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Abstract 

The work presented in this report encompasses a study on the currently used Three Dimensional 
Particle Tracking Velocimetry (3D PTV) measurement technique. The focus will be on improving 
the measurement technique in order to find long particle trajectories. Searching for long particle 
trajectories is very ambitious, but when found it results in very interesting Lagrangian information. 

Under steady flow conditions long particle trajectories are found. These particle trajectories 
are quantitatively highly comparable to numerical simulations. The particle density is shown to be 
critica!, when searching for long particle trajectories. The best results are obtained, when about 
200 detected particles are used. 

To be able to do long-time experiments a new periodic forcing protocol, consisting of four 
subsequent steady flow steps, with a net zero endwall displacement after a global period time T, 
is introduced. A thorough analysis of this protocol is carried out analytically and numerically. 
Periodic-1 lines are found and some mixing properties are investigated. First attempts have been 
made to measure particle trajectories in flows with this forcing protocol. U nfortunately, these 
experiments are limited to the measurements of segments of particle trajectories only, due to a too 
high particle density. 



Contents 

1 Introduction 
1.1 Scope ........ . 
1.2 Outline of this report . 

2 Three-dimensional Stokes flow in a cylindrical domain 
2.1 Tracer kinematics ... 
2.2 Governing equations . 
2.3 Dimensional Analysis . 
2.4 Periodic structures 
2.5 Symmetries 

3 Flow Analysis 
3.1 Steady flow as a basic building block 
3.2 Protocol D ............ . 

4 N umerical Analysis of Protocol D 
4.1 Non-Inertial Flows 
4.2 Inertial Flows 

5 3D PTV 
5.1 Theory of 3D PTV ...... . 

5.1.1 The 3D PTV algorithm 
5.2 Experimental Set-up 
5.3 Opties ............. . 

6 Accuracy assessment of the 3D PTV algorithm 
6.1 First Session ....... . 

6.1.l Steady flow .... . 
6.1.2 Particle Trajectories 

6.2 Second session ...... . 
6.2.1 Steady flow .... . 
6.2.2 Endwall Movement . 

6.3 Measurement Checking methods 
6.4 Particle Size . . 
6.5 Quality factors 
6.6 Summary . . . 

7 Conclusions and Recommendations 
7.1 Conclusions .... 
7.2 Recommendations ........ . 

2 

2 
2 
2 

4 
4 
5 
5 
7 
8 

10 
10 
12 

15 
15 
19 

23 
23 
23 
27 
30 

33 
33 
33 
35 
39 
39 
39 
42 
43 
46 
51 

52 
52 
53 



A 3D PTV Configuration file 

B How to find all particle trajectories of a 3D PTV experiment 

C Addition to the non-inertial limit of protocol D 
C.0.1 Analysis of the symmetry planes ................ . 
C.0.2 Shankar method vs. Spectra! method in the non-inertial limit . 

D Technology Assessment 

3 

54 

56 

60 
60 
62 

64 



Chapter 1 

Introduction 

1.1 Scope 

In general fully three dimensional fluid flows are still poorly understood. A lot more is known about 
it's two dimensional counterpart. In this report a simple three dimensional geometry, the cylinder 
with moving endwalls, will be used as an archetypal flow domain for three dimensional flows in 
gener al. 

The thesis of Michel Speetjens (2001) is used as a guide-line for this report. The experimental 
and numerical investigation by Speetjens was focused on advection problems in a cylindrical domain 
with moving endwalls for low Re numbers. Mixing is a keyword in his thesis, but only on a level 
where molecular effects do not come into play. He used the dynamica! point of view, where flow 
topology, chaos and dynamica! systems play a central role. For doing numerical simulations he 
developed a spectral flow solver. To visualize the fluid motion in his experiments he made use 
of Ordinary Dye (OD), Fluorescent Dye (FD) and of small particles. The OD experiments gave 
qualitative results only, measurements have been repeated and improved a little by De Groot (2001). 
FD experiments with LIF (Laser Induced Fluorescence) gave concentration related quantitative 
results, see also Nijdam (2000). 

This report focuses on the third visualization technique. This technique, called Three Dimen­
sional Particle Tracking Velocimetry (3D PTV), visualizes the small particles in a quantitative way. 
The basic idea is very simple: record the motion of small particles seeded in the fluid, with a couple 
of cameras, viewing from a slightly different angle. When a calibration in-situ has been dorre, the 
positions of these small particles are known. Tracking these particles, if passive, gives Lagrangian 
information about the fluid flow. 

Speetjens carried out 3D PTV experiments for the steady flow case. The velocity fields and 
Lagrangian particle trajectories showed a high degree of correspondence to numerical simulations. 
However, he concluded that the PTV algorithm is ill-suited for long(er) time particle tracking, 
especially when using a higher particle density. 

The aim is to improve the 3D PTV technique so, that long particle trajectories can be found. 
The measured Lagrangian trajectories are compared to numerical simulations. To be able to perform 
long-time experiments, a four-step endwall displacement (denoted as protocol D) is introduced, with 
the property of having the endwalls back in the initial positions after a global forcing period T. 

1.2 Outline of this report 

In chapter 2 some basic aspects of fluid dynamics are given, with tools to find periodic structures 
and symmetries of a periodically forced fluid in the paragraphs 2.4 and 2.5. In chapter 3 the steady 
flow is introduced and some special properties are given. The steady flow is important, because it 
can be seen as the basic building block for time-periodic forcing protocols. In paragraph 3.2 the 
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forcing protocols A, B and C from Speetjens and the new forcing protocol D are introduced. The 
numerical analysis of protocol D is treated in chapter 4. In chapter 5 the 3D PTV algorithm is 
explained, the used experimental set-up is described and some useful equations in opties are derived. 
In chapter 6 an accuracy assessment of the 3D PTV algorithm is carried out. Quality factors and 
accuracy tools are introduced to support the 3D PTV measurements. In chapter 7 the conclusions 
and recommendations are given. 
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Chapter 2 

Three-dimensional Stokes flow in a 
cylindrical domain 

In this chapter the basic aspects of a Stokes flow in a cylindrical domain are given1 . 

2.1 Tracer kinematics 

The motion of passive tracers in a fluid can be described by the 3D kinematic vector equation 

dx 
dt = u(x,t), x(O) = xo, (2.1) 

describing the tempora! evolution of the position x of a passive tracer released at the position x 0 

in the flow field u(x,t). The genera! solution of (2.1) can be formally represented as 

x(t) = q,t(xo), (2.2) 

and states the current position x to be uniquely determined through the initial tracer location xo. 
The orbit of a passive tracer is described by the parameter function 

t' = [O, t], (2.3) 

propagating from xo to the current location x in course of time. For the particular case of 
a 3D laminar incompressible flow, the kinematic equation (2.1) constitutes a 3D deterministic 
conservative dynamica! system. 

In this report steady flow and time-periodic flow will be considered only. In a steady flow an 
explicit time-dependence is absent in the flow field, in consequence tracer paths coincide with the 
streamlines of the flow. Time-periodic systems are characterized by u(x,t) = u(x,t + T), with T 
the global period time. Time-periodic systems allow for a reduction of the continuous orbits (2.2) 
into the discrete relation 

Xn+l = q,r(xn), 

translating the continuous flow q,t into the discrete mapping q,T· The sequence 

Xn(xo) = [xo, x1, """, Xn], 

(2.4) 

(2.5) 

contains the subsequent tracer positions at the discrete time levels t = [O, T, "., nT] and forms the 
tempora! Poincaré section (or stroboscopic map) of the Lagrangian tracer trajectory X t ( xo). In 
this report only n-step time-periodic systems of the form 

(2.6) 

1 This chapter is a slightly adapted version of chapter 2 of the thesis of Speetjens (2001). 
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will be considered. The steps F i form the piecewise steady forcing stages, during which the endwalls 
perform a steady translation, acting upon the fluid during the time interval t = [(i- l)T/n,iT/n]. 

An important flow property is given by Liouville's theorem 

ddV = f \1. udv, 
t lv(t) 

(2.7) 

which implies that a incompressible flow (conservative system) is volume-preserving. 
Chaotic tracer motion forms an important issue for the present study. A genera! hallmark of 

chaos is the extreme sensitivity to its initia! conditions. Consider a separation E = x(2) - x(l) 

between two tracers x(l) and x(2) and introduce the Lyapunov exponents 

,\ . ( ) = ~ l [ Ei ( t) l 
i t t Il Ei(O) ' i = 1, 2, 3, (2.8) 

quantifying the tempora! evolution of the separation E = (E1, E2, E3). Positive Lyapunov exponents 
reflect exponential separation as time progresses and imply minute uncertainties in the initia! 
conditions grow to dramatic proportions in course of time. 

2.2 Governing equations 

The 3D flow field is governed by the classica! conservation laws of mass (continuity equation) and 
momentum (Navier-Stokes equation). In the incompressible case the conservation of mass and the 
N avier-Stokes equation are given by 

\1·u=0, 
au 1 2 
-+u·\lu=--\lp+v\1 u at P ' 

(2.9) 

with p the constant density, v the kinematic viscosity and p the pressure. The initia! and boundary 
conditions are given by 

ult=O = Uo, ulr = U( ulr, t), (2.10) 

with U the no-slip velocity on the rigid boundary r = allll. These equations describe the fluid flow in 
the entire 3D cylindrical domain lill : [r, (), z] = [ü, R] x [ü, 27r] x [-1t, 1t J. A schematic representation 
of the cylindrical domain is given in figure 2.1, wherein R and H signify the dimensions of the 
cylinder and the arrows indicate the in-plane motion of the endwalls at velocity U. 

2.3 Dimensional Analysis 

In order to create a non-dimensional form of the N avier-Stokes equation, a magnitude assessment 
has to be carried out for each individual contribution. This results in 

au u 
at,...., T*' 

u2 
u. \lu rv -

R' 
1 p 
-\lp rv -
P pR' 

2 vU 
v\1 u,...., H 2 , (2.11) 

for the particular case of translating endwalls, with the time scale T* and the pressure scale P 
momentarily left unspecified. Application of (2.11) to the Navier-Stokes equation of (2.9) leads to 
the non-dimensional form 

au _ -- -- -2_ 
Sr--= +Reu· \lu =-\lp+ \1 u, at 
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Figure 2.1: A schematic representation of the cylindrical domain and the forcing method. 

relative to the unit cylinder füi: [r, e, Z] = [ü, 1] x [ü, 2?r] x [-1, 1]. In what follows the tildes indicating 
non-dimensionality are dropped in favor of clarity. The pressure scale P = pvU R/ H 2 follows from 
the presumed dominance of viscous over inertial forces, which dictates a (near) balance between 
the pressure gradient and the diffusion term. The non-dimensional parameters are 

UH2 

Re= vR ' 
H2 

Sr=-T, 
1/ * 

H 
D1 = R' (2.13) 

with Re the Reynolds number and Sr the Strouhal number as dynamica! parameters. D1 and D2 
are the geometrical parameters. D1 is the aspect ratio, which will be held fixed during this report 
and is set to D 1 = 2, making the cylinder height H equal to the cylinder diameter 2R. D2 reflects 
the dimensionless displacement of an endwall, during steady forcing (n = 1) or during one stage of 
a n-step time periodic forcing ( n > 1), with T the global forcing time scale. Two characteristic time 
scales T* can be deduced from the Navier-Stokes equation (2.9), namely the advection time scale 
Ta = R/U and the viscous time scale Tv = H 2 /v. Given the restriction to viscous flows, unsteady 
flow phenomena scale with Tv and result in T* = Tv as a characteristic time scale, see Telionis 
(1981). Consequentially, Sr = 1 and the Navier-Stokes equation (2.12) becomes 

äu 2 
ät + Re u · \7 u = - \7 p + \7 u, (2.14) 

implying that Re is the only remaining dynamica! parameter. The fluid is agitated by (a sequence 
of) steady translation(s) of an endwall, therefore the essential fluid dynamica! problem comes down 
to the response of a stagnant fluid to an impulsive start-up (initial acceleration or an intermediate 
change of direction of the motion of a moving endwall). The unsteady term from the initial 
acceleration decays exponentially in the course of time, causing the flow to reach a steady state at 
t:::::: 1. Fort 2: 1 the dimensionless Navier-Stokes equation (2.14) can be further reduced to 

Reu· \7u = -\7p + \72u. (2.15) 

To show the relative share of start-up effects during the forcing process an alternative Strouhal 
number can be introduced 

Srf = nTv 
T' 

6 

(2.16) 



y 

Figure 2.2: The primary eddy structure of the steady flow is shown. The dashed line represents the 
stagnation line belonging to the primary eddy. 

relating the viscous time scale to the global time scale fora n-step. Using the last equation on the 
regime Sri « 1, putting forth 

Reu· \i'u = -\i'p + \72u, \7. u = 0, ulr = U( ulr, t), (2.17) 

as governing flow model holding this report. Re and D2 can be seen as only parameters associated 
with (2.17). Non-linear effects can enter the flow field exclusively through the inertial term u.\i'u and 
the boundary condition U. The assumption Sri « 1 makes the viscous time scale Tv insignificant, 
see equation (2.16) This leaves the advective time scale Ta = R/U and the global period time 
scale T as only relevant time scales. These two time scales are related via the non-dimensional 
displacement parameter D2 and n on the following way 

(2.18) 

This makes the advective time scale Ta the principal time scale. 

2.4 Periodic structures 

A material point x, such that u( x )= 0 for all t, is called a stagnation point. An illustrative example 
is the steady flow in a cylindrical volume, where the fluid contains a complete stagnation line, see 
figure 2.2. This figure gives a 3D impression of the streamlines in the primary eddy structure too. 
From now on a time periodic forcing protocol will be assumed of the form given by equation (2.6) 

with T the global period time. A periodic point x6k) is a material point returning to its initia! 
position after k cycles. If k = 1 the point will remain fixed in the mapping portrait Xn(x0 ). For 

k > 1 one finds the period-k point wandering along the k locations ~~(x6k)), with 0:::; i :::; k - 1, 
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prior to returning to the initial position. A material point released on any of these intermediate 
points follows this path, k-th order periodic structures invariably emerge as clusters 

(k) - [ (k) ( (k)) 2 ( (k)) k-1( (k))] 
Xo - Xo '<I>r xo '<I>r Xo '"" <I>T Xo ' (2.19) 

with root Xbk). Mostly one is interested in relatively fast mixing protocols, therefore the time 
periodic-1 lines (points) are often studied only. 

The behavior of a periodic point can be investigated by doing analysis on infinitesimally close 

neighbouring points. A neighbouring point Xbk) + dxo arrives after k periods at Xbk) + dxk = 

<I>~(xbk) + dxo). Linearization about the point Xbk) = <I>~(xbk)) adds up to 

(2.20) 

with F = ä<I>r/äxl (kJthe Jacobian matrix, or alternatively, deformation tensor. Analysis of the 
Xo 

eigenvalue spectrum of F, fora 3D flow, leads toa third order characteristic polynomial with three 
eigenvalues. At least one of these eigenvalues is positive and real, because of the incompressibility 
constraint À1À2À3 = 1. A further analysis leads to nine regimes, depending on the three eigenvalues, 
see Speetjens (2001). 

