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Summary 

This thesis reports on both experimental and theoretica! work performed in the 
groups AQT/b and AQT/a respectively. 

The experimental work concerns experiments on the road toa Bose-Einstein 
condensate (BEC) in metastable Ne. This road is first cooling and collecting 
a large numbers of atoms in a magneto-optical trap (MOT) after which they 
are transferred to a magnetic trap (MT) in which they are eventually evapora­
tively cooled. As a guide on this road on this road we need a reliable diagnostic 
method. Among other methods we use absorption imaging for diagnostics. An 
absorption imaging system, in which a shadow casted by an atomie cloud (illu­
minated by a near resonant laser) is registered and analyzed, is tested and found 
to be usable for the determination of the total number and spatial distribution 
of atoms in the atomie cloud. The system can also be used for temperature 
measurement via observation of the time dependence of the expansion of an 
atomie cloud. 

Another step is creating good initial conditions for the start of evaporative 
cooling. The colder and denser the atomie cloud is to start with, the better. 
Thereto we tried to make a er+ er- optical molasses between a MOT and a MT 
stage. Realization of this cooling method failed due to bad window coatings. 
Although that problem has now been solved, the pursuit of optical molasses was 
put to rest in favor of more essential steps. 

Essential to reach BEC is a small two-body collisional loss rate for our atomie 
sample when held in a magnetic trap. Since we use neon in a meta-stable state, 
Penning ionization plays a role causing the loss rate for two-body collisions to 
be large. By spin polarizing the atoms, we expect to be able to suppress this 
ionization process and thereby the loss rate. Measurements indicate an upper 
limit for the loss rate which would prevent us from reaching BEC. However, these 
same experimental observations can also be explained by a small two-body loss 
rate, but a large loss due to spontaneous evaporation from the magnetic trap. 
This situation provides good changes for the realization of BEC. 

The theoretica! work consisted in the analysis of interactions between ultra­
cold rubidium atoms. We combine the measured binding energies of four of the 
most weakly bound rovibrational levels of the 87Rb2 molecule with the results of 
two other recent high-precision rubidium experiments, to obtain exceptionally 
strong constraints on the atomie interaction parameters in a highly model inde­
pendent analysis. We are able to deduce dispersion coefficients up to C10 and 
Cll and the strength of the exchange interaction. Until now only theoretica! 
values had been available for all these parameters, except C6 . The comparison 
of 85Rb and 87Rb data, where the two isotopes are related by a mass sealing 
procedure, plays a crucial role. Due to the mass sealing we are able to deduce 
the exact number of bound states in the singlet and triplet 85Rb+85Rb and 
87Rb+87Rb interaction potentials. With the obtained interaction parameters 
we are able to predict e.g. scattering lengths and Feshbach resonances with 
an unprecedented level of accuracy. To demonstrate this we predict a number 
Feshbach resonances in 87Rb. 
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Chapter 1 

Introduction 

1.1 Bose-Einstein condensation 

Let us consider a cloud of bosons. From a quantum-mechanical point of view 
we can describe these particles as wavepackets with a characteristic dimension 
of the de Broglie wavelength [l] 

(2nli) 2 

mkBT' 
(1.1) 

with m the particle's mass, kB Boltzmann's constant, and T the temperature. 
As we can see from this equation the quantum-mechanical dimension of a par­
ticle increases with decreasing temperature. For low enough temperatures and 
high enough particle-densities the wavepackets start to overlap. At that point 
the cloud of bosons undergoes a phase-transition to a so-called Base-Einstein 
condensate. 

In 1995 Base-Einstein condensation (BEC) was observed for the first time 
and has stimulated many research groups around the world to pursue the ob­
servation of BEC in samples of elements other than rubidium as well; attempts 
with the alkalis H, Li, Na, K, and Rb have been successful [2]. Early last year 
two groups in Paris have been able to Bose condense a sample of metastable He 
atoms. In Eindhoven we pursue such a condensation for metastable Ne. 

The relation between the density and the quantum-mechanical dimension at 
which this transition occurs is expressed by the following relation [l] 

V = nÀ~b '.'.::::'. 2.61, (1.2) 

in which V is called the phase-space density and n is the particle density. At 
room temperature (T = 298K) the de Broglie wavelength for 20 Ne is ÀdB = 
5.6 · 10-11 m. At a pressure of lbar, the phase-space density would be V = 
4.4 · 10-6 . It is clear that under standard conditions BEC will not take place 
for 20 Ne, so we have to do something special. In chapter 2 an outline is given 
of some of the steps on the challenging road to BEC. 

4 
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1. 2 This thesis 

This thesis consist of two identifiable parts; an experimental and a theoretica! 
part. Although the major part focusses on the analysis of cold interacting Rb 
atoms (theoretica!), equal time has been spent on experimental work. The aim 
of the experimental part was the realization of a Ne* BEC. This work has been 
performed in a team of 5 people: the Gemini-team of AQT /b under supervision 
of prof. dr. Beijerinck and is discussed in chapter 2. In the last year this work 
has shown rapid progress and many new experimental developments have been 
completed. However, a choice was made not to report on this work in much 
detail for three reasons. First, due to the present stage of the project much of the 
experimental effort concerned the development of new experimental techniques 
limiting the amount of new physics. Secondly, this work has been clone on a 
time-sharing basis, causing much of the work to be completed by others. A final 
reason is the very limited time in which this report should be completed. 

The theoretica! part consisted of the continuation of Kokkelmans' work [3] 
on the interaction of cold Rb atoms and has been performed in the group AQT / a 
of prof. dr. Verhaar. The theoretica! analysis of cold rubidium interactions is 
discussed in a Physical Review Letter which makes up chapter 4, while chapter 
3 provides background information on the analysis presented in the Letter. 
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Base-Einstein condensation 
in metastable neon 
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Chapter 2 

BEC in metastable N e 

Introduction 

To achieve BEC for neon we have to increase the phase-space density to the 
point of D=2.61. This means that we have to collect a sample of neon atoms 
and manipulate it in such a way as to cool it as well as compress it, such that D 
increases. The most common approach to make a BEC is to first trap and cool 
atoms in a magnetic-optical trap (MOT) thereafter transferring the trapped 
cloud to a magnetic trap (MT). Optionally an optical molasses can be created 
in between the MOT and the MT stage to achieve a lower temperature and 
higher density after the transfer. The last step is evaporative cooling. These 
stages will be highlighted below in their respective order. 

Before we can discuss the properties of these stages some basic knowledge of 
the medium used is necessary. In the Eindhoven BEC experiment we use bosonic 
metastable 20 Ne in the 33 P2 state (Russel-Saunders notation), which has an 
internal energy of 16.6eV. This state has a lifetime on the order of 24s. Due 
to the relatively long lifetime we will from now on call this the (Ne*) 'ground' 
sate. When excited to the 33 D 3 state via a À~ 640.225nm (À the wavelength) 
photon the system will 'fall back' to the 33 P2 state and can therefore be regarded 
as consisting effectively of two levels, which is desirable for laser cooling. The 
transition has a linewidth r / (27r) = 8.2MHz and an on-resonance saturation 
intensity I 0 = 4.08mW /cm2 . 

2.1 Experimental setup 

Some aspects of the experimental setup, necessary for understanding the re­
maining part of this chapter, will be discussed in this section. An extensive 
description however is not given here and the reader is referred to [4, 5, 6] for 
more details. Figure 2.1 shows a schematic view of our setup. Shown are the the 
MOT laser beams and the MOT magnetic field coils, which will be discussed in 
section 2.2. In figure 2.1 three diagnostic tools are depicted: a photo-diode, a 
CCD-camera, and a channeltron. 

When the experiment is operated, a cloud of atoms is trapped in the area 
of intersection of the MOT beams in figure 2.1. The atoms feeding the trap 
are supplied by a slow atomie beam set up ( described in detail by Tempelaars 

7 
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Ne* 

MOT 

Photo-diode 

Figure 2.1: Schematic overview of the diagnostic setup. Not indicated in this 
picture is a light beam used for absorption imaging, directed in the z direction. 
The lenses and CCD-camera used to obtain the absorption image are bebind 
the depicted setup and are also missing in this picture. So-called compensation 
coils and coils for the MT are not depicted too. The 'Z' in the picture refers to 
Zeeman-slower. 

[4]). When trapped in a MOT (see section 2.2) the atoms will emit (previously 
absorbed) photons and thus fluoresce. A photodiode is used to measure the 
power of this fluorescence from which the number of trapped atoms can be 
derived. To reduce background signa!, the fluorescence signa! is led through 
an path of lenses and apertures. On this path a beamsplitter is included which 
redirects apart of the signa! to a CCD camera, the so-called fluorescence camera. 
This camera signa! is send to a TV, for live monitoring, and to a PC with 
framegrabber to be able to digitize and analyze the signa! from which the spatial 
distribution of atoms within the cloud and the volume of the cloud can be 
deduced. Above the point of MOT beams intersection, a channeltron is present. 
It can be used to count e.g. meta-stable atoms or ions which reach the front of 
the channeltron, situated 4cm above the center of the cloud. A grid is placed 
in front of the channeltron to discriminate between meta-stables and ions by 
simply applying a voltage to this grid. 

Not shown in figure 2.1 is the setup for absorption imaging. For absorption 
imaging we need a near resonant light beam to illuminate the could. This light 
beam propagates in the z direction. The cloud is focussed on a second CCD 
camera, the so-called absorption-imaging camera, which will register a shadow. 
This camera is also connected to a PC with framegrabber. Analysis of the image 
gives the number of atoms as well as the spatial distribution of the cloud. An 
absorption image is constructed from three images: 1) atomie cloud in light 
beam; 2) only the light beam; 3) background image. An example of such an 
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Figure 2.2: Example of an absorption image of the atomie cloud. The picture 
is taken 2.3ms after the cloud was released from a MOT. It is one of the five 
images used for the 2.3ms data-points of the graph in figure 2.5. From fitting we 
find ax = 2.lmm and ay = 2.6mm. The central optical density (correlated to 
the height of the Gaussian) is found to be 1.92, yielding a total number of atoms 
N = 109 (see text). The image was taken with probe beam detuning ó = !r. 

image is shown in figure 2.2. 
Also missing in figure 2.1 are the magnetic field coils for the MT. This 

magnetic field is generated by a total of fourteen coils in the socalled cloverleaf 
configuration [5 , 6], seven near each MOT coil. Together they produce the 
desired magnetic field of which the absolute value is shown in figure 2.3. By 
adjusting the current through the proper coils [6], the steepness of the trap can 
be changed as is shown by the lower curve in figure 2.3. This steepening of the 
trap is called compression. 

Figure 2.1 also lacks the so-called compensation coils, which produce a ho­
mogenous magnetic field at the center of the trap. Each dimension has one pair 
of Helmholtz coils, so there are in total six compensation coils. They can be 
operated per pair and compensate for the earth magnetic field (Btotai=O), hence 
their name. 

2.2 Magneto optical trap (MOT) 

Theory 

As explained above we have to manipulate a cloud of Ne* atoms in a highly 
controllable manner. Therefore a number of atoms is trapped in a so-called 
magneto-optical trap (MOT). The trapping principle is based on the combina­
tion of the presence of a magnetic field and a light field. This trap has to be 
loaded, which we do with an intense and slow beam of Ne*. The experimental 
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Figure 2.3: Absolute value of the magnetic field as function of the distance to 
the z-axis. The upper curve corresponds to an uncompressed trap; the lower 
curve to a compressed one. 

setup of this slow beam is described in Tempelaars' thesis [4] and will not be 
discussed here. 

To understand the principle of operation of a MOT we consider a two-level 
atom with a J=O groundstate (J the angular momentum quantum number). In 
zero magnetic field the excited, J=l, state has three degenerate sublevels. A 
magnetic field Ë splits up these sublevels according to [7] 

(2.1) 

with é;,.E the energy shift due to Ë, µthe atomie magnetic moment, µB the Bohr 
magneton, m1 the projection of the atom's angular momentum along the mag­
netic field axis, and g1 the Landé factor. Placing this atom in an inhomogeneous 
magnetic field Ë(x) = Cx (C a positive constant) we obtain an energy splitting 
as indicated in the lower part of figure 2.4. Next we introduce two oppositely 
circularly polarized counter propagating laser beams, the a-+ one propagating 
in the +x direction (see figure 2.4). These laser beams are both equally red 
detuned with respect to the m1 = 0 transition, i.e. the frequency of the laser is 
lower than the m1 = 0 transition frequency. 

