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Chapter 1: Introduction

Even using today's fast hardware graphics accelerators, displaying large and complex virtual worlds is still a compromise
between maximizing detail and maintaining an interactive frame rate. Even though graphics accelerators have improved
scene processing and rendering speeds tremendously (from the Silicon Graphics GT, the first system to break the
100,000 polygons/second mark in 1988 to the Nvidia GeForce4 chipset achieving 136,000,000 polygons/second’ of
2002) and will continue to do so in the future, this delicate balance will exist for many years to come: designers/
modelers will always find new ways of adding detail to a world that will bring the rendering hardware/software on its
knees. Because more detail adds to a more realistic experience, a lot of research into speeding up scene processing and
rendering has been done in the past 30 years. S

One of the areas of research is the field of visibility determination: which polygons are visible to a viewer and which
aren't? This has yielded various techniques ranging in complexity from simple frustum culling to the use of complex tree -
structures like BSP-trees (these will be discussed later in this chapter).

A relative new technique gathering much attention these days is visibility determination using portals, which are
openings in the major opaque features of a virtual world that narrow a viewers field of view. By identifying these portals,
a (usually) small superset of the actual visible polygons can be determined at (pre-) run-time allowing for faster
processing and more detailed and complex worlds. This technique is called portal processing, and as this thesis will
show introduces some properties that can be used for a variety of purposes, like dynamic memory management and
'special effects' (special FX) features like mirrors.

This thesis was written as a master thesis for the department of Mathematics and Computer Science at the Technische
Universiteit Eindhoven, and presents the results of an in-depth study into the applications of portal processing in vSS, a
proprietary virtual reality toolkit created by Eindhoven based company Mondo Bizzarro B.V. Their goal was to have a
portal processing algorithm implemented in their engine, but also to examine how this technique could be used in other
areas to help improve performance. '

" Chapter 1 continues with a short introduction of some of the better known visibility determination techniques developed
over the past years and provides the reader with some information about pseudo-code syntax used throughout the thesis.
Chapter 2 introduces vrSS, the C-++ virtual reality toolkit used that will be extended with code for portal processing and
other applications of portals. Some of the functionality and classes proprietary to the toolkit are explained briefly, as to
familiarize the reader with the toolkit before it is expanded to allow for portal processing.

Chapter 3 explains the details of real-time visibility determination using portal processing and its implications on the
construction of a virtual reality model. By example of the implementation of the portal processing algorithm, the reader
is provided with an insight in the intricacies and pitfalls of implementing a portal processing algorithm. Chapter 4
discusses dynamic cell management: due to the partitioning of a world into cells, the basis has been provided for loading
and displaying a large and complex virtual world using several more manageable chunks (the cells) that can be
loaded/unloaded into/from program memory when required. Many situations, each requiring a different approach to
loading/unloading of cells, exist therefore making it impossible to give one memory management solution that is optimal
in all situations. Chapter 4 discusses some commonplace situations in which memory management is required and gives
some hints on how to solve the problem in these situations.

Until now only static scenes have been considered, but most virtual reality applications/games will also have many
dynamic objects. Chapter 5 explains how dynamic objects can take advantage of the improved visibility determination
introduced by portal processing, and solves the problem introduced by objects whose influence extends beyond the
boundaries of their physical parent cell (e.g. lights).

Chapter 6 discusses how portals can be used to add visually interesting effects, like mirrors, monitors, reflecting
windows etc. to a scene. Chapter 7 discussed pre-run-time visibility determination using portals: Using pre-computed
visibility sets, processing speeds can be increased even further, but they can also be used to implement smarter memory
management or as heuristics on scene complexity.

Finally, chapter 8 summarizes the findings of this thesis and discusses the measured results of some test applications.
The thesis ends with a discussion on further possible expansions and applications of portals and the incorporation of
other techniques in a portal based environment.

! Thus greatly exceeding the level of improvement predicted by Moore's law, which predicted the number of
polygons/second to be around the 52,000,000 mark in 2002.



1.1 Visibility determination

Before introducing the portal processing technique, a short history of other techniques used for approximate and exact
visibility determination is discussed. Most of these techniques are used by vrSS for visibility determination (view frustum
culling, back-face culling, Z-buffering and bounding volumes) while BSP-trees come to mind when thinking of viable
alternatives to portal processing (chapter 8 will briefly discuss the advantages/disadvantages of BSP-trees vs. portal

processing).

View frustum culling (see Fig. 1) is one of the oldest and simplest visibility determination techniques and is used in
probably every 3D engine in existence today. Using a pyramid (sometimes a cone or tetrahedron) called the frustum to
represent the non-occluded field of view of the viewer, all polygons not intersecting the frustum can be ignored as they
are not visible. View frustum culling is an effective way to select a superset of visible polygons, which must then be
processed further to determine exact visibility (e.g., the dark gray area represents an area occluded from the viewer by
polygon p but inside the frustum).

culled
polygons

L 2

Viewer Frustum

Fig. 1 View frustum culling.

Another common technique is back-face culling, where polygon faces are treated as one-sided entities that can be culled
when facing away from the camera.

Bounding volumes are used to quickly determine the visibility of the set of polygons encompassed by it: if the bounding
- volume does not intersect the frustum, neither will any of the polygons it encompasses. S

The techniques presented so far require the use of an additional algorithm for determining exact visibility. Today the
most commonly used technique for this is the Z-buffer [10] where, if the distance between a pixel to be drawn and the
viewers position is no further than the distance stored in the Z-buffer, the pixel is drawn, otherwise rejected. Today even
the simplest of 3D graphics accelerators support Z-buffering, but back in 1974 when Z-buffering was invented (and up
until only a few years ago), the cost of the memory for storing the z-information was considerable.