A special class forms À1 = 1 signifying the absence of stretching and compression in a certain 
direction nl. This behavior is typical for periodic lines, on which nl aligns with the tangent vector 
of the periodic line. One can distinguish elliptic (À2 and À3 are complex), parabolic (À2 = À3 = 1) 
and hyperbolic ( À2 and À3 real, with one, say À2 larger than 1 and À3 = 1/ À2) points, representing 
the behavior of neighbouring points. Fluid in the neighbourhood of individual periodic points with 
Àl = 1, behaves locally essentially 2D and adopts the classification proposed for 2D systems, see 
Ottino (1989). Hyperbolic points have À2 > 1, making chaotic motion possible in the region of the 
hyperbolic points as defined by equation (2.8). 

The behavior in the neighbourhood of a periodic line is thus essentially 2D, however quasi 
3D effects exist in that elliptic and hyperbolic segments can be smoothly connected via parabolic 
points. 

2.5 Symmetries 

Searching for periodic structures is facilitated when symmetries are found. For the detection of 
these symmetries only gross knowledge of the velocity field is needed. 

Trajectories <l>t(xo) can accommodate two types of symmetries, viz. 

<I>t = S<I>ts-1
, <I>t = s<1>t1s-1 , (2.21) 

ordinary reflectional symmetry and time-reversal reflectional symmetry, respectively, under operation 
of the symmetry operator S with respect to the fixed manifold of symmetry Is,see figure 2.3. Note 
that for ordinary reflectional symmetries, the trajectories cannot cross Is, because of the following 
reasoning: assume a particle is moving from left to right with velocity U, this corresponds toa mirror 
particle moving from right to left with velocity -U, making the velocity of a particle residing on 
Is ambivalent, which is against the assumption of a deterministic velocity field. Therefore, the 
symmetry plane Is acts as a transport harrier in the case of ordinary reflectional symmetry. For 
time-reversal reflectional symmetry there is no such a restriction. When a bounded flow has a 
time-reversal symmetry, it always hosts a stagnation or a periodic line, see Speetjens (2001). 

For time-periodic systems, thus where equation (2.6) holds, a second class of symmetries exists 

F· - SF .5-l F· - 5p-l3-l (2.22) 
i- J ' i- j ' 

reflecting the same kind of symmetries, but now for each individual stage of the forcing sequence. 
This tool simplifies searching for possible global symmetries considerably. Possible symmetries can 
be derived directly, using the symmetries of the subsequent steps F i· For i = j relation (2.22) 
denotes self-symmetry within one single step Fi. 
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Figure 2.3: Ordinary reflectional symmetry (left) and time-reversal reflectional symmetry (right). 
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Chapter 3 

Flow Analysis 

In the thesis of Speetjens (2001) a thorough analysis of steady flow and of the three forcing protocols 
( denoted by A, B and C) can be found. One can roughly say that these protocols show an increasing 
level of chaotic behavior, respectively, which can basically understood by arguments of symmetry, 
these forcing protocols show a decreasing grade of symmetry level,respectively. 

The steady flow will be introduced in section 3.1, because of its relevance as basic building 
black. The protocols A, B and C are all non-repetitive, which means that the cylinder endwalls 
do not return to their initial positions, after a global time period T. Therefore a new protocol, 
the four-step protocol D, will be introduced in the section 3.2. The net zero displacement of the 
endwalls of this protocol D is important, for studying long-time effects in the experiments. 

3.1 Steady flow as a basic building block 

Start up and slow down effects are neglected in this chapter under assumption of Sri« 1, which 
implies that the governing flow model given by equation (2.17) holds. Sri « 1 is a rather exotic 
assumption, because it implies that the velocity field reacts directly upon the forcing: if an imposed 
forcing changes, the velocity field will jump instantaneously to the velocity field belonging to the 
newly imposed forcing. Furthermore, we will focus on the non-inertial limit Re = 0, which makes 
the Navier-Stokes equation a linear problem. This assumption leads to the following piecewise 
steady Stokes equation as the governing flow model 

\7·u=O uir = U( ulr, t). (3.1) 

This leaves the dimensionless dis placement D2 as the only parameter, meaning that in the Stokes 
limit the flow entirely depends on this parameter D2 and its boundary condition. To specify the 
boundary condition, forcing steps of the specified form given in equation (2.6) are used and will 
replace the boundary condition of equation 3.1. In the forthcoming analysis, the subsequent steps 
<[>i composing forcing protocol (2.6), are assumed either of the farms 

p(±x) 
B ' 

p(±y) 
B ' 

p(±x) 
' T ' 

(3.2) 

with the subscripts T and B signifying the top ( z = 1) and bottom ( z = -1) endwall, respectively, 
performing a translation with velocity U = 1 in the indicated coordinate direction ( +x, -x, +y or 
-y). 

The steady flow is described by: 

iFo. - p(+x) 
"1r!T- B ' (3.3) 

containing one single forcing step with Tas global total forcing time. 
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Figure 3.1: Visualisation of the rz-projection, holding for Re= 0 only. 

Under the steady forcing condition (3.3), there exists an analytica! solution of the Stokes 
equation (3.1), which is given by Shankar (1997). The solution is assumed to be of the form 

ur(x) = ur(r,z)cosO, uo(x) = uo(r,z)sinO, Uz(x) = Uz(r,z)cosO, (3.4) 

defining the velocity field with closed streamlines Xt(xo) symmetrically arranged about the plane 
y = 0 and exhibiting self-symmetry about x = 0. When performing a numerical simulation it 
would mean that, in the spectral space, m = 1 is the only azimuthal mode giving a contribution to 
the solution. A special property of this steady Stokes flow is, that the projection of arbitrary 3D 
streamlines in the rz-plane coincides with streamlines in the plane y = 0. This is not just a normal 
Cartesian projection, hut a projection in cylindrical coordinates, which eliminates 0. It is just like 
the projection you can imagine when you are closing a book, see figure 3.1. The left and the right 
closed loops (symmetrie with respect to the plane y = 0), shown in figure 3.1, are projected on 
the same line segment in the plane y = 0, where the line segment itself farms a part of a closed 
streamline in the plane y = 0. 

In the steady flow case most phenomena can be found in the plane y = 0, due to the possibility 
of this rz-projection when Re = 0, making the plane y = 0 a very interesting one. The streamline 
pattern of this plane is shown in figure 3.2. The heavy line separates two distinct regions, the 
largest inner part is called the primary eddy and the smaller outer part, left and right on top 
is called the secondary eddy. The impact of the secondary eddy grows substantially, when using 
higher aspect ratios. For example when D1 = 4, the secondary eddy is transformed into a counter 
rotating primary eddy. Increasing the aspect ratio further will lead to even more counter rotating 
eddies, see Shankar (2000). In this report D1 = 2 , so the secondary eddy plays a minor role and 
not so much attention will be paid to it. 
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-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
x 

Figure 3.2: Closed streamlines (particle trajectories) in the plane y = 0. When Re = 0, the rz­
projection of all streamlines in three dimensions coincide with these streamlines. 

3.2 Protocol D 

The protocols A,B and C introduced by Speetjens are represented in figure 3.3. All these protocols 

z z z 

)_y )_y )_y 
x x x 

~2 / 

protocol A protocol B protocol C 

Figure 3.3: A representation of the forcing protocols A, B and C introduced by Speetjens. The 
numbers indicating the successive steps. 

have in common, that their endwalls will not return to the initial positions after a complete forcing 
cycle. These protocols are said to be non-repetitive. Repetitiveness of a protocol is needed to be able 
to do long-time experiments. This is because an endwall can move only a finite distance in a certain 
direction, in the current experimental set-up, that distance is 21 cm. When one likes to measure 
langer than one global period time T, then a net zero displacement after a global period time T is 
a restriction. To overcome this problem the repetitive four-step protocol D will be introduced. 
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Figure 3.4: A representation of the four-step forcing protocol D, where the numbers representing 
the successive steps. After each completed cycle the endwalls are back in their initial positions. 

This four-step forcing protocol D is described by 

<Pr= F4F3F2F1: F4 = F~-x), F3 = Fty)' F2 = F~+x), Fi = F~y). (3.5) 

The choice of present order of forcing, facilitates a direct comparison with the work by Anderson 
(1999), who applied the same forcing protocol to study mixing in a cubic domain. The comparison 
self will be pursued in chapter 4, which is about the numerical investigation of protocol D. A 
graphical representation of the forcing of protocol D is given in figure 3.4. 

Protocol D is one of most plain non-trivial repetitive forcing protocols. This protocol exhibits 
some symmetries, which can lead to periodic structures (periodic lines). Mixing near periodic lines 
is locally effectively 2D, meaning that the overall mixing will be not very efficient. A six-step 
protocol could easily resolve such a problem. A measurement directly applied to a six-step forcing 
protocol would be to complicated, because experiments till thus far did no go beyond the steady 
flow case. Protocol D is chosen, because it is repetitive, relatively simple and not so long that no 
particles can be followed a complete forcing cycle. 

An analytically obtained symmetry, enhancing the search for periodic structures, will be deduced 
here. The basic idea is trying to find one or more global symmetries by exploiting the symmetries 
on each individual stage, as defined in the section 2.5. Each individual forcing step can be expressed 
in one sir~ __ gle forcing step by adding symmetry operators. The following three symmetry operators 
Sxy, Bz, S are introduced: 

Sxy(x, y, z) = (y, x, z), (3.6) 

Bz(x, y, z) = (x, y, -z), (3.7) 

(3.8) 

The symmetry operator Bxy establishes refiection about the plane y = x. The symmetry operator 

Bz establishes refiection about the plane z = 0. S describes a rotation by 180°, i.e. axial symmetry, 
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around the line defined by L 8 = {x - y = O} n {z = O}, which can also be seen as just a refiection 
about that specific line. All _!.hree symmetry operators meet S 2 = I. The four forcing steps are 
expressed in terms of F and S by 

Substitution of the relations (3.9) and (3.10) into equation (3.5) give 

«Pr= SF- 1SF- 1SFSF. 

(3.9) 

(3.10) 

(3.11) 

The inverse of the four-step forcing protocol D looks as follows (operators are rewritten in reverse 
order and replaced by their inverses, taking into account that S = 8-1 ) 

(3.12) 

From equations (3.11) and (3.12) it follows that the protocol «Pr and its inverse ~T1 possess the 
following symmetry relation 

- -1-
«Pr = S~r S. (3.13) 

This equation shows the global time-reversal refiectional symmetry of protocol D under operation 
of the symmetry operator S, corresponding to equation (2.21). 1 According to Speetjens, there must 
be a periodic line, because of the found time-reversal refiectional symmetry. The search for periodic 
lines can be reduced to half the domain (e.g. z ~ 0 or z ~ 0), because when (a,b,E) is a periodic 
point, then (b, a, -c) is a periodic point too, by applying the symmetry operator S. When using 
the induction principle the following even stronger argument can be found: periodic structures of 
any order should be arranged symmetrically around L 8 , see Anderson (1999). 

1 There are more symmetries found, these are described in appendix C. 
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Chapter 4 

N umerical Analysis of Protocol D 

In this chapter results of the numeric analysis of Protocol D are represented. Section 4.1 handles 
non-inertial flows (Re= 0) and therefore the analytical solution of Shankar can be applied on each 
single forcing step. In section 4.2 some effects of inertial flows (Re > 0) are shown. 

4.1 Non-lnertial Flows 

For Re= 0 the only remaining parameter is the dimensionless displacement, which is set to D2 = 5 
in this chapter. Periodic-1 lines of protocol D are found, by searching for the minima of the 
displacement functions through the domain, as proposed by Speetjens (2001). This displacement 
function is defined by llx(T)-:_ x(O)ll· Searching can be reduced to half the domain by exploiting 
the time reversal symmetry S. The found periodic-1 lines can be compared to the periodic-1 
lines Anderson found in his cubic domain, wherein he applied the same forcing, see Anderson 
(1999) 1. Even the dimensionless displacement parameter D2 = 5 is the same, which makes a direct 

0.5 0.5 

x 0 x 0 

-0.5 -0.5 

-1 -1 
1 

Figure 4.1: The periodic-1 lines of forcing protocol D in a cubic do main (left) of Anderson compared 
to the found periodic-1 lines in the cylindrical domain (right). The dashed line denotes the axis 
of symmetry. Elliptic line segments are represented by thick line segments and the hyperbolic line 
segments are represented by thin line segments. 

1 Anderson used shifted coordinates (z,x,y) in his cubic domain. 
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Figure 4.2: The midpoint P1 on the line cM (left) is crossing the axis of symmetry. The lower part 
of the line cM is oriented in the y-direction, while the top is oriented in x-direction. The elliptic 
line eT (right) aligned in the direction of the y-axis. The elliptic line eB (right) is directed in the 
direction of the x-axis. 

comparison possible. This comparison has been made in figure 4.1. The form of the numerical 
obtained period-1 lines in the cylindrical domain is somewhat rounder compared to the more angular 
periodic-1 lines in the cubic domain. This is caused by the infiuence of the different boundaries. In 
the cylindrical domain two complete elliptic lines are found, while these lines in the cubic domain 
have hyperbolic regions. The reason is, that the cylinder mantle is much smoother than the corners 
of the cubic domain and therefore the fiuid flow will be less chaotic in the cylindrical domain. 

In figure 4.2 the periodic-1 lines found in the cylindrical domain are represented once again, but 
now in a better perspective. The central periodic line ( cM) is shown on the left panel. The elliptic 
bottom line ( eB) and the elliptic top line ( eT) are shown on the right panel. The middle of the 
cM line crosses the line of symmetry L 8 in the elliptic point P 1 = (0.3463,0.3463,0). The upper 
part of the line cM can be seen as a 180° rotated lower part of line cM along the line of symmetry 
L 8 , which can be regarded as a kind of self-symmetry. eB is equal to the 180° rotated eT along the 
line of symmetry L8 • The end points of eB and eT end on the cylinder mantle as parabolic points. 
These parabolic points are in this case even stagnation (fixed) points. 

