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Preface

This master’s thesis project was a cooperation between ASML and the Scientific Computing Group.
ASML is one of world’s leading providers of photolithographic systems for the semiconductor industry.
Since photolithography is a process step in the production of computer chips, which requires a high
accuracy, much research is carried out to improve the measurement robustness of a so-called alignment
process. During such a process the position of a wafer is determined, which is a round slice of silicon
where transistors, resistors and capacitors are fabricated on. The Order-to-Order method is a way to
optimize the stability of the result of an alignment process. It identifies the most stable measurement
from a set of measurements by determining the process induced effect on every measured value. From
experimental results it follows that the Order-to-Order method works quite well. The question of
ASML is why it works well and a theoretical basis for the Order-to-Order method is desirable.

The Scientific Computing Group is part of the Department of Mathematics and Computing Science
at the Technical University of Eindhoven. This group is specialized in numerical methods to solve
problems in solid and fluid mechanics, but also in electro-magnetics. In the past another project is
carried out in cooperation between ASML and the Scientific Computing Group. Although the Order-
to-Order method is mainly statistical, also numerical issues arise and an electro-magnetic approach
could be used to enforce the basis of the Order-to-Order method.

I would like to thank Arie den Boef, Sicco Schets, Jeroen Huijbregtse and Frank van Bilsen from
ASML for their inspiring dedication to this subject and steer me with questions such as "why do you
do this and why is that necessary?”. From the TU /e I would like to thank Henny ter Morsche for his
general support, Robert Mattheij for enabling this joint project with ASML and Alessandro Di Buc-
chianico for his guidance concerning the statistics involved. Unfortunately, the statistics used in the
Order-to-Order method is still lean, but that is due to my inexperience with statistics. Furthermore,
I would like to thank everybody from the process overlay group at ASML for creating a friendly and
supportive atmosphere, which was pleasant to work in.

TU/e technische universiteit eindhoven
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1 Introduction

1.1 Context of the Order-to-Order method

An integrated circuit (IC) is a collection of components connected together in a complete configura-
tion to perform some useful electronic function [1]. The term ”integrated” refers to the manufacturing
process that combines separate electronic components into an integral whole. An IC is the result of
a multistep photochemical manufacturing process. For producing a printed circuit the emphasis is
on interconnecting components, such as transistors, resistors and capacitors. For IC’s the primary
emphasis shifts to physical and chemical processes. The production of such an IC starts with a round
slice with a diameter of typically 300 mm, made of silicon, a so-called wafer. Next, circuit elements
are produced simultaneously layer after layer on this wafer.

To build circuit elements like transistors, resistors and capacitors in layers on a silicon wafer, the wafer
undergoes several processes like photolithography, material deposition, Chemical Mechanical Polishing
(CMP), etching, etc [2]. To illustrate where these processes are used, consider Figure 1. This figure
shows the fabrication process of an IC. The process starts with a cylinder of silicon that is cut into
slices (1). Next, the slice is polished to obtain an ultra-flat wafer (2). In (3) a layer of material is
deposited on the wafer, followed by a deposition of a thin layer of photoresist (4). This process is
referred to as the Resist Spin (RS) process. A circuit pattern (on a reticle) is projected onto a section
of the wafer using UV light. This light reacts with the photoresist and transfers the circuit image onto
the wafer. This section of the wafer will eventually become an IC. The process is repeated until the
walfer is covered with many patterns, each of which will become an IC (5). This part of the process
uses photolithographic machines, which ASML develops and manufactures. ASML is market leader in
these kind of machines. The wafers are then baked to dry, evaporate remaining solvents, and hardens
the photoresist. The exposed resist is washed away (6). Etching and ion implantation are done to
create vertical or horizontal paths between layers on the wafer (7). The last process is to remove the
remaining pattern of photoresist (8). Now the wafer is ready (9) and cut into individual IC’s (10).
Finally, the IC’s are packed, and connector pins are added to produce the final chip (11). Steps (3)

Exposure

(step and scan) Developing

and baking
Photoresist
Material deposition coating

- or medification /)
Sticing Polishing J g
g w <
[ T ——2 ; 3
Etching and ion
implantation
; Removing
; i the photoresist
; LR (ashing) Completed
Iy wafer Separation .
2 e '@ Packaging
! “ s =P
— o) 5 10 gt @

W ASML B Other Suppliers

Figure 1: The production process of a chip.
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to (8) are repeated 20-30 times and each time it is crucial that the patterns are placed on top of each
other as accurately as possible.

In this master’s thesis, two processes are considered. One of them is Resist Spinning (RS), which
is a part of the photolithographic process, the other is tungsten CMP (W-CMP). Both processes are
not selective, which means that the process cannot be influenced on a specific position of the wafer,
when it is implemented. The RS process ensures the entire wafer is covered with a photoresist layer,
while the W-CMP process step planarizes a surface covered with tungsten.

RS is a part of the photolithographic process. During the RS process a thin layer of light sensi-
tive material is deposited on the wafer. With an exposure step a pattern is illuminated. The part
of the photoresist layer which is exposed, is removed. The remainder of the photoresist prohibits
processes like etching to affect the unexposed parts of the wafer. Note that the exposure process is
selective, in contrast to other processes like RS and W-CMP.

Because the pattern in one layer has to connect with the pattern of another layer, it is very im-
portant to know the exact position of the wafer during the exposure process. This introduces the term
overlay, which is defined as the precision by which a pattern is aligned and printed onto a previous
printed layer of an IC. Overlay errors are caused by both the machine and the process itself. Currently,
the overlay accuracy is approaching < 20 nm (mean plus 3 sigma).

To locate an object in a three-dimensional space, one needs six degrees of freedom: z-, y- and 2-
position and rotation around the z-, y- and z-axis. For the Order-to-Order method, the ATHENA!
or Alignment Sensor is considered. The goal of this sensor is to measure the z- and y-position and
the rotation in z-direction of a wafer. To align a wafer, every layer must contain several alignment
marks. These marks are periodic structures, so-called gratings, that are etched into a specific layer.
Illumination of the alignment marks causes diffraction of light. By measuring the intensities of the
inference between diffraction orders (n,—n) and comparing the intensity pattern with a reference
grating, the phase difference between orders (n, —n) can be determined (see Figure 2). From the ob-

red & green laser illumination

| “ t et e
1804 [o'(

; 3ed orde; rg

H 1st order

¥ 2ndorder  gre€EN

1 4th order

% T 6th order
wafer mark  first lens pupil plate reference gratings

order wedges
9 second lens & detectors glass fibers

Figure 2: A schematic representation of the measurement principle of the ATHENA sensor. Diffrac-
tion order are captured by the first lens. Between the first and second lens the orders are split in such
a way that the orders are separated behind the second lens and can be detected separately.

!ATHENA = Advanced Technology using High-order ENhanced of Alignment
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tained phases, the ATHENA sensor computes the z- or y-position of the grating direction of the marks.

When a wafer is processed (e.g. with W-CMP), the alignment marks on this wafer are also pro-
cessed. In case of the RS process, a thin layer of photoresist covers the alignment mark. During the
W-CMP process asymmetric roundings of the phase grating lines could occur. Both effects cause the
alignment mark to become asymmetric. Symmetric marks have a uniquely defined position, namely
all diffraction orders measure the center of mark symmetry. Asymmetric marks do not have a uniquely
defined position. In that case each diffraction order points to an apparent position which is not nec-
essarily equal for all diffraction orders.

In addition, each measured diffraction order contains a diffraction order independent part, which
causes the measured position of the alignment mark to deviate from the expected position. This term
is equal for all diffraction orders and not introduced by the process. The term ”diffraction order
independent part” is used for all deviations from the exact positions, which are not caused by changes
in shape of the alignment marks due to processing, but that can be contributed to the intrinsic system
performance.

1.2 Definition of the Order-to-Order method

The idea behind the so-called Order-to-Order method is that each measured diffraction order contains
information about the changes in shape of an alignment mark caused by processing. A basic assump-
tion for applying the Order-to-Order method is that the diffraction order dependent part is caused by
processing the wafers only. This assumption is justified because symmetric marks ensure all diffraction
orders give the same position, while for asymmetric marks the measured positions of each diffraction
order are different. As a consequence of this assumption the remainder part is order independent.
This is the reason why this part is called the diffraction order independent part. However, this error
can be much larger than the process induced part.

If there is a certain diffraction order of which the process part indicates approximately the same
position for almost all marks for all wafers, this diffraction order yields the most stable alignment.
Note that all marks over the wafer must be comparable. The description of the problem concerning
the Order-to-Order method is given in the problem definition.

Problem definition
Identify that diffraction order which results in the most stable position when alignment marks
are influenced by process effects.

As noted before, the most stable order may have a large offset from the actual position. However,
because this offset is approximately equal for all marks, one can correct for this offset. As indicated
above, the marks must be comparable. When only wafer-to-wafer variability is considered, the marks
are comparable, since a mark on a certain position undergoes a similar process effect on all wafers.
In case of the RS process one might expect that with increasing radius the resist spin effects become
more perceptible. This is also the case for the W-CMP process. Therefore, process effects on two
different positions on a wafer can be very different. This thesis is limited to marks located at roughly
the same radius. Future extensions of the Order-to-Order method might account for mark location
variations.

© ASML 2003 Confidential Page 7 of 50
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To find the desired diffraction order, the differences between two diffraction orders, the so-called Shift-
between-Orders (SbO’s), are investigated. The advantages of considering SbO’s instead of APD’s is
that the diffraction order independent error drops out. The wafer-to-wafer variability of a SbO can
be computed easily from the measured positions. However, this is still not the desired variability,
since a SbO contains two diffraction orders. According to the problem definition, the variability
of the position for a single order due to processing must be computed. Apparently, the problem has
changed to find a good decomposition algorithm to identify the desired variability from SbO variability.
A difficulty in this algorithm is that correlation between diffraction orders must be taken into account.

Currently, the Order-to-Order method is implemented by assuming there is no correlation between
the measured positions of different diffraction orders. Unfortunately, it can be made plausible with
Fourier optics that diffraction orders are correlated. Note that [3] shows quite good results when the
no covariance is assumed. The main question is why? This question will be the subject of this thesis.