Unfortunately, Z-buffering cannot handle complex and heavily occluded scenes alone, for this extra visibility
information is required. ‘ ‘ ‘

An approach providing this extra information AND exact visibility is the use of BSP-trees’, first introduced by Fuchs et.
al. [9] in 1980. BSP-trees spatially partition a static scene by choosing separating planes that split any polygon
intersecting them into two separate parts. This allows producing an exact back-to-front (or front-to-back) ordering of
polygons from any viewpoint. The major advantage of BSP-trees is that exact visibility of n polygons from any
viewpoint can be determined in Ofn) time, which can even be improved using bounding volumes that encompass all
splitting planes in a sub tree: if the frustum does not intersect with this volume, then neither will a polygon in the sub

“tree. ,
The disadvantages of BSP-trees are that they are time-consuming to build (they usually cannot be computed at run-time)
and that the splitting operations needed to construct the tree may generate O(’) [12] polygons, severely affect its
rendering performance. Finding the optimally balanced BSP-tree is an NP-complete problem so approximations must be
made, and incorporating dynamic objects into the scene requires maintaining Z-information. Regardless of these

2 Please note that octrees [11] were left out of this summary because they are a special case of BSP-trees and thus have
equal properties. '



drawbacks, BSP-trees have been (and still are) very popular in 3D graphics and found some of their first practical
commercial uses in the 1d Software games DOOM and Quake.

The subject of this thesis, portal processing, is in effect nothing more than using dynamic frustum narrowing when
rendering a scene. By spatially subdividing a static scene along its major opaque features into cells, and then converting
the transparent portions of the shared boundaries into portals, these portals can be used to exclude the volume occluded
by the opaque cell boundaries from the view frustum (See Fig. 2, where the dotted lines represent the boundaries of the
initial frustum and the gray area represents the narrowed frustum for each cell visible through a portal).

Notice how this area
is considered visible
in the frustum but in
reality is occluded
by the wall, showing
that indeed a
superset of the
actual visible area -
is created.

Fig. 2 Frustum narrowing with portal processing.

Even though portal processing provides a better estimate of the visible polygohs than regular frustum culling, it still
produces a superset, and any superset generator will require a Z-buffer or another technique for computing exact
* visibility.

The concept of using portals to estimate visibility was first introduced in 1991 by Teller and Séquin [3], who used them
to approximate the visibility information in a scene offline for later use in an interactive rendering phase. Although
Teller and Séquin automated the process of partitioning the scene into cells and portals, this task can also be left to the
modeler when designing the virtual world. When automating the task, usually more cells and portals will be created then
when the task is left to the modeler, resulting in better performance. However, a modeler can also add some insight into
the model not detected by the automated process, and he can add special portals like mirrors and monitors.

For the remainder of this thesis, how the world has been partitioned into cells and portals is left undetermined, it is just
assumed that it has been done. All example code fragments in this thesis are given in pseudo C++ code, even when
discussing the implementation in vrSS. This was done as not to confuse the reader with passing arguments by value,
reference, pointer, or a mixture of these. :






Chapter 2: Introducing the vrSS Toolkit

This chapter introduces the vrSS (virtual reality Solutions System) toolkit, which will be used for implementing the
portal processing environment. Some features of the toolkit that are expanded on in the later chapters are introduced, as
well as a short introduction in scene rendering using vrSS. : :

vrSS provides an extensive and highly modular C++ framework that facilitates the various aspects of designing and
manipulating a virtual reality environment. Except for those parts of the toolkit that require interaction with system
devices and APT's (i.e. Head-Mounted-Displays and trackers, DirectX) the toolkit is completely system independent.
System dependencies are integrated using plug-in modules but currently the only module available is for use on IBM-
PC's running Microsoft Windows 98/2000 and DirectX versions 7.0 and up’.

For a smooth performance of a simple application created with vrSS a minimum PC configuration with an Intel Pentium
11-300, 64 Mb of RAM and at least a Nvidia GeForce2 graphics accelerator is recommended.

2.1 Creating a VR-world with vrSS

Like many other 3D-engines, vrSS stores and represents the virtual world in a world tree (single parent constraint) that
holds all the objects that make up the world (see Fig. 3). Using a tree structure allows using a hierarchical parent-child
relation where the child position and orientation in the world is dependent on the position and orientation of its parent.

Time t1: lower arm moved ‘Time t2: light bulb moved
moving upper arm and light :
"~ bulb along

World Tree:

[ rooT
r foot flat ball J .

lower arm

upper arm

light bulb

Fig. 3 The world tree and three different animation frames for a lamp looking at a flat ball.

3 An OpenGL version is being developed at the time of writing this document.



Every tree node in vrSS has a local transform, defining the position and orientation of the oot of the node's object in the
coordinate system of its immediate tree parent node, and a world transform that holds the root position and orientation of
the node in the world coordinate system (see Fig. 4). The world transform of every node can be computed by combining

its local transform with the world transform of its parent. :

World Y-axis Upper arm Y-axis

V' Upper arm X-axis
Upper arm root
World Root World X-axis -
Fig. 4 Local and world coordinate systems.
Vector
Hioatx, y, z position
1
DTransform
1
- +DTransform Combine(DTransform)
ik / 5
Matrix )
CTEntity
0.. | DFfags Hints
children virtual void Process{Frustum)
+void UpdateWordTransform()
parent | 4
CTGroup CTCameta CTLight
float fov LightType Type
+virtual void Process(Frustum) +virtusat void Process(Frustum) +virtual void Process(Frustum)
+bool HasNearClip) -
+bool HasFarClip() .
+ficat GetFor()
+void SetFov()
CTVisual -
Please note that this class diagram is not complete
and that some methodsivariables have been renamed
+virtual void Process(Frusium) for ciarity purposes!
+virtual void Render() =0
CTDrawable
+virtual void Render()
CTShape
+virtual void Render() =0
CTBax CTSphere CTCylinder CTPointShape

+virtual void Render() +virtual void Render() +virtual void Render() wirtual void Render()

Fig. 5 UML diagram of vrSS tree components. .



The base class for every node in the tree is CTEntity (see Fig. 5) which stores the local and world fransforms and which
updates the world transforms of the nodes each time a new frame is rendered.