In total 81 periodic tracers on cM and 43 tracers on eB and eT each, are followed during a 
complete forcing cycle. The tracer trajectories are represented in figure 4.3. It can easily be seen, 
that definitely more symmetry can be found, than described in section 3.2. In the left figure tracer 
trajectories attached to cM are symmetrical in the planes x = 0 and y = 0. The volume formed 
by all trajectories together is symmetrical in both planes too. In the top region and in the bottom 
region clearly longer tracer trajectories are seen than in the centre region, refiecting the hyperbolic 
and the elliptic regions, respectively. On the right panel tracer trajectories connected to eT and 
eB are symmetrical in the plane x = 0 and y = 0, respectively. When mirror tracer trajectories 
are thought reflected in the planes y = 0 and x = 0 connected to eT and eB, respectively, then 
eB and eT are double symmetrie too. These mirror tracers follow their trajectories in a reversed 
direction. It can be concluded that all these tracer trajectories exhibit the time-reversal refiectional 
symmetry, most of the tracer trajectories are even self-symmetrical. Both planes x = 0 and y = 0 
are planes of time-reversal refiectional symmetry. By using the time-reversal symmetries of the 
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Figure 4.3: Passive tracers released on the periodic-1 lines followed one complete forcing cycle of 
protocol D. cM (left) indicates the centra! periodic line. eT and eB (right) indicate the elliptic 
lines. Symmetries are found in the planes x = 0 and y = 0. 

planes x = 0 and y = 0, the periodic lines would have been found much more easily. Following one 
plane of symmetry half a period, would have been enough, instead of searching half the domain, 
see Speetjens (2001). Instead of using displacement function it would be possible to use the faster 
bi-section method, because searching takes place in a single plane. 

Personal communication with Prof. V.V. Meleshko already led to the idea of following a periodic 
line segment and see where and how it is located at the specific times t = 1/8T, 3/8T, 5/8T and 
7 /8T, thus half away each forcing step. It appears that, at these specific times, the periodic lines are 
residing on a plane of symmetry as shown in figure 4.4. The symmetry plane at these specific times 
is always in the forcing direction of protocol D at that moment. Every next step of forcing protocol 
D implies a -90° rotated forcing direction and the other endwall is moving. In the symmetry this 
returns as follows: every next step correspond to rotation of -90° followed by refiection in z = 0. 
Thus every step later the periodic line is found on the other panel of figure 4.4 with on the horizontal 
axis (y-+ x, x-+ -y, -y-+ -x or -x-+ y) and z-+ -z on the vertical axis. 

Two spherical blobs, one put on a hyperbolic point and one on an elliptic point with radius 
r / R = 0.1, are followed two complete forcing cycles of protocol D. The advected blobs are shown 
for the times t = 0, t = T and t = 2T, see figure 4.5. Relatively large stretching can be seen for 
the hyperbolic blob at t = 2T. The spherical blobs Speetjens released on hyperbolic points in his 
forcing Protocols A, B and C, all show more stretching after a global time period T, indicating 
that protocol D has inferior mixing properties. The largest eigenvalue is >. = 4.31 and resides on 
the unstable manifold of cM, while Speetjens found >. = 13.8 as a maximum in his protocol B. 
This also indicates the inferior stretching properties and thus probably having not that good mixing 
properties. 

To say more about the mixing properties, a tracer particle has been released at a distance 
ro = 10-3 from a hyperbolic point on eM with coordinates (0.1231,0.3912,-0.6500) and is followed 
over 10,000 global time periods T. 
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Figure 4.4: Symmetry planes y = 0 (left) and x = 0 (right) at specific times. Dashed lines are half 
a period later than the solid lines in the same plane of symmetry. 
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Figure 4.5: A blob released at a hyperbolic point (left) and a blob released in an elliptic point 
(right). The advected blobs are shown fort= 0, t =Tandt= 2T, respectively. 
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Figure 4.6: A tracer particle released close toa hyperbolic point followed over 10,000 global periods 
T. On the left plane a Poincaré section is shown for Re= 0. On the right plane the rz-projection 
is shown, with no points in the neighbourhood of the cylinder mantle. 

The Poincaré map of this passive tracer is shown on the left panel of figure 4.6. 2 The tracer does 
not approach the cylinder mantle, which is better shown in the rz-projection, which is represented 
on the right panel of figure 4.6. It is clear that for Re = 0 the mixing near the cylinder mantle is 
not so efficient, when using protocol D. 

4.2 Inertial Flows 

In this section Re = 0 no longer holds, implying that the analytica! solution of Shankar can not 
be used. Equation 2.17 will be used as a governing flow model, which is the (piecewise) stationary 
Navier-Stokes equation. A solution can only found by doing a numerical analysis. Speetjens wrote a 
spectra! flow solver to tackle this problem. His method uses slightly different boundary conditions, 
making a quantitative comparison with the analytica! results for Re = 0 not possible. Qualitatively 
seen all phenomena are the same making the simulations still useful. The boundary conditions in the 
spectra! code are slightly different from the boundary conditions of the analytica! solution, because 
only sufficient smooth continuous boundary conditions are allowed, while the analytica! solution 
assumed a discontinuous velocity ring situated between the moving endwall and the cylinder mantle. 

A tracer released near a hyperbolic point, when Re = 0, does not approach the cylinder mantle 
when using forcing protocol D. When Re > 0, thus by the introduction of an inertial force, it 
can be expected that the tracer gets closer to the cylinder mantle end thus enhances the mixing 
properties near the cylinder mantle. Introduction of the inertial force can often be seen as a kind of 
centrifugal force throwing particles outward. See for example the steady flow in Speetjens (2001), 

2 Recently it appeared, that this Poincaré map is quantitatively incorrect for the singular case Re = 0 . This has 
no consequences, when replacing Re= 0 by Re= 1. The explanation is given in appendix C. 
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Figure 4. 7: A tracer particle followed 10,000 global periods T. On the left side the Poincaré section 
for Re= 10 is represented. On the right side the rz-projection is shown. 

where particle trajectories in the case Re = 0 form closed loops, while when Re > 0 these loops are 
broken and become non-closed outward spiraling loops. 

It is expected that for Re > 0 tracers getting closer to the cylinder mantle. To show this, 
tracers have been released at (0.1231,0.3912,-0.6510) and are followed under the forcing conditions 
of protocol Dover 10,000 global time periods T, for Re= 10 and 100. The Poincaré maps belonging 
to these simulations are plotted in the figures 4. 7 and 4.8, respectively. 

The rz-projection for Re= 10 still shows a small layer between tracer particle positions and the 
cylinder mantle, while for Re = 100 this layer is almost vanished, except in the lower and upper 
corner. It can be concluded that the inertial term of the Navier-Stokes equation helps the tracer to 
go everywhere in the cylindrical domain. It can be expected that the mixing under forcing conditions 
of protocol D is more efficient when Re > 0. To strengthen this assumption, the advection of a 
released blob is followed to see how the blob deforms and how the surface of the blob increases. 
In an experiment this can be carried out by the injection of a dye, see for example chapter 7 in 
Speetjens (2001). 

A numerical spherical blob with radius r / R = 0.1 has been released at (0.3463, 0.3463, 0), this 
is elliptic point P1 when Re = 0. The under forcing conditions of protocol D advected blobs are 
shown for Re= 10, 50 and 100, respectively, in figure 4.9 at t = 2T. At higher Reynolds numbers 
blobs are definitely more advected. The relative area of the different blobs are shown as a function 
of time in figure 4.10. The relative area function for Re = 0 is added, which is also numerically 
evaluated to make a direct comparison still possible. Differences between Re = 0 and Re = 10 are 
seen after 2 global forcing time periods, when t = 2T both blobs are almost the same and therefore 
the advected blob for Re = 0 is not shown. Differences in relative area start growing after T, 
where t = T corresponds to 20 in figure 4.10. Using higher Reynolds numbers enhances the mixing 
properties under the forcing conditions of protocol D. 
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Figure 4.8: A tracer particle followed 10,000 global periods T. On the left side the Poincaré section 
for Re= 100 is represented. On the right side the rz-projection is shown. 

Figure 4.9: The advection of a blob released at P1 shown after 2 global forcing times T of protocol 
D. The advected blobs are shown for the cases Re= 10, 50 and 100, respectively. 
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Figure 4.10: Relative area growth of a spherical particle released at P1 and forced by protocol D. 
The different lines indicate the different Reynolds numbers. 
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Chapter 5 

3DPTV 

5.1 Theory of 3D PTV 

In order to investigate flow phenomena it is possible to use tracer particles for the visualization 
of the flow. If the particles are small enough, they will act as passive tracers and will follow the 
fluid flow very closely. In a laboratory experiment the fluid is seeded with tracer particles, which 
are illuminated by source of light. This source of light may be laser, sky-spot or a simple slide 
projector. 

Two dimensional Particle Tracking Velocimetry (2D PTV) can be seen as the precursor of 
three dimensional Particle Tracking Velocimetry (3D PTV). 2D PTV follows particles in a two 
dimensional flow field and measures their velocities. lnstalling one camera and a doing a single 
calibration in the plane of the measuring is enough before doing an experiment. The calculation of 
particle positions and their velocities is done by a 2D PTV algorithm, which is written by Bastiaans 
and Van der Plas. A lot of information about 2D PTV can be found in the user's guide PIV, PTV 
and HPV of Zoeteweij & van der Plas (2001). 3D PTV can be seen as an extension of the 2D 
variant, therefore a lot of the 2D tools, maybe slightly adapted, will also work for 3D PTV. 

Typical for 3D PTV is that two or more cameras are being used and doing a calibration is 
more complicated. The best way to learn how 3D PTV works is to learn how the algorithm works, 
therefore the 3D PTV algorithm will be explained in the subsection 5.1.1. This will be followed by 
the experimental set-up in the section 5.2. The 3D algorithm needs a configuration file. An example 
configuration file is given and explained in appendix A. Where possible, parameters described in 
subsection 5.1.1 are written italic to give the direct relationship with parameters described in 
appendix A. 

5.1.1 The 3D PTV algorithm 

In figure 5.1 an overview of the 3D PTV algorithm is given. The algorithm starts with processing of 
the images. First dynamic thresholding is applied to remove background intensity variations. After 
that a 'blob' detection algorithm is applied to measure the positions of the particles on the images 
in pixel coordinates. The core of this algorithm is a 2D Gaussian fit through the intensity curve of 
a particle image. In this way a significant sub-pixel accuracy can be achieved. In the following two 
steps the actual 3D positions of the particles are retrieved. When the 3D positions of the particles 
are known, they can be correlated with the particles found in previous time step(s). When some 
information about the fluid flow is available, this can be used as a prediction to help the matching 
with correlated particles in the previous steps. The resulting path information is written into a file, 
which can be post processed to obtain velocity information or particle trajectory information. 

Dynamic thresholding The dynamica! thresholding is dorre by a square min-max subtraction 
filter. A square window size (xsize, ysize) has to be chosen to do the filtering procedure. This 
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Figure 5.1: The scheme of the 3D PTV algorithm. 

window size has to be chosen some greater than the blob size in pixel coordinates of the particles 
to be detected. The algorithm searches for the maximum and the minimum of intensity within the 
square windows. After that the maximum possible value will be subtracted from the original image, 
which will result in a dynamic thresholded image. Non-uniform background noise due to refiections 
and some optical effects like distortion are almost disappeared in this way. Another advantage of 
this method is, that particle positions are not infiuenced as they will, when using high-pass filtering 
procedures. In this way the blobs remain approximately Gaussian. 

Blob Detection 

Pixels having a vertical or horizontal neighbour are called connected to each other. Regions 
of connected pixels in an image with an intensity higher than a specified threshold are called 
blobs. A single threshold has to be set just above the noise level of the dynamica! thresholded 
images. Normally this threshold is very low, because most of the background noise has already 
been disappeared during the dynamic thresholding procedure. 

The blob detection scheme selects the particles, which are greater than the minimum allowed size 
(int min) and smaller than the maximum allowed size (int max). The positions of these validated 
particles are determined with sub-pixel accuracy, by using a gray value weighted centre of gravity. 
A disadvantage of this method is, that only a sequence of maximal 10 frames can be followed at 
the moment. 

An alternative method is peak detection. This algorithm is somewhat faster; it searches for 
peaks in the connected regions with neighbouring pixels. If a peak has been found, it is called a 
blob immediately. A disadvantage of this algorithm is that it does not select on blob sizes. However, 
when one is searching for long Lagrangian particle trajectories, peak detection is the only available 
option now. 
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Figure 5.2: On the left side a perspective ray through A, Band C ends in a single projection point 
on the CCD of the camera. On the right side the 3D localization mechanism is shown. Three 
Projection lines are crossing in a single point in world coordinates, corresponding to a specific pixel 
coordinate combination on the three cameras. 

Mapping to Lines of Possible Positions and 3D localization 

The main idea of the 3D particle localization procedure is that a particle image position, in pixel 
coordinates, correspond to a position in world coordinates somewhere along a perspective ray, see 
the left panel of figure 5.2. Within the object volume no variation of the refractive index is allowed, 
because all perspective rays are assumed to be linear in that region. Normally, when looking to a 
single component fluid flow, this will not cause any problem. Outside the object volume moderate 
differences in the refractive index are allowed, even the enclosing body, which is aften made of 
perspex, may have another refractive index. Filming sharp boundary edges is not allowed, because 
that troubles the assumed continuity within the to be filmed object volume. By using two or more 
cameras filming under a different angle, the three dimensional image can be reconstructed. How 
the localization procedure for the reconstruction of the three dimensional image works, can be seen 
on the right panel of figure 5.2. The points in space where rays from the different cameras cross, are 
the positions of the particles. In reality lines do not cross exactly, therefore a maximum matching 
distance ( F3DLocator: maxiummatchingrange) is needed. 

In principal two cameras with non-coinciding vantage points would be enough. With the used 
calibration technique, orthogonal angles between the cameras are not possible, so lower angles 
should be used, therefore minimal three cameras should be used. When using a high particle 
seeding density, it is possible that some particles will hide. According to a publication about 3D 
PTV and Lagrangian motion Virant (1997) at least four cameras are preferable to gather qualitative 
good experimental Lagrangian information. The transformation of the detected particles, in pixel 
coordinates on the different cameras, to world coordinates will be done by means of a calibration in­
situ. A well defined grid in world coordinates enables the transformation from pixel coordinates of 
each camera to world coordinates and vice versa. The transformation is given by: Ji : ( x~i), y~i)) ? 

(xw, Yw, zw), with i = 1, 2, 3 indicating the camera number. More details about the specific used 
calibration can be found in the section 4.2. 
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Matching 

The best pairings of particles between two images can be faund by using the fallowing basic 
evaluation function 

/. = lxf+l - x'fl 
lJ i J ' 

(5.1) 

where x/ is the estimated position of particle j from frame f in frame f + 1. If there is a good 

estimation or the displacement of the particle is very small, then low values of c{j correspond to 
a high probability that the two particle images originate from the same physical particle. There 
are two types of matching, namely temporal matching and a spatial matching. The solver should 
find a set of independent matchings. If there is a matching between particle image i in frame f 
and particle j in frame f + 1 then a{j = 1 otherwise o:l = 0. By using this definition, the set of 
matchings is independent if and only if 

v. '"°"' a!. < 1 ·L iJ -
j 

& '111· '"°"' a!. < 1. L iJ - (5.2) 

This means that a particle in frame f can only be assigned to at most one particle in frame f + 1 
and vice versa. Furthermore, the set should contain as many matches as possible. The maximum 
number of matchings possible is determined by the minimum number of observed particles of the 
two frames involved. 