1.3 Overview of master’s thesis

In this master’s thesis a theoretical basis is given for the Order-to-Order method. To validate this
basis, experiments are performed with two processes: the W-CMP process and the RS process. The
general use of these processes is described in Chapter 2. In this chapter also the background of the
experiments is given which resulted in the data sets that are used to verify the Order-to-Order method.
In Chapter 3 the theory of the Order-to-Order is derived and also the way of treating the measured
data is discussed. The result of this chapter is an underdetermined system of equations, which results
in infinitely many solutions. In Chapters 4 and 5 an attempt is made to reduce the number of variables
or to add extra equations. In Chapter 4 an ad-hoc way method is followed, while Chapter 5 uses prior
knowledge on the mark shape to get insight in the behaviour of the variables. Finally, this master’s
thesis ends with conclusions and recommendations in Chapter 6 and a description of open issues in
Chapter 7.

© ASML 2003 Confidential Page 8 of 50
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2 Description of experiment

To verify the Order-to-Order method experimentally, two data sets of different processes are used.
The general implementation of these processes is discussed in Section 2.1. Since both experiments use
the 3M method to determine the process effects, this method is pointed out in Section 2.2. The setup
of the experiment used to gather the data sets, are described in Section 2.3.

2.1 General description of the processes

In this section the two considered processes W-CMP and RS are described. For each process the
actual process is described.

2.1.1 Tungsten Chemical Mechanical Polishing (W-CMP)

The first data set is retrieved from a process called tungsten CMP (W-CMP). W-CMP is used to
interconnect two vertically separated metal layers to each other. The name tungsten refers to the
material that is used. The process of W-CMP is shown schematically in Figure 3. The insulating ma-
terial in-between the metal layers is oxide (2). To achieve good imaging, the oxide layer is planarized
to obtain a smooth and flat surface (3). At the positions where the connection between the metal
layers must be made, small holes are etched into the oxide (4) and afterwards filled with tungsten (5).
The superfluous tungsten over the bulk oxide can be removed through a W-CMP removal step (6).
Finally, metal? is deposited (7). The so-called non-zero layer marks will look like the right side of (7)
and this is the mark that has process induced effects.

During W-CMP, deformations of alignment marks such as the asymmetric rounding of the phase

MARK Area Product Area MARK Area Product Area
1. Zero-layer mark
Sikicon

5. Tungsten Deposition

L Oide

2. Oxide deposition i i
Silicon

8. Tungsten CMP

3. oxide CMP

N/

Tungsten

Silicon

AlCu
7. Metal Deposition

4. Contact Etch

Silicon

Tungsten

Figure 3: Schematic representation of the W-CMP process. In each step the left side shows the zero
mark area whereas the right side shows a non-zero layer mark.

2This metal is often aluminium,
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grating or changes in optical depth of the mark occur (see Figure 4). The latter can cause destruc-
tive interference when the optical depth is approximately equal to half the wavelength. Destructive
interference causes a severe reduction in signal strength, which strongly amplifies the effect of mark
asymmetry on the detected mark position.

~ N

Figure 4: Schematic representation of the process effects. The left picture shows the asymmetric corner
rounding, while the right picture shows the alteration in optical depth.

Compared to other process steps, the process effects on alignment marks are large for W-CMP. The
marks can deform significantly and are therefore suited to validate the Order-to-Order method. For
more information on W-CMP see [4].

2.1.2 Resist Spinning (RS)

The second process that is investigated is called Resist Spinning (RS). This process is a preparatory
step to expose a wafer. During the RS process, the wafer is rotating and in its center of rotation a
few drops of photoresist are released, which spread out to cover the silicon wafer with a thin uniform
layer of resist. During the exposure and develop step, parts of the resist layer are removed and the
remainders of the photoresist prevent other processes like etching to affect the original layer.

At mark positions a so-called pile-up effect occurs due to the surface irregularity (see Figure 5).
The magnitude of this pile-up effect depends upon the topology of the mark. For instance, if the
mark depth is more than 25 % of the resist layer thickness, the effect is clearly apparent, while for
topographies less then 25 % of the resist layer thickness the effect is negligible.

Pile-up
effect

depth of wafer

position on wafer

Figure 5: Schematic representation of the pile-up effect due to the RS process.

Due to the pile-up effect, the shape of an alignment mark together with the resist layer becomes asym-
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metric as seen by the alignment sensor. This creates a process induced effect on alignment positions
and, consequently, this process is suitable for experimental validation of the Order-to-Order method
(just as the W-CMP process). For more information on the RS process see [5].

2.2 Multiple Mark Measurement method (3M)

An accurate measurement method to determine processing effects, and therefore a way to verify
the outcomes of the Order-to-Order method, is the Multiple Mark Measurement (3M) method. This
method is capable of determining the process contribution of the total deviation between measured and
actual position. As described above, the process effects cause alignment marks to become asymmetric
which causes positional differences between diffraction orders. In fact, the 3M method is designed
to identify what the Order-to-Order method tries to compute: the Process Induced Alignment Shift
(PIAS). This is the reason why this measurement method is used.

The 3M method uses two pairs of two marks to determine the process effect. Each two marks are
printed on the same distance from each other on the wafer. Note that both sets must be very close
to each other. After processing, all marks except one are cleared, which means that the layers on
top of the marks are removed (see Figure 6). The process effect can now be separated from other
effects by taking the difference within each pair. The difference between the two sets is equal to
the process effect. The 3M method is the most accurate measurement method to determine process
effects on alignment available at this moment. However, to implement the 3M method in production
is impossible due to the price of additional steps and the complexity. For more information see [6].

. Arsf.l'-lsprccessI . Aref
L] | ] ] B
o I,____‘ \
TO PVIEW - L clearout window
Mark, Mark, ¥ Mark; Mark;
image 1 image 2

SDEVIEW "™ - — r

Figure 6: Schematic representation of the two pairs of marks. Only one mark contains process effects,
the other marks are cleared.

2.3 Derivation of the data sets

In this section the set-up of the experiments for both the W-CMP process as the RS process is discussed
as a background for following chapters.

© ASML 2003 Confidential Page 11 of 50
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2.3.1 W-CMP process

The W-CMP experiment is carried out with a batch of 10 wafers (300 nm). Since the effect of process-
ing depends also on the kind of alignment mark used, three types of marks are considered. These are
the XPA-AH32, XPA-AH53 and XPA-AH74 alignment mark. XPA stands for eXtanded Pattern Area
and each mark has a X variant (XPA-X) and a Y variant (XPA-Y) to determine the z- or y-position
of the wafer. The schematic representation of the three types of marks is given in Figure 7. These
mark types are developed to enhance the intensity of a certain diffraction order as can be seen from
Fourier series. The XPA-AH32 mark enhances the third diffraction order, while the XPA-AH53 and
XPA-AH74 enhances the fifth and seventh order, respectively.

XPA-AH32 mark

Figure 7: Schematic representation of the XPA-AH32, XPA-AH53 and XPA-AH7} mark.

Eight marks of every type are considered: four X- and four Y-marks. The X~ and Y-marks are located
on the same position on the wafer. The locations of each mark used in this experiment are given in
Figure 8.

Since this experiment has not been carried out to verify the Order-to-Order method, each mark has
only been measured once per measurement method. In Chapter 3 it is shown that this is statistically
not sufficient and this is the reason the RS experiment has been carried out. The measurement meth-
ods used in this experiment are the production like measurement method, which serves as input for
the Order-to-Order method and the 3M method to validate the results.

The measurements are executed in the following way. Each mark is illuminated with two laser beams
knowing a red laser beam (wavelength is 633 nm) and a green laser beam (wavelength is 532 nm). The
main reason to use two different wavelength is the chance of destructive interference (see Chapter 5).
When the laser beam hits the (processed) marks, diffraction occurs and the intensity and phase of the
first seven diffraction orders are measured by the ATHENA sensor. From the phases the positions are
derived for every diffraction order. Also the Wafer Quality (a quantity for the signal strength), WQ
for short, is measured for each diffraction order. As indicated before, the XPA-AH32 enhanced the
3th diffraction order, so the WQ of this order will be large. Similar the 5th and the 7th diffraction

© ASML 2003 Confidential Page 12 of 50
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XPA-AH32Y marks
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XPA-AHS53 X marks

XPA-AHS3 Y marks

XPA-AH74 X marks

XPA-AH74 Y marks

Rl

Figure 8: A schematic plot of the mark positions for the XPA-AH32, XPA-AH53 and XPA-AH7)
marks. In reality, the mark do not overlap. In this figure the marks are much larger than in reality.

order have a large WQ for the XPA-AHS53 and XPA-AH74 mark.

Summarizing, the W-CMP experiment results in 2 data sets, one for the 3M method and one for
the production like measurement method. Each data set consists of 14 simultaneous positions (7 po-
sitions for each color) and WQ's for all 24 marks.

2.3.2 RS process

The experiment involves a batch of six wafers (300 mm) which has undergone the RS process. Because
the shape of the resist layer depends on the shape of the alignment mark underneath, two types of
marks are considered. The first type is the XPA 8.0 pm mark and the XPA-AHT74 mark (see Figure
9). The resist layer is less uniform on a XPA 8.0 pm mark then on a XPA-AH74 mark.

On each of the six wafers 4 mark pairs are considered for both mark types. The z-positions are deter-
mined by marks whose grating vectors runs in the z-direction (X-marks). Analogously, the y-positions
are determined by marks which gratings lie along the y-direction (Y-marks). Summarizing, there are
4 X-marks and 4 Y-marks per type of mark (2 types), i.e. in total there are 16 marks per wafer. The
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Figure 9: A schematic representation of XPA 8.0 pm mark (left) and XPA-AH7} mark (right).

positions of the marks on the wafer are given in Figure 10.

The changes in shape of a mark depend on the position of the mark on a wafer. Therefore, analogous
to the W-CMP experiment, two mark pairs are located at one radius and the remaining two at another
radius. The diffraction orders are again produced with a red and a green laser. After the execution of
the experiment, it appeared that, for example, the fifth diffraction order for the red laser has a very

low WQ for both X- and Y-marks of the type XPA-AHT74.

Figure 10: Positions of the alignment marks for both XPA-AH7} and XPA 8.0 um marks. Each mark
has a label which indicates the mark number and mark z- and y-position. In reality, the mark do not

8::560.44) 16 456,15

7:(44.4.4.0) 45544 15)

) 11:(54.0,1.9)

9:(-71.0, -73.1) 10:(79.0, -73.1)

overlap. In this figure the marks are much larger than in reality.

5:(-80.5,-71.0) 6:(69.4,-71.0)

13:(-70.6,-73.5) 14:(79.4,-73.5)

v

I XPA-AH74 X marks
XPA-AH74 Y marks

XPA 8.0 um X marks
D XPA 8.0 um Y marks
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To verify the Order-to-Order method, two types of measurement methods are used. The first one
is the 3M method, the other measurement method is a production like measurement method. In IC
fabrication, only the latter is available.

