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Abstract: The numerical and visualisation algorithms employed in Scientific Comput-
ing grow more and more complex. The traditional manner of constructing algorithms
from source code becomes prohibitively expensive: Interpretation is too slow, compila-
tion prevents interactive inspection, and overview gets lost. Additionally, there is no
formal (computer language) specification of complex mathematical notions such as par-
tial differential equations, ordinary differential equations, boundary value problems, etc.,
adding to the software tower of Babel.

Visual Programming languages allow the construction of algorithms in a visual and
interactive manner and can provide a good overview. They are based on a hybrid of
interpretation and compilation, and as such can offer best of both. However, their data
flow oriented nature is not necessarily well suited for mathematical modelling.

This thesis presents and discusses several (design) solutions required for an efficient
visual programming language for Scientific Computing. Amongst them are: The im-
plementation of loops in a visual programming language; The integration of classical
FORTRAN 77 libraries in a visual programming environment; The visual modelling of
multiple shooting methods; Turing completeness of NumLab. All solutions have been
implemented in the NumLab visual programming environment, initiated by the TUE
Scientific Computing Group.

This project was supervised by Prof. Dr. R.M.M. Mattheij and Dr. J.M.L. Maubach.
Valuable input has been received from Dr. A. Telea and Ir. S. Houben.




Introduction

This thesis examines and solves a collection of related visual programming design prob-
lems. These problems arise when complex Scientific Computing algorithms are imple-
mented in an interactive visual programming environment. Throughout this thesis, we
use NumLab (Numerical Laboratory) in order to discuss the problems, their solutions
and implementation. This environment, see [12], [14], [6] and [15] is a research spin-
off of the Scientific Computing Group at the Technical University at Eindhoven, the
Netherlands.

The target of the NumLab environment is:

e The rapid visual interactive construction of complex Scientific Computing algo-
rithms;

e Based on the (re)use of professional numerical and visualisation software;
e Complemented with own research-software.

In short, the aim is to let different numerical software standards co-work in a lucid,
efficient and user-friendly manner. That is, to lower the programming hurdle.

Related to the existing numerical software, two major problems can be identified. First,
formal specifications of mathematical entities such as partial differential equations (PDE),
and related finite element methods do not (fully) exist. They are under development and
for instance targeted by the OpenMath/MathML standards (see [2]).

Secondly, the existing numerical software is often written by different individual re-
searchers, in different languages, and is not engineered for reuse. Trying to let such
software co-work in a user-friendly environment is difficult, both technically and concep-
tually.

This thesis addresses and presents solutions for some issues, which were not or unsatis-
factorily solved in the current NumLab visual programming language. It provides:

1. A clear description of a visual program, its visual and non-visual functions;
2. Loop control modules in section 6;

3. A process for the integration of standard numerical software in NumLab, section
7

4. A proof of the Turing completeness of NumLab, section 8;




The solutions (1) — (3) are design solutions because they are not solutions of mathemat-
ical problems, and neither solutions of pure software problems. In connection with (4), a
proof is presented that with incorporation of a few modules, NumLab is Turing complete.
Except for section 8, this thesis does not deal with the theory of algorithms but with
their implementation in a visual programming language.

The design solution (1), a clear description of a visual programming language (such as
NumLab) and its implementation, is this thesis itself. The reference work [15] presents
visual programming from a top-down objective oriented point of view. Here, we present it
from a linear bottum-up point of view: First, we present basic modules (atoms/axioms).
Next, we introduce derived modules and libraries thereof. Then we conclude with the
introduction of logic (control structures). However, actual computer languages are not
theoretical languages. Therefore, it is often not possible to introduce rigorous definitions.

Further, due to the demand to have a clear concept of the involved mathematics, as
well as lucid visual solution, several cycles of (re)design and (re)implementation were
required. Only results from the last but one (section 7) and the last (section 5) are
presented.

In order to present our solutions, several concepts have to be introduced. First, vi-
sual programming and its history are discussed in section 1. Next, the related concepts
of ports, modules, networks, etc., are examined in section 3. The case of loops is special,
and studied in 6. Then, we provide a brief analysis of the concepts related to a standard
programming language in 2. Keeping both the concepts of visual and classical program-
ming in mind, we show how a library written in a classical language can be wrapped for
use in a visual programming language (section 5). As an implementational test, section 7
wraps the FORTRAN 77 library BOUNDPACK for use with NumLab. Finally, section 8
shown that for a specific set of basic modules and a specific manner of deriving modules,
NumLab is Turing complete. Section 10 summarises all conclusions.

A valid mathematical proof is admissible regardless of its complexity and length. An imple-
mentation must be efficient, lucid and user-friendly.




1 Visual Programming

1.1 Introduction

This section provides historical background information and shows examples of visual
programming languages. The precise definitions of the related concepts are provided in
sections 3—6. Sections 1.3 and 1.4 describe the visual programming in the context of
Computer Science and Scientific Computing.

For complementary information, see [5], [11], [6] and [15].

1.2 Basic Concepts

This thesis studies the visual implementation of algorithms. An implementation is a
(mechanical or otherwise) realisation of an algorithm.

Definition 1 According to Church’s thesis ([7], page 228) a function F: X — Y or
algorithm is a Turing computable function.

For the definition of a Turing computable function, see section 8.

In a non-visual implementation, we assume that an algorithm is implemented using
procedures (Pascal), subroutines and functions (FORTRAN 77), or functions (C). In the
sequel, procedures and subroutines are also called (implementations of) functions.

In a visual implementation, an algorithm is implemented with the use of visual compo-
nents. These visual components are discussed in detail later, see 3.

Visual programming languages make use of a canvas which contains functions called
modules, in between which data is communicated. Figure 1 from [5] shows a visual
program, called network. An input datum z, floats along arrow direction(s) through
the network, functions operate on it, and return results which get transported further.
The standard order in which the data is communicated and the functions are executed
is called data flow orientation.

Existing programming languages can be split into three categories:
e cause driven;
e cause and event driven;

e event driven;



The difference is subtle. Examine possible implementations of z = £(g(x)). If first
calling £ (which calls back on g, which calls back on the datum) yields z, the imple-
mentation is called an event-driven implementation. Alternatively, if first x is handed
over to g, next g(x) is computed, followed by f(g(x)), the implementation is called a
cause-driven implementation. The difference is not in the order of computations, nor in
the obtained result, but in their initiation.

Mathematics (manipulation of expressions and functions) turns out to best fit in the
event-driven case, but standard visual languages (and also NumLab) are cause-driven.
For this model, inspection of data, — visualisation — seems to be easier. As a witness
hereof, the professional visualisation libraries Visualisation ToolKit (VTK), Open Inven-
tor (IV), as well as the visual environments Application Visualisation System (AVS),
and NumLab are all making use of at least cause-driven (data flow) techniques.

NumLab combines cause and event driven methods, and almost certain, so does AVS
(source code is not available). This makes it more difficult to understand than a pure
cause or event driven language.

Figure 1: A Newton-Raphson network from [5]




1.3 Computer Science

In the Computer Science research in [5] and [11] the basic building modules of a visual
programming language frequently are data types (D), related functions (F), and control
structures (C):

D Natural/Float numbers;
F Basic functions: +, X, and —, /.
C If — Then — Else; While; Repeat, etc.

Even with these simple basic modules, a visual iterative Newton-Raphson algorithin
must be constructed with care, as is shown in figure 1 from [5].

It is also clear that, unless a specific purpose is kept in mind, a small and concise classical
script could be preferred:

x = x0; y = 0; while(abs(x - y) > 107-12) y = x; x = x - £(x)/df(x); end;

Keeping this in mind, it is clear that a visual implementation of more modern iterative
algorithms such as BiCG-Stab and GMRES, etc. is a non-trivial undertaking.

More recent data flow implementations introduce additional visual notation in order to
express recursive and nested constructions. An example are the map and fold operator
notations used for the computation of a determinant in figure 2. This extra visual
notation, which can lead to a loss of overview, turned out to be not required in the
NumLab environment. Moreover, the (new and most old) visual NumLab modules can
be used also in a script, as the one shown above.

In the NumLab environment, the Newton-Raphson network in figure 3 looks similar
to the one in figure 1, showing that NumLab does not add to the minimal complexity
present in figure 1.

1.4 Scientific Computing

In order for a visual programming language to be suitable for serious Scientific Computing
computations, it must at least capture:

D Vector functions, and basic functions thereon:
F1 Numerical methods for (non-)linear systems;

F2 Numerical methods for ODE’s and PDE’s;

10
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Figure 3: A NumLab Newton-Raphson network

F3 Professional visualisation, geometric modelling, etc;
C Some control structures.

When comparing the requirements with the basic modules examined in Computer Sci-
ence, a clear observation can be made:

e An additional (derived) set of complex building modules is required.

The numerical workbench NumLab provides such a set of complex (not-basic, derived)
language modules for D — F3. This is for instance demonstrated in figure 4. Here,
a complex transient finite element program for the laser drilling of holes in turbinc
blades is modelled with a network containing few modules. Through this thesis, the
visual programming language NumLab will be used for implementations which are to
demonstrate the validity of our design solutions.
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2 Functions, Libraries and Sources

2.1 Introduction

Most, if not all, visual programming languages are implemented with the use of classical
programming languages. In order to understand their structure, restrictions and merits,
one first needs to understand the structure of the classical programming languages.

This section examines the structure of a classical program, i.e., the implementation
of an algorithm in one of the C-linkable classical programming languages FORTRAN
77, Pascal, C or C++. Here, classical is meant to stand opposite of visual. In fact, this
section determines the basic ingredients of such a program. It is important to understand
these ingredients for the use of a related library in a visual programming environment
(as described in section 5).

In order to restrict the amount of material, we focus on a FORTRAN 77 implementation.
With FORTRAN 77 we mean FORTRAN 66 or FORTRAN 77. A different reason to
focus on FORTRAN 77 is the wish to reuse several standard numerical libraries written
in this language (LAPACK, SEPRAN), etc.

The languages FORTRAN 90 and FORTRAN 95 resemble more the C++4 language.
They offer more language constructions than FORTRAN 77 and as such are more difficult
to analyse. The largest additions turn out to be: More flexible memory allocation,
inheritance, and automatic source code generation (templates).

2.2 Data and Functions

This section examines the role of data and functions in a classical programming language
and introduces the concepts of input and output argument. Later, in section 3.3, modules
take over this role in the visual programming language, both for data as well as for
functions.

Let a be a real positive number and define f(z) = z? — a, with derivative f'(z) = 2z.
Then the Newton-Raphson iterative algorithm algorithm (standard used in floating point
units):

my = : M)
xk—f-l_xk_f(xk)/f (xk:)’ k=0,1,2,...

approximates (computes) the square root of a, for 2, close enough to a. Modern floating
point arithmetic (Pentium, Athlon) use this function in combination with Newton’s
method for the determination of the root z = /a.

14



Example: Throughout this section, we consider a small FORTRAN 77 source which
implements the Newton-Raphson algorithm:

DOUBLE PRECISION FUNCTION FX(X, A)

IMPLICIT none
DOUBLE PRECISION X, A

C FX =X"2 - A

FX = X+X - A

RETURN

END

DOUBLE PRECISION FUNCTION DFX(X, A)
DOUBLE PRECISION X, A

DFX = 2%X

RETURN

END

SUBROUTINE NEWTON(F, DF, X, A, DX)

DOUBLE PRECISION DX, X, A
EXTERNAL F, DF

c DX

- FX(X, A) / DFX(X, 1)

DX
DX

- F(X) A)
DX / DF(X, A)

RETURN
END

SUBROUTINE TESTNEWTON ()

DOUBLE PRECISION DX, X, X0, A
EXTERNAL FX, DFX

15




WRITE(6, *) *INPUT A > O FOR COMPUTATION OF SQRT(A):’
READ(5, *) A

WRITE(6, *) ’INPUT X0 > O AS A STARTING POINT:’
READ(5, *) X0

X = X0

100 WRITE(B, *) ’X: ’, X
CALL NEWTON(FX, DFX, X, A, DX)
WRITE(6, *) ’DX: ’, DX
X=X+ DX
IF (ABS(DX) .GT. 1.D-12) GOTO 100

WRITE (6, *) ’SQRT(’, A, ’) ='’,X ,’.?

RETURN
END

For our purposes FORTRAN 77 source is generic enough — all complications related to
the use libraries in section 5 can be found here. The difference between source, program
and execution is explained in section 2.4.