The tree is built up using group nodes and leaf nodes. Group nodes are non-visible objects that have one or more
(coherent) children whose position and orientation as a group can easily be manipulated by changing the position and -
orientation of the group node. Group nodes are implemented in vrSS by the CTGroup class from which other group
nodes can be derived (e.g. the CTLODGroup class which only processes one of its children based on the distance of the
group to the camera allowing a level-of-detail scheme to be used).

Leaf nodes have no children and usually represent the visible or audible objects like geometry (object shapes like
buildings, cars, people etc.), lights and sound.

2.2 Visibility determination in vrSS

To render a scene the world tree is processed and the objects are checked for visibility uéing a camera (representing the
position and orientation of the eyes of the viewer) and its frustum (see Fig. 6).

Frustum

object is not {~
rendered

Y-axis ‘
l X-axis camera

DFrustum Plane

o.. | +float dist

+booi CheckVector(Vector) +Vector normal
+DFrustum EnablePlane(int, bool)
+int AddPiane(Plane) - +float Distance(Vector)

+void EnableNearPlane(bool)

Fig. 6 The view frustum + UML Diagram of Dfrustum class.

“The frustum in vrSS is a convex polyhedron defined by the intersection of the negative half space of a set of planes. The
negative half space of a plane with normal » and distance to the origin d is defined by the set of points p with { p : p.n- d
<0 }. If an object's shape does not intersect with the frustum then the object is not visible and will not be processed/
rendered any further. To speed up the intersection test even more, usually not the object's actual shape but its bounding
volume is used. A bounding volume is a simple shape like a box or a sphere that can be tested for intersection with the
frustum much faster thus speeding up visibility determination (in the case of Fig. 6 for example the circles could
represent the bounding volumes of complex shapes). ‘

vrSS uses a bounding volume hierarchy where every parent node in the tree has a bounding volume that includes the
bounding volumes of its children. If the bounding volume of the parent node does not intersect the frustum then neither
will the bounding volume of any of its children so processing that tree branch can be stopped.

The vrSS engine does not clip objects against the frustum before sending them to the render API (i.e. OpenGL or
DirectX) but does flag the API to do so if it supports this. vrSS uses back-face culling to reduce the amount of polygons
. send to the render APL. Exact visibility determination is left to the render API's Z-buffer.



2.3 Rendering a scene in vrSS

Processing a tree in vrSS starts by calling the root node's Process method, which is a virtual method of CTEntity. Every
tree node must implement this method to define what must be processed (geometry., lights, sounds or child nodes). The
root node, which is an instance of CTGroup, then calls the Process method for each of its children recursively traversing
the tree.

When rendering a scene in vrSS the world tree is traversed several times: first a lighting pass is done to find and process
all visible lights which are then used in the draw pass that actually draws the visible geometry on the output device.
Finally, a sound pass finds and processes all audible sounds in the tree. Just like a bounding box hierarchy, vrSS also has
a kind flag hierarchy in the world tree: if a node does not have one of the kind flags set then neither will any of its
children. For instance a light node will only have the KIND_LIGHT flag set signaling the engine that it only requires
processing during a lighting pass and not in any of the other passes.

For a more thorough overview of the vrSS engine the reader is referred to the vrSS documentation [8] and to appendix A,
showing a complete vrSS class diagram. '

10



Chapter 3: Cells and Portals

This chapter discusses the details of implementing a portal processing algorithm. Although the portal processing
algorithm in itself is very simple, there are some consequences associated with the use of it that must be handled
carefully, one of the most important being that portal processing is not an exact visibility determination algorithm but
creates a superset the visible objects in a scene. Therefore, additional exact visibility determination algorithms are
necessary to further process and render this superset. However, it will be shown that by careful integration of the portal
processing algorithm into the vrSS framework, the visibility determination algorithms already incorporated into vrSS can
be used for this task.

This chapter starts by a detailed explanation of how the portal processing algorithm works, why it creates a superset and
what the consequences to storing the world are. Next the algorithm is implemented in vrSS, discussing the classes
created to integrate the portal processing algorithm into the vrSS engine. Optimizations and solutions to problems that
arise (some general and some vrSS specific) are discussed and finally a summary of the findings is given.

3.1 Portal processing

When thinking of the interior of a building it is easy to think of this as a series of inter-connected rooms. This intuitive
approach is the basis for portal processing where the model of the world is partitioned into a number of cells connected
to each other by portals. A cell defines the appearance and volume of a coherent part of the world (e.g. an office room
which has desks and computers in it and whose volume is defined by the walls). A portal is an opening between two
adjacent cells that connects these cells so that the only way one can look from one cell into the other is through this portal
(i.e. a door connecting two office rooms).

As can be seen in Fig. 7 portaIs can .narrow’the field-of-view (frustum) for each cell seen through a (sequence of)
portal(s) from the (physical) camera cell (the physical cell of an object is the cell in which the object is positioned
~ physically) reducing the number of overdrawn objects when rendering a scene.

initial frustum Fpy Occluded area of Fiyin Cell

1: Ocen
narrowed frustum m Occluded area of Fiy, in Cell
forFea 2: Ocen:
narrowed frustum for
F Cell 2

Fig. 7 Frustum narrowing and occlusion culling due to portals.

11



Another way of looking at a portal is as an infinite wall with an opening in it. A viewer can only see those objects on the
other side of the portal that are not occluded by the wall, so a portal narrows therview (or leaves it intact if the viewer is
positioned close to the portal) which can be simulated by narrowing the camera frustum.

Let the frustum F be thought of as the set of points visible to the camera and let Fj,; denote the initial camera frustum.
Let the number of portals in the sequence through which destination cell cd is visible from a source cell cs be given by

PS,, _, s Due to potential frustum narrowing by the portal, it is clear that the following property holds:
PropertyI:

{Vdc:PS,,_4=1:F4 cF,.}

The frustum for the connected cell dc of cell sc will be a subset of the frustum for cell sc. If sc is the cell the camera
resides in, then using property I the following property can be formulated:

Property II :

{ Vdc: PScamemceH—-)dc =1:ch gF;'nir } :

Then, by induction, the following property can be formulated:
Property :
{ Vde: Pscamem cell->dc exists : Fde jous F;'m't }

So a series of consecutive visible portals can (and, most importantly, usually will) keep on narrowing the frustum
causing more and more objects to be rejected by the frustum intersection test, resulting in a smaller superset of visible
objects than would have been created using the initial frustum. This allows a scene to be rendered faster resulting in
higher frame rates, or makes rendering of more complex scenes at the same frame rate possible. The speed improvement
gained by portal processing depends highly on consecutive portals narrowing the frustum, therefore limiting its use to
" mainly interior scenes because the notion of a cell has littie meaning in outdoor scenes”.