Since noise could ruin the outcomes of the Order-to-Order method, each mark is measured several
times. In production, there is a limit for the number of marks that can be measured. Therefore, each
mark is measured 10 times consecutively without the wafer leaving the machine. When all wafers are
measured, the measurement sequence is repeated, so each mark is scanned 20 times. This number
of measurements is not an exceeding of the limit, but those limits should be kept in mind since the
number of measurements could not be much larger.

The RS experiment gives two data sets, for each measurement method one. Each data set con-
tains information for the diffraction orders of all 16 marks (4 marks for 2 types (XPA-AH74 and XPA
8.0 pm) and both X- and Y-marks) measured with the red and the green laser. Also the WQ’s are
measured.
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3 Theoretical model for the Order-to-Order method

In this chapter the theoretical basis of the Order-to-Order method is presented. The development of
this basis is described step by step, starting with the basic assumption in Section 3.1. The second
section provides a statistical approach and in Section 3.3 the model that will be used in the following
two chapters of this master’s thesis is completed. This chapter is concluded with a remark about
the usage of two different data sets, namely the 3M and the production like data sets. Most of the
statistical definitions and formulas presented in this chapter are taken from [7], unless stated otherwise.

3.1 Basic assumption

The Order-to-Order method is a technique to separate process induced variations from other varia-
tions that combine into the measured aligned position deviation (APD) for a certain diffraction order.
An APD is the difference between measured and expected position of an alignment mark. The APD
can be split into three parts. The first part is the process induced error, also called Process Induced
Alignment Shift (PIAS). Processing an alignment mark causes alterations in the shape of the mark,
which can become asymmetric. Diffraction orders react differently on asymmetry as will be shown in
Chapter 5. Therefore, the observed PIAS’s are order dependent. Note, that this is the only part of
an APD which is of interest in this thesis. The second part is the diffraction order independent part,
which for example include translation, rotation and thermal expansion of a wafer. Diffraction orders
do not react differently on e.g. rotation of a wafer, since these kinds of effects do not alter the shape
of an alignment mark. Although the name already indicates the diffraction order independent part
is order independent, this part can be different from mark-to-mark and from wafer-to-wafer since,
for example, rotation is radius dependent (mark-to-mark) and translation is the same for all mark
positions on one wafer, but could be different for another wafer (wafer-to-wafer). Finally, the mea-
surement noise is taken into account, which is a random error influencing each measurement. Clearly,
this noise error contributes to the differences between the observed diffraction orders. However, there
are techniques to dispose of them, as will be shown in the following section.

Since only the PIAS and the noise are supposed to be diffraction order dependent and the noise
contribution could be disposed of, the basic assumption that is made in the Order-to-Order method
is:

Basic assumption
The PIAS is the only part of an APD that is diffraction order dependent.

The mathematical model for a measured APD is given by
Yijkl = Tijk +ﬁijk + Eijkt, i=1,.,p j=1,..,9 k=1,..,7 [=1,..,m. (1)

Here, Y ;11 € R” are the simultaneous measurements of the n diffraction orders coming from mark ¢

on wafer 7 measured with the kB colour during the I*h measurement. For every diffraction order, Y;;x
can be split in the diffraction order independent error B, the PIAS 7 and the noise error &;i.
For given 4, j and k, system (1) has n equations and (disregarding the noise errors) 2n unknowns.
However, the diffraction order independent error is the same for every diffraction order. Implementing
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this property gives:
1

1 .
ﬁijk = Bijk . € R™ (2)
1

For given i, j and k, system (1) is reduced to n equations with n + 1 unknowns. This means that
system (1) is still an underdetermined system of equations and therefore has infinitely many solutions.
Fortunately, the actual values of the variables 7;;:(€ R™) and B;jx(€ R) are not the quantities of
interest. The Order-to-Order method searches for the diffraction order that varies least due to process
variation or, in other words, that diffraction order for which the PIAS varies least. This implies that
the diffraction order independent part is not of interest. Actually, this is the fundamental reasoning
behind the Order-to-Order method [8]: for any given %, j and k, subtracting the measured APD’s
(each of a different diffraction order) ensures that the diffraction order independent part is removed.
This subtraction is defined as a Shift-between-Order (SbO) and is expressed mathematically by:

Yo Yy=1o—Tpt+es—¢y, a,b=1,...,n a#b (3)

For readability reasons and without loss of generality the indices ¢, j, k and [ are disregarded. This
equation is valid for any given combination of ¢, j and k. The index [ is removed when the noise error

has been erased. For n diffraction orders, (g) = %n(n — 1) possible SbO’s can be computed.

A SbO contains only information about the difference between two PIAS’s of two different diffraction
orders. This implies that if the PIAS for a certain order of a mark is known, a reference point is avail-
able for all other PIAS’s and they can all be determined. The problem is reduced to find the PIAS of
a single diffraction order. However, this is not possible so therefore the variance of a PIAS is considered.

The key problem of converting system (1) consisting of APD’s to system (3) consisting of SbO’s,
is that the goal is to find the variance of PIAS’s over wafers of single orders instead of the variance
of SbO’s. In theory, if the variance of a certain Shift-between-Order is small, it is possible that the
two involved diffraction orders behave quite the same, but the actual variance of the PIAS’s for the
separate orders can be large. The main difficulty in decomposing variances of SbO’s lies in the fact
that the PIAS’s of single diffraction orders can be correlated and therefore also covariances between
PIAS’s must be taken into account.

The following section deals with the noise contribution of an APD and provides a statistical approach
to obtain the wafer-to-wafer PIAS variance for each diffraction order from the measured SbO’s.

3.2 Statistical model

Because the data set consists of measured data, the obtained data is polluted with measurement noise.
To implement a method to obtain information from measured data, a model must be developed to
interpret this data. There are two kinds of errors involved with the model, knowing noise errors and
the so-called "fit” errors. By measuring every mark several times and averaging those values, the
obtained values are more accurate and the noise is reduced to such a level, that it can be neglected.
However, the magnitude of the fit errors depend on the underlying model.

Averaging over all measurements gives a more reliable estimate of the true value, which can be ex-
pressed by confidence intervals. To compute these intervals, the sample standard deviation s must be
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determined. Note that noise is assumed to be normally distributed. So, if 1, x5, ..., 2., is a sample

of m observations, the sample variance is defined as

$2 = Y (@i —3)° (4)
m—1
where T denotes the mean of the sample. The sample standard deviation s is the positive square root
of the sample variance. Now, a confidence interval can be determined for the sample. If T and s
are the mean and standard deviation of a random sample from a normal distribution with unknown
variance o2, a 100(1 — @) % confidence interval on x (the actual value) is given by
s

T—1 1= u<T+t
z a/2,m 1\/;’5_#_ +

s
a/2m=1 7= ()
where £,/5 ;-1 is the upper 100(/2) % point of the ¢ distribution with m — 1 degrees of freedom. A
100 % confidence interval contains no information, since this interval equals R.

To illustrate the length of the confidence intervals, consider the RS experiment. Each mark was
measured 10 times consecutively. For the XPA-AH74 marks each diffraction order has a 99 % confi-
dence interval of approximately 1 4 2 nm and 1 & 3 nm for a 99.9 % confidence interval, depending of
the measured mark, wafer and color.

For the W-CMP data only one measurement per mark is performed. Hence, the sample variance
could not be computed and no confidence interval can be determined. This is the reason that an ad-
ditional experiment was executed: the RS experiment. In this experiment, each mark on every wafer
and for every color is measured several times in order to compute this sample variance and determine
the confidence intervals.

however, if the standard deviation of the noise error is known (e.g. from previous experiments),
it is possible to set up a confidence interval, even for one measurement. If T is the sample mean of a
random sample of size m from a normal population with known variance o2, a 100 (1 —ca) % confidence
on u is given by

T — . <u<T+H+z -z (6)
T = 22 \/m SpHx af2 \/r_n
where 2/, is the upper 100 («/2) % point of the standard normal distribution. For the W-CMP data
this o2 has to be estimated.

The data set can be divided into so-called factors such as measurements per wafer, per position
on the wafer and per color. Existing statistical techniques like (Multivariate) ANalysis Of VAriance
((M)ANOVA) can be used to estimate the variance of any of these factors from the different levels
of the specific factor. A difficulty in such a technique is that a single level of a factor can not be
used (a single value has no variance). The Order-to-Order method is developed for production like
environments, which implies that the wafers are processed wafers. This can be considered as one level
of the factor ”"processing”. If data was available of the same, but not processed wafers, the ”process-
ing” factor would have two levels and the process effects could be separated from other effects. As a
result, (M)ANOVA techniques cannot distinguish the PIAS variance from the APD variance from the
processed wafers alone, since there is no second level that can make the distinction between an APD
and a PIAS. Therefore, in case of (M)ANOVA’s more information is required about the relation be-
tween the PIAS variance and the APD variance in order to use such a standard technique. Therefore,
standard statistical methods can not be used. For more information on (M)ANOVA techniques see

[7].
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3.3 Deterministic model

In this section, these measurement values are considered to be deterministic. The SbO’s and the vari-
ances of these SbQ’s are computed directly from the deterministic data. When n diffraction orders

are measured, there are (’2‘) possible combinations to form SbO’s.

Decomposition of the SbO variances into variances and covariances of the single order PIAS’s is
done according to the following formula [9]:

var (X —Y) =var (X) + var (Y) — 2cov (X,Y). )
When this decomposition equation is applied on the variances of SbO’s, the following system is ob-
tained:

b= Az, (8)
with b € RG)*! the known vector consisting of the computed SbO’s, z € R((G)+m)x1 the solution
vector consisting of variances and covariances of single order PIAS’s, and A € RG> ((3)+7) the

coefficient matrix given by

(11 —2 )
o @
; %
)
1 1
011
Lol 0
A=|:7 @ - . (9)
01 1
1100
1010
1001 %
@ 0110
0101 .
I 0011 -2

Equation (8) is a system of (3) equations with (3) + n unknowns (n variances and (%) covariances).
Note that the right-hand side of system (8) consists of only PIAS’s since the diffraction order indepen-
dent part and the noise error are eliminated. Because there are more unknowns than equations, this
system is an underdetermined system of equations. Without additional knowledge, it is impossible to
compute the single order PIAS variances.