If we now picture the atom to the right of the origin, the m1 = -1 level 
will be shifted downwards in energy with respect to the m1 = 0 level, while the 
energy of the m 1 = + 1 level is increased. This implies that an atom on the right 
of the origin is most in resonance with the a-- beam and will therefore scatter 
more photons from this beam than from the a-+ beam. For an atom on the left 
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Figure 2.4: Principles of operation for a magneto-optical trap. We have two 
counter propagating laser beams of opposite circular polarization. An inho­
mogeneous magnetic field splits the sublevels of the excited state, therefore an 
atom right of the origin is more resonant with the a- light and will therefore 
absorb more photons from this beam than from the other beam. The opposite 
holds on the left side, resulting on both sides in a net force directed towards the 
center. 

of the origin the opposite holds. Therefore an atom displaced from the origin 
wil! experience a force directed towards the origin. Also cooling of the motional 
degrees of freedom occurs due to the mechanism explained in section 2.3. 

Experimental 

To determine the temperature and the total number of atoms in the MOT we 
implemented a method called absorption imaging. If we want to measure e.g. 
the temperature of the MOT, we 'release' the atomie cloud and let it expand. 
By taking images at different times we can measure the expansion versus time. 
Because we use absorption imaging, taking an image disturbs the cloud such 
that we cannot take multiple images of one and the same cloud for reliable 
determination of the temperature. What we do is to make a new MOT cloud for 
each image taken. That means that a high reproducibility is desired. To reduce 
errors due to irreproducibility, several images are taken for the same delay. The 
image is taken with a CCD camera, which is connected to a PC. With the aid 
of the PC we determine the size of the cloud by fitting the absorption profile 
with a 2D-Gaussian. 

In figure 2.5 we see the diameter of an expanding atomie cloud released from 
a typical MOT. Each point corresponds to the average of five measurements 
(7x5 measurements are performed). The probe beam used to make the image 
has a saturation parameter s = 0.03 and a duration of T=50µs, which is chosen 
such that few photons are being scattered to avoid disturbance of the image. 
From the data represented in figure 2.5 we can deduce the temperature by 
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Figure 2.5: Horizontal dimension (rms radius) of an atomie cloud released from 
a MOT at t = 0. The density profile for an image is fitted by no exp{ -x; / (20})} 
(see figure 2.2) and each depicted point is the average of five images. The fitted 
curve (in this picture) obeys a2 (t) = a5 + kBTt2 /m, with ao=l.91(8)mm and 
T=0.90(5)mK. In this graph the temperature in the y direction is depicted. 

fitting the rms radii of the cloud with a2 (t) = a5 + k8 Tt2 /m, in which m is 
the mass of the atoms, kB Boltzmann's constant, t the expansion time, T the 
temperature, and a0 the rms radius of the cloud at time of release (t = 0). In 
the example of figure 2.5 we find a temperature T=0.90(5)mK, which is a typical 
temperature for the atoms. From the dimensions of the cloud and its optica! 
density, O'D = a A J~00 n( f)dz ( a A = 3>.2 /27r the absorption cross-section, and n 
the particle density), we can calculate the total number of atoms in the cloud [4]. 
The optica! density is related to the absorption we see in an absorption image 
and can thus be extracted from such images by fitting the absorption profile. 
For the example in figure 2.2 we find a total number of atoms N = 0.96 · 109 , 

which is also typical. The results show that we have been able to reproduce 
with metastable Ne the typical conditions for alkali atom BEC experiments [l], 
which is a first requirement for the Gemini project to succeed. 

2.3 Optica! molasses 

Theory 

When atoms are placed in a beam of light resonant with an atomie transi­
tion, the atoms will absorb photons. A photon carries a momentum fik (k the 
wavenumber) and this momentum is transferred to the atom when it absorbs 
the photon. When many absorbtion cycles occur (assume the light stays reso­
nant) the expectation value for the acquired momentum of the atom returning 
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Figure 2.6: Force experienced by an atom moving with velocity v in the direc­
tion field of two red-detuned counterpropagating laser beams. The detuning is 
8 = - r /2 and the intensity is s0 = 1. The dashed curves represent the force 
according to equation 2.2 moving in the indicated ± direction. The solid curve 
is the total force experienced. 

back to the ground state via spontaneous emission is zero, because of symmetry. 
However there is a net gain of momentum due to the absorption of photons. The 
total force which the light beam exerts on the atom is [8] 

F = tikr so 
2 1 + so + (28 /f) 2 ' 

(2.2) 

with r the natural linewidth of the transition, so = I / Io the on-resonance 
saturation parameter in which I is the intensity of the light and Io the on­
resonance saturation intensity, and 8 = WL - Wa the detuning in which WL is 
the laser frequency and Wa the atomie transition frequency. If the atom has a 
velocity iJ, w L has to be replaced by w~ = w L - k · iJ to account for a Doppler 
shift. 

If we now picture an atom moving along the x-axis and we introduce two 
counterpropagating red-detuned laser beams, the atom wil! experience a velocity 
dependent force as depicted in figure 2.6. lts kinetic energy is reduced due to 
the successive absorption of counterpropagating photons. A lower limit for the 
achievable temperature by this method of cooling is [8] kBTD = hr /2 (TD the 
Doppler temperature), fora detuning of 8 = -f/2. The Doppler temperature 
for Ne* is TD = 196µK. 

If the two counterpropagating laser beams have opposite circular polariza­
tion, we obtain polarization gradients within the atomie cloud and another 
cooling mechanism occurs, that reduces the lower limit towards the recoil tem­
perature. This is the temperature corresponding to the energy of one photon. 
For Ne* this limit is TR = (hk) 2 /(2m) ~ 2µK. 
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Figure 2.7: Signal registered by the channeltron above an atomie cloud in optical 
molasses, which starts at t=O. 

Polarization gradient cooling occurs for velocities much smaller than those 
involved in Doppler-cooling. Also in the a+, a- case, the cooling force arises 
from an unbalanced absorption of photons from both beams. While this unbal­
ance in Doppler-cooling arises from the Doppler shift, in polarization gradient 
cooling it arises from the velocity dependence of the distribution over Zeeman 
sublevels (i.e. among the different m1) [9]. In the presence of a magnetic field, 
a+ a- cooling does not take place: the Larmor frequency must be small so as 
not to disturb the distribution between the different mj due to the optical fields. 
This requires the magnetic field to be zero typically within several mG. 

Experiment al 

To make the initial conditions for the start of evaporative cooling more favorable, 
we have tried to create an optical molasses in the a+ a- configuration. We have 
tried to accomplish this as follows. 

First we load a MOT long enough to reach a steady state. Once the steady 
state has been reached we stop the loading by turning off the slow Ne* beam. 
After a delay, we turn off the MOT light followed by turning off the magnetic 
fields. After the MOT magnetic fields have completely decayed (which takes 
a finite time of "-'lms) the six trapping beams are turned on again for a few 
milliseconds creating the desired a+ a- configuration of light beams. For a direct 
indication of the temperature we observe the signa! detected by a channeltron 
(see figure 2.1), which registers metastable atoms and is situated 4cm above the 
trapped cloud. The observed signal has the profile shown in figure 2. 7. 

When the cloud shows cooling, the maximum of the curve in figure 2.7 
should shift to larger times, because the atomie velocities are smaller. We set 
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the 'compensation' coils to compensate for the earth magnetic field, creating 
B = O at the position of the cloud. The intensity and detuning of the a+ a­
beams are varied as is the duration of the molasses. The parameter-space is 
scanned to maximize the time between the signal peak at the channeltron and 
the start of the molasses (largest peak delay). The largest observed delay was 
90ms. According to an analysis of the signals [4] this should correspond to a 
temperature of approximately 40µK. When trying to measure the corresponding 
temperature by means of absorption imaging, however, the atom cloud as a 
whole was seen to be pushed away from the center of the trap in subsequent 
images, while no slower expansion than without the molasses phase was observed 
which should clearly have occured if the temperature was 40µK. This averaged 
velocity probably affected the indirect temperature measurement by means of 
the channeltron, leaving the channeltron peak-signal as an incorrect measure 
for the temperature. 

The velocity gained seemed to stem from an unbalance in intensity between 
the a+ and the a- beam, caused be the fact that we use 'retro-reflected' beams. 
This means that a a+ beam, after passing the trap ping chamber, is reflected 
and used as the a- beam (also passing a >./4-plate twice). The result is that the 
final a- beam perceived by the cloud has passed a vacuum window, with a bad 
coating (853 transmission on double-pass), two times more than the perceived 
a+ beam did. The unbalance can be eliminated by using six separate beams 
instead of 'retro-reflected' beams, but the setup lacks the laser power necessary 
for this solution. Using the compensation fields it is also possible to correct 
for this unbalance by setting B -:/- 0 but at the cost of sub-Doppler cooling, 
leaving the Doppler temperature as the lowest achievable temperature in this 
configuration. 

The experiments on optical molasses were clone at the time we also finished 
a new trapping chamber which should (and <lid) improve the bad vacuum of the 
trapping chamber in use at that moment. This new trapping chamber would also 
have vacuum windows with a better coating (measured transmission T=99.93 
on double-pass). There was a combination of two facts that made us abandon the 
molasses-project: 1) the new trapping chamber was finished and could replace 
the old chamber. Rebuilding and characterizing the new setup cost a lot of 
time; 2) Two groups in Paris realized Bose condensation with metastables very 
recently, stimulating us to drop all projects not directly essential for achieving 
a BEC and pursue condensation within short time too1 . While optical molasses 
helps to provide convenient initial conditions for evaporative cooling, it may not 
be essential. 

At the moment the new trapping chamber is installed and the setup is com­
pletely operational again. The limitation of bad window coatings is not present 
anymore and therefore optical molasses might well be possible in the new trap­
ping chamber, but up to now the molasses-project is put to rest until proven 
necessary for the realization of BEC. 

1 Actually this is also the advise both Paris groups gave us. 
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2.4 Magnetic trap (MT) 

Theory 

In a MOT, atoms can be trapped without restriction on the specific ground 
state level, i.e. on the projection of the angular momentum on the quantization 
axis. Magnetic trapping is based on the magnetic field dependence of the total 
atom energy. Since it is not possible to create a maximum in the magnetic field 
in free space [l], here we can only trap atoms whose energy minimizes with 
lowering magnetic fields. From equation (2.1) we know that these are the states 
with m1 > 0. We can make a magnetic field minimum with the cloverleaf trap 
of our setup [6]. Typical trapping frequencies are 46 and 350Hz in the axial and 
radial direction respectively. 

The total number of trapped atoms in a MT will decay over time due to a 
finite lifetime of the metastable state, collisions with atoms from the background 
gas, and Penning ionization. Penning ionization is a binary collisional process 
in which one atom ionizes and the other atom returns to its groundstate, 

Ne* + Ne* __, Ne + Ne+ + e- (2.3) 

in which the particles on the right have a (relatively) high temperature (TNe, 
TNe+ are of order 0(102K) [10]). Apart from the loss due to an untrappable 
end state, Penning ionization leads to undesired heating effects. This process 
might be suppressed up to 4 orders of magnitude by spin polarizing the atoms 
[11]. In this case we have on the left of equation (2.3) a total spin S=2, while 
only S=O,l can be formed by the end products, prohibiting the reaction. 

We can write down a differential equation for the time evolution of the 
number of atoms in a MT, 

(2.4) 

with T a time constant which accounts for the finite lifetime of the metastable 
state and background collisions, n the density of the cloud, and (3 the two-body 
collisional loss rate. By defining an effective volume \1eff · J n 2d3 r = N 2 equation 
(2.4) can be rewritten to 

. N N 2 

N=---(3-. 
T Veff 

(2.5) 

By measuring N as a function of N we can determine (3 by fitting if we know 
Vet!· 

Experiment al 

To determine N we do an experiment that consists of two almost identical parts. 
We start a cycle by filling a MOT with atoms and wait until a steady state is 
reached. Then we stop the loading of the MOT by turning off the slow Ne* 
beam, switch of the light and successively also the MOT magnetic fields. Then 
a spin polarization light pulse is applied (in a weak magnetic field), after which 
the MT magnetic fields are switched on. The spin polarization pulse is a u+ 
beam which drives the atoms to the m1 = +2 state, thereby not only reducing 
Penning ionization hut also increasing the number of trappable atoms. After 
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Figure 2.8: Fluorescence signal versus time during a cycle. The area labelled a 
is the last part of the loading of the MOT. Area bis the time the magnetic trap 
is on. Recapture in the MOT can be seen in the area c followed by d which is 
the time used to let the atoms move out of the area. Area e is the background 
signal (trapping lasers on) immediately followed by again a loading of the MOT. 

the spin-polarization pulse the MT is switched on and the cloud is compressed 
in ls by increasing the trapping frequency2 . 