Rendering a scene using portals can be implemented using the simple recursive algorithm shown in Fig. 8:

void ProcessPortals( Frustum frustum, Cell currentcell ')
{ ) <
// check all portals of this cell
“ for( imt f = 0 ; f < currentcell.Portals.Count() ; £ ++ )
q ‘ ) .
if{ Portals[ f }.VisibleInFrustum( frustum )-)

{ .
Frustum narrowedfrustum = CreateFrustum( frustum, Portals] £1) :
ProcessPortals( narrowedfrustum, Portals{ f ].ConnectedCell ) ;

}
}

}

Fig. 8 The portal processing aigorithm.

When first called with the initial camera frustum and camera cell, each portal of the camera cell is evaluated for visibility
after which the (narrowed) frustum for the connected cell of that portal is created and the function is recursively called
for processing the connected cell with the narrowed frustum. This process is continued until no more visible portals are
encountered.

One of the consequences of portal processing is that a scene is no longer rendered by traversing a world tree top-down
visiting all the leaves (as is the case in vrSS), but instead a scene is rendered jumping from visible cell to visible cell via

# Although cells could be used as sort of a sub-division (or limited octree-like) scheme in outdoor scenes.
' 12



portals. This implies a new internal representation of a world where each cell has its own object tree called the cell tree
which defines the appearance of that cell, and a graph connecting these cell tree nodes through their portals called the
world graph (see Fig. 9). :

World graph

portal 1 portal 2

group group
group [Object_J rObject l rObjectJ

I ObjectJ rObject l

Fig. 9 The world graph and cell trees.

Using the graph for scene pfocessing, another potential speed up can be gained: In many VR-engines, the world is
represented by one tree. When rendering the world the tree is traversed top-down and every object node is checked
against the frustum to determine visibility. When using portals every cell has its own cell tree whose object nodes are

only checked for visibility if the cell itself is visible, or more precisely, if a portal connecting to that cell is visible (unless
* the cell is the physical camera cell which will always be processed). So if the cell is not visible then the objects in its tree

. will not be checked therefore again saving processing time.

Some VR-engines, like vrSS, use a bounding box hierarchy in their world tree where if the bounding box of a node is
culled by the frustum the sub tree is classified as not visible and therefore not further processed. In this case, the actual
‘speed up gained by the graph processing of the world might not be very significant.
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3.2 Implementing Cells and Portals in vrSS

In order to implement a portal rendering system for the vrSS engine, three major new classes are introduced into the
vrSS framework: FCCell, FCPortal and FCRootCell. An UML-diagram of the framework extension for implementing

portal processing is shown in Fig. 10:

FCPoly
Plane
+int AddVertex(Vector vertex) "
+virtual intersect_t PointinPolygon(Vector point) +ical dist
{ retum irUnknown ; } "
+virtuat i t_t Segmer (Vector startpos, Vector endpos) +oat Distance(Vector)
{ return irUnknown ; }
]
vertices {ordered} normal
0..
FCConvexPoly
Vector
d} 0.
+iloat
+virtual int AddVertex(Vector vertex) float x,y .2
+virtual intersect_t PointinPolygon(Vector point)
#Vector ComputelnwardNormal(Vector edge)
FCPortalPoly
+int AddVertex(Vector vertex)
+virtual intersect_tl PointinPolygon(Vector point)
{ retum irtUnknown ; } ..
+virtual i _tl Segmentin (Vector startpos, Vector endpos)
{ retum irUnknown ; }
CTEntity CTGroup
<
+virtual void Process(Frustum) +virtual void Process(Frustum)
porial shape T T
FCPortalPoly - FCPortal FCCell
- parent of 1} +bool CellL ocked
+virtual void Process(Frustum) 2. connects 1
clipped polygon | +virtual Frustum AdjustFrustum(Vector, Frustum) o _ conn | +virtual void Process(Frustum)
FCPoly @ +bool isVisible(Vector, Frustum) T +void ProcessCeli(Frustum)
FCRootCeil
+virtual void Process(Frustum)

Fig. 10 UML diagram of framework extension for portal processing.

The FCCell class uses an instance of a FCPortalPoly class to store the portal polygon. FCPortalPoly is a descendant of
FCConvexPoly which stores for each edge 7, a normal to that edge lying in the portal plane pointing inwards of the
polygon. This allows for a very fast point-in-polygon check (at the expense of extra memory overhead) requiring only
n+2 dot products, with 7 the number of edges of the polygon. This functionality will be used in chapter 5 when
determining the intersection of a line with the portal.
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3.21 The FCPortal class

FCPortalPoly |

FCPoly

portal shape

FCPortal

clipped polygon

+virtual void Process(Frustum)
+bool IsVisible(Vector, Frustum)
+Frustum AdjustFrustum(Vector, Frustum)

Fig. 11 Th

e FCPortal class.

The class FCPortal is derived from class CTEntity (see chapter 2) and uses an instance of Fi CPortalPolygon to define a
convex polygon that uni-directionally connects its parent cell (the root of the cell tree of which the portal is a child) to
the connected cell. A polygon with k edges is defined as {vg, vy, ..., vi.;} with v; and v, the vertices for edge i and v;.;
and v, the vertices of edge &-1, defined in clockwise order and all vertices v, 0 <=i <k on the same plane.

The portal polygon is required to be convex for two reasons: it guarantees that the frustum created for a connected cell
will be convex and it allows for a fast point-in-polygon check (both will be discussed later).