To optimize the number of matches, the sum of o:lcl over all values of i and j should be kept 
as low as possible. This optimization problem can be solved by an extended Munkres algorithm. 
A ( matcher: maximum matching distance) ~Smax, is introduced to optimize far speed in this 
algorithm and to prevent far ridiculous matchings. A good measure far this maximum matching 
distance is the displacement of the moving endwall between two frames, which of course is equal to 
the maximum possible displacement. A reliable matching occurs in general when: 

(5.3) 

with dn the mean minimum inter-particle distance. dn is described by 

d =C 3 (V 
n VN' (5.4) 

with N the number of particles in the closed volume V and C some constant. For simple regular 
structures this constant C is equal to or slightly greater than one. A numerical analysis far irregular 
structures would lead to a value somewhat smaller than one, but far plainness this constant C will 
be held equal to one. 

Prediction 

To help the matching procedure a prediction scheme can be used. A temporal extrapolation can 
be used when farmer particle positions are known. When the last Nt (Fpredictor order) particle 
positions are known, the future position can be estimated by a polynomial of order Nt - 1. Linear 
extrapolation Nt = 2, normally gives the best results. This is when particles between two successive 
processed frames are moving further than by Brownian motion alone and when the particle density 
is sufficient high to measure an accurate velocity field. Nt = 1 leads to no temporal prediction at 
all. 

When no temporal extrapolation can be used, because no farmer positions are available or 
when the extrapolation mode is turned off (Nt = 1), spatial interpolation will be used. Spatial 
interpolation is perfarmed by using the positions of neighbouring particles or by using an external 
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source with velocity information. In the case of 2D PTV, PIV results will often be used as an 
external source. In the future it is maybe possible to use Shankar's analytical solution for Re = 0 
as a source of external velocity information. When using the neighbouring matched particles, 
indicated by the subscript k, the estimated position is calculated by 

f+l f l:k ~k J Jxl+l - xl Il 
xi = xi + l:k ~k ' (5.5) 

with ~k the neighbouring weighting function, which is chosen to be Gaussian with characteristic 
width a ( Gaussian Delta). The last parameter in the configuration file is minimum particles, this 
can be can as a kind of threshold, making Gaussian estimation only work when there are sufficient 
weighted neighbouring particles present. 

Post processing 

The post processing routine f3dpostES1.0new contains several options to store found particle 
trajectories or to calculate particle velocities. Some of these options are treated here. 

The option f stores all particles beginning at a certain frame with a maximum defined pathlength. 
New is the option n, which stores the newly found particle paths with a maximum defined pathlength. 
With a newly found particle is meant a particle starting in frame i, that has not been matched with 
a particle in frame i - 1. A clever combination of the options f and n make it possible to find all 
particle trajectories over a certain time span of interest. How to do this is explained in Appendix 
B. 

For the calculation of the particle velocities a couple of methods are available. A centra! second 
order scheme will usually work the best. Option v can be used for doing this, with s the central 
frame number and p = 1 to apply the centra! second order scheme. Higher values of p lead to a 
higher order schemes. By applying this method only particle velocities of particles with a minimum 
path length of 2p + 1 can be calculated. The velocity calculated with the second order scheme of 
particle i in frame f with l:l.t time between two frames is given by 

f 
xf+l _ xf-l 

u. = "/, "/, 
"/, 2!:!:..t 

(5.6) 

5.2 Experimental Set-up 

The basic experimental set-up comprises of a container in which the cylinder mantle is submerged 
in a bath of silicon oil (type AK2000 by Wacker-Chemie GMBH, Munich, Germany). The endwalls 
are mounted on support structures, lowering them into the fiuid in order to meet the cylinder 
mantle and can perform an in-plane motion via translation along two perpendicular guiding rails 
driven by electrical motors. The translational displacement D = D2R ~ Dmax and the velocity 
U ~ Umax are both set and monitored by means of a computerized motion control system, permitting 
optima! reproducibility of the forcing conditions1 . The container, the cylinder and both endwalls 
are fabricated of transparent perspex to reach maximum optica! accessibility. The silicon oil has 
the same refractive index as the used perspex for cylinder mantle and the endwalls. The silicon oil 
has a very high kinematic viscosity (~ 2000vwater) and a density somewhat lower than the density 
of water. 

Relevant parameters are listed in table 4.1 and a projective view of the configuration is given 
in figure 5.3. The figure shows a gap between the cylinder mantle, this gap is smaller than 1.0 mm 
and therefore assumed to be irrelevant to the problem, but one should keep into mind that the 
cylinder is not a fully closed object, a small mass flux between cylinder and the rest of the tank is 
still possible. More details about this gap can be found in Speetjens (2001). 

1 Software written by Van Uittert has been used to control the motion system. 
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Figure 5.3: Schematic view of the experimental apparatus. The solid and dashed square in the 
left panel refiect the maximum horizontal/vertical displacement (Dmax) of either endwall and the 
variable EH indicates the axial-wise gap between the cylinder mantle and the translating endwalls. 
The actual measures are listed in table 3.1. 

H[m] R[m] v [m2 /s] p [kg/m3] Dmax[m] Umax[m/s] 
7.0. 10-2 3.5. 10-2 2.0. 10-3 970 0.21 2.3. 10-2 

Table 3.1: Specifications of the experimental set-up. 

Substitution of the values listed in table 3.1 into the dimensionless parameters defined in section 
2.3 leads to 

Re:::;: 1.61, (5.7) 

In all experiments the Reynolds number will be set at Re = 0.25 and the dimensionless 
displacement at D2 = 5. The Reynolds number is the same as Speetjens (2001) used in his 
experiments and thus allow for a direct comparison. The adopted values enables for an estimation 
of Sri and fora verification of the demand of Sri « 1 underlying adoption of (2.15) as governing 
flow model. Employment of relation (2.16) puts forth Sri = 0.05 and in consequence proves the 
steady state approximation (2.15) holds for the experiments. 

In practice Re = 0.25 comes very close to Re = 0, considering the velocity field discrepancies 
which are found to be of order 10-3 , see Speetjens ( 2001). As a consequence differences between both 
Reynolds numbers might not be observed experimentally under laboratory conditions. Therefore 
experimentally results are directly compared to the analytical solution of Shankar (Re = 0), see 
Shankar (1997). 

PTV set-up 

Three high-resolution cameras (1018 x 1008 pixels 10-bit gray scale Kodak ES 1.0 camera by Roper 
Scientific, San Diego, USA), are positioned in a triangular form as shown in figure 5.4, viewing 
the bottom wall of the cylinder under an angle a ~ 8° relative to the z-axis of the cylinder. The 
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Figure 5.4: Camera arrangement. Cameras are attached to iron standards. Left under, the cable 
attachment to the table can be seen. 

adapted camera arrangement ensues from a compromise between optica! performance of the tracking 
algorithm (recommended angle a ~ 20°, see Schreel et al. (2000)) and maximum visibility of the 
interior of the cylinder (a ---t 0). Note that this 20° correspond to a triangular pyramid with equal 
legs with all angles 60°. The camera cables are attached to the table to overcome movements of 
the camera by forces on the cable. The distance between the camera triangle and cylinder bottom 
endwall is 1.2 m in the z-direction. Lenses being used have a focal length of 75 mm. 

Each camera is connected to one of the three measurement computers. The disk sizes are 68.4 GB 
and the maxima! data flow is 60 MB/s continuously. The configuration of each of these computers 
is identical. The computers are connected to a network hub, to let the computers communicate 
with each other and to make a single network connection. The software needed for the detection 
of a connected camera is Kodak Universa[ Remote. In this program it is possible to adjust some 
settings. A camera can work in a continuous running mode (or free running mode) or in a triggered 
mode. A camera running in the continuous mode captures frames at 30 Hz. The three cameras 
in this mode are connected to the strobe (internal docking) connectors of each of the cameras by 
small coax cables. For frequencies lower than 15 Hz the trigger mode can be used. In this mode 
an external signal regulates the frequency. The cameras in the trigger mode are connected to the 
trigger connectors of each camera and to the external source, all by the small coax cable's. The 
software package Video Savant has been used to capture, view and store the images. This software 
package contains a lot of tools, for details on this subject see Zoeteweij & van der Plas (2001) . 

An important issue is the calibration, because a good calibration is needed to obtain accurate 
data from the measurements. The used calibration configuration is shown in figure 5.5. The 
displayed 2D calibration grid consists of a disk inserted into the cylinder, placed parallel in the 
xy-plane and accommodating an equidistant grid defined by small holes (diameter dh = 0.1 mm) 
with spacing ~x = ~y = 6 mm. The L-shape in the centre of the grid ( defined by three holes 
with diameter dh = 0.5 mm), defines the locally xy-frame, with the short leg and the long leg 
indicating the x and y-axis, respectively. The calibration grid is translated from the bottom to 
the top with step size ~z = 3 mm (F3DLineMapper dZ}, defining 24 parallel planes (nZCalibr}, 
collectively making up the 3D reference grid in the cylinder with height H = 70 mm. For the first 
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Figure 5.5: The calibration configuration consists of a 2D grid translated with step size b..Z through 
the cylinder. 

axial position it is recommended to stay little away from the bottom(~ 0.5 mm), because otherwise 
the 2D calibration grid and bottom wall will stick together. 

The optical settings should be optimized for measuring the particles. The calibration opties 
can be improved by adjusting the shutter time, no changes of other set-up parameters are allowed. 
When the measurement has been carried out, the data can be transported toa processing computer. 
When data is transferred, the most time-consuming part is the production of calibration images in 
such a way that only the calibration grid pixels are visible. This can be clone with the aid of the 
image manipulation program Gimp. When all calibration images are perfect, calibration files can 
be made by using Fac. Fac is a program that relates the known 2D grid points in world coordinates 
to the grid points in pixel coordinates of the camera image. Thereafter a configuration file has to 
be made. An example is given and explained in appendix A. The processing and post processing 
has already been described in the subsection 5.1.1 and can be used from this point. 

5.3 Opties 

The opties used in the experiment determines the quality of the recorded images Qi· Important 
optical effects are distortion ( deformation of the image), vignetting (non-uniform image) and depth 
of field (camera can focus on just one plane). Optical distortion can almost be fully corrected for 
by using the mapping functions, and thus farms not a problem. Vignetting is the difference in light 
intensity for points with different distances to the optical axis. Using a smaller aperture decreases 
the effect of vignetting, however it also lowers the total amount of light intensity on the image, see 
Zoeteweij & van der Plas (2001). Both effects exists in two and in three dimensions. Depth of field 
is different, because it plays only a role in a three dimensional object space. Therefore some extra 
attention will be paid to it. 

Depth of field is important if one wants to obtain images with a high image quality Qi· With 
some rather simple geometrical opties, a good approximation of this depth of field can be made. 
To obtain this approximation the derivation will follow here. 

The enlargement factor N in the set-up can be seen as a constant, because samples of the whole 
cylindrical surface with dimensions nR2 (L = 2R) are wanted to be fully projected on the CCD's 

30 



.,.. 

0 

... 

s, 

s. 

j<( 
s, ' ' ' ~ 

... 
.... 

D d 

• 
;y" CCD 

s: 

Figure 5.6: Construction illustration of depth of field. Object and image spaces are not on the same 
scale represented in this figure. 

of the cameras with dimensions of 10 x 10 mm (L' = 10 mm). This enlargement factor is given by: 

s' L' N=_Q=-
so L' 

(5.8) 

with so the object distance and s0 the imaged distance. Resulting in an enlargement factor N = 1/7, 
when a cylinder with radius R = 3.5 cm is used. When a lens with a focal distance f is chosen, 
the optimal object distance can be calculated by using the enlargement factor and the thin-lens 
equation by elimination of the imaged distance s0. The thin-lens equation is given by: 

1 1 1 
-=-+-! so sü. (5.9) 

The explicit expression for so is given by: 

so = (N; 1)f. (5.10) 

The depth of field can be introduced by accepting circles of confusion with an acceptable 
diameter d, such that all images are well focused within a distance x. This approximation has been 
made in Introduction to Opties Pedrotti & Pedrotti (1993). The construction for the calculation of 
depth of field is shown in figure 5.6. Note that the interval about s0 in the image space is symmetrie, 
while the depth of field is not symmetrie about so. The near-point and far-point distances s1 and 
s2 , can be determined, when a allowed blurring parameter d is chosen and the lens is specified by 
focal length f and the circular aperture diameter D. On a camera the aperture will normally be 
given relative to the focal length in the following way: 

f 
A= D' (5.11) 
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with A the relative aperture. By using some algebra the near-point s1 and the far-point s2 distances 
can be expressed in the following way: 

sof(!+ Ad) 
si = J2 + Adso ' 

sof(! - Ad) 
s2=-----J2 - Adso 

The depth of field, ~s = s2 - s1, can be expressed as 

sub. eq. (5.11) 

~s = 2dso(so - f)f D 
j2D2 - d2s6 

(5.12) 

(5.13) 

The blurring parameter d has to be chosen very small, a good measure could be the typical size of 
a pixel the 1018 x 1008 CCD camera, which is about 1/1000 of L'. Because dis very small, d2 is 
so small that it can be neglected. Applying this to equation (5.13) leads to the following reduced 
equation 

~ _ 2dso(so - f) 
S- fD ' 

f2D2 
assumed that d2 < < --2-. 

So 
(5.14) 

This reduced equation can be written in a more convenient form, by using equation (5.10) in the 
slightly different form 

resulting in 

A _ 2dso 
w.S- ND' 

N=-f­
so - f' 

j2D2 
with d2 << --2 -. 

sa 

(5.15) 

(5.16) 

There are three manners to increase the depth of field, all having the same disadvantage that less 
light will fall on the CCD's of the cameras. Decreasing the enlargement factor N, by using a 
bigger cylinder or increasing the focal length f using relation so ,....., f, see equation (5.10) leads toa 
reduction of light falling on the CCD's of the cameras, because the object distance increases, while 
light intensity I ex: -:\-. Another option is closing the apert ure more, which also leads to a light 

SO 

reduction falling on the CCD's , while light intensity I ex: Jh-. 
A to be filmed volume will have certain dimensions. The depth of field should always be minimal 

the height of that volume. Applying this to equation (5.16) lead to an inequality equation. This 
inequality equation is derived fora very general case. As blurring tolerance the typical size of a pixel 
of an n x n CCD is used, leading toa blurring size d = L' /n. The minimum required depth of field 
is the height Hof the to be recorded object (cylinder) and thus requires ~s ~ H = D 1R = D 1L/2. 
All together this results in the following inequality equation 

or A 
nND1 

> ( . - 4N+1) 
(5.17) 

The inequality equation shows, that using an object, with less depth relative to the front size, is 
preferable (small D1). In this inequality equation it can also shows, that increasing the focal length 
f leads to a less restricted aperture, but relatively seen it is not effective. 

