|4 natural SLg(g) module 20
X {Fv9|ge H\G} 17
Y | {Fu(za) g€ G) 17
T permutation character of the G action on X 17
p permutation character of the G actionon Y 18
o) the Frobenius map = — z9 ‘ 32
T an involution acting on V' by rightmultiplication with N 32
II a fundamental system 4
® root system of type Er 13
v root system of type A7, obtained as a closed set of roots from ® 14
wo the longest Weyl group element 6
S $(w®), where w? is the longest element in W (®) 21
v the isomorphism as H-modules from L4, & W to slg(q) ® AV 22

Table 7: Explanation of the used symbols. With first time of appearance.
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Notation Explanation p.
* an arbitrary value from GF(q)
*p g an arbitrary r x s matrix over GF(q)
0Ors a7 x s all zero matrix
1, a r X r identity matrix
E;; elementary matrix that has only zero entries, 20
except on the position (i, 7), which value is a 1
A the square matrix, defined by A = NAN1 23
K an arbitrary field 6
Fq, GF(q) a finite field with ¢ = 2P for some p 14
Fy Fs\O
SL4(q) the d dimensional special linear group, over GF(q)
Spa(q) the d dimensional symplectic group, over GF(q) (d even)
GL4(q) the d dimensional general linear group, over GF(q)
AV the fourth exterior power of V 21
a,0;,0,8; roots 4
To root elements of some Lie algebra 7
Xalt) standard generators of a Lie group 7
o+, &~ set of positive respectively negative roots of & 5
{a, B) the standard inner product of two roots
(x1, x2) the inner product of two characters 8
¥, character belonging to trivial linear representation of G 8
4 the Kronecker delta, returning 1 if { = j and 0 otherwise 20
(v) the one dimensional subspace Fgv
Sy the fixed points of a set S under a map o 32
Gy, Stabg(v) | the stabilizer of the element v under the action of the group G | 9,17
v@ the G orbit of the element v 3
H\G the set of right cosets of H in G: { Hg|ge€ G}
S\T the set S without the elements in T: {s€ S|s¢ T} 4
B a Borel subgroup of G ;
N a subgroup of G, related to the Weyl group W 8
W, W (9®) the Weyl group; the group of reflections of some root space @ 6
IN\T(V,E) | agraph ' =T(V, E) with vertex set V' and edge set £ 3
d(v,w) the distance between two vertices v and w 3
D;(T) {(v,w) eV xV|d(v,w) =1} 3
D;(v) {weV]d{v,w)=1i} 3

Table 8: Explanation of used notations. Reference to further explanation is included when relevant.
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A Subalgebras and subgroups originating from closed sets
of roots

Saying that ¥ is a closed set of roots means that it is a subset of ® satisfying that for all a,BeT
and for all positive natural numbers %, j we have ia + j8 € ¢ implies ia + j3 € .

Now given a Lie algebra Z =5 @ @u@ 8o, Where } is the Cartan subalgebra, restriction of ®
to ¥ gives a subalgebra M = § ® @, ¢ 8, of L. It can easily be checked that this is indeed a
subalgebra by looking at the generators:

o forall ho,hg € M we have [hq, hg] = 0 € M since both are elements of the Cartan subalgebra
b of M;

o for hq,zp € M we have [hy,zg] = Aa,g:ﬁg € M;
o for z,,2_o € M we have [24,7_o] = ho € M;

0 fa+pBgd
Na,g.’ta+g fa+p8ed® °
Thus in the first case 0 € M holds and in the second case we have oo + 8 € ® and thus
a+ (3 € ¥. Therefore 2445 € M and thus [z,,z4] € M.

e for z,,x3 € M we have [z4,25) =

Thus M is indeed a subalgebra of Z. This sub-structure is inherited in a natural way by moving
to Lie algebras Ik, My over an arbitrary field K. It also passes on to the corresponding Chevalley -
groups. Let Z(K) be the Chevalley group of type % over some field K. Then Z(K) is generated by
the elements X, (t) := exp(t ad z,) for all o € ® and all ¢t € K. Now define M(K) to be the group
generated by the elements X, (t) for all @ € ¥ and all t € K. Then M(K) is a subgroup of Z(K).
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B Other approaches