In previous research [3] and (8], it has been assumed that all covariances are equal to zero or, in
other words, the diffraction orders behave completely independent. The following example shows that
this assumption can lead to erroneous results. To keep the example simple, a situation is considered
with only three diffraction orders. Consider the diffraction orders a, b and ¢ for a certain mark over
m wafers. It is assumed that the wafer-to-wafer variance of the SbO’s is given by:

var (rqg —mp) =0

var(ro —re) = A . (10)

var(ry —re) = A
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The Order-to-Order method wants to solve system (8) with only three diffraction orders and with the
assumption that the diffraction orders behave independently (all covariances are zero). The solution
is given by

var (ry) =0 cov (re,mp) =0
var(rp) =0 cov(rg,mc) =0 . (11)
var (r) = A cov(ry,7mc) =0

However, when complete correlation between diffraction order ¢ and b is assumed and no correlation
is assumed between orders a and ¢ and between order b and ¢, the solution is given by

var (ro) = A cov(rg,m) =A
var(ry) = A cov(re,re) =0 . (12)
var (1) =0  cov(ry,re) =0

Both solutions are illustrated in Figure 11. The impact of the additional knowledge is severe since
solution (11) indicates both points a and b are most stable under processing, while solution (12)
indicates point ¢ varies the least.

' 4
y y

-
>

P

X X

Figure 11: The left plot shows points a and b which do not vary and point ¢ which does vary. The right
plot shows the case where one point is not varying (point ¢) and the two others (a and b) vary such
that both points keep the same distance to each other. The arrows show the wafer-to-wafer variation.

3.4 3M data vs production data

In theory, the 3M data must result in exactly the same SbQO’s as the production data. However, both
data sets are derived from measured data. Although the measurement errors are reduced by measuring
each mark several times, as is done in the RS experiment, infinitely many measurements have to be
executed to ensure all measurement errors are filtered out.

Figure 12 (left) shows the computed SbO’s of a certain mark on a specific wafer for both data sets.
As can be seen, the order of magnitude of the SbQ’s in the production environment data is larger
than in the 3M data. This can be explained by the fact that the 3M measurement method gets rid
of off-sets between APD’s of the same diffraction order. Large constant offsets are eliminated during
the subtraction. In production like environments, the even diffraction orders are not calibrated, which
means that these orders may still contain large constant offsets. As can be seen in Figure 12 the SbO’s
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of two odd or two even diffraction orders result in a small SbO, while SbO’s of combinations of an
odd and an even order are very large.

SbO for 3M and production like measurements x107% Variability of SbO for 3M and production like measuraments
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Figure 12: Left the SbO plot is given for a certain mark on a specific wafer. The right figure gives the

wafer-to-wafer variance of this mark over all siz wafers. The horizontal axis denotes which SbO pair

is considered. For ezample, 2/ means that the following SbO is considered: SbOay = Ys — Yj.

The variance of SbO’s computed for both measurement methods should be identical. The reason is
that SbO’s from other wafers have the same offsets due to calibration. A variance is a measurement of
spread from the mean of these SbO’s and therefore each SbO is automatically corrected for this offset
when a variance is computed. However, the measurement noise again plays a role, since the variance
is estimated from measured data. Only six wafers are measured in case of the RS experiment. An
error in one of the six measured wafers has large consequences for the final estimate of the variance.
To quantify this phenomenon, a confidence interval is given for the actual variance o2. If s? is the

sample variance from a random sample of m observations from a Gaussian distribution with unknown
variance o2, the a 100 (1 — &) % confidence interval on o2 is
m —1)s? m —1)s?
(m=1st _ o (m-1) W)
Xa/2,m-1 Xi—a/2,m-1

where Xi J2m—1 and xf_ a/2,m—1 3T€ the upper and lower 100 (a/2) % point of the chi-squared distri-
bution with m — 1 degrees of freedom, respectively. To indicate how large the effect is of the number
of wafers, the 99 % confidence intervals are given for 6 c.q. 25 wafers:

0.298552 < 02 < 12.19515% for m = 6 14
0.52685% < 02 < 2.4267s2  for m = 25 (14)

This explains why in Figure 12 (right) the variances of both data sets differ significantly from each
other in the RS experiment.

If the variances of the SbO’s differ significantly from each other, it is clear that the solutions of
the Order-to-Order method are also different. This implies that, although the 3M data set is the only
way to verify if the Order-to-Order method indicates the right diffraction order, both data sets can
not be compared. In future experiments, more wafers should be taken into account to have a more
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accurate estimate of the SbO variance. Since there were no batches available of more than 10 wafers
suitable for 3M experiments, the 3M data can not be compared to production like data to verify the
Order-to-Order method. However, the 3M data set is the most accurate measurement method to
establish the single order PIAS’s. Therefore, the variance of PIAS’s could be computed directly from
the data. The Order-to-Order method only provides another method to determine these PIAS’s. This
implies that in Chapter 4 the 3M data is used to verify the Order-to-Order method.

The W-CMP data show a remarkable resemblance between 3M data and production like data. In
Figure 13, a certain mark is chosen which is representable for all marks. One can see that the SbO’s
are approximately the same and the wafer-to-wafer variance for this mark are also similar for 3M and

production like data. Therefore, in Chapter 4 the 3M data could be used as a comparison for the
outcome of the Order-to-Order method.

SbO for 3M and production like measurements 18
—TT———

%10 Vafiance of SbO for 3M and production like measurements

T T — T T T T T T T
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Figure 13: Left the SbO plot is given for a certain mark on a specific wafer. The right figure gives the

wafer-to-wafer variance of this mark over all six wafers. The horizontal azis denotes which SbO pair
is considered.

In summary, the data sets of the RS process are not suitable for mutual comparisons, while for the
W-CMP process the 3M data could be used to verify the outcome of the Order-to-Order method.

Even if the data sets are comparable, the WQ’s of some diffraction orders could be small, and then
these orders should be excluded from comparison.
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4 Prior knowledge based on assumed correlation between orders

Because the system obtained in Chapter 3 has n more unknowns than equations, two approaches could
be used to solve the system. One is to add n extra independent equations (4.1). Another approach is
to reduce the number of unknowns (4.2). Obviously, a combination of both is also possible. For both
methods, additional knowledge is necessary, for example, including knowledge about the shape of a
mark topology (see Chapter 5). This chapter discusses the effects of eliminating unknowns or adding
additional equations to system (8).

4.1 Reduce the number of unknowns

As already mentioned, current research of the Order-to-Order method assumes that there is no cor-
relation between APD’s of different diffraction orders. This is an example of setting unknowns to a
certain value. In total (g) covariances are given a value, leaving only n variables to be solved. Actually,
in this approach more unknowns are set to zero than is required to obtain a square coefficient matrix
in system (8).

There are two kinds of variables: variances and covariances. In (4.1.1) covariances are given a value,
while in (4.1.2) also variances are pinpointed to a certain value.

4.1.1 Set covariances to a certain value

o Set covariances between all orders or between even and odd orders to zero
To solve system (9) at least n unknowns must be given a certain value. It would intuitively
make more sense to set those variables to zero which influence the solution the least. In general,
these variables are the covariances, since variances are often larger. This property is a direct
consequence of the Cauchy-Schwarz inequality:

lcov (X, Y)] < v/var(X) - \/var(Y) < max {var(X),var(Y)}. (15)

Another example of setting covariances to zero is to assume that even and odd diffraction orders
are not correlated. The reasoning behind this assumption is that for a perfectly symmetric un-
segmented XPA 8.0 ym mark (which is used in the RS experiment), there are no even diffraction
orders. When the marks are nearly symmetric, the even diffraction orders have a low signal
strength, which indicates that the signals are significantly affected by noise (see Chapter 5).
Setting all covariances to zero is possible for all n > 3. Setting all covariances between odd and
even orders to zero is valid only for n > 4. The assumption of no correlation between shifts of
diffraction orders and the assumption of no correlation between shifts of even and odd diffrac-
tion orders still result in setting more covariances to zero than required when n >4 and n > 5,
respectively.

In Figure 14 the Order-to-Order outcomes of setting all covariances to zero and setting only
the covariances to zero which involve an even and an odd diffraction order, are presented for
the RS experiment in the case there are 7 diffraction orders. As the figure shows, both solutions
roughly follow the exact variance, which is computed directly from the 3M data, but the com-
puted variance and the exact variance do not result in the same least varying diffraction order
due to process effects.

As indicated in Chapter 3 the production like data set could be used in case of the W-CMP
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Figure 14: Results of setting all covariances to zero and setting only covariances between odd and even
orders to zero. All results are compared to the exact variance. The left column gives the results for

the XPA 8.0 um marks on two different positions, while the right column does the same, but for the
XPA-AHT, mark.

experiment. Figure 15 shows some results for different types of marks. As can be seen, the exact
3M variance and the computed variance with both 3M data and production like data are not the
same. This is an indication that the covariances are absolutely not equal to zero in the W-CMP
experiment. However, the two computed solutions are approximately the same as they should
be, since the wafer-to-wafer variances of the SbQ’s are approximately the same.

In the remainder of this chapter only the RS experiment is considered, since the assumptions
made in this chapter are theoretically verified in Chapter 5. Note, that for the RS experiment
only 3M data could be used (see Chapter 3).

e Set only n covariances to zero

A difficulty arises when exactly n covariances are set to zero. Consider the coeflicient matrix A
of system (8) of which the rank is equal to the number of rows, namely (’2’) If n covariances
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Figure 15: Presentation of the results of the assumption of no covariances for the W-CMP process.
The left column represents the XPA-AH32 marks, while the right column represents the XPA-AH53
marks. The top row are X-marks and the bottom row are Y-marks. For each mark, the exact 3M
solution is given and for both data sets the variance is computed with the Order-to-Order method.

are set to zero, matrix A has n rows with only variances as unknowns. These n rows can make
matrix A dependent. This is very important to keep in mind, since a dependent system results
in infinitely many solutions. A question is how to find a coefficient matrix A with full rank
(all columns/rows are independent). This seems trivial, but when one has n diffraction orders,

there are ((E)) possibilities to set n covariances to zero. To give an indication of how large these
numbers are and how many of these matrices are of full rank, consider Table 1.

— Select a combination of covariances to set to zero
The question remains which covariances should be set to zero. With a brute force technique
(try all 116280 different matrices in case of 7 diffraction orders) a solution is obtained which
satisfies the following requirements:

* the resulting coefficient matrix has full rank;
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i diffraction orders | § possible matrices | f full rank matrices
4 15 12
5 252 162
6 5005 1525
7 116280 31406

Table 1: Indication of the number of possible SbO combinations to obtain a full rank coefficient matriz,
compared to the total number of SbO combinations.

* the solution is closest to the exact solution.