The portal plane is defined by the plane of the portal poljlgon with the plane normal pointing in the see-through
direction of the portal. The choice for uni-directional portals was made because this makes separating the world graph
into individual cell trees possible which can e.g. be used to load large worlds cell by cell (see Fig. 12 where a world -

consisting of two cells has been separated into two. individual cells and their cell t;ges).

Cell 1 ‘ Cell 2
» 4““5 Pceir s
1
“Peeir 2 i"

t

World consisting of two cells
connected by portals Pcey ; and
Pien 2. Arrows represent the see-
through direction.

/]

l Cell 2

Cell 1

| [}
— Pcarz  —p < Pcar:
_—_T t_—
’ ! T ! \ .
’ PPN S
other Pcaiz- -~ ~~1 Peanr other
objects : ’ objects

Fig. 12 Separating the world into individual cell trees.

In order to preserve the correlation of the cell trees (shown in Fig. 12 by the dotted arrows between the two cell trees) the
name of its connected cell is stored along with a portal allowing the connected cell to be looked up when the portal is
visible’. This requires each cell to have a unique name.

So a portal is implemented as an infinite opaque wall with a one-way opening in it: when looking through this opening in

the see-through direction one can see everything in the connected cell that is not occluded by the wall, and when looking
_in the other direction the portal is not visible and culls nothing. »

Although most portals will usually be rectangular shaped (i.e. doors or windows) they can be any convex polygon

desired.

5 The actual implementation will only look up the connected cell by name once. After that a pointer to the cell tree root is
stored in the portal object.
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3.2.2 The FCCell class

FCPortal FCCell
) parent of 1| +bool CeliLocked
+virtual void Process(Frustum
+virtual Frustum AdjustFrustum(Vector, Frustum) 0.. connects to +virtual void Process(Frustum)
+bool IsVisible(Vector, Frustum) +void ProcessCell(Frustum)

Fig. 13 The FCCell class.

The class FCCell is derived from class CTGroup, and represents the root of the cell tree. Often a cell will have some

“geometry objects representing its physical boundaries due to the nature of the environment in which portal processing
will be used (e.g. the walls of a room) but no restrictions are put on the type, amount or shape of the objects in the cell
tree. Cells are required to have a unique name for identification. '

Although an FCCell object is a cell tree root, it is still desirable to be able to store an entire world with multiple cells in
one world tree where cells can be children of other cells (see Fig. 14). This way the advantages of grouping objects and
the parent-child relationship (see chapter 2) can also be applied to cells. However, care must be taken that these child
cells are not processed using their parent cell's frustum since that would negate the advantage of portal processing for

. these child cells. -
| cenz Cell 2

Fig. 14 Parent and child cells (Processing Cell 2 as a child of Cell 1 is useless since
- it is not visible in the frustum).

3.2.3 Portal processing vs. vrSS tree processing

Tt is desirable to (re) use as much of the functionality as possible provided by the vrSS toolkit for rendering
scenes/processing trees/exact visibility determination, since it has already been implemented and is highly optimized. It
is therefore a good idea to examine where the portal processing algorithm differs from the standard vrSS tree processing
algorithm (see chapter 2): The portal processing algorithm is different in that the world tree is no longer processed top-
down and that the frustum is adjusted before processing of a cell tree starts. However, once the frustum is adjusted, the
cell tree can be processed using the vrSS algorithm which also performs the necessary exact visibility determination of
the cell tree's objects. There are two catches to using the vrSS algorithm: The vrSS algorithm processes a tree by calling
the Process method of the root and then recursively calling this method for each of its children that require processing.
This implies that when processing a cell tree, should a child cell be encountered the Process method for this child cell
will also be called. Unless the cell distinguishes between being processed as the connected cell of a visible portal and
being processed as the child of another cell that is being processed, implementing the Process method would resultina
child cell being processed as if it were a (physical) part of its parent cell's cell tree (see also Fig. 14).

The other catch is that the vrSS algorithm assumes that as a pre-condition to calling the Process method of a node, the
world transform of that node's parent is updated. When using the vrSS algorithm this is taken care of automatically as
shown in Fig. 15: starting at the root node the tree is processed top-down and at every node its local transform and parent
world transform are combined to get the world transform for the node before it or any of its children are further

processed.

16



1,/ 3N
[Groupz] [>Group4]
2/

vrSS tree processing: processing starts at the root portal processing: processing starts at cell 1. Its
whose parent transform is the same as its local parent's (Cell 4) world transform has not been
transform and then traverses down the tree updating ~ updated yet so do this first. Processing continues
each nodes world transform. The numbers and with Cell 2. Again its parent's world transform
arrows denote the order and direction in which the must be updated resulting in the world transform

child nodes are processed. of Cell 3 to be updated as well.
Fig. 15 updating the world transform.

Portal processing on the other hand starts at the physical camera cell by processing its cell tree and then jumps through
the world tree, processing other cell trees based on the visible portals. In the case shown in Fig. 15 the algorithm starts in
Cell I and then follows a visible portal connecting to Cell 2. For both of these cells the world transform of their parent
cells (respectively Cell 4 and Cell 3) are not up-to-date resulting in erroneous world transforms for the objects in their -
cell trees. Therefore a cell has to traverse up the tree to compute its world transform, in the process updating the world
transforms of other cells that may not be processed at all (Cell 3, Cell 4 and Cell 5) which will result in some negligible
but extra overhead. ’

When processing a cell tree using the vrSS algorithm, portals should be not processed, so the FCPortal::Process method
is also empty. Instead, the portals are processed after the vrSS algorithm finishes processing the cell tree. By doingsoa
near-to-far rendering scheme at the cell level is created, which will benefit Z-buffer performance(’, particularly when \
there are significant lighting computations per pixel. .

When implemented carelessly portal processing can introduce some processing inefficiencies, which are shown in Fig.
16 with two situations in which a cell tree is processed twice. :

Cell 1

Fig. 16-a ‘ Fig. 16-b

Fig. 16 portal processing inefficiencies.