In showing that there does not exist a distance-transitive graph with automorphism group E7(g)
and the stabilizer of a vertex A-(q) - 2 for any ¢ = 0 mod 2, using character theory is not the only
path one can follow, and it is definitely not the first approach we have tried. In this section some
other approaches are explained. These approaches were not successful in this particular case, but
they might be successful in other cases. They are mostly useful to show non-existence of some
distance-transitive graph.

In the remainder of this section, we let G be the automorphism group of some distance-
transitive graph ' = (V, E) if it exists. Furthermore, H is the stabilizer of some element v € V.

B.1 The intersection array

With each (finite) graph, we can associate a collapsed adjacency diagram. These diagrams repre-
sent the structure of adjacency within a graph. Let I' = T'(V, E) be a graph with automorphism
group G. Fix a vertex v of G and define H = G,. (This is a similar situation as how we set up
graphs in section 3.1). The group H (trivially) acts distance-transitive on the H-suborbits of V.
Each H-suborbit consists of elements that are at a fixed distance of v. The collapsed adjacency
diagram for G consists of vertices, which we call circles, and directed edges, which we call arrows.

o The circles correspond to the H-suborbits of V, thus to subsets of V. Each circle is labeled
by its size.

e The special circle of size 1, corresponding to the set {v} is often represented by a small circle
or node.

o There is an arrow from circle i to circle j if some (and thus all) vertex in circle ¢ is adjacent
to at least 1 vertex in circle j. The arrow is labeled by the number of vertices in circle j,
that i is adjacent to.

e There are numbers above the circles that can be interpreted as the labels of an arrow from
that circle to itself.

Note that the higher the symmetry of the graph, the simpler the structure of the collapsed adja-
cency diagram. Looking at two extremes, on one side we find graphs I" with no symmetry at all,
thus for which the automorphism group G is the identity group. Obviously the stabilizer H := G,
of an arbitrary vertex v, is again the identity group and thus the H-suborbits correspond to the
vertices of I'. In this case the collapsed adjacency graph is isomorphic to the original graph.

On the other side we find graphs with a high level of symmetry, the Distance-Transitive Graphs,
the object of our interest. For these graphs the collapsed adjacency diagram has a very simple
form. ‘

Lemma B.1 For each Distance- Transitive Graph, its collapsed adjacency diagram is a path.

Proof: Let (v,u;) and (v,uz2) be two pairs of vertices of a distance-transitive graph T" such that
d(v,u1) = d(v,up). Then there must exist an element g € G such that g stabilizes v and uf = us.
But then %; and ug are in the same G, orbit thus they are in the same circle in the collapsed
adjacency diagram, hence there only exists one circle at each distance from v and the collapsed
adjacency diagram is a path. ]

As an example of the collapsed adjacency diagram of a Distance Transitive Graph we give the
collapsed adjacency diagram of the Petersen graph.

0 2
<=+ —=©
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Note that Distance-Transitive Graphs are not the only graphs for which the collapsed adjacency
diagram is a path. This also holds for the more general class of Distance Regular Graphs, of which
the Distance-Transitive Graphs are a subset.

All the information in this diagram can be stored as a sequence of numbers, namely of the
parameters in the diagram. It is however enough to only store the labels at the (real) arrows.
Note that the sizes of the circles and the numbers above them (the labels of the loops) can be
easily obtained from these and are thus redundant. We will make this more precise.

Lemma B.2 Let the collapsed adjacency diagram of a Distance Regular Graph be given by

q; a 4.1

a,
() (1) B N
€ ) €3 G- Ca

where d is the diameter of the (original) graph. This diagram can be uniquely represented by a
so-called intersection array

(bo,bl, ‘e .,bd_l; C1,Co ... ,Cd).

