EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Automatic control for adaptive time stepping in electrical circuit simulation

Verhoeven, A.

Award date:
2004

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/eefd0076-36ea-427b-bc37-081ac3366479

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computing Science

MASTER’S THESIS

Automatic control for adaptive time stepping
in electrical circuit simulation

by
A.Verhoeven

Supervisor: prof.dr.ir. M.L.J.Hautus, dr.E.J.W.ter Maten
Eindhoven, December 19, 2003

Abstract

The group Philips Electronic Design & Tools, Analogue Simulation provides the circuit simulator
Pstar, which can perform a transient analysis on electrical circuits.

DAE solvers are used to find the numerical solution of this transient analysis. Pstar uses the
Nordsieck version of the BDF method as DAE solver. For onestep methods, the local truncation error
only depends on the last stepsize, but for muitistep methods, this error is also dependent on previous
stepsizes in a nonlinear way. Adaptive stepsize control and order control is used to control these errors
of the numerical solution.

In connection with the articles of prof.Soderlind, this MSc Thesis investigates the possibilities
of a control-theoretic approach to stepsize control. The purpose was to design smoother controllers,
such that also the error and stepsize-sequences become smoother, which is useful for optimization.
For onestep methods, it appears that the stepsize control process can be viewed as a digital linear
control system for the logarithms of the errors and steps. This means that the logarithm of the error
depends linearly on the logarithms of the previous stepsizes and an additional disturbance, which is
nearly independent on the stepsizes. From a control-theoretic point of view, the goal is to keep the
error close to a reference level with use of the stepsizes as input. For the BDF-method, which is a
multistep method, this process can only be approximated by such linear control system. There are
two approximation levels: the first level corresponds with the onestep model and the second level is
derived by linearization techniques.

If the stepsize control process is correctly modelled, a finite order digital linear controller can be
designed. This design depends on the wanted controller specifications, such as the poles of the closed
loop dynamics. Also the adaptivity or prediction order of the stepsize controller can be determined.
Furthermore, the controller can be designed with filter properties with respect to the error or the
stepsize sequences. Because the computation of the control parameters can be rather complex, this -
has been implemented.

Constraint validation appears to be an important property of a stepsize controller, because it guar-
antees that the next stepsize will be accepted; if the process model is correct and the disturbance varies
not too much. It is also possible to use nonlinear controllers with the same linearized behaviour, which
don’t need the assumption that the process model is valid for constraint validation.

From the results, it appears that for nearly all tested circuits, it is possible to design better linear

controllers than the deadbeat controller, which is used by Pstar itself. For stiff problems, constraint
validation is a necessary property, because it reduces the numbers of rejections. However, for non-
stiff problems, one could use smooth controllers with all poles equal, which don’t have oscillatory
behaviour. For some circuits, the controllers based on model two perform better. It appears that
stepsize filters can be preferred above error filters. The stepsize filters are useful, if the error and
stepsize sequences have high-frequent behaviour. Predictive control worked badly, in comparison
with the other controllers.
" Further research could be done on the combination of order and stepsize control, control of the
Newton-Raphson method and the application of optimal control and system identification. Also the
used error estimate could be important, because it must satisfy the process model for the local trun-
cation error. Adaptive stepsize control in combination with multirate has to be investigated more
profoundly.

Preface

This MSc Thesis describes the results of my MSc project for the Technische Universiteit Eindhoven.
The project has been performed in cooperation with Philips Electronic Design & Tools / Analogue
Simulation (ED&T/AS), which is headed by Jan van Gerwen. I have worked on the circuit simulator
Pstar, which is provided by ED&T/AS. My supervisors were Malo Hautus! and Jan ter Maten?.

I would like to thank everybody, who supported me to write this MSc Thesis. In particular, I mean
Jan ter Maten and Malo Hautus for their kind support, during the whole project. I am also gratefully
to Bob Mattheij? and Theo Beelen*, who spent a lot of time with reviewing this thesis. Furthermore,
Jos Peters and Roland Hermans are thanked for their help with the numerical experiments for Pstar.

Besides these people, I would like also to call explicitly Jan van Gerwen, Els van Duren, Jaap
Fijnvandraat and also all other members of the group ED&T/AS.

1Professor System Theory at the Department of Mathematics and Computing Science of the TU/e.

2Employee of ED&T/AS and scientist Scientific Computing at the Department of Mathematics and Computing Science
of the TU/e

3Professor Scientific Computing at the Department of Mathematics and Computing Science of the TU/e.

4Project leader of Pstar.

Contents

1 Introduction

1.1 Motivation for the project
1.2 Formulation of the problem
1.3 Guideline to document

2 Dynamics of electrical circuits

...........................

2.1 Imtroduction e e
2.2 Mathematical model of electrical circuits
22.1 Theory of electrical circuits

222 Networkanalysis

223 Modifiednodal analysis

2.24 Contributions of componentstoqandj

2.3 Analysis of electrical circuits L
23.1 Directcurrent analysis e

- 232 Smallsignalanalysis
23.3 Transientanalysis

2.3.4 Periodic steady-state analysis

3 Numerical analysis of differential-algebraic equations-

3.1 Imtroduction e
3.2 Theory of differential-algebraic equations.
32.1 Initialvalueproblem
322 Stability e
323 Indexof DAE’s e
3.3 Numerical methods for ODE’s,
33.1 Generalintegrationmethods
332 RungeKuttamethods.
3.3.3 Linear Multistep Methods with fixedstep
334 TR-BDF2method
3.4 Numerical methods for DAE’S
34.1 Convergent numerical schemes for DAE’s
34.2 Linear Multistep Methods
34.3 Backward Difference Method L.
34.4 Numerical Difference Methods
345 Multirate approach Lo Lo
3.5 Newton-Raphsonmethod

~N NN

o0 o0 o0

13
15
18
18
18
18
19

20
20
20
20
21

23

24
24
26
30
37
41
41

51
55
60
62

3.5.1 Description of themethod e 62

3.5.2 Application to numerical schemes for DAE’s 63

4 - Adaptive stepsize control 64
41 Introduction 64
4.2 Description of adaptive stepsize control 64
421 Onestepmethods 64
422 BDFmethods e 66

423 Stability e 67

424 Classicalapproach i uniene... 67

4.2.5 Specifications of a good stepsize controller 68

42.6 Availableliterature L e 69

427 Ordercontrol e e e e e e e e e e 70

4.3 Theory of digital linear control systems 71
43.1 Controllermodel 72

432 Closedloopdynamicsttt 72

4.4 Control-theoretic approach to adaptive timestepping 75
441 Introduction i it e e 75

4.4.2 Process models of local discretizationerror 76

443 Plcontrol e e 78

4.4.4 Design of finite order digital linear controller 85

4.4.5 Nonlinear controller for the process modeltwo 95

5 Numerical experiments 99
5.1 Imtroduction 99
5.2 Experiments with the Runge Kutta method in MATLAB 99
52.1 Descriptionofthemethod 99

522 Testproblem e e e 101

5.3 Experiments with the BDF-methodin MATLAB 107
5.3.1 Description ofthemethod oL L. 107

5.3.2 Linearelectrical circuit oo L 108

533 VandePolequation 115

5.4 Experiments with the circuit simulatorPstar 120
5.4.1 Description of themethod 120
5.4.2 Linearelectrical circuit L 121

543 VandePolequationol 125

54.4 perfmos7_qubic6953 Lo 129

545 BIM2 ... e e 130

546 SramM e 132

547 perfmos9.cl00.7342a 132

6 Conclusion 135
6.1 Conclusion i e e e e e e e e 135
6.2 Furtherresearch e 137

A Implementation of stepsize controller in Pstar
A.l Important parameterst e e
A2 Timesteppingalgorithm,
A2.1 Ermorestimation
A.2.2 Adaptive stepsize control inPstar L.
A.3 New stepsize controller forPstar
A4 Algorithm e

B Pstar-MATLAB-interface
B.1 Imstallation
B.2 ApplicationtoPIcontrol
B.3 Otherpossibilities

C Implementation of NDF-method in Pstar
C.1 Implementing NDF-methodsinPstar.
C.1.1 BDFinPstar e e e
C.1.2 NDFinPstar e

138
138
139
139
140
141
141

Chapter 1

Introduction

1.1 Motivation for the project

Integrated circuits or chips are (large) electrical circuits, which react on input sources. The dynamics
of the chip determine the behaviour of the chip. These chips can be used as controllers or other
signal processors. Nowadays, they are very important and are used in many applications'. Circuit
designers make chip designs such that the resulting chip has the wanted behaviour. To reduce the costs,
software packages are made, that can analyse chip designs. These tools can perform several types of
circuit analysis, such as direct current analysis, small signal analysis or transient analysis. In practice,
transient analysis is an important analysis, because then the full nonlinear dynamics of the circuit
are analysed. The circuit simulators use mathematical circuit models, which can be derived from the
theory of electrical circuits. These models can be described by differential-algebraic equations.

Because Philips is also a chip manufacturer, it needs also tools to analyse the designed integrated
circuits. The group Philips Electronic Design & Tools, Analogue Simulation provides several tools,
among others the analog circuit simulator Pstar.

The graduating project ” Automatic Control for Adaptive Time Stepping in Electrical Circuit Sim-
ulation” has been performed to improve the transient integration by Pstar. I have studied the possibil-
ities of automatic control for adaptive time stepping for solving the differential-algebraic equations of
an electrical circuit.

1.2 Formulation of the problem

Differential-algebraic equations (DAE’s) describe the dynamic behaviour of electrical circuits. There
are several numerical procedures to compute the numerical solution of these DAE’s. All these methods
discretize the time and compute the solution on the time grid with the help of integration methods.
Of course, this numerical solution will not be equal to the exact solution. With the stepsizes, it is

.possible to control the errors. Therefore, the most numerical solvers use control laws for the stepsizes.

It seems however that little mathematical attention is payed to this control logic, in contrast with
the discretization methods. That is the reason why Gustaf Séderlind? proposed a control-theoretic
approach of time step control, which is called adaptive time-stepping. He claims that integration
methods with use of adaptive time-stepping yield smoother stepsize sequences, fewer rejected steps,

ISee Fig. 1.1.
Zprofessor at the Department Numerical Analysis of Lund University

" Figure 1.1: An AD-converter for audio of ANALOG DEVICES.

more efficiency, while the total work will not grow significantly. It is also possible to design the
stepsize controller for special purposes as higher order of adaptivity (for smooth ODE problems) or
filtering the high-frequency error components (for non-smooth problems). This controlled timestep
variations are also claimed to be less sensitive with respect to parameter variations than in classical
time integration procedures. Hence, the results obtained with automatic control will be more robust
and better suited for optimization purposes than before.

The main purpose of the project was to explore the possibilities of automatic control for adaptive
time stepping for solving the DAE of an electrical circuit. A comparison has been made between the
results of a classical solver and an adaptive solver.

1.3 Guideline to document |

In chapter two the dynamics of electrical circuits have been formulated as a DAE. It is considered
how the DAE can be derived from the physical laws for the electrical circuits. Furthermore, several
kinds of circuit analysis have been enumerated. Afterwards, in chapter three, the numerical analysis
of DAE’s is summarized. At first, some theoretical aspects of DAE’s have been summarized. After-
wards, several numerical methods for DAE’s are considered, such as Runge Kutta methods, Linear
Multistep Methods and BDF-methods. Special cases have also been considered, e.g. the TR-BDF2-
method, NDF-schemes and multirate. Besides the algorithms for this methods, also the estimation and
asymptotic behaviour of the errors have been studied. These error estimations and error models are
important for adaptive stepsize control. This main topic has been presented in detail in chapter four.
First, the classical approach is shown. Afterwards, it is studied how control theory can be applied
to control the local errors. To verify the results, numerical experiments have been done with Pstar
and MATLAB-DAE-solvers for several electrical circuits. These results are shown in chapter five.
Finally, in chapter six the conclusion of the project and proposals for further research can be found.
Some additional information has been added in the appendices.

Chapter 2

Dynamics of electrical circuits

2.1 Introduction

Nowadays, circuit simulation! plays an important role in the analysis of circuit systems. Because
computers can make very complicated computations, it is possible to predict the behaviour of the
designed circuit.

There are several types of analysis, e.g. direct current analysis, small signal analysis, pole-zero
analysis, transient analysis and periodic steady-state analysis. In practice, transient analysis is a very
important analysis. In this case, the behaviour of the system will be computed over a time interval
[0, T] as the solution of the DAE

d
—q(t, i(z,x) =0.
dtq(x) + j(t, x)

The functions q, j may be non-linear functions of x. The explicit dependence on ¢ usually comes
from sources. Firstly, you can have an ordinary initial value problem (IVP), secondly you can have a
two-point boundary problem (BVP) for periodic steady-state problems. For an IVP, the initial solution
at ¢ = 0 usually is the solution of j(0, x) = 0. In section two, the functions q and j will be derived
by use of Modified Nodal Analysis. Afterwards, a few important kinds of circuit analysis will be
summarized in section three.

2.2 Mathematical model of electrical circuits

2.2.1 Theory of electrical circuits

In general, electric circuits consist of electric components and connecting conductors. Each location
in the circuit has its voltage or potential V. If two locations in the network have different potentials,
there is a voltage difference v between these locations. A voltage difference will result in a current i
to the highest potential, that will level out the voltages. Normally, these currents and voltages depend

‘on the location and time. But because the electrical resistance of the conductors is negligible, only the

junctions of the conductors are important.
Consider the next variables:

e The currents through the electrical components;

1For more information about this subject, see [7, 37]. For a short overview of the most important theory, the MSc-Theses
[21, 30] are useful.

o The nodal voltages at the junctions (nodes);
e The voltage differences? across the electrical components.

Together with the equations that relate these variables, these variables are sufficient to describe an
electric circuit. It is even possible to describe the circuits with less variables, but the equations have
been derived for these variables.

It is possible to consider these circuits as graphs of two types of elements: nodes and branches.
The branches represent the components, while the nodes represent the junctions of the conductors.
Each branch is connected with a number of nodes. These nodes are divided into positive and negative
nodes. The voltage difference v across a branch is equal to V¥ — V~, where V* and V~ are the
potentials of the positive and negative node, respectively. The direction of a positive current is always
to the positive nodes. If the current is negative, it means a positive current to the negative nodes.

Balance laws

There are two types equations from physics, which together describe the circuit.

First of all, there are the balance laws or the laws of Kirchhoff. These equations have a topological
character, because they do not depend on the type of the components, but only on the topology of the
circuit.

Kirchhoff’s Current Law (KCL): The algebraic sum of all branch currents leaving
a node is zero at all instants of time.
Kirchhoff’s Voltage Law (KVL): The algebraic sum of all voltage differences around
any closed loop of a network is zero
at all instants of time.
Both laws are based on the Maxwell equations®, which are consequences of the conservation of
charge and energy.

Constitutive relations

The constitutive relations* (CR)depend on the type of the component. There are many types of com-
ponents, but here only the basic circuit components have been considered. Let i, and v, be the vectors,
which consists of all branch currents and voltage differences across the branches. Then, in general,
all equations of the components can be described in an implicit way:

di
—, 1) =0
dt)

More precisely in the circuits that are considered here, all equations are of the next two types:

dvy
f(vb! gvlbs

. - 4V, 7 di
iy = f(Vp G0, G2 1), 1
. dVy 3 di
vk=f(Vb, —#alln 7}17[)3 II
where ¥, and i, are equal to v, and i, without the variables vy and iy. The components with equations
of type I are called current-defined and voltage-controlled components, while the other components

are called voltage-defined and current-controlled components.

2These variables are also called branch voltages.
3n [22], it has been shown how these laws can be derived from the Maxwell equations.
4These equations are often also mentioned as branch equations.

9

It appears that all components of electrical circuits can be modelled by means of some basic

components. The behaviour of more complex components, such as transistors, can be described with

! compact models, which consist only of these basic components. In the next paragraphs, the dynamics

| of these basic components are described. Also the pictures of the components in network diagrams
used, are shown.

Current source

A simple current source generates a given time-dependent current between its two nodes, independent
of the state of the circuit.

i; =i*@).

Figure 2.1: Picture of a current source

Voltage source

A simple voltage source generates a given time-dependent voltage difference, also independent of the
state of the circuit.

v, = V(1)

Figure 2.2: Picture of a voltage source

Capacitor

| An ideal capacitor stores an amount of electrical charge g, without loss. A change of the charge

results in a current through a capacitor, because i, = %’ff. Furthermore the voltage difference across

the capacitor is given by g, = f(v.). Hence the CR is:

e = j_tf(vr)

If the capacitor is linear with capacity C, the CR is:

dv,
dt’

i.r=C
Nonlinear capacitors occur in the compact models that describe the behaviour of transistor models.

‘ 10

Figure 2.3: Picture of a capacitor

Inductor

An inductor generates a voltage difference, because of self-inductance. A change of the flux linkage
¢; will result in a voltage difference, because v; = %%. Furthermore the flux linkage depends on the
current: ¢; = f (i;). Hence the CR is:

d .
v = Ef @n-
If the inductor is linear with inductance L, the CR is: -
di

=L—.
v dt

Figure 2.4: Picture of an inductor

Resistor

A resistor reduces the energy in a circuit. In contrast to the inductor and capacitor, the behaviour of a
resistor is not dynamic. If the resistor is current-defined, its CR is:

ir = f(v).
while the CR of a voltage-defined resistor is:
v = f(@,).
The diode junction is a frequently used nonlinear resistor with.CR:
ig =i3(e*™ — 1)

with iS the diode saturation current and o ~ 40 a physical parameter. This model is used in the
compact models for transistors. If the resistor is linear with resistance R, the CR is:

Figure 2.5: Picture of a resistor

11

Controlled components

Electrical circuits may also contain controlled components. Normally the dynamics of component &
depend on the current i;, the voltage difference v, and thus of the potentials of the connected nodes
Vi, sz. The equations of the branches may have the next representations:

iy = f(vk) f(Vkl - sz)’
Vi = V2 v = g

But it is also possible to add feedback controllers to the circuit. In this case, the dynamics of each
component may depend on all variables. Now the branch equations may have the following represen-
tations: :

ik = f(vk7 Vb, ib) = f(vkl - sz, Vb, ib),
Vi-V¢ = Vg = g(ix, Vb, 1p),

where v, and i, consist of all voltage. differences and currents. With this type of branch equation,
oscillators can be described.

2.2.2 Network analysis

In the previous section, the equations are derived which describe the circuit. In this section, the
functions q and j will be derived, such that:

d
d—tq(t, X) +j(t,x)=0.

Assume that the network® consists of # nodes and b branches. Structurally this can be stored in the
matrix A € R**?, which is defined by:

1 if branch j is incident at node i and node i is positive node of j,
A;; = 1 —1 ifbranch j is incident at node i and node i is negative node of j,
if branch j is not incident at node i,

Introduce the vector V,, € R" which contains the nodal voltages, arranged in the same order as the
rows of A. Introduce furthermore the vector i, € R? and v, € R? which contain the branch currents
and branch voltage differences in the same order as the columns of A.

With A, V,,, v, and i, itis easy to formulate KCL and KVL:

Ai, = 0, (KCL),
ATV, =v,. (KVL).

Besides the balance laws, also the constitutive relations for several components have to be used.
Assume that the circuit only consists of current-defined components. In that case, for each component,
the CR are of the form:

d
ik = f(VIN t) = Eq(tvvb) + j(t’ Vb)-

Because all constitutive relations are of this type, the state vector i, satisfies the next equation:

iy = £§(t, v5) +J(t,v5), CR
5This theory has been derived from [10, 21, 30].

12

with §,j : R x R* — R” functions, which describe all constitutive relations.
In matrix-vector notation, the equations of the circuits are:

Ai, =0, (KCL)
ATV, =v,, (KVL)
i, = £§(1, v5) +j(t, v»). (CR)

Left-multiplying the third equation with A and use of KCL gives:

. do z
0= Aip = E;A(I(t, Vp) + Aj(t, Vp).

Furthermore, it is pbssible to eliminate v, by means of KVL, which results in:
d . T 3 T
= E;AQ(I, AT V,)+ Aj@, AT V,). (2.1)

The result is a system of n equations with n» unknowns. Because the column sum is zero for all
columns of A, this matrix must be singular®. This means that V, is not uniquely determined by
equation (2.1), because only the voltage differences are important. This is the reason why at least one
node may be grounded. Assume, the k-th node is grounded at V*. In that case, the k-th row of A and
the k-th co-ordinate of V,, have to be removed, resulting in A and ‘7,,. This will lead to a new system,
with n — 1 equations and unknows, with e¢; € R" the k-th unit vector:

d - PN A
0= EA(;(:, ATV, + V*ATe) + Ajr, ATV, + V*AT).
Now define the state vector x = V,, and functions q, j : R x R*~! — R*! with
q(t, x) = Aq(t, ATx + V*ATep),

j, %) = Ajr, ATx + V*ATey).

Indeed, the circuit is described with the next differential-algebraic equation:

d
;Eq(t, x)+ji,x)=0. 2.2)

This version of network analysis is also called "Nodal analysis”. This method is only possible if all
components are current-defined, which, in general, is not the case. In the next section, this method
will be slightly adapted to treat also voltage-defined components, e.g. voltage sources and inductors.

2.2.3 Modified nodal analysis

Because Modified nodal analysis is an extension of Nodal analysis, it uses the notations from Nodal
Analysis. But now it is assumed that the circuit contains current-defined (type I) as well as voltage-
defined (type II) types of components. We will show that it is possible to derive a similar system of
equations of the form (2.2), where x consists of all nodal voltages V, and the currents through the
voltage-defined elements. '

6In [21], it has been proved that the rank of the topology matrix for a connected circuit is n — 1.

13

Assume there are b, branches of type I and b, branches of type II, thus by + b, = b. The vectors

v, and i, are split into two parts:
v . i
Vb=(bl)’ 1b=(.bl>-
Vb, 1p,

Furthermore, also the matrix A is partitioned into two parts:
A=(A A).
In the new variables, the balance laws can be written in the next form:
Atlp, + Azip, =0, (KCL)

AlT_Vn = Vb
(KVL)
A; V,, = Vp,.

By definition, the constitutive relations of the two types of components can be formulated as

. d = . 5 .
lp, = d_,q(tv Vo Vb, lbz) + J(ta Vbys Vb lbz)v
CR

d = . rs 3
Vp, = :i?q(t’ Vb5 Vby» lbz) +J(t) Vbys Vb lbz)'

Left-multiplying the first equation with A; and using KCL results in:

. d . . z .
—Azlb2 = EAlq(t, Vb Yoy 1b2) -+ Al_](t, ¥bys Voo lbz)-
Using KVL, we can express v, and v, in terms of V.. This yields:

_Azibz = ,%Alfl(t, A{Vn: Agvny ib2) + Alj(ty A{an A§Vn9 ibz)y

ALV, = £q(1, ATV, AT Vi) + 500, ATV, ATV, i),

This system has n + b; equations and variables, but is again undetermined. Grounding node k at V*
and introducing A and V, in the same way as in the previous paragraph, for an ordinary circuit, the
system is described by the next equations’ :

_Azibz Al‘](t Xl’ X27 lbz) + Al.](t Xls XZ’ lbz) }
Xr= d,‘l(t X1, X2, ip,) + 30, X1, X2, ip,). ’
where X, = A{V,, + V*Ale; and X; = AgV,l + V*Ale.
T
Define the state vectorx = (x! xJ)T = (o) and the functions q,j : R x R*! x

i
n by
Rb2 — Rr-1+b2 gych that

q(t, %) = A]Q(I,AAA{Xl + V*Alrek,figxl + V*A;ek, X5))
' q(t, ATx, + V*ATe, ATx) + V* ATy, x,)

i, x) ={ - Ajj, ATx + V*ATer, ATx) + VAT, x2) + Aoxs
3@, ATx; + V*AT e, ATx; + V*AT ey, x0) — Alx; — V*Al ey

7In general, a DAE does not have an unique solution.

14

As in the previous case, the circuit is mathematically described by the next differential-algebraic
equation: ' '

d
96X +jx) =0. (2.3)
The Jacobian matrices of q and j are denoted by:
dq 9]
) = —(1, ’ 5 =T\, - .
C(,x) ax(x), G(,x) = (t, x) 2.4

These matrix functions are very important, because they are used by the numerical solvers of DAE’s.

2.2.4 Contributions of components to q and j

The components listed in the previous section, are the building blocks of an electrical circuit. In the
same way, the functions q and j can be composed from the elementary functions g and j, which
belong to the components. The variables of the current-defined components are the nodal voltages
at their positive and negative nodes, while the voltage-defined components also need the current. On
each node, the sum of all contributions of the components which are connected to that node has to be
zero. Because the current-equations do not contribute to the nodes, they belong to their components
and they all have to be zero.
In Tab.(2.1), the local functions q, j are shown for the basic components.

Component: Variables: q J
F T
Current Source (Z_) (g) _ (_llft(z))
vt 0 . iv
Voltage Source V™ 0 —iy
(iy) 0 vt —vT —v* ()
Nonlinear vT fQt—v7) 0
capacitor < v~) —ft—=v7) (0)
Linear vt Cvt —Cv) 0
capacitor (v~) Cv™ —Cv* (0)
Nonlinear v'_* 0 l,L
inductor v 0 L
i —fGL) vt — v~
Linear (vi) 0 ”?
inductor v 0 i
ir —Li; vt — v~
Nonlinear | o 0 Fot —v)
current-defined (_) (0 > (Py)
. fm—=v7)
resistor
Nonlinear + 0 i
voltage-defined (-) 0 —i,
resistor i 0 v —vT — f(i,)
Linear vt 0 vt — 2o~)
resistor (v”) (0) (+v7 — vt

Table 2.1: Local functions q and j for the components.

15

Besides the local functions q and j, also the local Jacobian matrices C = 3—3 and G = a%% are
important. In Tab.(2.2) the local matrices C and G are shown for the basic components. Because
all components have two or three variables, the matrices are 2 x 2~ or 3 x 3— matrices. Also the
behaviour of more complex components, such as transistors, can be described by q- and j-functionss.

Component: C G |
00 00
Current Source (0 0) (0 0)
v 000 0 0 1
Voltage Source 0 00 (0 0 -1
0 0O 1 -1 0
Nonlinear ffvt=v") —f'(vt—=v7) 00
capacitor (-f'(wr=v7) flvt—v7) (00)
Linear c -C 00
capacitor (—C C (00)
. 00 0 0 0 1
Nonlinear 00 0 0 0 -1
inductor 0 0 —fGy) 1 -1 o
Linear 00 O 0 0 1
. 00 O 0O 0 -1
inductor 00 —L 1 -1 0
Nonlinear
00 it =v?) —f@r—v)
current-defined () (P - b+)
‘ resistor 00 R ASML DA AU
| Nonlinear 0 0O 0 0 - i
| voltage-defined (000 (0 0 -1)
3 resistor 0 00 1 =1 —f(vt—v7)
Linear < 0 0) T —F)
resistor 00 -1 1

Table 2.2: Local matrices C and G for the components.

We want to know the contributions of each branch to the complete matrices C and G.

According to the previous section, the state of the circuit is

(i)
X = . .
1p,

Consider a branch b with connected nodes i and j.

8For many components, the compact models are available at www.philipssemiconductors.com.

16

Figure 2.6: Picture of branch b.

Thus the voltages of the connected nodes are V; and V;, while the voltage difference v, across
the branch is equal to V; — V;. Because the nodal voltages belong to the state, there exist numbers
k and I, such that V; = x; = e{x and V; = x; = e,Tx. Introduce the vector e = e; — ¢;, then
vp = X — x; = e’ x. If the branch is voltage-defined, then the current through the branch, i;, belongs
to the state of the circuit. So there exists a number m, such that i, = x,, = e,f,x. With use of the
vectors e and e, it is possible to get a short notation for the contributions Aq, Aj of each branch to
the complete functions q and j and the contributions AC, AG to the complete matrices C and G. In
Tab.(2.3), these contributions are shown.

| Component: | Aq | Aj AC [AG
Current Source 0 i*()e 0 0
X, e-+
Voltage Source 0 " 0 eel +e,e”
° (e = xx — v*(t))em m + €n
Nonlinear
capacitor foa—x)e 0 f' (o — xp)ee” 0
Linear
. (Cx; — Cx)e 0 CeeT 0
capacitor
Nonlinear] ; -, .
inductor —fCem)en Xme + (Xp — x1)em —’f /(lL)emem ee, +epe
Linear ‘ -
inductor —Lxmen Xm€ + (X — X1)€n —Ley, e,{, ee, + e, e’
Nonlinear
current-defined 0 f o — x)e 0 F (i — xp)eeT
resistor :
Nonlinear .
voltage-defined 0 Xme+ 0 ee; +e,e’
resistor (xk - X = f(xm))em —f'(xk — x,)eme;l
Linear) , .
resistor 0 z X — x1)e : 0 zee

Table 2.3: Contributions of branches toq, j, C and G.

In practice, this table is used to derive the functions q, j and the matrices C and G. The method
described in the previous section provides the theoretical background, but is not used in an explicit
way. If there are only current-defined branches and for all components f’ is positive, it is clear that
the Jacobian matrices C and G are symmetric semi-positive definite for all # and x.

17

2.3 Analysis of electrical circuits

After deriving the model of an electrical circuit, which is determined by the functions q and j, one is
able to analyse the circuit. In this section, several types of analysis-methods are shown.

2.3.1 Direct current analysis

Direct current analysis computes the steady-state solution Xo of the circuit. In a steady-state there are
only time-invariant equations. This means that

q(t, x) = qpc(x),
I, x) = jpc(X).

Furthermore the steady-state solution has the property:
Xpc = 0.
So, the steady-state equation is the next algebraic equation:

ipc(xpc) = 0.

In general, this is a nonlinear equation, which can be solved by e.g. the Newton-Raphson method®.

If the equation is linear, Gaussian elimination is sufficient. Note that the matrix Gpc = a_}]’%: is
important, because it is the matrix of all linear systems which have to be solved during the Newton-
Raphson method.

2.3.2 Small signal analysis

This type of analysis!® considers the effect of applying small signal perturbations e(z), with e(0) = 0,
to the equation of the DC-solution.

d

i dpcX) +ipc(x) —e(r) = 0. (2.5)

Att = 0, the solution is equal to the steady-state solution xp¢, while the dynamic behaviour is caused
by an independent small sine-wave excitation e(t), which is added to the circuit as a source function.

2.3.3 Transient analysis

This type of analysis!! is very important, because the real nonlinear circuit, is simulated. In general,
one is interested in the behaviour of the system on the time interval [0, T]. Normally the initial state
X is known. It could be the steady-state solution, but this is not necessary.

For transient analysis, the next initial value problem (IVP) has to be solved:

Lqt, %) +jt, %) =0,
x(0) = xp.
9This numerical method has been described in section 3.5.

10For more information, the reader is referred to [30].
Hinformation of the numerical background of the transient analysis with the circuit simulator Pstar can be found in [9].

18

Because it is a differential algebraic equation, not all initial states are allowed. If q is independent on
t, the steady state solution at ¢ = 0 is always a consistent initial solution. This IVP is also important
for periodic steady state analysis, because for example the shooting method uses IVP-solvers. This
IVP can be solved with numerical tools as LMM-methods or Runge Kutta methods. Because of the
algebraic equations and the possible stiff behaviour, it is necessary to use implicit methods. In chapter
3, the numerical tools for the transient analysis are investigated.

2.3.4 Periodic steady-state analysis

In many circuits, there exists a periodic solution. This solution is often called the periodic steady state.
In this case, instead of an initial value, a periodicity constraint is specified. In the periodic steady state,
the functions q and j are periodic functions with respect to ¢.

The next two-point boundary value problem (BVP) has to be solved:

£q(t, %) +j(z,x) =0,
x(0) = x(T),

where T is the period of the solution. If the functions q and j are periodic, the period T can be derived.
But if that is not the case, it is still possible to have periodic solutions. Sometimes T is known, but T'
could also be an additional unknown of the system. In that case, the free oscillator problem!? has to
be solved.

These problems, with periodicity constraints, are more difficult to solve, because there are no
initial conditions. If the period T is known, one could use e.g. ashooting method to solve this problem.
For unknown period, an eigenvalue problem has to be solved, which is more difficult. However, for
linear systems it is sufficient to determine the eigenvalues of the system, which determine the possible
periods.

12For more information about this subject, the reader is referred to [22].

19

Chapter 3

Numerical analysis of
differential-algebraic equations

3.1 Introduction

In previous chapter, it has been explained how the dynamics of electrical circuits can be mathemat-
ically modelled. For a transient analysis of a circuit, the initial value problem of a DAE has to be
solved. This chapter will consider IVP’s for DAE’s and some common methods, which can be used
to get approximated solutions.

There are several classical methods to compute the numerical solution of this DAE. All these
methods discretize the time and compute the solution on the time grid with the help of integration
methods. The timesteps have to be chosen in such a way that the global error will be small enough.
Because it is hard to compute the global error, the local error is controlled.

First, in section two, some theoretical properties of DAE’s will be mentioned. Afterwards, in
section three, the transient analysis of ODE’s with Runge Kutta methods has been studied. Also
the Linear Multistep Methods have been introduced for fixed stepsizes. In section three, the tran-
sient analysis of DAE’s has been considered. Here, some useful techniques have been considered,
which can be used to avoid problems because of the algebraic equations. Afterwards, the LMM- and
BDF-methods for variable stepsizes have been considered. Besides the numerical schemes, also the
asymptotic models and estimates for the local discretization error are studied. It appears that the error
model of multistep-methods with variable stepsizes are much more difficult than for one step methods.
Also some special cases have been studied, such as the NDF-method, the TR-BDF2 method and the
multirate approach. Finally, in section five, it has been considered how the nonlinear equations for
implicit integration methods can be solved.