Up to here both parts of the experiments are equal. The only difference 
between both parts is that at this point a storage period of 0.5s is inserted in 
one part and omitted in the other. Both parts then continue in the same way 
again. 

After the optional holding time in the magnetic trap, its magnetic fields are 
turned off. The remaining atoms are now recaptured in a MOT, by turning on 
the magnetic fields of the MOT again and then the trapping beams. After a 
short delay the magnetic fields and lights of the MOT are turned off again and 
after another delay (allowing atoms to leave the trapping center) turned back 
on fora background measurement, ending the cycle. 

During a cycle the fluorescence is recorded on a oscilloscope which is read 
out by a computer, see figure 2.8. The computer registers the fluorescence signal 
of: a) the steady state MOT; c) the recaptured MOT; e) the background signal. 
Part I and II of the experiment are repeated often in an automated loop for 
statistics. This experiment is repeated for various values of initial number of 
atoms (i.e. in the steady state MOT). Variation of the number of atoms is 
realized by lowering the output of the slow atomie beam. 

Part I and part II of the same experiment are taken together. Part I yields 
a relation between the number of atoms in the MOT (No) and the number of 

2If we would not increa.se the trapping frequency but just hold the atoms for a short time 
(~lOOms) in the MT and then release them from the MT and back into the MOT, we can 
deduce the MOT to MT transfer efficiency from a ftuorescence trace. 
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Figure 2.9: Graph of the total number of atoms in the compressed MT after a 
time ~t=0.5s, N2, versus the number of atoms initially in the MT, N1 . From 
this data a value for f3vol = 8 · 10-11 can be determined. Both isotopes seem 
to yield the same f3vol· The open dots refer to 20 Ne measurements, whereas the 
solid dots refer to 22 Ne. 

atoms in the MT right after the compression, which we denote by N 1 . Part 
II yields a relation between No and the number of atoms remaining after the 
cloud has spend a time ~t=0.5s in the MT, which we will denote by N 2 . From 
the experiment (differing only in initia! number of atoms) we thus obtain a 
relationship between N1 and N2, which are plotted in figure 2.9. Fitting N 2 = 
-a · N 1 - b · Nl to this curve yields the value for f3 = b~{'. We determine 
Veff from its relation with the temperature and the known shape of the trap 
[6]. Starting with a MOT ofT = 600µK the temperature in the compressed MT 
wil! be T = l.OmK. With typically N = 109 particles we find a centra! density 
of no= 6· 1010cm-3 and an effective volume Veff=0.079cm3 . Using these values 
we find a spin-polarized two-body decay rate f3vol = 8 · 10-11cm-3 /s from the 
data in figure 2.9. 

This value for f3vol is quite large, since it would imply that an atomie cloud 
of density 8 · 1011 would have a lifetime T=ls. This density has to be compared 
with a density of the order 1013 ,...., 1014cm-3 in a condensate [10] at which point 
the lifetime would be less than lms. This would be prohibitive for our chances 
to create a Ne* BEC. 

The result of this measurement may be masked by other effects. A possible 
effect which would yield too large a f3vol is spontaneous evaporative cooling. This 
effect can be imagined as follows. Assume a Maxwell-Boltzmann distribution 
(MB) for the trapped atoms. Atoms constituting the tail of this distribution 
have an energy larger than the depth of the trap and wil! therefore escape from 
the trap. The tail from the MB distribution is thus emptied, but due to collisions 
in the atomie cloud the tai! is refilled. These 'new' high-energy atoms wil! also 
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escape from the trap. This means an additional loss of the total number of 
atoms in the trap. The more efficiently the emptied MB tail is refilled, the more 
atoms will be lost from the trap. Since this rethermalization occurs via elastic 
scattering, which occurs at a rate nO"v (n the density, O" = 87fa2 , a the scattering 
length, and v the velocity), we expect greater losses for larger densities (as we 
observe in figure 2.9) and also for larger scattering lengths. The losses in the 
measurement can therefore also be explained by a combination of however a 
sufficiently large value of a, accounting for the spontaneous evaporative cooling, 
as well as a large value for /3, accounting for two body collisional losses. A larger 
lal must imply a smaller /3 and vise versa. Setting a = 0 consequently yields 
an upper limit for /3. Since setting a = 0 equals exclusion the spontaneous 
evaporation effect, the beta found above (/3pol = 8 · 10-11cm3 /s) is an upper 
limit. Setting /3 = 0 requires a rather large value lal ;::;:; 400ao to explain our 
observations. This would be a very desirable situation since we would loose 
no atoms due to two-body collisions and have a very effective rethermalization. 
This situation would be favorable for our changes to create a Ne* BEC. 

2.5 Current and future experiments 

Currently our group works on rethermalization experiments which have to pin­
point the value for the scattering length. A better knowledge of the scattering 
length gives more insight in the feasibility of a metastable Ne BEC. Signs of 
rethermalization, which is of great importance during evaporative cooling, are 
believed to be seen. 

The next step will be experiments with evaporative cooling which ultimately 
has to increase the phase-space density to 2.61. If the scattering length for 
20 Ne* collisions turns out to be largely negative, this would prohibit realization 
of a BEC with this isotope [l]. However a negative scattering length for 20Ne* 
collisions does not imply a to be negative for 22 Ne* collisions too. This means 
that the possibility for a 22 Ne* BEC is not excluded in advance in this case. 
Since we are at the final stage on the road to BEC and we can trap both isotopes 
with our experimental setup, the prospects for making a Ne* BEC in the near 
future with either one or both isotopes are quite promising. 

2.6 Conclusions 

In the experimental group an absorption imaging system was set up and tested. 
The tests of the absorption imaging system yielded values for the total number 
of atoms in a MOT (N ;::;:; 109 ). The system was also used to determine tem­
peratures of atoms in a MOT by observing the time dependence of the atomie 
cloud expansion on release. Temperatures around T=lmK were found, which 
in combination with the total number of atoms are values comparable to those 
in alkali BEC experiments. 

To decrease the temperature of the atoms when transferred from a MOT to 
a MT, we have tried to implement a O"+O"- optica! molasses stage. We were not 
able to observe a decrease in temperature, probably due to an intensity unbal­
ance of the O"+ and O"- beam, arising from bad window coatings in combination 
with the use of 'retro-refiected' beams. The setup has been changed and the 
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problem of bad window coatings is solved, but a change of priorities put the 
subject 'optical molasses' to rest. 

Without an intermediate stage of optical molasses the atoms are transferred 
to a MT and the loss rate from this MT has been measured for atoms in a spin­
polarized state. From the obtained data we can deduce limits for the two-body 
loss rate /3pol and the scattering length a. Setting a=O we find an upper limit 
to the two-body loss rate /3pol = 8 · 10-11cm3 /s; a combination which would 
prevent us from obtaining BEC, by too short a lifetime of the atomie sample 
and lack of rethermalization. By setting /3=0 the same data can be explained 
with a scattering length a:::::: 400ao; in this case the sample would not decay due 
to two-body collisions and the scattering length is large (comparison: a:::::: 100a0 

for 87Rb), which are good conditions to obtain BEC. 
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Intrad uction 

In this part of the thesis we will focus on the analysis of interacting cold rubidium 
atoms. In the group of prof. Verhaar, we have performed such an analysis. We 
have submitted this work as a Phys. Rev. Letter, which has in the meantime 
been accepted for publication. This paper has been included in this report as 
chaptere 4. Since Phys. Rev. Letters have to meet certain criteria, chapter 4 
is short on some details. In chapter 3 some aspects concerning the analysis are 
described more extensively, starting in the first two sections with a description of 
the interactions which we include in the calculations. Section 3.3 shows how the 
potential we use is constructed. Section 3.4 deals with the accumulated phase 
method and shows how we relate the properties of the different isotopes to each 
other. Section 3.5 contains some aspects of scattering theory like the concept 
of scattering length, and is followed by a brief introduction to coupled channels 
calculations. In section 3. 7 the physical background behind Feshbach and shape 
resonances is discussed, while the chapter is concluded with a description of the 
numerical procedure of the fitting process in section 3.8. 



Chapter 3 

Interactions of ultracold 
alkali atoms 

3.1 One particle Hamiltonian 

The atoms in group one of the periodic table make up the group of alkali atoms. 
All these atoms have one electron in an outers-shell which will be called valence 
electron throughout the remaining part of this chapter. This electron has spin 
s=~ while the nucleus has spin i which equals ~ for 85Rb and ~ for 87Rb. 

These spins combine to a total angular momentum of l = s + i with each l­
state (2f + 1)-fold degenerate. In total there are 2(2i + 1) possible 'ground 
states' for an alkali atom, split over two different f-states. Note that lower case 
characters are used to indicate single atom properties while we reserve capitals 
for two-atom systems. 

The above mentioned degeneracy for alkali atoms is lifted by interactions 
both within the atom and with external fields. The nuclear spin interacts with 
the electron spin, leading to the hyperfine splitting for an atom j, 

(3.1) 

with ahf the hyperfine constant. 
This atom j placed in a magnetic field Ë experiences a Zeeman energy 

z ( -) -Vj = 'Ye,j"S; - 'Yn,jij · B, (3.2) 

where 'Ye,j and 'Yn,j are the electronic and nuclear gyromagnetic ratios. The 
behavior of the valence electron in alkali atoms is influenced by the electrons 
filling the inner shells causing 'Ye to be slightly different from 2. While s and i 
have the same order of magnitude, the ratio 'Ye/'Yn is of order 103 . 

Equations (3.1) and (3.2) lead to the familiar graphs for the energy of the 
hyperfine states as a function of the magnetic field Bz as depicted in figure 3.1. 
We will label these one atom hyperfine states by 1 f, m f) even though f is only 
a good quantum number for B = 0. 

23 
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Figure 3.1: Energy of the hyperfine states of 87Rb as function of the magnetic 
field strength B. Quantum numbers identifying the different configurations at 
B = oo are indicated. 

3.2 Two particle Hamiltonian 

Due to the difference in mass of an electron and a nucleus the time scale for elec­
tronic processes is very short compared to the time scale of collisions. During a 
collision it is therefore possible for electrons to adiabatically adapt themselves 
to the nuclear motion, allowing one to separate the Schrödinger equation in an 
electronic and a nuclear part. Such a separation is called the Born-Oppenheimer 
approximation. In this approximation it is possible to solve the electronic equa­
tion for fixed positions of the nuclei and subsequently use the energy eigenvalue 
vc of this solution to calculate the nuclear motion. The resulting centra! in­
teraction vc represents all Coulombic interactions between the electrons and 
nuclei of both atoms. 

In a binary collision of alkali atoms there are two possibilities for the total 
electron spin. Since each atom has one valence electron s 1 = s2 = ~, the 
resulting total spin can be S = 0 or S = 1 corresponding to the singlet and 
triplet configuration. The centra! interaction can be written 

vc = Vs(r)Ps + Vr(r)Pr, (3.3) 

with Ps,T the projection operators on the singlet and triplet subspaces and r 
the interatomic separation. 

The fermionic character of electrons requires the total electron wavefunc­
tion to be antisymmetric. The antisymmetric singlet state must therefore be 
combined with a symmetrie spatial wavefunction and the triplet configuration 
combines with an antisymmetric spatial wavefunction. In the triplet case there 
is a vanishing probability of the electrons being between the nuclei. A triplet 
configuration therefore has a higher internal energy (larger repulsion between 
the nuclei) causing the corresponding interaction potential to be more shallow 
compared to the singlet configuration. These potentials, differing by twice the 
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Figure 3.2: Singlet and triplet groundstate potentials for Rb according to 
eq. (3.4). vdisp is also depicted. 

exchange energy Vexch, can be written as 

Vs,T = vdisp - (-1)8 
Vexch, (3.4) 

with 
-C6 -Cs -C10 -C11 -C12 

vdisp = -6- + -8- + ----w- + _1_1_ + ----u- + ... , (3.5) 
r r r r r 

in which Cn are dispersion coefficients with C6 representing the electric dipole­
dipole interaction. Higher coefficients with even n represent second-order contri­
butions of higher multipoles. The term C11 arises in third order and is negative 
(i.e. repulsive). Except for the extended analysis described in section 4.4, only 
the first three terms of eq. (3.5) are taken into account. 

For Rb, C6 has been determined both completely theoretically and from 
experiments. Higher-order coefficients Cs, C10, and C12 for Rb are until now 
only available from completely theoretica! determinations (see e.g. refs. [12, 
13]). The singlet and triplet potentials for Rb interactions are shown in figure 
3.2 and the relative importance of the contributing terms are depicted in figure 
3.3. 