In the experiments 1018 x 1008 CCD cameras (n ~ 1000) are used, lenses with focal length 
f = 75 mm and a cylinder with aspect ratio D1 = 2. Resulting in a maximum feasible enlargement 
factor of N = 1/7 leading to the restriction D :S 1.2 mm for the aperture. The enlargement factor 
used in the experiment is about 70% of the maximum possible value, relaxing the aperture to 
D:::; 1.65 mm (or A ~ 45), which is still very small. 
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Chapter 6 

Accuracy assessment of the 3D PTV 
algorithm 

Two sessions of experiments have been carried out. In the first session, steady flow measurements 
are done, with different particle densities. Before doing the second session some improvements have 
been implemented. In this second session a steady flow measurement has been repeated but with 
just one particle density. During this session a measurement of the complete forcing protocol D 
has been attempted. After these two sessions, two methods to check the results of a measurement 
are treated. In both sessions it appears that particle size is an important issue and therefore an 
experiment with some greater particles, has been carried out. In paragraph 6.5 two quality factors 
are introduced. These quality factors are adapted versions of the quality factors introduced for 2D 
PTV. In paragraph 6.6 the summary of this accuracy assessment chapter is given. 

6.1 First Session 

6.1.1 Steady flow 

Particle trajectories and a velocity field can be found when the 3D PTV algorithm has been applied. 
For the steady flow case typical results are given in figure 6.1, with on the left panel all the particle 
trajectories of a complete steady flow experiment and on the right panel the velocity field calculated 
with the second order scheme at a certain moment. Both panels give a global impression of the 
steady flow. The bottom endwall has, during the steady flow translation, a velocity of U = 3.57 
mm/s, which sets the dimensionless parameter to Re= 0.25. Remind that for Re= 0 all trajectories 
can be projected in the rz-plane, without crossing each other. The experimental Reynolds number 
is so close to zero, that for the small time scales being used, this projection is still allowed. The 
rz-projection of all the particle trajectories are shown on the right panel of figure 6.2. On the left 
panel the xy-projection can be seen. In the xy-projection particle trajectories cross, especially when 
away from the x-axis. The noise along the particle trajectories in the rz-projection is striking. This 
noise is mainly caused by vibrations of the cameras1 . 

The PTV algorithm has initially been developed for the measurement of particle velocities 
only. Therefore good results are aften defined in terms like high quality velocity fields with less 
mismatches. For studying chaotic advection, long Lagrangian particle trajectories are required, 
which makes knowledge of the velocity field alone not enough. Therefore another criterion will be 
introduced, valid for the rest of this report. Long particle trajectories without mismatches, will be 
used as criterion of being a good result. The output of the 3D PTV algorithm of course depends 

1 At the moment of measuring, people were building in the direct surroundings and causing a lot of vibrations. In 
the second session cameras are attached closer to their standards and rubber has been used to reduce the effects on 
experiments. 
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Figure 6.1: Post processed data from a steady flow measurement, directly plotted. On the left panel 
all particle trajectories of a complete steady flow experiment. On the right panel a velocity field 
calculated with the second order scheme at a certain moment. 
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Figure 6.2: Projections of a complete 3D PTV steady flow measurement. On the left panel the 
xy-projection is shown. On the right panel the rz-projection is shown. The primary eddy structure 
can be seen in the rz-projection. 
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on the parameters being used, which are set in the configuration file. For an explanation of a 
configuration file, see appendix A. 

The parameter to set the prediction scheme can be seen as an illustrative example to show how 
different these two criteria really are. According to the subsection 5.1.1, linear extrapolation often 
leads to the best results. This is true, when applying the velocity criterion, but for the long particle 
trajectories criterion this no langer holds. In that case no prediction leads to the best results. The 
reason therefore is, that linear extrapolation leads to mismatches or no matchings at all, when a 
particle highly deflects. For the velocity field criterion, this is no big deal, just losing one vector. 
In the next frame(s) the particle will be back again fora newly measured velocity field. For finding 
long trajectories this is a problem, only short trajectories can been found. 

6.1.2 Particle Trajectories 

An important 3D PTV set-up parameter is the particle seeding density. This parameter is varied by 
doing four steady flow measurements with an increased particle density. Before the measurements 
are carried out, the particles are mixed as good as possible through the whole domain, in order to 
create a homogeneous particle density. In the 3D PTV algorithm the trajectories are identified by 
identification and matching of the subsequent particle positions, proceeding through the recorded 
time sequence. To compare the results of the four experiments, the parameters in the configuration 
file are kept equal. The number of initially detected particles No in the first frame will be used as a 
measure for the particle density. The path length will be defined by a time span by tp = (p- 1)/ f, 
with p the number of followed frames and f the sample frequency. Samples are taken in the 
continuous running mode, so the cameras sampled at 30 Hz. The frame skip in the configuration 
file has been set to 5, which makes the actual sample frequency f = 6 Hz. This results in a sequence 
of P = 348 frames. 

To say more about the long particle trajectory criterion, the yield parameter will be introduced. 
This yield is defined as: 

(6.1) 

with nk the number of particles all starting on t = 0 with path length tk. The variable Yp thus 
defines the fraction of initially detected particles No with path length t ~ tp. This is the same 
definition as being used by Speetjens, another definition would also be imaginable but this one 
is clear and simple. Results are represented in figure 6.3, where the different lines represent the 
different particle densities. The experiments are labeled with a, b, c, d, corresponding to the 
increasing initial detected particle numbers of No= 86, 190, 684, 2968, respectively. All lines show 
a bend, indicating the moment upon which the bottom endwall starts to move and in fact indicating 
the starting point of the steady flow experiment. It is nice to show that a complete experiment in 
fact exists out of two smaller experiments, namely a non-forcing part (zero motion) and a steady 
flow part. In the case of a protocol with more than just one single step, this would possibly lead to 
more of these bends, each indicating a new starting point. 

The yield parameter is expected to be an exponential decreasing function of p, because a 
constant fraction will be lost in every next processed step. In the steady flow case the yield can be 
approximated by two straight lines, one before the bend and one after the bend. It can be seen that 
the slope for zero motion is much less than for steady flow, which means that non-moving particles 
are more easy to follow. In experiment d only 118 frames could be followed, because the particle 
seeding density is too high for the 3D PTV algorithm. 

Experiment b definitely gives the best yield results: 36 of the 190 initially detected particles 
could be followed during the whole experiment (348 frames). For experiment a and c only 16 and 24 
particles, respectively, could be followed. Speetjens could only follow 11 particles of the 874 initially 
detected particles and just for 230 frames. Major improvement is caused by using no prediction 
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a (86) 
10-I 

c (684) 

d (2968) 

Figure 6.3: The yield function of steady flow experiments for different particle densities. The 
different experiments, are indicated with a letter. The number between the brackets indicates N0 . 

The used sample frequency is 6 Hz. All the lines show a bend after a couple of frames, from this 
point the bottom endwall starts with its steady translation. 
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Figure 6.4: On the left panel all 36 complete measured particle trajectories are shown, with their 
numerically simulated particle trajectories (dashed). On the right panel the rz-projection of 31 
complete particle trajectories is shown, to show the small difference between experiments and 
numerical simulations. Measured end points are indicated with * markers and numerical calculated 
end points are indicated with o markers. 

scheme and of course using a lower No value is profitable, see figure 6.3. All further analysis will 
be done with the results of experiment b only. All complete particle trajectories of this experiment 
are given on the left panel of figure 6.4. The end of the measured trajectories are indicated with * 
markers. 

A comparison with numerical results has been made. The numerical trajectories start exactly 
at the measured begin positions of the particle trajectories. The end points of the numerical 
trajectories are indicated with o markers. To show more details the rz-projection of 31 of the 36 
particle trajectories are given on the right panel of figure 6.4. Some of these particle trajectories 
are projected in -r direction and 5 particle are leaved out for clarity. Most differences between 
measured and numerically obtained particle trajectories can be seen in the centre region of the 
primary eddy were particle trajectories are highly defl.ecting. The end points of particle trajectories 
have an average mismatch with their numerical found end points of !::i.d = 2 ± 2 mm and a median 
of 1.2 mm. These values express the high quality of measured long particle trajectories. Note that 
long particle trajectories are normally more accurate than shorter ones, because for short particle 
trajectories mismatching is more probable than for long particle trajectories. For the simulation 
Re = 0 has been used, while in the experiments this is not the case and even more important 
is that there is an error between grid coordinates and world coordinates caused by the method 
of calibration. In the second measurement session a correction procedure will be introduced to 
eliminate the differences between grid coordinates and world coordinates. 

Long particle trajectories can be found by using the yield parameter. To say more about the 
quality of the long particle trajectories, the mismatch has been given. Particle trajectory segments 
are accurate too. To show this, all particle trajectories of the whole experiment with ip > 0 are 
shown in the rz-projection on the left side of figure 6.5, the right side has been used to show a 
couple of numerically simulated streamlines. In total 5844 particles are detected, of which 2730 
particles have a pathlength ip > 0. The measured particle trajectories in the rz-projection looks 
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Figure 6.5: All rz-projected measured particle trajectories with tp > 0 are plotted on the left side. 
On the right side a couple of the rz-projected numerical streamlines are shown. 
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very similar to the numerically simulated streamlines. 

6.2 Second session 

6.2.1 Steady flow 

In the second session rubber has been used between the laser table and the standard to reduce 
the influence of vibrations on the cameras. The cameras are attached as close as possible to their 
standards. All calibration tools are coloured black, to prevent for reflections. On the outer side of 
the top endwall black perspex has been attached to reduce reflections. Important is that this black 
perspex also masks the uninteresting part of the measurement container. Some more attention 
has been paid to the depth of field and the full gray scale has been used. The cameras are set in 
the triggered mode at 12 Hz, because that has appeared to be fast enough to follow the particle 
movements in all details. Only at higher Reynolds numbers, it will be useful to increase the sample 
frequency of the cameras. When sampling at 12 Hz, protocol D can be measured for 10 complete 
forcing periods, before the harddisks on measurement computers are getting full. 

A problem for this complete session forms the high particle density being used. The yield figure 
6.3 already shows that large particle densities lead to a very low yield. To show that at least the 
applied improvements were effective, all long particle trajectories in the steady flow case are plotted 
in the rz-projection on the right side of figure 6.6 versus a number of long particle trajectories of 
experiment b on the left side. The dotted lines indicate the numerically simulated streamlines of 
the primary eddy. It can be seen that there are less wiggles on the measured particle trajectories 
in the second session. This shows that improvements to reduce the vibrations caused by external 
sources are very useful. 

For the steady flow case only one particle could be followed during a complete experiment. 
This forecasts that no particle trajectories will be long enough to evaluate forcing protocol D. A 
measurement has been carried out under the forcing conditions of protocol D over two global forcing 
times T. Technically seen such a measurement is possible by now. However, due to the high particle 
density, only particle trajectory segments are found. Because protocol D consists of four steady flow 
steps and only short particle trajectory segments are found, no more than steady flow information 
can be derived. Therefore a measurement analysis of this protocol D will be left undone. 

6.2.2 Endwall Movement 

Knowing the exact positions of the endwalls is very important. In first place because grid coordinates 
are measured only relative in the currently used set-up, knowing the position of an endwall can 
resolve this problem. In the second place the fluid flow depends entirely on the boundary conditions 
and therefore better knowledge will lead to better results. All this information can be gathered 
from the endwall motion itself. Therefore white dots with a diameter of 1 mm are painted on the 
inner side of the endwalls acting as passive tracer particles. Measuring these dots give a lot of 
information. In first place the velocity of the endwall itself can be measured and in second place 
additional information about position and orientation can be extracted. 

The endwall velocity equal to the dots fixed on the endwalls is measured. The measured velocity 
is only 0.43 greater than the experimentally prescribed value. This experimentally prescribed value 
has been defined as a 17.5 cm movement of a single endwall in exactly 49 s (thus U = 3.57 mm/s), 
corresponding to dimensionless parameters Re = 0.25 and D2 = 5. The computer settings of the 
motion controller corresponding to these values are: 154 r.p.m. for the motor speed and total 
displacement of 250,000 steps. These values differ slightly from the values Speetjens used. 

The additional position and orientation information is extracted here. A stack of the 2D 
calibration grids build up the 3D calibration volume. This 3D volume has still some degrees of 
freedom within the cylinder, see the left panel of figure 6.7. The largest degrees of freedom are in 
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Figure 6.6: On the left side some long particle trajectories of experiment b are plotted in the 
rz-projection. On the right side all long trajectories found for the second session steady flow 
experiment are shown. Trajectories of the latter are much smoother. Dotted lines are numerical 
found streamlines. 
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Figure 6.7: On the left side the calibration "volume" is shown, still having freedom in the directions 
ó.z and Ó.<p. On the right side the angle difference between the grid coordinates and world 
coordinates is shown, by tracking four blobs fixed on the bottom endwall moving in the y-direction. 

the directions ó.z and Ó.<p. All other possible variations are very small, because the 2D grid is just 
about 1 mm smaller than the inner diameter of the cylinder itself. In fact all possible variations 
are variations between the known grid coordinates and the world coordinates to be measured. 

All blobs fixed on the bottom wall should have coordinate z = 0 mm (or relative z = -1), 
which directly gives the correction needed for the z-coordinate. The average measured particle z 
coordinate, for particles fixed on the bottom endwall in this second session, is z = -1.01 mm. This 
means that all measured z values should be raised with 1.01 mm, thus ó.z = 1.01 mm. Looking on 
the right panel of figure 6.6 shows that increasing the z coordinates of the particle trajectories a 
little would indeed lead to more correspondence with the dotted numerical streamlines, especially 
in the region of the centre of the eddy where particle trajectories are highly bending. 

Following the fixed dots on a moving endwall in a certain direction gives the angle correction 
Ó.<p. Four blobs fixed on the bottom endwall are tracked on their movement in the y-direction. 
A view in the x'y'-plane is given on the right panel of figure 6.7. The angle between y' and y 
is on average Ó.<p = 1.8°. This is a small angle but one should definitely correct for it, because 
all movements are very uni-directional oriented, when a single endwall is translated in a certain 
direction. 

To show this correction method works, the correction is applied to a single long particle 
trajectory with deflection. The actual particle trajectory used, is the thick line indicated particle 
trajectory in figure 6.6. The difference between the endpoint of the measured trajectory and 
numerical simulated trajectory is calculated. Before the correction procedure the mismatch between 
the endpoints is 3.87 mm. When the correction in the z-direction is applied the distance is reduced 
to 0.94 mm and after angle correction reduced to 0. 79 mm. This makes that the suggested correction 
for the position error in the z and <p-coordinate is very useful. 
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Figure 6.8: The grid point of the 2D grid are being used as particles. The 2D grid is moved in the 
z-direction. The "particle" trajectories are lines in the z-direction, shown on the left panel. The 
xy-projection can be seen on the right panel. 