Definition 2 An argument x of a function f is called input argument if £ must read
its value in order to produce a result. An argument z of a function £ s called output
argument if £ writes a (partial) result in z while producing its result.

Definition 3 The formal component specification of a library or language describes
which functions it contains, which types of data are employed, and which function argu-
ments are input or output.

In this thesis, a formal component specification is also called data flow analysis.

2.3 Libraries

Important for the later reuse of FORTRAN 77 libraries in another language’s context

is the structure of the program. Here are the different items we distinguish (using the
FORTRAN 77 code as an example):

e There are data, outside the functions, such as a;

e There are functions Fx and dFx;

16




e There is a control structure (loop).

These will be the items to be addressed in the context of a visual programming language.

Here are some restrictions which apply when a FORTRAN 77 library is to be used in a
C++ context:

e Whereas a FORTRAN 77 datum’s (for instance matrices) size can not be altered,
a visual basic module representation must allow the size to be altered. Reason:
The module is put on the canvas before the program is complete, so its size can
not be predetermined.

e The amount of different data type X in FORTRAN 77 is not limited, except for
machine restrictions. It could be impossible to provide basic visual modules for all
data types.

e The amount of different (builtin) functions f: X + X in FORTRAN 77 is not
limited, except for machine restrictions. It could be impossible to provide basic
visual modules for all data types.

2.4 Sources and Programs

We use the word source for the implementation of the algorithm. The program related to
this source is a derived executable version. In order to execute this version, an execution
manager, or manager is required. The manager also handles all input and output (I/0)
or I/O-management. An executed program does not perform its own I/0.

For classical languages, the manager is a linker/loader/execution unit, and part of the
operating system. This manager does not depend on the implementation language, all
languages share the same manager. For a visual program, for instance for NumLab, a
different manager (cint) is used, see section 3.6. As for the classical manager, it manages
execution as well as I/0.

3 Modules, Toolboxes and Networks

3.1 Introduction

This section introduces entities such as port, module and toolbox, and presents networks
and network managers.

In order to elucidate the connection between all these entities, we proceed in a kind of
mathematical manner. First we define basic modules (atoms, or axioms) in section 3.3.

17




Next, we define derived modules called networks in section 3.5, and finally, we discuss
the relation between a source (program) and network in section 3.6.

The basic reference is the work [15], where almost identical material is presented in
another manner. Where we address a programming language departing from basic and
derived operations, the thesis [15] presents the topic from an oo-design point of view
with its on merits. Thesis [15] discusses parts of NumLab (VISSION) which reach far
beyond the scope of this thesis.

Below, we offer some help, for those inclined to compare this thesis with the Ph.D.
thesis [15]:

First, most of the terminology presented here can be found in [15], with a little more
effort. The definition of components (according to the index on pages 9, 11) as well
as information on modules and blocks (according to the index on page 36), is located
elsewhere.

Next, the functions of the network manager (part of the kernel of [15]) are not as
indicated on pages 11 or 31, but (see page 87, last line) mostly listed in figure 3.13 (KC
interface). However, the list fails to include the load/unload function, which is presented
on page 88.

Then, information on the network execution order is presented on pages 97 — 98. A
traversal algorithm is provided but no proof regarding its operation is given.

Finally, not all employed terminology is identical. Where [15] uses the term input
port and output port, we use inflow port and outflow port. This, because we reserve the
terms input and output for input and output arguments of functions. We keep however
the term read port and write port.

3.2 Ports

A port, also called data-port contains a value or a reference to a value. Thus, it is can
contain builtin data types such as int but also derived data types such as structures
(and more common, pointers to modules).

3.2.1 Visual Representation

Ports occur at the top or bottom of modules, introduced in the next subsection. In
this thesis (see figure 5) read and write ports are positioned differently from the ports
in [15], shown in figure 6. Instead of arrows pointing inwards (write port) or outwards
(read port) in [15], we prefer to represent them as small rectangles, either on the outside
of a module (read port) or on the inside (write port).

18



inflow ports

read port write port

read port write port

outflow ports

Figure 5: Ports at the bottom (outflow) and top (inflow) of a module

Figure 6: Snapshot of a NumLab module

More information regarding ports (colour, types, default values, etc.) can be found
in [15]. Take care, [15] address default values using different terminology. Regarding
port types: Ports which contain different data types cannot be connected. (Different data
types values are represented by different colours, but reference values are all coloured
green).

3.2.2 Visual Functions

Definition 4 Functions which can be called by the visual programming manager (see
section 3.6) are called visual functions.

Remark: Because in general, the visual environment does not know about mathematics,
visual functions are not related to mathematical operations. We call all non-visual
functions auxiliary functions.

A port is either an inflow port or an outflow port, as shown in figures 5 and 6. Further-
more, a port is either a read port or write port, shown in the same figures.

If port x is a read port, it must provide the visual function: get_x(), and if it is a write

port, it must provide set_x(). However, in order to be able to inspect data values of
ports, all ports are required to provide the visual function get_x().

19




3.3 Modules
3.3.1 Introduction

This section regarding modules comments on the basic modules, modules which are not
built from (an) other module(s). Modules built from other ones can be seen as networks,
see section 3.5.

3.3.2 Visual Representation

We will visually represent a module from the canvas as a square or a rectangle. Modules
that we use on the canvas are oriented, in the sense that we distinguish a top and a
bottom of a module.

The top side of a module will be referred to as inflow and the bottom side as the outflow.
All modules have an inflow and an outflow, data ports: read ports and/or write ports.

A module contains ports, as is shown in figures 5 and 6. By default, at least two ports
are available, related to a C++ pointer to the module itself. These ports are called the
this-ports, the related standard C++ pointer is called the this-pointer. In figure 6
these ports are green (the reference colour) and have a special horizontal division bar.
In the notation employed in this thesis (see figure 5) there is no corresponding visual
entity for this-pointers.

Modules can be connected to one another. The connections are made via their data
ports, with specific simultaneous restrictions. The connections must be:

e between a read port and a write port (of identical types);
e between an inflow and an outflow port.

In principle the two ports could belong to the same module.

These restrictions leave a limited choice for possible connections between modules. Here
are all four possible cases: (see figure 7) In (a) module A exports its this-port to module
B. We say that B has (full access) to A because all of A’s members are available for
B. Conversely, A has no access to B. In (c) on the other hand, the access rights are
precisely opposite: A has full access to all of B’s members because B exports itself to
A. In (b) and (d) we no not export this-pointers but single pieces of data. So in (b)
module A exports only a part of itself to B and in (d) only a part of B is available to
A.

3.3.3 Visual Functions

The visual functions of a module are (summarised):

20



A

read write write

write write read

Figure 7: a) B has (access to) A, b) A has B, ¢) B has (access to) part of A, d) A has
part of B

e destruct()
e construct()
e update()

e clone()

In fact, for reasons related to asynchronous execution — outside the scope of this thesis
— it is better to use two functions activate() and deactivate instead of the single
update(). The functions destruct(), construct() and clone() are not part of the
visual programming language NumLab at the moment. Right now, these functions are
derived from the standard C++ constructors and destructors, which can have undesired
effects.

For further information, amongst the use of modules inside modules, we refer to [15].

3.3.4 Auxiliary Functions

All Scientific Computing numerical visual programs call auxiliary functions to do the
numerical computations. The visual functions are never used to this end. A description
of these functions would be best at its place in section 4, but is also omitted there due to
space limitations. A more complete specification of these auxiliary functions could take
another hundred pages.

3.4 Toolboxes

A toolbox contains modules. A toolbox is a standard C++ library complemented with
additional content information. This information is incorporated via the C++ interpreter
cint, and is later on required by the manager (the executioner of a network), which
happens to be also cint.
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3.5 Networks

A network is a collection of modules, and connections between ports. Thus, a network is
a graph, nothing else. The execution of a network (see section 3.6) is a graph traversal
problem.

In NumLab, a network is not a module though it can and should be. The algorithm
which makes it a (super)module is as follows:

e Export all unconnected inflow ports to become inflow ports of the super module;
e Export all unconnected outflow ports to become outflow ports of the super module;

e Save and set all default (or interactor inputted) values as internal values;

3.6 Managers

As in classical programming languages, a manager executes a program and takes care of
all input and output (i.e. user interaction).

3.6.1 Visual Representation

The visual representation of the network manager (in the case of the NumLab environ-
ment) is called VISSION. VISSION integrates a network manager and a graphical user
interface (GUI). The latter manages the canvas (drawing) and requests the integrated
manager to execute specific visual functions.

The visual representation (i.e., VISSION) is quite complex. For more detail, we refer
to [15].

3.6.2 Visual Functions

The manager’s visual functions are:
e loading/unloading toolboxes of modules;
o loading/unloading networks;
o the execution of the visual functions of ports and modules,

o determined with the use of a network traversal algorithm.
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Data is passed from one module to the other, executing the get () visual function from
the exporting module and set () visual function from the receiver

A saved network can be and should have been C++ source, where source is defined in
section 2.

In NumLab, a network is not C+-+ source perhaps because this would require the network
manager (defined below) to scan the C++ source in order to figure out which visual
components to be put on the canvas.

3.7 Network Execution

The manner in which to be built networks are executed, determines a large part of the
design decisions for building a module library. An algorithm for network execution is
given in [15], on pages 97 — 98. This section discusses the merits of the implementation
of such an algorithm in VISSION.

The basic rule for the order of execution of a network is: from top to bottom, as shown
in figure 8. Thus, modules at the top of the network are executed first. If there are

;
[

Figure 8: In both cases, A is executed before B

several top nodes, the order amongst them is not documented.

As commented on before, inflow ports must be connected to outflow ports and vice versa.
Whether this is related to the traversal algorithm could not be located in [15].

In more complex networks as in figure 9, [15] does not comment on whether module B
or C is first executed, before D is.

23




Figure 9: A before B, C; D after B, C; order of B, C undetermined

4 NumLab

4.1 Introduction

This section 4 introduces the Numerical Laboratory NumLab visual programming envi-
ronment, used in order to implement all designs in sections 5, 6 and 7. First, section 4.2
describes NumLab in general terms. Next, section 4.3 describes module requirements in
4.3.1 and 4.3.2. Section 4.3.3 introduces some actual NumLab basic and derived modules.
In conclusion, section 4.3.6 explains how NumLab models mathematical functions.

At the end of the section 4.4 discusses a few differences with DiffPack. For complementary
information, see the Ph.D. thesis [15], and the manuals [3], [4] and [13].

4.2 Language and Manager

The NumLab workbench is a set of professional numerical and visualisation libraries,
managed through a compiler, interpreter or network manager. Figure 10 shows the
managers on top of the libraries. Thus, NumLab is both a classical language and a
visual language. That is, its modules can be used in a network and be managed by a
network manager, or alternatively, be used in a source and be managed by a program

executioner. In short, the best of both visual and classical programming styles can be
combined.

4.3 Modules

It requires large programming skills to solve complex numerical Scientific Computing
tasks using libraries of functions. So, the requirement for a good module is that much
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Network Editor

Interpreter Compiler
C++
LAPACK DEQNS NumLab VTK o]
numerical libraries visualization libraries

Figure 10: NumLab depicted as a set of managers, and related libraries

less skill is required for the composition of a complex numerical solver.

4.3.1 User Requirements

The list of user-related requirements contains at least:

Simple, common and orthogonal approach;

Modules should behave as expected;

Modules should be identical to functions (or data);
Networks should behave as expected;

Networks should be identical to sources;

Replacing modules at runtime must be possible;
Inspecting modules (data) at runtime must be possible;

Average algorithms use about 10 modules.

|

|

| The order in which these requirements are met by the NumLab visual programming
| language are not discussed here due to a lack of space.
|
|
|

4.3.2 Technical Requirements

The list of technical (machine/language-related) requirements includes:

Use and wrap in a common language C++ (data-dump, OpenMath, MathML);
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e Reuse modules via containment and extension,;
e Reuse programs in different languages (Babel problem);
e Efficiency and computability etc., etc., etc.

Also here, the order in which these requirements are met, is not further discussed.

4.3.3 NumlLab’s Basics

This section briefly describes some of NumLab’s basic modules, of importance for Scien-
tific Computing. These are the modules closest involved for the implementation of loop
control and BOUNDPACK modules.

These most important basic modules are:
e Matrix;

e Vector.