3.2 Theory of differential-algebraic equations.

3.2.1 Initial value problem

Consider a certain dynamical system! with state vector x € R?, which satisfies next differential-
algebraic equation:
{ Lq(t,x) +jt,x) =0, o)

x(0) = xp.

1For more information about this subject, the reader is referred to [17, 18, 26, 28].

20

The functions q : [0, T] x R — R? and j : [0, T] x RY — R’ can be derived from physical laws. If
the system is an electrical circuit, Modified Nodal Analysis? can be used to find q and j- The solution
x(t) of (3.1) describes the dynamic behaviour of the system for a known initial value, for example the
steady state.

A special case of the DAE’s is the ordinary differential equation. In that case, a transient analysis
computes the solution of the next initial value problem:

{ x = f(z,x),

x(0) = xXo. 3.2)

with f : [0, T] x R? — R?. A standard theorem states that if f(¢, X) is continuous on [0, T] and
Lipschitz continuous with respect to x, there exists® an unique continuously differentiable solution.
Unfortunately, most dynamical systems can not be represented by ODE’s. In general, it is hard to
determine, whether or not an analytical solution exists.
There are more representations of (3.1). Expanding the derivative of q results in:

C@t,x)x+ %—(tl—(t, x)+j(t,x)=0. (3.3)

From this representation , it follows that if C(z, x) is invertible for all x, the DAE can be written as
an ODE. But in practice, C(¢, x) will be almost always singular, because of the algebraic equations.
Then, the solution has to satisfy a number of algebraic equations. Because these algebraic equations
also apply in ¢ = 0, a proper initial solution has also to satisfy the algebraic equations. Such initial
solution is called consistent.

This means also that not all initial values are consistent. However, if the initial solution is equal
to the steady state, there are no problems, because the steady state always satisfies the algebraic
equations.

In general, it is not possible to find the analytic solution in closed form. Hence, it is important to
use accurate, robust and efficient tools to approximate this solution. The time is discretized in small
timepoints, while for each timepoint the DAE is approximated by a numerical integration scheme.
Every timestep, a small local error has been made, which affect the global error.

3.2.2 Stability
Besides the solvability, also the global stability of the system is very important.

Definition 3.1 Consider the perturbated IVP of (3.1) with initial value Xo and solution x(t). The
system is stable if:
Ves0 Js-0 B0 — x0ll <8 = ¥V, |R(2) —x(0)] < €.

Thus, stability ensures that the difference between the exact and the approximated solution remains
small, if the initial value is changed. This is a useful property, because the local discretization errors
of an integration method can be considered as perturbations of the initial value for that timepoint.

For many physical systems like electrical circuits, the time-dependent behaviour is only caused
by source functions. This means that these systems can be described by the next DAE, where u(z) is
an input function, which only depends on ¢.

d . —
£q(x) + jx) +u@) =0,
{ 4 x(0) = Xo¢. G4

2This method has been described on page 13.
3See [11].

21

T

In general, it is difficult to check the global stability. A possible approach is to check the local
stability around the initial steady state. In this case, the stability of the linearised systems at all possible
times and states is determined. For a linear time-invariant system, it is well-known? that the system is
stable, if the Jacobian matrix is a stable matrix. This means that all eigenvalues of the Jacobian have
strict negative real parts.

Theorem 3.1 Let x, be the steady state of 3.4, withj(xo) = 0. Consider the linearised homogeneous
system around X
Cy+ Gy =0, 3.5

with C = %q(xo) and G = %j(xo). This system is stable if all roots of the next equation have strict .
negative real part: .
det(sC + G) =0.

If G is invertible and if G™'C is a stable matrix, then this condition has been satisfied. If (3.5) is
stable, then the nonlinear system is locally stable around x,.

However, this approach is only valid for small input signals. Therefore, also next approach can be
used to determine whether the system is stableS.

Theorem 3.2 Consider the system (3.4). The matrix functions C(x) and G(x) are the Jacobians of
the functions q and j. Assume that there exists a positive definite matrix P, such that for all x next
matrix function is also positive definite:

Gx)"PC(x)+ Cx)"PG(x) > 0, (3.6)
2" PCx)x +x"Cx)T Pi > 0. (3.7)
Then, the system is stable. Note that the first condition is sufficient for time-independent input signals.

Proof This theorem can be proved with use of the positive definite Lyapunov function
d d
VX) = — Tp— .
x) 7 [q(x)] e [q()]

It is well known’ that if there exists a positive definite matrix P, such that V(x) < 0, the system is
stable. Because of the DAE, it follows that

2 1q@)T PL[g()] + £[q®)]7 PL[q(x)]
—i[.i(x) +u]" PLIq)] = £Igm)]" P LX) + u]
= %X (GE)TPCKx) +CxTPGx)%x— @ PCx + %" C(x)T Pu).

V(x)

I

Thus, if there exists a positive definite matrix P, such that

Gx)TPCx)+ Cx)TPG(x) > 0,
W PCxx+xTCx)TPa>0,

it follows indeed that the system is stable.

4See [28].
5This theorem has been derived from [28].
6See [28].
TSee [28).

22

If G(x) is invertible for all x, (3.6) is equivalent to next condition:
3p>0PAX) + AX)"P >0,

where A(x) = C(x)G(x)"!. Because of Lyapunov’s theorem, this means that for all x, Cx)Gx)!
must be a stable matrix. Note that this property is sufficient, but not necessary for stability.
With special choice P = I, it follows that

Gx)TCx) +Cx)TG(x) >0 => - stability for time-invariant circuit.

If C(x) and G(x) are symmetric positive definite, this condition is satisfied. In [21], it has been
proved that electrical circuits with only non-controlled, current-defined elements, have symmetric
semi-positive definite Jacobians. Thus, in that case, it follows that G(x)"C(x) + C(x)TG(x) =
2C(x)T G(x). So, if C and G are invertible, the circuit is globally stable. Because, in general, C is
not invertible, this is not the case.

3.2.3 Index of DAE’s

The general form of an DAE? can be described as:
F(,x,%) =0. (3.8)

This equation consists of algebraic and differential equations. If g—g is invertible, the DAE can be
transformed into an ODE. If F represents the dynamics of an electrical circuit, in general, this will
not be the case.

But after differentiating the DAE sufficient times and replacing the algebraic equations by the
extra derived differential equations, it can become possible.

Definition 3.2 The (global) index® v of the DAE (3.8) is the necessary amount of differentiations to
get an ODE.

Clearly, ODE’s have index v = 0. For (3.1), it follows that v = 0 if C(z, x) is invertible. But in
general, it is hard to determine the global index of a system.

Definition 3.3 Consider the matrix pencils: >C(t,x)+ G (t,x)with x € C. The DAE(3.1)is solvable
if det(AC(2,x) + G(t,x)) is not identically zero for all .. If G(t,x) is mvertzble and if -—— is an
eigenvalue of the matrix C(t,x)G(t,x) ™}, the pencils are never invertible.

In next section, it will appear that this property also ensures that the system is solvable.

‘Theorem 3.3 Consider'? the invertible matrix pencil 1, C(t,,x,) + G(2,,xy). Then there exist non-
singular matrices P, and Q,, such that

I 0 A, O
Pnc(tmxn)Qn = (0 Nn >) PnG(zmxn)Qn = < On]) . (39)
8For more information about this subject, the reader is referred to [5, 8, 26, 36].

9See [26).
10This theorem has been derived from [5].

23

Here, 1 is the identity matrix, while N, is a nilpotent matrix. The nilpotency index ., is defined as:
tn = min{k € N: N¥ = 0}.

If C(t,, x,) is invertible, define u, = 0, because then N, is empty. The nilpotency index is also called
the local index of the DAE (3.1).

Definition 3.4 Consider the DAE (3.1) with exact solution x(t). Because of theorem (3.3), it follows
that there exist invertible matrices P, and Q,, such that P,C(t,,x(t,))Q, and P,G(t,,x,)Q, can be
written like (3.9). Then, the local index ., at t, is equal to the nilpotency index of N,,.

Note that there is no close relationship between the local index and the global index.
The DAE is called semi-explicit if it can be written as:

{ y=1@¢,x.y),
0=g(xYy).

The benefit of this type is the strict separation between the differential equations and the algebraic
equations.

After introducing the new variable y = q(¢, x), the DAE (3.1) can be written in the semi-explicit
form:

{ y = _j(t, X)’
0=y—-q(x).

3.3 Numerical methods for ODE’s

3.3.1 General integration methods

Because, in general, ODE’s are easier to solve than DAE’s, this section will mention some methods!!
for problem (3.2). It is assumed that the exact solution x(¢) exists on [0, T']. The time interval {0, T']
is discretized into a timegrid {z,,n = 0, ..., N}, with h,, = 1, — t,_; the n-th timestep. The numerical
approximation at t = t, is denoted by x,. Now, (3.2) is approximated with use of numerical dis-
cretization or integration methods. In general, this results in a large system of N nonlinear equations
with N unknowns. Usually, it is possible to compute x, forrn € {1, ..., N} in a recursive manner:

8(tns Xnkr - - - » Xn) = 0. (3.10)

If x, only depends on the previous solution Xx,_;, the method is an one step method, e.g. the Runge
Kutta methods. Multistep Methods use more history, which makes them more complex to analyse.

‘Definition 3.5 Consider the numerical solutions {x,,n =0, ..., N} at the timegrid {t,,n =0, ..., N}.
o The global error e, is equal to x(t,) — X,,.

o The local discretizatién error (LDE) is equal to the residue of (3.10), after inserting the exact
solution: 8, = g(ty, x(tpt), - - -, X{tn))-

11For more information about the numerical analysis of ODE’s, see [11, 16, 26, 31].

24

o Let x;, be the solution of the numerical scheme (3.10), if all previous solutions are exact.
gt X(tai)s - . -, X(tn1),X,) = 0.
Then, the local error is equal to d,, = x(t,) — x.

A numerical scheme is called consistent with order p, if for constant stepsize &, the local discretization
error 8, = O(hP*!). The scheme is convergent with order p, if also the global errors satisfy |le, || =
O(h?). Theorem (3.4) gives some important relations between the local and global error.

Theorem 3.4 Assume that method (3.10) is consistent with order p. Then, the local error satisfies

og
d, =6,.
(axn)

The global error satisfies the following equation:

og og
en .
Fr rt+...+ ox,

e, =6,.

This is equivalent to

og X og ag ag
= — ek o .- n— d,.
<8x,,> én (axn_ke et + ax,,_le 1) + <8x,,

Proof For the local error, it holds that

0 = g(tn’ X(tn—k), L] X(tn_l), x;)

E]
= &5, - ﬁ&ndn.

Because of the definition of §, and (3.10), it follows that

0 = g(tn’ Xn—I“ L Xn)
= 5, - (-—g—a;n_k eni+ ...+ %%e,,) .

O

Note that there exists a close relationship between the local error and the global error. It appears
that the global error also depends on the previous global errors. Although theorem (3.4) holds, this
asymptotic relation can only be used to estimate the global error at the next timepoint.

Because the rather complex behaviour of the global error, the LDE or the local error are controlled
instead. If a method is consistent with order p, it is possible to control the local discretization error
with use of the stepsizes. Then, it is necessary to use an estimate Sn of the LDE with 3,, = §, +
O (hP+?).

If a method is convergent, this means that the global errors tend to zero, if & — 0. However, in
‘practice the stepsizes are always positive numbers. In that case, stability is also an important property
of a numerical scheme.

Definition 3.6 A method is called absolutely stable'? for a given step size h and a given differential
equation if the change due to a perturbation of size € in one of the mesh values x, is not larger than €
in all subsequent values x,,, m > n.

128ee [11].

25

In practice, the absolute stability is investigated for the test equation y = Ay with A € C. This results
in a stability region § ¢ C, with

hX € S = Method is stable for linear test equation with eigenvalue A.

Definition 3.7 A method is called A(a)-stable with0 < a < Sif
S22 8y ={z:|arg(—2)| <a,z#0}.

A method is called absolutely stable (A-stable) or inconditionally stable if it is A(%)-stable.

3.3.2 Runge Kutta methods
Description of the method

One step methods have the nice property that using variable stepsizes makes no difference. Runge
Kutta methods are one step methods, but they use more advanced quadrature formulas to improve the
accuracy of the results. The ODE is integrated on the interval [z,_,, 2,], so

n
Xy — Xpo] = / f(t, x(1))dr.
1,

n-1

But now the integral is approximated by a quadrature formula of higher order:

tn 5
[t x@ndr =ha Y Bufltrotms Xt
In—1 m=1

This requires intermediate values x,,_, ,, for which we apply a similar quadrature formula. This yields:

{ tn-—],m =1ty + pmhm
Xn—1,m = Xp-1 + hn Z;=] ym,lf(t ~1,1s xn—l,l)-
Define the next vectors in R*:
e=(1,...,D7, -
B= (B,B)",
pP= (plv'--7pS)T'
Define the matrix I' € R* by:
‘ Yin .- Vis
i I'= P
Vs1 -« Vss

Now the RK formula is determined by the vectors B and p and the matrix I'. A compact notation is

the Butcher matrix denoted by:
e| T
BT

If the method is explicit, the matrix I" is a strictly lower triangular matrix.
Now, define the vector 7,_; € R® and the stage vector ¥,_; € R*? by

tho1 + Prhn Xn-1,1
t-n—l = v Y=
i th-1 + pshn Xn—-1,s

26

Thus, the stage vector Y,—1 consists of the approximated solutions at the intermediate timepoints.
Define also the function f : R® x R — R*¢ by

) f(r;, (Y1,...,Y)")
ft,Y) = :
£t5, Yis—1a+1s - - - » Ysa))
Then the Runge Kutta method performs the next iteration step:

e Solve the stage vector Y,_; from the nonlinear algebraic equation
Yooi = €® %ot + (T ® Ihof (a1, V). 3.11)
e Compute the next solution x,, with the explicit one step formula:
Xn = X1 + (87 ® IhE(fr1, Y1) (3.12)

In general, this results in very large systems, which has to be solved. Therefore, often the matrix I
will has a special form. For DIRK methods, I is a lower triangular matrix. In this case, s systems of
normal size has to be solved. If all diagonal elements are equal, only one matrix factorisation has to
be performed, which reduces the amount of work. A disadvantage of RK methods is the high numer
of function evaluations, which is needed.

Convergence

Because of the definition of subsection (3.3.1), the local discretization error is the residue of the Runge
Kutta method, after inserting the exact solution. The Runge Kutta method is called consistent with
order p if this local discretization error is O (h} *1). Note that the numerical approximations at the
intermediate timepoints do not need to be consistent with the same order.

Theorem 3.5 Arn RK-method with s stages, can be consistent with order p < s. Only for s €
{1, ..., 4} there exist schemes with p = s. Furthermore, RK-methods have the next property.:

An RK-method is consistent with order p. < An RK-method is convergent with order p.
If an RK-method is consistent with order larger or equal to one, the parameters have to obey the next

relations:
BTe =1,
e = p.

Proof See for example [26]. It is assumed that f is Lipschitz continuous.

Becausé of the equation (3.12), it follows that an RK-method can be described in the next way:
Xy = Xn—1 + Ry P (tn, Xn1, hy).
Then the local discretization error §, is equal to:
8n = [X(ta) = X(th-1) — Rp P (1, X (1,-1), hy)]-
If the order of the method is equal to p, then for each n there exists a C), ,, such that

8y = CpnhE™! + O(ME?).

27

Theorem 3.6 Consider a higher order RK-method with
En = Xno1 + by D, Xn1, hn)
and local discretization error:
Bn = [X(tn) = X(ta=1) = ha®(tn, X(ta-1),)] = ORE®?).

Now, the LDE can be estimated by

~

O =Xp — X,

Proof It follows that 5, = 8, — C,..h2*" + 02+, so
_ - 1 .
Cp.nh,I,H-l + O(h,1:+2) = 8y = 8y = P(ty, X(tp—1), hp) — O, X(ty_1), hp) = h_(xn — Xp)-

Thus
8y = 8y 4+ O(RET?).

O
Usually, an RK-method is embedded in such higher order method, to make error estimate easy. This
higher order method is allowed to be less stable than the lower order one, because only one step is

performed.
Now, the global error satisfies:

€ = Xp, — X(tp) = Xp—1 + @ (0, Xp—1, hp) — X(th-1) — hn @ (20, X(tn-1), hn) + 8 = €41 + 6.
Because the Runge Kutta method is an one step method, the global error increment only depends on

Sn-
Applying the RK-method to the linear test-equation y = Ay gives!?

Yo ="y = (1 + Th(Ils — hT) ' €)yn_1.
with & = h. The method is stable in h if |¢ (k)] < 1. The region of stability'* S is defined by:
S={heC:l¢pMm)| <1}
with boundary region

3S ={heC: o) =1}

Examples

Below some Butcher matrices of common RK-methods are shown:

13See [26].
14This stability region has been defined on page 25.

28

Table 3.1: Butcher matricés of RK-methods.

| Method : | Butcher matrix | order |
Euler forward i% 1
111

Euler backward T 1
0|10 O

Trapezoidal method 1 —% —% 2
] —-— -
2 3
0(0 O

Heun2 111 O 2
] - -
3 2

Heun3 3
0 0 0
i 0 0
3 0 0
RK Fehlberg4 g 4
1|29 0 0
1 é@ —8g 3680 _ 845
216 51(355r 4104
- N O 1) (/A
216 256, 4104 5
0] 0 0 0 0 0 0
o 0 0 0 0 0
it 3 9 ‘
Sl B e o oY
1|35 -8 2 - o 0
L _2_) - J5s ﬁ.g‘t =L g
2 27 2365 4104 40
16 0 5636 28361 9 2
135 12825 56430 50 55

In Fig.(3.1), the stability regions of these methods are drawn. Because for all h on the boundary
oS of S, |¢(h)| =1, we have:

VicosJoel-nn1®(h) = €.

29

Regions of absolute stability for the RK-methods.
4 — T v T T

- Euler forward
« Heun2
« RKF4
3k 4| RKF5
2 -
1 -
-]
8
B
g0
[-3
E
o
-1
2t
-3}
4 . "
-6 -5 -4 -3 -2 -1 0 1 2

Figure 3.1: The stability regions of the explicit Runge Kutta methods. The methods are stable inside
the contours. From small to large, the stability regions belong to Euler Forward, Heun 2, RKF4 and
RKFS. -

From this figure, it is clear that these RK-methods are not inconditionally stable!’. In [26], it
has been proved that all inconditionally stable RK-methods are also implicit methods. Because the
examples are explicit, they are not inconditionally stable. This means also that numerical solutions
with high frequencies will be amplified.

3.3.3 Linear Multistep Methods with fixed step

Besides one step methods, it is also possible to use Linear Multistep Methods. In contradiction to
RK-methods, they do not use only the last numerical solution. This leads to smoother solutions, but
can cause problems with discontinuities. For variable stepsizes, it is more difficult to analyse them,
because now the local errors depend also on the previous stepsizes. Below, first the LMM-methods
with fixed timesteps h, = h have been considered, while on page 44, the LMM-methods with variable
stepsizes has been investigated. Consider the initial value problem (3.2). A general representation of
the LMM-method to approximate the solution is:

k k
Z PmXp—m+k = h Z O'mf(tn—m+k’ xn—-m+k)- (313)
m=0 m=0 :
A k-step method needs k given initial values Xo, . .., X;_ to start. If only Xo is known, the other values

can be computed iteratively with methods with increasing amount of steps. Implicit schemes, which
are used, have the property that g, # 0.

15This concept has been defined in Def.(3.7).

30

Define the vector r, € R", which is known att = ¢,.

1 k=1 k-1
r, =— (Z Z PmXnim—k — Z Ok (tnsm—ks Xnm—r)

m=0 m=0

Then each timestep, the next nonlinear algebraic equation has to be solved:
Pk
7, Xn = 0if(t, X,) =,

With for example the Newton-Raphson method, this equation can be solved. A proper initial guess for
the Newton process would be x = x,_, but better predictions can be made by means of extrapolation.
Two important classes of LMM-methods are the Adams-Moulton methods and the BDF methods.

Adams-Moulton

Define fori € {0, ..., k} the Lagrange interpolation-polynomials L;(r) with

Li(tn+m—k) = 6im-
Then on [t,_g, 2,]:

k
£, %) = D L (OF Cnsmeics Xnsm—i)-

m=0

Integrating the ODE on the interval [t,_1, t,] gives:

tn k tn
Xp —Xp1 = / f(r, X('L'))d‘[= Z (/ Lm(T)dT) f(tn+m-ks xn+m—k)-
th—1 . -1)

- m=0 -
Hence for p,,, 0, in equation (3.13) we derive:

Vme{O,...,k] Pm = 0 otherwise,

1 fin
Vmelo,..k} Om = 7 Jtnn L, (z)d<

and

k
Xp — Xp—1 = E homf(tn+m—-ky Xn+m—k)-

m=0

BDF

With the same interpolation polynomials, it is also possible to approximate the derivative. The solution
obeys the next approximation:

k
x(t) = Z Ly ()X —k -

m=0

Differentiating the ODE in t = ¢,,, we get:

k
) d
= E h (ZL"'(I)

1=ty m=0

d
hi(t,, x,) = h, 'J't'x(t)

Xn+m—k-
1=ty

31

Hence for p,,, 0, in equation (3.13) we derive:

_J 1 m=k,
| 0 otherwise

and
k
hf(tm xn) = Z PmXni+m—k-
m=0
Convergence
Define the polynomials:

P@) =T pm2", 0@ =T Om2"

Consider the shift-operator g with'® (g x),, = x,;. Now it is possible to describe an LMM-method
with use of the shift-operator as follows:

P (@) Xn_k = ho (@)f(ty—x, Xn—i)- (3.14)

Theorem 3.7 An LMM-method is consistent with order p if and only if the polynomials p(z) and
o (z) satisfy next equations:

p(l) =0,
p'(1) —o(1) =0, (3.15)
Vietp) Yoo [Pm(m — K)* = 50, (m — k)*~1] = 0.

The local discretization error'’ (LDE) of a consistent LMM-method with order p and fixed stepsizes

can be written like:
8y = CphPHxPtD (1) + O (WPH2).

. k)P —
with Cp = Y% o [p,,, e — o <'"p,">”]. For BDF-methods, C, = ~—i3 = — 1'%,

Proof The local discretization error (LDE) §, is equal to
8n = P(Q)X(ln-k) ~ho (q)f(tn—-k, x(tn—k))~

Then, 8, can be approximated in the next way:

5n = an:O prrlx(tn+rrz—k) —h an=0 amf(tn+m—k y X(tn+m—k))
. n— 2 s
S o X (tn) b g [om(m = B) = 0wl (1) + 12 g [o 2L = 030 m —)| 00

- —kyP-1,
+...4+h? Zﬁz:O ['0'" (mp!k)P — o (n(:pf)])!]X(p)(tn) + O(hp'H).

(3.16)
Because an LMM-method is consistent with order p if §, = O(hP*!), indeed p(z) and o (z) has to
satisfy the equations (3.15).

16This is often also denoted by gxn = X4 -
17This concept has been defined on page 24.
183ee [31)

32

An estimate for the local discretization error can be derived as follows:
& = Cp(xs — X)) + O(hP*Y),

where x) = p,(t,) with p, the interpolation polynomial on the (p + 1) last time grid points®. So, the
difference between the initial estimate and the final solution of the Newton-Raphson method can be
used to estimate the LDE in a cheap way.

Definition 3.8 Consider a polynomial P(z). Then, P(z) obeys the root condition, if*°:

{ ViecP(2) =0= 2] <1,

V.ec (P(2) = 0 A z is not simple.) = |z| < 1. (3.17)

The LMM-method is called root-stable if p(z) obeys the root condition (3.17).

Theorem 3.8 An LMM-scheme is convergent with order k for an ordinary ODE, if it is both consistent
with order k and root stable.

Proof See [26, 31].
O

Because convergent LMM-methods are root-stable, it always holds for these LMM-methods that
p'(1) # 0, because 1 can only be a simple root of o(z). Then, it follows from the equation (3.15) that
also o (1) # 0.

With help of the estimate of the local discretization error, it is possible to give an asymptotic
estimate of the global error?!. Define the function d which obeys the next IVP:

{ 1 = 2£(:, x)d + C,xP) (1),
d(0) = 0.

Then e, = d(z,, x(t,))hP*! + O (hP*?). So, it follows that the behaviour of the global error depends
on the local discretization error, but also on the stability of the ODE. For stable ODE’s it is much
easier to control the global error than for unstable ODE’s.

To check the absolute stability, the LMM-method is performed for the linear test equation, which
results in:

0(q)Vn—t = ho (@) Yn-r

with h = Ah. Now, the characteristic polynomial 7 (z, k) of the numerical scheme is equal to p(z) —
ho(z). Then

7(q, h)Yn-k = 0.
The method is absolutely stable (A-stable) in ﬁ_ if 7(z, h) obeys the root condition??. Note that root
stability is equivalent to absolutely stability in 4 = 0.

19This subject has been explained in more detail on page 48.
20Note that a root is called simple if its multiplicity is one.
2igee [26].

228ee equation (3.17).

33

Now it is possible to derive stability regions?® for the LMM-methods with:
S = {h € C: m(z, h) satisfies the root condition.}. (3.18)

There exists a theorem?*, which states that the order of absolutely stable LMM-methods is at most
2, while the order of A(r)-stable? methods is at most 6. In practice, the stability regions for special
nonlinear functions f may be quite different from these stability regions. But after linearizing f at

‘ x = x*, the eigenvalues of gi—l , can be computed. The timestep 4 has to be chosen, such that for
| all eigenvalues kA € S. B

Examples

Below the polynomials p(z) and o (z) are listed for some well-known methods with constant stepsizes.
In general, the coefficients depend on the step sizes, but if the step sizes are constant, p(z) and o (z)
are polynomials, independent of the step size.

Table 3.2: Polynomials p(z) and ¢ (z) for some Adams-Moulton methods

[Method : | p@@) | o(z2) | order | C, |
Euler Backward (Adams-Moulton 0) z—1 z 1 !
Trapezoidal method (Adams-Moulton 1) | z — 1 %(z +1) 2 -1—%2
Adams-Moulton 2 22—z 11—2(522 +8z-1) 3 —ﬁ

Note that both Euler Backward and the Trapezoidal method are one-step methods.

Table 3.3: Polynomials p(z) and o (z) for some BDF methods

| Method | o(z) |o(z) [order | C, |

| Euler Backward (BDF1) z—1 z 1 -1

| BDF2 1322 —4z+1) 22 2 _g
BDF3 11123 - 1822 + 9z - 2) 2| 3 |-1
BDF4 75(252* — 482° + 362 — 162 + 3) 2 4 |1
BDF5 25 (1372° — 300z* +300z° — 200z + 75z — 12) 2|5 _g

| BDF6 (14728 — 360z° + 450z* — 4002° +22522 - 72z +10) | 25 | 6 | -1

Note that the error constant C, is smaller in the case of the Adams-Moulton-methods. However,
this method is not absolutely stable. In the Figures (3.2) and (3.3), the stability regions of these
‘methods have been drawn. For the boundary 95 of the stability region S, which has been defined in
equation 3.18, it holds that

95 = {fl € C: All roots of 7 (z, ﬁ) = p(z) — ho (2) have absolute values equal to one.)}.

23These stability regions have been defined on page 26.
24Brom Dahlquist, see [26].
25Absolulely and A(a)-stability has also been introduced on page 26.

34

Thus, it follows that

p(e’)

Vieas Joe[—n,7) b = o @)

Regions of absolute stability for the Adams-Mouiton methods.

— Euler Backward
{| — — Trapezoidal method
- Adams-Moulton 2

T
I
1
i
'
!
!
|
t
I
I
1
1
1

Q |

Complex plane
(=]

-2t

-6}

ol e e

Figure 3.2: The Euler Backward method is absolutely stable outside the circle, the trapezoidal method
is absolutely stable in the negative half plane, while the Adams-Moulton-methods of higher order are
absolutely stable inside their stability regions.

35

Regions of absolute stability for the BDF-methods.
T T T

% ' T —
- - BOF2
I |- eora
20 .~ BDF4
— BDF5
15} |- - BoFe
10}
5
o
8
a
j o
3
_st
-10}F
-15p
=20}
25
D0 s 0 5 0 15 20 25 30

Figure 3.3: All BDF methods are absolutely stable for the test equation outside their indicated closed
contour.

From the stability-regions in Figures (3.3) and (3.2), it is clear that BDF1 and BDF2 are incondi-
tionally stable, while BDF3 up to BDF6 are at most A(«)-stable? due to the Dahlquist-barrier?’. The
Trapezoidal is the linear one-step method with the highest possible order and the smallest discretiza-
tion error constant C,. Furthermore, its numerical stability corresponds well with the stability of the
linear test equation. The Adams-Moulton 2 method is not A(«) stable, because its stability region is
inside the contour.

In the case of stiff equations, it is possible that there exist eigenvalues A with Re[A] << 1. If the
stability-region of the numerical method is not A(«) stable, the stepsize h has to be chosen very small
to get hh € §. Because the BDF-methods with k € {1, ..., 6} are A(«)-stable, these methods are
often used for stiff problems.

Besides the stability, also the damping of oscillatory solutions is an important property. The BDF
methods damp the solution for high frequencies, but for lower frequencies all higher order methods
amplify the solution. The Trapezoidal method has no damping, while for || > wy the solutions are
amplified with the Adams-Moulton 2 method.

Theoretically, the Trapezoidal method has very nice properties. However, in practice one wants
damping for very large frequencies to filter high frequency errors. Furthermore, the Trapezoidal
method gives damped oscillations if Re[h] < 1.

26These concepts have been defined in Def.(3.7).
27See [26].

36

3.3.4 TR-BDF2 method

Description

A successful numerical method?® is the combination of the trapezoidal one-step method and the BDF2
two-step method. First an internal stage vector X _; is computed with the TR-method from the previ-
ous X,_;. Afterwards the next solution value x, is computed with the BDF2 method using x,,_; and
n—1 Generally, x*_, is the approximation at #,_; + %wh with w € (0, 2). Note that the coefficients
for the BDF2-method will depend on w.
First, x}_, is computed, where h; = wih.

* 1 1 % *
X, | —Xp = hl(if(tn-ly X,-1) + Ef(t"'l’ X,_1).

Afterwards, x, is computed, where hy = (1 — w%)h.

1 2 (w—2)*%.
(2 - Ew)xn - (—U.X:—l + _2"0)_Xn—1 = hZf(tm xn)
The TR-BDF2-method can also be viewed as an implicit Runge-Kutta method with 3 stages?
The only difference is that the TR-BDF2 method also uses the 1ntermed1ate stage solutions, whxle a

Runge-Kutta method only uses the final solution. Because

X:_l = Xp-1+ hf(tn—lvxn—l) + whf(t -1 X" 1)7
Xo = Xpot + gghfno1, Xem1) + ZEhE0T X)) + 2R, X,),

it can be derived that the method has the next Butcher matrix:
0 0 0 0
©| w @ 0

- P A S

4—w 4—o)

| i A _ _Z

4 4w d—w

If one wants all diagonal terms the same, we get:

with w = w* = 4 —~ 2«/5, y = -“;—*, d = %’; and w = @. The benefit of this special case is the fact
that the same Newton iteration matrix can be used to evaluate all implicit stages, because the diagonal
terms are the same. It can be proved®® that the error can be estimated with use of the next higher order
method with Butcher matrix

0] O 0 0

y| d d 0
1] w w d’

‘ T-w Sw+] d

3 3 3

Because both RK-methods have the same I" and p, the LDE can be computed in a cheap way.

28gee [20].
298ee [20].
30gee [20].

37

Local discretization error

Because the TR-BDF2 method is a Runge Kutta method, the method does not need to be consistent at
tr_,. It appears that this implies that the TR-BDF?2 has a smaller error constant than the BDF2-method
and the Trapezoidal method.

Theorem 3.9 The local discretization error of the TR-BDF2 method satisfies next equation.:
8 = Cr(w)h’x¥(1,).
with
Cr(w) = ;—81(3w2 - 8w +8).

Proof Assume that x,,_; = x(#,_;) is exact. Then it follows that

1 . 1
Xy = XG0 + U = ks Y, xX(51,)) ‘Eh?x‘”(t:_l)-
Furthermore,

S = (2— Lot — 2x() + E2x(t,-1) — hof(t, X(1n))

—;(1 ~ hI%J(t;:_%, x(t;:_l)l»-‘ﬁhi‘x“)(z;:_l)l s

e hax® () — 21 — hi3J @, x@_ DN 5hx® @)

(1 - L) m3x®(1,) — 2(1 = Johd(r_), x(_ D) 5 Gw)’ B2 x®@,).