Proof: Let k denote the valency of the (original) Distance Transitive Graph. We then obtain:
eagi=k—-b—c fori=0,...,d;
® kb, =kip1ci0q fori=0,...,d—-1;
e bp=kandc =1.

Hence all the a;’s and k;’s can be computed from the information in the intersection array. |

The intersection array of the Petersen graph is (3,2;1,1).
We now give some necessary (but not sufficient) conditions on the parameters in the intersection
array, for it to give rise to a Distance Regular Graph.

Let T' be a Distance Regular Graph of diameter d and valency k with intersection array I =
(bo,b1,...,ba—15¢1,¢2,...,cq4). Define k; := |D;(v)| for an arbitrary but fixed vertex v and for

i =0,...d. Then I must satisfy the following conditions ([5]):
1. all parameters are non negative integers

2.k=by>b12by>...2bg_1>bg=0

dl=a<ea<ce<...<cg<k
4. iffi+j<dthenb; >¢
5. the sequence kg, k1, ..., kq is unimodal. This means there exist 1, j such that 1 = kg < k; <

. < ki=...=k;>...> kg Hence, the largest H-orbit is the only H-orbit that can
occur more than twice.

B.2 Invariants

A general technique that is used all throughout group theory, is that of finding suitable invariants
that reveal information on the structure of the module of our interest. In the search for distance-
transitive graphs, this approach can be used to obtain information on the H-suborbit structure of
some vertex set V. The idea is to find functions on the vertex set V that are invariant under the
action of H but not invariant under the action of G. In this way we can partition the vertex set in
such a way that each suborbit lies entirely within a single partition. By simultaneously looking at
more invariants it is possible to make the partitions smaller and therefore find more restrictions
on the positions of the suborbits. Since the actual invariants vary a lot from case to case, in this
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section we discuss some invariants for the particular case we studied. Hence in this section the
vertex set is denoted by X, analogously to the notation in the main part of this thesis.

The invariants we look for are all either functions on the set X.

e Commutation
Given an element w € X, v and w commute if and only if w € (L4,,v). If v and w commute
then v and wh commute for all A € H since [v,w] = 0 < [v,wh] = [vh,wh] = [v,w}h = 0h =
0. This leads to the invariant

Comm(z) := true iff [v,z] =0,
defined for z € X.

¢ Subalgebra
Given an element w € X we can construct a subalgebra of Lg, generated by the elements
v and w. Let’s write S(v,w) for this subalgebra. Then S(vg,wg) = (S(v,w))g, which is a
direct consequence from the fact that right multiplication with an element g € G respects
the Lie bracket. Thus this leads to the invariant

DS(z) := Dimension(S(v, x)),

defined for z € X. Other invariants are for example the direct sum decomposition of S(v, w)
or its nilradical or solvable radical or its centralizer.

¢ Centralizer J
The centralizer Cr,, (w) of w in L4, is a source for invariants under H. For an arbitrary
element w € X we have by definition Cp, (w) = {l € L4, |[l,w] = 0}. Fix this w and now
consider Cf,, (wg) where g € G. Then

CLA-,('wQ) = {l € La, ! [l’w9] = O}

= {leLlalllg™ ulg=0}
{l€Ly |llg™"w]=0}
= {kg€La,|[kw]=0}
= CLA,g‘l(w)g-

Now for g € H this simplifies further to Cp,,(w)g. Thus a possible invariant is
DC(z) := Dimension(Cy,, (z)),

defined for £ € X. Just as in the previous item regarding the subalgebras, other invariants
are for example the direct sum decomposition, the nilradical and the solvable radical.