”Closest” is defined by means of the Euclidean norm || — z|| of the difference between the
computed solution £ and the exact solution , which is only available when 3M data can
be obtained. If this norm is minimal than the solution is said to be closest to the exact

x10™" Comparing variances for XPA-AH74 X mark 1
T T T T

-8

x10

Comparing variances for XPA-AH74 Y mark §
T T T

variance (in m’)

T— 18
= exact variance
++++ computed variance

variance (in m9)

=e—w @Xact variance
S <+ _computed variance

. " n n
1 2 3 4 S
diffraction order

X 10° Comparing variances for XPA 8.0mm X mark 9
T T
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4
diffraction order

Comparing variances for XPA 8.0nmm Y mark 13
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n
T

T
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Figure 16: The computed variances compared to the exact variances for four different marks. The top
row are XPA-AH7} marks and the bottom row are XPA 8.0 pm marks. The left column are X marks,

while the right column are Y marks.
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mark no | covariances set to zero
1 cov (71,74) cov(7e,73) cov(re,Tg) cov (73, Ta) cov(7s,Te) cov(ms,T7) cov(Ts,T7)
2 cov (11, 72) . cov (71, 74) cov(7e,73) cov(Ts,Tg) cov (T4, Te) cov(7s,7e) cov (Te,T7)
3 cov (11,75) cov(7e,T7) cov(7s,Ts) cov (73, T7) cov(74,7T7) cov(7Ts,T7) cov (Te,T7)
4 cov (11, 77) cov(re,m3) cov(rs,74) cov(73,Ts) cov (73, T6) cov (713, T7) cov (74,76)

Table 2: Table of covariances that are set to zero to obtain the closest variance compared to the ezact

variance.

solution. In Figure 16 this solution is given for four marks of the RS experiment, knowing
a XPA-AH74 X- and Y-mark and a XPA 8.0 pum X- and Y-mark. Note that the scale
on the vertical axis is much larger for the XPA 8.0 um marks than for the XPA-AH74
marks. It can be concluded that the diffraction orders do not behave independently, since
the computed variance differs from the exact variance. Although the computed variance
approximates the exact variance much better than in Figure 14, the best order is not iden-
tified. This indicates that the assumption that there are n covariances which are negligibly
small, does not hold. However, the differences between the computed variance and the
exact variance are small. If two diffraction orders both vary in the same way, it is likely
that the assumptions made to obtain a solution, determines which of the two diffraction
orders is the least varying, although both orders are good orders to do the alignment with.

Position dependency of the combination of covariances

In Figure 17 four solutions are plotted for four marks of the same type, namely XPA-AH74
X marks, but on different positions on the wafer to illustrate if the combinations of co-
variances set to zero is position dependent. Table 2 gives a summary of which covariances
are set to zero for each mark of Figure 17 to obtain the closest variance. It can be seen
that, although all four marks are of the same type of mark (XPA-AH74 X mark), different
covariances are set to zero.

As can be seen, the set of covariances differs from mark to mark, which indicates that either
the covariances lie very close to each other or the diffraction orders react very differently on
other positions on the wafer. Figure 18 shows the variance obtained for mark 1. The com-
bination of covariances which are set to zero to compute this variance, is used to compute
the solutions for mark 2, 3 and 4. As can be seen from Figure 18 the covariances are not
approximately the same, since the combination of covariances for mark 1 does not result
in a good approximation of the exact variances for mark 2, 3 and 4. This figure gives the
results when setting the optimal combination of covariances derived for mark 1 to zero, but
analogously, this procedure could be repeated for all four marks and the results are similar.
Apparently, process effects are different on other positions. To explain this, note that the
mark is etched in the z- or y-direction and since the resist spin process could be considered
to be axi-symmetric but dependent on the radius, the effect of such a process is different
for each mark position.

Select the wrong combination of covariances

Since it is not known which covariances should be set to zero, an example is presented to
give an idea of how erroneous the computed variance can be. In Figure 19 the variance
is given of which the norm of the difference between the obtained variance and the exact

© ASML 2003 Confidential Page 27 of 50




%
%

W

N

Q

p Maintainer : Nico van der Aa

A ML PIR A basis for the Order-to-Order Doc ID : MasterPIR
method Last update : 27 - 3 - 2003

Status : final

x10™" Comparing variances for XPA-AHT4 X mark 1
v T T T

variance {in m?)
w IS
T

n

Comparing variances for XPA-AH74 X mark 2
T T T

o exact variance 12
+1++_computed variance == @XAC! Variance
e variance

o L ) s L " " L " I
1 2 3 4 5 6 7 1] 2 3 4 5 s 7
diffraction order diffraction order
" Comparing variances for XPA-AHT4 X mark 3 x10" Comparing variances for XPA-AH74 X mark 4
L x10 paring 8 ™ T T T
; T T T

variance (in m?)

o
@
T

X3 4

0.2F

o
@
T

" \ = axact variance ~— exact variance
""" 0+ computed variance “ ++»_computed variance

variance (in m?)
»

4
diffraction order diffraction order

Figure 17: The computed variance for the mark type XPA-AH74 X marks for four different mark

positions

compared to the exact variance.

variance is maximal, and this variance is compared to the exact variance. Some of the
resulting variances are even negative, which is a contradiction to the definition of a variance.
According to the definition a variance is always nonnegative.

— Condition of the resulting system

Even when the correct n covariances are set to zero, the input vector b from system (8) (the
vector consisting of SbQ’s) determines the solution. The resulting matrix has full rank and
is a square matrix. Therefore, the inverse of this matrix exists. In that case, it becomes
important to know how the system is conditioned to determine how sensitive the system
is to perturbations in vector b. A system is called ill conditioned or badly conditioned if a
small relative error in data causes a large relative error in the computed solution, regardless
of the solution method [10]. To indicate whether the problem is ill or well conditioned, the
condition number is introduced. This number gives an indication of the relative error in
the solution when a small permutation is applied on the input data. The condition number
of a matrix A is defined as:

cond(4) = [|4]|[| 47, | (16)
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Figure 18: The computed variance for the XPA-AH7} X marks obtained by using the optimal com-

bination of covariances of mark 1 for all four marks, compared to the ezact variance for all four
marks.

where [|.|| is the Euclidean norm or 2-norm. Note, that the condition number is a property
of the system, and is independent of the input vector b.

Since matrix A is a coefficient matrix which consists of constant entries, it is useless to in-
vestigate perturbations in this matrix. Instead, what is of importance are the perturbations
in the vector consisting of the computed SbQ’s, which is the input of the Order-to-Order
method. Consider system (9), but now with a full rank square matrix A. If, in the linear
system Az = b, b and dx are the perturbations of b and z, respectively, and b # 0, then
[|68]] [LES llébl|
< < cond{A)——. 17

cond(4) Tl = je] o1 ()
For any nonsingular matrix A it holds that [11]:

L= 1 = }4- 471 < Al [ A7) = cond(4). (19

When in system (9) n covariances are set to zero, the upper and lower boundary of the
condition number are given for each number of diffraction orders in Table 3.
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An example of how bad the computed variance can be compared to the exact variance for
of marks (XPA-AH7} X and XPA 8.0 pm X marks) one two different positions. In the

left column the XPA 8.0 um marks are given, while in the right column the XPA-AH7/ marks are

presented.

§ diffraction orders

minimum condition number

maximum condition number

4
5
6
7

5.4371
6.8142
4.8766
8.9513

5.4371
9.0243
13.9349
19.5205

Table 3: Lower and upper boundaries of the condition number for different number of diffraction

orders.

Four observations could be made from Table 3. The first observation is that the obtained
system is well conditioned, since condition numbers of order 10 are normally considered to
be small. The second observation is that when the number of diffraction orders grows the
condition number also becomes larger. The third observation is that the larger the number
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of diffraction orders is, the larger the range in condition numbers is. The last observation
is that the dependency between rows always involves an even number of rows. Therefore,
if 6 or 7 diffraction orders are considered, the condition numbers are somewhat related.
The most important conclusion of these computed condition numbers is that the problem
is well conditioned and deviations in the vector consisting of variances of SbQ’s results in
small deviations in the solution vector.

As a final remark on condition numbers, note that the closest solution in Figure 17 does
not necessarily have the smallest condition number. This could be concluded since all four
marks of this figure have a different optimal set of covariances and also a different condition
number.

— Final remarks

Note that in this master’s thesis the exact variance is available, but in practice, this variance
is unknown. It is nice to know that if only n covariances are set to zero the solution can
approximate the exact variance, but it is also shown in Figure 19 that the computed solution
could be very wrong, even compared to the computed variance when assuming there is no
correlation between all diffraction orders. Therefore, it is very important to know which
covariances you must choose to set to zero before conclusions are made about the outcomes
of such an assumption. In Chapter 5 simulations are carried out for the RS case to show
how diffraction orders react to asymmetries due to this process to have a better insight how
shifts of diffraction orders correlate.

4.1.2 Set a variance to zero

Another method to solve the problem is to assume that the variance of one diffraction order is equal
to zero. The idea behind this approach is that the diffraction order which varies the least due to
processing has the lowest variance. In comparison to other diffraction orders, this order yields the
lowest Euclidian norm for the difference between vectors of the computed and the exact (co)variances.
If it is assumed a variance of a diffraction order is equal to zero, this physically means that the involved
diffraction order is constant. In turn, this implies that all covariances which include this diffraction
order also have to be zero, since a constant cannot correlate with a variable. Thus, setting one variance
to zero results in setting n — 1 covariances to zero, giving us the n unknown. The resulting coefficient
matrix A is of full rank. The results of this experiment are given in Figure 20. One can see from
this figure that when the right diffraction order is chosen to set the variance to zero (the diffraction
order for which the exact variance is minimal), the computed solution follows the exact variance best.
However, the problem is again to find out which variance vary least due to processing, because without
special experiments no exact variance is available.

To conclude section 4.1, it can be stated that the Order-to-Order method does not identify the same
diffraction order as the exact variance does, when n unknowns are pinpointed to zero. However, when
the correct covariances are set to zero, the differences between exact and computed variances become
insignificant. Still, choosing a set of n variables requires a sufficient insight in the process effects on
alignment marks. Anyhow, assumptions must be made about process effects on diffraction orders.
This indicates that when the assumptions do not hold for a specific mark, the Order-to-Order method
is likely to find the wrong diffraction order.
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Figure 20: Results of the simulations where one variance of a certain diffraction order is set to

4.2 Add extra equations

ZETO0.

It is important to know that only APD’s can be used as input for the Order-to-Order method. WQ’s
are used as an indication of the signal strength of a measured APD and in the Order-to-Order method
they are only used to select signals with sufficient signal strength. The choice of defining a SbO is
logical, since it removes the diffraction order independent contribution. A method to include additional
equations is to keep the diffraction order independent part and sum two APD’s or use direct variances
and covariances of APD’s. The basic formula is given by

var (aX 4+ vY) = o? var (X) + 2 var (V) + 2a-y cov (X,Y).