Because (I — 41cuh.l(1.‘;f_1,x(t,’:_l)))”1 = I 4+ O(h), it follows that

O = (g1 - 300 = 2GR0 @) + oY)
2 (3e? - 80 + 8)x¥ (1) + 0%
Cu@hxD () + O(h*).

a

Because Ci(w) = —Z%(a) - %)2 - Tlg, the error constant is minimal for w = %, with Ck(f;-) = ;—; s
—0.0556. Note, that this method is more efficient than the normal Trapezoidal method. However,
this method is a Runge-Kutta method with two stages. Therefore, this method needs two matrix
factorisations. Suppose that the Jacobian J does not depends on ¢ and x, then both Jacobians are equal
if 1—1h1J = A(2— 30— h,J). This is the case for w* = 4—24/2 and now only one LU-decomposition
suffices. For this case, the error constant is just a bit larger, with Cy{w*) = %ﬁ — 1= -0.0572.
Compared with the BDF2-method, the numer of stepsizes for the TR-BDF2-method is reduced to
56%, for EPUS-control. However, the TR-BDF2 method needs one extra function evaluation and one

extra matrix factorisation, if w # w*.

Stability

The stability-region of the TR-BDF2 as RK-method has been shown in Fig.(3.4) forw € {0.5, 1, w*, 1.5}
together with the stability-regions of the Trapezoidal method and the BDF2 method.

38

Regions of absoiute stability for the RK-methods.

15
» TR-BDF2 (omega=w*)

+ TR-BDF2 (omega=1)

- TR-BDF2 (omega=1.5)
- TR-BDF2 (omega=0.5)

1}~ - BDF2

10p g

Complex plane

.-5.

Figure 3.4: The stability region of the TR-BDF2 methods compared with the stability region of the
Trapezoidal method and the BDF2-method. Because they are implicit methods, the methods are stable
outside the contour.

Because the TR-BDF2 method is implicit, the high frequencies will be damped. In Fig.(3.5), the
amplification factor has been shown for several cases. From this figure, it is clear that the TR-BDF2

has a filter property that is better than the BDF2-method.

Therefore, the TR-BDF2-method is recommended for circuits with oscillatory behaviour. The
high-frequent noise will be damped, while the lower-frequent oscillations are better conserved than

the BDF2-method.

39

Magnitude of amplification factor on the imaginary axis.

10
— TR-BDF2 (omega=0.5)
',! — - TR-BDF2 (omega=1}
! i — TR-BDF2 (omega=w")
[---- TR-BDF2 (omega=1.5)
i .. BDF2
; | - TR
'
Y ¥
i %
[N
[¥
. R Y
[¢
. IR X
‘ h "\
.' I \
.: l \,
E A K
. W\
Y A W
. W
A -
B \<
..l "\
.
10 P \\ 1
P S
- NS
. . X ~
\ -'l
g N
" N
3
-100 ~50 0 % 1
omega

Figure 3.5: The filter behaviour of the TR-BDF2 methods, compared to the BDF2 method.

In Fig.(3.6), for w € (0, 2), the maximal frequencies have been shown for fixed maximal damping
constants. Clearly, for w = 2 or v = 0, the damping becomes much smaller. Also for the BDF2-

method, the maximal frequencies have been shown.

Maximal frequencies for several damping factors for
BDF (*) and TR-BDF2~methods.

70 — mu=0.1

T
==~ mu=05
! - mu=0.9
[

o
o
T

angular frequency
B
o

w
=3

20¢ A P

Figure 3.6: The maximal oscillation frequencies for damping factors 0.1, 0.5 and 0.9. The maximal
frequencies for the BDF2 method have been identified with the marker *.

40

34 Numei'ical methods for DAE’s

In this section, the Linear Multistep Methods®! for the DAE (3-1) will be studied. First, some theo-
retical results for LMM-methods®? for schemes for DAE’s have been shown. Afterwards, the LMM-
methods with variable step have been investigated. As special cases, the BDF- and NDF-methods are
considered.

34.1 Convergent numerical schemes for DAE’s
Transferability of DAE
Consider the index-1 DAE
C(t,x)x + 2—?(t,x) +j@,x)=0. (3.19)

Introduce the projections Q(z) on the kernel A (C(z, x)) and P(¢) on the range of C(z, x) with

{ V. Ct,x)Q0()x =0,
P(t) =1~ Q).

Now the differentiated variables are P (7)x, while O (¢)x are the algebraic variables. Note that V.Ct,x)P(1)x =
C(z, x)x. Because P and Q are projections, they also satisfy the next equations:

Q%) = Q@)
PXt) = P() (3.20)
QMP() = P@EQ@) =0

Definition 3.9 The DAE (3.19) is transferable® when
1. q, Gand C are continuous for all t and x.
2. The nullspace of C depends only on t.
3. C has constant rank.
4. The projector Q(t) is smooth.
5. C(t,x) + G(¢,x)Q (1) is invertible.
6. G~ is bounded.

7. The DAE (3.19) has a smooth solution.

31For more information about this subject, the reader is referred to [5]. Here also Runge Kutta methods for DAE’s have
been considered.

321n [5], also the convergence of Runge Kutta methods for DAE’s has been studied.

333ee [5].

41

Numerical schemes with projections for DAE’s
There holds
. 0q . .. 0q .
Ci,x)P(t)x+ 5(” x)+ji¢,x)=C¢, x)x+ gt—(t, x) + j(¢, x). 3.21)

Thus, the DAE (3.19) can be written as follows:

{ Px—y=0, (3.22)

C(t, x)y +q,(,x) +ji,x) =0

Note that now the second equation has become algebraic. An LMM-method which treats this problem
is:

{ P (o P(@)Xn—k = 0 (Q)¥ni0) — QnY, = 0, (3.23)

C(t,, xn)Pnyn + qt(tm Xn) +j(tm Xp) = 0.

Introduce for each time step. the vector r, with

= k=1
r,="F, (—F Z PmXn—k+m + Z amy"—k"'m)

n m=0 m=0

Then for each time step, the next equations have to be solved:

{ Pn(h&n'xn - O'ky,,) - Qnyn =TIy,
C(t,, Xn)Pnyn + qy(tm Xn) +j(tns Xn) = 0.

Because of the properties® of Q(¢z) and P(z), it follows that Q,y, = 0. Furthermore, y, satisfies

Py, = ;1; (Fl,,' P, piX, — r,). After eliminating P,y,, the second equation yields:

1.1 .
C(tn»xn)o__(il—Pnpkxn - l.n) + qz(tnv Xn) +.](tm xn) = 0
k

n

Because C(z, X) P(1)x = C(z, X)x, this is equivalent to the next equation:
C(tn, Xu) (0xXn — hnOkTn) + hnorq, (tn, Xn) + hn01j(tn, Xn) = 0.
Because of (3.20), the equation P (z)x — y = 0 is equivalent to
P@I(P(1)x) — P'()x—yl - Q@)y =0.
Now, the DAE (3.19) can also be written as:

{ POI(P@)x) — P'(1)x] — P()y — Q()y =0,
C@t,x)y+4q,(x)+ji,x)=0.

This formulation is more general, since it only requires Px to be differentiable instead of x. With the
next LMM-method, it can be solved.

[P (R P @PriXet] = S @PiiXork + Paci¥acsd) = Qu¥y = 0, .20

C(tm Xn)yn + q, (tm xn) +j(tm Xn) =0.

343ee equation (3.20).

42

Introduce for each time step the vector r,, with

" m=0 m=0

= k=1
hn = Pn (_-I‘_l— Z pl'l[Pn—k+mxn—k+m] + Z Um[P,:_k+,,;Xn—k+m + Pn—k+myn_k+m] .
Now, for each time step, the next equations have to be solved:

{ P (%xn - UkP,:xn - Ukyn) - Qnyn =Tn,
Ctn, X)) Py, + q, (s, Xp) + j(2,X) = 0

Again, it is possible to eliminate Ppy,, which results in:

o 1 .
C(tn, Xn) (—'—k-ann - PnP,:Xn + —l',,) + qz(tm Xn) +J(tns xn) = 0.
pkhn O

Theorem 3.10 If the DAE is transferable35 and the LMM-method is stable and consistent with order
p for ODE’s, then

1. Method (3.24) applied to the DAE has also order p.

2. Method (3.23) applied to the DAE has order at least one. Generalljg the order is less than p,
but the BDF-methods have still the same order p.

One leg methods

Besides the LMM-methodws, there is also a family of integration methods, which are called one-leg
methods. For an ODE, their numerical scheme is equal to:

1 .
h_p(q)xn—k = f(o (q)tn—k, O'(q}xn—k)-

Note that these methods use only one function evaluation per step. It is clear that the BDF-methods

also are one-leg methods. It appears that one-leg methods can be extended to DAE’s in a natural way.
For the equation (3.19), we get:

1
Clo@)tu, U(Q)sz~k);l"p(Q)xn—-k + 4, (0 (@)t 0(@)Xnt) + J(0(Qtnk, 0(q)Xp—) =0

For these methods, the next theorem holdé.

Theorem 3.11 If a one-leg method is consistent>® with order p for an ODE, it is also consistent with
order p for the DAE (3.19).

This implies that BDF-methods do not need the projections to converge with the same order.

35This theorem has been derived from [51, page 69.
36This theorem has been derived from [5], page 71.

43

3.4.2 Linear Multistep Methods
Introduction

In the previous section, the LMM-methods have been studied for fixed stepsizes. In this section, the
same method will be considered for variable stepsizes®’. Introduce the coefficients &, ,,, which are
useful to analyse the method, if the stepsizes are not fixed.

I, — tn -m

m = —. 3.25
&n, hn (3.25)
For fixed stepsizes, it holds that &, ,, = m.

A general representation of the LMM-methods with variable step and fixed order is:

k k .
an,mq(tn—m, Xn—m) + Ay Z Un,mj(tn—ma Xp—m) = 0.

m=0 m=0

In general, the coefficients p, ., and ., ,, are dependent on the stepsizes. Only for fixed stepsizes, they
are constant for all n. The LMM-methods with k steps need k initial values. In each iteration, the next
nonlinear equation has to be solved:

~

pn,Oq(Im xn) + hnUn,Oj (tm xn) =Ty ' (326)

Here, r,, is a vector, which is already known:

k k
I, = Z pn,mQ(tn—mv Xn—m) + hn Z Un,mj(tn—rna xn—m)-

m=1 . m=1

If the Jacobians C and G of the functions q and j exist, this equation is often solved by the Newton-
Raphson method. The Jacobian of this nonlinear equation is equal to J(z, X) = 0, 0C (¢, X)+h,0,,0G(t, X).
To perform this method, it is necessary that the matrix pencil J(,,, X,) is invertible for all n. Because

C is not invertible, this means that o, o must be nonzero. So, the DAE of the equation (3.1) may not

be solvable?® with explicit LMM methods. '

Predictor Corrector method

For LMM-methods, polynomials are attractive to store the previous data.

Assume that k-1 solutions {X,_x_1, - - - » Xp-1} are already known at the time grid {t,—x—1, ..., ty_1}
and h,_; = t,.1 — t,—2. Then, the necessary history is stored by the “corrector” polynomials
Cyn(2) : R— R*and C in() : R = R" of degree k, which satisfy the next conditions.

{ Cq,n—l(tn—m) = q(tn—mv Xp-m)y meE{l,....k+1}, (3.27)

Cj,n—l(tn-m) = j(tn—mv xn—m)-

These corrector polynomials can be used to predict the solution x, at #,. Therefore, the predictor
polynomials P, ,(¢) : R - R" and P; ,(2) : R — R" of degree k are defined by:

Pq,n @ = Cq,n—l ®,

Pj,n @ = Cj.n—l ®).
37For more information about LMM-methods with variable stepsizes, see [40].
38The solvability of a DAE has been introduced on page 23.

(3.28)

44

The corrector polynomials C, ,(¢) and C; ,(2) are the corrected versions of P, »(t) and P; ,(t), which
have the correct value at z,. More precisely, we express the corrector polynomlals in the predictor
polynomials and the Lagrange basis polynomial L, (¢), with

Ly(thm) = 0, me{l,..., k},

L) = 1. ©-29)
Now, the corrector polynomials are equal to:
{ Con(®) = Pyn() + (Qltn, %0) = Pga(ta)) La (1), (3.30)
Cin@®) = Pjn(®) + (s, Xn) = Pju(t2)) Ln(2).
So, the corrector (C) and predictor (P) polynomials are equal on the timepoints {t,_, ..., #,_ }. Fur-

thermore, C, ,(t,) and C; ,(t,) are the correct values at ¢,, while P, »(t,) and P; ,(t,) are the predicted
values based on extrapolation of the k + 1 previous values.

In practice, also the predictor and corrector polynomials for x are stored. These polynomials can
be used to determine an initial guess for the Newton-Raphson method.

Now, the DAE is approximated by

d
d_th'"(t) +Cja.t) =0. (3.3
From C; »(2,) and C; »(t,), the next solution x,, can be determined. There are several ways to compute
X,, which result in several kinds of numerical schemes.

Nordsieck representation

Introduction The Nordsieck representation®” corresponds closely to the Predictor Corrector method.
The previous solutions are represented by a polynomial. Furthermore, changing stepsizes becomes
easy, when using Nordsieck vectors. Without loss of generality, we only consider C, ,(¢) and P, ,(2).
For C; ,(¢) and P;,(¢) similar results can be obtained.

The corrector polynomial Cg ,_;(t) can be written like a truncated Taylor series around 2,_;:

k h dm m
n— mC —l(t —1) t_tz—
RIOED) (— ".)(h'f)-
: } n—

m=0

The Nordsieck vector (-Jq,,,_l € R™*+1 of this polynomial contains all coefficients of this polynomial,
i.e.

d K| d? K ak
Cq.n—-l = (Cq,n-l(tn—l)v hn—lg;cq,n—l(tr_z—l)a —2'—1'_Cq,n—](tn—1)7 teey ! ! ch,n—l(tn—l) .

dr?

If the state dimension » is larger than one, in fact (-3,,',,_1 is a matrix. Now, the polynomial and its
Nordsieck vector are related by next equation:

k _ t— the m
Cq,n—l(t) = Zcq,n—l,m (_h""‘l) . (332)

m=0 n—l

39gee [11, 32, 40].

45

Predictor polynomlal Because of the equatlon (3.28), it follows that P, ,(t) = Cg4—1(¢). This
means for the Nordsieck vectors that P = Cq n. Because only Cq a—1 18 known, the Nordsieck
vector Pq n Of Py ,(t) has to be computed

Theorem 3.12 Define the matrices Hy ., € R¥TV541 gnd P, € R wih

—
- Jomk b prd pud
[S I

w
< W
(o

—
L
oA ..
e’
fr
N
oo

Here Py is the Pascal matrix with
i+ -
.. ; 0,...,i}
PG i) = (Gfy) Jefo,....i}
.k(l D [0 j>i.

Then*?

Pyn=Cyn1 Hiwn - Pi, (3.33)

where w, = h—h"T
n-

Proof Because of (3.28), it follows for the predictor polynomial P, ,(¢) that
Pq,n(t) = Z _Oan 1,m (’h:nll)

= Z -—Oan 1m(%+1> (htil)

= an:() éqm—l,m (h’:_il) 20 (’7) (%))

Because
{(m,):0=m <k 0<l<m})={m1): 0=l <k 1=<m=k}

it follows for P, ,(¢) that

m . !
h,, C =ty
1 g.,n—1,m Tin

k m ! k
- m h, - - l hy, - k h,
Pq.n,l = Z (l > (hn-1> Cq,n—l,m = Cq,n—l,l <l) (hn.-.1> +...+ Cq,n-l,k(l) (hn~1> .

With this property, it is easy to change stepsizes. Note that f’q_,, and (-Iq,,, always represent k-th degree
polynomials.

P = Yoo (Z = (7)
Zz_o g,n.l (h;t'L

40The matrix l"q'n e R"*k+1 ig expressed as a matrix multiplication of the matrices (-Jq'n_l, Hy , and Py.

46

Corrector polynomlal Finally, to get the Nordsieck representation of C,.n(2), the Nordsieck vector
L, of L,(¢) at 1, is needed. L, (t) can*! be written as

L,(t) = :_""‘1 . t""ln—z o t-r;,_k
B7m=1 InTins2 n—k
=t e 1 1=t
(é-annn+1) (5 27‘“-[— 1) - (5_;7‘:&.*.1) (3.34)

]

1+(m+...+m)()+ A+ (& E-l—k)(i;—'n)k

On this manner, the Nordsieck vector I:,, can be determined, such that

L (r)-Zan<)

m=0

Because of the relation between the predictor and corrector polynomials®?, it follows that

& m
Cq,n(t) = Z (Pq,n,m + (q(t,, x,,) — Pq,n(tn))I—Jn,m) (t . tn)

m=0 n

and _))
Cq,n = Pq,n + (q(tm Xn) — Pq,n () P

Changing the number of stepsizes Besides the stepsizes, also the number of steps k can be used to
control the errors. In that case, the degree of the predictor and corrector polynomials must be adapted.
Furthermore, if discontinuities occur, one has to use an one step method to restart the integration
process.

Thus, if the previous corrector polynomials have degree k,_;, the next predictor polynomials have
different degree. If the number of stepsizes remains equal, it still holds that Pyn(t) = Cygp1(t)
and P; ,(t) = Cj,_1(z). This also holds, if k, > k,_;, because there is not sufficient previous data
available.

Thus, if k, > k,_;, the predictor polynomal still has degree k,,_,. However, the dimension of the
Nordsieck vector gets dimension &, with l_’n,kn = 0. But, if the number of stepsizes decreases, the next
predictor polynomials must be of lower degree. In this case, the predictor and corrector polynomials
are not equal, which makes this case more complex. In [40], this subject has been investigated in more
detail.

Local discretization error

Asymptotic behaviour On page 24, the local discretization error is defined as the residue of the
numerical scheme, after inserting the exact solution. The next theorem can be used to determine the
order of an LMM-method.

Theorem 3.13 The next two propositions are equivalent.

o The method is of order p if the local discretization error obeys the next asymptotic behaviour:

8y = Cpah? g (1, x(1,)) + O(RF). (3.35)

4IThe coefficients én,m have been defined on page 44.
428ee the equation (3.30).

47

The error constant C,, is equal to:

Cp L= (_1)p+1 Zp=1 ‘Enp,;lpn,m +(p+ 1) Zm—o Sn,mon,m) .

3.36
(p+ D! (3:36)
e The method coefficients satisfy the next properties*®’ :
s=0: P oPum = 0,
s=1: Z,I:m] &nmPrm + Zm=o Un,m) = 0, (3.37)
2 .<— S 5 p : Zm =1 En mpn m + N Zp—l S:;nlan,m) = 07
s=p+l : m_]S:mpnm +SZ ;nlan,m) # 0. -

Proof Because of the DAE, it follows for s > 0 that j)(z,, X(1,)) = —q“*P(t,, x(t,)). Now, the
asymptotic behaviour of the LDE §, is equal to

8n Zm:O Pn, mq(tn—mv x(tn-m)) + h Zm—o On mj(tn—m ’ x(tn—m))

or =0 [on.m (@G> X)) — En mbn@P (tn, X(00)) + 382,52 (00, X(1)) + ..]
hy Zm_o [Un m (s X(8,)) — ";"n mh nJ(l)(tn’ x(t,)) +.]

E,,,_o PnmQCns X(2)) — B 3 o EnmPn,m + a,.,m)q“’(tn, (M)

_n. Z =1 (E mpn m + 2§n mOn m)q(z)(tna X(t,,)) + ...

T s T &0 nm + (P + DELm O m)AP (1, X(1)) + OREY).

W+

+ +

a

If the coefficients satisfy the conditions of the equation (3.37), the method is consistent with order p.
Note that in general, the error constant C, , depends on the previous stepsizes. But for fixed stepsizes,
the coefficients and error constant are uniquely defined, independent of the stepsizes.

Estimate of the local discretization error The local discretization error can asymptotically be mod-
elled by the equation (3.35). It appears that §, can be approximated by 5,1, such that 6,,—3,, = O(h! +2).
If the Predictor Corrector method is used, this can easily be done by means of the difference between
the predicted and corrected values at £,,. To prove this, a well known extrapolation theorem* has been
used.

Theorem 3.14 Ler P(t) be an interpolation polynomial of degree I, which interpolates the l+1 values
{x(tn—-l—l), e -x(tn—l)}' Then
x(l+1)(1-)
) — L) =y —lhai=1) - Un - o115 1n)-
x(tn) — P(t) = (1-1) -+ (& 1)(l+1)' T € (tg-t-1, tn)

This theorem can be used to estimate the local discretization error.
Theorem 3.15 Let P, ,(t) be the predictor polynomial and C, ,(t) the corrector polynomial for the

values of q(t,x). Assume that Cg P +1)(t,l) = qE”“)(t,,,x(tn)) + O(hy). Then, the estimate 8, has
sufficient accuracy. Consider the LDE estimate &, with

(p+ D!
Sn,p-}—l te En,l

Then, this estimator has sufficient accuracy, which implies that 8y =8, + O(hﬁ‘*'z).

gn = Cp,n (Cq,n(tn) - Pq,n (). (338)

43Because E: 0 =0.ifs > 0, in that case this term is removed.
44This theorem has been derived from [25].

48

Proof Because P, ,(t) is an interpolation polynomial of degree p for the numerical solution, it follows
from Theorem 3.14 that

1ch?
Pyn(ts) = Conts) = &nprr - Eathi7 25D 7 € (yopoy 1)
+1¢5) +2
= &np+1--Enihy Lo + 0y ™).

Because C, ,(t,) = q(t,, X(2,)) + O(h,), this is equivalent to the next equation:

p+1 q(P'H)(tn, X(tn))

Pntn"cntn=n <o Euth hp+2.
q,() q,() E,p+1 S,ln (p+1)! +0(n)

Thus, it follows from the equation (3.35) and the definition of §, that §, = &, + O (h¥+),

Local and global error

On page 24, the local error is defined. Below, we will relate the local error of LMM-methods to the
local discretization error. Furthermore, its asymptotic behaviour is investigated. From Theorem 3.4,
it follows that for LMM-methods, the relation between the local error and the LDE is equal to:

J(tn, X(tx))dy = 5, (3.39)

where J(t, X) = p,,0C(t, X) + h,0,0G(t, X) is also the Jacobian, which is used to solve the implicit
equation (3.26).

Because for the ODE (3.2), we have that J(z, X) = p, ol +hna,,,o%(t, x), it follows from equation
(3.39) that the local error is of order p if the LDE is of order p. However, in general this is not true
for DAE’s, if the Jacobian C(z, x) is not invertible.

Theorem 3.16 Assume that 8, = O(hL*") and that the DAE is solvable®. If the local indices* at
all timepoints are smaller or equal than u, it follows that d, = O (h} +1=ly. For linear time invariant
systems, a sharper result holds that for u > 0d, = O (hf F2-m).

Proof Assume that §, = O(h? +1). Because the DAE is solvable, it follows that for all n the matrix
pencils A,C(t,, X(t,)) + G(t,, X(2,)) are not singular for all A. Assume that the local index*’ of the
invertible matrix pencil A, C(t,, X(8,)) + G (1., X(2,)) is equal to w,,. Because of the equation (3.39), it
follows for the local error that

[AnC (tn, X(12)) + G (tn, X(1,))] dyy = 8n

nOn,0

where A, = 7,%0—0 = O(h,). From theorem (3.4), it follows that there exist invertible matrices P, and

0., such that

Al + Ay 0
Py [AnC(, X(5)) + G, X)) @ = (;— AN, +1) ’

45The solvability of a DAE has been explained on page 23.
46The local index has been defined on page 24.
47The local index has been defined on page 24.

49

Because (., is the nilpotency index*® of the matrix N,, this means*® that

- Ad + Ap)7! 0
AnC (1, X(2, t DT = (n " =
[AnC(tn, X(20)) + G (24, X(2))] Q,.(0 O N, + 1)1)Pn

0 T —FA+..0) 0 P

" 0 I — ANy + ..+ (== p = N =1 J 20
Thus,
L] 0
d, = 0, 6) _y o Pody + O(h;#78,). (3.40)

hndn.OI + e + (-1)”'" h,,"o’n'S N'I;""_l

Assume that 8, = O (h?*") and that for all n u, > u. Then, indeed it follows that d, = O (hE+' ™).
For linear time invariant systems, it holds that q(¢, x) = Cx. This property can be used, because
then 8, = Cp,,,h,‘,’HCx(P“)(t,,)""’. Because of theorem (3.4), the Jacobian matrix C satisfies

I 0
P,,CQ,,:(O N)

8, = P! ((I)]3 > Q:71C, P 1P (g,

Inserting this expression in equation (3.40) results in

ol 0
d. = o.| . =2 071C, LT xPHD(,).
. n—2__Pno n—1 n “p.nitn n
0 hnon,0 Ny+...+ (=DM h';'tn-nla:s—l N#

Assume again that §, = O(h,’,’“) and that for all n w, > w. If 4 > 0, indeed it follows that
d, = 0(h,’f+?'“). But, if u = 0, the order of d,, is also equal to p.

O

Thus, the local indices are very important for the order of the local error. Fortunately, many physical
system have indices smaller or equal than one. The reduction of the asymptotic order of the local
errors is caused by the hidden constraints, which can occur in higher index systems.

Next, we consider the global error, which is defined on page 24 as the difference at 1, between the
exact solution and the numerical solution.

Theorem 3.17 The global error sequence satisfies next recurrent relation:

p
Z (pn,nzc(tn—,m X(tyem)) + hnOnmG @y, x(tn—m))) €n—m = Op. (3.41)

m=0
This is equivalent to next relationship between the global and local errors:
p
J(tn ’ x(tn))en =— Z (pn,mc(tn-——m s x(tn—m)) + hllan,)7l G, x(tn—m))) €n—m + J(tn s x(tn))dn .

m=1
(3.42)

48, = min{k € N: Nk = 0}.
491f PAQ = B, then it follows that 01 A=!P~1 = B~ landA~! = 0B~1P.
50gee Theorem 3.13.

50

Proof This is a result from Theorem 3.4.

O

From the equation (3.42), it follows that there is a strong relationship between the global and local
error. This means that the order of the global errors is also dependent on the index of the system.

The global error consists of the local error and an additional error, which is caused by the error
propagation. The stability of the LMM-method determines, whether the global error remains bounded
or not. If the method is strongly stable, the global error is nearly equal to the local error.

3.4.3 Backward Difference Method

Next, we consider the BDF method more closely. In this section, this method will be investigated for

variable stepsizes®!.

The BDF-method is a special kind of an LMM method, which solves equation (3.31) by means of
evaluating at t,,, which results in:

d

Ecq,n(tn) +), %) = 0. (3.43)
This means that the BDF-method is an interpolation method, which approximates the derivative by a
backward difference.

Theorem 3.18 Consider a k-degree polynomial P (t). Then, there exist unique coefficients py, g, . . . , Pk
such that

dP
hn’zi—t"(tn) = pnoPE)+...+ pn.kP(tn—k)-
Because P, ,() and C, ,(t) have both degree k, this theorem yields

h":id—P‘I-'l(t") = pn,OPq,n(tn) +...+ Pnk Pq,n(tn—k)a
hnECq,n(tn) = pn,OCq,n (tn) +...+ pn,kcq,n(tn—-k)~
The definition of C, ,(¢) implies '
hn%Cq,n(tn) = pn,OQ(tnv Xn) + pn,qu,n(tn—l) +...+ Pn.k Pq,n(tn—k)
= hnad',Pq,n(tn) + Pn,0 [q(tns Xp) = Pq,n(tn)] .

Using this identity in the equation (3.43) we obtain the next nonlinear equation in X,:

d .
hn&?Pq,n (tn) + Pn,0 [q(tna Xn) - Pq,n(tn)] + hn](tn, xn) =0.

Define ap = pp 0 and By = h,,%Pq,'n('t,l) — 0u,0P4,n(tn). Then x, is defined by:
Ofo(l(l‘m Xn) + hnj(tm X,,) + ,BO =0.

This equation can be solved by the Newton Raphson method. The coefficients o and B can easily be
computed from the Nordsieck vectors. From L, the coefficient o can be determined. Because L, (1)
has also degree &, '
d
hnd_th(tn) = pn,OLn(tn) +...+ pn.kLn(tn—k) = Pn,0
51Much theory is derived from [40].

51

Clearly, for «g and By, there holds that

{QO = I_Jn,l, _
Bo = Ppi1—agPypo.

For this method it is sufficient to store only the previous values of q(z, x), so only Py n(t) and C, 1 (2)
are necessary. However, if one would like to use also extrapolation for x as an initial guess for the
Newton-Raphson method, these polynomials are not sufficient, because q(z, X) is not invertible.

Order of the method

It appears that the order p of the local discretization errors of the BDF-methods with k steps is equal
to k. This means that for k > 0, all methods are consistent for ODE’s. However, for DAE’s, it is still
possible that the local error does not have the same order as the LDE>? is not consistent, because of
the hidden constraints.

Theorem 3.19 The BDF-method with k steps has a local discretization error of order p = k, such
that

b = Cpuhf™ P (b, x(1)) + OME™).
Proof Consider for s € {0,.. ., k} the polynomial Q,(¢) of degree lower or equal than k with
h—1t,
s) =(—)".
0;@) =(.)

So
Qs(tr-m) = ,f,, me{0,...,k}.

Then, it follows that for alls € {0, ..., k}

d : .
hnEQs(tn) = pn,OQ.\'(tn) +...+ pn,kQ.\'(tn—-k)-

From this property, it can be derived that

s=0: Pnot. ...+ ok = 0,

s=1: pn,lgn,l + .ot Onpbny = —1,
l<s=<k: pn,lé,i] +... 4+ pn,k&,f,k = 0,
s=k+1: Pn,l§:,1+---+Pn,k§;,k # 0

Furthermore, for BDF-methods:

Un,O = 1,
Oum =0 mefl,... k)

Because of (3.37), it follows that the local discretization error is O (h¥*1).

52This has been proved on page 49.

52

Estimation of the local discretization error

Because of Theorem 3.13, it follows that the local discretization error for a BDF-method with or-
der p = k satisfies the model of equation (3.35). Again, this error can be estimated by means of
prediction®®, which results in the estimate 5,

We define the Vandermonde matrix M, , by

1 ... 1 1
0 En.l cee En,p
M,,=|0 &, .. &,
0 &, ... &,
Then, the coefficients p, 0, ..., Ps,, can be computed as folows:
, 0
Pn,0 -1
M, , - : =| 0 |. (3.44)
Pn.p 5
0

So, it is possible to compute the error constant C), , and estimate 5, by means of solving this linear
system. Although the condition number of the matrices M, , becomes very large, in practice it always
holds that p < 6.

Because of (3.34), it follows that

1 —
- =Ln,p
gn,p e gn,l

Thus, 8, can also be computed with use of the Nordsieck vectors:
Sn = Cp n'é'&_i)TLn p(éq,n,O - I-)q,n,())- (345)

Although, this estimater can be used, it needs the computation of the error constant C, ,. The next
theorem gives a cheap method to estimate the local discretization error.

Theorem 3.20 For the BDF-method of order p = k, the error constant Cp, , satisfies

gnl gnp

Cp.n = (p + 1)'

This means that

= (C n0 — P n, O)
gn p+l 9 9 +1 +2
5, = (p+l)!§"'l by R PV, x(2,)) + O (ST,

53See Theorem 3.15.

53

Proof Consider the Lagrange polynomial L*(z) of degree k + 1 with

Lither) = 0, me{l,...,p+1},

Ln(tn) = 1L
So,
LA =~ Tt) = L=y 4L,
M0 PR () = (En,,+1(I)+ 1L,(2)
and 1
t — 1
L.(t) = L:¢) = YL, ().
® () = Enp+1(hn_) ()

Consider for s > 1 the polynomials Q;(z) = (th-:—’)’ with the property that Q;(t,—,,) = &,,. Thus,
it also holds that

pn,OQp-H (tn) +...+ pn,pr+l(tn—p) = Ln, l‘f;-p-lH +...+ Pn, p§p+l-

Furthermore
p+1

Lyt) =Y Ly, (=" Qn (.

m=0

We recall the proof of Theorem 3.19: it follows that

1 On, OL*(tn) +...4+ pn,pL: (tn—p)
E,’i:o (D" (Pr0Qm(t) + -+ pn.p Qlin=p))
n,1 + (1)p+ L ,p+1 (pn 1§p+1 +...+ Pn, pEP_H) .

Because of the definition of L} (¢), it follows that,

pn,OL:(tn) +...+ pn,pL:(tn—p) = Pno = I-Jn,l-

Thus,
1
(-1)pHLn Pl (p,, 1%‘"1 - P, p§p+) -
* =17 P |
Ln 1= Ln,l = Enp+1 L”'O T Erper”

So, for the error constant C,, ,, in the equation (3.36), it follows that

+1
(l)p_H Zm 1 r{)m Pn,m _ -1 1
= — .
P+D! Epr(p+ DL, 4
Because L,l = ﬁin, p» it follows that
Co = -1
p.n (p + 1)!I:n,pa

which together with the equation (3.34) proves the theorem. Because of the equation (3.45), it imme-
diately follows that 6 = ———(Cq no — Pq n,0)-

O

54

3.4.4 Numerical Difference Methods
Description of the method

It has become clear that implicit BDF-methods are important, because of their stability regions. How-
ever, for higher order, the stability regions decrease. Klopfenstein®* studied a related family of for-
mulas: the Numerical Difference Formulas, where one takes care with the prediction of the LDE. It is
possible to adapt the BDF-method, which results in the next NDF-scheme:

0Q(tn, %) + huf(tn, %n) + Bo = ka(Cyn0 — Pyno). (3.46)

For k, = 0, this NDF-scheme is equal to the original BDF method. Each iteration, the next nonlinear
equation has to be solved:

(060 - Kn)q(tna xn) + hnj(tm xn) + ﬂO + an)q.n,o =0.