Another source for invariants is the centralizer CLp, (S(v,w)). One easily checks that
Cra,(w) € CLg, (S(v,w)). Remember that (v, La,) = CLg, (v) thus this inclusion s trivial.
Now equality occurs if and only if there exists no ! € L 4, such that [v+1,w) = 0. If there is
such a | € L4, however, then the dimension of Cy, (S(v,w)) will be exactly 1 higher than
the dimension of Cr,, (w) since if there would be an I" € L4,, 1’ # l such that [v+1',w] =0
then also [v+ ' + v+ [,w] = [l +1',w] = 0 which implies | + !’ € L4, and thus v + !’ would
be linearly dependent of (CL,, (w),v +1). We obtain the invariant

DCS(z) := Dimension(C’LE7 (S(v,z)})),

defined for z € X.
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e Conjugacy class of the adjoint matrix

Remember that for all elements v,w € Lg, and any sutomorphism p € Aut(Lg,) we have
that [vp,wp] = [u,w]p. In particular the elements of the Lie group G act as automorphisms
on the Lie algebra Lg,. We also say that right multiplication with an element of G respects
the Lie bracket. Now let w be an arbitrary element from Lg,. Let moreover g €G.
Then (adu,)(z) = |wg,z] = [w,2g7 g = g~'(adw)g(z) holds for all z € Lg,. Thus in
particular the set X is partitioned by computing conjugacy classes of the adjoint matrices
of its-elements. We don’t use this partitioning directly, since testing for conjugacy of the
elements is hard to do. We will use this theory as the basis of a few more invariants.

e The Characteristic polynomial
For z € X we define its characteristic polynomial by

CP(z) := Det(ad, — M).

This function returns a polynomial P in A such that P(ad;) = 0. It is immediate that
CP(zg) = Det(adzg — M) = Det(9~'adzg — Ag~'Ig) = Det(g~'(ad; ~ AI)g) = Det(ad, —
Al) = CP(z) for all z € X and all g € G. Using the characteristic polynomial in this way
will however only create a trivial partitioning on X, namely all of X, containing all vertices
in X and thus also all suborbits. In stead of looking at the value of CP in an arbitrary vertex
x € X we can also look at its value in for example the vertices v + w, [v,w] and v + [v, w]
where v = Cr., (L4,) and w € X. Since elements h € H leave v invariant and trivially
move w around in the suborbit under H this will partition the set X into non trivial parts. .
The concrete invariants are then

CP(z) :== CP(v +z),CPy(z) := CP([v,z]) and CPs(z) := CP(v + [v,z]),
defined for z € X.

® The Jordan Decomposition

From Humphreys ([18]) we obtain that for all a € End(X) there exist unique a,,an €
End(X) such that @ = as + an, a, is semisimple, a, is nilpotent, a, and a, commute.
Moreover there exist polynomials p()),¢(}) in one indeterminate, without a constant term,
such that a, = p(a),an, = ¢(a). In particular, a; and a, commute with any endomorphism
commuting with a. This decomposition a = a, + a,, is called the additive Jordan-Chevalley
decomposition or simply the Jordan decomposition. Since conjugation with an element g € G
of an element in End(X) leaves nilpotency and semisimplicity invariant we have that the
Jordan decomposition of g~'ag will be given by g~lag = g~la,g + g lang for all g € G.
Since ad; € End(X) for € X this now brings us to define

JD(z) := The polynomial p as defined above with respect to the Jordan decomposition of ad,

for z € X. It is immediate now that JD(zg) = JD(z) for all z € X and g € G. Just as
with the characteristic polynomial, looking at JD(z) for all z € X will only give the trivial
partitioning of X. Again we introduce three concrete invariants

JD(z) := JD(v + z), JD2(z) := JD(|v,z]) and JD3(z) := JD(v + [v,x]),
defined for z € X.

¢ Nilpotency

Let o € End(X) and let its Jordan decomposition be given by a = a; + an. Let moreover
as = p(a) and a, = g(a) according to the earlier description. Then by definition a is
nilpotent if and only if a, = 0, thus if and only if g(\) = 0 and thus p()) = A. Although
nilpotency is an invariant, it follows from the previous remark that z € X is nilpotent
if and only if JD(z) = A, thus the invariance of nilpotency is covered by computing the
Jordan decomposition using the functions JD; defined earlier and need not be considered as
a separate invariant.
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B.3 Self paired orbits