Vectors are in fact block vectors, and to be more precise vector valued functions (vector
functions). However, the vector functions are not based on a symbolic kernel. The
integration of symbolic (algebraic) information is beyond the scope of this thesis.

Matrices are in fact block matrices of which each block, independently, can be:
o full;
e sparse;
e diagonal.

More precisely, matrices are operators on vector functions, which provide certain basic
operations. One of the operations is that of computing a Jacobian matrix, itself a (linear)
operator on vector functions (so also represented with a matrix).

Because vectors and matrices in fact are argument (vector function) and operator (op-
erator on vector function), the actual module names are FunctionVector and

OperatorImplementation. The names Vector and Matrix are aliases for the uniniti-
ated.

In fact, NumLab derived modules can handle quite complex tasks — albeit slow without
speed optimisation:
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partial differential equations PDE’s (boundary value problems);

ordinary differential equations ODE’s (initial value problems);

(non-linear) equations;

e (non-linear) solvers;

e (non-linear) preconditioners, etc.

4.3.4 Design

The Operator and FunctionVectors modules from the previous section share an identi-
cal operator design (so behave identical towards their user), called the NumLab operator
module, shown in figure 11.

X Op

*

z

Figure 11: NumLab operator and datum

However, at this moment (NumLab version 2.72),
FunctionVector does not have the x and z ports mentioned above. The reason is a
former limitation of the cint C++ interpreter.

As is shown in figure 10, NumLab also contains visual libraries. Whereas the basic
numerical NumLab modules in section 4.3 were designed from scratch according to the
brand-new operator/datum design, the visual libraries are based on reusing C++ sources
(Visualisation ToolKit (VTK) and Open Inventor (IV)). In fact, the visualisation libraries
(by Telea) have been the first sources so be integrated as modules.

Though some of the NumLab modules integrate source (the eigenvalue module integrates
for instance two FORTRAN 77 LAPACK functions) most modules do not because no
clear process existed for the integration of FORTRAN 77 sources. This process has been
developed as a part of and during the writing of this thesis.

Furthermore, for instance, PDE operator modules can be connected to ODE modules in
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order to solve transient problems. In this sense, all modules are orthogonal with respect
to each other.

4.3.5 Data Modules

Figure 12 shows two possible representations for a FORTRAN 77matrix (with dimesnions
m and n) to be read and exported to function F use in the C++ language (NumLab
uses the second representation). The network in (a) has a matrix reader and exports its
data explicitly to a matrix, an integer m and an integer n. Next, these three modules
are connected to F. Alternatively, we can create one module that reads a matrix and its
dimensions and keeps it within its own compound.

MatrixReader

=
o]
o
=)
63
9
3
3

MatrixReader

A X
ma,EI'IX(“)

Figure 12: a): No data-hiding b): data-hiding

The second representation seems the desirable one: Instead of five modules and 6 links,
just two modules and one link are required. Here, F retrieves m and n using its pointer
to the MatrixReader module. It should be clear that though data-hiding reduces the
amount of connections, modules can no longer be reused in another context.

4.3.6 Function Modules

Because the most important basic module in NumLab represents an operator (regarding
non-visual functions) it is important to address the relation ship between function input
and output arguments on the one hand and inflow/outflow and read/write ports on the
other. Presented below, this relationship is perhaps not the one anticipated.

The mathematical relation

y =F(x) (2)
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maps to the NumLab visual network: The design is explained below. In NumLab, a

module F which implements z = f(x) must have at least two ports:

e A port for the input variable z, called write port, or x;

o A port for the output variable z, called write port z;
The module must implement;:

e function get_x(), set_x(), so it can (dis)connect x;

e function get_z(), set_z(), so it can (dis)connect z;

Note that the input argument and output argument are both write ports, as is shown

in figure 13.

<« —f alle— =

Figure 13: The NumLab visual representation of y = F(x)

Using the design for a function F, the concatenation

y = F(x)
z = G(y)=G(F(x))

is imitated with the visual program as shown in figure 14:

Of course, it is important the reduce the amount of modules on the canvas keeping
independencies as they are. Figure 15 shows a design alternative to figure 14 using
less modules and introducing no new dependencies. Though the design sofar seems
straightforward, section 5 shows its limitations. A more detailed explanation falls beyond

the scope of this thesis.
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Figure 14: The NumLab visual representation of z = G(F(x))

Figure 15: A sparser network
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4.4 Other Visual Approaches

There are several other systems and more claims to visual programming, each with its
own merits. For mathematicians, a free available package is the differential equation
package DiffPack.

The DiffPack environment, and others, do not have the flexible common operator
basis employed by most NumLab modules. Instead, there is much more differentiation
right at the basis, which means a loss of orthogonality:

e Solvers can employ one other solver, which can not employ other solvers!

e The fundamental module is the linear system module, all others are either exten-
sions, or have nothing in common.

For more information on this topic and for comparisons of NumLab to different visual
programming platforms, see [6].

5 From Library to Toolbox

5.1 Languages
This section deals with the (re)use of FORTRAN 77 numerical software libraries inside

a (NumLab) visual programming environment.

The first problem to be addressed is the Babel-problem. Two different languages are
involved, in our (new) design which uses three levels:

e The FORTRAN 77 level, providing the functions (called source level);

e An intermediary level, with all source level functions and related data in C++
(called class level);

e The module level, adding the visual functions to all items in the class level C++
(called module level);

A typical FORTRAN 77 function fx at source level is said to be wrapped to class NFx at
class level. This class NFx is wrapped to module MFx at module level. Both transformation
require specific designs, see section 5.1.3 for more information.

The second problem invloves the relation between FORTRAN 77 source function and the
design of the corresponding module. It turns out to be difficult to answer the following
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simple question: Is data situated (inside) function modules, or is it outside on the canvas?
Section 5.2 demonstrates the various solutions their advantages and related problems.

Summarised, in section 5.1.1, we inspect the basic building blocks of computer languages,
from a mathematical point of view. Next, we discuss the transformation of one language
to another in section 5.1.2. Finally, we present out process for using FORTRAN 77
source in the visual programming language NumLab.

5.1.1 Definitions

Reusing a library written in one computer language, in another language, requires a
kind of translation, also called wrapping. In order to understand the possible translation
problems, it is necessary to have a precise knowledge of what is meant with computer lan-
guage. This section’s definition of computer language agrees with the notion of language
as seen in for instance OpenMath (see for instance the literature list in [2]).

Let S be the set of all strings (finite sequences of characters), as defined in [7].
Definition 5 A (computer) language consists of the following components:

e q set of elements z € X;

e functions fX: X — X;

o readers and writers Rx: Sy C S — X respectively Wx: X — Sy C S,

o a set of control structures Cy (while, if ... then ... else ... endif)

Strictly spoken, the readers and writers are not functions, unless X = S. For more
information on reading and writing to strings, we refer to [15]. Please, look for the term
serialisation.

Real programs deal with multiple data types z € X, y € Y and z € Z, with related
functions, etc. Assume Sy C Sy C Z. Then the function F: (X,Y) — Z is realised
with a combination as shown in figure 16: This is how recent new visual programming
toolboxes in NumLab (BOUNDPACK, LAPACK and SEPRAN) communicate.
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Figure 16: Z = F(X,Y)

5.1.2 Transformation to Language

Look at the following diagram which describes the reuse of software written in X in-
side programming language Z: For simplicity this diagram assumes all data types and
functions represented in one language can be represented in another — often not the case.

The goal is to have an implementation in the language Z, (re)using the one in X. We
distinguish reusing data, functions and control structures:

1. Reusing € X with the use of conversion E and its inverse;

2. e Reusing f*: f?(z) = E(f*(E7'(2)));
e No reuse f*: fZ(z) computed at the spot (for instance z + sin(z))

3. o No reuse of control structures
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Figure 17: Mathematical diagram

Next, we would like a pure functional visual implementation r = f(x) (to stick close to
the mathematics). However:

e Languages such as FORTRAN 77 do not permit this: Example: The function f
which for x = [1,2,3,4] returns r = [1,2] can not be coded in FORTRAN 77

without side effects.
e Functional languages are often less efficient.
Thus, r = fX(z) is denoted with void f¥(r,z), or void fX(ry, 79, ..., Tk, Z1, T2, ... )

This leads to the adapted diagram in figure 18.

5.1.3 Transformation to Toolbox of modules
This section describes the design for the generation of visual modules from FORTRAN

77 source.

This table shows the FORTRAN 77 source, and its equivalent on the next level (class),
as well on the final level (module).

Language | F77 C/C++ | Canvas
datum — datum module
function function | function | module
control — — module

It should be interpreted as follows:
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Figure 18: Diagram using implementational notation

For a given library in FORTRAN 77, we only reuse the functions on C++ level. They are
wrapped to classes in C++, with a call back to the FORTRAN 77 source. FORTRAN
77 data types are not reused or wrapped. We build new classes to imitate the original
data types and their usage on C++ level. Finally, on canvas level, both data types and
functions from C++ appear as modules (What else?) with call backs to their respective
predecessors.

The table shows that we do not reuse control structures from FORTRAN 77. The reason
is that it is in fact pointless: a conditional statement as IF .. THEN .. ELSE has the
same semantics as the C++equivalent if ... then ... else. The structure already
exists, so there is no need to build it ourselves. The canvas does not dispose over control
structures, and here we do need to create a control structure module.

We demonstrate the transformation by means of an example taken from the small LA-
PACK function toolbox (which contains three modules), based on a developed FOR-
TRAN 77 data toolbox.

First, consider the wrapping for a double precision FORTRAN 77 vector. According to
the table above, no FORTRAN 77 source is used. At the C/C++ level, we construct
the double precision vector class NDVector. It is described in the file NDVector .h:

class NDVector : public NDBlock

{

public:

NDVector(const int _n = 0);
double &operator() (const int _i);
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NDVector (const NDVector &);
NDVector &operator=(const NDVector &);

int read(const char *, const int format = ReadWriteFormatMatlab);
int write(const char *, const int format = ReadWriteFormatMatlab) const;

};

Note that NDVector does not have its own data field double to store its values. This is
in fact not the case: NDVector has been derived from the base class NDBlock (also used
for matrices and tensors) that does dispose over this data field.

The provided operations for this class are entry-level access, creation and duplication.

On the next module level, the description is:

class MDVector : public MModule, public NDVector
{

public:

MDVector(const int _x = 0);

MDVector(const MDVector &);

MDVector &operator=(const MDVector &);

public:
int update();

public:
// network: input/output port methods:

};

Note that the vector on the module level is (derived from) a vector on the C/C++ level,
and that the addition visual functions have been added.

Next, consider the wrapping of a FORTRAN 77 function. In order to keep the example
simple, we did not use LAPACK, but instead used a simple function called dvectorplus,
which adds to vectors. Naturally, this does not change the principle.:

SUBROUTINE dvectorplus(z, x, y, n)
IMPLICIT none

INTEGER n

DOUBLE PRECISION z(n), x(n), y(n)

INTEGER i
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DO 1 i=1,n
z(i) = x(1) + y(1)
1 CONTINUE

RETURN
END

Here is the class for this function. From NDVectorddPlus.h:

class NDVectorPlus

{
public:

NDVectorPlus();

NDVectorPlus(NDVector &z, const NDVector &x, const NDVector &y);

protected:
// call back on source
void callback(NDVector *, const NDVector *, const NDVector *);

public:
ostream &print (ostream &) const;

};

Observe the member function callback (). This is the link with the FORTRAN 77
source.

On canvas level, we have (from MDVectorPlus.h):

class MDVectorPlus: public MModule, public NDVectorPlus
{
public:
MDVectorPlus();
MDVectorPlus (MDVector &_z, const MDVector &_x, const MDVector &_y);

public:
int update();

public:
// Input/output port methods:
const MDVector *getx();
void setx(MDVector *);
const MDVector *gety();
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void sety(MDVector *);
const MDVector *getz();
void setz(MDVector *);

private:
MDVector *X;
MDVector *y;
MDVector *z;

};

Observe that the class implementation preserves the function notation: It is possible to
write a program

NDVector x;
NDVector y;
NDVector z;
NDVectorPlus(z, x, y);

without ”instantiating” the NDVectorPlus module. As in the case of wrapping the data,
on the module level, all visual functions are added.

An example taken from the last design toolbox (small LAPACK one, after the BOUND-
PACK toolbox had been implemented) has not been inserted in this place. The LAPACIK
toolbox is small and available upon request.