It is still possible to estimate the LDE, because for a k-step method with order p = k, it holds that

SNPF = §BPF _ 1, (Cyno — Pyno) = —(+ k) (Cyn0 — Pyno) + ORPTD),

n,p+1

With use of the free parameter «,, one can get better schemes with lower discretization errors. For
this scheme, it follows that

8NPF = 8BPF — 4, (Cyono — Pyn0) = (1 4 &y, ps1kn)8EPF + O (P,

Take «, = EE%K, with k a constant number. This means that
n,p:

SNPE — (1 4+ k(p + 1))8EPF + 0(nP+?).

Ifk = 2 +i , the discretization error is simply multiplied by A:

I8y PF N = [A182PF). (3.47)

Theorem 3.21 If the order is equal to p = k, this means that

IhNDFI

=1 DFy - BDF
\hEDF| < AP = I8P = 18EPT).
n

Proof From Theorem 3.20, it follows that

8,0F =~ Eni o Enp(y PP V@, x(1) + O],
(p+ 1)‘
Because &, ,, = '”h'ﬂ remains equal if all stepsizes are multiplied with a constant factor, it follows
that -
-”8NDF” |hNDF‘ P+1
n
oy = (o)
Assume that . —-mr [M| PFT + , then
(Ll
I82PFN —

548ee [32].
551n appendix C, it has been shown how this scheme can be implemented in Pstar.

55

Table 3.4: Prediction polynomials (z) which can be used for method with order p.

[p:] p(z) |
2z -1
3z22-3z+4+1
473 — 672+ 4z -1
524 — 1023 + 10z — 5z + 1
6z° — 15z% +20z° — 1522 + 6z — 1
728 — 2125 + 352 — 3523 + 2122 - Tz + 1

[Y R S

0

The factor lllﬁT is called the Step Ratio Percent (SRP). If A is small, the NDF-method performs
better, while the order is increased if A = 0. ’
Besides the local accuracy, also the stability is important. Therefore, the stability of the NDF-
methods will be investigated for the test equation.
Now, the choice of « is a trade-off between the stability and the error. Consider the test equation
¥y = Ay and perform the NDF-method with constant stepsize h, = h. Note that for fixed stepsizes,
k, = k. Denoting the predictor for y, by y,?, method (3.46) is described by next equation.

k
Z PmYn—k+m — homAy, — k(Yn — y,?) =0.

m=0

The predictor y? is the result of the extrapolation of the previous numerical solutions. This prediction
can be described with use of the polynomial w(z) and the shift-operator ¢:

Yo = p(q)Ynp1-

In Tab.(3.4), these polynomials 1+(z) have been shown for orders p € {1, ..., 6}.
Introduce the modified polynomials p(z) and 6 (z) with

p(z) = zp(z) — k(2P — u(2)),
6(z) = zq\(z).

After introducing h= Ah, the NDF-method performs the next method:

ﬁ(q)yn—p—l - Eo(q)yn—p—l =0.

So, the NDF-version is a (p + 1)-step method. To restrict the number of steps to k, it is necessary to
‘use a lower order extrapolation p_olynomial u(z).
Define the polynomial 7 (z, h) = p(z) — ho(z)). The stability-region S of this method is defined
as
S = {h € C: #(z, h)is root stable.}

The BDF-methods are unconditionaly stable for p € {1, 2}. We want to maintain this property for the
-1

NDF-methods. Because of the equation (3.47), it follows that for A = 0 and ¥k = Pl the order is
increased, while for A = % and k = 2—’% the error terms are halved.

56

Euler Backward

Consider the fixed step version of the Euler Backward method with p = k == 1. Then, the method is
described by the next polynomials:

p(z) =z-1,

o(z) =1z,

pr(z) =2z -1,

P =z2(z=1) — k(22 — u@),
o(z) = 7%

So for 6 € [0, r], it can be computed that

P
[’_’E ¢;] =2(1 + 2 cos(¢))sin(%)2.
Thus, if k € [—3, 1], the method is unconditionally stable. This implies that for ¥ = = the error
constant will be zero, while the unconditionally stability is maintained. Then, 5(z) and & (z) are equal

to

- 3 1
p(z) = 5z2 -2z 4 3 &(z) = 7%

This is just the BDF2-method and thus it is not necessary to perform this version of the Euler Back-
ward method. In practice, however, this BDF2-version can be easier to implement, because no order
control is needed to use the BDF2-method.

In the case k¥ = %1, the error constant is halved.

BDF2 method

Now consider the fixed step version of the BDF2 method Wlth p = k = 2. Then, the method is
described by the next polynomials:

p(2) = 2(3z —4z+1)

o(z) =22,

w(z) =3z =3z +1,

p(z) = %2(3222 —4z 4 1) — k(z2® - u(2)),
6(z) = 2%

For 6 € [0, 7], it can be computed that

p(e'?)

T2 = (cos(p) — 1)2(1 + 2k + 4« cos(¢)).
o (e'?)

Re[

If i € [—%, %], the adapted version will be unconditionally stable. Now, the optimal choice is x = %1,

such that the error constant will be halved. In this case, the error term will be halved, while the SRP
is equal to 1.26. Thus a 3 step method of order 2 is founded, with a smaller error term, while it is still
unconditionally stable. In Fig.(3.4.4), the boundaries of the stability region for ¥ € {—-;—, —é, 0} has
been shown.

57

Regions of absolute stability for the NDF2~methods.
6 T T T T

- \
3y

o m\
wﬁ

trrecesenecenuansestst "

— kappa=0

—— kappas=-1/6
— kappa=-1/3

Complex plane

-6

-2 10

o
N
sk
(]
L

General results

Because for higher order, the BDF-methods themselves are not unconditionally stable, it is not neces-
sary to have this property for the NDF-methods. Klopfenstein and Shampine®® found the next optimal
choices for «:

order p K hT stability angle BDF | stability angle NDF
1 —0.1850 | 26% | 90 90
2 -1 | 26% % - 90
3 —-0.1509 | 26% 86 80
4 —0.0865 | 12% 73 66
5 0 0% 51 51

Note that for p € {1, 2, 3}, the expected amount of work will decrease with 20%.

It is also possible to use this method for the other LMM methods. However, for the Trapezoidal
method, it appears that it is not possible to conserve the unconditional stability, if the error constant is
reduced.

Small example

Now, the NDF methods are performed on a small real circuit. Therefore, the NDF-implementation
”ode15s” in MATLAB has been used. Consider the next electrical circuit:

565ee [32].

58

In Pstar, the circuit model is:

title: NDFexample;

circuit;

f = 50;

amp=1;

j_1 (0,1) amp*sin(2*pi*f*t);
r_1 (1,2) 100ml;

c.1 (2,0) 100ml;
end;

With the program Qstar”’, the circuit equations are derived in MATLAB. It appears that

% = [~sin 100m0) + %67] (3.48)
0.1
0.0
qt, %) = [e] (3.49)

Now, this circuit is simulated with initial conditions x(1) = x(2) = 1. The routine odel5s is used
with fixed stepsizes & = 107> and h* = 1.25107°>. Because this IVP has an analytic solution, it is
possible to show the global errors for x (1) and x(2). These global errors have been shown in Fig.(3.7).

57This is an useful tool, which can transform Pstar input files into m-files for MATLAB. For more information, the reader
is referred to [21, 22].

59

Global errors

10 T T T

— NDF
— BDF

-8 1 1 2 L

" " : : "
0 0.01 002 0.3 0.04 0.05 0.06 007 0.08 0.09 0.1
t

10

Figure 3.7: Global errors of the NDF-(dashed line) and the BDF-method (solid line).

Indeed, the global errors are about equal, while the NDF-method needs less computational work.

NDF | BDF

#Stepsizes 8000 | 10000

#Function evaluations | 16003 | 20003
Time (seconds) 49 63

From the table, it follows that the NDF methods need only 78% of the time, which the BDF methods
use.

3.4.5 Multirate approach

Concept of the multirate approach

‘In chapter two, it has been shown that all electrical circuits can be described by a IVP for the DAE

(3.1). All equations represent electrical components, while the variables represent the voltages and
currents in the circuit. In all integration methods in the former sections, all equations are solved with
the same method and the same stepsize. Furthermore, all variables are discretized at the same time
grid. However, the functions q and j have an hierarchical structure, because of the topology of the
circuits. Some subcircuits may show fast varying behaviour, while other subcircuits have much slower
behaviour or show periods with latency, for example digital subcircuits. Also, there are differences
with respect to the wanted accuracies. Therefore, it could be attractive to use more time rates, which
is called the multirate approach. Below, the multirate approach has been explained for the Euler Back-
ward method. However, it is also possible to perform this approach with other integration methods>®
The slow part of the circuit is integrated with larger stepsizes H = mh.

581n the MSc-Thesis [3], the multirate approach has been studied for the ROW methods, which is a special family of
Runge Kutta methods.

60

The variable x and functions q and j are separated in a fast (f) and a slow (s) part.

— Xr = qf(t’ X)] - jf(t’x)
. (X,) 9. (a@x) IEP=Gew)
Then, the DAE is equivalent to

{ 29,0, %7, %)+, (t, X7, %) = 0,
Lq,(t, %7, %) + j, (8, X7, %) = 0.

Slowest first

The “slowest first™. version of multirate integrates first the slowest part, while X is replaced by an
extrapolation function, resulting in X 7 (r). Afterwards, the fastest part is integrated, while x; is replaced
by an interpolation function X,(¢). Using Euler Backward as integration method on the multirate
timegrid {#f = (k—1)H+nh:k=0,...,N,n=0,...,m - 1} results in:

{ Qs (8, R (60), %, (8)) — @ (101, R (1), X, (80_))) + Hi (2, &£ (D), %, (1)) = 0,
Qg X (), R (-))) — @ (0, Xp (G0, R GpT)) + B Gy, X (7)), R (61_,)) = 0.

Because x(z_,) is already known,
Rp(ty) = X (t_y)-

However, x¢ (t,?) and x,(#;_,) are not known. Applying constant extrapolation on x ¢ and linear inter-
polation on x; gives:

A A -0
Xf(tJ?) = Xf(t]?_l), xs(tlf_]) = xs(t]?_l) + ‘k_ll.,’\“1 (Xs(tl(()) - Xs(t;?_l))-

Fastest first

The “fastest first” version of multirate integrates first the fastest part, while x; is replaced by an
extrapolation function. When the slowest part is integrated, the variable x; at # is already known,
without interpolation.

{ Q) X)), R () — Q) X (T, R (FT)) + R p (0, X (1)), R (1)) = O,
Q, (20, X (1), %, (10)) — q, (10, X, (0, % (80)) + Hj, (22, x£(0), x,(20)) = 0.

To predict X,(z_,), one can use constant extrapolation:
5 0
X5 (t/?__]) = X5 (tk—l)'

Note that it is not necessary to use interpolation for the fast variables, because they are already known.

However, if stepsize control is used for the large stepsize H and H is rejected, one needs the
variable X ; many small stepsizes ago. Thus, the fast variables have to be backed up, which may not
be wanted.

Let p be the order of the original integration method, which is equal to one for the Euler Backward
method. Assume that this method is stable and consistent. Furthermore, define g as the order of the
interpolation method with ¢ > 1. In an article of C.W.Gear, it has been proved that the multirate
method has a global error, which is O (h™?P:9)), if the the coupling from the fast values_to the slow
values is small. This implies that it is necessary to use at least constant interpolation (¢ = 1) to remain
consistent. : '

39See p490 in [12].

61

3.5 Newton-Raphson method

3.5.1 Description of the method

Consider the nonlinear equation:
fx) = 0. (3.50)

Assume that f(x*) = 0. Define theAJacobian matrix J(X) = % Let x* be the previous approxi-

mation of x*, then it is possible to use the Taylor approximation of f(x*) around x* to get a better
approximation:

0= f(x*) = f(x*) + J)(x* — x*) + O(JIx* — x*|)).

Neglecting the higher order term, this results in the Newton-Raphson method, which performs next
algorithm to solve equation (3.50):

1. Set the inital value x° and the tolerances €1, €7, €3.
2. Solve the linear equation J(x*) (x**! — x*) = —f(xF).
3. If If(x*)]| < €; and [x*+! — x*|| < €5 + €3]|x*|| stop. Else go to step 2.
It can be proved® that for sufficient smooth f and properly chosen x°, the algorithm is convergent.

Furthermore, if J(x*) is non-singular, the method converges quadratically to the solution.
Define the Hessian matrix

H(x) = o 3’.‘? : axx-aXd ,
axaxT of “ of
ELVE) TR <!

then it follows that
f(xF) = Jx)(x* —x*) + %((xk —x*) @ L) HE")(x* —x*) + O(x* — x*|)%).
Define the error e* = x* — x*. Then, it follows that
JxM (! —e) = JH(— ¥ = f(xF) = -J(x*)et + %(e" ® L)THE")e" + 0 (et).

Thus,
1
Jx*ett! = 5(e" ® I;)THE ek + o(le*|1*).

Indeed, if J(x*) is non-singular and H(x*) exists, the convergence is quadratically.

60gee [29].

62

3.5.2 Application to numerical schemes for DAE’s

In the previous sections, it has become clear that for many numerical schemes, each time, the next
nonlinear equation has to be solved:

Ol(l(tm X,,) + hnj(tns xn) =T,

with r an already known vector. Often, this nonlinear equation is solved by the Newton-Raphson
method. There are also other possibilities, such as the Modified Newton-Raphson method or fixed
point iteration. These methods are only linear convergent, but need less LU-factorisations.

As initial guess for these iterative methods, the previous solution or an extrapolated prediction is
used. This means that the number of iterations is also dependent of the stepsize sequence, because
for small stepsizes, the initial guess becomes better. Furthermore, the convergence ratio for the linear
convergent methods becomes also better for small stepsizes®.

61For more information about this subject, see [38].

63

Chapter 4

Adaptive stepsize control

4.1 Introduction

In the previous chapter, the transient analysis of DAE’s has been summarized. To control the errors of
these integration methods, it is necessary to use adaptive stepsize control. This subject will be studied
in more detail in this chapter. It seems that no much mathematical attention has been payed to stepsize
control in the past, in contrast to the integration methods. That is the reason why Gustaf Soderlind’
proposed a control-theoretic approach of timestep control, which is called adaptive time-stepping. He
claims that integration methods with use of adaptive time-stepping yield smoother stepsize sequences,
fewer rejected steps, more efficiency, while the total work will not grow significantly. It is also pos-
sible to design the stepsize controller for special purposes as higher order of adaptivity (for smooth
ODE problems) or filtering the high-frequency error components (for non-smooth problems). This
controlled timestep variations are also claimed to be less sensitive with respect to parameter varia-
tions than in classical time integration procedures. Hence, results obtained with automatic control
will be more robust and better suited for optimization purposes than before. This chapter will inves-
tigate the possibilities to use control theory with adaptive timestepping. DAE solvers use stepsize
control to control the local discretization errors. This subject will be explained in section two. Here
also the classical approach will be described. Afterwards, the specifications of a good stepsize con-
troller will be defined. Also the available literature about this subject has been summarized. In section
three, the theory of digital linear control systems is studied. This theory can be used to design better
stepsize controllers. How this can be done is described in section four.

4.2 Description of adaptive stepsize control

4.2.1 One step methods

As shown before, the LDE can be estimated with use of a reference method of higher order. In each
" timestep, the next solution is computed with these two methods: X, and x,,. Then

8y = X, — Xy
Because 8, = 8, + O(h? +2), it follows that 5, obeys the next asymptotic behaviour:

8, = D2y, x(1,))h? T, 4.1)

1professor at the Department Numerical Analysis of Lund Unjversity

64

Now, it is possible to perform adaptive step size control, because the LDE can be controlled by
the stepsize. It is possible to control the LDE per step (EPS) or per unit step (EPUS). Because the
control-theoretic approach to stepsize control is the same for EPS- and EPUS-control, the controlled
error estimate 7, is introduced. Then, 7, = |5, Ilh,’: =71 with P = p (EPS)or P = p41 (EPUS). Let
TOL be a certain tolerance. Then with both types of control the next constraints have to be satisfied:

Va7, < TOL. “4.2)
Introduce for all n
@n = ”cb(tm xn)"-

Then
16, I} = (ﬁnh,’:-H

and :
Fu = @nhl. (4.3)

Because 7, has to satisfy the constraints of the equation (4.2), the stepsize h,, has to satisfy the

next inequality:
TOL\
hy < | — . 4.4)
©On

However, @, is not known, when h,, is computed. This means that ¢, must be predicted, which can be
done by feedback control laws. A safety factor 0 < 6 < 1 is used, to compensate the prediction error.
If ¢, is predicted by @,_, it follows from the equation (4.3) that the control law (4.4) is equivalent

1
TOL\?
hn =< (~) hn—l' (45)

'n-1

to

This upper bound can be used to derive the next elementary control law, with e = 6TOL and 0 < 8 <
1 a safety factor.

Theorem 4.1 Consider the next elementary local error control law, with € = 6TOLand0 <6 <1la

safety factor. :
<\ |
B = <_.> s, @.6)

n—1

If 8@, < @n1, then the constraints (4.2) are satisfied with this control law.

Proof For all n we have that
" n m €
r, = (pnh: = ®n (1"—> h:—l'
Fn—i
Because 7,1 = ¢,1h!_, and € = 4TOL, it follows that
o= e <TOL.
©On—1

O

From this theorem, it becomes clear that if @, < @n-1, this control law will always satisfy the
constraints (4.2) for 7.

65

4.2.2 BDF methods
General model

For the BDF-methods, it appears that the LDE obeys a more complex model. Below, this model is
derived, with also a first order approximation. Note that for BDF-methods, the order p is equal to the
number of steps k. Then recalling Theorem 3.20, the LDE can be estimated with use of prediction,
ie.
-1

En,p+1
Because of Theorem 3.20 and the sufficient accuracy of the estimator, the LDE estimate of a BDF-
method with order p, satisfies?:

((-:q,n,O - l-:.q,n,O)-

6y =

Sn = -(’T:-I_)!E"'I M Sn,phrll,+lq(p+l)(tn1 X(tn)) + O(h'llﬂ-z)

. 4.7
= - (p.:.l)!hﬁ(hn-l + hn) ce (hn—p-}-l +--- 4+ hn)q(p+1)(t,,, X(tn)) + O(h,’:+2)

Define ¢, such that
” 1 "
b, = Fh?,(hn_l F hy) - Bmpir + -+) Dty X(2))-

This means that

®(t, X(1)) = ———1—~q"’+"(tn, x(t,)) + O (hy,).
p+1

Introduce for all n
@n = "d)(tnv x(tn))"-

Then, because all stepsizes are positive, it follows that

. & upPep1 _ ~ 1 -
'n = ll5n||h,f p-l = ¢n'p—;h,I,+P p(hn—l + hn) ot (hn—-p+l +---+ hn) (48)
This model describes the behaviour of 7, with respect to the stepsizes. It is a rather complex error
model, which depends on p previous stepsizes. Note that for one step methods, 7, only depends on
the last stepsize h,.
Again, 7, must satisfy the constraints

v,7, < TOL, 4.9)

where TOL is the tolerance level.

First order approximation
Often model (4.8) is simplified, to make the analysis less complex. Introduce for all n

1
Q= E&n,l Tt Sn,p-

Then, 7, also satisfies the next model:
- A P
Fn = ®n thn .

2The coefficients &, ,n have been defined in the equation (3.25).

66

Now, it is assumed that 2, is nearly independerAnt of the stepsize sequence, so 2, = 1 + O(h,,). Note
that for fixed stepsizes, €2, = 1. Define ¥, by ¢, = d3,,§2,,, then

P = Ynhl. (4.10)

This means that 1},, = @, also is nearly independent of the stepsizes. Note that this model is similar
to the error model (4.3) of the one step methods.

4.2.3 Stability

Besides the local discretization error, also the stability? region of the methods is important. Although
the stability region can only be determined for the linear test equation, it is possible to use this region
S also for nonlinear DAE’s. In that case, at each iteration, the DAE is linearized at z,_;. Then, it is
required that h,A € S for all eigenvalues A of the Jacobian matrix.

- Of course, it is possible to compute all eigenvalues and to verify whether for all eigenvalues
hA € S holds, with S the stability region for the test equation. Then, we get the next upper bound for
h,, where J, is the Jacobian matrix atz,_;.

h, < max{h : Vaeo,yhh € S} @.11)

Method (4.11) can be very expensive, because of the computation of all eigenvalues. Therefore, one
has to use heuristics. In general, the dominant eigenvalue, which determines the upperbound do not
need to be the eigenvalue with maximal amplitude A,,.,. However, for explicit RK-methods, § has the
next form:

S={h:|P(I))| <1}

with P(z) a polynomial*. In that case, when the stability regions are bounded, a good upper bound is:
hy < max{h : | P(hdmax)| <1}.

In practice, it is much cheaper to compute 1,,,, than the whole spectrum of J,,. For high tolerance
levels, the small stepsizes will often result in stability, because then |kA| is very small. However, for
low tolerance levels and high frequencies, the stability can be very important.

In [13], Gustafsson proposed to use stepsize control also for the stability.

4.2.4 Classical approach

Numerical DAE solvers with stepsize control have always the following structure. The method starts
with an initial stepsize, which must be guessed. Then, X, is computed from the nonlinear equation and
the local discretization error (LDE) 7, is estimated. If the LDE is small enough, the step is accepted
and the next step is computed. If the step is rejected, the stepsize has to be reduced and x,, is calculated
again. Clearly, a large number of rejections will slow down the performance of the method. Therefore,
the stepsizes are computed on base of the smaller tolerance € = 6TOL where 0 < 8 < 1 is a safety
factor. In that case, the stepsizes will become smaller, which reduce the probability of rejections.
A schematic overview of adaptive stepsize control has been shown in Fig.(4.1).

3This concept has been introduced on page 26.
4See subsection 3.3.2.

67

Start wi
(n=0)

th hg.

Compute x,

and 7.

Check if f, <TOL

Rejection

Acceptation

th<T

Compute hj,.

Figure 4.1: Schematic overview of stepsize control for DAE solvers.

In the most classic DAE-solvers, the stepsize controllers use the elementary control law> together
with some additional nonlinear control actions. The nonlinearity is caused by the many logical if-else
statements. However, the logarithmic version of the elementary control law is linear. In practice,
the stepsize controller is a combination of a linear and a non-linear part. In the classical case, the
linear part is an ordinary deadbeat-controller, while the non-linear part may consist of saturations,
dead-zones, memory, etc. The idea of S6derlind® is to expand the linear part to a PID-controller with
free control parameters and to reduce the non-linear part. Linear controllers result in much smoother
stepsize sequences than the original non-linear controllers. In Fig.(4.2), the structure of the classical

stepsize controllers is shown.

log €, . Deadbeat

logh

- Controller
logr

Nonlinear

log h

part

Process

log ¢

logF

=

Figure 4.2: Structure of classical approach to stepsize control.

4.2.5 Specifications of a good stepsize controller

Stepsize controllers must preferably satisfy the following specifications:

5See equation (4.6).
6See [34].

68

Table 4.1: Important parameters for the computational work of an integration method.

Parameters Description
C Work load per Newton iteration
m Average number of Newton iterations per step
N Number of timesteps
R Number of rejections

¢ The computational work with a stepsize controller must be small.
e The local errors 7, must be smaller than TOL.

e The stepsize and error sequences 7 and h must be smooth. If this is the case, it is expected
that the local errors also depend smoothly on the circuit parameters. This is important for
optimization purposes.

The computational work W will satisfy the next equation, where the parameters are defined in Tab.(4.1)..
W =Cm(N + R).

Because m = 1 for linear systems, it follows that W is small if N + R is small. However, for nonlinear
systems, m will become larger if the stepsizes become larger. Thus, the optimal size of the stepsizes
is a trade off between the number of stepsizes, rejections and Newton iterations per step.

The second specification will always be satisfied, because the timestep would have been rejected,
otherwise. Then other control techniques are used to make 4, smaller, which will also result in smaller
errors. But, a low number of rejections will decrease the computational load.

The third specification is a rather vague one, because of the vague notion of smoothness. Of
course, it is possible to examine the smoothness by means of apicture. However, with this method, it
is hard to compare the smoothness of the results for two stepsize controllers.

Therefore, it has been tried to quantify the smoothness of a finite sequence {x,}
s(x):

N

n=1 DY a number

N
\/an=1 (-xm - x,,,_1)2
Il 1l2

Of course, there might be many other functions, which could indicate the smoothness of a sequence.
It is possible to define a optimality criterion, e.g.

s(x) 4.12)

J =aW 4+ Bs(F) + ys(h).
Afterwards, optimal control could be used to determine the optimal controller.

4.2.6 Available literature

The application of control theory to adaptive stepsize control in numerical transient integration has
already been studied by several authors.

69

Articles by Soderlind: [34, 35] In these articles, Séderlind proposes the use of control theory for
adaptive timestepping. For one step methods, it is possible to design digital linear controllers,
such that the poles of the closed loop dynamics are placed, while also the controller can have
filter properties or higher adaptivity.

PhD thesis by Sjo: [33] In this thesis, A.Sjo studied the LMM-methods and in particular the Adams-
Moulton and the BDF-methods. He also investigated the possibilities of control theory for
LMM-methods. However, he only considers ordinary differential equations.

Bachelor thesis by Appel: [2] The circuit simulation package TITAN is a software package within
the Infineon Technologies AG, which is used for simulating electrical circuits. In 2000, Appel
has investigated the next possible approaches:

o a transformation of the local discretization error (LDE) to the local error of voltages and
currents;

e anew error estimation of the LDE;
e anew strategy for accepting/refusing timepoints;
e anew stepsize controller (PID or predictive PID’);

o a smoother norm for the error.

Furthermore, stepsize control is used to avoid too many Newton-iterations. Numerical tests
show that these approaches improve the reliability concerning the local accuracy of output sig-
nals. However, only for some test circuits, also the efficiency has been improved. Appel expects
that after refined tuning of the parameters, the efficiency is improved for most circuits.

Articles by Gustafsson: [13, 14] In these articles, K.Gustafsson studied the results of PID-controllers)
for explicit and implicit Runge Kutta methods. He also studied the possibility to use these step-
size controllers with explicit methods, which are not unconditionally stable.

4.2.7 Order control

Besides the stepsizes, also the order p can be used to control the errors.

For smooth solutions, it is better to use higher order methods, because then it is possible to use
larger stepsizes. But if the solution has singularities, a lower order method is more efficient, because
it needs less previous results. -

The next algorithm is an example of order control, which locally optimizes the magnitudes of the
stepsizes.

e Assume that the previous solution is computed with a method of order p > 1. Compute for
the orders s € {p — 1, p, p + 1} with s > 1 the stepsizes h;, such that the discretization error
estimates for order s are equal to €.

e Determine s*, which corresponds with kg = max{h,s € {p—1,p, p+ 1} As = 1}.
e The next order becomes s*, such that the stepsize is maximal.

Order control can be more efficient, but has the disadvantage that it results in more complex error
models.

"These controllers belong to a well-known class of controllers in control theory.

70

4.3 Theory of digital linear control systems

Because it appears that the numerical integration process can be modelled as a digital linear control
system, this section will recall some aspects of them?®.

Consider the input signal u = {u;}"_; and a disturbance signal w = {well

Assume that the state x = {x,c},’c":1 satisfies the recurrent relation:

Xp + @1 Xp—1+ -+ AuXp_m = boly + -+ + bpliy_m. (4.13)
Furthermore, the output signal y = {yk},’c‘;1 is disturbed by w:
Yn = Xp + w,. 4.14)

Introduce the shift-operator q with® qu, = u,4; and ¢~'u, = u,_,. Then the model (4.13) can
also be written as:

4+a1g7 '+ +8ug ™ty = (bo+ - - + Bg ™"ty (4.15)

If N — o0, it appears attractive to describe this model in the z-domain. The z-transform of an
infinite signal u is defined by:

- u@) = gfuy =) wz™
k=1

Because of the shift property, it follows that

tghu) = T uwkaz™t = 7w,
t{qu} = Zl?f_-luk-HZ_k = w(z) —up.

After neglecting the influence of the initial values of x and u, itis clear that in the z-domain, (4.15) is
equivalent to:

At+az + - 4 a,27™x@) = (bo+ - + buz ™).
Now introduce the rational transfer function

b0+...+bmz—m

G@i) = .
@ l+aiz7 i 4 az™

Then, in the z-domain, the system can be described as:

x(z) = G(Ju2),
{ y@) = x(@)+w).. (416
This implies the next input-output relation for y:
y(@) = G(2)u(z) + w(z). (4.17)

This is called the process model of the modelled system. .

8For more information about this subject, the reader is referred to [23, 24, 27].
91n fact, g is an operator with the property that (qu)p = Up+1-

71

4.3.1 Controller model

With use of a feedback control law, one can control system (4.17). The input u is fed back by the
control error r — y, where r is a given reference signal. For a digital linear controller, this feedback
law can be described with use of the shift-operator: u = C(q)(r — y), where €(g) denotes the effect
of some recursion. In the z-domain, this is equivalent to

u(z) = C(@)(r(2) — y(2) (4.18)

This is called the model of the controller. Note that C(z) is a rational function of z. The coefficients
are still free and are called the control parameters.

It is possible to define families of controllers, which have fewer free coefficients. A very com-
mon'? family of linear controllers are the PID-controllers with

1 1 z2—1 (kj+kp)z2+ (kp —kp)z —k
C(Z)=kl’—+k1 +kD 2 =(I P) > (D P) D.
z z—1 z 2(z—1)

The numbers kp, k; and kp are the control parameters, called the proportional gain, the integral gain
and the derivative gain, respectively. Special cases are the PI-controller (kp = 0) and the I-controller
(kD == kp = O) with

. . (kp+kp)z—kp __ 1 1
PL C(Z) = —k# = kp; +k12j,
I C = .

Another controller family is the family of predictive PI-controllers (also called PC-controllers) with

_ (kp +kg)z— kg
o @-1?

C(2)

4.3.2 Closed loop dynamics
Transfer functions

In Fig.(4.3), this digital linear control system has been visualized. The input u is controlled by con-
troller C(g), which depends on the control error r — y. This means that if y = r, the controller will
not perform any action. The behaviour of the state x is described by the process model G(g). Further-
more, the output y is disturbed by an additional output disturbance w. This model is mathematically
described by the next equations:

u = C@)r—y),
x = G@u, 4.19)
y = x+w.

10These controllers are frequently used in engineering applications. There is much literature about these controllers.
More information can be found in [1].

72

r Controller u Process

C(q) ‘ G(g) +9

'
a
Y4

‘Figure 4.3: Structure of classical approach to stepsize control.

The closed loop dynamics of this feedback controlled system are described by the next closed
loop model:
{ u(z) = U (2)r(2) + Un(2)w(2),
¥(2) = Y (2)r (2) + Yu (D) w(2).

- These transfer functions express the sensitivities of the input and output to and w.

For this case:

Ur(2) = mc(iéGL(—) V(@) = 12085 (4.20)
Y@ = osm Y@ = medee- .

From these four closed loop transfer functions, it is possible to derive the analytic behaviour of the
input and output.

The frequency responses of the system describe the damping of the different frequency compo-
nents of y. Commonly, the frequency response is measured in dB and shown for w € [0, 7] in log-log
diagrams. For this system, the frequence response of y with respect to w is |Y,, (€)].

Poles

The system is stable!! if bounded input implies that also the output will remain bounded. It can be
proved that if all poles z* of the closed loop transfer functions satisfy |z*| < 1, the system is stable.
Besides stability, the poles also determine the behaviour of the output.
Consider the first order model:

(z—z]y(2) =0.

Then y satisfies the next recurrent relation:
Ve = Z]Ve-1-
For each timestep, the solution is multiplied with the complex number z} = ae'®, such that
i = ake**y,. (4.21)

Thus, the angles of the complex poles determine the freqﬁencies of the solution. Furthermore, the
absolute values are the corresponding damping factors.

Utn this thesis, only BIBO-stability is considered. This means that an bounded input implies that also the output will be
bounded. .

73

Clearly, a and ¢ have the next properties:

lal =1 No damping

lal € (0, 1) Damping
a=0 The output converges in finite time
w=0 No oscillations

w € (0,m) Oscillation with period 2;"
w=1 Alternating behaviour

So, for smooth control without oscillations or alternations, the poles must be real and positive. If
a = 0, deadbeat control is used, which can result in not-smooth behaviour. If a > 0, the controller
reacts slower, which results in smoother output. However, if a — 1, the controller becomes very slow,
which reduces the performance. So, there is a trade-off between poles with large and small absolute
values.

Adaptivity and final error

First order adaptivity Assume that the disturbance w is constant, so it follows that (z—1)w(z) = 0.
Then, if (z—1) is a factor of Y,,(z), we get Y, (z)w(z) = 0. This property is equivalent with Y,,(1) = 0.
In this case, the controller is adaptive with order one. Because of the final value theorem!?, we have
lim y, = Y,(1) lim r, + Y, (1) lim w,.

n—00 n—oo n—>oo

If also Y, (1) = 1, the final error is equal to zero. Together with stability, this implies convergence:
yp—r, =0 ifn — oo

The same theorem also holds for the input:

lim u, = U,(1) lim r, + Uy(1) lim w,.

n—o0 nh—00 n—»o0

So, U,(1) and U, (1) indicate the global magnitude of the input signal.