An analytic expression for the asymptotic exchange energy in eq. (3.4) has 
been derived by Smirnov and Chybisov [14] and found to be 

v. J ..1.._1 -2or 
exch = r2a e . (3.6) 

In eq. (3.6), -a2 /2 is the atomie ionization energy and J is a normalization 
constant; r and a in atomie units (see table A.3). It is difficult to calculate J 
from first principles, because it is proportional to the fourth power of the nor­
malization constant of the valence-electron wavefunction [14], which is difficult 
to calculate. 
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Figure 3.3: Relative partial contribution of indicated terms to the total singlet 
potential Vs (eq.(3.4)). The fraction is defined to be Vlerm/Vs. For the C11 

contribution, which is negative, the absolute value is shown to illustrate the 
'competition' with a C12 contribution. Parameters resulting from our analysis 
as described in chapter 4 are used. These parameters are summarized in table 
4.1. 
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Figure 3.4: Centrifugal harrier for 85Rb. The stroked bar indicates the position 
of a measured 1=4 shape resonance used in our fit. The exchange energy (3.6) is 
negligible leading to the same potential for singlet and triplet at the interatomic 
separations regarded. 

The total Hamiltonian for two colliding ground-state alkali atoms becomes 

(3.7) 

in which the first term represents the kinetic energy with µ the reduced mass of 
the atoms and p the momentum operator. In the l, mi representation this term 
has the form 

p 2 
=-/ï

2 
(!:__l(l+l)) 

2µ 2µ 8r2 r2 . 
(3.8) 

The last term is a centrifugal harrier arising from the rotation of the molecule 
(see figure 3.4). The Zeeman term is straightforward. 

For collisions of two identical atoms the hyperfine term can be written as the 
sum of two parts each having different symmetry with respect to the exchange 
of electron or nuclear spin, 

V hf ahf (- - ) (-;' -;' ) ah! (- - ) (-;' -;' ) vhf+ vhf- (3 9) = 2/ï2 s1 + s2 · i1 + i2 + 2/ï2 s1 - s2 · i1 - i2 = + . . 

The convenience of this splitting arises from the fact that Vhf- is the only term 
coupling singlet and triplet states [15]. 

For the interactions mentioned up to now the system of two colliding atoms is 
invariant under independent rotations of the spin system and of the orbital sys­
tem around the axis through the overall center of mass parallel to the magnetic 
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field. Therefore the projection of the total spin angular momentum f~ + f~ = F 
and of the orbital angular momentum r along this axis are separately conserved 
during the collision. Since vc only depends on rand not on f = r/r lis even 
conserved as a 3D vector. As a consequence, mp and the rotational quantum 
numbers l and m1 are good quantum numbers. 

Two other interactions are present which are much smaller than the above 
mentioned effects. The first one is a direct interaction between the spins of the 
electrons via their magnetic moment. This very weak interaction is given by 

(3.10) 

with iîi the electron magnetic dipole moment of atom j. We leave out the much 
weaker magnetic dipole interactions in which the nuclear magnetic moments 
are involved. Second, the spin-orbit interaction Vso of the spins of the valence 
electrons is given by a complicated expression [16] that contains contributions 
from the magnetic fields generated by the orbital currents of electrons and nuclei. 
For interatomic distances larger than 13 to 14 a0 this complicated expression 
reduces for one valence electron outside closed shells in both alkali atoms to the 
well-known sum of two atomie spin-orbit couplings: 

2 2Efs -
vts = '°'-f·. s· L 31ï2 1 1 1 

j=l 

(3.11) 

with ~ the electronic angular momentum of atom j, and Efs the fine-structure 
splitting. 

Separate ground state alkali atoms (2S1; 2 ) have an electronic angular mo­
mentum l = 0 and therefore contributions of (3.11) vanish in this case. However, 
for small interatomic separations the electron clouds overlap and an important 
additional contribution arises as a second order effect in Vso via an intermediate 
coupling to electronically excited molecular states [17]. Now, Vso has the form 
of a sum of terms for the two valence electrons, 

2 

Vso= Lbi ·si, (3.12) 
i=l 

where bi is an orbital pseudovector like si (a normal vector under rotations but 
even under space inversion, instead of odd as for an ordinary vector). One can 
show by means of symmetry considerations that the only effect of Vso in our 
case is a splitting of the n = lmszil = 0 and 1 substates in the triplet subspace 
of Hilbert space. The triplet potential curve a3~t thus splits up into two curves 
Vn=1(r) and Vn=o(r). This splitting is similar to that induced by the magnetic 
dipole spin-spin interaction (3.10) between the valence electron spins whose only 
effect is also an n splitting. 

In total, we thus have a spin-spin interaction vss between the valence elec­
trons, consisting of two parts: 

(3.13) 

a magnetic dipole part and a part arising from Vso in second order. The dipole 
part, when expressed in the spin vectors si is given by 

2 

(vss)µ µo"fe [- - 3(- ')(- ')] = -
4 3 s1 · s2 - s1 · r s2 · r . 
nr 

(3.14) 
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The part (V"")"0 has effectively the same spin-angle structure (the factor be­
tween square brackets), but multiplied by a different radial factor. This factor 
has an exponentially decaying form for increasing r and has been calculated via 
an ab initia electronic structure calculation by Mies et al. [18]. 

The total v•• apparently has the structure of a scalar product of two irre­
ducible spherical tensors of rank 2: 

(3.15) 

As a consequence, it is invariant under the simultaneous 3D rotations of the 
internuclear vector r and the spin degrees of freedom, thus conserving the total 
molecular angular momentum. On the other hand, it is not invariant under 
independent rotations of rand the spin degrees of freedom. It therefore obeys 
triangle type S and l selection rules for a second rank tensor: it couples only 
spin triplet states and it couples for instance the l = 0 and 2 rotational states 
of the molecule. 

As mentioned before, the spin-spin interaction is rather weak and are there­
fore expected to influence the final results of our calculations only mildly. As 
these interactions do not conserve l, m1 and therefore introduce many states 
that have to be included in the calculations, slowing them down enormously, we 
leave out these interactions in the major part of the analysis described in chap­
ter 4. That these interactions cannot always be neglected is illustrated by the 
predicted (mixed channel) Feshbach resonance in chapter 4 which arises from a 
coupling between an l = 0 and an l = 2 state. 

3.3 Constructing a potential 

As explained in section 3.2 two interaction potentials suffice for the description 
of two interacting alkali atoms: a singlet and a triplet potential, see figure 3.2. 
When calculating the properties of two interacting Rb atoms we actually make 
use of the explicit expression for the potentials defined by eq. (3.4) only for large 
atomie separations (r ;::: 22a0 , in part of the analysis r ;::: 16a0 ). 

In this section the method for the construction of our potentials is described. 
Singlet and triplet potentials are treated separately because of the availability 
of a highly accurate inner part of the singlet potential. The singlet potential is 
treated first. 

Singlet potential 

Figure 3.3 shows that for small interatomic distances (r ;S 22ao) dispersion 
terms beyond C10 become important. For small separations more and more 
terms become important, and an analytic expression for Vs,T will contain in­
creasingly more terms. In this range the interaction potentials can more ac­
curately be obtained by ab initia calculations or by deriving a potential from 
experimental data. Krauss and Stevens have performed ab initia calculations 
for both S = 0 and S = 1 Rb potentials at small interatomic distances [19]. Seto 
et al. recently derived a singlet potential for Rb from 12148 measured transi­
tion frequencies (with uncertainties of 0.001 cm- 1) belonging to bound states 
having outer turning points up to 25ao. As in the latter work the potential is 
fit to the experimental data by matching differences between calculated bound 
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states to measured frequencies, only the shape of the potential is determined, 
still allowing a 'vertical' energy shift. Seto et al. used a 'modified Lennard­
Jones oscillator' [20, 21] model for their fit. This type of model allowed them 
to incorporate a known asymptotic behavior in their fit, for which they used a 
sole C6 /r6-term. 

For small interatomic distances we will use the singlet potential derived by 
Seto et al. [22] because of its high accuracy. Since we use eq. (3.4) for the 
long-range potential, a switch between inner and outer potential must be made. 
A logica! choice for the switching position would be to use the Seto-potential up 
to interatomic distances equal to the outer turning point of the highest bound 
state incorporated in Seto's fit. However a property of the MLJ model is the pre­
determined asymptotic behavior at large separations. Since Seto et al. chose 
a sole c6 / r 6-term ( c6 =4650ao) for this pre-determined asymptotic behavior 
we may expect less good agreement with the (less simple) asymptotic behavior 
implied by eq. (3.4). According to Nikitin [23] the description of the interaction 
potentials in asymptotic form will be valid down to ,....., 13ao. This allows us to 
choose the switching position at interatomic separations larger than ,....., 13ao. 

We want to use the Seto-potential to as large as possible separations, hut are 
limited by the boundary condition Seto et al. imposed. In the range left of the 
onset of the boundary condition the Seto-potential is purely determined by the 
measured transition frequencies and must consequently obey a full expression of 
the asymptotic behavior which we approximate by eq. (3.4). Studying figure 3.3 
we see an increasing contribution of dispersion terms beyond C10 with decreas­
ing interatomic separation. This implies that we cannot choose the switching 
point at separations too small using only the first three dispersion terms of 
eq. (3.4). Choosing the switching point at a separation too small would lead to 
a mismatch between the Seto-potential (locally having the behavior determined 
by the transition frequencies) and our potential (which then does not contain all 
dispersion terms which are important at these small separations). Note that the 
contributions of the Cu and C12 term are almost equal in magnitude thereby 
roughly cancelling each other as they have opposite sign, making the Jatter re­
striction on the position of the switching point less strong. Figure 3.5 illustrates 
the ratio of the potentials defined by Seto et al. and equation (3.4) for the 
first three dispersion terms taken into account. The Seto-potential is 'verti­
cally' adjusted to equal our asymptotic potential at 21.5a0 . The values used 
for the dispersion coefficients are the resulting values from our analysis (col­
umn A, table 4.1). Vertical adjustment at a larger separation moves the curve 
slightly downwards hut still shows a 'plateau' around 21.5a0 . The existence of 
the plateau underlines the consistency of our approach. 

We now construct the singlet potential by choosing the switching point rs 
around 21.5ao. As switching function we use 

1 [ ((r-rs))] f(r,rs,w) = 2 1 - tanh w (3.16) 

as illustrated in figure 3.6. At rs the Seto-potential is 'vertically' adjusted to 
equal our asymptotic potential at 21.5a0 . The singlet potential becomes1 

Vsing(r) f(r, rs, w) · Vseto(r) + 
1 N ote that Vsing is the constructed singlet potent ia! valid for all interatomic separations 

and Vs is the singlet potential in the asymptotic form of equation (3.4) 
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Figure 3.5: Ratio of the potentials constructed by Seto et al. and the poten­
tial according to equation (3.4) with only the first three dispersion terms taken 
into account. The Seto-potential is 'vertically' adjusted to equal our asymptotic 
potential at 21.5ao. The values used for the dispersion coefficients are the re­
sulting values from our analysis (column A, table 4.1). Vertical adjustment at a 
larger separation moves the curve slightly downwards hut still shows a 'plateau' 
around 21.5ao 
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Figure 3.6: The switching function eq. (3.16). The values for rs and w are 
21.5ao and 0.5ao respectively. The dots represent the positions where we require 
Vseto/Vs = 1 (see text). 

[1 - f(r, rs, w)] · Veq.(3.4),S=o(r). (3.17) 

Over a width 2w, Vsing switches from the Seto-potential to the asymptotic 
potential. The optima! value for w is determined by varying w and plotting the 
resulting potential and its derivatives. For non-optima! values of w 'bumps' and 
'clips' show up in the potential. It is checked that the potential and its derivatives 
look smooth. Choices for rs and w are made within the boundary condition 
that the highest bound states which were used by Seto et al. (outer-turning 
point ""'25ao) are correctly predicted by the newly constructed potential. This 
led to the choices rs = 21.5ao and w = 0.5ao. These values for rs and w can be 
used for the entire domain of parameter space we are interested in. This domain 
is spanned by the most recent values for C6, Cs, and J with their uncertainties. 
Variations to w on the order of 0.3 have no significant effect. The switching 
point rs may be chosen in the interval 21ao < rs < 23.5a0 without significantly 
changing the final results. 

In our paper we also carry out an extended analysis in which we assume 
the expression (3.4), including Cu and C12 terms, to be valid in an even larger 
interval extending to r values left of 21.5a0 . Comparing the (3.4) singlet po­
tential with the Seto potential opens a possibility to determine also C10 and 
Cu. Not exactly known is down to what separation eq. (3.6) will be a good 
approximation for the exchange potential as for smaller separations terms of 
higher order may gain importance. However, we believe that the asymptotic 
expression (eq. (3.4)) will be valid at least down to l6ao. 