In the situation of Fig. 16-a, Cell ] is processed first, rendering object k which lies in the initial frustum. The portal to
Cell 2 is encountered and Cell 2 is processed where a portal connecting the cell back to Cell I is encountered. Due to
property III, the new frustum F.; ;- will always be smaller or equal than the initial frustum so processing Cell ] again
with Feey p» will provide no new information, but will cost valuable processing time since object £ would be rendered

§ When using Z-buffers, visibility of a pixel is determined before more costly computations like lighting are performed.
However, today’s hardware accelerators make the performance gain noticeable only in very complex scene.
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again. To solve this problem cells shouid be locked until all their portals have been processed. Once a cell is locked and a

portal connecting to that cell is encountered the cell cannot be processed again.

In the situation of Fig. 16-b, Cell 2 is processed twice causing object & to be processed twice also. If no clipping of any

sort is used then the entire object will unnecessarily be send through the render pipeline a second time. The only remedy

for this situation is to introduce a fime stamping mechanism in the vrSS engine where once an object is rendered it will

not be processed again until rendering of a new frame has started’.

Note that even though the time stampiﬂg mechanism would also solve the problem of Fig. 16-a this would still result in

the unnecessary reprocessing of the cell tree of Cell 1.

Having discussed the intricacies of the portal processing algorithm and the interconnection with the vrSS algorithm, a

blueprint for the portal processing algorithm implemented in the FCCell::ProcessCell method will look like Fig. 17.

// CellFr is the frustum constructed for current cell
void FCCell::ProcessCell( Frustum Fr )
( .

// lock the cell

CellLocked = true ;

// make sure the parents world transform is up-to-date
// and then process the cell tree using vrSS Process()

GetParent () .UpdateWorldspace() ; i
CTGroup: :Process( Fr } ; // call parent class's Process ()

// now process the portals
for( int £ = 0 ; £ < Portals.Count() ; £ ++)
{ : . :
// is the connected cell of the portal locked?
. if( Portals[ f ].ConnectedCell.CellLocked )
continue ; : .

// is the connected cell visible (check the portal

// polygon against the current cells frustum) (to be defined)

if( !'Portals[ f ].IsVisible( GetCameraPosition(), .Fr )} )
continue ;

// Construct a new frustum for the connected cell (to be-defined)
Frustum ConCellFr = Portals[ f ].AdjustFrustum( GetCameraPosition(), Fr ) ;

// process the connected cell with the new frustum
Portals|[ f }.ConnectedCell.ProcessCell{ ConCellFr };:

}

// and finally unlock the cell
CellLocked = false ;
}

Fig. 17 The portal processing algorithm in vrSS.

" Based on the complexity of Cell 2, it might even be faster to render it using the initial camera ﬁusnm, instead of
processing it twice using the portals. This option however has not been investigated further.

18




3.2.4 Determining portal visibility

Deterniining the visibility of a portal is done by first determining if the camera position is in the negative half space (see
chapter 2) of the portal plane (since a portal is uni-directional it is impossible to look through it if the camera position is

in the positive half space) and then clipping the portal polygon against the frustum (see Fig. 18). If the clipped polygon
‘Thas zero vertices then the portal does not intersect the frustum and is not visible. The clipped polygon is stored to help

create the adjusted frustum discussed later in this chapter.

Cell 1 Cell 1

Pce 2 T

Cell 2

The clipped portal polygon in 4 different situations: The gray area represents the camera
frustum. Clipping the portal polygon against the frustum results in the clipped portal polygon
which is represented by the dashed line. The new frustum for the connected cell is represented

by the dotted area.

Fig. 18 Clipping the portal polygon against the frustum.

A special case occurs when the camera position in Cell ] is on the portal 'plane but outside of the polygon (see Fig. 19).

Clearly, even though the portal will be classified as visible and the clipped polygon will be a copy of the portal polygon,

it is impossible to look through it and the created frustum does reflect this: it will have two coinciding planes with
opposite plane normals. To avoid creating an 'empty' frustum and processing the connected cell with it, a special check

for this situation is added to the portal visibility check classifying the portal as not visible before the polygon is clipped.

Fig. 19 A special case of the clipped polygon and its frustum.
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If the frustum has a near plane the following situation can occur (see Fig. 20): if the camera in Cell I is positioned close
to the portal then the near plane of the frustum lies in the positive half space of the portal plane classifying the portal
polygon as not visible therefore not processing the connected cell. Therefore, when checking portals against the frustum

for visibility the near plane must always be ignored.

Cell 1

Pcen2

Fig. 20 The frustum near plane trap.

Now the algorithm for determining portal visibility can be given and is shown in Fig. 21:

bool FCPortal::IsVisible( Vector camerdposition, Frustum frustum )
{ .
// is the camera in the positive halfspace?
double distance = portalpolygon.plane.Distance( cameraposition ) ;
if( distance > 0 ) )
return false ;

// is the camera on the portal plane but outside of the portal poly?
if( distance == 0 && portalpolygon.PointInPolygon( cameraposition ) )

return false ;

// disable frustum near plane
frustum.DisableNearPlane() ;

// clip the portal (the clipped polygon is stored for later use)

clippedpolygon = portalpolygon.ClipAgainstFrustum( frustum ) ;

// enable frustum near plane
frustum.EnableNearPlane() :

// is the portal visible?
return ( clippedpolygon.Vertices.Count() != 0 ) ;

Fig. 21 Portal visibility algorithm,
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3.2.5 Creating the adjusted frustum

In vrSS, the negative half spaces of the frustum planes define a convex polyhedron that is used for visibility
culling/polygon clipping. Because of the convexity of the polyhedron and the constraint that a portal polygon must be
convex, the resulting clipped polygon will also be convex allowing for the easy construction of a new frustum for the
connected cell: Except for the near and far clipping planes every plane 7 in the frustum can be created using the camera
position and the vertices v,and v;,; of edge 7 of the clipped polygon resulting in a convex polyhedron stretching from the

camera position into infinity (see Fig. 22)

To limit the volume of this polyhedron a far plane is added for which the far plane of the original frustum is simply
copied. If the original frustum does not have a far plane, than neither will the new one.

- clipped
polygon

camera
position Vo

Fig. 22 Creating the new frustum.