Finally we discuss a constraint on the H-orbits on the set V x V. The group G acts in a natural
way on the set V x V. The orbits on this set of pairs are called orbitals. An orbital O is self-
paired if (z,y) € O = (y,z) € O. Since we are looking for a distance-transitive graph, which is
by definition an undirected graph, we require the edge set E to be self-paired. Note that E is
determined uniquely by pointing out an H-suborbit S; of V as the neighbour set of an arbitrary
but fixed vertex v. Then (v,w) € V x V is an edge for all w € S;. Since the group G acts
transitively on the set of edges this determines all of the adjacency relations in the graph. The
edge set E can be written as E = {(z,y) € V xV|(z,y) = (v,w)? for some g € G,w € S;}. Now
what does it mean to require that the edge set is self-paired? This is equivalent to the condition
that (w,v) is an edge for all w € §;. Thus that there exists a g € G such that (v,w)? = (w,v).
Let’s pick a w € 81 and assume that we have a ¢ € G such that v? = w. Since v is stabilized by
H this means that v"9 = w for all h € H. In order for self—Pairedness to hold, we now require
wh9 = v for some h € H. Or equivalently we require that v9 € Si.

It is not enough to check edge set for self-pairedness. The set D;(T) = {(z,y) € VxV|d(z,y) =1},
consisting of all pairs of vertices at distance 7 of each other, has to be self paired for alli =1,...,d,
where d is the diameter of the graph. Again D; is determined uniquely by pointing out a set S; at
distance i of the vector v. G acts transitively on all sets S; for i = 1,...,d. Note that each H-orbit
is fully contained within in some S;, but need not be equal to it. Some H-suborbits may be fused
in the same set S;. As a result we cannot be sure yet that the H-suborbits will correspond to
different distance sets. Testing for all the H-suborbits whether they lead to a self-paired distance -
relation with v tells us more.

In case the orbits are small, this can easily be verified by computing the orbit of one of the two
elements and apply membership testing to the other element and this orbit. If the orbits are big
however, it might be impossible to compute the orbits explicitly. We mention a slightly more
efficient algorithm in case we expect two elements to be in the same orbit. In stead of computing
the orbit of one of the two elements and checking for membership of the other element in this
orbit, we now simultaneously start computing the orbits of both the elements, while we look for an
intersection of these orbits. If an intersection is encountered, the two elements were in the same
orbit. The overlap will in general be found faster than a full orbit would have been computed.
Note however that if the elements are not in the same orbit, this algorithm works slower than
computing the full orbit of one of the two elements and checking for membership of the other
element in this orbit.

Note that in the case that we study in this thesis, the H-suborbits are too big to be fully computed,
so the proposed algorithm seems to be our only (computational) hope for determining if the H-
suborbits that we have found explicitly are self-paired. However, since our case is also much too
big to be dealt with by this algorithm, looking at the self-pairedness of suborbits is not the path
we follow.
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C Using Magma to show non-existence of a distance-transitive
graph ‘

When one wants to see if there exists a distance-transitive graph which has Altg as its auto-
morphism group and in which Sym, (which is a maximal subgroup of Alts) is the stabilizer of
some vertex in this graph, using pencil and paper will (hopefully) be enough to come up with
the graph J(6,2) (this is the Johnson graph: the vertices are all 15 unordered pairs from the set
{1,...,8}, two vertices are connected if and only if their intersection is empty (see e.g. [17])) asa
distance-transitive graph. However, in more complex cases, where the groups are very large, like
in this thesis, a computer program like MAGMA , can be very useful to aid in the computations.
A variety of functions and options are at hand to do nice calculations on these groups, which help
to obtain more insight into possible graph structures. However, using a computer program to do
calculations also brings in a factor of uncertainty about results, since software might be bugged.
Since I was the first user (tester) of the recently developed LIE THEORY package in MAGMA , I
had to deal with a number of problems, that I will describe in this section.

C.1 Encountered problems

In this section I will discuss the main problems that I encountered using MaGMA (see [1]) for my
research. The version of MAGMA involved is V2.10-15.