5.2 Module Granularity

A source can be translated into visual modules using different levels of granularity:
e source to single module (plain wrap);
e source to n modules My, ...M,, one for each function;
e source to n modules My, ... M, with additional external loops (see section 6);

Figure 19 shows how a FORTRAN 77 source can be wrapped as one module (left) or
split into several ones (right). Next, we must decide whether the individual modules

should hide their input and output data as in figure 12(b), or make use of external data
as in figure 12(a).

First, a typical case of data-hiding has been applied in modules developed for the

BOUNDPACK visual library. The disadvantage is that each module must be connected
to the next one in order to get all data it requires. Thus reuse possibilities are low.
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Figure 19: Dividing a test program into four separate parts
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Next, in an attempt to produce reusable modules from the FORTRAN 77 source, no
data-hiding was applied (figure 12(a)). Figure 20 shows how a network might look in
theory. This may lead to too many data modules will reside on the canvas. This can

G

Figure 20: FORTRAN 77 style data flow program, using external data

also be seen in the BOUNDPACK example shown in figure 21.
Though already commented on in section 4.3.5 and 4.3.6, it is clear that a network with

so many modules and connections does not add to the overview and simplicity of visual
programming.
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5.3 Toolbox Communication

When tens of toolboxes are to be used in combination, their independence becomes
an important issue. This independence ensures that new toolboxes can be developed
without all others. Thus, speed, and reliability increases.

Assuming that two toolboxes have been developed independently, than how would they
communicate? There are several possible solutions, including:

e filesensor;
e exchange data via standards at file level;
e exchange data via shared data types.

In NumLab, the standard matrix and vector data structures are those used by MATLAB.
The standard data formats for vector functions and operators are those used by VTK.

At first glance, it could seem strange that independently developed toolboxes would have
data types in common. However, all toolboxes can make use of the builtin types such
as int, or string, which means that a writer from one toolbox can be coupled to and
reader from another via string arguments.

The BOUNDPACK toolbox implementation (as part of this thesis) and a derived small
LAPACK toolbox communicate via a combination of shared data types and files.

In the current NumLab kernel toolbox, the basis modules vector and matrix communi-
cate with the visualisation toolbox via a direct link between the two underlying libraries,
which makes debugging awkward. This should be altered for future releases.

6 Modules for Loop Control

6.1 Introduction

The addition of control structures seems to complement the set of mathematical data
and functions with mathematical logic. Through all applications, also in OpenMath and
MathML, the implementation of control structures seems the most difficult to implement.

6.2 Data Flow Management, when loops occur

The order of execution of pieces of code
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subroutine1(...)

subroutineN(...)

in standard programs, is sequential. When started, subroutinel is first executed and
upon finishing, subroutine2 is executed and so forth until subroutineN finishes and the
program terminates.

On the canvas — data flow style programming — the connections (data flow graph of the
program) determine the order of execution. There is no sense of ”sequential”, in the
classical programming sense.

A typical program with a loop looks like

pre;
while (cond(calculated_value, input_value) do something;
post;

We need to divide the code into separate parts, if we want to make the loop explicit
on the canvas, i.e. construct a loop module and a condition module that controls the
number of loops.

The program is best cut into three pieces as follows:

pre module;

inside loop module; /* contains all cond_input_value related stuff */
cond module;

post module;

with an added control block cond. The corresponding network is schematically shown
in figure 22:

PRE

T

LOOP COND

i

POST

Figure 22: Schematic data flow through a loop
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Here, whether the data flow comes from pre, or from cond, loop executes the same code.
When cond stops, the loop back simply stops and the network terminates. Note that
the data flow loops from the bottom of the loop module to the cond module, enters
it through the top and leaves again through the bottom. This is precisely where our
intuition works against us.

There is a connection between cond and pre as well. It serves to supply cond with a
iteration limit, equal to the amount of memory allocated to store the solution in. We
avoid ”out of bounds” problems by doing so.

The NumLab network is shown in figure 23.
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Figure 23: NumLab network with an explicit loop

In this particular case, order of execution is determined by the connections. A typical
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update for each of the modules described above could be:

Update M:

{
Module M depends on I_i

// If I_i has failed, return NetworkHalt;
// If I_i has never been updated before, do so now.
// Upon NetworkHalt, return NetworkHalt;

// Here, we now that I_i is an a Ok state.

}

It turns out that in a situation like the network above, it is important to know where the
data flow comes from. In other words, we need to know for every module what module
was executed before.

Unfortunately, general networks may be more complicated with modules that depend on
more than a single module. Consider the network from figure 24.

Figure 24: Data flow network in a fragment of a bigger network

Module E now depends on module A, B and C who all depend on module X. Asking the
question ”Who was last updated?” has no clear answer. After module X has finished,
the network manager decides when and in what order to execute module A, B and C.
It is impossible to tell who was last updated - either one is just as likely as the others,
$0 1t is not clear where the data low before E comes from.

Another situation occurs in the network in figure 25.

In this network, the question ”Who was last updated?” seems more relevant as A and
C do not depend on the same module X as in figure 24. But this is only an apparent
difference, because the network might be part of bigger network as shown in figure 26.

44




E

Figure 25: Data flow chart through a simple network
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Figure 26: Who was last updated?

In this situation, again, we don’t know. The order of execution is likely to be Al, B1,
A2, B2, so the ”Who was last updated” seems again irrelevant.

The problem discussed is in fact a code switching problem. The loop module is somehow
supposed to decide whether it should execute its code for an iteration step, or the code
for initialisation.

In figure 27 the left network is initialised once (module I), does not terminate, and loops
back 10 times via module C. The right one is initialised 10 times, and terminates each
time. Assume for both networks, we have arrived at module B, we want to know what to
do. How does B know what to do? Do we have to initialise now, or has that been done
before already and can we skip directly to the body of module B? In fact, what we want
to know here is what has happened before B was called. In other words, who triggered
module B? Was it I, then we need to initialise, or was it C' and can we simply perform a
next step in the loop? This simple question is important in dealing with situations with
Joops because we need to know what to execute: an initialisation of the loop, or repeat
the body for a next step in the loop. This problem gives rise to the question ”who was
last updated?” but as we have seen in the examples above, it is a complicated task to
find the answer to this question, if there is any, and if this answer contributes to solving
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Figure 27: Who was last updated?

our initial problem: what code to execute?.

6.3

The Newton-Raphson Algorithm

In order to really put our previous considerations to the test, we created modules and
built a NumLab network for the Newton-Raphson algorithm from section 2.2. It makes
use of the especially for this purpose implemented NumLab modules:

Duplicate, which copies its value from the input to output;
Increment, which adds two values and overwrites the first with the sum;

Control compares a real to a given accuracy and/or an iteration integer to a given
max_iterations;

Newton computes Ax = —F(z,a)/dF(z,a) for given x and a;
Fx, which represents the function f(z,a) = z? — a;

dFx, the derivative of Fx, df (z,a) = 2z;

AbsValue, which takes the absolute value of its input;
ZDoubler;

double.

Schematically, this algorithm is turned into a network as shown in figure 28. Data flow
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starts at xo. This value is duplicated to x. Next module Newton uses x and modules
Fx and dFx to compute Ax. This value is added to x through incr. On the other end,
the absolute value is taken from Ax, compared to input value epsilon, the required
accuracy. From here, the network either loops back to x or the network terminates. Af
the end of computations, module r will hold the solution of the equation z2 —a =0, for

given real a > 0.
X0 A

INCR

Figure 28: Newton network with external loop

The corresponding NumLab network for this algorithm is shown in 29.
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Figure 29: A NumLab Newton-Raphson network
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6.4 The Newton-Raphson Algorithm: Restarting

Because loops seem difficult for the network manager to handle, restarting networks
turns out to be not a trivial task. This section comments on problems encountered with
the network manager (as implemented in NumLab).

Encountered Problems: During the implementation and testing of networks with
loops, we encountered several problems with the network manager. When building such
a network and sending data through it, it seemed impossible to re-initialise the network
by calling the the initialisation module. Re-initialisation is needed when one alters input
data, such as the number of output points or the method used. This would cause the
loop module as well as the condition module (the guard) to end up in a endless cycle with
both modules returning a networkhalt and calling one another. Of course, an obvious
way around this problem is deleting the modules, and create them again and make the
proper connections. However, we found way to restart the network without deleting and
reconnecting nodes.

e Make the desired input changes

Lock the condition module

Lock the loop module

Re-initialise, i.e. update the ’pre-block’

Unlock the condition module

e Unlock the loop module

The network now restarts and calculates the new values. Perhaps a newer version of the
canvas will cope with the problem.

7 Modules for BOUNDPACK

This section analyses the multiple shooting method and its implementation in the FOR-
TRAN 77 library BOUNDPACK. It comments on the design of modules for this package,
and discusses the merits of an actual implementation of this design.
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7.1 Multiple Shooting Methods
7.1.1 Introduction

In this section we examine the formal component specification for multiple shooting
methods. Such methods are used to numerically solve boundary value problems in one
state variable.

We will initially discuss the principles of the multiple shooting method applied to ordi-
nary differential equations. This method leads to a system of equations to be solved.

We will discuss some methods to find these solutions, among which QU-factorisation.
Then we will develop and test the software to be able to use BOUNDPACK within the
NumLab context and on the canvas. Finally we will focus on the multiple shooting
method applied to some non-linear ODE’s.

The shooting methods have been chosen based on the Scientific Computing Group’s
expertise in this field (see [8] and [1]) related available software (BOUNDPACK FOR-
TRAN 77 libraries, implemented by Dr. G. Staarink and Prof. R. Mattheij), and a
traineeship regarding the integration of time-integration methods in NumLab (see [16]).

Part of the presented material in this section is discussed in the books [8] and [1]. But,
the presentation, using one consistent set of notations, all examples, and data flow anal-
ysis are original.

First we will define the boundary value problem we are interested in in section 7.1.2 and
briefly explain how the multiple shooting method works. This will result into a linear
system in section 7.1.3 that we will discretise in time in section 7.1.4. In sections 7.1.5
and 7.1.6 we will discuss some possibilities to solve the remaining problem. In sections
7.2 and 7.3 we will show how we can implement these methods.

7.1.2 The Boundary Value Problem

We are initially interested in second order linear ordinary differential equations (ODE):
Given z,,z, € R

E(t) = cx(t) +dz(t) + f, t€|a,b]
z(a) =2., x(b) =z,

(4)

where ¢, d and f are in principle continuous functions of ¢ € [a,b]. Problem (4) can be
reformulated as a first order ODE by writing
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By doing so, the second order differential equation becomes a first order ODE. In general,
we can reduce a p-th order ODE into a first order system of p ODE’s. The resulting

system in our case is:
i) = 0 [ + L] ©

In combination with the boundary values (4) we can denote the BVP shortly as:
x(t) At)x(t) +£(t), t€la,b] . (7)
g(x(a),x(b)) := BaX( )+ Byx(b) - =0

with A(t), B,, By, f(t) and 8 defined by

-0 o= =[]

10 00
e (R

The shooting method applied to a boundary value problem involves temporarily ignoring
one of the boundary conditions and simply integrating straight forwardly, starting from
the remaining boundary condition. In the end we will have to make sure that a solution
obtained in this way will eventually match the dropped boundary condition.

(8)

In order to apply the method of multiple shooting to our problem, we partition the
time interval [a, b] with the use of N, (N € N, N > 2) time nodes into N — 1 subinter-
vals, i.e. [t;,ti41) fori=1,2,.., N —1 with t; = a and ty = b. As an example, we will set
N = 5. At the nodes, we introduce estimates s; = [s;1, si2]” for the solution x = [z, z]"
at t;, (i =1,2,..., N —1). Naturally, we would like to find s1; = z, in order to meet with
the initial condition at ¢t = a, but sy (the derivative) can still be chosen freely so s; is
not fixed yet.

Sl 52 S3 S4 SS
I T T T -
t=a=t1 t2 t3 t4 t=b=t5
| me—
h = (b-a)/4

We have replaced the original problem with N — 1 sub-problems. Our next step is solve
these following family of problems on each of the intervals [t;,ti4q] fori = 1..N — 1
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Any solution of the ODE (7) can be written as
x(t) = Yi(t)a+w(t)

where Yl(i) is a fundamental solution (i.e. Y;(t) solves Y = AY, Y(¢;) = I) and w(t)
a particular solution of ODE (7) for some a € R".