Higher order adaptivity It is also possible to construct controllers with higher order adaptivity,
which are also able to follow higher order effects, for example linear trends. Assume that the distur-
bance is a polynomial of degree p, such that:

wy, = Co+Cin+ -4 Cpn?.

Because
p
(q"l)wn = Wpt1— Wy = Co+Ci(n+1)+-- '+Cp(n+1)p_(C0+C1n+’ . '+Cpnp) = Z C[[(n+1)l—nl],
=1
is a polynomial of degree p~— 1, it follows that (z — 1)w(z) is of degree p — 1. Because (g —1)Cp = 0,
it follows by induction that
(z—-1""w(z) =0.

Thus, if Y, (z) is divisible by (z—1)P4 and w(z) is a polynomial of degree p4 —1, we get Y\, (2)w(2) =
0. Thus the controller is adaptive with order p, if z* = 1 is aroot of Y\, (z) with multiplicity p. Note
that this implies for the frequency response that

1Ga(e')| = 0(1e“™) = O(lw|?*), w — 0.

128ee [23].

74

Filter properties

So, the controller can be designed such that the output y will converge to the reference signal r. But
it is also possible to filter the high frequency components from &, y or the control error r — y.

If the controller has a low pass filter property, the filtered signal will not depend on the high
frequency components of the non-smooth signal w.

The controller has input filter order pr with respect to w if

|Up(6)] = O(lw ~ 7|PF), o— . 4.22)

This means that always the alternations are filtered, while also frequency components near = n
are removed. Higher filter order results in a smaller transition band between the passed and filtered
frequencies. Because

. ev+1

lim

w—n W— I

= -—-l’

it follows that the equation (4:22) is equivalent to
Uu()] = 0 +1PF), - .
Because lim,,_,, €/ = —1, it follows that
Uw@) =0(z+ 11PF), z—- -1

Thus, if U,,(z) is divisible by (z + 1)PF, its filter order is equal to pr. This means that z* = —1is a
zero of U, (z) with multiplicity pr.
It is also possible to filter the output signal itself. The controller has output filter order pp with
respect to w if
1Y (e)l = O(lo — 7|PR), w— 7. (4.23)

Again, this 1s satisfied if Y, (z) is divisible by (z + 1)7%.

4.4 Control-theoretic approach to adaptive timestepping

4.4.1 Introduction

In this chapter, the problem of adaptive stepsize control is approached with control-theoretic tech-
niques. Background literature can be found in [13, 14, 33, 34, 35]. The process model G (g) describes
the dependance of the error estimators 7, of the stepsizes k. Itis assumed that it can be written in the
next form: '

log# = G(q) logh + log ¢, (4.24)

where ¢ is viewed as an external disturbance. Now, a control law is stated, where C(q) is the controller
model with still free control parameters.

logh = C(g)(loge — logt). 4.25)

After all, the closed loop dynamics are studied and appropriate control parameters are selected. Thus,
the controller only consists of linear control actions. Otherwise, it would not be allowed to use the
theoretical results from previous section. In Fig.(4.4), the diagram of this control system is shown.

75

logy

Controller logh Process log#

+
aY

A\ %)
+
R

L7

C(g) G

+

log?

Figure 4.4: Diagram of adaptive stepsize control viewed as a feedback control system.

Because G(g) is necessary to control the system, the process model will be determined first.
Afterwards, a controller C(g) will be designed, such that the LTE is controlled correctly. First, the
family of PI-controllers will be considered. Then, a general design approach will be studied.

4.4.2 Process models of local discretization error

In the previous chapter, we have studied the error models for the one step methods and the LMM-
methods. The one step-methods have simpler error models than the LMM-methods. The LMM-
methods have much more complex models for 7, which cannot be written in the form of model (4.24).
However, Sjo proposed to use linearization techniques to make it possible to handle also the LMM-
- methods with control-theoretic techniques. Below, two process models have been introduced. The first
model describes 7 for one step methods, such as the RK methods or Euler Backward. Furthermore, it
is also a first order approximation for the error model of the BDF-methods. The second model is only
true for the BDF-iethods and is derived with use of linearization techniques. Probably, this model
will be more accurate for the BDF-methods.

Besides these theoretical process models, it is also possible to use system identification to deter- .
mine G(g). Then, it is also possible to derive a better model for the disturbance log ¢. However, then
it is necessary to get data before using the process model.

Process model one
In this case, the first order approximation (4.10) is used as model for 7,. This is equivalent to

log#, = P logh, + log Vi, (4.26)
So, it follows that the process model is a constant gain:

G@)=P (4.27)

Process model two

In this case, the more accurate model (4.8) is used as model for 7,. Unfortunately, the logarithmic
version of this model can not be described as a digital linear control system.

logf, = (14 P —p)logh,+log(hn_1+hp)+- - -+loghp_pi1+---+h,)+1og §, —log p!. (4.28)

76

Theorem 4.2 Letx’ = (x7,--- ,x0)7 be in R", where x° > 0. Introduce X = x? 4 . .- + x°. Then,
forallx € R* withx > 0:

i 0
log(x; + -+ +x,) = log(x? +.. +x’?) + ixl-(log,x1 - logx?) + 5X£(10gx,, _ logx,‘,’)
+0(1 (log3), -+ , Iog(Z) I7), x> x°.

Proof Define the functions f :R* > R, g:R* - R*, g7 : R" > R* and h : R* — R by

fx) = loglxy+ - +x,),

gx) = (€1, , T,

g7l®) = (ogxi,---,logx,)T,

h(x) = f(g(x)) =log(e* + - +e™).

Introduce the variable y = g~!(x) and constant vector y° = g~1(x%). It follows that fx =
f(g(®¥)) = h(y). Then, it follows from Taylor, that
oh :
lwhmﬂ+awm—ﬁ+mwﬂnyaﬁ

Because y = g~ !(x), this is equivalent to:

d a
f@=ﬂﬂ+%&%@m—ﬂ+m@%%(h%ﬁxef.

Applying this to our functions, we get

f® = f&O+ (o= RO - D) +0Ue T @ -8 GOID, x> X,

P
Hence, because y = g~ 1 (x):
0 x0
log(x; + -+ +x,) = logxy+---+x9) + Fogx; —logx)) + - + Z(logx, — logx?)
+0(lg7' @) - g &N, x— X"
Because of the definition of g~!, the theorem has been proved.
a

Now, this theorem is repeatedly applied to the higher order model (4.28), with for all n, b = b, i.e.
the equidistant case.

1 1
logi, = (14 P —p)logh, +log2+ Elogh,,_l + -2-logh,,

%IOg(hn—l“'hn)

1 1) (4.29)
+.--+logp+ ;logh,,_p“ +. 4+ ;loghn +log @, —log p!.

~log(hp_p41++hn)

So, it follows that

. 1 1 1 1 1 R
logr, = (1+P—p+§+---+-p-)logh,,+(-2-+--'+;)logh,,_1+---+;loghn_p+1+log(p,,.

77

[p[PIG@
1]2 2
2|3 % +3g7!
3|4 —677- + -%q‘l + 172
415 | grna Faga i
506 6607 + gg 14 §g—q‘2 + ;%q‘3 + %q"‘
617 | +5a +50a 2+ 50+ e~ + 397

Table 4.2: Table with the process models for the BDF-methods with EPUS-control.

Thus, a dynamic higher ordef model has been derived, which can be viewed as a digital linear control
system. Define for m € N the numbers y,, = 3 . % Then, the model can also be written as

n=1
logfn = (P — p+ ¥p) 108 by + (¥p — Y1) 108 hney + -+ + (¥p — ¥p—1)108 hn—pi1 + 10 G-

Thus, the process model is equal to:

P—p+ P14 (yy— P2 p (V=Y
G(q) — (P—p+trp)g (qu:_lzq (Yp=¥p-1) (3)
Yp—vi Yo—Yp—1 30

P—p+y,- ql KRR pqp_

In Tab.(4.2), the process models for EPUS control (P = p+ 1) and p € {1, ..., 6} have been shown.
Note that for the Euler Backward method, with p = 1, the linearized model corresponds with the
fixed step model from subsection 4.4.2. However, for higher order BDF-methods, these higher order
process models are dynamic, in contrast to the fixed step model level. Because of the equation (4.29),
it is clear that always G(1) = P

4.4.3 Pl-control

Deadbeat controller

Consider the first order process model, which is controlled b)lf the next control law with initial stepsize

h]l .
€ F
h, = (A) hy-. 4.31)
Tn—-1

This law is equivalent to the next equation:

1 R
logh, =logh,_, + F(loge —-logr,-1). 4.32)

Only if 7,.; = €, the stepsize remains the same. The final solution for h,, is:
l n—~1
IOg hy, = log ho + 7)' m2=0(10g € — 10g ;m)-
Because of the asymptotics assumption'?, 7 has the property that 7, = ¢ h”, which is equivalent to

log?, = Plogh, +log@,. (4.33)

13gee subsections 4.2.1 and 4.2.2.

78

This equation is called the open loop process model. The error estimation 7, depends on the input A,
and the disturbance ¢,. In the closed loop dynamics, the input satisfies the control law (4.31). After
inserting the process model (4.33) in the control law (4.32), we get:

1
logh, = F(log € —log @,_1). 4.34)

Note that it is not possible to use 7, itself to compute k,, because 7, is the error estimate of the
integration method with stepsize h,. Therefore, only the previous used error estimates can be used,
e.g. Fn—1. This control law is also called deadbeat control. It uses constant extrapolation for the
disturbance ¢,. Thus, h, does not depend on former timesteps, but only on the current prediction of
the local discretization error (LDE).

Integral controller
Now, instead of the fixed power <, a free control parameter k; is used.
e \M
hp= |+ hn—1, (4.35)
Tn-1

This is called the integral controller with k; the integral gain. For k; = % it is equal to the elementary
control law, or deadbeat control law. Using the same open loop process model (4.33) as before, the
closed loop dynamics become:

logh, = (1 — Pk;)logh,_1 + k;(log € — log @n_1), (4.36)
with the following characteristic equation for the homogeneous part of the recursion in log k,,:
g=1- Pk

The dynamics are stable if for all roots z* of the characteristic equation holds that |z*| < 1. This
means in this case that |1 — Pk;| < 1. From equation (4.36), it is clear that the control paramter
k; affects the behaviour of the error and stepsize sequence. At each new timepoint, the stepsize is
computed with the factor 1 — Pk;. Thus, if {1 — Pk;| > 1, the closed loop dynamics become instable.
With the following conditions for k;, the closed loop behaviour can be predicted.

Pk; €[0,2] % stability,
Pk; e (1,2) <« fast, oscillatory control,

Pk; =1 < deadbeat control / elementary control,
Pk; € (0,1) < slow, smooth control.

‘For smooth stepsize sequences, it is clear that one has to choose Pk; € (0,1). If Pk; > 1, the factor
1 — Pk; becomes negative, which results in alternating behaviour. The solution of the control law
(4.36) is:

loghn = (1= Pk;)"logho+k;) (1= Pk;)""™(log € ~ log $n_1).

m=1

So, the stepsize depends on the sum of all past control errors. Because this sum can be viewed as a
discretized integral for the continuous case, this controller is called an integral controller.

79

Proportional-integral controller

Consider the proportional-integral**. local error control law with initial stepsize h;:

ki /a2 kp
hn=(f) (f"‘z) Bt 4.37)
T'n—-1 rp—1

with k; the integral gain and kp the proportional gain. Note that for kp = 0, we get the integral
controller, which has been introduced before. This controller can also be described in logarithmic .
form:

logh, —logh,_ = k;loge — (k; + kp)log#,—1 + kp log 7,_».

With use of the shift-operator, this equation is equivalent to:
(@* — q)logh = k;log € + (kp — (k; + kp)g) logF.
Because log € is constant, it follows that logh = C(g)(log e — log7), where

kp — (k; +k 1 1
(kp — (kt P)Q)=k1 +k”'¢;'

C@ =
7 g9 —q qg-—1

Note that the two previous controllers are special cases of this PI controller. Assuming again that the
process model (4.33) is valid for all n, the closed loop dynamics become:

logh, = (1~ Pk; — Pkp)logh,_1 + Pkplogh,_3+k;(loge —log @p_1) + kp(log @n_> —log @,_1),
with characteristic equation
g* — (1 — Pk; — Pkp)q — Pkp = 0. (4.38)

The roots of this characteristic equation are the poles of the closed loop system. If the roots of this
equation have absolute values smaller or equal than one, the closed loop dynamics are stable. The
roots of this equation are:

g1 = 3(1 — Pk; — Pkp) — 2/(1 — Pk; — Pkp)2 + 4Pk,

4.39
qzz-;-(l—Pk]—Pkp)+%\/(1—Pk1—Pkp)2+4Pkp ()

If one wants the roots r; and r», the next values have to be chosen for the control parameters:
Pkyj=1~ri—ra+nrir,, Pkp=—rn. (4.40)

It is possible to derive conditions for the control parameters, such that the closed loop system will .
be stable. Furthermore, the control parameters also affect the dynamic behaviour of the controlled
system. With a lot of algebra, it can be derived that the stability region Wp; is equal to

1
Wpr = {(k;, kp) : 0 < Pk; <4, -1 < Pkp<1-—- §Pk'}'

The next proof is a short version, which does not describe the derivation of Wp;.

Theorem 4.3 o If (k;,kp) € Wpy, the closed loop dynamics are stable.

148ee section 4.3.

80

o If4Pkp + (1 — Pk; — Pkp)* > 0, the poles are real and different. Both poles are equal, if
4Pkp + (1 = Pk; ~ Pkp)? = 0. If 4Pkp + (1 — Pk; — Pkp)? < 0, the poles form a conjugate
complex pole-pair.

Proof Assume that the closed loop dynamics are stable, so for the poles, it holds that |r;| < 1 and
Ir2] < 1.

e First, it is proved that Wp, is the stability-region.

— Assume that both poles r; and r; are real. Thus, from equation (4.40), it follows that
Pkj=1—-ri—ry+rrand Pkp = —rr.

* This means that Pk; = (1 — r)(1 — rp) € [0, 4].

* For Pkp, it holds that Pkp = —ryr, € [—1,1]. Because 2Pkp + Pk; — 2 =
~l=ri—ry—rry = —(1+r)(1+r;) <0, the control parameters must also satisfy
the equation Pkp < 1— 1 Pk;.

— Assume that the poles are a conjugate complex pole pair (r;,r;) = (re®,re=¢). It
follows that Pk; = 1 —re’® —re™® +r2 =1 — 2cos(¢) + r2 and Pkp = —r2.

* Now, it follows that Pk; = (1 —re'?)(1 —re™*) = 1—2r cos(¢) +r? < 4. Because
Pk; > 1—=2r +r%2= (1 —r)? >0, it follows that Pk; € [0,4].

* For Pkp, it follows that Pkp = —r? € [—1, 0].

o Because 4Pkp + (1 — Pk; — Pkp)? is the discriminant of the characteristic equation, the second
part of the theorem 4.3 follows immediately.

In Fig.(4.5), the stability region Wp; is shown. From (4.39), it follows that Wp; can be d1v1ded in five
subsets. These subsets have the next characteristic behaviour:

I ri and r; are real, while only r; has a negative real part. Furthermore |r;| < |r,].

I r, and r; are real, while again only r; has a negative real part. But now |r;| > |r,|.

T ry and r; are real and have positive real parts.
v ri and r, are real and have negative real parts.
v r1 and r, are a conjugate complex pole-pair.

Thus, the location of the control parameters determines also the dynamic behaviour of the stepsize
and error sequence.

81

ol

Figure 4.5: The five parts of the stability-region for the PI-controller for the process model one. The
stability-region Wp; is bounded by the contours Pk; = 0, Pkp = —1 and Pkp = 1 — %Pk,. Part
I and II are divided by the contour Pkp = 1 — Pk;, while part V is situated below the contour
4Pkp + (1 — Pk; — Pkp)? = 0.

From section 4.3, it follows that there is no oscillating behaviour, if there are only real poles. This
is the case in the parts LILIII and IV, where4 Pkp + (1 — Pk; — Pkp)? > 0. However, one can still
have alternating behaviour with real poles, if at least one pole is negative[23]. From the equation
(4.39), it is clear that for the real poles, where the discriminant 4 Pkp + (1 — Pk; — Pk p)?is positive,
there is always at least one negative pole, if (1 — Pk; — Pkp)? 4+ 4Pkp > (1 — Pk; — Pkp)?, which
is equivalent to Pkp > 0. Thus, part III is indeed the unique part of Wp; with no alternations and
oscillations. This means that PI-controllers with (k;, kp) € Wp; will result in smooth and stable
controllers.

Therefore, theoretically, the parameters have to be chosen in the part III. Besides the part III,
also the part I is interesting, because then the alternating component is damped faster than the other
component.

. Combined PI-control

Consider the stability region for the PI controllers:
1
Wpr = {(k;,kp) : 0 < Pk; <4,-1< Pkp <1-— EPkI}-

It appears that the constraints are still satisfied if the control parameters are in the part I of the stability
region Wp;.

Theorem 4.4 Consider the Pl control law.

ki s= kp
€ rn-2
hn =1z ~ hn-l
Fn—1 Th_1

with (k;, kp) € Wp;. The safety factor € is equal to 8TOL, where TOL is the tolerance level and
0 < 8 < 1 the safety factor. If 97%1p, < ¢,—1 and the control parameters are in the part I of the

82

stability region, where 1 — Pk; — Pkp > O and Pkp > O, then the constraints are satisfied with this
control law and the asymptotic process model.

Proof Assume that 7, <TOL, so the first step is feasible. Let n € N and suppose that 7,_, <TOL and
fn—1 <TOL. Because Pkp > 0and 1 — Pk; — Pkp > 0, it follows that

s _ sy P _ » nPkjp—Pki—Pkp 2Pkpy P Pk; _ oPk; ¥n_ al—Pki—Pkp ~Pkp Pk
Tn = (p”hn - (p"e 'rn—] Th2 hn—lTOL =6 ,é-_l-rn-—l Th2 TOL™ < TOL.
e

O

Note that induction is needed to prove the constraint validation for the PI-controller. This is necessary,
because the PI-controller has memory, which can be used to make the error and stepsize sequence
smoother. However, if one stepsize is rejected, the assumption that all previous stepsizes are smaller

than € does not hold. Therefore, it is better to use different controllers for the next four possible cases: o
Introduce the four different types of PI-controllers!>: '

e AA-controllerif 1 — Pk; — Pkp > 0 and Pkp > 0,
e RA-controller if 1 — Pk; — Pkp > 0and Pkp <0,
o AR-controller if 1 — Pk; — Pkp <0 and Pkp > 0,
o RR-controller if 1 — Pk; — Pkp <0 and Pkp < 0.

The AA-controller can be used if the last two stepsizes have been (A)ccepted, the RA-controller
can be used if the previous stepsize has been (R)ejected, but the last stepsize has been (A)ccepted,
etc. Note that these conditions are conditions for the coefficients of the characteristic polynomial
22— (1 — Pk; — Pkp)z — Pkp. Thus, the controllers are also determined by the two poles.

| Controller: | ry+r; | riry |

AA =0 | =<0
RA >0 | =0
AR <0 | =<0
RR <0 | =0

An example of these controllers with poles r; and r; is:

| Controller: BN

AA r | —r
RA r r
AR r | —r
RR r r

Now, there are only two different controllers. :
Because of stability, it must hold that r € (0, 1). Large r will reduce the amount of rejections, but
also results in slower action.

Theorem 4.5 Assume again that 97%1 $, < ¢,_1.

15A=Accepted, R=Rejected

83

o Iffy_o <TOLandt,_y <TOL, the last two stepsizes are accepted. In that case the AA-controller
gives constraint validation.

o Iff,_5 <TOL, but 7,1 >TOL, the last stepsize has been rejected. Then the AR-controller gives
constraint validation.

o Iff,_p >TOL and 7,_1 >TOL, the last two stepsizes are rejected. In that case, the RR-controller
gives constraint validation.

o Iffny >TOL, but 7,—y <TOL, the last stepsize is accepted. Then, the RA-controller gives
constraint validation.

Proof For the PI-controller, it follows that

- al—Pkj— ~
Fo < FlZfH—PhepPemOLPR

If 7,_» <TOL and 7,_; <TOL, then it follows for the AA-controller that
f. < TOL.

If 7,2 <TOL, but #,_; >TOL, it follows that 7!, < TOL™!. Thus, with the AR-controller, -
we get
Fo < (F72)ThitPhe=1pPReTQL PR < TOL.

If 7,_, >TOL and #,-; >TOL, then it follows that 7/;!, < TOL™! and 7!, < TOL™". Now, it
is clear that the RR-controller gives constraint validation.

If 7,_, >TOL, but 7,y <TOL, it is clear that the RA-controller gives constraint validation.
O
Of course, now the closed loop dynamics become very complex and are very difficult to analyse.
However, because the number of rejections will be much smaller, than in the ordinary case, the AA-

controller will control the most stepsizes. Therefore, the closed loop dynamics are mainly determined
by the closed loop dynamics with the AA-controller.

Predictive PI -control

In the previous sections, it is shown that it is possible to use PI-control for adaptive stepsize control.
The main assumption is:
9Pk1 é’n = én—l .

If the DAE has stiff behaviour, this assumption does not need to hold. This means that in that case,
it is not sufficient to use first order extrapolation to predict ¢,. So, then higher order extrapolation is
used, which also needs former ¢;’s. Because 7, = (/‘J,,h,’,’ , the ideal control law results in:

6 %
hn == (—:—) .
@n
Introduce the second order predictor for log ¢, with

log ¢, = 21og n—1 — l0g @u->.

84

This results in the second order control law:

1 1
h € \? [(Foa\7 hue
" =(.) (2) ity (4.41)
hn Tn-1 Tn-1 hn—2
This control law appears to be second order adaptive!® with respect to ¢, which implies the ability to
. neglect linear trends. This law can be generalized to the next predictive controller:

h € * (Faa*R he
n =(,\) (An 2) n—-1 (442)
hn—l Th—1 Tn—1 hn-2
with kz and kg the control parameters. Because this is a second order controller, it needs two initial
stepsizes ho and h;. This controller can also be described in logarithmic form:

logh, —2loghp—y +logh,—; = kgloge — (kg +kg)logr,.y + kglogFn_s.
With use of the shift-operator, this equation is equivalent to; ~ . -
(g — 1)*logh = kg loge + (kg — (kg + kr)q) log 7.

Because log € is constant, it follows that logh = C(gq)(log ¢ —log7), where

' C(q)=(kR_(kE+kR)q) 1 (quzl"'kR)'

@-1D* g-1
Note that this controller consists of a double integrator, which now is able to follow linear trends.
Because z* = 1 is a root with multiplicity 2, this controller is adaptive with order 2. For the fixed
step process model, the closed loop dynamics are determined by the next second order characteristic

equation: .
22— @2 — Pkg— Pkg)z+1— Pkg =0

Because for Pk = Pk; and Pkr = 1 4+ Pkp, we retrieve the characteristic equation for the PI-
- controller, the PC-controller is stable if (Pkg, Pkgr) € Wpe with

1
Wpe = {(kg, kg) = (k;, kp + 'I;) : (ki kp) € Wpy}

with Wp; the stability region of the Pl-controller. To place the poles r; and r;, the next control

parameters have to be chosen!”:

Pkg=1—-ri—ra+nrra, Pkr=1—r—r,.

4.4.4 Design of finite order digital linear controller
General approach

-Assume that the transfer function of the process model of order M is equal to G(z), with G(z) a
rational function of z. Define the polynomials K (z) and L(z), such that

L) 2"+ +iu
K@ MM ey
16’_l"he adaptivity of a controller has been introduced in section 4.3. Second order adaptivity means that the controller can

also follow linear trends of ¢.
17gee the equation (4.40).

G(2) (4.43)

85

Note that for models (4.27) and (4.30), we have M = Q0 and M = p — 1, respectively. Similarly, the
controller of order N is defined by the rational function C(z). Introduce the polynomials A(z) and
B(z), such that

_B@ _ B+ 4By
AR N 4oVl day
So, the controller has 2N free parameters. Note that B(z) has a lower degree than A(z), because only
the previous errors and stepsizes are known. It is even allowed that B(z) = 0, when the stepsize
controller will only use the previous stepsizes. The closed loop dynamics are described by the next
equations:

(4.44)

logh = U,(q)loge + U,(q) log @, (4.45)
log# = ¥,(q) log € + Y,,(q) log é. '

Here, U, (q) and Y,,(g) describe the sensitivity of the stepsize and error sequence to the disturbance
@.
Define the z-transforms

t{logh} = u(z), ¢{loge}=r(2),
S{log?) = y(z), ¢{log @} = w(2).

The closed loop dynamics in equation (4.45) can be described in the z-domain by

{ u(z) = U, (2)r(2) + Uy (2)w(z),
¥(2) = Y (2 (2) + Yu(2w(z).
with
Ur(Z) B(2)K(z) Uw(Z) —_ ~-B()K(z)

= ADEDFEOLE) ADK@DLEGLE) (4.46)
B _] .
Y(2) = sorwrsore Yo = mmrossoreo:

So, the poles of the system are determined by the N 4+ M roots of the characteristic equation
A(2)K(z) + B(z)L(z) = 0.

With N + M parameters, it is possible to place these poles to the stable poles {r1, ..., rnv+m}-
Besides the poles, also the adaptivity and filter properties are important. The next theorem is
useful for the design of C(q).

Theorem 4.6 Assume that the closed loop dynamics are stable. If K(1) # 0 and K(—1) # 0, the
next statements are true:

o The controller is adaptive with adaptivity order p, if (z — 1)P4 is a divisor of A(z).

o If pa > 1, there is no final error. Furthermore, if log ¢ is a polynomial of degree p — 1, there
is no control error at all,

o Assume that log ¢, — log ¢* for n — ©0, then the input log h,, converges to ﬁ(log € —log ¢*)
for n — 00. For models 1 and 2, this means that log h, — %(loge —log ¢*), forn — oc.

o The controller is a stepsize filter of order pr if (z + 1)PF is a divisor of B(z2).
o The controller is an error filter of order pg if (z 4+ 1)P% is a divisor of A(2).

Proof

86

o The controller is adaptive with adaptivity order p, if (z — 1)P4 is a divisor of Y, (z). Because
the system is stable, this means that the denominator is not divisible by (z — 1). So, it follows
that the controller has adaptivity order p4 if (z — 1)P4 is a divisor of the numerator A(z)K (z).
Because also K (1) # 0, it follows that (z — 1)?4 must be a divisor of A(z).

e The ﬁnal error is zero if Y, (1) = 1. Because p, > 1, this is always true, because then A(1) =
0. If log ¢ is a polynomial of degree p, — 1, it follows that Y,,(g)log$ = 0, so log7 =
Y, (q)loge =loge.

e Because of the final value theorem'®, logh, — U, (l)loge + Uy (l)log , forn — oo0.

Because ps = 1, it follows that A(1) = 0. Hence, U, (1) = L(l) = 5%5 = —

e The stepsize filter order is pr if (z+1)PF is a divisor of U, (z). For stable systems, the denomi-
nator is not divisible by (z + 1). Hence, (z+ 1)PF is a divisor of B(z) K (z). If also K(—1) # 0,
it follows that (z + 1)”F must be a divisor of B(z).

o The ervor filter order is py if (z + l)PR is a divisor of Y,,(z). Analogous to the stepsize ﬁlter it
follows that (z + 1)7% must be a divisor of A(z).

O

Note that the assumption for K (z) is satisfied for the two process models of subsection 4.4.2.

There are 2N free parameters, which must be designed. Assume that N > M. After placing the
N + M poles, there are still N — M free parameters left. These parameters can be chosen on base of
the adaptivity and filter order. For the orders, the next inequalities have to be satisfied:

Theorem 4.7 Assume that a system with process model (4.43) of order M is controlled by a controller
with controller model (4.44) of order N, such that the closed loop dynamics are stable. Then, N, pa,
pr and pg have to satisfy the following conditions:

N>M,
pa+pr+pr=N-M,
I1<pa<N, ~
0<pr =N -pa,
0<pr=N-1,
pR::OVpp:O.

A

Proof

e Because N 4+ M poles must be placed, there must be at least N +v M free.parameters. So,
2ZN>N+MorN=>M.

e With the remaining N — M parameters, only N — M additional conditions can be added.
¢ To get an first order adaptive controller, it must hold that p4 > 1.
e Because both p,4 and pg depend on the roots of A(g), it follows .that pa+pr < N.

e Assume that pr > 0 and pg > 0. Then B(—1) = 0 and A(—1) = 0. Thus, —1 is a pole of
the closed loop system, because A(—1)K(—1) + B(=1)L(—1) = 0. This contradicts with the
stability of the system. Thus, since always pr = 0, pr = 0, we must have pr =0 or pg = 0.

18This theorem has been derived from [23].

87

ad

Note that the difference D = N — M determines the grades of freedom for the controller. Because
always M > 0, it follows that N > D. In the next table, for small values of D, the possibilities are

shown. A controller of order N for a process model of order M with poles {ry, ..., ry.p} Will be
denoted by H,ﬁ prpr(T1> -+ s TN+p). For these controllers, it always holds that N = M + D, which

means that the closed loop dynamics are determined by 2M + D poles.

Controller D|{ N |pa|pr|pr]

Hlloo(rl, oo+ | 1| M4+1] 11010

lelo(rl,...,rzM_.,_z) 21 M+2 1 1 0

H1201("1,---a"2M+2) 2 M+2 1 0 1

H2200(r1,...,r2M+2) 2 M+2 2 0 0

H1320(r1,...,r2M+3) 3| M+3 1 2 0

H1302(r1,...,r2M+3) 3{M+3 110 2

H2310(r1, ...,r2M+3) 3{M+3 2 1 0

Hyy(riy.oooramqa) | 3| M+3 2 0] 1

H3300(r1,...,r2M+3) 3 M+3 3 0 0
Controller Hlloo(rl, ..., Tray+1) is the standard controller, which is used most often. The controllers
HEo(r1s ..., rams2) and HYy (r1, . . ., rap+2) have additional filter properties, while controller H2(r1, - - - , Fy42)

is a predictive controller. The other controllers are higher order controllers, such that the filter orders
and adaptivity can be increased.

Constraint validation

In the previous subsection, a general approach for control design has been studied. The controllers
have the property that 7 — ¢ if n — 00 and ¢ is constant. Furthermore, if ¢ is a2 polynomial of degree
pa — 1, the controller will produce no control errors at all. In practice, this is never the case, so 7 can
have deviations. If the deviation of 7, is too large, the step h,, is rejected. To reduce the number of
rejections, the safety factor 0 < 6 < 1 plays an important role. The controller is designed to control
the difference log7 — loge with ¢ = §TOL. The step is rejected if 7, > TOL. Rejections are not
wanted, because then other controllets are used, which disturb the control process. Also, the speed of
the DAE solver will decrease, if many rejections occur.
It is possible to analyse the behaviour of the controller with use of the closed loop dynamics.

Theorem 4.8 Consider process model (4.43) of order M, which is controlled by a first order adaptive
controller with controller model (4.44) of order N, such that the closed loop dynamics are stable. The
safety factor € is equal to §TOL, where TOL is the tolerance level and 0 < 8 < 1 the safety factor.
Define the polynomials R(z) and S(z) of degree N + M, such that

Sz) = A@R)K(2) = MM 4o VML 4o,
Rz) = AQ@K@) +B@L(z) = MM+ p1z2"™M-1 4. 4 pyim.

Assume that the next conditions are satisfied:

e The disturbance ¢ satisfies the inequality:

RV G, o0 ... goNM < 1. (4.47)

88

e The coeﬁiéients of R(z) satisfy: p; <0, ie{l,...,N+ M}

o The previous N + M stepsizes have been accepted.

e The real behaviour of the error estimate 7 is sufficient modelled by the process model (4.43).
Then, the next stepsize will be accepted.

Proof Because of the closed loop dynamics, it follows that

¥(2) = r(2) = Yy, (2)(w(z) — r(2)).

Then R(z)(y(z) — r(2)) = S(2)(w(z) — r(2)). For F, this means that

AN A R € T N £ A L S £ A N
€ € € € € € '

Because p4 > 1, it follows that A(1) = 0. This means that S(1) = 1 + o + - - - + oy4s = 0. Thus,
F 7, o1 r PN+M .
In Th-1 T'n-N-M RO) 5 01 oMM
S v =6 2 .o)
(TOL) (TOL) (TOL) R CRRR

A R(1) » ~0} AON+M fn-] - ;n—N—M TPNAM
r,=6 OnPy 1 P TOL e —’i"o—L- TOL.

Because of the assumptions, it follows that 7, < TOL.

So,

Note that only the second condition in theorem (4.8) depends on the used controller.

Definition 4.1 Assume that controller (4.44) satisfies the second condition in Theorem 4.8. This
property is called: constraint validation.

Controllers with constraint validation will never give rejections, if the process model is accurate
enough and if the disturbance @ satisfies a certain inequality. Usually, this inequality is easier satisfied,
if the safety factor 6 tends to zero.

Note that R(z) is the characteristic polynomial of the closed loop system. This means that the
coefficients of R(z) depend on the pole positions. If one wants a controller with constraint validation,
not all pole combinations are allowed. For example, it is not possible to design a controller with
constraint validation, while all poles are equal. This means that there are no controllers without
oscillations with constraint validation.