6.3 Measurement Checking methods 

Two very valuable methods can be used to see if the PTV algorithm produces useful results. The 
first method checks the calibration grid points, to see if nothing went wrong during the calibration 
procedure. The second method is tracking particles under zero motion conditions, which gives 
accuracy results of the measurement technique. 

First, the calibration grid method will be treated. A grid point can be seen as a "particle" 
moving in de z-direction, when a sequence of 2D grids in the z-direction is followed. All found 
particle trajectories followed in this way are shown on the left panel of figure 6.8. On the right 
panel the projection in the x'y'-plane can be seen. This projection shows that all grid points are 
almost perfectly visible. Positions between neighbouring grid points are nicely equidistant and 
exactly 6 mm. This xy-projection is equal to the 2D grid being used, this 2D grid is illustrated in 
figure 5.5. Of course these grid points are very well defined points, because the mapping functions 
are based on these points, but if the mapping functions contain any error this would directly be 
reflected in figure 6.8. Because the grid moves in the z-direction, the x'and y'coordinates of each 
particle should be fixed. 

The standard deviation in the x' and y' coordinates for 93 followed grid points over 21 positions 
in z-coordinate is <7x,y = 0.01 mm. The standard deviation in the z-coordinate is <7z = 0.05 
mm, where all measured grid points are fitted on lines by using the least squares method. In the 
first session the standard deviation is about three times bigger in the z-direction, while in x and y 
direction it is almost the same. The error in the z-direction is always bigger than in other directions, 
because the grid points are moving particles and a small camera angle has been used, both causing 
a higher error in the z-direction. The distance between a sequence of two 2D grid should be 3 mm 
within the accuracy of the used adjusting screw. The measured distance between 2 disks is equal 
to the velocity, when using a sample frequency off= 1 Hz. The average measured velocity in the 
z-direction is Uz = 2.996 mm/s, which comes very close to the 3 mm of the adjusting screw. 

In the second method samples of passive tracers particles are taken, while no forcing on the 
endwalls is applied. All measured particle positions should be stationary. Due to the Brownian 
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Figure 6.9: Eight seconds before the bottom endwall starts to move. All particle positions should 
be fixed. The biggest error is definitely in the z-direction, which is caused by the camera settings 
in the experimental set-up. On the left panel a perspective view can be seen and on the right panel 
the rz-projection. 

motion, influence of gravity and probably some vibrations on the cameras, there will still be some 
motion. 

The second session steady flow experiment starts with 8 seconds of no forcing at all. Within 
this time 3282 particles are detected and plotted in the left panel of figure 6.9. On the right panel 
the rz-projection is shown. For 122 particles starting in the first frame the position error has been 
calculated. The standard deviation in x' and y' coordinate is IJ x,y = 0.002 mm. The standard 
deviation in z-direction is IJ z = 0.02 mm. In the first session the error in the z direction is about 
503 larger, in the other directions it is almost equal. 

The position error in the z-direction is thus about 10 times bigger than in other directions. 
The z-coordinate is less accurate, because a small angle of 9° between the cameras relative to the 
z-coordinate of the cylinder axis has been used. Using an angle of 20° would lead to the best 
accuracy results and equal in all directions. The 50 3 less accuracy in the z-direction is due to 
the mechanica! vibrations on the cameras. When a camera is vibrating, most effects are seen in 
the z-direction, because that is the direction the camera makes the records of. It is possible to 
calculate an average particle velocity for the non moving particles, which is in for the second session 
in z-direction Vz = 0.0 ± 0.3 mm/s. 

6.4 Particle Size 

The size of the used particles is very important. Bigger particles are usually more visible than 
smaller ones, however it is possible that bigger particles do not act as passive particles. When 
particles are to small, a sub-pixel accuracy in pixel coordinates can not be achieved. For the 
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Figure 6.10: The blob sizes in pixels of 1201 detected particles on one camera. 

mentioned reasons, some attention will be paid to the particle size in this section. 

The used particles in the first two sessions have an average diameter of 250 µm. U sing 703 
of the enlargement factor N = 1/7, would result in a image particle with a typical diameter of 25 
µm, corresponding to the a surface of about 5 pixels. A size of 5 pixels is enough to apply the gray 
value weighted centre of gravity and thus knowing the particle position within sub-pixel accuracy. 
A blob size measurement leads to the same average results, however there is a large spread on it. 
A typical example, of the measured blob sizes of all blobs found on one camera image, is given in 
figure 6.10. 27 % of the detected particles have a blob size of just one pixel and thus no sub-pixel 
accuracy can be achieved for these particles. The median blob size is 4 pixels, which roughly means 
that only about half the number of the detected particles positions are known within an accurate 
sub-pixel accuracy. 

For this problem there exist two controversial solutions. The most obvious way is by increasing 
the blob size, so that also the smallest particles are greater than just one pixel. The other way is 
using particles so small that diffraction takes over the role of reflection, therefore particle sizes of 
about 10 times the wavelength of light are required. The more intense a light source, the greater 
detected particles look. The best way to achieve this is by using an intense laser sheet. Two 
main disadvantages are: amore complex experimental set-up and the measurement technique itself 
becomes quasi two dimensional, which means only good velocity measurements are possible in the 
plane of the laser sheet. 

Using bigger particles has been studied in more detail. An experiment with some bigger particles 
has been carried out. These particles are two times bigger than the particles used in the first and 
second session experiments, they have an average diameter of 500 µm. Two camera samples are 
shown in figure 6.11. The clear big particles are the 500 µm particles, the smaller less clear particles 
are the 250 µm particles being used in the first two sessions. The time between the two taken 
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Figure 6.11: Time between the left and the right image is 300 sec. The big particles are going down 
due to the gravity farces. The smaller particles are almost stationary. 

samples is 300 s. It can be seen that the big particles drop too fast. 
A rough approximation of the velocities of the small and bigger particles can be made by using 

both camera shots. The small particles have an average velocity in the y direction of Vy = -0.002 
mm/s and the bigger particles Vy = -0.02 mm/s. The bigger particles drop 10 times faster than 
the smaller ones. A tolerance in the y-direction of 1 mm would lead to the restriction that an 
experiment with the bigger particles may last maximal 50 s. This restriction is just within the 
limits for doing a steady flow experiment but nothing more. 

A movement of a spherical particle with radius r in a Stokes flow, whereupon no external forcing 
(endwall motion) is applied, is determined by the following three farces: gravity force, upward force 
and the Stokes friction force. The upward force is a force in the y-direction, making a particle 
weight less in the fluid. On a moving particle a friction force is exerted: the Stokes force. This 
force is given by F8 = -61rryrVy. Due to this friction force the resultant of the farces on the particle 
becomes equal to zero after a while, from then the particles move at a constant velocity. The 
characteristic time scale to reach this final velocity is given by 

t* = 2pr2 
91] ' 

(6.2) 

with p the density of the fluid and r the radius of the spherical particle. A typical time value 
is t* < 0.1 ms for the currently used experimental set-up. It can be said that a particle is always 
moving with its final velocity. This final velocity is given by 

(6.3) 

with Ps the density of the particles. The radius r of the particle in 6.3 is very important, because it 
appears as a square. When the radius of a particle is twice as large, the difference between particle 
density and fluid density should be four times smaller, when accepting a certain tolerance for V00 . 

This explains why the bigger particles drop and the smaller particles do almost not. The density of 
the used silicon oil is 28 kg/m3 less than the density of water. Commonly used particles have the 
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same density as water and therefore drop too fast in the silicon oil, which makes them useless for 
experiments. Special particles having the same density as the silicon oil should be used. 

There is another problem when using "big" particles, because these particles cannot be considered 
passive tracers anymore. When the fluid flow has a velocity relative to the particles, these particles 
exhibit a lift force perpendicular to the direction of the flow, caused by shear or vorticity in the 
fluid flow. When Re < 1 the McLaughlin approximation can be used to estimate the lift force, see 
Simons (1995). By using this lift force and the Stokes drag force, an asymptotic velocity in the 
y-direction can be calculated. The asymptotic velocity equation in the McLaughlin form is given 
by: 

with (6.4) 

with K, the local linear shear COefficient and J(E) a function of E = v::/p, which can be regarded as 
a non-dimensional lift force, which has the value 2.255 when E ___. oo. 

Most of the shear is in the region of the moving endwall. Therefore the distance between the 
centre of the primary eddy and the moving endwall in the plane x = 0 will be used as typical length 
scale L, resulting in r;, = -1;-, with the endwall velocity Ux chosen as a characteristic velocity. This 
makes the asymptotic velocity equation (6.4) linear for the particle radius rand to the power of 1~ 
for the applied endwall velocity Ux. Substitution of the limit value 2.255 of J, L = 15 mm, Ux = 3.57 
mm/s andµ= 2.10-3 m/s2, lead to uy = 0.013r as approximation for the velocity orthogonal to 
the plane of motion. 

Again accepting a tolerance of 1 mm, but now for when doing a complete forcing protocol D 
experiment, thus texp 2'. 196 s, would lead to a particle radius restriction of r ::; 0.38 mm. Both 
particle sizes used in the experiments satisfy this restriction. It is always recommended to use 
particles smaller than 1 mm always, because otherwise these particles do not act like passive tracers 
anymore. 

6.5 Quality factors 

To determine the quality of a 3D PTV measurement two quality factors can be introduced, 
comparable to the quality factors of 2D PTV. The first quality factor Qi determines the image 
quality. A good image quality means low noise and well detectable particle blobs on an image. 
Choosing the right particles and using a bright light source is important. Using the whole gray 
scale range of the cameras is important to achieve a sub-pixel accuracy. Last but not least the depth 
of field is very important. This factor has the greatest influence on the image quality Qi· Depth of 
field of future experiments can be improved using equation (5.17). More particles are found near 
the bottom wall, this is probably caused by the choice of depth of field, but it is also related to the 
calibration itself, where less grid points are found near the cylinder top. lmprovements are possible 
by using a more intense beam, which allows for a higher relative aperture. 

The other quality factor is the sample quality q8 • While the Qi largely depends on the experimental 
settings, this Qs is important when applying the 3D PTV algorithm. The quality factor q8 will be 
introduced as 

(6.5) 

with dn the average mean distance between the particles, which is defined in equation (5.4), with 
C = 1 and ~x is the maximum displacement between two frames. Note that dn depends on 
the particle seeding density and thus q8 still depends on the experimental settings. The maximum 
displacement ~x will be chosen equal to the displacement of an moving endwall between a sequence 
of two processed frames. 
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Figure 6.12: On the left side Y3 is shown as function of q8 • On the right plane the standard deviation 
of a fit through the found particle trajectories is given as a function of q8 • 

q8 > 1 is required to gather good results with only a few mismatches. The higher the quality 
q8 is the better the found particle trajectories are. When q8 becomes too large only a few particle 
trajectories will be found, because the distance between two frames D..x becomes very small and 
too many steps have to be taken. Due to the very small steps the position error will also grow 
important. When the sampling quality q8 decreases, the spatial resolution decreases, because larger 
steps are taken. This troubles experiments with a very low particle density, because relatively 
large steps have to be taken to get particle trajectories with a reasonable value for q8 • An optimal 
sampling quality q8 can be expected somewhere around q8 = 3. 

To show how this q8 works, experiment b of session one is used as an example. Therefore D..x is 
written in the following form 

A = Skipu 
ux f ' (6.6) 

with U the bottom endwall velocity, f the camera sample frequency and skip the number of frames 
being skipped when using the algorithm. Here skip= 1 means that all images are used. The skip 
is used as a variable, all further setting in the configuration file are held constant. The most direct 
result is gathered, when plotting q8 versus yield. Detecting a particle in a sequence of minimal 
three frames will be used here as a criterion, so a velocity field could have been derived. On the left 
plane of figure 6.12, Y3 is plotted versus q8 • This Y3 is a nicely monotone decreasing function of q8 . 

When q8 increases only the better (less noisy) particle trajectories will remain. 
Twenty particle trajectories are fitted on curves in the rz-plane for every used skip, the average 

standard deviation measured has been used as an indication to determine the reliability of the found 
trajectories. The results are given on the right plane in figure 6.12. Lower values of q8 have higher 
standard deviation values representing a higher probability of mismatching. The long trajectory 
criterion with less mismatches is the combination of both figures. More longer trajectories are 
found when q8 is low, which comes down to going through the experiment with large steps. The 
steps should not be too large, because mismatches occur more often and determination becomes 
less accurate. So there should be some optimal value for q8 • 

Long particle trajectories are of real interest here and not finding particle trajectories just long 
enough to measure a velocity field. Therefore the average tracking length measured in frames is 
plotted versus the parameter q8 on the left plane of figure 6.13. It is remarkable that shape of the 
curve looks the same as the performance curve of 2D PTV, which can be found in Zoeteweij & van 
der Plas (2001). The position of the maximum is situated on a somewhat higher q8 , because for C 
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Figure 6.13: A verage tracking length in frames as a function of q8 is shown on the left side. On the 
right side the average tracking length measured in seconds is shown as a function of q8 • 

a rough approximation is made. The performance of 2D PTV has been defined as T/ex = jB". Here 
a more straight forward method will be used. u,v 

The algorithm itself generates good results, when the average tracking length is long. When large 
steps are taken, many mismatches occur and will reflect in a not so long average tracking length, on 
the other hand when steps are taken too small, many matchings are needed and therefore particle 
trajectories are likely to be lost, due to Brownian motion. In the subsection 6.1.2, the path length 
is defined as a length in time, because that is the parameter of interest. The average path length 
defined in time units is plotted versus q8 on the right panel of figure 6.13. The range 1 < q8 < 10 
should be used to find long particle trajectories. For higher values of q8 the average particle tracking 
length measured in time becomes very small, because of the high quality constraint. It is always 
important to check if q8 is in the right range, especially when applying the tracking algorithm. But 
also before doing an experiment, because it is important to choose the right particle density. 

Varying the particle density causes a change in dn. When for example a low density is used, a 
high skip must be used to maintain a certain sample quality. This higher skip rate causes a lower 
spatial resolution of the particle trajectories measured. Instead of varying the skip it is also possible 
to vary the particle density, in this way the measurements a, b, c, d can be compared. In the left 
figure of 6.13, this reflects in point b with q8 = 18.9 (right from the top), point a with q8 = 24.6 
(more right from the top), point c with q8 = 12.3 (left from the top) and point d with q8 = 7.55 
(more left from the top). U sing roughly 200 detected parti cl es (,....., experiment b) can be seen as an 
optimum. 

The sampling quality factor of experiment b, which is described in paragraph 6.1.2, is q8 = 18.9. 
This is an extremely high value, especially when searching for long particle trajectories expressed 
in time, see the right panel of figure 6.13. As mentioned, q8 should be in the range 1 < q8 < 10. 
Increasing the skip from 5 to 30 leads to q8 = 3.1, which is still large enough to find reliable particle 
trajectories. To compare the results, the particle trajectories with q8 = 18.9 (left) versus the particle 
trajectories with q8 = 3.1 (right) are plotted in the rz-projection figure 6.14. 