7.1.3 The Linearised System

In order to find a continuous solution, we will require matching conditions for the solu-
tions ys, (t) at the nodes t = ¢;, 1= 2,3,.., N —1. In other words, we want ys, (ti+1) = Si+1
for i = 1,2,..., N — 2. Finally, we would like s; and y,,_, (ty) to satisfy the boundary
condition (4'), i.e. g(s1,¥sy_,(tn)) = 0. By writing S = (sy, ..., sy-1)7 we can write the
requirements above as F(S) = 0, with F specified by

Fy(S) [ sy ()
83 = ¥s2 (t3)
re)=| | = s ~ 0. (10)
Fn_1(S) _SNg—(lsl"")iZN_-lz(gvl\f)sl)

Keep in mind that in general the dimension of the domain of F is precisely (N — 1)p,
with p = dim(f3). For instance for problem (4) the dimension of F is 4 x 2 = 8.

We solve this system of equations by applying Newton:

F'(SH)ASF = —F(S*)

Sk+1 = S% + ASF (11)
where ASF = S*+!1 Sk with an initial S® = S, specified. It seems logical to take S,
such that s;; = z, according our boundary value at ¢t = a.

F’ is simply the Jacobian matrix F’ = a . Differentiation with respect to s; is trivial

for all elements except for those on the dlagonal but even those can easily be simplified
into

—*63);1 (t2) I 0 0 0
0 —%ys%(ts) I 0 ]
T !
0 0 0 o= 36}:13,___22 (tn-1) I

B, 0 o 0 By o= ()

(12)
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These equations determine the required solution of our linear system, but we still need
to find the diagonal elements of the matrix F'.
We will do this by solving the following system for y,, (t)

ig)) z:(t)YSi(t) +£() (13)

In the following sections we will show two methods to solve this problem.

7.1.4 The Time Integration

Because usually ys, and — ys’ for computation of F' can not be computed exactly, we

need to discretise the problem in time. We have several choices here but we chose to use
the f-method with only one step, i.e. h =

P/Q:=Q"!
and define for 1 =1...N
Ai = A(tl)
fz = f(ti).
Then we find with the 6—method
v (tip1)-vE () h A (14)
h = H{Alysi (t:) + £} + (1 - 9){Ai+1ysi (tiy1) +fipr}

and from this
hfy — I1+6hA; th +(1—0)ht; 41
ysi (tz+l) — I-(1-8)hA; +1y51( ) —(1—-0)hA

I+0hA; o Ohf; +(1 0Vhf; 41
I—(l—e)hAi+1 K I—(l—a)hAi+1 '

(15)

We will repeat this procedure now for the perturbed problems for zs, , ..., 25y, ( = 1, 2),
defined by:

Zs; | = A(t)zs,; + (1) (16)

Zs; (tz) = s;+ 6e]~.
where we will take for e; subsequently the unit vectors e; = [1,0]7 and e, = [0, 1], thus
Yi(a) = I. The variable 6 is a small number, for instance equal to /7, the square root
of the machine precision.
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Applying the (same) 6-method to the perturbed problems results after similar steps
as above in:

I __ It8hA; k(4 OhE;+(1—0)hf; 4,
Zsii (tis) = [“(1—9)’1Ai+1z5i( i) + I-(1-6)hAiqr, (17)
[+0hA; ORE;+(1—0)hfi 1

— __I+6hA; o .

= ohAn S T 08+ T gmA L,

. BYs.
As an estimate for -ay;l— we can now take

3% Loz (i) -yE (i)
Sij T é
I+OhA;
I-(1-0)hAj, 7

This way we can find all of the components of F’. In sections 7.2 we will demonstrate
the method in a special example.

7.1.5 The Direct Elimination (DE) Solution Method

For small sized problems, the equations (11) and (12) can simply be solved with a direct
solution method, i.e. by multiplication with the inverse of F/(S¥). So then we have

ASF = —[F/(S*]7'F(SH).

For larger problems, or simply generally speaking, calculating the inverse may not be
efficient or not easy to find. We can then try a recursive method by defining Y; :=
aaL;(tiH) for: =1,2,..N—1 and we ’sweeping’ the matrix F’, we can transform problem

(11), (12) into

-Y; I 0 e 1} 0
1] -Y, I ) ? 0]
0 0 —-Y; - ] 0 ASF = —F,
0 0 Yy, I
00 0 BeYnoi+B.Y{'Y7LYR,
(18)
where F is
_ P, -
Fy
F = : (19)

Fyo1 +B. Y 'Fi + B.Y 'Y Py + ...
+B. Y'Y L YR L
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The system (18),(19) can be solved by means of a backward substitution. Starting at
the last row, we can sequentially solve the equation and proceed to the row above.
However, due to the appearance of the matrices in the last row, this is still an expensive
computational task. Therefore, in the next section we will examine the QU method that
uses the special structure of the matrix (12) in order to reduce the computation time.

7.1.6 The QU Solution Method

This section presents the QU solution method as part of the process of solving an ODE
by mean of a forward/backward recursion. (see [8] and [1] for more details)

The target is to get detailed insight in the involved data-types and functions, for a
possible formal component specification.

In the same manner that we can represent the solution of problem (7) by
x(t) =Y:(t)a+ w(t),

with Y, (¢) a fundamental solution (Y;(t) solves Y = AY, Y(t,) = Y;) we can do this
for the solution but now considered as solutions belonging to the intervals. Thus we have
for every interval ¢, ¢ = 1..N — 1:

X(t) = Yi(t)ai + w; (t) (20)

with Y;(¢) a fundamental solution (Y;(t) solves Y = AY, Y(t;) = Y;) and wy(t) a
particular solution on the interval [t;, t;41], all still to be determined.

Choose x(t;) as starting condition, in other words, choose w;(t;) as starting condition.
Often this choice will be w;(¢;) = 0. After having chosen the initial w;(¢;) we can
compute a fundamental matrix Y;(¢) (for example by numerically differentiation of the
initial solution as we have done before). Now that we have a particular and a fundamental
solution on each of the intervals, we will now determine the unknown a; fori =1, 2,.., N.

Remark : The possibility to choose the initial Y; on every interval is based on the
following fact: Suppose Y is a fundamental matrix such that

Y = AY
Y(t) =1L (21)
Then
(YB)=YB = AYB = A(YB) (22)

(YB)(t:) = Y(#,)B = B.
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Clearly we can choose freely the initial Y,. The fundamental solution belonging to this
new problem is simply the principle fundamental matrix Y multiplied by our chosen
Y; = B.

Now start with Y; = I and compute Y (t3), this gives x(¢3). After QU decomposi-
tion of Y;(¢5) we find

Y (t2) = Q2U;

with Q2 and U, orthogonal and upper triangular matrices respectively.

If we continued integrating from the point Y;(¢2) (i.e. if we chose Yy = Y, (¢3)) then
we would find exactly the same solution as with a single shooting method. The key
point now is to choose a new orthogonal fundamental matrix to start from at t = t, so
we take Y, = Q, and with this matrix we calculate Yy(¢3). Then perform a new QU
decomposition onto Ys(t3):

Y (t3) = QsUs

with Qg and U, orthogonal and upper triangular matrices respectively.
In general on interval [t;,¢;11] starting with an initial Y;, we calculate Y;(#;,,) and apply
a QU-decomposition

Yi(tiv1) = Qis1Uisr.

As the initial condition for the next interval [t;,1, ;2] we will choose Y11 = Q;41.
We can repeat this procedure until we have arrived at t = ¢y.
Then, we have on the interval [¢;, ¢;41] (cf I in the figure below)

X(tiv1) = Yi(tiz)ai + wi(tip1) = Qi1 Uia; + wiltigr) (23)
and on the interval [t;41,t;42] (cf II in the figure below)
X(tiz1) = Yip1(tip1)aisr + Wig1(tiz1) = Qiprai1 + wigr (tig1)- (24)

I II
|

i+1

t

Matching conditions at ¢ = ¢,,, require that
(23) 24
Yiltivi)ai + wi(tig) = X(tig1) = Yiri(tip1)aipr + wipi (i) &
Qi+1Uir1a; + wi(ti1) = Qir1ai41 + Wi (L)
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From (7.1.6) we find can derive a recursion for a;
a;,1 = U;a; +d; (25)
with
| d; = Qi {wiltitr) — Wia (tis)}-
The solution a; of equation (25) can be represented as:
a; = 0§ + 2y,
if ®; is a solution of the homogenous problem of equation (25):
i1 =Ui1®; (26)
and z; is a particular solution:
ziy1 = U112 + d;. (27)

For well-conditioned problems it can be shown that the solution space S of the homoge-
nous problem is dichotomic. This means that we can find a subspace (of dimension
k, say) S; of S of solutions that do not increase significantly for decreasing ¢ and a
complementary (n — k)-dimensional subspace S, with solutions that do not increase sig-
nificantly for increasing ¢. Under fairly general assumptions we can use this dichotomy
and subdivide the matrix U; as

B, C;
U, = [m E} (28)

with B; and E; both upper triangular square matrices (since B; is upper triangular).
1

Using the appropriate partitioning of ®; = [23} we may split recursion (26) into:
0, = Bi®; +Ci1 9} (29)
@, = E @ (30)

The key factor now is that we will use the dichotomy to solve ®; and z; stably by solving
them sequentially in the right directions. Observe that B, represents the incrementing
modes of the solution (i.e. S;) and E; the decrementing modes (i.e. S;). In order to
minimise errors during computation, it is necessary to solve ®? in forward direction given
an initial ®2, for example we may take ®? = [B|I,-x]. We can now solve all ®? for i =
1,2,..,N. With these results and an initial &}, = [Ix|@] we can solve stably in backward
direction the remaining ®%,_,, ®%_,, .., ®} since B; was said to represent the solutions
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that do not increase significantly for decreasing t. This way we find ®,, ®,, .., ®5. Note
that this is in fact a decoupled recursion.
We use a similar approach to solve the particular solution z; from recursion (27). With

z! d} .
Z; = Z’Q and d; = d’2 , We rewrite it as:
Zz1+1 = Bi+1zz1 + Ci+lzz2 + d%—}-l (31)
z12+1 = Einzl + dzz+1-

Note that all d; are known already so starting at z> = 0 we may find sequentially z? for
i =2,3,..., N. Adding C;;,2? to the source term d} , and starting with z}y = 0 we can
solve in backward direction the remaining z’.

So now we have both the fundamental solutions ®; and the particular solutions z;.
Consider

for some still to be determined &. We will verify that the formula for a; in fact satisfies
recursion (25) by inspecting both a;; and U; . a; + d;. We see that

(32)
a4 = D;11& + Pigt (33)
(26),(27)
=" U ®€+Ujnp; + d;,
and
(32)
Uinai+d; = Ui {®:£+pi} + ds (34)

= Ui @& + Uipipi + ds.

Indeed, it shows from (33) and (34) that the expression for a; in (32) solves the recursion
(25).
So after substituting the previous results into (20) we find for x(;):

wi(t:) + Yi(t:)(z: + ®i€)
w;(t:) + Qizi + 0:8).

x(ti) (35)

Finally, we still have the unknown £. This value will follow after substitution of (35)
into the boundary conditions B,x(a) + Byx(b) = B:

{Ban‘I’l + BbQN+1‘I’N+1}C =b— BaW1(a) - BbWN+1(b) - B.Qiz1 — ByQni1Zy 41
(36)
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7.2 The NumLab DE Implementation

As part of this thesis, the direct elimination method has been implemented. The merits
of the DE-implementation are discussed using several different example boundary value
problems.

Example 1: A Linear Homogeneous Problem.
Here we demonstrate the method of (single) shooting by solving the following begin value
problem.