Theorem 4.9 Consider process model (4.43) of order M, which is controlled by a controller with
‘controller model (4.44) of order N, such that the closed loop dynamics are stable. The safety factor €
is equal to 6TOL, where TOL is the tolerance level and 0 < 8 < 1 the safety factor. Assume that

o The disturbance § satisfies the inequality: 98V @, g7 - g7" M < 1.
o The previous N + M stepsizes have been accepted.

o The process model (4.43) is correct.

89

Then, the next assumptions are true.

o Ifthe poles are equalto{r, ..., r} withr # 0and N+ M > 1, there is no constraint validation.
Only, if the closed loop dynamics have one pole (N + M = 1), the controller has constraint
validation.

o If the poles are equal to {reﬁkjr"ri‘i7 k=0,...,N+ M — 1} withr € [0, 1), there is constraint
validation.

o The deadbeat controller with all poles equal to zero always has constraint validation.
Proof
¢ If all poles are equal, it follows that

N+M

R(Z) — (Z _.r)-N+M _ ZN+M - (N +M);_ZN+M—1 + (2

)r2ZN+M_2 4+ .. 4 (_r)N+M_

This characteristic polynomial has coefficients, which are alternately positive and negative, if
r#0and N4+ M > 1. Only if N + M = 1, the characteristic polynomial R(z) = z — r; has
only one negative coefficient.

o For the second case, it follows that

R(Z) = ZN+M _ rN+M_

Indeed, this polynomial satisfies the condition for constraint validation.

o This is a special case of case 2, withr = 0.
O

So, it is possible to design a controller with constraint validation, adaptivity and filter properties.
Furthermore, the absolute value of the poles is still free. If one wants also to design the angles of the
poles, the controller will not have constraint validation. Thus, there is a trade-off between controllers
with constraint validation and controllers without oscillations. It is also possible to use an optimality
criterion to choose the pole positions.

Computation of the contro] parameters

In the previous subsection, several design properties have been shown. Now we will show how in
practice the control parameters can be computed. Consider the system with process model (4.43) of
order M. This process is controlled by controller (4.44), which must have the next properties:

| - e The order of the controller must be equalto N = M + ps + pr + pr.
e The N + M poles are equal to {r;, ..., ry4+n} and are stable.
| o The adaptivity orderis equal to pg with1 < py < N.
e The filter orders are equal to pg and pr With 0 < pg < N — ps, 0 < pr < N -1 and

pr=0Vpr=0.

90

Assume that N, ps, pr and pp satisfy these conditions. The characteristic polynomial R(z) is equal
to (z —ry) - -+ (2 — rvenm)- Then, it follows that

A(2)K(2) + B(z)L(z) = R(D).

Becal_}se of the other properties, we can write A(z) = (z — 1)P4(z + 1)??A(z) and B(z) = (z +
1)PF B(z). Thus, we have

(z=1DPA(z+ 1DPPA@DK () + (z + DPF B L(z) — R(z) = 0. (4.48)

This monic polynomial of degree N + M at the left-hand side is equal to zero, if all coefficients
are equal to zero. On this manner, the N + M free control parameters can be computed. For the
process model one, it is easy to compute the control parameters for arbitrary P. However, for the
process model two, the computations can become rather complex. In that case, one can use e.g.
Mathematica!® or MATLAB. '

Below, for the both process models and p € {1, 2}, the control parameters for controller HIIOO (r, ..
have been computed. For the process model one, also the second order controllers have been investi-
gated, while the order is not restricted to 2.

Process model one

For the process model one, we have?® that K (@0 =1,L(g) =P and G(g) = I’;—(('fll) = P. It always
holds that M =0and D = N — M = N, so from Theorem 4.4 4, it follows that N > pa + pr + pr.
The control parameters will be designed for a variable order P € {p, p + 1}.

Standard controller For the controller Hlloo(rl) with py = 1 and pr = pr = 0, it holds that
D = N > 1. For N =1, it follows that

AR) = (z— DA,
Ai)=1,
B(z) = B(z) = Bo, -
R(z)=z~—ry. -

Because K (z) = 1 and L(z) = P, the equation (4.48) implies that
(z—1)+ Ppop=2z—r1.

Thus, it follows that 8o = l:Pﬂ. Because A(z) = z — 1, it also holds that ¢; = —1.

Stepsize filter For the controller H121o(’1’ ro) with p4 = pr = 1 and pg = 0, it holds that D =
N > 2. For N = 2, it follows that

A(z) = (z — DA@),
A(z) =z + @y,
B(z) = (z+ 1)B(2),
B(z) = o,

R(z) = (z —r)(z —r2).

19This computer algebra package is able to compute the exact values.
20gee the equation (4.43).

91

s T2M+1)

The equation (4.48) implies for this stepsize filter

= DE+a)+ P+ Do =(z—r)iz—r).

Thus, it follows that
{&,~+Pﬂ0 = l—ri—nry
Pﬂo—&l = nra.

So, 5[1 = %(1 —ry—ry—riry)and B() = -2-1};(1 —ry—ry+rr).

Error filter For the controller HZ,(r1, r2) with ps = pg = 1 and pr = 0, it also holds that
D =N > 2. For N = 2, it follows that

A(Z) = (z — Dz + DA®Q),
fi(z) =1,
B(z) = B(z) = Boz + b,
R(z) = (z —n)(z = ry).

The equation (4.48) implies for this error filter

=D+ 1)+ PBoz+ b)) =@z—r)z=-r).

Now, it follows that o = =52 and 8 = li;l’i. Because A(z) = z? — 1, it also holds that a; = 0
and oy = —1.

Predictive controller For the controller H2200(r1, ry) with ps = 2 and pr = pr = 0, it also holds
that D = N > 2. For N = 2, it follows that

AQR) = (z— 1)?A(2),
fi(z) =1,
B(z) = B(z) = Boz + b1,
R(z) = (z —ri)(z —r2).

The equation (4.48) implies for this error filter
(z = 1>+ P(Boz + B1) = (z = r1)(z — r2).

So, Bo = 3"—’},;’1 and B, = 51%"—1. Because A(z) = (z — 1), it also holds that ; = —2 and o) = 1.

Process model two

For the process model two, the order is equal to M = p — 1. For p = 1, the process model is
similar to the process model one. Now, for p = 2 and P € {2, 3}, the control parameters for the
standard controller Hlloo(rl, ra,r3) with ps = 1 and pr = pg = 0 will be computed. In this case?!,
G(@)=P—3i+ 5'3, which implies that K(q) =g and L(g) = (P~ D)g + 1. Now, M =1, D > 1
and N > 2, which implies that the closed loop dynamics have at least three poles

21gee page 78.

92

|_ Controller | Constraint validation [|r|] & [By A |
H (0 true ol o] 5 O
HZ2,(0,0) true ol 1 ; :
H2,(0,0) true ol 1| o 1
H2,(0, 0) true o|-1] 1 i
Hlpy (D) true IT o] I o
H2 (4 L false S R
i1 O S .
lem(?, ?) false ? 1 —? g
T e EA R
2 12 T s| & 3
Hiso(p—9) true 78| %
H1201(?’ —?) true ? 1 0 'g
HZo(3:—3) true 3=l 1 —%

Table 4.3: Table with the control parameters for the EPUS-version of the first order one step method.

For N = 2, it follows that

A@R) = (z — DA(),
A~(Z.) =2z +&1,
B(z) = B(2) = oz + 1,

R(z) = (z —r)(z — rp)(z —r3).

Because K (z) = z and L(z) = (P — §)z + 4, the equation (4.43) implies that

1 1
(z—D(z+a)z+ (Boz+ B1)((P — 5)2 + 5) =(z —r1)(z—r2)(z—r3).

Equating the coefficients at both sides yields

ay+ Bo(P — 3)
180+ Bi(P = 1) —ay

Hence, it follows fhat

>
Il

1
3B

1- r — rp —rs,
rirp +rir3 + rors,
—rirars.

(Q=r))(A—=r){(1—r3)+2Pryrar
P s

—2riryrs,

1—ri—r,—r;—(P=3)b.

Computed controllers with Mathematica

In Tab.(4.3), the control parameters are shown for the EPUS-version of the Euler-Backward method
with p = 1 and P = 2. This first order one step method can be modelled by the fixed step model
without linearization. In Tables (4.4) and (4.5), fororder p = 2 and P = p 4 1 (EPUS), the

control parameters are shown for some designed controllers

22 Each time, the control parameters

are computed for the deadbeat controller, the smooth controller and the controller with constraint

validation.

22This has been done with use of Mathematica

93

RS
—_

|_ Controller | Constraint validation [|r[| &, | Bo

Hl,(0) true 0 0 % 0
H2,0,00 | = true o 4| 1 %
HEM(O, 0 true 0 1| 0 &
20(,(0 0) true 0|-1} % -2
Hlw(3) true % 0] ¢ O
lem % %) false 2 -3 % é
101(% % false 2 1 —% 3
00(2’ 2) false s =l 5 -3
Hly(3) true % 0 % 0
lelo(%’) true 3 5 s %
HIZOI(?’ —?‘.) true ? ’ 1 0 yy
2 (5 —3) true s | =1 2 _2
200\ 2 2 2. 3 12

Table 4.4: Table with the control parameters for the second order BDF2 method with the process
model one.

Controller Constraint validation | |r| | &1 @] B B B |
H[,(0,0,0) true 0 2 0 3 0 0
H2,(0, 0,0, 0) true 0 fg. : i }oo
H$,(0,0,0,0) true 0 E 5 - ﬁ i 0
H2200(0, 09 0, 0) true 0 —% —3 T —T13 0
H1100(2 2 2) false : —g.g. 0 %14 I
lelo(1 2 5 2) false 1 _% 157 _9_1 §1_ 1

H2 (% i i1y false i 54_% ﬁ _Zé_g &g i
ML me ilm m|TBR OB O

20012, 2 2>2) 21756 S6l o s 8
H1100(2 % ”,%e 5’”) true 1l -2 0 Lo _1
H1210(2v2e7m = 7m) true 1 g ol % 3 -
H{%l(z,zef”‘ =3, 37" true 1 R
R T [I O I

Table 4.5: Table with the control parameters for the second order BDF2 method with the process
model two.

94

Implementation

If the coefficients of the controller C(q) are derived, this controller can be used to compute the
stepsizes. Assume that ps > 1, then there exists a polynomial A(g) of degree N — 1, such that
A(g) = (@ = DA@) = (g - D@"" +@0g"? +... + ay_,). Now,

(g — 1DA(q)logh = B(g)(loge — log 7).

This is equivalent to the control law

Po BN-1 —a —aN—
€ € hy1\ ™ Ro-ng1) N
hn - (fn—l> o <fn—N) (hn-—2> o (hn-N hn—l- (449)

This controller can easily be implemented in a numerical DAE solver. It needs the N previous step-
sizes hAp—1, ..., ha—n and the N previous error estimators 7,_j, ..., 7fn—n. Controllers with large N
have the disadvantage of a large history. After discontinuities, the integration order decreases to one,
which implies that the process model is no longer valid. This implies that another stepsize controller
has to be used, which can not use the previous stepsizes and errors. If after rejections, other control
techniques are used, these results do not satisfy the closed loop dynamics.

Since the behaviour of the error estimate is not exactly modelled by the process models, it is not
completely sure that controller (4.49) maintains its properties, such as adaptivity and filter-properties,
for the integration process itself.

4.4.5 Nonlinear controller for the process model two

In the previous sections, the nonlinear process model has been linearized. Afterwards a linear con-
troller has been designed, which can be used to control the nonlinear process. However, it is also
possible to use a nonlinear controller, which can also be linearized.

Consider the process model two®. Then the ideal stepsize would satisfy the next nonlinear equa-
tion, because then r, = €. :

.1
%Fh,‘f”“"(hn_l A hn) e (hapir -+ hy) =€ (4.50)

Because ¢, is not known yet, it is not possible to use this controller. Therefore, ¢, must be predicted
by ¢F with use of the previous values of 7 and k. This will result in the next nonlinear controller:

le
B2y hy) - (et -+) = 2 (4.51)
@,

n

So, h, is the root of a polynomial of degree P. It can be shown that &, can be computed from this
equation, because each polynomial of this type has only one real positive root. From the error model
(4.8) and the equation (4.51), it follows that the error estimate will be equal to

~

- .1 _ n
'y = @n thll-’_}) p(hn—l +hp) - (hn—p-H +--+hy) = g?e- (4.52)

n

23See the equation 4.8.

95

Theorem 4.10 Assume that $f is computed with the next linear control law:
log $© = loge + C(g)G(g)(log 7 — loge). (4.53)

Then, the linearized closed loop system is equal to the process model two, which is controlled by the
linear controller logh = C(q)(log € — log 7).

Proof The linearized version of the nonlinear controller (4.51) is
G(q)logh +log ¥ =loge.
If log $7 satisfies the linear relation (4.53), it indeed follows that

logh = C(gq)(loge — log 7).

Because of the equation (4.52), it follows that
log ¢ =log7 4+ C(q)G(g)(log7 — loge€) = log @F — (loge — log 7). (4.54)

Thus, if log 7 — log €, also log ¥ — log @ for n — oco. Furthermore, the difference only depends
on the last control error. '

Note that this approach also covers the process model one, but then the process model is already
linear. This means that in that case, the nonlinear controller (4.51) corresponds exactly to the lin-
earized

Implementation

Using the definitions on page 85, it follows that the control law (4.53) for log $* is equivalent to

A(g)K (g)(log 7 —loge) = B(q)L(q)(log? — loge).

Assume that p4 > 1, so again A(g) = (g — I)A(q) and A(g)loge = 0. Let S(g) and R(g) be equal

to S(g) = A(g)K(g) and R(q) = A(g)K(q) + B(q)L(g), then it follows from (4.54)

g"*Mlogg? = (VM — S(q))logd” + B(q)L(g)(log7? — log €) :
= (g"™M - S(g))log @ + (S(q) — g"*™ + B(g)L(g))(log7 — loge) (4.55)
= ("M — S(g))log @ + (R(g) — gV +M)(log7 — log€).

Thus, the control law reads

AP ~ 0 ~A—ON+M ;n—l o1 ;n—M—N Pi+M
Cn =Cp1 " Pu-n UNTT T . (456)

€ €
Because for process model two?, K (q) = g™, it follows that S(gq) = g™ A(g) and

gV ™M log¢” = qM(g" — A(g))log @ + (R(g) — ") (log? — logee).

243ee page 78.

96

Now, the control law reads

» Pl ~ PN+M
" e - Tn—1 rn-M—-N
er=¢2 ---wnf,’&("E) (—-;—-) . (4.57)

Note that for deadbeat control, just extrapolation is used, because then R(z) = z¥N*™. So, in general,
the nonlinear controller performs the next algorithm:

AP _ »=01 s ON+M [(Fa A~ o PN PN+M
(an - ‘pn—l ¢n—N € € *

- (4.58)
BT (et +) (s -+ ha) = BE.

The next theorem is analogous to Theorem 4.8, which indicates whether the controller will have
constraint validation®

Theorem 4.11 Consider the nonlinear process model (4.43) of order M, which is controlled by the
controller (4.58) with ps > 1, such that the linearized closed loop dynamics are stable and correspond
to the linear feedback law log h = C(q)(log € — log 7') with controller model (4.44). The safety factor
€ is equal to OTOL, where TOL is the tolerance level and 0 < 6 < 1 the safety factor. Assume that the
next conditions are satisfied:

o The disturbance ¢ satisfies the inequality: 6%V, o7 ... 7" M < 1.
o The coefficients of R(z) satisfy: p; <0, ie{l,...,N+ M}

o The previous N + M stepsizes have been accepted.

Then, the next stepsize will be accepted.

Proof If controller (4.58) is applied, it follows from (4.52) that

.
. @

Fn = €.
P
@n

Because of the equation (4.57), it follows that

So, indeed

O

Note that this nonlinear controller does not need the assumption that the linearized model is correct.

DThis concept has been defined in Def 4.1.

97

Example 1

Consider the BDF2-method with process model 2 and P = 3, and which is controlled by a H 1200(%, -;—, %)-

controller. Thus, M =1, N =2, ps =1, pr = pr =0 and

| _ L@ _39+;3
K(q) q

The three poles are equal to %, which means that

G(q) 4.59)

_ ls 3 3, 3 1
R(Q)—(q—z) =q¢ -39 +tz19-%
From Theorem 4.9, it follows that this controller does not have constraint validation. Therefore,
Theorem 4.11 does not hold for this controller, because the second condition is not satisfied. However,
because all poles are equal, there will be no oscillating behaviour. With Mathematica, it can be
computed?® that for this controller, it holds that

Blq) %I}

TA@ @-DE-2

C(q)

The control law for ¢? is equal to

;_\ 1 o1 ; 2 o2 ;_\ 3 o3
P I n— n— n—
M =<o,,_1‘<p,,_§< .) (p) (.) , (4.60)

where 07
ay = TR
_ 5
@ = a8
5] = —%7
3
0'2 = . Z’
1
o3 = -3
Now, each iteration A, is computed from the next nonlinear equation:
2e
hy (oot + hn) = = (4.61)
$n
Example 2

. . p 2. . .
Because of Theorem 4.9, it follows that the controller Hlloo(%, %eﬁ’”, %e‘i” ') has constraint valida-

tion. Again, it holds that M = 1, N = 2, ps = 1 and pr = pr = 0. Also G(g) is equal to the
process model in (4.59), but now the poles are different, which implies that

1
R(g@)=q° - 3

Now, q”),f is computed with control law (4.60), where

-6
a8’

17

@ =

3
o = 0,
0,

o =

gy =
1

o3 = -3

Again, each iteration h, is computed from the equation (4.61).

265ee page 91.

98

Chapter 5

Numerical experiments

5.1 Introduction

This chapter contains the results of some numerical experiments, that have been performed to verify
the previous theoretical results for stepsize control. Several stepsize control strategies have been
investigated for the next three applications:

e The MATLAB-implementation “ode45” of a Runge Kutta method’,
o The MATLAB-implementation “"BDFcontrol” of the BDF method?,
e The circuit simulator Pstar®

The MATLAB-implementations are just investigated for some rather small examples, while for Pstar
also some larger real circuits have been tested. With use of Qstar® it is possible to get the describing
circuit functions q and j, as well as the Jacobians C and G for MATLAB from a circuit node list.
In section two, the new control-theoretic approach has been tested for the Runge Kutta method on a
small example. Afterwards, in section three, the new controllers have been tested on the MATLAB-
implementation "BDFcontrol” of the BDF method for two small testcircuits. Also, it has been shown
how the DAE’s-can be derived for these circuits. In section four, these experiments have been repeated
for the circuit simulator Pstar itself. Now, also some larger circuits have been tested.

5.2 Experiments with the Runge Kutta method in MATLAB

5.2.1 Description of the method

To test the stepsize controllers on the Runge Kutta method, an adapted version of the MATLAB-
routine "ode45.m” has been used. This is an implementation of a Dormand-Prince pair with orders 4
and 5 and Butcher matrices as in Tab.(5.1):

1This integration method has been described in subsection 3.3.2.

2This integration method has been described in subsection 3.4.3.

3The stepsize mechanism of this circuit simulator has been described in appendix A.

4This is an useful tool, which can transform Pstar input files into m-files for MATLAB. For more information, the reader
is referred to [21, 22].

99

Table 5.1: Butcher matrices of ode45.

| Method : [Butcher matrix | order |
‘ 0] o 0 0 0 0 0
‘ % % 0 0 0 0 0
9
= = 2 0 0 0 0
10 4
RK 4 24 % 2 0 0 0 4
§ 19572 _25’3560 64448 212 0 0
118 W B & s
3% 33 5247 176 1
22 0 20001 ZIsT 1T
384 1113 19 6784 84
0] o 0 0 0 0 0 0
% % 0 0 0 0 0 0
5 5 0 0 0 0 0
2| 4 23 32 0 0 0 0
RK'5 8| 1982 _29%0 esdas 212 0 0 0 5
| VI8 T 8 P e o
1 3;_28 03 3 ﬁ E __128168576 11 0
384 1113 192 6784 24
743 0 PAFR 7 W) N) G
8043 618 1920 12997 00 40

This pair consists of a fourth order RK-method with an embedded fifth order RK-method, which
is used as reference method to estimate the error. Because the first six stages of the reference method
are equal to the stage vector of the original method, it follows that

Yooi = Yoy T7)
and))))
in =Xp—1 + (ﬁr ® Id)hnf(t—n—l, Yn—l) + ﬂ?hnf(t_% Y7)
This means for the LTE that:

8 =%~ % = (B — B)T ® 1)hnf(fner, Y1) + Brhuf (B, ¥o).

Introduce the vector o by ~))
o= (B1—Bi--- s — Be: B7) -
Then _ })
8, = o’ ® Idhnf(t-n-lv Yn_1).
In the MATLAB-implementation, EPS-control is used, which means that P = 4.

The stepsize control of the ode45-routine is a combination of linear and non-linear control. If 4,
is rejected, then '

1

hP = (£)5h,
%h,, if previous stepsize has also been rejected,

h® ={ i5ha if previous stepsize has been accepted and k), < <&y, (5.1
r{Y otherwise,

hy, = max{hpy,, K?}.

100

Here € = 6 TOL where 8 ~ (0.32. If h,, is accepted, then

1

h) = (£)3h,,

L {"Sh,, if h) > Sh,,
| BY otherwise,

Ry = max{hpin, min{hm, HP}}.

(5.2)

In the both cases, 2" is computed with use of a linear deadbeat controller’, while for the final timestep
also non-linear controllers are used. ‘

Because this method is an explicit method, there are no implicit equations, which have to be
solved.

5.2.2 Test problem
PI-controllers and PC-controllers with ¢ = 0.3

Consider the IVP for the the Van de Pol equation on [0, 100]:

¥ +10(y* — Dy + y = sin(100z),

y(0) =0, y(0) = 1. (5.3)

In Fig.(5.1), the solution has been shown.

15 T T T T T T R T ¥

10 .

SR

-10+ 1

10 20 . 30 40 50 60 70 80 90 100

Figure 5.1: Solution of the Van de Pol equation.

5This controller has been described in paragraph 4.4.3.

101

[Case | #timesteps #rejections #function evaluations
PI(1,0) 14392 1739 96787
P1(0.36,-0.16) 13685 148 82999
Combined PI 14614 410 90145
PC(1,1) 15519 2909 110569
PC(0.36,0.84) 14642 2105 100483

Table 5.2: Numerical results for the Runge Kutta method with 8 = 0.3.

Note that this problem is rather stiff, while the influence of the source term is of small order.

This ODE has been solved with the Runge Kutta method from the previous subsection with the
tolerance level TOL = 103, The safety factor was set to 0.3, because of the stiff behaviour. The next
controllers® has been considered:

1. Pl-control (deadbeat) with the control parameters (Pk;, Pkp) = (1, 0) and the
corresponding poles (ry, r2) = (0, 0).

2. PI-control with the control parameters (Pk;, Pkp) = (0.36, —0.16) and the
corresponding poles (ry, r2) = (0.4, 0.4).

3. Combined Pl-controller with constraint validation.

4. PC-control (deadbeat) with the control parameters (Pkg, Pkg) = (1, 1) and the
corresponding poles (r1, r2) = (0, 0).

5. PC-control with the control parameters (Pkg, Pkg) = (0.36, 0.84) and the
corresponding poles (r1, 1) = (0.4, 0.4).

The combined’ PI-controller uses also linear PI-control, if the previous stepsize has been rejected.
The other controllers use the original controller (5.1) in that case. The PC-controllers are predictive
Pl-controllers, which can follow linear trends of the disturbance ¢.

In Tab.(5.2), the computational work has been compared. Note that for this example, the combined
controller is not efficient, because 6 is much smaller. Now, the smooth PI controller needs the smallest
amount of work, while the PC-controllers are rather slowly.

For the cases 1,2,3 and 4, the stepsize- and error sequences have been shown. Because of the
periodic stiff behaviour, all controllers fail in the stiff regions. Despite the small influence of the
source term on the solution of the ODE, the stepsize and error sequences get oscillating behaviour. It
is clear that the PI-controller of case 2 generates smoother results. From Fig.(5.5), it is visible that for
the predictive PC-controller of case 4, the error follows better the reference level €.

61n subsection 4.4.3, these controllers have been described.
7See subsection 4.4.3.

102

10

Stepsize sequence

-1

10

10

10

1072)
[]

2000

4000

6000

8000

error sequence

10000

12000

14000

T

| Ll
1; '

1

!
2000

Figure 5.2: Results for the PI deadbeat controller.

103

8000

10000

12000

14000

stepsize sequence
1 0 T T T T T T

10°E 4
107k 4
1 1 1 l | 1
2000 4000 6000 8000 10000 12000
n
3 error sequence
1 0 3 T T T T 1 1
4
[
107

L
2000 4000 6000 8000 10000 12000

1 0-5 1 1 1

Figure 5.3: Results for the PI controller with (Pk;, Pkp) = (0.36, —-0.16).

104

stepsize sequence
10 T T L T T T

10°k .
107 4
1 J. 1] 1 1)]
2000 4000 6000 8000 10000 12000 14000
' n
error sequence
-3
1 0 T i T T 1 T T
107

10'5 L] L L ! I 1

2000 4000 6000 8000 10000 12000 14000

Figure 5.4: Results for the combined PI controller.

105

stepsize sequence
10 T) 1 1 T 1 1

2000 4000 6000 8000 10000 12000 14000

error sequence
10 ¥ U T I 1 T T

1
2000 4000 6000 8000 10000 12000 14000

Figure 5.5: Results for the PC deadbeat controller.

To investigate the influence of the safety factor 6, in Tab.(5.3), the computational work has also
been shown for & = 0.8. Note that all controllers need less stepsizes, because of the higher safety

106

[Case #timesteps _#rejections #function evaluations |
PI(1,0) 11943 - 5479 104533
P1(0.36,-0.16) 11977 12497 146845
Combined PI 13049 2465 93085
PC(1,1) 12711 4703 104485
PC(0.36,0.84) 12252 7572 118945

Table 5.3: Numerical results for the Runge Kutta method with 6 = 0.8.

factor. However, because also the numbers of rejctions have been increased, all controllers are less ef-
ficient for this example. Note that for this safety factor, case 3 results in few rejections, in comparison
with the other cases. Clearly, the safety factor has a large influence on the dynamic behaviour of the
controlled errors.

5.3 - Experiments with the BDF-method in MATLAB

5.3.1 Description of the method

The MATL AB-routine ”BDFcontrbl.m” is an Predictor Corrector implementation of a BDF-method®.

We have investigated the BDF-method with fixed order p with p = 4. For the BDF methods,
EPUS control has been used, which implies that P = p + 1. For multistep methods with process
model two®, there is a difference between the linearized controllers and the nonlinear controllers!®.
Therefore, for all testcases with process model 2, also its nonlinear equivalent version will also be
performed. '

It appears that controllers with constraint validation!! have better results, because other controllers
do not converge, because of too small timesteps. Therefore, only the H}y,-controller is tested without
this property. In the previous section, it has become clear that also this value has a large impact. To
reduce the number of test cases, only one value for 6 has been investigated. For § = 0.5, the next test
cases'? will be considered for the MATLAB-routine “"BDFcontrol.m”.

81n subsections 3.4.2 and 3.4.3, the theoretical background of this method has been described.
9See subsection 4.4.2.

10See subsection 4.4.5.

1gee page 88.

12The linear controllers have been notated like on page 88 by H ,?A peprCle- s IN4+M)-

107

s_1 5.2

fast wl slow w2

Figure 5.6: Hierarchical electrical circuit with two subcircuits §; and S, and additional elements R;,
R, and E.

H}0(0) (deadbeat control)

1.
2. H}y,(3) (smooth I-control)
3. PIQ, 3) (smooth Pl-control without oscillations)
4. PI(;, —1) (PI-control with constraint validation)
5. Combined"® PI-control
6. HZ,(0) (predictive deadbeat control)
7. H2,(0) (deadbeat stepsize filter)
8. H 1201 (0) (deadbeat error filter)
9. HZ2,(}) (predictive smooth control)
10. H,(3) (smooth stepsize filter)
11. H 1201 (3) (smooth error filter)
12. H}y(3) (smooth I-control, model 2)
13. szoo(') (predictive smooth control, model 2)
14. H 1210(-) (smooth stepsize filter, model 2)
15. HY,(3) (smooth error filter, model 2)
16. H}y(3) (nonlinear smooth I-control, model 2)
17. szoo(-) (nonlinear predictive smooth control, model 2)
18. H 1210(3) (nonlinear smooth stepsize filter, model 2)
19. H]201 (;) (nonlinear smooth error filter, model 2)

For all testcases, no additional nonlinear or logic control actions have been applied, because they
can disturb the designed behaviour. The combined PI-controller uses also PI-control after rejections.
The other controllers use in that case the simple control law:

ha = 0.5h,. (5.4)

5.3.2 Linear electrical circuit
Derivation of the DAE

Structure of the circuit Consider the hierarchical circuit, shown in Fig.(5.6). It consists of sub-
circuits S; and S,, with terminal variables V; and V,. The elements R;, R; and short E are used to
connect these subcircuits, but are not part of the original circuit. In Fig.(5.7), the structure of both
subcircuits is shown. The functions q,, q,. J; and j, are the contributions of S; and S to q and j. For

108

Figure 5.7: Structure of the subcircuits.

Parameters | Value
T 0.08
W) S - 10°
wy 4-71' . 103
R 10
C 1073
R, 1
Ry 1

Table 5.4: Table with the used parameters, with w; = 10w;.

this example, we have

L qt,x) =—=Cx, ji(t,x) = —3x +sin{w?),
Qy(1,x) = =Cx, j,(t, x) = —%x + sin(wt).

Note that the frequency of the current source is the only difference between S; and S,. In Tab.(5.4),
the used parameters are shown..

Mathematical model This circuit is determined by the state variables x = (Vi, V4, ig, Vi, Vi),
-where the corresponding equations at the flat parent circuit level are given by:

F910, V) 4,6, V) = - (Vi- V),
(Vi = Vo) =ig,
V= V3 =0,
g = RLZ(V3 - Va),
0, Va) + ot Vi) = g (Va— Vi),

109

Define the functions q and j with

q,, V) @, V) = Rll(Vl - V)
| 0 B (Vi— Vo) —ig
q(t,X) = 0 ’ j(t,X) = VZ"' V3
0 ig — 7¢1'2-(V3 - Vi)
Q(t, Vi) 321, Vo) — 5 (Va = V3)

Then, the circuit is modelled by the next DAE:

%q(t,x) +j@,x)=0.

Eliminating V,, V3 and iy shows that X = (V;, Vj) satsifies the ODE:
dx _ .
ax _ a B %+ _l_ sTn(w,t) ,
dt B —«a C \ sin(wyt)

= L4 1
[0‘ = Rc;*'C(Rl-o-Rz)’

B = wmimy

where

Now, V,, V3 and i are determined by x:

V2 Ri+R, R1+R,

R R
Vi = 5= Vi + w2V,
. 1 1
lE R1+R, Vl R1+R> V4'

]

The initial solution is the steady-state solution, so x(0) = 0.

Exact solution Because this circuit obeys a linear ODE, its exact solution can be derived. This is
useful, because then for the numerical experiments also the global errors can be computed. It follows

that: -
Vi = ajcos(wyt) + apcos{wst) + by sin(w;t) + by sin(wqt)—

(a1 + ap)e™ cosh(Bt) — (c1 + c2)e™ sinh(B1),
Vi = cjcos{wyt) + ¢y cos{wsyt) + d; sin{wyt) + d, sin(wyt)—

(c1 + c2)e™¥ cosh(Bt) — (a; + az)e™* sinh(B1).

The parameters are shown in Tab.(5.5). In Fig.(5.8), the exact solution for all unknowns is shown,
where the values in Tab.(5.4) are used. Note that the solution is affected by the high-frequent and the
low-frequent current sources.

Numerical results

This circuit has been solved with BDFcontrol with the tolerance level TOL = 10™¢. Because the
testcircuit is linear, only one Newton iteration per step is used.

In Tab.(5.6), the numerical results for the several controllers have been compared. The number of
accepted stepsizes, the rejections and the total number of Newton iterations have been shown. Besides
the computational work, which is proportional to the number of Newton iterations, also the smooth-
ness of the results has been quantified!*. A sequence is smooth, if the smoothness function tends to

14gee equation (4.12) in subsection 4.2.5.

110

Parameters

Value

Example

o
B
ai

145}
b,
b,

€1
2
dy
ds

1 T
re t TR
C(Ry+R
-w,(ifiazﬁﬂz)
Clar+(@=B))) (@ +(@+B)?)
—2ana
Cli+(a—B)2) (Wi +(a+B)?)
a(wi+a?—p2)
Clwt+@-g)?)(wi+(a+8)2)
—B(wr—e?+52)
Clwp+(@—B)2) (@5 +(a+8)?)
—2w1a
Clwi+(a—B)2)(wi+(a+B)?)
—w(@3+a?+p?)
Cl@i+(@=B)) (@i +(a+8)?)
—B(w? —a?+p%)
C(@i+(@-B))) Wi +(@+8)?)
a(w%—!—az—ﬂz)

600
500

—0.1261
—0.4115

0.0096

—-0.2213
—0.0012

—0.8414
-0.0079
0.3808

Coi+(@—B)?) (wi+(@+8)?)

Table 5.5: The parameters of the exact solution, using the values from Tab.(5.4).