In section 4.4 we perform an analysis with such an extended asymptotic 
potential function. Taking C12 from the literature [13] we determine values 
for the coefficients C10 and Cu as follows. At five values for the interatomic 
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separation r (l6.5a0 < r < 19.5ao, see figure 3.6), the Vseto values are treated 
as five additional 'experimental data' which we fit with the extended equation 
(3.4) assuming a standard deviation of 0.53. The final values for the 8 fitted 
parameters do not significantly depend on the chosen value for the standard 
deviation. The lower boundary of the 'interval of comparison' can be shifted to 
l8a0 without significantly affecting the end results of the fit. 

Triplet potential 

Note that in the extended analysis we assume the Smirnov-Chibisov asymptotic 
form for Vexch (as well as the extended vdisp) to be applicable down to inter­
atomic separations of 16ao. This implies that we can use Vexch to deduce the 
triplet potential between 16ao and rs from the accurate Seto singlet potential: 
we equate it to2 

Vsing + 2Vexch· Given the dispersion coefficients Cn and the 
parameter J we are now able to construct the singlet potential for all r and the 
triplet potential right of 16ao: see figure 3. 7. Left of 16a0 the triplet potential 
is less well-known. As mentioned above Krauss and Stevens [19] performed an 
ab initia calculation of the singlet and triplet potentials, and a comparison of 
the singlet potential with the (vertically shifted) Seto singlet potential left of 
l6a0 shows rather large differences, suggesting a similar limited reliability of the 
ab initia triplet potential in the same interval. Therefore, we prefer to apply a 
model-independent approach in this interval: the accumulated phase method. 

3.4 Accumulated phase method 

The accumulated phase method is an approach that enables one to bypass the 
insufficiently known potential left of an interatomic distance ro by means of a 
boundary condition on the wave function at r0 . The idea is that the boundary 
condition contains less parameters (actually three) than the detailed potential 
left of r0 . The only conditions that need to be fulfilled for the method to 
be applicable are that 1) The total coupled-channel scattering or bound state 
problem at hand should reduce to a set of decoupled channels described by a 
radial Schrödinger equation, 2) locally, in a small environment of r0 the WKB 
should be valid, enabling one to specify the boundary condition as a phase of 
the real-valued oscillating radial wave function, 3) the energy E and l values 
that play a significant role in the problem are in sufficiently small intervals that 
allow for a rapidly converging expansion of the WKB phase in powers of E and 
l(l + 1), thus containing a small number of parameters. 

Our scattering and bound state problems are ideal for summarizing the his­
tory of the atom-atom motion left of a radius ro in terms of an accumulated 
phase, although condition 1) is much less easily fulfilled than in previous work 
of our group. An ro value of about 19a0 used to guarantee that the singlet and 
triplet potentials differed by many times the part Vhf- of the hyperfine inter­
action coupling the singlet and triplet states for r < r0 . The excessive accuracy 
that we have to require in the present work would in principle lead us to ro 
values even left of l6ao. We can, however, avoid that by a subtle extension of 

2 We use Vsing here instead of Vseto to exploit the high accuracy of Vseto left of rs, keeping 
the triplet potential accurate right of rs because of the switch to the asymptotic expression 
in Vsing for large r. 
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the original accumulated phase method as we proposed it: do not neglect the 
infiuence of the Vhf- mixing completely. Take it into account in so far as it can 
be expressed in the pure singlet and triplet potentials in r ~ ro. 

To understand this, consider the coupled channel problem in the adiabatic 
approximation, i.e., the approximation in which the collision system evolves 
independently along the adiabatic potential curves found by diagonalizing the 
local total potential matrix in a socalled adiabatic basis of spin states [24]. Our 
calculations show that this approximation is valid up to interatomic separations 
a considerable distance larger than 16ao. Within this approximation Vhf- has 
two kinds of effects: it infiuences the adiabatic spin states and it infiuences the 
diagonal radial phases. Now, we neglect the latter so that we can work with 
pure singlet and triplet phases at ro, but include the former as it depends only 
on (the difference of) the singlet and triplet potentials at ro and not at smaller 
radii. 

With respect to conditions 2) and 3) above, we note that for the ultracold 
colliding atoms and near-dissociation bound states we are considering, E is very 
close to 0 ( < lµK) and l is at most 4. As a consequence, the infiuence of E, l 
and the isotopic mass difference on the local phase <P(E, l) at r 0 comes only from 
the WKB range, so that up to a constant 

(3.18) 

Moreover, the small E and l ranges allow a first order Taylor expansion [25] for 
<P(E, l) yielding 

dep 1 dep 1 cp(E, L) =</Jo+ E dE l=O + l(l + 1) dl(l + 1) E=O' (3.19) 

with 

dep 1 

dE l=O Jµdr 
li2k C( ..;µ (3.20) 

dep 1 

dl(l + 1) E=O J dr 1 
2kr2 e< vµ· (3.21) 

By making use of this method we introduce two (S=O,l) times three (</Jo, </JE, 
and <Pi) parameters which have to be determined by comparison of theoretically 
predicted to experimentally determined properties of cold collisions. In our fit 
we use ro = 16ao (see section 3.6). Up to this radius the singlet potential is 
accurately known (see section 3.3, [22]) so that we do not have to apply the 
accumulated phase method to eliminate uncertainties in this potential. The 
parameters <Po, <PE,s, <PL,S can therefore be calculated. The triplet potential is 
not known accurately enough up to r = 16ao and we are left with a total of 
three unknown parameters to characterize the inner part of the triplet potential. 
The analysis in which these three parameters are deduced from experiments is 
outlined in chapter 4 and results can be found in table A.3. 

Mass sealing 

As can be seen from eqs. (3.18) and (3.20) the phase parameters are mass 
dependent implying we would need a total of six parameters for a description 
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of 85Rb and 87Rb experiments. However Seto et al. [21] have been able to 
describe 85Rb and 87Rb interactions within a precision of O.OOlcm- 1 ,::::: 30MHz 
(up to r = 25a0 ) with a common potential. The fact that there is a common 
potential for the isotopes means that we can relate the parameters for these 
different isotopes by mass sealing. 

From eqs. (3.20) it is clear that cPE and c/>1 should be mass scaled as 

and (3.22) 

with R = Jm85/m81, in which mx is the mass of xRb. 
The mass sealing for <Po deviates a little from the above equations due to a 

mass independent contribution to the accumulated phase of 7r / 4 arising from 
the start-up of the wave function. Whereas for the boundary condition (i.e. 
the phase supplied in the calculations) the accumulated phase <Po may be given 
modulo 7r, it is of importance for the mass sealing to know the total phase. Since 
each 'modulo-7r phase-cycle' equals one additional (vibrational) bound state in 
the potential we can express the total accumulated phase as <Po = n/,7r + c/>o,1', 
with n/, the number of vibrational nodes up to the radius of interest (ro) and 
c/>o,1' the modulo-7r part of the total phase. Given the k ex vm behavior, the 
scaled 85 cf>0 ,7r becomes 

85</>o,'lr = R 87 c/>o,1' + (1 - R) ~ - 85n/,7r + R 87 n/,7r. (3.23) 

The last term gives rise to a number of discrete values for the mass-scaled phase 
depending on the number of nodes (up to ro) contained in the potential. The 
interval between these discrete values is approximately (1 - R)7r ,::::: O.Ol27r ,::::: 
0.036. A change of this order in the accumulated phase gives rise to an enormous 
change in the predicted values for the quantities to be fitted (see chapter 4). 
The performed analysis yields x2 = 0.5 for the number of nodes (up to r0 ) 

which are found to be correct and a x2 = 0(103 ) if this number deviates by 
one. This implies that we are able to deduce the number of nodes contained in 
the potential up to r0 and thereby the total number of bound states contained 
in the complete potential. 

3.5 The scattering process 

Phase shift introduced by scattering 

In this section the elastic scattering between two atoms is considered. To sim­
plify the picture we will only take into account the central interaction potential 
and describe the relative motion of the atoms. A movement towards the scat­
tering region can be written as a wave function moving in the z-direction with 
momentum lik: î/Jinc = exp(ikz). 

Since we are considering a centra! force problem there is spherical symmetry 
and we expect no dependence on the polar angle. After scattering the wave 
function can therefore be denoted by f(O)e~p(ikr) (with f(B) the scattering am­
plitude and (} the azimuthal angle) yielding the asymptotic expression 

ikz J ( B)eikr 
'Ij; = î/Jinc + î/Jscatt ,...., e + ' r 

(3.24) 
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with k = ..j2jiE / tî (the mutual potential energy is zero at very large separa­
tions). In the region where the interaction potential is not zero we must solve 
the Schrödinger equation to obtain the wave function. The Schrödinger equation 
fora central potential V(r) problem of a system with mass µis 

[ ~:
2 

V'2 (f') + V(r)] 7/J(f') = Eî/l(f'). (3.25) 

With k2 = 2µE/tî2 and U(r) = 2µV(r)/tî2 we can rewrite the Schrödinger 
equation to [V2 + k2 - U(r)]î/l(f') = 0. Recalling the spherical symmetry and 
substituting 7/1( r, B) = ~ Y ( B) in the last equation we can separate in to two 
differential equations. One for the angular part with Legendre polynomials, Pi, 
as solution. A second one for the radial part. We can write down a general 
solution [26] 

1 (X) 

7/J(f') = - L Aiui(r)Pi(cosB), 
r 

i=O 

(3.26) 

which is called the partial wave expansion, with ui(r) the solution of the radial 
differential equation (3.27). The choice for Ai must be such that (3.26) repre­
sents the sum of an incoming plane wave and an outgoing spherical scattered 
wave. The differential equation for the radial part is given by 

[::2 + k2 
- Ui(r)] u(r) = 0, (3.27) 

with U1(r) = U(r) + !(!r1l) the central potential plus a centrifugal harrier. At 
large interatomic separation U1(r) will be negligible and the solution to eq. (3.27) 
is sin(kr + ói). We define the solution, however, to be 

1 . ( l7r ) u1 ( r) ""' k sm kr - 2 + 'f/l , (3.28) 

such that the phase shift 'f/l will be zero if U(r) is zero. 
Substitution of (3.28) in eq. (3.26) yields the asymptotic form of the wave 

function 

1 (X) ( l ) 7/J(r)""' krt;Aisin kr-; +'f}i Pz(cosB), (3.29) 

which must be the same as eq. (3.24). Expanding eikz and f(B) as a summation 
over Legendre polynomials (z = r cos B) we can find [26] 

1 (X) 

f(B) = 
2
ik L(2l + l)(S1(k) -1)1l(cosB), (3.30) 

l=O 

with S1(k) = e2i7Ji the S-matrix element. The S1(k)-term arises from the inter­
atomic potential and the -1 following this term is the contribution from the 
unscattered incident wave. Equation 3.30 requires A1 = i 1(2l + l)ei7J1 • 

To illustrate how the phase shift arises we consider the solutions of (3.27) in 
the case of s-wave collisions (i.e. l=O). These solutions are 

sin(kr) 
cos(kr) · (3.31) 
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Only the sin(kr) gives a regular solution at the origin since the radial function of 
'Ij; is u(r)/r. In absence of a scattering potential u(r) must therefore be sin(kr). 
In presence of a scattering potential the solution must still be regular at the 
origin but at very large separations we now may also have the cos(kr )-term and 
this solution must be matched to the solution which evolved from the origin in 
the presence of the potential. The general solution at large separations can be 
written as 

c1 sin(kr) + c2 cos(kr) = csin(kr + 770). (3.32) 

In absence of a potential î]o = 0 and we only have the incoming wave at large 
separations. The presence of the potential thus introduces a phase 170· 

The absolute value of the scattering amplitude can be expressed as 

(3.33) 

To obtain the scattering cross-section O' we have to integrate dO' / df! which equals 
[26] l(B) over the complete solid angle n, yielding 

(3.34) 

Until now we have not taken into account the symmetrization requirement 
for identical particles. The boson symmetrization requirement puts in an extra 
factor of 2 in equation (3.34) [27] replacing 4n by 8n and the sum must be taken 
over even values l only. 

Scattering length and the VD quantum number 

The scattering length a is defined to be [28] 

a = _ lim tan [77o(k)J 
k->O k 1 (3.35) 

which can be interpreted as a hard-sphere radius. At short range the wave 
function undergoes many oscillations due to the inter atomie potential. At large 
separations the wave function is proportional to sin(kr + 770) = sin[k(r - a)J. 
This is a translation over a distance a compared to the case of no interaction at 
all (see figure 3.8) and represents the case of a hard wall at r = a. 