Most important here is the increase from 36 to 75 complete particle trajectories found. Except 
from a few random jumps, the particle trajectories found are qualitatively good. If desired, these 
small jumps can be filtered by doing a simple curve fit. Due to the high skip, less wiggles, caused 
by camera vibrations during the first session experiments, are found. More (relatively) fast moving 
particles are found when lowering the q8 , as can be seen on the bottom of the cylinder, see figure 
6.14, were more particle trajectories are found than for higher values of q8 • This example shows the 
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Figure 6.14: All complete particle trajectories of experiment b projected in the rz-plane. On the 
left, all 36 complete particle trajectories with q8 = 18.9 are shown. On the right, all complete 75 
complete particle trajectories with q8 = 3.1 are shown. 

49 



importance of using q8 as a tool to find long particle trajectories. It is possible to reduce q8 even 
more, to for example q8 = 1.6. In that case 89 complete particle trajectories are found. However, 
at such a low q8 some trajectories are mismatched and the spatial resolution gets worse. Therefore 
q8 = 3 can be seen as an appropriate value. 
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6.6 Summary 

For both measurement sessions holds, that using a low particle density and turning off the prediction 
scheme leads to the best results. In the first session, 36 particles ( after optimization 75) have been 
followed during the complete steady flow experiment. This is a lot more than the 11 particles 
Speetjens could follow during his steady flow experiment. In the second session only one complete 
particle trajectory is found, because of the high particle density. The particle trajectory segments 
are smoother than the ones found in the first session, because the influence of mechanica! noise is 
reduced. When using low particle densities, using a prediction scheme is no more needed. lt is even 
better when no prediction scheme is used. This is advantageous, because this allows measurements 
on more complicated fluid flows, without predicting anything. 

The fluid flow depends entirely on the boundary conditions. For an accurate position measure~ 
ment of these boundary conditions, dots have been painted on both endwalls. These dots give 
detailed information about the 3D position of the endwalls, making comparison with numerical 
simulations much more accurate. An accessory effect is that the endwall velocity can be verified. 

The correctness of the calibration files and the algorithm can be checked by tracking the grid 
points of the 2D grid. These grid points should be moving nicely in the z -direction. 

An accuracy test has been carried out, by tracking particles seeded in the fluid while no forcing 
on the endwalls is applied. Most accurate are the x and y directions, where errors are roughly 
10 times smaller than in the z-direction. The measured error in the z-coordinate of the particle 
position is at most 0.03 mm. An average pixel diameter on the CCD camera is about 0.01 mm, 
corresponding to a length in the object space of 0.1 mm. This sub-pixel accuracy is achieved by 
using the gray weighted centre of gravity. 

The particle size is important: it should be large enough to obtain sub-pixel accuracy. On the 
other hand, the typical size of a particle should be smaller than 1 mm, because larger particles do 
not act like passive tracers. For smaller particles the particle density is less critica!, which is shown 
in equation (6.3). 

All experimental parameters and all tracking parameters set in the configuration file, form a 
complex system. Using the most important parameters, two quality factors have been defined. The 
first quality factor is the image quality Qi, which largely depends on the experimental settings, like 
light source, depth of field, the used particles and the optical settings. 

The second quality factor is the sampling quality q8 , which is determined by the configuration 
parameters and the particle density. The sampling quality gives a good indication of the accuracy 
of the results. The sampling quality should be larger than 1, otherwise too many mismatches 
occur. On the other hand it should not be chosen too large (>10), because the larger q8 , the 
fewer trajectories are found, as shown in figure 6.12. Using an appropriate value for q8 led to a 
large increase in the number of complete particle trajectories found. In total 75 complete particle 
trajectories without mismatches are found using q8 = 3.1. 

51 



Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

The performance of the 3D PTV measurement technique is improved considerably, with respect to 
tracking long particle trajectories. Steady flow has been used to perform an accuracy assessment on 
the 3D PTV measurement technique. The particle trajectories found are highly comparable to their 
numerical simulations. To find interesting Lagrangian information, the four-step cyclic protocol D 
has been introduced. A measurement using this protocol led to particle trajectory segments only, 
because in this experiment the particle density was too high. 

Using a steady flow, 75 particles have been followed during a complete experiment. This is a 
lot more than the 11 particles Speetjens (2001) could follow in his steady flow experiment. The 
three most important reasons contributing to this improvement are: a low particle density ( rv200 
particles), no temporal extrapolation prediction and an optimal value for q8 ( rv3). 

3D PTV is proven to be a very accurate measurement technique. Results are shown to be 
sub-pixel accurate and the long particle trajectories are highly comparable to their numerical 
simulations, because boundary conditions have been measured and compensated for. 

Based on the 75 particles, which have been followed during a complete steady flow step using 190 
initially detected particles, it can be expected that about 4 particles could have been followed during 
a complete forcing protocol D. Thus it can be concluded, that the currently used experimental 3D 
PTV set-up can be used to find particle trajectories long enough to follow one complete forcing 
period in protocol D. 

Protocol D has been investigated analytically and numerically. Periodic-1 lines are found and 
compared to the periodic-1 lines Anderson (1999) found in his cubic domain. Tools developed 
by Speetjens and others, are proven to be useful for investigating this protocol. The mixing 
properties of protocol D are inferior to the mixing properties of the protocols Band C, introduced 
by Speetjens. However, protocol D can be used for long-time experiments, while the protocols 
Speetjens introduced are ill-suited for this purpose. In terms of integrable states, which can be 
found in Speetjens (2001), protocol D can be classified as an integrable state II system, just as 
protocol A and protocol B. 

A lot of pioneering work has been done with respect to 3D PTV. This report can be used as a 
starting-point fora user's guide for 3D PTV. Results gathered till thus far are very promising. It is 
reasonable to expect that much more longer particle trajectories are found, when the light intensity 
and particle size are increased. A more intense light beam should be used to make particles more 
visible and increase the depth of field by using a higher relative aperture. Specialized particles with 
a diameter of 0.5 mm should be used because they are more visible, the difference between particle 
and noise is more pronounced and particle positions are more accurate because a better sub-pixel 
accuracy can be achieved. 
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7.2 Recommendations 

Although the camera frequency used in the experiments is 30 Hz (later 12 Hz), the effective sampling 
frequency is reduced to 1 Hz due to the high skip factor. In order to make fine-tuning of qs still 
possible, it is advised to use a camera sampling frequency of 6 Hz. Lowering the camera sampling 
frequency saves a lot of disk space. 

The following three relatively simple improvements will lead to considerably more long particle 
trajectories: 

• use amore intense light source, such as a 500 W slide projector or even a sky-spot. However, 
a brighter light source will cause more unwanted reflections; 

• use round particles with a diameter of about 0.5 mm, having the same density as the used 
silicon oil; 

• improve the blob detection scheme in the tracking algorithm. This makes blob size selection 
possible. Currently, the blob detection scheme is limited to 10 frames. 

The three suggested improvements are very promising, especially when all three are implemented. 
When even more improvement is desired after applying these improvements, more rigorous changes 
in set-up are needed. Two options are: use a fourth camera and try to improve the depth of field. 

Virant (1997) mentioned that four cameras are almost obligatory when searching for Lagrangian 
particle information. This indicates that using a fourth camera can be profitable. lt will cost about 
50,000 euro's, which makes this solution quite expensive. A special frame should be designed to 
attach the cameras. Such a frame can also be very useful when using three cameras, making the 
cameras more steady. 

Depth of field is hard to optimize. Apart from using more light, the most obvious way is 
decreasing the enlargement factor by using a larger cylinder. Therefore, the complete experimental 
set-up should be enlarged. This will not result in a better depth of field alone, but the angle 
between camera and optical axis can be increased too, leading to a higher accuracy performance in 
the z-direction. Also the use of a fourth camera is more effective, when using a larger cylinder. 
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Appendix A 

3D PTV Configuration file 

EExperimentTag 
ex pl. 
0 
23 
l 
0.08333 
EEndTag 
44 
l 50 5 
1 50 
1 50 4 
1 50 
l 50 5 
l 50 
3 24 3 4 3 8 4 exp 1. 
O.l 
3 .5 
l 1.0 0.03 

# EExperimentTag 
# basefilename (bfn) 
# begin 
#end 
#skip 
#time between frames 
# EEndTag 
# minmax substractie filter: int xsize, int ysize (window = 2n+l) 
# blobdetectl: int min, int max, int threshold 
# blobValidatorl: int min, int max 
# blobdetect2: int min, int max. int threshold 
# blobValidator2: int min, int max 
# blobdetect3: int min, int max, int threshold 
# blobValidator3: int min, int max 
# F3DLineMapper: double dZ, int nZCalibr. int nCam, int imürde, int imCrürde. int lnürde, int lnCrürde, bfn 
# F3DLocator: double maximummatchingrange 
# matcher: double maximummatchingrange 
# FPredictor: order, gaussian delta. minimum particles 
# empty line required 

Figure A.l: The 3D PTV algorithm configuration file. 

Figure A.l shows how a 3D PTV configuration file should look. The file contains 19 lines all 
describing what the 3D PTV algorithm has to do. Note the explaining text on the right should be 
placed under the empty line 19 or must be deleted otherwise the configuration file will not work. 
The basefilename is chosen in line 2, here 'expl.' is chosen and thus this configuration file should 
be named 'expl.cfg'. The output of the 3D PTV algorithm will be 'expl.log' and 'expl.prt'. The 
log file contains information about what the algorithm <lid, odd things can easily be detected by 
exploring this file. The prt file contains all the information about the tracked particles. The post 
processing program f3dpostES1.0new can be used to extract the particle information and put it in 
a certain form. 

The lines 3 and 4 define the first and the last maximal possible frame number ( depending on 
skip) to be processed, respectively. Line 5 defines the (frame)skip, telling how many frames there 
will be skipped before processing the next frame. The time between two successive frames is given 
in line 6, which is determined by the used camera sampling frequency, where in this case 12 Hz has 
been used, resulting in the time between two frames of 1/12 s = 0.08333 s. 

Line 8 defines the window size for the square min-max sub filtering procedure. In line 9 the 
minimum and maximum allowed blob size for camera 1 are given and a low single threshold will be 
subtracted after the sub-min max filtering procedure. Note that minimum and maximum blob size 
does not work when applying the peak detection scheme. In line 10 the minimum and maximum 
blob sizes are repeated. Lines 11, 12 and 13, 14 are the same parameters for the cameras 2 and 3, 
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respectively. Eventually different values can be used for each of the cameras. 
In line 15 a couple of camera line mapping parameters are defined. Double dZ is the distance 

between two successive 2D calibration images, int nZCalibr represent the taken number of calibration 
image positions, int nCam is the number of cameras being used, the two numbers thereafter 
represent the mapping order ( = n) xn, yn and the mapping cross order ( = n + m) xnym, translating 
the 2D mapping functions from pixel coordinates into world coordinates, respectively, the last two 
numbers are the same but now to attach the particles to the closest perspective lines. 

Line 16 defines the maximum matching distance of the detected particles to the perspective 
lines, used as a square, which means that the maximum matching distance of the matching lines 
here is JO]" in the physical space. In line 17 the maximum matching distance is given, this value 
depends on the used skip. A good measure for this, is the displacement of the moving endwall 
between two successive processed frames. In line 18 the prediction parameters are declared. If the 
order number is 1, no prediction will be used. Order 2 refiects a linear tempora! extrapolation. 
For the spatial interpolation the Gaussian approach will be used, with <J as Gaussian delta and 
minimum particles is used as a kind of a threshold to decide using the approximation or not. The 
last line is a white line. 
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Appendix B 

How to find all particle trajectories of 
a 3D PTV experiment 

#!/usr/bin/aw k -f 
BEGIN { 

if(ARGC!=4) 
{ 

print; 
print" totaltrack, Eindhoven University of Technology, Arnold van der Starre, (c) 2002" 
print 
print" usage: samples prtfile outputfile": 
exit; 

command = sprintf("/home/arnold/bin/f3dpostESl.Onew 0 o/od f o/os » %s",ARGV[l],ARGV[2],ARGV[3]); 

) 

print com mand; 
system(command); 
command = sprintf("echo »%s",ARGV[3)): 
system (com mand): 

for(i= 1 :i<=A R G V [ l ]-1 ;i++) 
1 

# command = sprintf("echo »%s",ARGV[3]): 
# system(command); 

command = sprintf("echo %04d » %s",i,ARGV[3]); 
system (co mm and); 
command = sprintf("/home/arnold/bin/f3dpostESl.Onew o/od o/od no/os» o/os'',i,ARGV[l]-

i,ARG V [2],A RG V [3 ]); 
print com mand; 
system (com mand): 
command = sprintf("echo »%s",ARGV[3)); 
system (com mand); 

Figure B.l: A method to write all measured particle trajectories in just one file. 

By using a clever combination the options f and s in the post processing routine f3dpostES 1. Onew 
all particle trajectories of a complete experiment can be written to a single file. This can be done 
by using the routine totaltrack shown in figure B.I. When using this routine, the path settings 
should be adapted. The routine has been created by using AWK. 

usage : totaltrack samples prtfile outputfile. 
This routine starts to find all particle trajectories of the 'prtfile' beginning in frame 0 and 

following them until the end of their trajectories or until framenumber samples -1 has been reached 
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and write it to 'outputfile'. In every following step, first the frame number will be written to 
'outputfile' and thereafter all newly found particles belonging to that frame and corrected for their 
path lengths will be written to 'outputfile'. All particle trajectories written in 'outputfile' are 
separated by a white line. For the parameter 'samples' principally all values can be used, however 
always use an positive integer value at least 2 smaller than the total number of processed samples 
by the 3D PTV algorithm, because the end of the 'prtfile' file contains some errors. 

Now all particle trajectories of a complete experiment are written into a single file in a chronolo­
gical order. To work with the file it has to be read by some data processing program, therefore 
Matlab will aften be used. Reading data with irregular farms like this in Matlab is not very 
common. First idea is trying to put all information in a 3D array, because three variables can 
be used, namely: Particle number, Particle length and Particle position, with the particle position 
written in 4 coordinates x, y, z and some error. Where the error is the measured square distance 
between the particle and the nearest found perspective line. The framenumber can be put in ID 
array later on. The gathered 3D array grows incredible large and is barely to handle, because all 
dimensions must be set maximal, while pathlength for example highly alters. Using a cell array 
farms a good alternative. In this array every cell number represents a particle, containing all the 
particle positions and the particle length in a dynamic 2D array. Using the cell array makes it is 
possible to read all found particle trajectories of a complete experiment in Matlab. 