(%) t € [a,b] = [0,1]

Z(t) =0,
20)=0, z(1)=1 (37)
or reformulated with the matrix notation from the section 7.1.2 as:
x = Ax (38)

g9(x(0),x(1)) = Bux(0)+Bpx(1)-8=0

with A, B,, B, and f for this specific example

xo= [0 = [1]. teo

but we will let NumLab find this solution by applying the shooting method. We will

divide the interval [0, 1] in 4 subintervals, so N = 4. So we have [t;,t;41] for i = 1,2,3,4

with t; = 0 and ¢; = 1 and the step size h becomes h = = ¢. We can now calculate

the entries of the matrix F', provided we choose a value for §. If we set § = 1 (Euler
Forward) equation 7.1.4 becomes quite simple:

Yoy = I_—I(if%ej = (I + 3A)e;
11 (39)
~ o ﬂ ©-

Substituting the unit vectors e; and e, for e; we find

Vi, = |F Yo, = |3 4
Si,1 T 0 ) S$i,2 T 1 ) (0)
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or put together into one block matrix:

0ys: _ |1
8Si_0

i

] . (41)

Finally, the lower right block matrix in F' becomes

1 1 00
By I: 4:| = |: jl > (42)
0 1 1 2
so if we put these results together, we find F':
1 -
0 _i I P 0 0
-1 =1
0 01 g b 0
F = F/(8° = 1 (43)
4
0 0 0 -] I,
10 00
0 0
00 11

The method has been tested for N = 4 and additionally for N = 5, 6,10, 20. The results
show that the solution is x(tf) = ¢ with derivative #(¢) = 1, in accordance with the
theory. Below we have included the output for the case N = 4. The vector gs stands
for F(S) (cf. equation (10)) during step k¥ = 0,1 and S* and AS* are represented by
s and ds respectively. All vectors are printed as s = [[s11, S12)[S21, S22][S31, S32][Sa1, Sa2)-
We see that S° = 0 (our first estimate of the solution) and in the next step has been
incremented with ds or AS*. Additionally, AS! is now zero, so the algorithm stops. No-
tice that at the same time gs = F(S) = 0 which means that the solution is continuous. S.

The results for N = 5,6,10,20 are similar, except of course for more output points.
Naturally, the matrices in equations (41) and (42) change into

aSi - 0 1

SR

and so does F' in equation (43) naturally.

and

2=
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¢ 3k 3 3k 3k 3K ok 3K 3K ok 3K ok ok K ok 3k ok ok ok 3K ok o 3k ok ok ok o ok ok ok e ok sk ok sk ok sk ok ok ok

Msg(Main): Loop O

Msg(Main): gs = (Lo, ollo, 0][0, o0lf0, -1]1]
Msg(Main): s o, o1fo, o1fo, 0l[0, 01]
Msg(Main): ds [[-o, 11[0.25, 1J[0.5, 11[0.75, 11]
3 3k 3k 3k 3k 3k ok 3 3 sk 3k ok sk 3k ok 3K ok ok sk 3k ok ok 3k ok 3 ok sk ok ok ok ok ok 3k o ok ok ke ke ok ok

Msg(Main): Loop 1

Msg(Main): gs = o, ol[o, 0][0, 0][0, 01]
Msg(Main): s [fo, 1Jfo.25, 11[0.5, 11[0.75, 1]]
Msg(Main): ds (r-o, -oir-o, -ojf-o, -o0l[-o0, -011l

Solution x at t=0 : 0
Solution x at t=0.25 : 0.25
Solution x at t=0.5 : 0.5
Solution x at t=0.75 : 0.75

The NumLab implementation of this procedure has been included in the appendix 11.1.
It contains a do-loop in the main routine that in essence represents the Newton iteration
equations in formula (11). The loop does not terminate until ds is practically zero, that
is, S¥*1 and S* have become equal and do not change anymore. This means that we
have found an S such that F(S) = 0.

Example 2: A Linear Inhomogeneous Problem.
As a second example we will discuss a more complex problem defined by:

i(t) = o(t) + 2(t) + 2 — t* — 2t, t € [a,b] =[0,1]

z(0) =0, z(1)=1 : (44)

The difference with the example 1 is the righthand side of the ODE. In matrix represen-
tation the righthand side now becomes:

01
A=l
and f(t) now is

ft)=2-1 -2t

The exact solution (in matrix form) to the problem is

-1

Instead of Euler Forward we use the Trapezoidal rule to compute Y5, ;, because we expect

this method to be exact for quadratic solutions. So 6 = % Furthermore, we will divide
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the interval [0, 1] into N = 4 subintervals so h = ;. The NumLab output is shown below.
The results are printed in the same format as we did for example 1.

We see that the solution x(t) is indeed quadratic and that it is exact, corresponding
with our expectations. This is why we used the Trapezoidal rule of order 2 to calculate
the elements of F’ and not Euler Forward or Backward of order 1.

2k 2k 3k 3k ok o ok ok sk ok ok A %k ok A ok 3k ok 3k k ok ok %k ok ok 5k Ak sk 3k ok k ok dk ok %k %k ok Xk %k
Msg(Main): Loop O

Msg(Main): gs = [[-0.0625, -0.5][-0.0397727, -0.318182]
[-0.0125, -0.1][0, -1.01932]]
Msg(Main): s = (fo, oifo, olfo, o]fo, 0]]

Msg(Main): ds [[-0, -0][0.0625, 0.5][0.25, 1]1[0.5625, 1.5]]
3Kk oK o oK KKK oK KK KK K K R KR R KR ok K

Msg(Main): Loop 1

Msg(Main): gs = ([o, ol(o, o]lfo, 0]fo, 0]]

Msg(Main): s = ([0, 01[0.0625, 0.51[0.25, 11[0.5625, 1.5]]
Msg(Main): ds = ((-o, -ojf-0, -03[-0, -0][-0, -0]]
Solution x at t=0 0

Solution x at t=0.25 : 0.0625

Solution x at t=0.5 : 0.25

Solution x at t=0.75 : 0.5625

Example 3: A Linear Homogeneous Problem with Dichotomy. The method described
earlier in this section would typically fail for problems with increasing and decreasing
modes. Let a > 0 Consider

Z(t) = a®z () t € (0,1)

o(0) = 14+-e0 =20, (1) = 14 e~ = 2. (45)
The solution is
z(t) = e7% 4 ¢7o1D), (46)
We can rewrite this problem as a first order ODE:
% = Ax = [22 (1)} X
B,x(0) + Byx(1) - [ij ~0 (47)
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Clearly the general solution for equation (47) is

x(t) = eAx(0) = Pt [;Egg] . (48)

We will now use Fulmer’s method to calculate x(t). First we need to find the character-
istic polynomial ¢(A) of the matrix A

c(\) = det(A — XI) = \? — a®

so we find \; = —a and Ay = a as characteristic roots. This implies that the general
solution of

cD)y=(D-a)(D+a)=0
can be written as
y(t) = cre™™ + cre®

for some constants ¢; and cs.

Fulmer’s method now states that we can write x(t) = e®!

as
eAl = BEje™ + Eye™ (49)

for some matrices By, E;. We can find these matrices by evaluating equation (49) at
+ = 0 and doing the same for the (time) derivative of the same equation. Therefore

6At(t = 0) =1 = (Ele"” + E2€at)(t = 0) = E1 + EQ
Aert(t=0)=A = (—aEje™® + aEqe®)(t =0) = —aE; + aE,.

So we need to solve a linear system of equations

R =

with solutions for E; and E,

1 =1
Ei= MI-1A}=1|_ ¢

1 1
Bo= dr+tay =4, )

If we substitute the matrices E;, and E, in equation (49) we find e®?

171 =1 11 1
At:_ a —at - a al
e 2[—a 1]6 —I-Z[a 1]6.
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It follows from (46) that

x(o) — [e—al +e—a(1—t)]t=0 — 1 + e—a
i(0) = [—ae™® +ae™ ! V),ny = —a+ae™

After substituting (50) in (48) we find
e~ e-—a(l—t)

x
X(t) = |:$] = [_ae—at +ae—a(1—t) :

Another way to find this solution is to diagonalise matrix A(t) as A = QAQ™! with
A = diag();) and @ the matrix of eigenvectors and then compute eAf. It follows from a
Taylor expansion that

AL ,QAQTE _ i (QAQ'1)" QeMQ-!

n! -
n=0

but naturally this results in the same solution.

7.3 BOUNDPACK: The NumLab QU Integration

This section comments on the integration of the multiple shooting FORTRAN 77 software
package (libraries and tests) BOUNDPACK in NumLab. It shows how visual modules
are constructed which use the subroutines from BoundPack. The employed techniques
were discussed in (subsections of) section 5.

First, we conducted a data flow analysis of the BOUNDPACK package (details are in the
appendix, see section 11.2). From this analysis we conclude that most tests (for instance
test subroutine MUTSGE() in BOUND1.FOR) can be divided into four parts (see figure 19):

e Input;

e Initialisation (called premuts);

e The MUTS routine (called themuts);
e Post processing (called postmuts).

First, premuts sets variables corresponding to the (test) problem we want to solve,
specified through the input. Then, themuts solves the ODE. Finally, postmuts prints
the computed solution. The themuts is a so-called driver: A function which solves the
highest level problem.

The (FORTRAN 77) test program on which our modules are based is one long list of
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statements, schematically represented on the left hand side in figure 19. By examining the
code, we categorised these statements into the four groups mentioned above. Typically,
the input is split up in several input blocks (two in our example). The rest of the
program was literally cut up in a subroutine premuts, themuts and postmuts. Before
data could be read, written and inspected anywhere in the code, as illustrated by the
boxes and lines. After the split up, this is no longer possible without the appropriate
changes. Data now exists within a subroutine and by default not outside it. So the
data connections need to change from direct access in FORTRAN 77 to indirect access
in C++. If one subroutine needs data from another subroutine, it will need to address
the other subroutine first and then its data, shown as dotted lines in figure 19.

The fact that we split up the test program actually comes back in the test programs we
wrote for the different levels X, Y, Z. All of these tests consist of setting up some input,
and calls to premuts, themuts, and postmuts on their respective levels.

It might seem that we are striving for a perfect isomorphism between the three levels
plus the canvas. This is actually not the case as this is not a feasible goal. It is impossible
to map a language through a one to one and onto function onto another language.

7.3.1 Complexity Analysis

During programming, it turned out that we needed more subroutines and (member)
functions than we thought initially. Often extension of functionality of one feature led
to the necessity of building a number of new auxiliary functions. Current number of
subroutines is roughly 750. However, with the possibility of many new things still to be
added and improvements of existing routines, this number can still grow significantly.

7.3.2 Modules

Many new modules have been written. They are listed below, categorised in data types,
routines and data filters. All are functional on the canvas. First the data types. They
exist as single value, in vector -, matrix and tensor form for integers, doubles and floats.
Tensoren (a 3-dimensional array) were only needed for doubles and thus they were not
implemented for integers and floats. Naturally, this can easily be done.

| Single value Vectors of: Matrices of: Triple arrays of:

Integers | ZInt ZIVector  ZIMatrix n/a
Doubles | ZZDouble ~ ZDVector =~ ZDMatrix = ZDListMatrix
Floats | ZFloat ZFVector ZFMatrix  n/a

The following table shows the routines derived from the MUTS examples. As stated
before, the concept was to split the FORTRAN 77 example program into three separate
modules.
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Example

Testing purposes

For the MUTSGE example
For the MUTSPS example
For the MUTSMI example
For the MUTSEI example

PreworkZ

PremutsGEZ
PremutsPSZ
PremutsMIZ

PremutsEIZ

TheworkZ
ThemutsGEZ
ThemutsPSZ
ThemutsMIZ
ThemutsEIZ

PostworkZ
PostmutsGEZ
PostmutsPSZ
PostmutsMIZ
PostmutsEIZ

Furthermore, we built the following data filters for communication purposes:

The vector and matrix printers will export their input vector or matrix and write 1t to
a file in MATLAB format if a valid filename is provided. Otherwise they will print the

ZIVectorPrinter
ZIMatrixPrinter
ZIVectorPrinter
ZIMatrixPrinter
ZIVectorPrinter

ZIMatrixPrinter

values on the standard output (screen).

In conclusion, we also created a some standard matrices and vectors that were used
boundary conditions in tests for BOUNDPACK. These modules allow the user to specify
the ODE of interest. Modules for boundary conditions for new ODE’s can be constructed
relatively easily. Then, simply connect another boundary matrix and or vector and the

boundary conditions of the problem change and we have a new ODE.

ZDMatrixIdentity,
ZDVectorBCV_GE
ZDMatrixBMA _PS
ZDMatrixBMB_PS
ZDVectorBCV _PS
ZDVectorBCV_MI
ZDMatrixBMA _EI
ZDMatrixBMB_EI
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Boundary conditions of an ODE can be written as
B.x(a) + Byx(b) = bev.

As an example, module ZDVectorBCV_GE was designed to represent the boundary vec-
tor in the MUTSGE example in [10] and module ZDMatrixBMA _EI represents the left
boundary matrix in the MUTSEI example, see also {10]. However, usage in this way is
not compulsory. In the end, they remain matrices and vectors and can be used whenever
a matrix or vector is required. It just may be the case that by 'mixing’ modules, an
ill-posed problem is created.