The scattering length is thus an important property in the description of 
cold collisions. The magnitude of the scattering length is determined by the 
position of the last bound state. Knowledge of the position of this last bound 
state is therefore desirable for determining the long range interaction potential. 
The relation between the last bound state and the scattering length is illustrated 
in the figures 3.9 and 3.10. 

In figure 3.9 the scattering length is plotted versus the depth of the potential. 
In this figure a model potential V(r) is used. lts depth is varied by multiplication 
by (1 + >.). Figure 3.10 shows the radial wave functions uo(r) for three different 
potential depths. For clarity the depth is strongly reduced to such values that 
the first bound state is just available in the second graph. This figure also 
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Figure 3.8: Radial scattering wave function u0 (r) for very low energies (lnK) 
in the case of no interaction potential (V = 0) and in case of singlet interaction 
potential (87Rb). Both have the same asymptotic behavior but the latter is 
displaced by the interaction potential over a distance a called the scattering 
length. 
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Figure 3.9: Scattering length as a function of the potential depth. A model 
potential V(r) is used which is adjusted according to (1 + >.)V(r). The upper 
axis denotes VD, the fractional vibrational quantum number at dissociation, 
which is integer (n is an integer) at the depths where a new bound state is 
supported by the potential. 



CHAPTER 3. INTERACTIONS OF ULTRACOLD ALKALI ATOMS 41 

30 

20 

10 (a) 
0 ... 

0 10 20 30 40 50 

...-
(/) 

-+-' 

c 30 
:::J . 
.0 20 
~ 

~10 (b) 
...- 0 ~ ..._ 

0 10 20 30 40 50 0 
:::J 

(c) 
0 

-10 

-20 

r (a
0

) 

Figure 3.10: Behavior of the wave function u0 (r) as a function of the potential 
depth. The Rb singlet potential is multiplied by )...' which is 10-5 , 2.5 .10-5 , and 
5 · 10-5 for the graphs ( a), (b), and ( c) respectively. Just as in figure 3.8 we can 
extrapolate the nearly linear behavior in the long range to find its crossing with 
the r-axis which equals the scattering length a. From the graphs we can clearly 
see that a must go through infinity at the point where the deepening potential 
crosses the depth at which it can support one extra bound state. When the 
scattering length equals +oo the linearly behaving wave function crosses the 
r-axis at +oo and that extra node in the wave function represents one extra 
bound state. This also shows the dependence of the scattering length on the 
position of the last bound state. For clarity and easy comparison the separate 
graphs are drawn on the same scale vertically and horizontally therefore the zero 
crossing in (b) lies outside the graph: a :::::: 90ao 
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illustrates the correlation of the position (depth) of the last bound state and 
the scattering length. 

For inelastic collisions the internal quantum state of one or both of the 
ingoing atoms changes during the collision and exits the collision in another 
quantum state leading to a complex valued T/O (in case of multiple open channels 
!Sol < 1 for the entrance channel: ISolei'Pso = e2

i 110 ). In such a case we can 
define a complex scattering length in which the imaginary part represents a 
damping of the scattering amplitude corresponding to losses in the entrance 
channel (the atom has another quantum state after the collision) [29] 

It follows that 

~(a) 

SS(a) 

So = e2k\.'l'(a) . e-i2k~(a). 

tan- 1 (~) 
~So 

2k 
~In [(~So) 2 + (~So) 2 ) 

2k 

(3.36) 

(3.37) 

(3.38) 

Note that the imaginary part of the scattering length may not be positive for 
the S-matrix element to be equal to or smaller than 1, which is demanded by 
conservation of flux, see also equation (3.30). 

A quantum number used in practice is the fractional vibrational quantum 
number at dissociation v D. This number indicates the number of bound states 
contained by the potential including the fractional piece of bound state con­
tained in the energy interval bounded by the highest true bound state (En < 0) 
and the energy at infinite large separation of the two atoms (E=O=asymptotic 
energy of the potential). As the potential is lowered to contain one additional 
bound state, vv becomes integer at the point where the next bound state en­
ters the potential. Accordingly it can be related to the phase shift T/o and the 
scattering length a. See figure 3.9 for an illustration of vv. 

In contrast to most of the literature on the subject we define vv as a lin­
ear function of the phase <Po, fixing the coefficients in the linear expression by 
equating v D to the actual v value of a vibrational level when that is actually at 
zero energy. This is a natura! way of interpolating between the integer v val­
ues, that avoids the near-dissociation quantum effects which lead to the more 
complicated relation between the integer part of v D and the number of bound 
states pointed out by Boisseau et al. [30]. In our case we have simply 

nb = entier(vv) + 1. (3.39) 

3.6 Coupled channels calculations 

As we have seen in section 3.5 we can deduce the properties of colliding atoms 
from the S-matrix. To obtain the S-matrix we perform so-called coupled channel 
calculations (see e.g. [29]) in which all interactions described in section 3.2 are 
taken into account, except for vss which are taken into account optionally. In 
these calculations the channels are integrated starting in the classically forbidden 
area up to a certain separation where they are matched to the radially inward 
integrated channels (all channels are first expressed in the same basis). The 
S-matrix is constructed in the matching process. 
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Figure 3.11: The exchange energy for two interacting Rb atoms. Indicated are 
the hyperfine energy for the two isotopes used in our analysis: 3.04GHz for 85Rb 
and 6.83GHz for 87Rb. The arrows (upper for 85Rb) indicate the domain where 
Vhf- is expected to be adiabatic. 

It can be shown (e.g. [15]) that Vhf- is the only interaction which couples 
singlet and triplet states. Therefore we can expect the coupling between these 
states to be negligible if the splitting between these states (2Vexch) is large 
compared to the energies of the hyperfine interaction (Ehf ). In figure 3.11 
the energies involved are plotted versus the interatomic separation. The region 
where we expect the coupling between singlet and triplet to be negligible is 
indicated by arrows, the upper one for 85Rb and the other for 87Rb. 

For separations smaller than 16a0 we are in the region of negligible singlet­
triplet coupling and the dynamics of the spin system is not coupled to the 
dynamics of the spatial system [15]. We speak of singlet and triplet channels. 
These channels stay decoupled up to a separation re where Vhf- is no Jonger 
negligible. 

For large separations the interactions between the atoms are negligible. The 
channels are now constructed from (anti- )symmetrized products of single atom 
hyperfine states. 

If at very large separations of the atoms the kinetic energy for a specific chan­
nel becomes negative (k imaginary) we will call these channels closed. Channels 
with a positive kinetic energy at very large atomie separations will be called 
open. 
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3. 7 Feshbach resonances and shape resonances 

What is a Feshbach resonance? 

In the following we will meet two types of scattering resonances: shape res­
onances and Feshbach resonances. In a time-dependent picture based on the 
scattering of wave packets, such resonances show up as quasibound states into 
which part of the probability flux is captured during the scattering process and 
again released after a characteristic time, the resonance lifetime. 

A shape resonance is the resonance type that is easiest to understand. They 
arise when a quasibound state occurs inside the centrifugal harrier for partial 
waves with l > 0 and they arise always in a single channel scattering process. 
The quasibound state would be truly bound (lifetime oo) in the limit of an 
inpenetrable harrier. Figure 3.4 demonstrates a g-wave (l = 4) shape resonance 
that actually occurs in the experiments on 85Rb that we are going to analyze. 

In contrast, Feshbach resonances occur in a situation of coupled channels 
with more than one internal state of the collision partners. We can divide 
the space of all possible channels playing a role in a certain collision in two 
subspaces, a P- and a Q-space containing the open and closed channel internal 
states, respectively. We can distinguish Feshbach resonances into two types: 
single open channel Feshbach resonances and multiple open channel Feshbach 
resonances. 

Both types of Feshbach resonance occur when there is a resonant coupling 
between the incoming wave and a bound state from Q-space, becoming available 
by e.g. tuning the magnetic field. In this situation the wave cannot exit in 
the channel to which the bound state belongs. We can interpret this type of 
resonance as a transition of the incoming wave to the Q-space, propagation in 
Q-space, and a transition back to P-space. 

As mentioned above, resonances in which only one open channel is available 
for the quasibound state to decay into are called single open channel Feshbach 
resonances. In these resonances only one open channel, the incoming channel, 
plays a role. The field of this type of Feshbach resonances has already been 
explored to a large extent. Some properties will be discussed below. In chapter 
4 we predict four resonances of this type for 87Rb + 87Rb scattering. These res­
onances are currently searched for by many groups, for instance at the Amherst 
College (Massachusetts) and at the Max-Planck Institute (MPQ) at Garching. 

Figure 3.12 illustrates the physical mechanism behind a cold atom Feshbach 
resonance. For a system consisting of two atoms infinitely far separated, one in 
a state 11) and the other in a state IJ), the total internal energy is denoted by 
Ehó) in the state bó). This energy will be a function of the magnetic field B and 
is simply the sum of the one atom internal energy states depicted in figure 3.1. 
From the discussion in section 3.2 we know that during a scattering the atoms 
can couple to all channels with the same m:F. The line labelled lb) in figure 3.12 
represents the total internal energy for a bound state with the same m:F; i.e. 
a state with another set of quantum numbers as bó) has, representing a state 
which might be formed during a collision (not excluded by selection rules). At 
zero magnetic field this state is not accessible due to its excess internal energy. 
If, however, the magnetic field is increased to the value where Elb) crosses El'Yó), 
the lb) state is accessible without change of energy and a strong coupling to 
this state will occur, giving rise to a single channel Feshbach resonance. The 
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Figure 3.12: Energy of Feshbach resonances. Shown are the threshold to the 
continuum i"fó) (initial energy: E"Y + Eó = Etat - Ekin) and the energy of a 
possible decay channel la,8) (m.r conserved). The line labelled lb) represents a 
bound state. The resonance depicted here is a multiple open channel resonance, 
because la,B) lies below the crossing point of Eb and the initial channel i"fó) 
threshold; otherwise it would have been a single open channel resonance. 
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graphs in figure 3.13 illustrate the increased coupling between channels in the 
neighborhood of a Feshbach resonance for 85Rb. 

Figure 3.12 illustrates at the same time a two open channel Feshbach reso­
nance, when we assume that another open channel, here denoted by lo:,6) with 
a threshold below the above-mentioned crossing point is available for the decay 
of the quasibound state. We will meet such resonances also in the following. 

Moerdijk et al. have investigated the behavior of single open channel Fesh­
bach resonances [31]. They derived the scattering length to be 

c 
a(B) = a0 (B) - -, 

éres 
(3.40) 

in which a0 is the background scattering length (i.e., the weakly B dependent 
scattering length without the presence of the resonance), C is a weakly B de­
pendent parameter depending on the strength of the resonance, and éres is the 
actual resonance position relative to the threshold of the initial channel: 

éres(B) = (µi(Bo) - µb(Bo))(B - Bo), (3.41) 

with µi(B) the sum of the single atom magnetic moments in the initial hyper­
fine states and µb(B) the magnetic moment of the two-atom resonance state. 
Substituting eq. (3.41) in eq. (3.40) we find 

a(B) = a0 
- C 

1 
= a0 (1 --~--) 

2µi(Bo) - µb(Bo) B - Bo - B - Bo ' 
(3.42) 

which describes the typical behavior of the scattering length near a single open 
channel Feshbach resonance (see figure 3.14). 

In the Phys. Rev. Letter presented in the following chapter we predict for 
the most frequently studied cold atom species 87Rb not only the four above­
mentioned single open channel Feshbach resonances, hut also two multiple open 
channel Feshbach resonances. One occurs at 9.lG in the hó) = 1(2, -1)(1, +1)) 
cold atom channel, the other at l.9G in the hó) = 1(2, +1)(1, -1)) channel. 
They were found by calculating the elastic scattering length as a function of the 
magnetic field following from coupled channel calculations. Numerically, they 
were precisely located by analyzing a(B) and its first two derivatives. 

The observation of all these Feshbach resonances at the predicted fields and 
with the predicted widths ~ constitutes a testing ground for our theoretica! 
approach. Multiple open channel Feshbach resonances for cold atom scattering 
have not yet been observed experimentally and are also theoretically largely 
unexplored. Exploration of this new field is a partial subject of my future PhD 
research. There are strong indications that the l.9G multiple channel Fesh­
bach resonance has in the meantime been found experimentally by Cornell and 
coworkers [32] only a few weeks after our predictions. One interesting aspect, 
which still requires considerable effort for understanding, is that this resonance 
shows at the same time features of a Feshbach and of a shape resonance. 