This reading in is far from trivial and therefore a possible reading procedure will be given here. 
The problem will be tackled by reading first the 'outputfile' rule by rule and keep information 
as blocksize and frame number in mind. Thereafter the information is read again but now in 
black form, this can be done because now all array sizes are known. How this can be done, is 
shown in figure B.2. This routine needs the 'outputfile' containing the particle trajectories only. 
Some additional information is needed when explicit time information is wanted. This additional 
information is given by: the used camera sampling frequency freq, the frameskip used in the 3D 
PTV configuration file and the first frame where particles are seen to be moving for the first time, as 
variable firstM frame. The output of this routine is cell array C containing all particle trajectory 
information. Time information is given in a very basic form as variable pframe, telling in which 
frame part iele i is detected for the first time. U sing C { i} gives the complete part iele trajectory of 
particle i. The x, y, zand the error position coordinates are placed in the rows of the cell element 
C{i} the columns represent the sample moment. The Matlab command 'plot3' can be used to plot 
3D particle trajectories. For example 'plot3(C{i}(l,:),C{i}(2,:),C{i}(3,:))' plots the complete 3D 
trajectory of particle i in the measured coordinate units. 

Till thus far nothing has been done with the additional time information. Beginning times and 
ending times of the particle trajectories can be calculated by using the additional information. A 
routine to do so is given in figure B.3. This routine determines all the beginning times tü( i) and 
ending times t _eind( i) of all individual particles i. The used time scale is made dimensionless 
by using the dimensionless displacement D2 as measure, which is in the steady flow case ( n = 1) 
equal to the final time t _total of the experiment. The beginning and ending times of the particle 
trajectories aften form a good criterion whether particle trajectories are useful or not. 
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close all 
clear all 

%inlezen willekeurige file in blokken met verschillende lengten 

path name = ['C :\A fstud\m atlabfiguren\experim enten\']; 
filename =['zeromotion'] 
firstMframe = 4; 
freq = 30: 
frameskip = 5; 

file= [pathname filenamel 

fid=fopen(file ,'r'); 
n_part= 1: 
blocksizc(l )=0: 
begin frame( l )=0: 
j = 1; 
while feof(fid)==Ü 
a = fgetl(fid); 
p=length(aJ: 

if p> 10: 
blocksize(n_part)=blocksize(n_part)+ 1; 

end 
if (p==0) & (blocksize(n_part)>Ü): 
n_part=n_part+ 1: 
blocksize(n_part)=Ü: 

end if p==4: 
beginframeUl= n_part: 
l=j+I, 

end 
end 

frewind(fid) 
n_part = n_part -1 

k = l: 
for i= 1 :n_part: 
if beginframe(k)==i jan=fscanf(fid,'% f',[ 1.1 ]): 

if k<length(beginframe) 
k = k+I; 
for m=l:j 

if beginframe(k)==beginframe(k-1 ): 
jan2=fscanf(fid,'% f',[ 1, 1 ]): 
if k<length(beginframe): 
k = k+ l: 

end 
end 

end 
end 

end 
pframe(i)=k-1: 
C { i 1 =fscanf(fid,'% f'.[ 4,blocksize(i )]); 

end 
fclose(tïd): 

Figure B.2: A Matlab routine putting all particle positions of every single particle trajectory in 
cell array C. Each element C{ i} contains the complete position information of particle i. Time 
information in a basic form is given by pframe. 
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i2= 1 
if i2== 1 

n = 1; 
D2 = 5; 
l_total = 49; 

begin frame(length(beginfram e )+ 1 )=n_p art+ 1; 

for i= 1 :n_part 
tO(i)=(pfram e(i )-firstM frame)* f ram esk ip * n * D 2/(freq *t_lotal ); 
if lÜ(i)<Ü 
tü(i)=O; 

end 
if t0(i)>n*D2 
tO(i)=n*D2; 

end 
end 

t_eind( 1 )=0; 
for i= 1 :n_part 
t_eind ( i )=(pframe(i)+ blocksize(i)-1-firstM frame)* fram eskip*n * D 2/(freq *t_total); 
if t_eind(i)<O 
t_eind(i)=O; 

end 
if l_eind(i)>n*D2 
t_eind(i)=n*D2; 

end 
end 

end 

Figure B.3: An additional routine to determine the beginning and ending times of all the particle 
trajectories. 
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Appendix C 

Addition to the non-inertial limit of 
protocol D 

In paragraph 4.2 is concluded, that both planes x = 0 and y = 0 are planes of time-reversal 
symmetry. This conclusion is based on the analysis of tracer particles released on the periodic lines, 
followed a complete forcing in protocol D. Times of special interest are: t = T /8, 5T /8 (symmetry 
plane y = 0) and t = 3T/8, 7T/8 (symmetry plane x = 0), thus always half away each forcing step. 
To prove these planes really are the planes of time-reversal symmetry, an analytically analysis is 
given in paragraph C.0.1. 

Recently, it appeared that in the limit of Re = 0 the simulated Poincaré maps by using the 
spectra! method are very different to the Poincaré maps simulated by the semi-analytica! Shankar 
method. The Shankar method is used in paragraph 4.1. In paragraph C.0.2 this problem is further 
investigated. 

C.0.1 Analysis of the symmetry planes 

In paragraph 3.2 the analytically analysis to find the 180° rotation symmetry along the line L 8 is 
given. This analysis is carried out, starting at t ~ 0 till t = T under forcing conditions forcing 
protocol D and exploiting the symmetry relation S, leading to the rotation symmetry along the 
line L 8 • The special times, each time half away a forcing step, can be exploited, because the forcing 
protocol D is periodic and repetitive. For example one can start at t = IT /8 and follow the flow 
till t = 9T /8, this must give similar results as when starting at t = 0 till t = T. 

To find symmetry plane y = 0, the symmetry operator Sy is introduced, which is defined as 
Sy(x,y,z) = (x,-y,z). An adapted form of forcing protocol D starting at t = T/8 is used. This 
adapted protocol is described by 

(C.1) 

For the derivation of the global time-reversal symmetries, the symmetries of every single forcing 
(steady flow) step are exploited, see paragraph 2.5. A special property of protocol D is that step 4 
is the inverse of step 2, this results in 

and (C.2) 

Substitution of (C.2) in equation (C.1) leads to 

<I> = FihP-21 F3F41 
F1h· (C.3) 

Every single step exhibits two symmetry planes: an ordinary reflection symmetry in the radial 
plane aligned to the forcing direction and a time-reversal symmetry orthogonally to that plane, see 
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Speetjens (2001). Four of these symmetry relations are needed to derive one of the time-reversal 
symmetries. The first needed are 

SyF2Sy and thus F21 = SyF21Sy, 

SyF"31Sy, 

SyF2Sy and thus F21 = SyF21Sy. 

(C.4) 

Substitution of the three inverse symmetry relations of equation (C.4) into equation (C.3) and 
sandwich the equation between Sy gives 

(C.5) 

To complete the inverse relation the following single step symmetry relation is needed: 

(C.6) 

Substitution of the last relation of equation ( C.6) and using SySy = I results in the global symmetry 
relation 

(C.7) 

The last equation proves that the plane y = 0 is a plane of time-reversal symmetry under forcing 
conditions of protocol D. 

The same mathematica! structure can be used, starting one step later, to find that plane x = 0 
is a plane of time-reversal symmetry under forcing conditions of protocol D too. To find symmetry 
plane x = 0, the symmetry operator Bx is introduced, which is defined as Sx(x, y, z) = (-x, y, z).The 
adapted forcing protocol D is described by 

with F2h = F~12 . (C.8) 

Another property of protocol D is that step 1 is the inverse of step 3, this results in 

and (C.9) 

Substitution of (C.9) in equation (C.8) leads to: 

<I» = F2hF31F4F11F2h· (C.10) 

Four of these symmetry relations holding for a single step are needed to derive one of the time­
reversal symmetries. The first needed are 

BxF1Sx and thus F11 = SxF!1Sx, 

SxF3Sx and thus F31 = BxF"31Sx 

SxF41Sx. 

(C.11) 

Substituting the three inverse symmetry relations given in equation of (C.11) into the equation 
(C.10) and sandwich the equation between Bx gives 

(C.12) 

To complete the inverse relation the following single step symmetry relation is needed: 
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Figure C.l: Poincaré map of a tracer particle followed over 5,000 global periods T. On the left side 
the Shankar method is used and on the right si de the speet ral method is used (Re = 0). 

(C.13) 

Substitution of the last relation of equation (C.13) and using SySy = I results m the global 
symmetry relation 

(C.14) 

This equation proves that the plane x = 0 is a plane of time-reversal symmetry under forcing 
conditions of protocol D. Starting another one step later results again in the time-reversal symmetry 
plane y = 0 and when starting at the fourth step results again in the time-reversal symmetry plane 
x = 0, these are precisely the same symmetry relation half a global forcing period later, see also 
figure 4.4. 

C.0.2 Shankar method versus spectral method in the non-inertial limit 

Large differences are found between Poincaré maps, when using the different numerical simulation 
methods. To show the difference, a tracer is released at (0.1231,0.3912,-0.6510), which is the same 
starting point as for all other poincaré maps in this report, and followed under forcing conditions of 
Protocol D over 5,000 global time periods T. The Poincaré map obtained with the semi-analytica! 
Shankar method is shown on the left plane of figure 5.2. On the right plane the Poincaré map is 
shown, using the spectra! method. The methods use slightly different boundary conditions, but this 
can not cause these large differences, qualitatively seen both maps should be equivalent. 

To show more details, the complete trajectory over the first 100 global time periods is shown in 
figure C.2 using both methods, with on the left plane the Shankar method and on the right plane 
the spectra! method. 

The particle trajectory simulated with the spectra! method obeys to both time-reversal symmetries, 
which are proven in paragraph C.0.1. This particle trajectory is said to be double-symmetrie. The 
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Figure C.2: The tracer particle trajectory followed the first 100 global time periods T. On the left 
side the Shankar method and on the right side the spectral method is shown. The right plane figure 
is symmetrically in the planes x = 0 and y = 0. 

tracer particle trajectory simulated with the Shankar method is almost symmetrically in the plane 
y = 0, but definitely not symmetrically in the plane x = 0. Particle trajectories in the non-inertial 
limit should obey to the time-reversal symmetries, this is only seen when using the spectral method. 
Despite the slightly different boundary conditions, the spectral method gives qualitatively better 
results in the non-inertial limit when the flow is forced over a long time. The Poincaré map, when 
using the spectral method, is 1 dimensional, making the flow under forcing conditions of protocol 
D in the limit Re = 0 an integrable state III system. Such a system is comparable to the steady 
flow. At very low Reynolds numbers (Re = 1) symmetry relations are broken and the integrable 
state III system alters into an integrable II system. 

It seems that in the Shankar case, there is some numerical error braking the laws of symmetry, 
which is possibly caused by not using enough terms of the in fact infinite series. The Shankar method 
uses Bessel functions, which are known having not that good convergence. To do simulations the 
first 25 terms are used only. According to Shankar (1997), it is enough to use 20 terms, to gather 
a good picture of the flow field. Shankar focused on the steady flow case. It is possible that when 
applying forcing protocol D to the flow, more terms should be used, to require sufficient accurate 
results over long forcing times. 

The time-reversal symmetries are broken at very low Reynolds numbers. The Poincaré map 
simulated by using the Shankar method is qualitatively good comparable to Re = 1, when using 
the spectral method. 
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Appendix D 

Technology Assessment 

Transport of passive tracers is an important issue in a variety of physical and chemical systems, 
both in nature and technology. For example, in the geophysical context, the study of transport 
characteristics of passive scalars in flow systems is relevant to the problem of dispersion of pollutants 
in the atmosphere and in the ocean and to mixing problems in estuaries. In technological context, 
mixing processes are of crucial importance for polymer processing, (petro) chemica! industry and 
chemical reaction vessels, to mention only a few examples. Many of these mixing processes are 
essentially three dimensional. An illustrative example is the short-dwell coater, which is used to 
produce high-grade paper and photographic film, the structure of the flow field in the liquid pond 
can greatly influence the quality of the coating on the roll. A schematic view is given in figure D.1. 

Dynamic ,...........~ 
C?ntact'l~ 
Lme ~ 

Primary Vortex 
1111.,..,__ ____ Blade 

Figure D.l: A schematic view of a short-dwell coater from Shankar & Desphande (2000). 

In many practical situations the major challenge is to establish the most efficient mixing of 
certain components. Efficient mixing reduces energy costs and can prevent oversizing of industrial 
plants. Mixing processes in industry are often characterized by a three-dimensional viscous flow 
in a non-Newtonian fluid in a complex geometry. As a first step to understand three-dimensional 
mixing in a viscous fluid, a few simplifications are usually made by considering an incompressible 
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Newtonian fiuid flow in a relatively simple geometry such as a cylinder. Almost all phenomena 
that can occur are still possible after these simplifications. Examples of these phenomena are: 
eddies, secondary fiows, complex three-dimensional patterns, chaotic particle motions, instabilities, 
transition and turbulence. 

The 3D PTV measurement technique is a quantitative measurement technique following passive 
tracer particles in the fluid. Phenomena like the eddy structure or 3D mixing processes can be 
followed very accurately. The 2D PTV variant is already shown to be successful and is widely used 
in all kinds of experiments. 

65 



Bibliography 

Anderson, P. D.: 1999, Computational Analysis of Distributive Mixing, PhD thesis, Eindhoven 
University of Technology. 

de Groot, J. P. J.: 2001, Mixing measurements in stokes flow in a cylindrical container, Technical 
report, Eindhoven University of Technology. 

Nijdam, S.: 2000, Concentration measurements in a stratified fiuid using laser induced fiuorescence, 
Master's thesis, Eindhoven University of Technology. 

Ottino, J. M.: 1989, The Kinematics of Mixing: Stretching, Chaos and Transport, Cambridge 
University Press. 

Pedrotti, F. L. and Pedrotti, L. S.: 1993, Introduction to Opties, Prentice-Hall. 

Schreel, K. R. A. M., van der Plas, G. A. J. and Kieft, R. N.: 2000, Accuracy of a 3d particle 
tracking velocimetry method, 9th international symposium on flow visualisation . 

Shankar, P. N.: 1997, Three-dimensional eddy structure in a cylindrical container, J. Fluid Mech. 
342, 97-118. 

Shankar, P. N. and Deshpande, M.: 2000, Fluid mechanics in the driven cavity, Annual Review 
Fluid Mechanics 32, 93-136. 

Simons, P.: 1995, A comparison of two velocity measuring techniques in a laminar flow, 
Reportnumber woc-wet 95.051, Eindhoven University of Technology. 

Speetjens, M. F. M.: 2001, Three-Dimensional Chaotic Advection in a Cylindrical Domain, PhD 
thesis, Eindhoven University of Technology. 

Telionis, D. P.: 1981, Unsteady Viscous Flows, Springer, New York. 

Virant, M. and Dracos, T.: 1997, 3d PTV and its application on lagrangian motion, Meas. Sci. 
Techno[. pp. 1539-1552. 

Zoeteweij, M. and van der Plas, G. A. J.: 2001, PIV, PTV and HPV user's guide, Technica[ report, 
Eindhoven U niversity of Technology. 

66 