7.3.3 BOUNDPACK Networks

In this section we will show how the available BOUNDPACK subroutines can be used
on the canvas. We will do this by two example problems.

Network example 1:
Let a,b be real numbers and a < b. The first example we will examine is based on the
following ODE:

Sx(t) = Alx() +£(t) aSt<b (51)

with general boundary conditions:

B.x(a) + Byx(b) = S. (52)

In this particular example we set a = 0, b = 6 and define A(z), f(¢) and £ by:

1-2cos(2t) 0 1+ 2sin(2)0 1
A(t) = 0 2 0 , (53)
—1—2sin(2t) 0 1+ 2cos(2t)

(—1+ 2cos(2t) — 2sin(2t))et
f(t) = —e! : (54)
(1 — 2cos(2t) — 2sin(2t))et

and

1+ eb
B=|1+¢€%]. (55)
14 €b
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TheMutsGEZ ohi2
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PostMutsGEZ ohjd !

! ‘r' (',Sﬁurce = _
EPort "thls" of nodt node objz connected 1o port "mput themutsge‘“of nude oh]l]

Figure 30: NumLab network with the MUTSGE example
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and the boundary matrices B, and B, are set to the identity matrix

The first important matter is to decide what kind of ODE we are dealing with. More
specific, what kind of boundary conditions are specified. The ODE above has general
boundary conditions, so we use the routines from BOUNDPACK that were designed to
solve these kind of problems. In this example, we need the MUTSGE routines where
"GE” indicates the general nature of the boundary conditions.

After splitting up the original FORTRAN 77 source code into three separate blocks
and creating modules from these blocks, we can build a network with them and con-
struct the example problem. We use a module PreMutsGEZ to set up default variables.
Furthermore we can choose boundary conditions and plug them into the PreMutsGEZ
module so they will be used during computations. We connect the PreMutsGEZ module
to the TheMutsGEZ module, where a solution to the problem defined by PreMutsGEZ
is calculated. Finally, the module PostMutsGEZ will print the results on screen.

In figure 30 we can identify the following modules:
e ZFIDDflinl, representing the linear part of the ODE: matrix A(t) in (53);
e ZFIDDfinhl, the inhomogeneous part of the ODE: vector f(¢) in (54);
e ZDMatrixIdentity, a 3 x 3 identity matrix: our choice for B, and By;

e ZDVectorBCV_GE, representing S from (55), the righthand side of the boundary
conditions;

e PreMutsGEZ, the module that sets up several (default) variables and defines the
ODE to be solved;

e TheMutsGEZ, the module that calls back to the original BOUNDPACK source
code and computes the solution to the problem defined by PreMutsGEZ;

e PostMutsGEZ, serves to export the results to the screen;

So the "main” part of the network is the three MUTSGE modules. If we would like to
compute the solution of another problem, we can do so by plugging in other modules
into the PreMutsGEZ. Note that we use the identity matrix twice, as input for B, as
well as for B;. The only thing that defines the ODE and that is missing on the canvas as
a module, is the interval [a, b]. We opted to leave them away from the canvas. Neverthe-
less, the values ¢ and b can be specified by opening the interactor of the PreMutsGEZ
module. So all data that defines the ODE can be changed.
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The size or the actual width of the modules is quite large. For example, the PreMutsGEZ
module has eleven data ports on top, and fifteen data ports at the bottom. Especially
the ports at the bottom have been created to export internal data (owned data) through
these data ports to the outside for inspection by the user.

The same is true about the nine unused data ports at the bottom of the TheMutsGEZ
module. They make the internal data accessible for us. But, as mentioned earlier, the
program does not need these ports because all relevant data will low through the single
connection from TheMutsGEZ to PostMutsGEZ. For instance, part of this data flow is
a variable x that holds the final solution, per component and per output point (x is a
matrix in fact). Since x is owned by TheMutsGEZ, it is an internal variable with an
output port at the bottom of the module.

Network Example 2:
As a second example we have a network for the following

Sx(t) = AWX(D) +1(1) aZt<h (56)

with integral boundary conditions:

/  M(O)x(5)d = 5. (57)
In 56 A(¢), £(¢) and 8 are defined by:
A=y 5 (59)
() = | oy e (59)
_ [2sinh(4)
p= {2 :iﬁh(zl)] ' (60)

Matrix M(t) = I, the 2 x 2-identity matrix.

Obviously, this problem has integral boundary conditions. BOUNDPACK has a MUTSMI
routine (MI indicating Multipoint Integral that solves ODE’s with this kind of boundary
conditions. Hence, we use modules that were derived from this routine in order to build
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Figure 31: NumLab network with the MUTSMI example
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a network to solve the ODE.

In figure 31 the BOUNDPACK network is quite similar to the one from the example
1. We can distinguish the following modules:

e PreMutsMIZ, defining the ODE by means of its input;

e TheMutsMIZ, computing the solution for the problem defined in PreMutsMIZ;
e PostMutsMIZ, output (i.e. printing) the solution;

e ZFIDDflinmil, the linear part of the ODE (i.e. A(t) from equation (58));

e ZFIDDfinhmil, the non-linear part of the ODE (i.e. f(f) in equation (59));

e ZFIDDfmtmil, the matrix M(t) from the integral boundary conditions;

e ZDVectorBCV_GE, vector 3, also from the boundary conditions and as defined in
(60).

Just as in example 1, the begin and end point of the time interval [a, b] can be specified
by opening the interactor of the PreMutsMIZ module.

Compared to figure 30 there are nevertheless some differences.
e Different modules that callback to different BOUNDPACK routines;
e Different (nature of) boundary conditions.

Despite these fundamental differences, both networks described in this section still func-
tion identically: The ODE is defined at the top and solved by a callback to BOUNDPACK
routines.

8 Turing Completeness

8.1 Introduction

This section demonstrates that, with the addition of certain basic modules, the NumLab
visual programming language is Turing complete. To this end, first, section 8.2 introduces
the concepts of alphabet and language. Next, section 8.3 introduces Turing machines.
Then section 8.4 presents the NumLab module design for primitive recursive functions.
The last section 8.5 presents the NumLab module design for u-recursive functions. Able
to imitate p-recursive functions, NumLab is Turing complete.
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8.2 Alphabets and Language
The definitions of string, alphabet and language are taken from [7], pages 29-31:

Definition 6

o An alphabet is finite set of symbols, such as the Roman alphabet {a, b, c,
, z} or the binary alphabet {0, 1}.

e A string over an alphabet 3 is a finite sequence of symbols from alphabet ¥.

e The set of all strings - including the empty string - over an alphabet ¥ is denoted
by 2*.

These definitions permit the definition of a language:

Definition 7 A language is set of strings over an alphabet 3.

Note that in particular a language over o is a subset of £*. Turing machines are defined
using languages.

8.3 The Turing Machine

We start by introducing the concept of a Turing machine. We describe a Turing machine
keeping figure 32 in mind.

(#ls[ . Jufalel [ [ 1=

Read/write head
(moves in both directions)

h 50
> S 1 Finite control
53 S,

Figure 32: A Turing machine

A Turing machine consists of a tape and a finite-state machine, called control unit. The
control unit disposes over a head to read from and/or write to the tape. In each step,
the control unit reads the tape and then performs the following tasks:
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e Put the control unit in a new state;
e Either:

— Write a symbol on the current square on the tape or

— Move the read/write head one position to the left ("L’) or to the right ('R’).

The tape has a left end, but is unbounded on the right side. However, in a finite numbers
of steps, the machine can only visit a finite number of squares on the tape. (In case the
machine tries to move its head to the left off the end of the tape, it ceases to operate).

Initially, the tape contains only symbols at the left end. The rest of the tape consists of
blank symbols. The machine is free to alter its input or write on the blank end of the
tape. The message (data) left at the end of the computation is called the answer. The
end of computations is reached when the control unit reaches the halt state. The blank
symbol will be denoted by #.

< f(x)=sin(x) £60)

#[3l [ufaf#] [ [ [ [ < #fol#l [ [ [ [ [ [%
Read/write head
{moves in both directions)

Figure 33: A Turing machine which imitates a the sine-function

As an example, consider figure 33. The Turing machine shown computes f(z) = sin(z).
Here z = 3.14 is the input the tape. So, to start with, the tape contains the symbols
3, ., 1 and 4, and the control unit is in state s;. At the end of the computations, the
control unit is in the halt state » and has left behind the answer 0 on the tape.

The following definition of a Turing machine comes from [7]:
Definition 8 A Turing machine is a quadruple (K, %, 4, s) where

e K is a finite set of states, not containing the halt state denoted by h;
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e Y is an alphabet, containing the blank symbol #, but not containing the the symbols
L and R;

o 5 € K is the initial state;

.6 is a function from K x ¥ to (K Uh) x (SU{L, R}).

With the use of this definition, we can define when a (mathematical) function is Turing
computable — required to prove the Turing completeness of NumLab:

Definition 9 Turing computable functions:

Let Ty and ¥, be alphabets not containing the blank symbol #. Let f be a a function
Jrom X% to 3. A Turing machine M = (K, ¥, 6, s) is said to compute f if Lo, ¥, C ¥
and for any w € 4, if f(w) = u then

(s, #wi# Fiy (b, #udf). (61)

If such a Turing machine M exists, then f is said to be a Turing computable function.

Because a Turing machine can carry out any computation that can be carried out by
any similar type of automata, and because these automata seem to capture the essential
features of real computing machines, we take the Turing machine to be a precise formal
equivalent of the intuitive notion of ”algorithm”. Following Church’s Thesis or Church-
Turing’s Thesis, nothing will be considered an algorithm if it cannot be rendered as a
Turing machine. It is a thesis, not a theorem, because it is not a mathematical result:
It simply asserts that a certain informal concept corresponds to a certain mathematical
object. It is theoretically possible, however, that Church’s Thesis could be overthrown
at some future date, if someone were to propose an alternative model of computation
that was publicly acceptable as fulfilling the requirement of ”finite labour at each step”
and yet was provably capable of carrying out computations that cannot be carried out
by any Turing machine. No one considers this likely.

A language is called Turing complete, if it can generate all Turing computable func-
tions (see also [7]). In this small section, it is shown that NumLab is Turing complete,
if a few fundamental modules are added.

8.4 Primitive Recursive Functions

The primitive recursive functions are defined by three types of initial functions and two
combining rules. These can all be presented in a straight-forward manner.
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Definition 10 The initial functions are the following three functions:

e The O-place function  is the function from N° to N such that
¢()=0. (62)

e Let k> 1 and let 1 < i < k. Then the i-th k-place projection function 7% is the
function from N* to N such that

TE(ng, o) = N4, for any ny,..n, € N. (63)

Remark 1 Point of notation: Hereafter we write i for the k-tuple (ni,...,ny).
Thus the above statement would be rewritten

k
i

(1) = n,, for any 7 € N*, (64)

o The successor function o s the function from N to N such that

o(n) =n+1, for any n € N. (65)

We introduce the related three NumLab basic modules, and an additional one. These
modules are:

A zero module;

An increment module;

A decrement module;

A decision or switch module,

and shown in figure 34.

v then else

| I | |1

0 +1 -1 if ve>0
l | |

Figure 34: Basic elements

Obviously, the zero module itself is already the 0-place function ¢. Figure 35 shows the
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0
—

Figure 35: Initial function zero module

zero element from the initial functions

Furthermore the increment module acts as the successor function o. Using these two
modules, we already dispose over the natural numbers, by consecutive incrementing 0.

The k-place projection is shown in figure 36. The figure shows on the left side a k-
place projection function 7*. In this particular case, three input values nq, ng and ns
are entered into the module. The 2-projection selects the second component out of three
input values.

ni n2 n3 n1i n2 n3

R N -

2-projection I :
| |

h2 : :

] |

| 1

| if v<> 0 )

| |

: n2 :

1 §

i |

] |

1 |

. \

1 [

: ifve> 0 :

[} |

n2 2-projection

Figure 36: The 2-projection module

On the righthand side, it shows how we built the k-place projection function 7* from the
axioms before. The module first selects ny out of n; and n,, by setting the right value
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0 on the decision module. Next, it selects ny from n, and ns in the same manner but
now by setting a 1 on the second decision module. Finally, value ny is exporting to the
outside.