(19)
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Implementation gives the following set of equations:
var (Y?) = var (7, + f)
= var (7,) + var (8) + 2cov (74, 8), (20)
cov (Y“, Yb) =cov (7, + 3,7 + B)
= cov (7,4, Tp) + cov (7, B) + cov (7, B) + var (B), (21)

var (Y“ + Y") = var (7, + 75 + 20)

= var (7,) + var (7) + 2cov (74, 7) + 4var (8)
+ 2cov (74, B) + 2cov (13, B) - (22)

By adding these equations, n + 1 variables are added, knowing the variance of the diffraction order
independent part of an APD and n covariances between the PIAS part and the order independent part
of an APD. In principle, the equations above provide enough equations comparing to the number of
variables, but unfortunately, the system is dependent and the rank equals (g) + n, which is less than
the number of unknowns and the number of equations. This means that the system still has infinitely
many solutions.

A refinement was to assume that there is no correlation between the process part and the order
independent part of an APD. This reduces the number of unknowns by n. The resulting system still
has rank (g) +n and has one more unknown, meaning there are still infinitely many solutions. When
the unknown var(f) is given a value, the system is not underdetermined anymore and the rank of the
matrix is equal to the number of unknowns. But this answer does not give the real PIAS variances,
since it is assumed there is no correlation between the diffraction order independent part and the
process part, meaning that the diffraction order independent part must be a constant {(also over the
wafers). This induces that the answers could just as easily be computed from the measured APD’s
(corrected for measurement errors). In practice, this assumption does not have to hold, since the order
independent part is only constant per mark for every diffraction order, but differs from mark to mark
and walfer to wafer.
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5 Using the mark shape as prior knowledge

This chapter discusses how Fourier optics can be used to obtain prior knowledge of the mark shape.
The goal of using mark shape information is not to find the actual values of the covariances of system
(8), but to validate the assumption of no correlation used in Chapter 4 and/or to find the n covariances
which should be set to zero to obtain the most accurate approximation of the exact variance. Only
the RS process is considered, since there is well-defined experimental data available for this process.
An extension to the W-CMP process will be part of a follow-up investigation. To have insight in how
diffraction orders correlate, the light reflected by the mark topology has been modeled. In general,
refraction and reflection should be taken into account (see Figure 21). However, in this chapter the
Vertical Propagation Model is used, which is a zero-order approximation of the refiected so-called near-

A monochromatic, normally
incident plane wave illuminates
the wafer covered with a resist layer.

air

A part of the plane wave is The other part of the plane wave
reflected by the resist layer. is refracted by the resist layer.

5/1/; !\l‘airj

The refracted part of the plane The reflected part is again
wave is completely reflected by refracted or reflected on the
the silicon layer. air-resist boundary.

mulriple reflections until there is no signal strength left

Figure 21: Schematic representation of the actual illumination process.
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field. Although this model is oversimplified, its accuracy is adequate enough for an initial investigation
on the added value of using mark shape information as prior knowledge for the Order-to-Order method.

5.1 Vertical Propégation Model for the RS process

In this section the Vertical Propagation Model is discussed to model the process effects in case of the
RS process.

5.1.1 Assumptions of the Vertical Propagation Model

The Vertical Propagation Model assumes that the thickness of a resist layer is small and one period
of a mark is large compared to the wavelength of the incoming plane wave (red or green light). Under
these limiting cases, the reflected near-field, which is the field just above the mark topology, can be
approximated by a simple analytical expression that is derived in the following section.

The thickness of the resist layer used for the experiment discussed in Chapter 2, is 0.7 pm, which
is of the same order of magnitude as the wavelength (633 nm for the red light and 532 nm for the
green light). Therefore, the first assumption does not hold. Fortunately, the requirement on re-
sist thickness is not very strict. Moreover, one period is much larger than the wavelength and this
requirement is often more important.

5.1.2 Derivation of the near-field for one mark segment

Figure 22 shows the definitions for the derivation of the Vertical Propagation Model. Since the
thickness of the resist layer is assumed to be small compared to the wavelength, lateral deviation
of the propagating beam are small and therefore neglected. Hence, the Vertical Propagation Model
assumes that the monochromatic normally-incident plane wave only propagates in the z-direction.

near field

— z=0
propagatiomI ) 1

oflight | & h(x) air
|

Figure 22: Definition of parameters for the Vertical Propagation Model. The figure shows one period
of an alignment grating covered with resist.

A monochromatic plane wave can mathematically be written in complex notation (52 = —1) as

¥(2) = Re {A exp (—jkz + ¢o)}, (23)
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where the initial phase ¢ equals zero and k is the propagation number, defined as

o

k= , (24)

The parameter A is the wavelength. This plane wave travels a distance h(z) through air, before it
is partly reflected back at the air-resist interface and partly transmitted into the resist layer. The
reflected part travels again the distance h(z) back. The resulting part of the near-field caused by the
reflection at the air-resist interface is:

reflected field = —rAexp[—j %nair - h(z)]. (25)

The term r is the reflection coefficient given by the Fresnel equations [12]:

n . — n .
r = resist air (26)

Tair + Mresist
where n,i; and npegigt, are the refractive indices of air and resist, respectively ny;. = 1 and npegigr =
1.62, so 7 = 0.24 [13]. So, 24 % of the incident light is reflected. The refractive index is usually
dependent of the wavelength of the light used, but for air and resist the difference between red and
green light is small. It is also assumed that resist shows no absorption for the wavelengths used, so
the imaginary part of the refraction index of resist is 0.

The remainder of the incident field is transmitted and propagates in the resist towards the silicon
substrate. Therefore, the transmission coefficient ¢ is given by

t=1-—r (27)

Substitution of r = 0.24 gives t = 0.76 which means that 76 % of the original plane wave is transmitted
through the resist layer.

The field propagating towards the silicon substrate is partly absorbed and partly reflected at the
silicon-resist interface. Since absorption causes a change in the phase of the field, silicon has a com-
plex refraction index ngj);.opn> Which is equal to 4.14 + j -0.045 in case of the green laser (A = 532 nm)
and equal to 3.88 + 7 - 0.019 in case of the red laser (A = 633 nm). Denote the reflection coefficient of
the silicon layer by R, then

R = Dsilicon ~ "'resist (28)

Nsilicon T Mresist
Since R is now a complex number it will also change the phase of the reflected wave. For the green

laser R = 0.4375 + j - 0.0044 and for the red laser R = 0.4109 + j - 0.0020, which means that for green
light only 44 % is reflected and for red light only 41 % is reflected.

In principle, multiple reflections can be easily included. However, an exact modeling of multiple
reflections makes no sense since the Vertical Propagation Model already assumes that the path tra-
versed through the air and resist layer is short. Even if the 24 % of the wave coming from the silicon
substrate, is reflected back into the resist layer is taken into account, the intensity of this reflected
wave is approximately 7 & 8% of the original incoming plane wave and this part contributes only 2 &
3 % to the total near field (the wave must be reflected by the silicon-resist interface and transmitted
by air-resist layer. Therefore, no multiple reflections are taken into account.
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The near-field (see Figure 22) can now be represented as follows:

near field = reflected field + transmitted field
Arn A4m
Enear(z) = —rAexp [—j—)\—nair . h(w)] — Rt?Aexp [‘77 ("a,ir “h(z) + Npagist - s(:z:)) , (29)

with r = 0.24, ¢t = 0.76 and R = 0.4375 + j - 0.0044 for green light or R = 0.4109 + 5 - 0.0020 for red
light. This near field is only defined on one mark segment, so for —L/2 < z < L/2, where L is the
length of the segment.

5.1.3 Near-field for an infinitely large grating

The derived expression for the near-field is the field for only one segment. Qutside the mark segment
the near-field is assumed zero:

Enear(z) =0, |z| > L/2. (30)

Consider the case where the mark segment that is shown in Figure 22 is repeated periodically. To have
an expression for the total near field, continue the derived near-field periodically. To take infinitely
many mark segments is only an assumption to simplify the computations, since the diffraction orders
are delta functions. If a finite number of mark segments are taken into account, the far-field consists of
sinc functions. Since only the tops of the sinc functions are searched for, the number of mark segments
may be infinite. Mathematically, the periodical repetition is given by:

oo
Epeartot () = Z Enear(r —mL), —oo<z < co. (31)

m=—0oQ

To determine the diffraction orders, which are measured with the alignment sensor, the far-field is
needed. The far-field can be computed according to the following formula {12]:

Egyrtot (W) = F {Eneartot (z)} = / Eneartot (%) exp[—jwzldr, (32)
—00

where F is the Fourier transform. Application of the space-shift theorem [14] and the periodicity of
the near-field, give:

Efa_rtot(w) = }-{ Z Enea.r(f” - mL)}

m=—0o0

o 00
=/ Z Enear(z — mL) exp|—jwz]dz

O m=—c0
L/2 o0
= Enear(z') exp[—jwz’]dz’ Z exp[—jwmL], where 2’ =2 —mL
-L/2 m=—00
o
= F {Enear(z)} Z exp[—jwmlL]
m=—00
oo
=L Z d(w —mL)Eg, (w)
m=—00
o0
=L Y 6(w-mL)Bg, (mL). (33)
m=—o00
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As can be seen, the far-field can be expressed in terms of the Fourier transform of the near-field. In
general, it is nearly impossible to find a simple analytical expression for Eg, .. Therefore, a numerical
approximation is computed, using the discrete Fourier transform [15]. Suppose that for each segment
a set of N samples are chosen:

Enear = Enear(zx), zx =kAz, k=0,1,..,N -1, (34)
where Az is the sample period in the z-direction. The discrete Fourier transform then reads as follows
N-1 .
Epgrn ™ Z Enear x€’“""*, (35)
k=0
where
27
Etarn = Eppp(wn), wn=nlw, Aw=— n=01,.,N-1 (36)

L

Because there are only N input values to the summation, only N independent values of the transform
can be expected.

The discrete Fourier transform is significantly faster when the number of points that are necessary to
discretize the near-field, is a power of 2 [16]. In that case, the Fast Fourier Transform can be used.