First there was a number of errors in MAGMA functions that I noticed, resolved and/or notified -
MAGMA about,

* The function Centralizer(L,K) for a Lie algebra L and a subalgebra K of L was very
inefficient. Its running time was exponential; I adapted this function to run in polynomial
time. Scott H. Murray implemented this new version of the centralizer function into MAGMA
and it is now available.

It is now also possible to compute Centralizer(L,1) directly for some Lie algebra L and
an element [ € L.

e The function SolvableRadical(M) would not work correctly in all cases. One of the cases
it which it would return an error, was when M = SolvableRadical(M). This problem is
resolved in the new release of MAGMA . :

* There existed two functions SemisimpleLieAlgebra(N,k) and SemiSimpleLieAlgebra(N,k)
that would, without further specification return different objects, when called with the same
arguments. The former would return the adjoint Lie algebra and the latter would return
the simply connected Lie algebra. In the new release of MAGMA only the first function
SemisimpleLieAlgebra(N,k) exists, using a parameter to determine which Lie algebra will
be returned. It standards returns the adjoint Lie algebra. The implementation of the new
version is done by Scott. H. Murray. ’

* The MAGMA manual (see [1]) did not give correct descriptions of some functions (for in-
stance Weylgroup(L), IsAbelian(L)) and covered functions that are not recognized by
MAGMA (e.g. ReductiveLieAlgebra(R,k), SetNormalizing( G,BoolElt)). I notified
MAGMA about these errors.

Then there are some functions/options that MAGMA lacks.

e Twisted groups of Lie type have not yet been implemented, though a standard implemen-
tation can be very useful. This is work that is currently in progress and will hopefully be
available soon. For my calculations, I created a twisted group of type A as a subgroup of
a group of type F; manually. :
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Even though computers can perform calculations much faster than humans can, unfortunately
there are problems that are still much too big for them. In this thesis I often reached the limits
of what the computer could compute/store, forcing me to think of different approaches to tackle
my problem. A program like MAGMA will always remain a tool, that has to receive intelligent
input, before it is able to return an answer. Still it shows how important it is that functions are
optimized for speed, and mathematical structures are optimized for storage space.

C.2 Testing Magma functions for constructing Lg, of adjoint isogeny -
type over GF(2)

I want to say something about the theoretical concept of the isogeny type of a root datum, which
can be used to construct different Lie groups of the same Cartan type. In MAGMA this concept is
also used to construct different Lie algebras of the same Cartan type (but corresponding to root
data of different isogeny type). See {1]. For the Lie algebra Lg, over GF(2), I checked whether the
Lie algebra constructed for a root datum of adjoint isogeny type is really a Lie algebra. Moreover
I checked if the corresponding Lie group is really a Lie group and acts on the Lie algebra in the
correct way.

There are more ways to create a Lie algebra in MAGMA . One can create a so-called Simply
Connected version or an Adjoint version. See for more theoretical information on this, Section 4.3.
It is well known that the Lie algebra Lsec which has the Chevalley basis is indeed a Lie algebra
over an arbitrary field, hence also over GF(2). Our concern lies with the status of the Lie algebra
Lsq. In MAGMA we can set up an Adjoint Lie algebra with its corresponding Lie group and its .
representation by the following series of commands:

R := RootSystem("E7” : Isogeny := "Ad");
Ly := LieAlgebra(R,GF(2));
Gaq := GroupOfLieType(R,GF(2));

= AdjointRepresentation(G);

The question we’d like to address here is whether the functions creating L 44, the corresponding
Lie group G aq and its representation p on Laq are defined correctly when working over the field
GF(2). In order to check this we need to check four conditions.

1. L aq is indeed a Lie algebra;
the elements of the Lie group are well defined elements over the field GF(2);

the generators of the corresponding Lie group G a4 satisfy the Steinberg relations;

Ll

the action of the Lie group on the Lie algebra, through the representation p leaves the Lie
bracket [, ] invariant.