1.5 T T T T T T T vV
. e |
: I
o --Y
E - Ya
b Lok
i i o o o . . .
B HLA e o o i I b B
1L, P R S R
1 R H h g " Y o e o
: 3 1l : : : ! B Y o :
AU | Y /R TR MY M N N N
0.5 -{: iLoafly e | i > | @) 3 :
A A e o B | O |1 ST ([T | (NP 1 | AT
G Y O Y Y LS RS L PR O] P . R
Y CEIE IR CI L KIS ALY LR TR R S
HE v e A‘l.,_-:1_|4L.|.‘.|.,.':
I EEOREV I R R BT O | I IR S I R T N R
JEEL Tk LR IR O T 1 T | A L I O T A U
0 R R | Iy BT B T Bt R L IRET IR [Y I N IS Y &
A T R I P I I I RN I
Y || L R I L R R I A B
BN | [L : Sl A oap W st
roliy :‘I I & RN AR ’i,{"‘ 4 |”.‘.' :‘l R Ny
PR SR | HEN T T R I LT 1Y U SR Y
Yool L e A Sl S S i B Wi P
-05} FRCE,) B ol G ! s
wh ey el ol : ':I oy N o
SR S
. : s
0.07

.
0.01

0.02

L L
0.04 0.05

1

0.06

0.08

Figure 5.8: Exact solution for the linear electrical circuit in Fig.(5.6).

111

C . o # Newton Smoothness of Smoothness of
ase | # stepsizes | # rejections . .)
iterations local error sequence stepsize sequence
1 517 35 551 1.03 0.18
2 484 0 483 0.95 0.08
3 491 0 490 0.72 0.06
4 520 38 557 1.07 0.21
5 512 49 560 1.08 0.18
6 605 182 786 1.21 0.35
7 483 0 482 0.88 0.07
8 502 15. 516 0.90 0.28
9 608 . 120 727 1.05 0.33
10 486 0 485 0.87 0.07
11 487 0 486 0.84 0.26
12 550 63 612 0.77 0.20
13 602 |' 151 . 152 1.10 : : 0.44
14 486 0 485 1.00 0.14
15 551 66 616 0.96 0.23
16 522 55 576 0.94 0.25
17 590 198 787 1.11 0.37
18 488 3 490 1.01 0.16
19 522 14 535 0.86 0.30

Table 5.6: Numerical results for the linear circuit in Fig.(5.6).

zero. Clearly, deadbeat control is not very good in this case. It needs more computational work, while
also the stepsize and error sequences are not smooth. Simple I-control (case 2) performs very well, but
produces not a very smooth error sequence. However, the smooth PI-controller without oscillations
(case 3) appears to perform very well, because it combines a small number Newton iterations with
smooth results. Also the first order stepsize filters and error filters (case 7, 10, 11) are very efficient.
Also cases 14 and 18 are stepsize filters, which perform very well. It appears that the stepsize con-
trollers are more efficient than the error filters. The predictive controllers (cases 6, 9, 13, 17) have
many rejections, which is probably caused by problems with linear extrapolation.

Note that for all controliers, the stepsize sequence is much smoother than the error sequence.

From Tab.(5.7), it becomes clear that the smooth controllers also result in smaller giobal errors.
Clearly, the PI(%, %)-controller (case 3), generates the smoothest error and stepsize sequences. Then,
the smoothness is equal to 0.72 and 0.06 respectively, which is smaller than for the other cases. Note
that for all testcases, the stepsize sequences are much smoother than the error sequences.

To compare the results of the smoothest controlier (case three) with the classical deadbeat con-
troller (case one), in Figures (5.9), (5.10), (5.11) and (5.12), the stepsize and error sequences have
been plotted. Clearly, testcase three generates much smoother results than testcase one. The stepsize
sequence for the smooth PI-controller is still constant for this ODE. The smooth PI-controller has
irregular initial behaviour of the error sequence.

112

Case Vi Vz V3 V4 iE
1 [1.21e-01 | 9.02e-02 | 9.02e-02 | 6.44e-02 | 3.22¢-02
2 | 5.55e-02 | 2.99e-02 | 2.99e-02 | 1.28¢-02 | 2.86e-02
3 | 6.15e-02 | 3.30e-02 | 3.30e-02 | 1.04e-02 | 2.89e-02
4 |1.06e-01 | 7.71e-02 | 7.71e-02 | 5.20e-02 | 3.06e-02
5 |7.91e-02 | 4.28¢-02 | 4.28¢-02 | 2.27e-02 | 3.78¢-02
6 | 1.22e-01 | 8.51e-02 | 8.51e-02 | 5.77e-02 | 4.06e-02
7 | 6.27e-02 | 3.60e-02 | 3.60e-02 | 1.70e-02 | 3.54e-02
8 | 1.00e-01 | 6.43e-02 | 6.43e-02 | 4.36e-02 | 4.68e-02

{ 9 |1.13¢-01 | 7.68e-02 | 7.68e-02 | 5.09¢-02 | 4.25¢-02
10 | 5.66e-02 | 3.03e-02 | 3.03e-02 | 1.23e-02 | 2.65¢-02
11 | 1.06e-01 | 7.44e-02 | 7.44e-02 | 4.87e-02 | 3.24e-02
12 | 7.03e-02 | 4.05e-02 | 4.05e-02 | 1.56e-02 | 2.97¢-02
13 | 9.61e-02 | 6.56e-02 | 6.56e-02 | 4.56e-02 | 3.48e-02
14 | 59202 | 3.42¢-02 | 3.42e-02 | 1.66e-02 | 2.63e-02
15 | 5.81e-02 | 3.35e-02 | 3.35e-02 | 2.07e-02 | 2.69¢-02
16 | 2.57e-01 | 2.08e-01 | 2.08e-01 | 1.66e-01 | 5.33e-02
17 | 1.04e-01 | 7.62e-02 | 7.62e-02 | 5.18e-02 | 5.06e-02 -
18 | 9.43e-02 | 5.47e-02 | 5.47e-02 | 2.96e-02 | 3.96e-02
19 | 8.17e-02 | 5.08¢-02 | 5.08e-02 | 3.05e-02 | 3.51e-02

Table 5.7: Global errors for the linear electrical circuit in Fig.(5.6).

-5

107

=510

7

10

100

200

300

400

500

600

Figure 5.9: Error sequence for the linear circuit with the deadbeat controller (case 1).

113

10 T —T T T T
ol | W i |‘,l 1 ‘ ’ iy ‘ i || I »l Wbl TRt l‘ul:f]t
1 y H

10°F 9
107 4

107} 3

10-8 1) L 1 1

0 100 200 300 400 500 600

n

Figure 5.10: Error sequence for the linear circuit with smooth PI control without oscillations (case 3).

S0 R]

0 100 200 300 400 500 600

Figure 5.11: Stepsize sequence for the linear circuit with the deadbeat controller (case 1).

114

—4

507 4

-l 1
0 100 200 300 400 500 600
n

Figure 5.12: Stepsize sequence for the linear circuit with smooth PI control without oscillations (case
3).
5.3.3 Van de Pol equation

Derivation of the DAE

Circuit Consider the small electrical circuit in Fig.(5.13):

iR+ i_L+iC

[

ic 1
0 ¢
iR+ iL
+ _
il L
i_R
+
& R s 4
iR

_Figure 5.13: Van de Pol oscillator.

115

Parameters | Value
T 100
C 103
L 10°
i* 1

Table 5.8: Table with the used parameters

with the next constitutive relations:

iy = i%
ic = Cuc,
d
vy = LElLv
2
. vp oV
IR = _RK(_E}& - 1)

In Tab.(5.8), the used parameters have been shown.

Mathematical model For this circuit, it follows from the Kirchhoff laws that i* +ic +i; +iz =0
and V; = —ve = —v; = —vg. The circuit is determined by the state variables x = (Vy, i1), with the
corresponding equations:

VZ

i*—CVi+iL— F(F -1 =0,

Ldi,iL + Vi =0.
Define the functions q and j with
2
-CV; . i*+iL_Yl(Y.L_1)
1,X)= . , t,X) = R*3 .
q(?, X) (—DL) j. %) (A

Then, the circuit is modelled by the next nonlinear DAE:

d
Eq(z, X)+j. x)=0.

The circuit can also be described by the next ODE, where v = Vj.

Cit+ L —Dit+tv=2
—(v" — v -y = —.
TR L'

ILC =1, ‘% =0and RC = %, this ODE describes the so-called Van de Pol oscillator:
P+o@ -=1i+v=0.

If R, C and L satisfy the values of Tab.(5.8), it follows that ¢ = 30.

For the initial solution, it holds that x(0) = (0, 1).

In Fig.(5.14), an approximated solution has been shown. Clearly, this circuit has a rather stiff
behaviour.

116

50 T T T Y T T T T T

.
10 20 30 40 50 60 70 80 20 100

Figure 5.14: The approximated solution for the circuit for the Van de Pol equation.

Numerical results

Also this nonlinear circuit has been solved with BDFcontrol with the tolerance level TOL = 1074
Now, more than one Newton iteration per step is used. In Tab.(5.9), the numerical results have been
compared for all tested controllers. Now the combined PI controller (case 5) results into the smoothest
results. It appears also to be rather efficient compared to the other cases. Only the PI-controller with
constraint validation needs less Newton iterations. Besides these controllers, also simple I-control
(case 2) and the deadbeat stepsize filter (case 7) are more efficient than deadbeat control (case 1).

In Figures (5.15) and (5.16), the error sequences are shown for testcases 1 and 5. Because of the
numerical results in Tab.(5.9), it is expected that the error sequence of case 5 with smoothness 0.39
would be smoother than the error sequence of case 1, with smoothness 0.54. However, from Figures
(5.15) and (5.16), this smoothness difference is not visible. This means that it is not always possible
to quantify the smoothness of the sequences.

117

. C # Newton Smoothness of Smoothness of
Case | # stepsizes | # rejections . . .
iterations local error sequence stepsize sequence
1 462 31 923 0.54 0.21
2 482 40 919 0.63 0.24
3 537 46 950 0.73 0.31
4 458 26 882 0.52 0.21
5 449 36 883 0.39 0.22
6 715 180 1477 0.89 0.22
7 460 44 905 0.65 0.26
8 510 93 1049 0.73 0.36
9 697 146 1366 0.91 0.28
10 479 59 947 0.74 0.31
11 488 75 968 0.76 0.34
12 466 51 932 0.68 0.27
13 676 119 1326 0.88 0.29
14 472 63 943 0.71 0.31
15 614 175 1297 0.88 0.36
16 495 130 1140 . 0.58 0.22
17 603 90 1214 0.86 0.25
18 507 163 1212 0.68 0.21
19 674 273 1611 0.73 0.31

118

Table 5.9: Numerical results for the Van de Pol equation.

10 T T T u T T T T T
10° 4
]
4
~F10~ Y 4
107 i
1 o-a L 1 L ! ' 1 ' L L
0 50 100 150 200 250 300 350 400 450 500

n

Figure 5.15: Error sequence for the Van de Pol oscillator with the deadbeat controller (case 1).

107 y T ——— T T T : T
107} | | W » 3
i
=107k 4
107Y 4
10_8 . L L L L L L 1 1
0 50 100 150 200 250 300 350 400 450 500

n

Figure 5.16: Error sequence for the Van de Pol oscillator with the combined PI-controller (case 5).

119

54 Experiments with the circuit simulator Pstar

5.4.1 Description of the method

From the previous subsection, it appears that digital linear control performs well, compared to dead-
beat control. However, it has only be tested on two small examples. To compare the results for larger
testcircuits, the tested controllers have also to be used for the circuit simulator Pstar'®. With use of the
Pstar-MATL AB-interface', it is possible to use MATL.AB-functions in Pstar. This interface has been
used to test the results of adaptive stepsize controllers for Pstar itself itself. Below, all tested electrical
circuits are shown.

1. Linear circuit

2. Vaﬁ de Pol oscillator

3. perf_mos7_qubic_6953 (from the albuquerque group)
4. bim2 (from the performance group)

5. sram (from the performance group)

6. perf.mos9_c100.7342a (from the roza group)

The testcircuit sram has also be used by C.Bombhof in his PhD-thesis [4].
These testcircuits will be simulated by means of Pstar, while several stepsize controllers are used.

It appears that order control is very important for the behaviour of the controllers. If the order
changes too much, the process models are not valid, which can disturb the results. Also, it appears
that for higher orders, the Newton process converges less easy. Therefore, for some testcases, the
order is bounded at maximum order p = 3. Furthermore, the order can only decrease to one, if there
are discontinuities. As safety factor, 6, = freeqse has been chosen!’. Because deadzones can disturb
the behaviour of the controller, they have been removed!®. For the two small testcircuits, the following
testcases'® will be considered:

Bin appendix A, the original time stepping algorithm of Pstar has been described.

161 appendix B, the Pstar-MATLAB-interface and its application have been described in more detail.
17 This releasefactor of Pstar is described in appendix A.

185 remove the deadzones in Pstar, some lines must be changed in the source code.

19The linear controllers have been notated like on page 88 by H ﬁ PFPR (ri,....rNeM)

120

1. Pstar stepsize mechanism only with changed order control
2. H}\(0) (deadbeat control)
3. Hy(3) (smooth I-control)
4, PI(l,' 7) (smooth PI-control without oscillations)
5. PK3, - %) (PI-control with constraint validation)
6. H2200 (0) (predictive deadbeat control)
7. H2,(0) (deadbeat stepsize filter)
8. H 1201 (0) (deadbeat error filter)
9. szoo(l) (predictive smooth control)
10. HZo(3) (smooth stepsize filter)
11. H1201 (i) (smooth error filter)
12. H}(3) (smooth I-control, model 2)
13. HZ,(3) (predictive smooth control, model 2)
14, H1210(‘) (smooth stepsize filter, model 2)
15. H%,(3) (smooth error filter, model 2)
16. HI‘OO(—) (nonlinear smooth I-control, model 2)
17. szoo(') (nonlinear predictive smooth control, model 2)
18. H3?,(3) (nonlinear smooth stepsize filter, model 2)
19. H 1201 (3) (nonlinear smooth error filter, model 2)

Because for the process model one, it is not necessary to use linearization techniques to derive an
approximated linear model, the linear controller is equal to its nonlinear version?®.

Because Pstar itself uses the maximum order five and variable order, also some cases are investi-
gated with the original order controller of Pstar. Now, the original settings are used, such as deadzones
and variable order. Again, 6, = fr..ase, €Xcept for case one. In that case, the original release factor of
Pstar is used with 6, = 0.5 f,.q5.. Because of the variable order, these cases need less computational
work. However, sometimes the other cases are more efficient, because of nonspecified discontinuities.
After too many rejections, Pstar decides that a nonspecified discontinuity occurs. In that case, Pstar
starts again with the Euler Backward method with order one. It appears that these nonspecified dis-
continuities occur more frequently for higher order methods. This can destroy the higher efficiency of
these higher-order methods, because of the many restarts. The following testcases will be considered:

1v. Ordinary Pstar stepsize mechanism

2v. H{y,(3) (smooth I-control)

3v. PI(3,—3) (PI-control with constraint validation)
4v. H},(0) (deadbeat stepsize filter)

5v. H{y(3) (smooth I-control, model 2)

6v. HZ,(3) (smooth stepsize filter, model 2)

Tv. Hlloo(i) (nonlinear smooth I-control, model 2)

‘5.4.2 Linear electrical circuit

First, the testcases with fixed order have been tested. In Tab.(5.10), the numerical results are shown.
Because of the dynamic release factor, Pstar needs less computational work than the MATLAB-
implementation, but the local errors are also larger. Note that case four is the smoothest version,
but it needs quite a lot of Newton iterations. The cases 7, 10, 11, 12 and 14 have much better perfor-

203ee subsection 4.4.5.

121

Case | # stepsizes | # rejections # Ne\fvton Smoothness of Sm9othness of w
1terations local error sequence stepsize sequence
1 1258 222 1480 1.17 0.57
2 1106 243 1349 1.07 0.43
3 1277 198 1475 0.82 0.38
4 1737 0 1737 0.36 0.06
5 1261 356 1617 0.92 0.44
6 1038 623 1661 1.14 0.87
7 1038 33 1071 0.61 0.18
8 1141 1 1142 0.82 0.24
9 990 - 609 1599 1.14 0.83
10 1053 0 1053 0.57 0.10
11 1198 0 1198 0.75 0.22
12 1015 0 1015 1.01 0.32
13 1142 684 1826 1.07 0.80
14 1136 0 1136 0.69 ' 0.18
15 1440 0 1440 1.05 0.39
16 939 753 1692 1.12 0.75
17 4421 29 4450 1.07 0.85
18 981 811 1792 1.03 0.82
19 524 486 1010 1.09 - 0.88

Table 5.10: Numerical results for the linear electrical circuit with fixed order.

mance, compared to the other testcases. This is caused by the filter properties or the more accurate
process model. Although case 19 seems to be very efficient, from Tab.(5.11), it is clear that this con-
troller results in large global errors. Also case 9, where predictive control is used, results in too large
global errors.

Also the testcases with variable order will be discussed. For this circuit, without discontinuities,
these cases are more efficient, because of the higher maximal order.

From Tab.(5.12), it becomes clear that for these testcases, case 1v is the most efficient one. But
case 4 with fixed order still generates smoother error and stepsize sequences. Because of the smaller
maximum order, the linear controllers with fixed order have much more rejections and are less ef-
ficient. However, case 12 with fixed order is still more efficient than Pstar. Furthermore, its global
errors are much smaller than for case 1v. However, the stepsize control mechanism of Pstar appears
to be rather smooth, compared to case 12 with fixed order.

In Figures (5.17) and (5.18), the error sequences have been shown for cases 1v (variable order)
and 4 (fixed order). Note that the error sequence of case four still has oscillating behaviour, despite the
much better smoothness. These oscillations are caused by the high frequent input source, which will
always occur in the stepsize and error sequences. However, the controllers with oscillating behaviour
can also produce oscillating or alternating behaviour, which is not caused by the exact solution. Be-
cause the period of the oscillations of case 4 is larger than two (period of alternations), its smoothness
is smaller.

122

Case V1 V2 V3 V4 i E
1 1.12e-02 | 6.20e-03 | 6.20e-03 | 3.80e-03 | 6.38e-03
2 1.54e-02 | 1.02e-02 | 1.02e-02 | 6.21e-03 | 6.09¢-03
3 1.19¢-02 | 7.13e-03 | 7.13e-03 | 4.30e-03 | 5.39¢-03
4 2.19e-03 | 1.19e-03 | 1.19e-03 | 4.27e-04 | 1.03e-03
5 3.15e-02 | 2.10e-02 | 2.10e-02 | 1.49e-02 | 1.13e-02
6 9.93e-01 | 7.98¢-01 | 7.98e-01 | 7.28¢-01 | 2.67e-01
7 1.63e-02 | 1.15e-02 | 1.15e-02 | 7.59e-03 | 6.03e-03
8 9.63e-03 | 6.29¢-03 | 6.29e-03 | 3.79e-03 | 4.03e-03
9 1.54e+00 | 1.06e+00 | 1.06e+00 | 8.42e-01 | 4.79e-01
10 | 1.31e-02 | 8.31e-03 | 8.31e-03 | 4.56e-03 | 4.77¢-03
11 | 7.19e-03 | 4.36e-03 | 4.36e-03 | 2.26e-03 | 3.08e-03
12 | 1.23e-02 | 7.79¢-03 | 7.79e-03 | 4.44e-03 | 4.51e-03
13 | 7.98e-01 | 5.84e-01 | 5.84e-01 | 4.45¢-01 | 3.28e-01
14 | 8.21e-03 | 5.08¢-03 | 5.08¢-03 | 3.06e-03 | 4.03e-03
15 | 5.71e-03 | 3.96e-03 | 3.96e-03 | 2.48e-03 | 1.85e-03
16 | 5.77e-01 | 4.12e-01 | 4.12e-01 | 2.85e-01 | 2.00e-01
17 | 4.15¢-01 | 2.66e-01 | 2.66e-01 | 1.22e-01 | 1.50e-01
18 | 7.04e-01 | 5.19e-01 | 5.19e-01 | 3.83e-01 | 2.63e-01
19 | 1.72e+00 | 1.42e+00 | 1.42e+00 | 1.17e+00 | 3.66e-01

Table 5.11: Global errors for the linear electrical circuit with fixed order.

. .. # Newton Smoothness of Smoothness of
Case | # stepsizes | #rejections | .= . .
iterations local error sequence stepsize sequence
1v 993 41 1034 0.67 0.18
2v 1023 22 1045 0.57 0.10
3v 1093 111 1204 0.95 0.25
4v 1086 153 1239 <092 0.27
Sv 1163 178 1341 0.81 0.43
6v 1173 - 197 1370 0.99 0.33
A% 1404 018 2322 1.00 0.69

Table 5.12: Numerical results for the linear electrical circuit with variable order.

Case V1 V2 V3 Vs [E
1v | 3.00e-02 | 2.31e-02 | 2.31e-02 | 1.80e-02 | 1.16e-02
2v | 2.06e-02 | 1.42e-02 | 1.42e-02 | 1.06e-02 | 7.14e-03
3v | 3.34e-02 | 2.71e-02 | 2.71e-02 | 2.18e-02 | 9.31e-03
4v | 4.63e-02 | 3.29e-02 | 3.29e-02 | 2.52e-02 | 1.74e-02
5v | 3.68e-02 | 2.57e-02 | 2.57e-02 | 2.01e-02 | 1.59e-02
6v | 5.34e-02 | 4.11e-02 | 4.11e-02 | 3.54e-02 | 1.67e-02
7v | 3.26e-01 | 2.39e-01 | 2.39e-01 | 2.01e-01 | 1.11e-01

Table 5.13; Global errors for the linear electrical circuit with variable order.

123

L. 1

i i 1 1
0 200 400 600 800 1000 1200 1400 1600 1800

Figure 5.17: Error sequence for the linear circuit with Pstar (case 1v).

3

10 T T T T T T T T

107} 9

1 1 —L 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800

Figure 5.18: Error sequence for the linear circuit with the smooth PI-controller without oscillations
(case 4).

124

Case | # stepsizes | # rejections # Ne\yton Smoothness of Smf)othness of
iterations local error sequence stepsize sequence
1 262 47 815 0.91 0.36
2 240 49 671 0.94 0.34
3 245 35 630 0.66 0.30
4 231 82 1348 1.28 0.28
5 239 61 1058 1.06 0.35
6 210 84 1175 1.29 0.44
7 233 66 744 1.14 0.25
8 161 65 1820 1.31 0.28
9 281 . 108 1576 1.34 0.41
10 238 60 1045 1.12 0.29
11 171 73 1391 1.32 0.28
12 235 .55 885 1.08 ' 0.31
13 247 99 1208 1.21 0.41
14 221 67 1333 1.07 0.26
15 119 50 1248 1.39 0.29
16 204 95 1565 1.20 0.29
17 1325 60 1114 1.05 0.36
18 181 77 1288 130 0.28
19 135 - 75 2361 1.28 0.30

Table 5.14: Numerical results for the Van de Pol oscillator with fixed order.

5.4.3 Van de Pol equation

The Van de Pol equation has been solved with Pstar. From the Tables (5.14) and (5.15), it becomes
clear that for the Van de Pol oscillator, case 2v with variable order is the most efficient one. Note
‘that this is caused by the smaller number of Newton iterations per step, compared to deadbeat control.
However, case 3 with fixed order, generates smoother stepsize and error sequences.

In Figures (5.19) and (5.20), the error sequences are shown for the cases 1v and 3. Also, for these
cases, the sequence of € has been shown, which is dynamic, because € is equal to 6, TOL.

125

C . - # Newton Smoothness of Smoothness of
ase | # stepsizes | # rejections . . .
iterations local error sequence stepsize sequence

Iv 258 36 705 0.81 0.35

2v 262 32 571 0.89 0.33

3v 256 42 644 0.69 0.43

4v 246 63 711 0.76 0.33

Sv 246 46 676 0.76 0.30

6v 249 59 842 0.86 0.32

Tv 275 51 783 1.18 0.34

Table 5.15: Numerical results for the Van de Pol oscillator with variable order.

50

1
100

150

200

250

300

Figure 5.19: Error sequence and the dynamic reference level € for the Van de Pol oscillator with Pstar
(case 1v).

126

10 T T T T T

-— 8

-+ apsilon
107k .
107k
107k .

w10~ 3
107} 4
107 5
1077 E
1 0-8 { { 1 1 L 1
0 50 100 150 200 250 300

Figure 5.20: Error sequence and dynamic reference level € for the Van de Pol oscillator with smooth
I-control (case 3).

In subsection 4.4.5, it has been shown that linear control is equivalent to the prediction of the
disturbance ¢,. In Figures (5.21) and (5.22), the disturbance and its predicted values have been shown
for cases 1 and 3 with fixed order. Clearly, deadbeat control uses constant extrapolation to predict
¢n, while smoother controllers use also the previous control errors. This implies that the smoother
controllers don’t depend on small fluctuations of @,. This means that the predictor ¢© for case 1 is
more sensitive to sudden fluctuations of ¢@.

127

—_phi
— - phi

2 i ! il L

0 50 100 150 200 250 300
n

Figure 5.21: Prediction for the disturbance sequence with deadbeat control (case 1).

10" 3y - r T . y —

~ - phi
i il

10

! .)
0 50 100 150 200 250 300

Figure 5.22: Prediction for the disturbance sequence with smooth I-control (case 3).

128

) . # Newton Smoothness of Smoothness of
Case | # stepsizes | #rejections | ., .)
iterations local error sequence stepsize sequence
1v 6465 947 43232 0.85 0.58
2v 6934 777 40234 0.79 0.48
3v 7927 862 43527 0.96 1.03
4v 6036 1505 50033 0.86 0.55
Sv 6423 714 39619 0.74 0.85
6v 6099 1222 45929 0.78 0.57
Tv 5598 940 38596 0.76 0.91
3 5253 801 88089 0.74 0.47

Table 5.16: Numerical results for perf_mos7_qubic_6953.

5.4.4 perf_mos7_qubic_6953

In Tab.(5.16), the numerical results are shown for the testcircuit perf_mos7_qubic_6953. First, some
testcases with variable order are investigated. Afterwards, only case 3 with fixed order has been run.
Clearly, variable order is more efficient for this case. Controlling with smooth I-control (case 2v, 5v
or 7v) is more efficient than the original Pstar controller (case 1v). Also they generate smoother error
and stepsize sequences. However, case 3 with fixed order is still the smoothest version. Note that for

this example, the controllers which are based on process model two need less Newton iterations.

In Figures (5.23) and (5.24), the error sequences are shown for case 1v (Pstar) and case 5v.

Figure 5.23

1
1000

1
2000

1
3000

129

1
4000 5000

1
6000 7000

: Error sequence for perf_mos7_qubic_6953 with Pstar (case 1v).

o . e # Newton Smoothness of Smoothness of
ase | # stepsizes | # rejections . . .
iterations local error sequence stepsize sequence

1v 5641 108 8777 1.01 0.09

2v 6026 108 9283 0.94 0.09

3v 5886 148 9377 0.73 0.11

4v 5561 240 9256 094 - 0.09

Sv 5645 132 8914 0.83 0.09

6v 5497 212 9986 1.38 0.09

Tv 5876 233 9671 0.99 0.12

3 5788 102 9875 ' 0.69 ' 0.09

Table 5.17: Numerical results for bim2.

10 T T T T T T

1 o 1 1 1 L 1 1
0 1000 2000 3000 4000 5000 6000 7000

Figure 5.24: Error sequence for perf_mos7_qubic_6953 with smooth I-control, based on model 2 (case
5v).

54.5 bim2

In Tab.(5.17), the numerical results for this testcircuit have been shown. For this case, it appears that
Pstar (case 1v) is the most efficient version. However, the other controllers generate smoother error
sequences.

In Figures (5.25) and (5.26), the error sequences have been shown for testcases 1v and 3. If
the stepsizes become very small, the smooth testcase 3 generates a much smoother error sequence.
Probably, this is caused by the numerical errors for the very small stepsizes. which are used by Pstar
(case 1v).

130

10 T T T T T

10 .

10 .

10~ |- | J

~10|

1072k “

~14 t

1 1
0 1000 2000 3000 4000 5000 6000

10

10 T T T T T

10™ * . R

»°10” | 4

AN

1074} -

14 1)

1 1
0 1000 2000 3000 4000 5000 6000
n

10

Figure 5.26: Error sequence for bim2 with smooth I-control (case 3).

131

C . I #Newton | Smoothness of Smoothness of
ase | # stepsizes | # rejections | . .
iterations local error sequence stepsize sequence

Iv 1406 | 83 5604 1.15 0.49

2v 1657 73 5994 1.18 0.47

3v 1640 104 6038 1.31 0.80

4v 1275 216 5894 1.16 0.51

S5v 1376 107 5585 1.17 0.50

6v 1313 153 5523 ’ 1.18 0.52

v 1395 175 6269 1.17 0.56

3 1347 110 6100 1.07 0.49

Table 5.18: Numerical results for sram.

. e #Newton | © Smoothness of Smoothness of
Case | # stepsizes | # rejections . . ' .
iterations local error sequence stepsize sequence

Iv 2750 97 8029 1.07 0.64

2v 2912 - 98 - 8262 1.07 - 0.67

3v 2994 %4 8382 1.09 0.72
4v 2731 121 8079 1.03 0.58

Sv 2788 119 8180 1.05 ' 0.63

6v 2782 119 8171 1.06 0.61

v 3677 123 9336 1.09 0.70

3 2553 101 7854 1.00 0.58

Table 5.19: Numerical results for perf_mos9_c100_7342a.

5.4.6 sram

In Tab.(5.18), the numerical results for the testcircuit sram are shown. Cases 5v and 6v, which are
based on process model two appear to be more efficient than Pstar. All controllers prodice non-smooth
error sequences, but case 3 with fixed order is again the smoothest one.

5.4.7 perf_mos9_c100.7342a

For the rather large testcircuit perf_mos9.c100.7342a from the roza group, it appears from Tab.(5.19)
that case 3 with fixed order is the most efficient one. This has been caused by the nonspecified
discontinuities, which occur if the maximal order is equal to five. For this testcircuit, all controllers
produce non-smooth results. From Tab.(5.19), it would follow that case 3 also produces smoother

“error and stepsize sequences.

In Figures (5.27), (5.28), (5.29) and (5.30), the error and stepsize sequences of case 1v (Pstar)
and case 3 with fixed order, have been shown. Although the error sequence for testcase 3 should be
more smooth than the other error sequence, this is not visible from the Figures. The influence of
the discontinuities is clearly visible, because then the stepsize controller starts again with very small
timesteps. Because the smooth controller (case 3) needs less stepsizes than the stepsize mechanism of
Pstar (case 1v), it seems that the timepoints of these discontinuities are not equal.

132

10 T T 7 T T

107 | 4

-10

1072 -

1 1 1
0 500 1000 1500 2000 2500 3000
n

Figure 5.27: Error sequence for perf_mos9_c100_7342a with Pstar (case 1v).

1 L

L L
0 500 1000 1500 2000 2500 3000
A .

Figure 5.28: Error sequence for perf_-mos9-c100.7342a with smooth I-control (case 3).

133

y T
w0tk ;
107" IY‘“ ﬂh ‘ -
=10 E
1072} .
107 3

10™ . L . L ’
0 500 1000 1500 2000 2500 3000

Figure 5.29: Stepsize sequence for perf_mos9_c100_7342a with Pstar (case 1v).

10 T r . T ,
| .
10® b 9
W Vi _
| 107%} —
107 4
0™ ‘ L . ' '
0 500 1000 1500 2000 2500 3000

Figure 5.30: Stepsize sequence for perf_mos9_c100_7342a with smooth I-control (case 3).

134

Chapter 6

Conclusion

6.1

Conclusion

From the chapters three and four, the next conclusions can be drawn.

For the one step methods, the local error estimate 7, depends only on the last stepsize h,,. For the
LMM-methods and the BDF methods, 7, depends also on the previous stepsizes. This means
that adaptive timestepping is more difficult for the BDF methods.

Adaptive timestepping for DAE solvers can be viewed as a digital linear control system. In
logarithmic form, log 7 depends linearly on log # and log ¢, where ¢ is a disturbance, which is
nearly independent on k. Therefore, it is possible to use a control-theoretic approach to adaptive
stepsize control. If after an accepted step, the next stepsize must be computed, this can be done
by means of a digital linear control law. In practice, often additional nonlinear or logic control
actions are used, which can disturb the designed properties.

For one step methods, the local error estimate satisfies a very simple process model. In general,
for LMM methods, it is not possible to describe the behaviour of log7 as a linear system. As
first order approximation, the model for one step methods can be used. With linearization
techniques, a more accurate mode] can be derived.

If the process model is available, it is possible to design digital linear controllers of finite order
for this control system, which must keep the control error logr — loge near zero. Here, the
wanted accuracy € is equal to € = §TOL, where TOL is the tolerance level. The safety factor
0 < 8 < 1 can be used to avoid too many rejections.

On the basis of the characteristic equation, the poles of the closed loop system can be placed.
To ensure stability, the poles must have absolute values, which are smaller than one. However,
the poles also determine the behaviour of the stepsize and error sequences, such as oscillating
or alternating behaviour. If all poles are equal, the results will be very smooth, because there
will be no oscillations at all.