5.1.4 Derivation of the shift a diffraction order

The position of a mark can be computed from the phase of a diffraction order. The alignment signal
that is measured with the ATHENA sensor is given by:

2
I(n) = IEfar(n) + Efar(_n)l
2 2
= |Bgar()|” + | Egar (—1)|” + 2| By (n)| | Epar(—n)| cos (8(n) — 8(—n)), (37)
where 6(n) is the measured phase of diffraction order n. To know how much a mark seems to be
shifted due to the alteration in shape of the mark, it is assumed that the mark is symmetric. Define
the actual phase of the far-field of diffraction order n by ¢(n). When a phase grating is symmetric

(p(n) = ¢(—n)) and the grating is shifted by Az, the far-field could be derived by using the shift-
theorem:

f{Enea_r(.’lI - A.’L’)} = f{Enear(.’I})} eXp[—jkAiE] (38)
Now consider diffraction order n. Then
2mn
Efyp(n) = F {Enear(z)} exp[—j = Al (39)

where L is the length of one grating period.

The measured phase 8(n) of the far-field is decomposed in

8(n) = o(n) — ‘-?’;_J—"- Az. (40)

The ATHENA sensors determines the position of the mark by searching for the top of the cosinus in
equation (37). When this top is found, the cosine has value 1, and therefore 8(n) — §(—n) = 0. This
gives the desired formula for the shift of the mark.

8(n) — 0(—n) = pln) ~ p(-n) ~ 2 Az e Az = 7~ (p(n) — p(-n)). (41)
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Unfortunately, there are definitely no symmetric marks. Therefore, ¢(n) # ¢(—n) and Az indicates
the distance which the mark would have been shifted if it had been symmetric. This Az is now
different for each n and therefore denoted by Az(n). The difference in phase between the orders —n
and n is enough information to compute the alignment shift Az(n) for diffraction order n:

Aa(n) = 7~ (p(n) — o(~n)) . (42)

Note that ¢(n) and ¢(—n) can be determined except for a multiple of 27. However, these phases do
not have to be computed separately, only their difference §(n) — 6(—n) must be determined and this
is given by

p(n) — p(—n) = arg (Epr(n) - Byy (=) (43)

To determine Az(n) the far-field must be known. Without prescribing h(z) and s(z) (see Figure 22)
the far-field could not be computed. Therefore, in the following section an example is given to model
the air and the resist layer.

5.2 Determine the shape of the resist layer

Because of the shape of an ideal mark, the resist layer shows a dip followed be a pile-up effect [17).
Since all periods on the periodic grating are assumed to be the same, also the resist layer will be the
same for each period. Therefore, consider only one period. The shape of the resist is modeled by
three cosines. The schematic representation of the modeling is given in Figure 23. The mathematical

Topology plot
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Figure 23: Model of resist layer.
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formula for the resist shape is given by:
oz + $058 cos %) 2o < T < 7
fla)={ Bz woigos (ZomT) ) < g cgy (44)
21 Y0 = ToT2T
Y22do | 270 cos ﬁm—s_—mL , T2 <z < 23

The parameters 3o, ¥1 and y2 determine the amplitude of the cosine, while the parameters g, z1, z2
and z3 determine the period of the modeled cosine. The limit the degrees of freedom for the simulation
y0, zo and z3 are given a certain value. Since f is periodic for the period 3 — ¢, the value of f must
be the same for 2 and z3. If the problem is redefined with variables a and b instead of y; and s,
defining a as the depth of the dip and b the height of the pile-up effect. The expressions for y; and ¥
are as follows:

Y1="Yo—a (45)
Y2 = yo + b. (46)
(47)

Substitute these two equations in equation (44) results in the following set of equations:

yo—%—%cos(%) 2o Sz <7y
f@) =1 o+ b5 - feos () msa<a . “
wrireos(FHE)  msasa

This concludes the description of the top of the resist layer. Note that only four degrees of freedom
are admitted in this model for the resist layer, that is a, b, z; and z3. The shape of the alignment
mark is given by a depth d and a width w :

g(z) = b—drect (2z/w). (49)

Now the thickness of the air layer (h(z)) and the thickness of the resist layer (s(z)) can be computed:
hz) = c— f(z)

s(z) = f(z) - g(z) (50)

The obtained functions for h(z) and s{z) can now be substituted in equation (29).

5.3 Wafer quality (WQ) and contrast

To explain the results of Section 5.4, where the diffraction orders are simulated for several mark
topologies, the following two quantities are introduced: the Wafer Quality (WQ) and the contrast of
a measured signal. Both quantities indicate how "good” a signal is.

The WQ is proportional to the amplitude of the intensity variation. Mathematically, the WQ of
diffraction order n is given by:

WQ(n) = |Efar(n)| : 1Efar("n)|' (51)

The WQ's that are measured in the experiment of Chapter 2 are standardized with the WQ of an
ideal mark with optical depth A/4 with A the wavelength of the light that is used. If WQ(n) is small
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then Eg, (n) or Eg,.(—n) is small, which causes the signal-to-noise ratio to deteriorate.

The second quantity, the contrast, is used to identify the difference in intensity between the (—n)th

and the nt® diffraction order. Mathematically, the contrast is given by:
2| Egyr (n)] - |Efar(_n)|

2 2"
| Bgar(n)|” + [Egar (—n)|

According to this definition, the contrast is a value between 0 and 1. If the contrast is equal to 1,
then |Efar(n)| = |Efar(—n)|, which indicates both signals have the same intensity. If it is small, the
intensity of one of the signals is small compared to the intensity of the other.

contrast(n) = (52)

The reason why these quantities are introduced is that Az (the PIAS) is determined by both the
nth and —nth diffraction order. If the intensity of one of these signals is small (or both are small),
noise is likely to spoil the accuracy of the signal. The WQ and contrast together show what the in-
tensity ratio between the nth and the (—n)th diffraction order is, and are indications of the accuracy

of the position shifts.

5.4 Simulations

In this section the simulations carried out with the Vertical Propagation Model are presented. To
have a feeling of the outcome of these simulations, a simple example is given with a flat resist layer
(5.4.1). In (5.4.2), the resist layer is modeled by four parameters (two for the z-direction and two for
the thickness of the resist). This section is concluded by addressing the problems encountered when
combinations of simulation variables are taken.

5.4.1 Illustrative example: flat resist surface

This simple example is only presented here to illustrate the way of simulating. The resist layer which
covers the perfectly symmetric mark is flat (see Figure 24). This keeps the topology symmetric, which
results in a unique definition of the position of the mark. Therefore, negative diffraction orders have
the same phase as positive diffraction orders.

air

Figure 24: Schematic representation of the simple case.

The results of the simulation are given in Figure 25. For this simulation 2!9 points are used to
implement the Fast Fourier Transform. This implies that intervals of approximately 16 nm are used
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which is small compared to the pitch of a mark segment. The results are as anticipated, since the
mark topology is perfectly symmetric and therefore the shift plot shows for each diffraction order
that the shift Az equals 0. The WQ plot shows that even diffraction orders have WQ equal to zero,
which should be the case since the mark topology involves a symmetric 50 % duty cycle infinite 8.0
pm mark and such a mark has no even diffraction orders. The odd diffraction orders have decreasing
WQ which could be explained from the Fourier series of the shape of the mark. Also the contrast plot
gives contrasts equal to one for every diffraction order, which indicates the +nt? and —nth diffraction
order gives the same position.

x10™ Shit plok wa plal Conirast piot

) B 3 D s 0 7 1 2 3 + B ) g 2 3 + 5 0 7
adtvacuon oroer ) ailraction oroer i diracuon oroer 1

Figure 25: Results of the test case. The left plot shows the shifts, the middle plot shows the WQ and
the right plot gives the contrast for every diffraction order.

5.4.2 Simulations for separate variables

In this section, four variables are used to simulate RS process effects on the position shift, the WQ
and the contrast of the diffraction orders. During the simulations one of the variables is altered and
the other three variables are fixed. The four variables are the depth of the dip in the resist layer (a),
the height of the pile-up effect (b), the position of the hole (1) and the position of the pile-up effect
(z2) (see Figure 23). It is shown that the shifts of all diffraction orders are correlated in the sense that
there is a relation between diffraction orders, although it might be a complex one. In the experiments
diffraction orders are measured on a mark position over all the wafers of a batch. These marks are
assumed to have a similar, but still different, process effect. If these samples are taken out of a set of
mark topologies for which the diffraction orders are correlated in a very complex way, the covariance
between the measured diffraction orders will become very small. For the mark topologies where the
shifts of diffraction orders are nicely correlated (for example by a straight line), the covariances are
expected to be large. It is expected that the correlation between diffraction orders is simple as long
as the WQ and the contrast of both orders are sufficiently high.

The four simulations are summarized:

e Variable a
As a reference situation, the perfectly symmetric mark topology is taken as given in Figure 24,
that isa =0, b =0, z1 = 4um and z2 = 12 pm. Variable a is varied from 0 to 100 nm. This
means that at position z; a dip is created of maximal 100 nm. As soon as a > 0 the topology
becomes asymmetric. The simulation process and the results for the shifts, WQ’s and contrasts
are given in Figure 26.
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Some trivial characteristics could be noticed from this figure. The reference situation (flat pho-
toresist layer) gives for all diffraction orders a unique position, which is logical because for a
symmetric topology, each diffraction order points to the center of gravity. Immediately after
altering the variable a (insert asymmetry), the shifts deviate from zero and for every diffraction
order this shift is different. The even orders have an abrupt change when the topology becomes
asymmetric. This can be explained from the fact that when the topology is symmetric, there
are no even diffraction orders since the mark topology can be described with only cosines (odd
diffraction orders which follows from Fourier series). But if asymmetry is introduced, even orders
start to appear and therefore they are highly sensitive for topology changes. Also the contrast
of these orders is very small just after the asymmetry is introduced.

The even orders are alternating in sign, since the shifts of the 22d 5nd 6B diffraction orders are
negative, while the shift of the 4th diffraction order is positive. Also, the abrupt change in shift

o1 Topology plet fox changing variabie a 16 Plot of shift per diffcaction orde for varying variable a
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Figure 26: Simulation results for variable a. Top left the simulation process for varying variable a is
given. The top right plot gives the shift plot, while the bottom plots are the WQ and contrast plots,
The shift as well as the WQ and the contrast are given as a function of the changes in variable a.
Each line represents a single diffraction order.
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and contrast plot is different from order to order: the 27d diffraction order shows its abrupt
change before the 40 order does. These two effects are consequences of the asymmetry that is
introduced, since the ond order will compensate the first asymmetries, and the 4th and 6th order
will only refine the asymmetries and therefore they have a low signal intensity when the asymme-
try is added to the topology. Therefore, the abrupt change can be noticed later for higher orders.