Ad 1: In order to check that L 44 is indeed a Lie algebra, with basis B 44, we check whether its
basis elements satisfy the relations that are defining for a Lie algebra.

o [z,z] =0 for all x € Bag
o [z,y]+ [y,z] =0forall z,y € Bag
o [&, [y, 2l + v [z: 2] + [, [z, y]] = O for all z,y, 2 € Bag

Checking in MAGMA that these relations hold for the basis elements Lyg.1,...,Lxq.133 is straight-
forward and shows that Lag is indeed a Lie algebra.

Ad 2: In general Lie group elements X, (1) are defined by X, (1) := exp(ad,,) and writing
this expression out gives X.(1) = 1 + ad, + 1/2(ads,)? + 1/6(ad;, )% + .... Thus we need to
check for each Lie group element X;(1) € Gaq that it is well defined. This means that all the
terms of X;(1) should be integers. Let Lrqs be the Lie group of type E7 over the rationals. Using -
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MAGMA we compute the adjoint matrix of all the basis elements of Lrats that are not in the
Cartan subalgebra and find that their squares are all equal to zero modulo 2, meaning that for all
i, Xi(1) only consists of the first two terms which are automatically integers. The fractions that
occur in later terms are all cancelled by multiplication with zero.

Ad 3: The group G4 is generated by the elements X1(1), X2(1),..., X126(1). In MagMA
these elements are obtained by X;(1) := elt < Gpa| < 1,1 >> fori=1,...,126. If these elements
satisfy the Steinberg relations G 44 is indeed a Lie group. In (7] we find the following Steinberg
relations

o Xr(t1)Xr(t2) = Xr(t1 +12)
Over GF(2) this relation is trivially satisfied if ; = 0 or ¢, = 0 since X-(0) = 1. Now
assume that t; = ¢ = 1. The only relation to check is then that X;(1)X;(1) = 1 which is
easily shown to hold for the basis elements using MAGMA .

o [Xo(u), Xr (&)} =1 j50 Xir+je(Cijrs (~t)'0/)

If u =0 or ¢t = 0, this relation is trivially satisfied. Now assume v = t = 1. The relation
can be simplified to [X,(u), X (t)] = Hi’ >0 Xir+js(Cijrs). Looking at the coefficients Ci;rs
allows us to simplify this computation even more. According to (7] Cazrs = 1/3Mry5r0 =
1mod 2 and Ca3rs := 2/3M,4r,s,2 = 0 mod 2. Furthermore Cjy,s = Myg; = (p;.”) where p is
the largest integer such that s —pr is a root and Cyjrs = Myp; = (q“j” ) where g is the largest
integer such that r — gs is a root. These coefficients are easily computed using MAGMA (or

even by hand) and these relations indeed hold for the generators of the group Gagq. ‘

® H.(t1)H.(t2) = Hy(t1t2), tit2 #0 (
The condition t1¢; # 0 implies we’ll only need to check the relations H,.(1)H,(1) = H(1).
- Since Hr(t) = nr(t)nr(~1) and n.(t) = X () X—r(~t 1) X, (t) we have H,.(1) = n.(1)n.(1) =
Xr(1)X-r(1)Xr(1)X,(1)X (1) X(1). Since all the basis elements X;(1) satisfy the first
Steinberg relation, we can rewrite H, = 1 by recursively rewriting the middle product on
the right hand side of the expression to 1. Thus this relation is trivially satisfied once the
first Steinberg relation is satisfied. There are no extra checks needed in MAGMA .

Ad 4: The basis elements X;(1) act from the right on the basis elements of the Lie algebra
through the representation p. It needs to be checked though, if this action respects the Lie bracket,
thus if '

[Lip(Xk(1)), L-jp(Xk(1))] = [L.i, L.jlp(Xk(1))

for all 4,5 =1,...133 and k = 1,...,126. This again is a very straightforward check. Also this
condition is easily shown to hold by computations in MAGMA .

We can conclude that the implementation in MAGMA of the so-called adjoint Lie algebra works
fine over GF(2).
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