3.8 Practical aspects of the fitting 

As mentioned several times before we perform a fit to determine the best values 
for parameters which characterize the interactions between colliding Rb atoms. 
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Figure 3.13: Behavior of the wavefunctions u(r) near a Feshbach resonance. 
Due to the mechanisms described in section 3.2, a wave function in the entrance 
channel will couple to channels with the same mF. Shown are the wave func­
tions of some channels with mF equal to that of the entrance channel for two 
different magnetic fields. The upper graph is off-resonance, the lower graph is 
on resonance (see text). On resonance we see the strong coupling to the closed 
channels lfi, m1i; f2, m12)=13, -2; 3, -2) and 13, -3; 3, -1). The Feshbach reso­
nance in this graph is not the same as the one than depicted in figure 3.12. 
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Figure 3.14: Typical behavior of the scattering length near a Feshbach resonance 
as function of the magnetic field. The Feshbach resonance depicted is the 85Rb 
resonance used in our analysis. 

We used a Marquardt-type routine to minimize x2 which we define by 

(3.43) 

with qh the predicted value of a property i and c~xp the experimental value of 
this property which is known with a standard deviation ai. 

Figure 3.15 shows a simplified overview of the program structure we use to 
perform the fit. The main program starts up the Marquardt routine with the 
best known values for the parameters c/>r,o, c/>r,E, c/>r,L, C5, Cs, J, C10, and 
C11 ; the last two optionally. The Marquardt routine passes interaction param­
eters to another routine which calculates the residue vector (x) by calling the 
appropriate routines for calculating every c:h. In the x2-min~ization process 
the Marquardt routine calls the residue routine several times, each time with 
other interaction parameters { c/>r,o, c/>r,E, c/>r,L, C5, Cs, J, C10, C11}(iter). Each 
time the residue routine is called, K( { </>r,o, c/>r,E, c/>r,L, C5, Cs, J, C10, Cn}(iter)) 
is calculated, for which all the Cih routines have to be called. The Marquardt 
routine determines the x2 surface and gives as output the parameters at its (lo­
cal) minimum, the standard deviations of these parameters, and the correlation 
matrix. 

The different Cth-routines calculate energy levels, mixed-condensate decay 
rate, Feshbach resonance parameters, or the differences between the potentials 
defined by Seto et al. and the asymptotic approximation (eq. (3.4)). 

The energy levels are calculated by solving the set of second-order coupled 
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Main Marqu. Residue Ct~-calc 

Figure 3.15: Schematic overview of program structure used for the fit. The 
arrows indicate the passing of: (1) initial interaction parameters; (2) interaction 
parameters; (3) c;h; (4) x; (5) parameters at the (local) minimum of the x2-

surface with their standafd deviation and the correlation matrix. 

equations [15] 
EP 2µ 
8r2 '!f!. = fi2 (W - E~) '!f!., (3.44) 

where the coupling occurs between various spin states, with Wij ( r) = \lij ( r) + 
2~:2 z (l + 1 )Jij and E the energy of the level; see [15]. 

The mixed-condensate decay rate is calculated by obtaining the relevant S­
matrix. The decay rate can than be deduced by summing the probabilities for 
transitions to different decay channels [29] 

Gtot = L c,ö_,af3 = L (vaa{3,"(ó(v))th 
af3 

(3.45) 

in which aaf3,iö(v) can be calculated from the S-matrix by eq. (3.34) suitably 
generalized to a multiple channel situation; (.)th indicates thermal averaging 
over the collision velocity iJ = lik/µ; the summation is over all possible decay 
channels (i.e. same m.F as the 18-state and exothermal transition); see [29]. 

Two parameters Bo and ~ characterize a single channel Feshbach resonance. 
The scattering length a goes through infinity at a magnetic field B = Bo and 
'holds opposite sign' in the region Bo < B < (Bo+~); see equation (3.42) and 
figure 3.14. We calculate the Feshbach resonance by determining a(B) for three 
B values around the experimentally found Bgxp and fit the analytic expression 
(3.42) to obtain Böh and ~th. Then it is checked that sign reversal occurs in 
a( Böh ± Ç). If sign reversal is not present a( Böh + ÇBo) is calculated with varying 
ÇBo until sign reversal occurs. The same procedure is applied for a(BÖh + ~th). 
The final 'Cfh' values (i.e. Bo and ~) are calculated taking the corrections ÇBo 
and Çc, into account. The calculation for the difference of the potentials defined 
by Seto et al. and the asymptotic approximation is straightforward. 
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Analysis of ultracold 
rubidium interactions 

Inter-isotope determination of ultracold rubidium interactions from 
three high-precision experiments 
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Combining the measured binding energies of four of the most weakly 
bound rovibrational levels of the 87Rb2 molecule with the results of two 
other recent high-precision rubidium experiments, we obtain exception­
ally strong constraints on the atomie interaction parameters in a highly 
model independent analysis. The comparison of 85Rb and 87Rb data, 
where the two isotopes are related by a mass sealing procedure, plays a 
crucial role. Using the consistent picture of the interactions that thus 
arises we are led to predictions for scattering lengths, clock shifts, Fesh­
bach resonance fields and widths with an unprecedented level of accuracy. 
To demonstrate this, we predict two Feshbach resonances in mixed-spin 
scattering channels at easily accessible magnetic field strengths, which 
we expect to play a role in the damping of coherent spin oscillations. 

4.1 Introduction 

After the first realization of Bose-Einstein condensation (BEC) in a dilute ul­
tracold gas of rubidium atoms[33], experiments with the two isotopes 87Rb and 
85Rb further lead to an amazingly rich variety of BEC phenomena, ranging from 
the controlled collapse of a condensate with tunable attractive interactions[34] 
to the realization of an atomie matter wave on a microchip[35]. Because of the 
large number of groups that have started doing experiments with these atomie 
species and the growing complexity and subtlety of the planned experiments, 
there is a clear need for a more precise knowledge of the interactions between 
ultracold rubidium atoms in the electronic ground state, since these determine 
most of the properties of the condensate. For instance, despite a widespread 
interest, until now to our knowledge no experimental group has been able to 

50 
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locate the predicted[36] magnetic-field induced Feshbach resonances that can 
be used to tune the interactions between ultracold 87Rb atoms. Being able to 
switch on or off these interactions at will by a mere change of magnetic field 
may wel! be one of the main assets of matter waves compared to light waves 
in the new matter wave devices. In an atomie interferometry device, in par­
ticular, a nonlinear interaction between interfering waves may be introduced or 
eliminated by changing a field applied at the intersection point. 

In this Letter, combining the results of three very recent high-precision ob­
servations, we come close to a complete and model-independent specification of 
the interaction properties of ultracold rubidium atoms. The fact that two iso­
topes 85Rb and 87Rb are involved in the measurements makes the constraints 
exceptionally strong and also increases the predictive power: the interaction 
properties of any other fermionic or bosonic isotope with mass number 82, 83, 
84, or 86 are now known with about the same precision. Using mass sealing 
to relate the different isotopes we are able for the first time to deduce for each 
of the isotopes the exact numbers of bound Rb2 states with total spin S = 0 
(singlet) and 1 (triplet). As an illustration of the predictive power we predict 
two Feshbach resonances in mixed-spin scattering channels for 87Rb at easily 
accessible fields that could lead to new time dependent phenomena in coherent 
spin oscillations and spin waves. There are numerous effects, such as spinor 
condensate energy differences, which are proportional to differences of scatter­
ing lengths. Because these differences are unusually small in Rb, the potentials 
must be very accurate to calculate them to reasonable accuracy. 

4.2 Experimental data 

The first of the three high-precision experiments is the recent measurement of 
four of the highest bound rovibrational levels of the 87Rb2 molecule with 10 
kHz precision[37]. The second experiment is the improved characterization[38] 
of the elastic scattering near a Feshbach resonance in 85Rb, leading to a more 
precise determination of the resonance field Bo = 154.9(4) G and the nearby 
field strength Bb = Bo + b. = 165.85(5) G, where the scattering length goes 
through zero (b. is the (elastic) resonance width). The third experimental in­
gredient going into our analysis is the measurement[21] of 12148 transition fre­
quencies between X1 Ed vibrational levels of the (85Rb)2, (87Rb)2, and 85Rb87Rb 
molecules, leading to a highly accurate singlet Rb + Rb potential[39]. More­
over, within the accuracy of this experiment a comparison of levels for the three 
studied isotopomers shows no sign of Born-Oppenheimer break-down effects, i.e., 
the observed levels agree with a simple radial Schrödinger equation containing 
a common singlet potential Vs(r) and the reduced atomie mass. Calculation 
shows [40] that this justifies neglecting such effects also in our analysis. 

4.3 Basic analysis 

Theoretica! background 

This set of extremely precise measurements calls for a very careful construc­
tion of the interatomic total spin S = 0 and 1 potentials, depending on the 
interatomic separation r. We combine the singlet potential of Ref. [21] with a 
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long-range part equal to the difference Vdisp - Vexch of a dispersion term and 
an exchange term, starting at a variable radius rs between 21 and 23.5 ao (1 ao 
= 0.529Á). The part Vdisp(r) includes C5, Cs, C10 terms and retardation, while 
Vexch(r) is assumed to be given by the asymptotic form ~Jr7120- 1 exp(-2ar), 
derived by Smirnov and Chibisov[14] for r values where the overlap of the elec­
tron clouds is sufficiently small (a = 0.554a01, following from the ionization 
potential ~a2 of the Rb atom in atomie units (au)). 

The triplet potential is subject to a larger uncertainty. For its short range 
part an ab initia potential is usually taken. To get rid of this model dependence, 
we use the accumulated phase method[41]: the 'history' of the atom-atom mo­
tion is summarized by a boundary condition at an interatomic distance r0 , in 
the form of the phase </>r(E, l) of the oscillating triplet radial wave function 'Ij; 
depending on energy E and angular momentum l. Specifying </>r(E, l) is equiv­
alent to giving the logarithmic derivative 'Ij;' /'I/; at r = r0 . In all of our previous 
work we neglected the singlet-triplet mixing by the hyperfine interaction Vhf of 
the nuclear and electronic spins in the range r < ro, in order to deal with pure 
singlet and triplet radial waves until the boundary. Here, however, we introduce 
a new variant that allows us to choose a larger r0 than would otherwise be pos­
sible: we include the adiabatic mixing by Vhf in the two-atom spin states hut 
still neglect its influence on the radial wave functions to avoid dependence on 
the history other than via the pure triplet phase. Model calculations show that 
in this form the scattering calculations have the required accuracy for r0 values 
up to 16 ao. The experimental data for either ultracold or weakly bound atoms 
that we analyze comprise a small E and l range near E = l = 0. In this range a 
first order Taylor expansion </>r(E, l) = </>~ + E</>~ +l(l+ 1)</>~ is adequate, which 
reduces the information contained in Vr(r) for r < r0 to three phase parameters 
only. In principle, these would be needed for both the 85Rb and 87Rb systems. 
However, since we expect Born-Oppenheimer breakdown effects to be negligible 
also for the triplet channel in the distance range r < r0 , we use mass sealing to 
express </>~, </>~, </>~ for 85 Rb in terms of the three phase parameters for 87Rb. 
Beyond ro we construct Vr(r) from Vs(r) by adding 2Vexch(r). 

U sed experimental data 

Applying this method we carry out a full quantum scattering calculation for a set 
of eight experimentally measured quantities. This set consists of five quantities 
for 87Rb and three for 85Rb. The 87Rb data are the four bound state energies 
and the ratio of scattering lengths ai-i/a21 = 1.062(12) for atomie scattering in 
condensates of 87Rb atoms in the hyperfine states (f, m1) = (1, -1) and (2, 1) 
[42]. For 85Rb we include the Feshbach resonance fields Bo and Bb, as well as 
the energy 0.7(1) mK of the g-wave shape resonance observed in the scattering 
of a pair of cold atoms in the total spin S = 1 state[43]. 

The fit 

With a least-squares search routine we determine optimal values for the param­
eters C5, Cs, J, </>~(87Rb), </>~(87Rb), </>~(87Rb). C10 is kept fixed at the value 
calculated by Marinescu et al. [12], hut the effect of ±103 variations around 
this value and an estimated upper bound for the influence of higher dispersion 
terms are included in the final error bars. Column A of Table 4.1 summarizes 
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the main results of the calculations. We find a value for C6 in agreement with 
the theoretica! value 4691(23) obtained by Derevianko et al. [44]. The Cs value 
agrees with that calculated by Marinescu et al.[12]. To our knowledge this is 
the first experimental determination of C8 from a combined set of cold-atom 
+ bound state data. Our analysis also yields the first experimental value of 
the strength of Vexch from such data. The coefficient J agrees with the most 
recent theoretica! value in Ref. [45]. Table 4.1 also gives the values of the pure 
singlet and triplet scattering lengths for both 85Rb and 87Rb, following from 
C6 , C8 , J, 4>~(87Rb), as well as the fractional vibrational quantum numbers at 
dissociation vn(mod. 1) [41] and the numbers of bound states nb. The reduced 
minimum x2 value is 0.5. 