The shifts of the odd diffraction orders are small compared to the shifts of the even diffrac-
tion orders. This is logical, since the odd diffraction orders are dominant in the symmetric case
which could be explained from the Fourier series that describe the shape of the alignment mark.
A small change in topology does not change much about this dominance. Also for the shift of
the odd diffraction orders a hierarchy is present since the shift of the 15t diffraction order is
much higher than 7th diffraction order and this could be explained from Fourier series since the
higher orders only refine the mark shape.

To conclude the simulation for variable a, it could be stated that all diffraction orders cor-
relate to each other in a complex way, but when one takes samples it can be supposed that when
the contrast shows abrupt changes, the covariance between orders will be small, since the shift
shows an abrupt change. This is especially the case between even and odd diffraction orders
just after the asymmetry is introduced. If the contrast does not show sudden changes for both
orders, the covariance between the orders is certainly not equal to zero.

e Variable b

Similar to the simulation concerning variable a, the perfect symmetric mark topology is taken
as a reference (¢ = 0 nm, z; = 4pm and z; = 12pm). Variable b is varied from 0 to 100 nm.
This means that at position 3 a pile is created of 100 nm maximal. When b becomes larger
than zero, asymmetry is introduced to the topology. The simulation process is pointed out in
Figure 27 together with the results for the shifts, WQ’s and the contrasts.

By altering the variable b similar features can be noticed from the results as for altering variable
a.

e Variable z;

Changing variable z; means that the position of the dip is replaced. It is useless to take the
reference situation as taken for the simulations with variables a and b, since there is no hole and
varying z; would not change this topology. The choice of a reference situation is made rather
arbitrary: the variable a is set to 100 nm and variable b equals zero. The value of variable z; is
kept at 12 um. Now z; is varied between 3 and 7 pm. This is illustrated in Figure 28. In this
figure also the results are given.

It can be seen from the figure that especially the shifts of the lower diffraction orders react
significantly to the changes, although the higher orders are certainly not constant. From a
Fourier series approach this could easily be explained, since the lower diffraction orders capture
the actual form first and this form is refined by the higher diffraction orders. Also the contrast
plot shows that the contrast of the lower diffraction orders become low at a certain value of z;.
However, since this simulation shows no symmetric topology, all diffraction orders are present
(the WQ never becomes zero) and the abrupt changes in shift and contrast as in the simulation

© ASML 2003 Confidential Page 44 of 50



7 Maintainer : Nico van der Aa

S As ML PIR A basis for the Order-to-Order | Doc ID : MasterPIR
Y method Last update : 27 - 3 - 2003

Status : final

Y
W4
N\ //\\

Topology plot for changing variable b
T T

01 T v — . r 152 Plot of shift per diffraction order for varying variable b

! !
-3 o
1 N

L
'
©
by
]
b
1
1
"
Il
"
n
1
'
.
[
1
[
i
’
]
0
r
[
I
I
[
i
i
1
L
|
.
[l
[l
]
'
]
[
'
'

1
Eosl h
& v
B o IR
8 -04F é
g b
5
1
£l LN
2 -1.5H
o8 g - —
~——
o7} g ~
25 S
'~
-08 ~—
— | I‘ EE— A
0% 2 4 s [ 10 12 14 16 35 v : v " ” : . . . !
position () ) 10 20 CREEN _ © @ ® W

Plot of WQ per diffraction order for varying variabie b Plot of corrast per diffraction order for varying variable b

Tk o

il TS e Ly

B e

iZa

0.05- 21

40 50 80
variable b (in nm)

50
variable b (in nm)

Figure 27: Simulation results for variable b. Top left the simulation process for varying variable b is
given. The top right plot gives the shift plot, while the bottom plots are the WQ and contrast plots.
The shift as well as the WQ and the contrast are given as a function of the changes in variable b.

FEach line represents a single diffraction order.

for a and b cannot be seen.
¢ Variable z»

Similar to the reference situation for z,, the perfect symmetric topology could not be used here.
Variable a is set to zero and r; is kept at 4 pm. Arbitrarily, the variable b is set to 100 nm, so
the pile is present. Variable x5 is varied between 9 and 13 pm. The set-up of this simulation
and the results are given in Figure 29.

Similar features could be noticed in this figure as in the simulation of changing variable z;.

5.4.3 Verification of the assumptions made to obtain a solution

In the preceding section, the effects of changing only one variable were studied. It seems that the
diffraction orders are correlated if the contrast is high. In this section, it is made plausible that one
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Figure 28: Simulation results for variable x1. Top left the simulation process for varying variable x,
is given. The top right plot gives the shift plot, while the bottom plots are the W@ and conirast plots.
The shift, the WQ and the contrast are given as a function of variable x1. Each line represents a
single diffraction order.

effect coming from a certain variable could be enhanced or reduced by the effects of another variable:
the "spaghetti” effect. If such a spaghetti effect takes place, nothing could be said about correlation
between diffraction orders since each combination of variables gives some annihilation and/or enforce-
ment effect. This indicates that in some cases covariance could be present and in other cases not.
This is an explanation of what in Chapter 4 causes the different combinations of covariances for the 4
different marks, which resulted in the most accurate approximation of the exact solution (see Table 2).

The covariance between diffraction orders are small when the mark topology is almost symmetric.
In this case the even diffraction orders appear rapidly but these orders are highly sensitive to the
mark topology. In this case it is probable to state that there is no covariance between diffraction
orders.

To conclude this chapter, it can be said that the correlation between diffraction orders is difficult
to find due to two causes. In the Vertical Propagation Model of this chapter, only four parameters
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Figure 29: Simulation results for variable zo. Top left the simulation process for varying variable xo
is given. The top right plot gives the shift plot, while the bottom plots are the W@ and contrast plots.
The shift, the WQ and the contrast are given as a function of variable 5. Each line represents a
single diffraction order.

were taken into account, but the shape of the resist layer must be described by much more parameters
in practice and each measured mark will have a different set of values for these parameters. Therefore,
the spaghetti effect will be enforced. The other cause is that the RS experiment described in Chapter
2, is carried out with only 6 wafers and therefore the resulting covariance is not estimated accurately
and large deviations from the actual covariance are possible. When the batch size is much larger, the
covariance is expected to be more consistent and less sensitive to coincidences.
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6 Conclusions

This

master’s thesis was intended to provide the Order-to-Order method a mathematical basis and

to validate this basis by experiments and simulations. The Order-to-Order method is meant to select
that diffraction order that is least sensitive to alterations in the shape of the alignment marks due to
processing of the wafers. This information must be derived from the measurements obtained from the
processed wafers only.

The following conclusions can be drawn for the Order-to-Order method with the references to the
sections they come from:

Standard statistical techniques like (M)ANOVA’s are not usable in the Order-to-Order method
since only processed wafers and no reference wafers are available (Chapter 3).

If shifts of diffraction orders are covariant, the Order-to-QOrder method results in an underdeter-
mined system since there are more unknowns than equations (Chapter 3).

To obtain the correct solution of the Order-to-Order method, additional knowledge must be
available to reduce the number of unknowns are add more equations (Chapter 3).

The assumption of no correlation between diffraction orders or no correlation between even and
odd diffraction orders do not result in the diffraction order with the minimal variance. However,
differences in variance between the obtained order and the optimum order are small (Chapter
4).

The estimates of the single order PIAS variance can be improved by the Order-to-Order method,
when only as much covariances between orders are set to zero as there are diffraction orders.
However, if the wrong set of covariances is taken, the computed variances are even worse than
when the assumption is used that there is no correlation at all between shifts of diffraction orders
(Chapter 4).

The set of covariances that must be set to zero to obtain an optimal solution is mark position
dependent, since for each position this set consists of different covariances (Chapter 4).

The Vertical Propagation Model shows that the diffraction orders are correlated when mark
topologies are similar, except when the contrast and WQ becomes very large as in the transition
form a symmetric topology to an asymmetric topology (Chapter 5).

The more parameters involved in describing the mark topology, the less predictable covariance
between shifts of diffraction orders will be (Chapter 5).

The less wafers are taken into account, the less predictable the covariance between shifts of
diffraction orders will be (Chapter 5). '

With respect to the question why the Order-to-Order seems to work quite well, the main conclusion
from this master’s thesis is that, from wafer-to-wafer single order PIAS variances, this question can
not be answered. It seems that the shifts of diffraction orders always show some correlation, but this
correlation is unpredictable since there was only a small number of wafers available.
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7 Open issues

Although this master’s thesis answers some questions concerning the Order-to-Order method, there
are some open issues. These issues are summarized in this chapter:

e Find a statistical model to implement (M)ANOVA

To determine the PIAS variance from the APD variance, statistical techniques like (M)ANOVA'’s
are the only way to do this in a statistically correct way. However, to compute a variance of
a specific factor (in the Order-to-Order method the factor was the effect due to processing),
multiple levels of this factor should be present. In the W-CMP and RS experiment, there is only
one level for processing, since each mark has undergone only one process. If the batches were
measured when they were not processed yet or measured again after another process has been
executed, there would be more levels available and the (M)ANOVA could determine the process
variance.

e Compare mark positions on a wafer
In this master’s thesis only wafer-to-wafer variance is considered, since it is assumed the process
effects on alignment marks are similar on one mark position over all wafers. An open issue is to
find a way to compare alignment marks on different mark positions, since each position could
result in a different diffraction order and the question remains which order should be selected?

e Verify the Order-to-Order method with more measurements and more wafers
Chapter3 also discusses the differences between the 3M data set and the production like data
set. In theory, both data sets must result in the same SbQO variance. More measurements and
more wafers result in better estimates for PIAS variances.

e Use two colors
The alignment marks are illuminated by two lasers: a red and green laser. Since both lasers have
a different wavelength, the lasers will diffract differently on a certain mark shape. However, as
long as the WQ and the contrast of the signal is sufficiently high, both sets of measured diffraction
orders are the result of the same mark shape.

e Search for a full rank coefficient matrix of system (1)
In Chapter 4 a brute force technique is used to determine which n covariances can be set to zero
to keep the coefficient matrix of system (1) a full rank matrix. In order to have a much faster
method, it is important to know the conditions under which the coefficient matrix has full rank
depending on the choice of the n covariances.

e Improve the reliability of the results when n covariances are set to zero
The results obtained from Figure 14 seems to be promising. It should be verified that this
works on other processes as well (like W-CMP). To implement this technique, the exact variance
is needed to obtain the minimum distance between the computed and the exact variance, but
there might be a way to select the right combination of covariances without the need of the exact
variance.

e The availability of the mark shape gives PIAS information
If the shape of a mark could be satisfactory estimated by means of the measured diffraction
orders, the single order PIAS’s of the mark can be reconstructed.
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