Besides the poles, it is also possible to design the adaptivity of the controller. For all controllers,
the order of adaptivity p4 must be larger or equal to one. This means that there are no control
errors, if the disturbance ¢ is constant. Controllers with higher order adaptivity can also follow
polynomial trends of the disturbance. This can be useful, if ¢ has not-smooth behaviour.

135

Controllers can also be designed as filters of the alternating behaviour of the stepsize or error
sequence.

An important property of stepsize controllers is the constraint validation. This means that the
next stepsize will not be rejected, if the process model is correct and ¢ satisfies the constraint of
the equation (4.47). If the poles are equal to {reWz%"7 k=0,....,. N+ M-1}withr € [0, 1),
this is always the case. However, smooth controllers with all poles are equal to r # 0, do not
have this property.

A special family of linear controllers are the PI-controllers, which only depend on two free
control parameters. Their predictive versions are called the PC-controllers. It is also possible to
use PI control after a rejected step, which will remove the not-smooth behaviour of the stepsize
and error sequences because of the rejections. A combination of PI controllers, which is also
used after rejections is called a combined PI controller.

It is also possible to use a nonlinear version of the linear control law, which results in the same
linearized closed loop dynamics. This nonlinear controller will have the advantage that they
also have constraint validation if the linearized process model is not correct.

These theoretical results have been verified in the chapter five. It appears that:

Indeed, generally, the deadbeat controller generates less smooth error and stepsize sequences.
For the small circuits, they are also less efficient than other smoother controllers for the tested
methods "ode45”, "BDFcontrol” and Pstar. Also for the larger circuits “perf_mos7_qubic_6953”,
“sram” and “perf_mos9.c100-7342a”, it is possible to design better stepsize controllers. Only
for the circuit ”bim2”, Pstar remains the optimal choice.

The safety factor 8 plays an important role, because it determines the number of rejections and
stepsizes.

Also the release factor is important, because it makes the tolerance level dynamic and can
reduce the number of rejections. For small stepsizes, the tolerance level is very high, which
makes larger stepsizes and safety factors possible.

The combined PI controller appears to be rather efficient for stiff equations. For the stiff exam-
ple for the RK method and the Van de Pol oscillator for the BDF method, its results were very
good, compared to the other tested controllers.

For Pstar, the order control has large influence on the results. If the original dynamic order
control of Pstar is used with the maximal order five, the process models will be not correct.
Therefore, the linear controllers do not satisfy their designed properties. However, if the order is
fixed with maximal order three, their results are much better. For smooth circuits, the dynamic
order control will be more efficient, because of the higher order. But it appears that there -
occur more nonspecified discontinuities, if the maximal order is equal to five. This reduces the
efficiency of the original order control, because then the order is decreased to one.

Controllers with higher order adaptivity perform rather bad, in comparison to the other con-
trollers. Probably, this is caused by the errors of the linear extrapolation.

Stepsize filters perform better than error filters. They are useful, if high-frequent oscillations
occur, e.g. in the linear electrical circuit.

136

o Constraint validation is important if stiff DAE’s are solved, because then the number of re-
jections will be reduced. However, for smooth problems, one could use controllers with equal
poles, which do not have oscillating behaviour. Because these controllers do not have constraint
validation, they can not used for problems with many rejections.

6.2 Further research

The next subjects could be investigated more profoundly.

e Up to now, for the controller design, it was assumed that the order is kept fixed. From the
experiments, it is clear that sometimes it is better to use variable order, because then larger steps
can be used for smooth parts, which increases the speed. Therefore, in practice a combination
of stepsize and order control is used. However, the process model of the behaviour of this
combined control system is not clear yet.

e Pstar uses a voltage based criterion as error estimate, but in general, this norm is not equivalent
to the local error or the local discretization error. Probably, this error estimate does not satisfy
the process models of the local discretization error.

e It may be possible to make the safety factor 6 and the tolerance level € dynamic. Because
€ = 6TOL, it follows that
loge, = log#6, log TOL

Now, it is possible to use feedback control for log &, for example:
log6 = log 6* + Gr(g)(log TOL — logF)

Of course, this makes the closed loop dynamics much more complex, but it is still linear. The
choice of 6* remains the question. Pstar uses already a dynamic safety factor, which is propor-
tional to the release factor, but this release factor depends not linearly on the stepsize.

e Because there are many criteria, which have to be optimized, it could be helpful to use opti-
mization techniques. Because the closed loop dynamics are linear, it is also possible to describe
them as a state space model. The smoothness of the stepsize- and the error sequence can be

characterized as
N N)
Z(;k — Fec1)? Z(hk - hi)?
k=1 k=1

The constraint Z,’:’:] hy = T could be described as 21}::1 loghy = T. Theoretically, now it is
possible to use LQ control or other techniques from optimal control to derive a feedback law.

e Maybe, system identification would be useful to determine better process models for the inte-
gration methods. Then, the coefficients of G (z) are determined on base of an available stepsize
and error sequence.

o Because the Newton-Raphson method is an important part of the implicit integration methods,
the influence of stepsize control on this method could be investigated. Maybe, it is possible to
control also the number of Newton iterations.

e Because multirate appears to be a hot item, nowadays, it is also recommended to investigate
adaptive stepsize control in combination with multirate more profoundly.

137

Appendix A

Implementation of stepsize controller in
Pstar

A.1 Important parameters

Pstar uses the next debug parameters with default values.

Tabsminsiep = ABSMIN_TIMESTEP (10-13),
€relim = RELEPS_TIME INTERVAL (5-1077),
Trelminsiep = REL.MIN_TIMESTEP ' (5-10-11,
Trelrelease = REL_RELEASE TIMESTEP (2-107%),
Trelmaxstep = RELMAX TIMESTEP (2-1072),
Tabs,accvolts = REL_ACC (5 10_3)’

€min = BEPS_STEPSIZE LOWER FACTOR 0.8,

€max = EPS_STEPSIZE UPPER FACTOR 2,

wmin = MIN_STEPSIZE FACTOR 0.1,

Wmax = MAX_STEPSIZE FACTOR 5,

. = MAX_STEPSIZE FACTOR_ADJUST 3,

u = STEPSIZE_ADJUSTED_FACTOR 0.1,

RTOL = MAX_ALLOWED_RATIOLTE EMAX 2.

The start and end time of the time interval are equal to ¢, and ¢, respectively. The first two discon-
tinuity points greater than #; are denoted by 45,1 and #4;5,2. Furthermore, #; is the first time point for
which output is required. Then, the first time interval length, maximum scale factor and scale factor
respectively are defined by:

Atfipsime = min(ty — I, tais) — s, Lais,2 — tais,1) ,
= __Afirsin .
Omax = 0.05 S~ (IOSAtfirst-zm)’

max(€rel,srep -€rel.int)

g min(7T, Omax)-

H

Then the minimum, maximumn, release and start timestep are defined by respectively

138

Atyin = O Trel,minstep s- 10—“0'),
Atma)c = TTrel,max.step (2 . 10—2 T),
Atrptease = Trrel,release i 2. 104 T,
Atgory = max(azfrel,min-stepa O Trel,min_step> Tabs,min..\-tep) (10—“ max(5 max(az, o), 10—2))-

The parameters €., and €;,,, used in discontinuous timesteps, are defined by:

€step = max(aerel,steps Tabs,min.flep)7
€inp = max(aerel,int; Tabs,min_rtep)-

Let M be the numform in Pstar (default, M = 4). Now, the absolute tolerance is defined by
€aps = Tabs.accvolrs 107 = 5.101M. (A.1)
The dynamic release time factor is given by

Aty T
frelease =1+ '_hﬂ =142 10_4 . (A.2)
n—1 n—1

A.2 Time stepping algorithm

A.2.1 Error estimation

Pstar uses an Predictor Corrector implementation of the BDF method!. There are two versions of
error-control, which can be performed by Pstar:

1. Discretization error based criterion;
2. Voltage based criterion,

The first version controls the discretization error itself, while the second version only considers the
voltage differences. It is also possible to use local error or global error transformations, such that
instead of the LDE, the local error or global error is controlled.

Default, the voltage based criterion is used, because this corresponds better with the wants of the
designer.

This version use the next error estimators, which are based on the voltage differences. The voltages
v™ @ are the predicted values, derived by use of extrapolation. For A = 1, the co-norm is used, while
for the default value A = 2, an adapted 2-norm is used, where N is the number of voltages.

Sp = max, (o) —v™O) if N=1,
S, = \/% Yo (v) — v"’v(o))2 if N=2.

It can be proved that if C(z, x) is constant, ||C|| >> ||k, G(1,, X,)| and the currents are negligible:

Sn = Tc—li;,lldnlloo if N=1,
Sn ~ lelJﬁlldnllz if N=2a

ISee the subsections 3.4.2 and 3.4.3.

139

where d, is the local error? of the BDF-method. Now, Pstar scales these ratiosums:

= o2 if N=1,

€abs frelease

= g if N =2,

€abs Srelease

n

A.2.2 Adaptive stepsize control in Pstar
Notation of Pstar

The stepsize is accepted, if
Sp < RTOL(=2).
If the stepsize h,, is accepted, Pstar determines the next step ratio:

1

1\ 1
Wn41 ,= (S'_) . (A3)

n

Afterwards, some nonlinear control parts are used to get safe. -

Wn1 = max(min(w,, Omax), ©Omin)»
(€min < Wn+1 < €max) = Wpy1 =1,

hns1 = Wnt1hn,

hn+1 = max(rrxin(h,,+1) hmax)’ hmin)-

The first three times, after a rejection, w;,, (= 3) is used instead of wy,q: (= 5). If h, is rejected or if
the Newton method did net converge, Pstar tries again with a smaller timestep. '

h, = uh,.

If output is requested at given output points, interpolation is necessary to give the output. In that case,
the stepsize ratio will also be dependent on the interpolation error.

Corresponding notation with chapter four.

It is possible to cast the above procedure in a control law as described in the proceeding section.
Define the absolute tolerance level TOL and safety factor 6, by

TOL = SBRTOL (=5-107"),
On = freleaseRTlW (= 0.5-}-10”4%)_

This means that default S, = 0,,TOL§,,. Then, controller (A.3) is equivalent with the next deadbeat-

controller]
6, TOL\ »+1
h n+] —_— < SO) ! h. ne

This step is accepted, if
Sn = frelea:eTOL-

Note that the controller'(A.3) uses a dynamic release time factor f;eqs., Which depends on k,. This
factor controls the rejection tolerance level and the controller. For small stepsizes, this factor will be

28ee Def.3.5.

140

larger, which implies less rejections, because of the lower tolerance level, and larger stepsizes. Thus,
fretease TEdUces the amount of work, because the work is proportional to the numer of stepsizes and
rejections.

For large stepsizes, the release time factor is almost equal to one. Only for stepsizes, smaller than
2-107*T, fretease Will become larger than two, to avoid very small stepsizes.

A.3 New stepsize controller for Pstar

If a digital linear controller’ is used, it follows from chapter four, that this controller has the next

structure: , ,
Bo N-1 —-&l "&N—l
€ € hn—l hn-—N+l
h, == B g [An=Nt1 . .
(rn-1> <r,,_N) <hn_2) (B n—1 (A.4)

The control parameters depend on the process model and the wanted specifications of the controller.
To implement this controller, the variables h,_n41, ..., By_1, Su—N41, - - . » Sp—; must be stored. Af-
terwards, it is sufficient to change the last line of the function block *TRU.lte_and_stepsize_factor’.
The PI-controller* can be implemented as follows, because it only needs the last two errors.

ki s~ kp ‘
h,,=(f) (i"‘z) ha_r. (A.5)
'n—1 Yp—1

p_tr_cb—>step_factbr[p_tr_cb—>level_ind] = F_pow(*p_ratiosum, kI ,
&status) * F_pow(*p_previous_ratiosum / *p_ratiosum, kP , &status)

In general, the linear controller (A.4) has to be implemented as a C function. Afterwards, this function
can be used to compute the next step ratio factor. If the nonlinear controller is used, it follows

¢F = ¢ ... growm (fuzy P (e YV
n — Yn-1 +n—N € € ’

_ (A.6)
Byt P s) - s + ot B) = B2

Now, d@f can be computed with the C function ’LinearControl’. Because %, is the real positive root
of a polynomial, a polynomial solver has to be implemented.

It is also possible to use the MATLAB library with use of the Pstar MATLAB _interface. This has
been described in appendix B.

A4 Algorithm

Below, the structure of the program Pstar has been shown, when a transient analysis is performed. It
'is assumed that no mixed signals are used, but an ordinary transient analysis. Note that these diagrams
are not complete, but only contain the most important parts. Furthermore, it is assumed that there are
no discontinuities or compulsory timepoints.

In Fig.(A.1), the structure of the important files for the transient analysis have been shown.

3See page 95.
4See page 80.
3See page 95.

141

’

TR_perf_anal

perform_analysis

| l

compute_timestep transient_anal_step

vd_new_order_timestep TRU_lte_and_stepsize_factor

Figure A.1: Hierarchy of the transient routines in Pstar

142

Appendix B
Pstar-MATLAB-interface

The Pstar MATLAB _interface is an useful library to test MATLAB-software for Pstar itself. It can be
used for stepsize control, but for other purposes as well.

B.1 Installation

o Install first a private version of Pstar. Furthermore, the changed files must be rewritable.

o The files "memory.c”, "Makefile” and "Makefile.general” must be changed.

The files pstar_matlab_interface.c” and “pstar_matlab_interface.h” contain the necessary code
and have to be added.

e The file “pstar_matlab_interface.h” must be included in “panacea.c”. Also, the commands
”PMI_open_engine ()” and "PMI_close_engine ()” have to be added before and after the com-
mand ”do{ PAN-panacea ...}”’. These commands open and close MATLAB.

o The file “pstar_matlab_interface.h” must also be included in the file, where MATLAB must be
called. For an overview about the possible calls to MATLAB, the reader is referred to the file
’pstar-matlab_interface.h”.

o After editing, Pstar can be compiled and linked with the command
make
A debug version is made by
make dbg
The next command is necessary to perform these actions:
cadenv glib

o To use this private version, the command “privpstar” or “privdbgpstar’” must be used. Further-
more, the Pstar-files must be located at directories with the same hierarchical position as the
directory . . ./obj.

e The location of the MATL AB-scripts is free. With the command

143

export PSTAR_MATLAB_DATA=<address>

this Jocation can be added to the path.

B.2 Application to PI control

The Pstar MATLAB_interface can be used to investigate stepsize controllers for Pstar. Instead of the
original stepsize control mechanism, a smoother PI controller is used.

In the function block “TRU_lte_and_stepsize_factor” in the file “transient_utils.c” a new stepsize
controller is used. Normally, the stepratio is computed on the next manner:

p_tr_cb->step_factor|p_tr_cb->level_ind] = F_pow (*p_ratiosum,
-1.0/(p_tr_cb->int_order + p_tr_cb->level + 1.0), &status);

A new controller can be implemented, by means of adding the next commands:

PMI_put_real ("barSn_1", *p_ratiosum);

PMI_put_real ("hn_1",p_tr_cb->timestep);

PMI_put_real ("thetan_1",0.5 * p_tr_cb->release_timestep_factor);
PMI_put_real ("TOL",0.4 * PAR_ABS_ACC_VOLTS);

PMI_put_real ("k",p_tr_cb->int_order + p_tr_cb->level);
PMI_do_command (" [Sn_1, omegan] =

MATLAB_stepcontroel (barSn_1,hn_1,thetan_1,TOL,k);");

PMI_get_real ("omegan", &p_tr_cb->step_factor{p_tr_ cb->level_ind]);

Note that skipping the last line means that the original stepsize controller of Pstar is used.

While hn_1 is not accepted yet, omegan is already computed. Only if barSn_1 < RTOL,
hn_1 can be stored. This can be done by adding the next commands at the end of the routine “tran-
sient_anal_step” in the file “transient.c”, just above the command “update_timestep_table (); *:

PMI_do_command("Set_global (Sn_1,hn_1);");

With this command, the stepsize and error sequence are stored as global variables in the workspace
of MATLAB. These variables can be stored, by means of adding the next commands in the routine
“perform_analysis” in the file “transient.c”, just after the large while- loop:

PMI_do_command("Store_history;");

To make it possible to call the MATLAB-functions, the directory of these scripts must be added to the
path.

_export PSTAR_MATLAB_DATA=
/home/averhoev/matlab/Scripts/Pstar_matlab_stepsizecontrol

The function “Matlab_stepcontrol.m” has the next structure:

function [Sn_1, omegan] = MATLAB_stepcontrol (barSn_1,...);
global h S
Sn_1 = thetan_l * TOL * barSn_l;

144

epsilon thetan_1 * TOL;

htemp = [h,hn_11];
Stemp [S,Sn_1};

i = length (htemp);

kkI = 1;
kkP = 0;
hn
if (1 > 1)
hn = PIcontrol (epsilon,htemp (i), Stemp (i), Stemp(i - 1),kkI,kkP,k + 1);
else
hn = PIcontrol (epsilon,htemp (i), Stemp (i),epsilon,kkI,kkP,k + 1);
end -
omegan = hn / htemp(i);

Here, the script “Plcontrol.m” is the implementation of a stepsize controller.

function y = PIcontrol(epsilon,hn_1,rn_1,rn_2,kkI,kkP,k);

kI = kkI / k;
kP = kkP / k;
y = (epsilon / rn_1)"kI * (rn_2 / rn_1)"kP * hn_1;

To be able to store hn_1 and Sn_1 in the workspace of MATLAB, the function “Set_global.m” is
called:

function Set_global(Sn_1,hn_1);

global h S
h = [h,hn_11;
S = [8,8n_1];

To store these global variables, “Store_history.m” is used.

function Store_history;
global h S
save filename h S

After running pstar, h and S can be retrieved in MATLAB with“load filename”.

145

B.3 Other possibilities

Besides the local errors and the stepsizes, it is also possible to export the orders, the number of Newton
iterations and other statistics to MATLAB. Afterwards, it is easy to analyse these data in MATLAB.
If a large test set of stepsize controllers has to be tested, this can easily be done by means of a Unix
shell script. The tested controller is indicated by a variable TESTCASE, which is exported. In Pstar,
this variable can be retrieved and exported to MATLAB. There, the function “Matlab_stepcontrol.m”
will be also dependent on this variable. With a switch statement, the corresponding control action will
be performed. The function “Store_history.m” will store the global variables in an unique file, which
corresponds with this testcase. The same can also be performed, if one wants to test a large group of
testcircuits. Then, also the variable TESTCIRCUIT is exported.

146

Appendix C

Implementation of NDF-method in Pstar

C.1 Implementing NDF-methods in Pstar

The subject of this Appendix is to describe how in the Philips circuit simulator Pstar the BDF time
integration method (Backward Differentiation Formula) can be enhanced to perform as the corre-
sponding NDF time integration method' (Numerical Differentiation Formula) [32].

The methods will be denoted by BDFpg,, and NDFpgy,.

The differential-algebraic equation (DAE) to solve is:

d .
54, x) +j,x) =0
{ x(0) = X (C.1
C.1.1 BDF in Pstar
The BDF-method as implemented in Pstar is based on:
. 1<
BDFPstar(xn) = E Z prnQ(tn—k+m, Xn—k+m) +j(tn7 xn)
m=0
Pk .
= Iq(tna Xn) +J(tn7xn)+an . .
= A% QU Xn) + (0, Xa) + - (C2)
1 k=l
¢, = E Z me(tn—k+nx s xn-—k+m) (C3)
m=0
o= B (C.4)

h

I'This adapted integration method has been investigated in subsection 3.4.4.

147

Denoting the exact solution of (C.1) by x*(t), the discretization error ABPF is based on

BOF _ ! .BDF
APstar,n - Zan

1
= ZBDFPStar(x;)

— k
= Cuh*'q*V @, x})

C
= ﬁ?mmxp—ﬁ] (C.5)

Cik 59
h éx
Crx = —1/(k+1). (C.7)

&

[x: —x°], where (C.6)

n

Here q{ and x? have been obtained by k-th order extrapolation exploiting the Nordsieck-vectors for q
and for x, respectively. ’

Relation to Pstar datastructure fields

The next table relates quantities to fields in Pstar’s datastructure

h p-tr.cb->timestep

A p-tr.cb->laplacevar =1/p.tr.cb->timestep * BDF[k] [1]
Cix | p-tr_cb->BDF_coeff[int_order] [int.order] *
const_factorial_table[int_order]

The term «,, (alpha_n) and the extrapolated value qg (gn"{0}) are elegantly determined by exploit-
ing the Nordsieck-vectors for q.
Nordsieck-vectors for q of (reactive) elements are used as:

p_tr_info = p_element->ext.ndr.p_tr_info

p_nord_vect p_tr_info->p_pred_nords_vect

g_n"{0} p_nord_vect [0]

alpha_n p_nord_vect[l] / p_tr_cb->timestep -
p_nord_vect[0] * p_tr_cb->laplace_var

p_tr_ihfo—>int_value = alpha_n

a_n = p_tr_info->output_value

Here, the value q,, ; (g-n) for the i-th local reactive element has been calculated after Newton conver-
gence by a recursive call to SRE_eval_out_var and is thus available for estimation of the discretization
erTor.

For devices (transistor models), the corresponding quantities are found as follows (cf in module tran-
sient_utils.c: control_init, control_predictor):

p_anal_device = ...
p_device p_anal_device->p_min_device
n_dev_react_elems = p_device->p_def->n_react_elem
p_tr_dev_info = & (p_anal_device->p_transient_info([0])
for (i=0;

148

i<n_dev_react_elems ;
p_tr_dev_info++, i++) {

predict_nordsieck(...)

p_.nord_vect = p_tr_dev_info->p_react_info->p_pred_nords_vect

g n”{0} = p_nord_vect[0]

\alpha_n p_nord_vect[l] / p_tr_cb->timestep -
p_nord_vect[0] * p_tr_cb->laplace_var

p_tr_dev_info->int_value = \alpha_n

g_n = p_tr_dev_info->p_output_value

[is automatically updated when evaluating reactive branches in

a device]

Note that for devices, q,, contains the value q(#,, x{;"l) where j is the Newton iteration counter and
where x; is the converged value. Because the occurrence of devices always causes the hierarchical
branches that contain them, to be considered as non-linear, the deviation between q(z,, x{,_l) and
q(t,, X») may be assumed to be acceptibly small.

C.1.2 NDF in Pstar

In subsection 3.4.4, it has been shown that for the next dynamic coefficient «,, the LTE is multiplied
by the factor A. '

h
= 1) ——«, = — C38
Kn (p+)tn - t’l—"lK “ p +1 3 ()

However, because Pstar uses the Vdiff-norm and another error estimate, something may be different.

The NDF-method to be implemented in Pstar will be based on:

Kn
NDFpsir(Xs) = BDFpsar(%) = ~=-(q, = qo)

14 _ Ky
= ’}-l' ;}pmq(tn—k—Hn, Xpekdm) T (@0, Xn) — -};—-.(qn - qg)
— Kn -
= & 790, Xu) +), X0) + B
= Ax* q(tn, Xu) +j(tm Xn) + ﬂn, where (C9)
1 k-1 Kn o
B, = Z m2=;) oG Enktm s Xp—k4m) + -h—q,, (C.10)
Kn o
= ap+ Z(Lz (C.1D)
A= E";—K" (C.12)

149

The discretization error ANPF is based on

Pstar
Aboan = ODbgarn— ';—"-(qn ~q)
~ -C—"”‘,:—""[q(t,., x;) — q¥] (C.13)
~ Ck,kh— Kn i—:[x; -] (C.14)
Cix = =-1/(k+1). (C.15)

Some remarks apply when modifying Pstar code for BDF to allow for NDF.

e Atsome actions concerning Nordsieck-vectors (prediction, correction), the parameter laplace.var
should have the same value as for BDF.

Clearly 8, = o, + %qg, where &, is determined by the Nordsieck-vectors of the BDF-method.

When performing matrix assembly it is convenient to set laplace.var to laplace_var -
X ‘
T
e When estimating the discretization error a term —3* should be used in the coefficient as used
for BDE.

It is not possible to use NDF in the first step, or when starting from a discontinuity. In Pstar,
this is flagged in tr.cb.disc_timestep.

150

List of used abbreviations

| Abbrevation | Description
CR Constitutive Relation
KCL Kirchhoff’s Current Law
KVL Kirchhoff’s Voltage Law
DC-analysis | Direct Current analysis: steady-state solution
AC-analysis | Alternating Current analysis: solution of linearized system for a small sine-wave excitation.
TR-analysis | Transient analysis
PSS-analysis | Periodic Steady-State analysis
DAE Differential Algebraic Equation
ODE Ordinary Differential Equation
IVP Initial Value Problem
LMM Linear Multistep Method
RK Runge Kutta
BDF Backward Difference Method
NDF Numerical Difference Method: adapted BDF-method with a smaller error constant
SRP Step Ratio Percent for the NDF-method
TR-BDF2 | Combination of the Trapezoidal method and the BDF2-method
LDE Local Discretization Error
EPS -Error Per Step
EPUS Error Per Unit Step
I-control Integral control
Pl-control | Proportional Integral control
PID-control | Proportional Integral Derivative control
PC-control | Predictive PI-Control

151

List of frequently used symbols

| Symbols Description J
v, V,i voltage difference, nodal voltage and current
t, X time and state vector of circuit
q,.j,C.G charge and current functions and their Jacobians of a circuit
f,J function and its Jacobian, which represents a general ODE
! thy Bpy Xp n-th timepoint timestep and numerical approximation
' d,. 3, e, local error, local truncation error and global error at timepoint ¢,,.
| on estimate of LTE
V, iy global index and local index at ¢,
,p,B | matrix and vectors, which describe a Runge Kutta method
S,8S8 stability region and its boundary of an integration method
p(2), 0(2) polynomials, which represent an LMM method
q shift operator
Con error constant for integration method of order p at #,
Enm useful coefficient, such that ¢, — t,_,, = &, .l
Cyns Cins Pyns Pjin Corrector and predictor polynomials for q and j
Cons Cims 134,,,, -j',, Nordsieck vectors of Cy , Cjny Pgns Pjn
Ly L, Lagrange interpolation polynomial and its Nordsieck vector
fsJ s X Qo Jso Xs g, j and x for fast (active) and slow (latent) parts of circuit
TOL, 6, ¢ tolerance level, safety factor and reference level for controller
k,p number of steps and order of an integration method
T controlled error, often based on the norm of 3,1
Gnr HF " | disturbance and its prediction
P order of the controlled error 7, for EPS and EPUS control.
ki kp, kg, kg control parameters of PI-controller and PC-controller
r pole of closed loop dynamics
1 DA»> PFs PR order of adaptivity, stepsize filter order and error filter order
G(2), L(z), K(2) transfer function of process model, with G(z) = %
C(2), B(2), A(2) transfer function of process model, with C(z) = -ﬁ%
N, M degrees of A(z) and K (z)
A(z) polynomial for adaptive controller with A(z) = (z — 1)A(z)
&y, B coefficients of A(z) and B(z) and control parameters
R(2) characteristic polynomial with R(z) = A(z)K(z) + B(z)L(z)
S(z) polynomial with S(z) = A(z)K(z)
Ons Py Oy coefficients of S(z), R(z) and A(z) and control parameters
Hy, pr.pr(r1s .., Tney) | short notation for digital linear controlier

152

Bibliography

[1] K.J.AASTROEM, T.HAEGGLUND PID Controllers Research Triangle Park: Instrument Society
of America, 1995.

[2] T.S.APPEL A new timestep control in the circuit simulation package TITAN. Bachelor thesis,
2000.

[3] A.BARTEL Generalised Multirate: Two ROW-type Versions for Circuit Simulation. MSc Thesis,
TU Darmstadt & IWRMM Universitiit Karlsruhe, 2000.

[4] C.BOMHOF lterative and parallel methods for linear systems, with applications in circuit sim-
ulation. PhD Thesis, Utrecht University, 2000.

[5] K.E.BRENAN, S.L.CAMPBELL, L.R.PETZOLD Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations SIAM, 1996.

[6] S.M.A.BRUIN. Modiﬁed. extended bdf applied to circuit equations. MSc thesis, Vrije Univer-
siteit Amsterdam, 2001. Report, Philips ED&T/Analogue Simulation, 2001.

{71 L.O. CHUA, P.M. LIN Computer aided analysis of electric circuits: algorithms and computa-
tional techniques, first ed. Prentice Hall, 1975.

[8] D.ESTEVEZ SCHWARZ Consistent initialization for index-2 differential algebraic equations and
its application to circuit simulation. PhD Thesis, Humboldt-Universitit zu Berlin, 2000.

[9] J.G.FUNVANDRAAT, E.J.W.TER MATEN Transient analysis with Pstar Report, Philips
ED&T/Analogue Simulation, 2000.

{10] J.G.FIINVANDRAAT, S.H.M.J.HOUBEN, E.J.W.TER MATEN, J.M.F.PETERS Time domain
analog circuit simulation. Article, Journal of Computational Methods in Sciencs and Engineer-
ing, 2003.

[11] C.W.GEAR Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall,
1971.

[12] C.W.GEAR, D.R.WELLS Multirate Linear Multistep Methods. BIT 24:484:502, 1984.

[13] K.GUSTAFSSON Control Theoretic Techniques for Stepsize Selection in Explicit Runge-Kutta
Methods. ACM TOMS 17:533-554, 1991.

[14] K.GUSTAFSSON Control Theoretic Techniques for Stepsize Selection in Implicit Runge-Kutta
Methods. ACM TOMS 20:496-517, 1994.

153

[15] K. GUSTAFSSON G.SODERLIND Control strategies for the iterative solution of nonlinear equa-
tions in ode solvers SIAM J.Sc.Comp. 18:23-40, 1997.

[16] E.HAIRER, S.P.N@RSETT,G.WANNER Solving Ordinary Differential Equations I. Springer-
Verlag, 1987,

[17] H.J.C.HUUBERTS ANALYTISCHE ASPECTEN VAN GEWONE DIFFERENTIAALVERGELIJKIN-
GEN Syllabus TU/e.

(18] M.HAUTUS SYSTEEMTHEORIE Syllabus TU/e, 2000.

(191 M.HONKALA, J.ROOS, M.VALTONEN New multilevel Newton-Raphson method for parallel
circuit simulation Article, Helsinki University of Technology, 2001.

[20] M.E.HOSEA, L.F.SHAMPINE Analysis and implementation of TR-BDF2. Applied Numerical
Mathematics 20, pp 21-37, 1996.

[21] S.H.M.J.HOUBEN Algorithms for Periodic Steady State Analysis on Electric Circuits. MSc
thesis, Technische Universiteit Eindhoven, 2 1999. Report, Philips ED&T/Analogue Simulation,
1999.

[22] S.H.M.J.HOUBEN Circuits in motion, The numerical simulation of electrical oscillators. PhD
Thesis, Technische Universiteit Eindhoven, 2003.

[23] R.ISERMANN Digital Control Systems Springer-Verlag, 1981.
[24] B.C.Ku0 Digital Control Systems Holt-Saunders International Editions, 1980.
[25] R.M.M.MATTHEN Inleiding Numerieke Analyse Syllabus TU/e, 1998.

[26] R.M.M.MATTHEl],]. MOLENAAR Ordinary differential equations in theory and practice. Wi-
ley, 1996.

[27] H.G.TER MORSCHE Wiskundige methoden in de signdalverwerking. Syllabus TU/e.

(28] H.NIJMEUER, A.J.VAN DER SCHAFT Nonlinear Dynamical Control Systems Springer-Verlag,
1990.

[29] J.M.ORTEGA Numerical Analysis, a second course. Academic Press, 1972.

[30] J.ROMMES Jacobi-davidson methods and preconditioning with applications in pole-zero anal-
ysis. MSc thesis, Utrecht University, 05 2002. Report, Philips ED&T/Analogue Simulation,
2002.

[31} L.F.SHAMPINE Numerical solution of ordinary differential equations. Chapman & Hall, 1994,

[32] L.F.SHAMPINE, M.W.REICHELT The MATLAB ode suite. SIAM J.N.Scient.Comp. Vol.18-
1,pp1-22,1997.

[33] A.S10 Analysis of computational algorithms for linear multistep methods. PhD Thesis, Lund
University, 1999.

[34] G.SODERLIND Automatic control and adaptive time-stepping Article, 2001.

154

[35] G.SODERLIND Digital filters in adaptive time-stepping ACM Tr. on Math.Softw.,Vol.V,No.N,pp
1-24, Sept. 2000.

[36] C.TISCHENDORF Solution of index-2 differential algebraic equations and its application in
circuit simulation. PhD Thesis, Humboldt-Universitit zu Berlin, Logos Verlag Berlin, 1996.

[37] M.E.V.VALKENBURG Network analysis, third ed. Prentice Hall, 1974,
[38] A.VERHOEVEN To be published

[39] A.W.WESTERBERG, P.C.PIELA Eguational-based process modeling. Camegie Mellon Uni-
versity, 1994.

[40] M.C.J. VAN DER WIEL Numerical time integration techniques for circuit simulation in Pstar.
Report, Philips ED&T/Analogue Simulation, 1992.

155

	Abstract
	Preface
	Contents
	1. Introduction
	2. Dynamics of electrical circuits
	3. Numerical analysis of differential-algebraic equations
	4. Adaptive stepsize control
	5. Numerical experiments
	6. Conclusion
	App. A. Implementation of stepsize controller in Pstar
	App. B. Pstar-MATLAB-interface
	App. C. Implementation of NDF method in Pstar
	List of used abbreviations
	List of frequently used symbols
	Bibliography