Predictions using the results 

The foregoing makes clear that a major step forward has been made possible 
by the new experiments, two of which make use of a Bose-Einstein condensate. 
This is a firm basis for making a variety of interesting predictions. As a first 
example we predict the 87Rb f = 1 spinor condensate to be ferromagnetic, i.e., 
it is favorable for two f = 1 atoms to have their spins parallel, because the 
mean field interaction is more repulsive for total F = 0 than for F = 2: the 
calculated scattering lengths are aF=2 = + 100.4(1 )ao and aF=O = + 101.8(2)ao. 
In a recent preprint Klausen et al.[46] independently come to this conclusion 
of a ferromagnetic spinor condensate by calculating the scattering lengths for 
several assumed numbers of triplet bound states. 

We are also able to predict collisional frequency shifts in an 87Rb fountain 
doek for arbitrary choices of partial densities of atomie hyperfine states. Ta­
ble 4.2 compares our calculated fractional frequency shifts normalized to total 
atom density n for two recent experiments[47, 48]. We find good agreement 
with the three measured shifts. 

For various applications there is widespread interest for predictions of mag­
netic field values at which Feshbach resonances are to be expected in the scat­
tering of two 87Rb atoms in the (!, m1) = (1, +1) state. With our interaction 
parameters we expect them at the four resonance field values Bo given in Ta­
ble 4.3 together with the widths .6.. The Bo values are to be compared with the 
values 383, 643, 850, and 1018 G predicted in 1997 [36]. It is interesting that 
the broadest resonance at 1004 G shows a doublet structure[40]. 

Figure 4.1 shows Feshbach resonances that we predict to occur in the mixed 
spin channels (2,+1)+(1,-1) and (2,-1)+(1,+1) at easily accessible field values 
of 1.9 and 9.lG, respectively. The graphs show the predicted field-dependent 
scattering lengths a(B), which are complex functions due to the presence of 
exothermal inelastic decay channels. The generalized analytic expression for 
the field dependence in this case is[40]: 

a(B) = aoo (1 -e2i<PR .6.el 1. ) ' 
B - Bo+ 2i.6.inel 

(4.1) 

with .6.el and .6.inel the (in)elastic resonance widths and <PR a resonance phase 
constant, arising due to inelasticity. Note that the real part of the scattering 
length does not go through infinity. It turns out that the l.9G resonance is an 
l = 2 resonance, which couples via the spin-spin interaction V88 to the s-wave 
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Figure 4.1: (A) Real (solid line) and imaginary (dashed line) parts of the scat­
tering length a(B) ins-wave 87Rb (2,+1)+(1,-1) mixed spin scattering channel, 
showing the presence of a Feshbach resonance at 1. 9G. Imaginary part is pro­
portional to summed rate coefficient G for decay into all open channels. (B) 
Same for Feshbach resonance in (2,-1)+(1,+l) channel at 9.lG. 

incident channel. Actually, this resonance is the 'hyperfine analog state'[40] 
in the (2,+1)+(1,-1) scattering channel of the d-wave shape resonance of 87Rb 
occurring in the spin-stretched (2,+2)+(2,+2) spin channel[43], i.e., a state with 
essentially the same spatial dependence and differing only in its hyperfine spin 
structure[49]. It is located at a comparable low energy above threshold. In a 
similar way the l = 0 resonance at 9.lG is the hyperfine analog state of two 
of the l = 0 bound states observed[37] at roughly 25MHz below threshold in 
the (2,+2)+(2,+2) and (1,-1)+(1,-l) channels, belonging to the same rotational 
band as the d-wave shape resonance. They might play a role in the damping of 
coherent spin oscillations of the type which are being observed in experiments 
at JILA[32]. 

4.4 Extended analysis 

U ntil now we assumed the expression for Vdisp to be valid for interatomic dis­
tances larger than rs. We now extend Vdisp with Cn and C12 terms and assume 
it to be valid also between 18 ao and rs. This leads us to a more ambitious 
approach that allows us to determine C10 and Cn as two more free parame­
ters in the least squares search: we take into account the additional constraint 
arising from the equality Vs(r) = Vdisp(r) - Vexch(r) by imposing this equal­
ity at five r points as additional 'experimental data' with a standard deviation 
of 0.5%. We thus effectively include the bound states of Ref. [21] with outer 
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turning points in the range considered. In the search we take C12 equal to 
the theoretica! value 11.9 x 109 of Ref. [13]. In column B of Table 4.1 the re­
sulting optima! parameter values are given together with error bars based on 
a 25 % uncertainty in C12. We find a value for C10 differing from the theo­
retica! value 7.665 x 107 au [12] by only 1.8%. While the above attractive Cn 
terms with even n arise from the interatomic multipole-multipole interaction in 
second order, a Cu term is expected[50] as a repulsive third order dispersion 
term arising from the mutual dipole excitation and deexcitation of the atoms 
with an intermediate quadrupole transition between excited states in each of 
the atoms. Note that the ratio Cu/C12 = -0.072 is comparable to the rigorous 
value -0.028 for H atoms[51] and the ab initia ratio -0.041 for Cs atoms[52]. 
The remaining residue of the fit, concentrated at the smallest radii in the radial 
interval may well be due to the summed contributions of further (attractive and 
repulsive) dispersion terms beyond the C12 contribution plus correction terms 
to the Smirnov-Chibisov exchange expression. Note that the values of the lower 
dispersion coefficients are dominated by the close-to-threshold measurements, 
whereas the higher ones are determined primarily by the Seto potential in the 
middle range r0 < r < rs. We expect that experiment will prove the value of 
this more ambitious approach. 

For completeness we point out that a weak contribution to the total atom­
atom force is still missing in the above picture: the interatomic spin-spin inter­
action V88 • One component of V88 is the well-known magnetic dipole interaction 
between the valence electron spins of the interacting atoms. An additional con­
tribution, which arises from the electronic spin-orbit coupling as a second-order 
effect, has been experimentally determined for the first time for rubidium atoms 
by Freeland et al.[37]. Calculation shows that V88 has a negligible influence on 
the previous analysis. 

4.5 Conclusions 

In summary, combining the results of three recent high-precision experiments 
we have come close to a complete and model independent specification of the 
interaction properties of cold rubidium atoms. We have determined the van 
der Waals coefficients C5, Cs, C10, Cu, and the strength J of the exchange 
interaction. We have thus reached a consistent picture of the interactions, with 
which it is possible to predict essentially all parameters needed for a complete 
description of a rubidium Base-Einstein condensate or thermal gas of any iso­
tope in an arbitrary spin state. New experimental data, in particular on the 
Feshbach resonances, will undoubtedly be helpful to confirm the above con­
sistent picture and to further narrow down the error limits. We believe that 
our approach sets an example for similar experimental and theoretica! work for 
other (combinations of) atomie species. From a theoretica! point of view, it is 
fascinating that it is possible to achieve a level of precision for the interaction 
properties approaching that for collisions of cold hydrogen atoms, based on a 
combination of experimental results and a sound framework of collision physics. 
Additional details and their relevance for future experiments will be the subject 
of a future publication[40]. We gratefully acknowledge the support of the work 
at Texas by the R.A. Welch Foundation, the US National Science Foundation, 
and the NASA Microgravity Research Division. The work at Eindhoven is part 



CHAPTER 4. ANALYSIS OF ULTRACOLD RUBIDIUM INTERACTIONS56 

of the research program of the Stichting FOM, which is financially supported 
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4.6 Tables 

Table 4.1: Interaction parameters (au) derived from experiments without (col­
umn A) and including (column B) the requirement Vs = Vdisp - Vexch for 
ro < r < rs. 

Quantity 

C5/103 

Cs/105 

Crn/107 

Cn/109 

C12/109 

J.102 
ar(87Rb) 
as(87Rb) 
ar(85Rb) 
as(85Rb) 

VDr(mod. l),nbr(87Rb) 
VDs(mod. l),nbs(87Rb) 
VDr(mod. l),nbr(85Rb) 
VDs(mod. l),nbs(85Rb) 

A 
4. 703(9) 
5.79(49) 
7.665(Ref. [12]) 

0.45(6) 
+98.98(4) 
+90.4(2) 
-388(3) 
+2795+420 

-290 
0.4215(3), 41 
0.455(1), 125 
0.9471(2), 40 
0.009(1), 124 

B 
4.698(4) 
6.09(7) 
7.80(6) 
-0.86(17) 
11.9(Ref. [13]) 
0.42(2) 
+98.99(2) 
+90.0(2) 
-387(1) 
+2400+370 

-150 
0.4214(2), 41 
0.456(1), 125 
0.9470(1), 40 
0.011(1), 124 

Table 4.2: Predictions of collisional frequency shifts for the 87Rb fountain clock, 
compared to two recent experiments. 

( .!.~v) (l0-24cm3) 
n v exp 

56+84 
- -21 
-50(10)~~~ 
-60(16)~~~ 

Ref. Present theory (10-24cm3 ) 

[47] -72.5 ± 3.3 
[48] -32.8 ± 0.7 
[48] -41.5 ± 2.9 

Table 4.3: Resonance fields Bo and widths D.. for 87Rb. 

Bo(G) 
D..(mG) 

403(2) 
< 1 

680(2) 
15 

899(4) 
<5 

1004(3) 
216 



Appendix A 

Unit conversions and 
numerical values 

Table A.l: Conversion factors between different energy units used in this the­
sis. Atomie units are denoted by EH. Source: http://physics.nist.gov/cuu/­
Constants /index. html. 

Energy conversion factors 
from\to J c1n- 1 E K 

J 5.034. 10 2.294. 10 7.243 . 10 
CTrt-l 1.986 . io-23 1 4.556 . 10- 6 1.439 
Hz 6.626. 10-34 3.336 . 10-ll 1 1.520 . 10-16 4.799 . 10-ll 

EH 4.360. 10-18 2.195 . 105 6.580 . 1015 3.158 . 105 

K 1.381 . 10-23 0.695 2.084 . 1010 3.167. 10- 6 

Table A.2: Source: http://physics.nist.gov/cuu/Constants/index.html. 

Numerical values constants 
Symbol Value 
h 6.626. 10-
n i.055 . 10-34 

µB 9.274 · 10-24 

µN 5.051 · 10-27 

Js 
Js 
JT-1 
JT-1 

ao 0.529 · 10-10 m 
O:fs 7.297 · 10-3 

57 
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Table A.3: Numerical values for potential parameters either used in, or de­
termined by, the analysis described in chapter 4. Values are in atomie units. 
Source: [a] Physica Scripta. Vol. 27, 300-305 (1983) [b] chapter 4. 

Numerical values potential parameters 
Symbol Value 
a 0.5540877 [a] 
87 cPE,T 0.18415 [bj 
87<faL,T -2.1342·10-3 [bj 



Appendix B 

Technology assessment 

The research presented in this thesis is a beautiful example of the interplay 
between experimental and theoretica! work in physics, together leading to in­
sights which will be useful for future technology. The experimental work (the 
measurement of four weakly bound states of Rb+ Rb) used as input for the 
theoretica! work, providing precise insight in the interactions between rubidium 
atoms. These insights can then again be used for prediction on the behavior of 
interactions between these atoms. 

Insight in these interactions is of great practical importance. For example 
the locations (in magnetic field strength) of Feshbach resonances for 87Rb+87Rb 
predicted in this thesis give experimentalists a starting point for their search of 
these resonances (the Feshbach resonance in 85Rb has only been found after the 
prediction of it's location). 

Feshbach resonances can be used to tune the behavior of the interactions 
between atoms. Due to these resonances a simple change of the magnetic field 
strength can turn off (!) the interactions between a pair of atoms. A property 
which will prove to be valuable in e.g. atomie interferometers: one can switch 
off nonlinear interactions between interfering waves by changing the magnetic 
field. Instead of switching off the interactions between the atoms, a Feshbach 
resonance can also be used to increase the interactions between atoms: a prop­
erty which can be used to shorten the time needed to Bose-condens a sample 
of atoms. This feature might improve atom lasers: either by simplifying Bose­
condensation in a continuous steam of atoms1 or by shortening the time intervals 
between pulses in a pulsed atom laser2 

1To my knowledge this has not been demonstrated to work yet, hut this idea is being 
pursued at ENS (Paris). 

20ne cycle in such an atom laser corresponds to the generation of a BEC from which atoms 
are extracted. Once the BEC is depleted, a new BEC has to be formed for the next pulse. 
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