As an example, we provide a possible NumLab implementation of the decision module,
using pseudo code:

class decision: public module

{

void set(double *v) { this->v = v; }

double update()
{
return (v->update()) ? then->update() : else->update();

}
private:
module *v;

We now proceed with the definitions of composition and Primitive Recursions:
Definition 11

o Letl > 0 and k > 0, let g be an l-place function, and let hy,...,h be k-place
functions. Let f be the k-place function such that, for every n € N¥,

f(a) = g(h1(n), ..., (7). (66)

Then f is said to be obtained from g, hy, ...h; by composition.

o Let k>0, let g be an k-place function, and let h be a (k + 2)-place function. Let
f be the (k + 1)-place function such that for every n € NF,

f(n,0) = g(n) (67)
and for every i € N*¥ and m € N
f(@,m+1) = h(n, m, f(n,m)) (68)

Then f is said to be obtained from g and h by primitive recursion.
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Figure 37: The composition module

Definition 12 A function is said to be a primitive recursive function if it is an initial
function or can be generated from the initial functions by some sequence of operations
of composition and primitive recursion. More succinctly, the primitive recursive func-
tions are the smallest class of functions containing the initial function and closed under
composition and primitive recursion.

Because all primitive recursive functions terminate, the set of all primitive recursive
functions can not represent the set of all Turing computable functions. Therefore, in
order to obtain all computable functions, some extension must be made to the methods
used thus far for defining functions.

8.5 pu-Recursive Functions

This section introduces p-recursive functions and presents a visual module design for
their NumLab implementation. Because the functions in the set of p-recursive functions
can imitate all Turing machines, NumLab is Turing complete with the addition of this
type of module. First, we must define the concept of unbounded minimalisation:
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Figure 38: The NumLab design of a primitive-recursive module

Definition 13 Let k£ > 0 and let g be a (k + 1)-place functions. Then the unbounded
minimalisation of g is that k-place function f such that, for any n € N*

f(7) = { the least m such that g(n,m) = 0 if such m ezists; (69)

0 otherwise.

The second clause guarantees that f is everywhere defined, regardless of what g is. We
write

f(7) = pmlg(R, m) = 0] (70)
and say that f is obtained from g by unbounded minimalisation.

In general, the unbounded minimalisation of a primitive recursive function need to be
primitive recursive, or indeed computable in any intuitive sense. The reason, as we
shall show later, is that there is no general method of telling whether an m of the
required type exists. However, if g has the property that such an m exists for every 7,
then f is computable if g is computable: Given 7, we simply need to evaluate all of
9(m,0),9(7, 1), ... until we find m such that g(#, m) = 0. However, in this case f need
not, in general, be primitive recursive.

These ideas leads to the definition of regular functions:
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Definition 14 A (k + 1)-place function g is called a regular function if and only if, for
every i, € NF, there is an m such that g(fi,m) = 0. A function is p-recursive if and only
if it can be obtained from the initial functions ¢, n¥, and o by the following operations:

e composition
o primitive TECUrsion
e application of unbounded minimalisation to regular functions.

With this definition, each primitive recursive function is also u-recursive.

Figure 39 shows the NumLab module design for a p-recursive function.

n k
: M :'
] ]
1 1
t 1]
| +1 :
] 1
! 1]
+ ]
|l ]
i !
! h f o
| l
1 1
1 ]
: |
1 1
1 3
] i
] ]
) 1
t 1
1 ifv<>0 !
1 1

Figure 39: The NumLab design of a p-recursive module

In order to finish this section, we refer to [7], which shows that the set of all p-recursive
functions can imititate all Turing machines (so all computable functions). Thus, because
NumULab can generate modules for all u-recursive functions, NumLab is Turing complete.
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9

Future Research

Future research could address some of the visual programming issues not (completely)
solved in this thesis:

Developing still more mathematical, rigorous definitions of toolbox and module;

Defining more precisely what the network manager does in the case of controlled
loops. Thesis [15] only provides an algorithm;

Extending all definitions to the case of parallel execution of multiple modules in a
single network;

Developing a formal specification for boundary value problems and finite element
solvers for data exchange with OpenMath/MathML/NumLab;

Applying the proposed integration process of BoundPack routines, in order to
integrate (parts of) LAPACK and, if possible, SEPRAN

Improving the graphical user interface and the network manager

We encountered several network editor bugs during the implementation phase. For in-
stance, a load/save bug problem. When saving a fully connected network with a loop,
such as the Newton network that calculates the square root of a real number we do not
encounter any problems. Problems occur when we try to load it again on the canvas and
the system freezes. A temporary solution is to save the network after disconnecting the

loop.

Then the network can be loaded again and restarted after connecting the missing

connection.
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10

Conclusions

The following conclusions can be reached:

Efficient and user-friendly reusing of existing C-linkable (FORTRAN 77, Pascal,
C) software is possible. The proposed and implemented solution is described in
section 5.

The above solution allows toolboxes of modules to be developed independent from
the NumLab environment and other toolboxes. However, modules from different
toolboxes can be combined in one network.

Efficient visual interactive loop control is possible for NumLab, a solution and
implementation is presented in section 6.

The visual programming environment NumLab is Turing complete (section 8), if a
few fundamental blocks are added, and derived blocks are are modelled in a specific
manner.

The existing multiple shooting library BOUNDPACK can only be integrated in a
visual programming environment at a very coarse level. The reason is turned out
to be the lack of documentation at finer levels.

The NumLab datum/operator representations (figure 11) significantly simplify the
construction of visual interactive modules for scientific computing algorithms.
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11 Appendix

11.1 A NumLab DE Implementation

Below is the source code of the program that we used to solve the homogenous problem
(38) as stated in section 7.2. The code intends to show that a NumLab-script imple-
mentation of the DE multiple shooting method is rather straight forward, making use of
NumLab’s Matrix and Vector data types.

#include "\numlab.h"
#tinclude "LA/LE/Matrix.hd"
#include "LA/LE/Vector.hd"

#include <iostream.h>

// Block matrices and vectors contain LEMatrices, respectively LEVectors.
LEMatrix Idn(2,2);

LEMatrix Ba(2,2);

LEMatrix Bb(2,2);

LEVector b(2);

LEMatrix C(2,2);

// The ODE is y’ = F(t, y). In the example below, F(t, y) = Ay+f(t).
// The matrix A equals {{0,1}{c,d}}

LEVector f(const Real t) // £(t), source term
{
LEVector z; z(0) = 0; z(1) = 0; // £(t)=0 in this example
return z;
}
Real c(const Real t) // function c(t)
{
return 0; // c(t)=0 in this example
}
Real d(const Real t) // function d(t)
{
return O; // c(t)=0 in this example
}
LEMatrix A(const Real t) // Matrix A in F(t, y) = Ay+f(t)
{
LEMatrix L;
L(O, 0) = 0;

84



L, 1) =1;

L(1, 0) = c(t);

L(1, 1) = d(t);

return L;

}
LEVector F(const Real t, const LEVector &x) // =z := F(x) = Ax + £(t)
{

LEVector z(x);

z = A(t)*x; // z = Ax

z = £(t); // z = Ax + £(¢)
return z;
}

Vector G(const Real theta, const Real h, const Real t, const Vector &s)
// z := G(s). We are looking for an s such that G(s)=0.
{
Vector z,y;
Real N = s.size()/2;
for (Integer i = 0; i < N ; i++)
{
Real t_i = t + ixh;
//Theta method to determine y_i(t_{i+1}).
LEMatrix Denom = Idn/(Idn-(1-theta)*h*A(t_i+h));
y.block(i) = (Denom*(Idn+thetaxh*A(t_i)))*s.block(i) +
Denom* (theta*h*f (t_i)+(1-theta)*h*f (t_i+h));
if(i!'=N-1) z.block(i) = s.block(i+1) - y.block(i);
}
z.block(N - 1) = Ba * s.block(0) + Bb * y.block(N - 1) - b;
return z;

}

Matrix dG(const Real theta, const Real h, const Real h_d4d,
const Real t, const Vector &s)

// z = G(s)
{
Integer p = b.size();
Integer N = s.size()/2;
Matrix DG;

LEMatrix MT="[0,0;0,0]";

for (Integer i = 0; i < N; i++)
for (Integer j = 0; j < N; j++)
DG.block(i, j) = MT;
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Vector y;
Vector yp;

for (Integer i = 0; i < N ; i++)
{
Real t_i = t + ixh;
// Using Theta method to determine y_i(t_{i+1}).
LEMatrix Denom(2,2);// = Idn-(1-theta)x*h*A(t_i+h);
Denom = Idn/(Idn-(i-theta)*h*A(t_i+h));
y.block(i) = (Denom*(Idn+thetaxh*A(t_i)))*s.block(i) +
Denom* (theta*h*f (t_i)+(1-theta)*h*f (t_i+h));
for (Integer j = 0; j < p; j++)
{
LEVector sp; LEVector yp;
sp = s.block(i); sp(j) += h_d;
// Theta method to determine z_i(t_{i+1}).
yp = (Denom*(Idn+theta*h*A(t_i)))*sp +
Denom* (theta*h*f (t_i)+(1-theta)*h*f(t_i+h));
DG.block(i, i)(":", j) = -1x(yp - y.block(i)) / h_d;
}
if (i'=N-1) DG.block(i , i + 1) = Idn;
}
DG.block(N - 1, 0) = Ba;
DG.block(N - 1, N - 1) = -1*Bb * DG.block(N - 1, N - 1);
return DG;

int main()

{

// Small number for numerical differentation
// £2(x) = [f(x+h_d) - f(x)]/ h_d

Real h d=1.e-7;

mx_print (10000) ;

Idn = ID(2, 2);

Ba(0, 0) = 1;

Bb(1, 0) = 1;

b(0) = 0;

b(1) =1;

Integer N = 4; // The amount of intervals.

cout << "Enter the amount of subintervals N: " << endl;
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cin >> N;
Real h = 1.0 / N; // The interval width.

Integer n = 0; // Loop counter initialisation
// theta=0 gives Euler Backward, order 1
// theta=.5 gives Trapezoidal ruled, order 2
// theta=1 gives Euler Forward, order 1

Real theta=.5;

// Start algorithm.

Real t_0 = 0; // Start point for integration

Vector s;

for (Integer i = 0; i < Nj i++) s.block(i) = "[0, 0]";
Vector ds;

// Currently: dG and G depend on a single time t_0 and
// a global fixed h, N to determine t_1.

do

{

coUut << ek ook ok kakok ok ok ok ook skokok ok ko kR kR ok okok ! << endl;
cout << "Msg(Main): Loop " << n++ << endl;

// dgs = dG/ds(S7k)
Matrix dgs = dG(theta, h, h_d, t_0, s);

// gs = G(57k)
Vector gs = truncate(G(theta, h, t_0, s),1.e-8);

cout << "Msg(Main): gs = " << gs << endl;
// solve with Householder -- full matrix based.

ds = -1*truncate(gs / dgs, 1.e-5);

cout << "Msg(Main): s = " << s << endl;
s += ds;

cout << "Msg(Main): ds = " << ds << endl;
}

while (sqrt(ds * ds) > sqrt(machine_epsilon));
Vector t,S;
for (Integer i = 0; 1 < Nj i++)

{

t(i) = 1i * h;

S(i) = s(2*i);

cout << "Solution x at t="<< t(i) <<" : " << S§(i) <<endl;
T
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plot(t, S);
wait_for_enter();
return 0Ok;

}

11.2 BOUNDPACK Functions IO-Analysis

The construction of modules for BOUNDPACK functions required an I/O analysis. This
section presents the results of this analysis. Horizontally are listed the main subroutines
from BOUNDPACK , denoted by a two characters. For instance, ’GE’ refers to the
MUTSGE function for solving ODE’s with general boundary conditions, and 'PS’ to
the function MUTSPS for problems concerning boundary conditions that are partially
separated. More information on these abbreviations can be found in [9] and [10].
Vertically we find all variables and functions used in BOUNDPACK function headers.
We need to know whether these variables are used as input, output or both. For each
of these variables and functions, we have marked the appearance in the corresponding
BOUNDPACK function. Futhermore it is indicated what the initial and final value of
such variables is, if applicable. As an example, we can find from this table that the ex-
ternal function FLIN(N,T,FL(N,N)) appears in the first eight BOUNDPACK functions.
In contrast L appears only in MUT'SPA and SPLS3, indicates the number of parameters
and is unchanged on exit. So L is an input variable.
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