The volume of the polyhedron can be limited even further by using the (inverted) portal plane as the near clipping plane:
light cannot bend around corners so only objects in the positive half space of the portal plane can be visible through the

portal. .

Now the algorithm for creating the adjustéd frustum can be given and is shown in Fig. 23.

Frustum Portal::AdjustFrustum( Vector CameraPosition, Frustum CurFrustum )

{ .
Frustum AdjustedFrustum ;

// using the clipped polygon stored in method IsVisible now create
// the visibility frustum for the connected cell of the portal
int VertexCount = clippedpolygon.Vertices.Count() ;7

for( int £ = 0 ; £ < VertexCount ; f ++ )

{
Plane p ;
p.Set( CameraPosition, clippedpolygon.Vertices{ f ],
clippedpolygon.Vertices[ ( £ + 1 ) % VertexCount ) ;

AdjustedFrustum.AddPlane( p ) 7
}

// add the far plane and portal plane as extra visibility limiters
AdjustedFrustum.AddPlane ( CurFrustum.GetFarPlane() ) ;
AdjustedFrustum.AddPlane ( portalpolygon.plane ) ;

return AdjustedFrustum ;

Fig. 23 The AdjustFrustum algorithm.
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3.26 The FCRootCell class

FCRootCell

+virtual void Process(Frustum)

Fig. 24 The FCRootCell class.

The FCRootCell class is introduced to solve the following problem: the vrSS engine always starts the rendering process
in the root of the world tree by calling that node's Process method. This however presents two problems:

1. Portal processing requires that the rendering process starts in the camera parent cell. In a world tree with
multiple cells this would require the camera parent cell to be the root of the world tree. This makes moving the
camera into another cell impossible without changing the tree structure.

2. Since the Process method of an FCCell object is empty rendering would immediately stop.
To solve these two problems the FCRootCell class was introduced. This class derived from FCCell has implemented a

Process method that finds the camera parent cell and then calls that cell's ProcessCell method to start the portal
processing algorithm. To use portal processing it is required that the root of every world tree is of type FCRootCell.

void FCRootCell::Erocess( Camera* cam, Frustum* Fr )

{ o
// process all global objects
inherited::Process( Fr ) :

// get the cell the camera currently resides in
" FCCell cpc = FindPhysicalCell( cam ) ;

// start the portal processing algorithm
cpc.ProcessCell( Fr ) ;

Fig. 25 The FCRootCell::Process method.

By implementing the FCRootCell:: Process method another useful feature is introduced: now global objects can easily Be
introduced into the world graph. Global objects are objects that are processed every frame (i.e. an ambient light source
used to globally light the world) that are not a part of any cell tree.

3.3 Summary

Portal processing is a simple yet effective tool in speeding up real-time visibility determination for (building) interior-
type scenes. This is done using the narrowed frustum to cull many objects that would be classified as visible in the initial
frustum. Portal processing is a visibility estimation algorithm that produces a superset of visible objects, so it must be
used in conjunction with an exact visibility determination algorithm. v
Usually this algorithm will be a Z-buffer, whose performance will also benefit from portal processing as this allows
near-to-far processing at the cell level: by first rendering the cell closest to the camera, many pixels in the Z-buffer will
 already have been drawn that will not be overwritten again. This saves on the expensive lighting computations that
would otherwise have been performed for pixels created by objects in cells positioned further away, because Z-buffering

- first checks whether a pixel will be visible before performing other operations on it.

The main disadvantages of portal processing are that it is only suitable for interior-type scenes, and that the world must
be designed with cells and portals already defined. This however requires very little effort from a modeler, and has the
advantage over strategies that perform this spatial subdividing automatically (like BSP-trees or the portal implementation
used by Funkhouser and Teller [3, 4]) that little changes in the model don't require a time consuming pre-computation
task before the model can be used. : ’
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Due to its object oriented design, vrSS lends itself ideally for integrating a portal processing algorithm into its standard
tree processing algorithm, provided some problems introduced by optimizations for processing a world tree are properly
dealt with. By using the standard tree-processing algorithm of vrSS to process the interior of a cell, all visibility
_ determination functionality already incorporated into vrSS (frustum culling, back-face culling, bounding volumes and Z-
buffering) can be used to determine exact visibility of each processed object.

Once a world partitioned into cells and portals has been created, portal processing is done completely transparent to the
programmer. This allows programmers skilled in vrSS to easily adapt the advantages provided by portal processing into

their own programs. v
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Chapter 4: Dynamic Cell Management

When using portal processing the world is partitioned into separate cell trees that are only processed when visible

* through a portal. These cell trees are usually stored on a large inexpensive and slow storage medium (like a hard disk or
CD-Rom) and are loaded into the limited program memory when the program is running. However, if a cell is not visible
then there is no need for its cell tree to be stored in memory.

This property can be used when trying to use memory resources effectively when working with large worlds build from
many cells. Cells can be loaded into memory when required for rendering a scene and cells that are no longer visible can
be removed from memory. This process is called dynamic cell management.

Dynamic cell management is not limited to just memory management, it also has other applications like serving cells
" over a network (i.e. the internet). In this case, a user can already view a partial world while more cells are being sent to

his system to enhance scene detail.

This chapter starts with an introduction of the many different approaches to creating a dynamic cell management system
and why these different situations require different types of cell management. The chapter then continues with a
description of the framework designed to allow programmers to integrate their specific dynamic cell management system
into the vrSS engine. : : ;

4.1 Strategies for dynamic cell management

The dynamic cell manager or d.c.m. is responsible for loading cells into memory and removing them from memory. The
portal processing algorithm requests a cell tree from the d.c.m, and the d.c.m. then retrieves this either directly from

memory or first loads it from storage (see Fig. 26).

cells on
storage
medium

cell in program
memory?

request cell

Dynamic Cell <
Manager

Cell Loader

cells in

program
memory

requested cell

Fig. 26 Requesting cells frem the dyramic cell manager.

So implementing a simple dynamic cell manager is straightforward: if a cell is requested that is not yet in memory load it
from storage and return the cell (tree), and when a loaded cell is not visible then it can be removed from memory.

This implementation would perform just fine if loading celis did not take up processing time resulting in dropping frame
rates or even the temporal freezing of the program when (multiple) large cells must be loaded while rendering a frame.
Unfortunately, this problem cannot be avoided if not all cells are loaded into memory so now the problem to solve
becomes minimizing the frequency and the delay caused by the loading of cells.

In the case of the example above indiscriminately removing cells from memory that are currently invisible might not be a
good idea if there is a good chance that they can become visible again during the rendering of one of the next frames.
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Solving this problem with a d.c.m. is a non-trivial task for which many approaches exist each with their own advantages
and disadvantages and whose performance is highly dependent on the situation in which they are used. A d.c.m. that
performs very well in one situation might be completely inappropriate for another.

It is therefore not possible to give just a single implementation of a d.c.m. that will perform optimally in every situation
- so a few pointers and suggestions will be given that can be used to implement a d.c.m. for certain situations.

“4.1.1 When memory resources are at a minimum

When memory resources are at an absolute minimum, a d.c.m. can be implemented that immediately removes a cell from
memory after having been processed. So for instance processing starts in the physical camera cell which is loaded and
whose cell tree is processed. After the cell tree has been processed, the portal processing algorithm starts with processing
the connected cells of the visible portals. To process the cell tree of a connected cell, the camera cell tree is now replaced
by the cell tree of the connected cell. Although this approach requires that the unprocessed portals of the camera cell
(and every consecutive cell that has not completely been processed) remain available, the rest of the cell tree can safely

be removed from memory.

The delay for processing each frame fis bounded by the number of portals N, rthat is being processed when rendering
the frame, so: delay,= O[ N, ;). An upper-bound for memory resources used is O{M) + O[N), with M the memory
needed to load the largest cell and N the maximum number of unprocessed portals that must be stored when rendering
the scene®. -

The performance of this algorithm will be poor due to the many loading delays and, even if care has been taken to keep

. the cell trees small, there still might be many cells that have to be processed during the rendering of a single frame (as
can be seen in Fig. 27 where all dark gray cells have to be loaded as a result of an unfavorable layout of the world). The
sum of these loading times can cause considerable freezing. :

Fig. 27 A problematic world layout.

In order to get a performance gain the d.c.m. can implement a level-of-detail scheme where a requested cell is not loaded
but instead an empty cell tree is returned if the visible part of the portal (in pixels) is small. In the case of Fig. 27, the
d.c.m. might decide to return an empty cell tree when the tree for Cell 6 is requested based on the visible portal area.
Now cells Cell 6 till Cell 10 don't have to be processed anymore reducing the processing time by 50% (assuming the

" complexity of the cells is about the same). :

Of course, this performance gain is not limited to use in this situation only, any d.c.m. can decide to stop processing
visible cells based on a number of criteria, like visible portal area (in pixels), distance to the camera, portal sequence
length or any other criterion a programmer sees fit to use.

4.1.2 When loading cells over a siow connection

Even with fast network and internet connections, loading a cell from a remote location can be a time consuming task
causing severe freezing of the program. A d.c.m. could decide to first copy (pre-fetch) the cells from the remote location
onto a local storage facility like a hard disk (or if enough memory is available load the cells directly into memory) bu
this could require the user to wait a long time until all cells are loaded from the remote location. :

If these loading times becomes unacceptably long, the d.c.m. can also take a progressive approach (delayed load) where
once the first cell has been loaded the user can already see the partial world while the d.c.m. copies additional cells (in a
separate thread as not to interrupt the program) from the remote location to the local storage for faster access.

8 This number can be computed using the potentially visible cells set described in chapter 7.
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4.1.3 Removing cells from memory

The.decision by the d.c.m. to remove a cell from memory will usually be instigated when the memory is full and a new
cell has to be loaded. The d.c.m. then has to decide which cell(s) to remove and must do so carefully as not to remove
those cells that will require processing soon. How should the d.c.m. decide which cells can be removed from memory?

"This problem can be described in the terms of a caching problem as is common in computer architecture (see Fig. 28):
the cache is a small and very fast memory located close to the processor that holds the most recently accessed data. If the
processor finds a requested data item in this cache memory it is called a cache hit, otherwise it is called a cache miss and
a fixed-size data block holding the data item is retrieved from main memory and stored in the cache. Due to the spatial
locality property of data, it is likely that the other data items in this block will also be needed soon by the processor.

request .
data write data block
P .
CPU Cache Main
¢ — ¢
requested ) , Memory
data retrieve data block

Fig. 28 CPU's and Data Caching .

Cells that are stored in memory (the cache) are called cached cells and every time a cell is required by the portal
processing algorithm that is not in memory, a cache miss occurs requiring the d.c.m. to load the cell from storage and
possibly to remove (an)other cell(s) before doing so. The goal is to reduce the number of cache misses to a minimum,
which will result in a minimum of loading delays and therefore better program performance.

A lot of research has been done into this problem in the field of computer architecture yielding techniques like victim
lists and second level caching [2] which can also be applied when implementing a d.c.m. -
These techniques all share a common problem though: it is impossible to predict exactly when a freeze will occur at run-
time. '

To get a better handle on this problem the spatial coherence of cells can be used as was the spatial locality of datain a
computer system: when a cell is currently being processed it is likely that its connected cells will also require processing
soon. The d.c.m. can use this property to pre-fetch the connected cells most likely to be processed soon.

When combined with a (possibly offline computed) potentially visible cells set (see chapter 7), the spatial coherence
property can be used to implement a clever cache management system for use with cells: A potentially visible cells set
for a cell is the set of all cells that can be visible to a viewet who can be positioned anywhere inside the cell. For every
cell in the world such a set is computed (see Fig. 29). When the camera enters a cell, the potentially visible cells set for
that cell is examined: cells in the set that are not in the cache are loaded into memory and those cells that are in the cache
but not in the set can be safely removed with the knowledge they will not be required for rendering as long as the camera
resides in the current cell. Due to spatial coherence, the potentially visible cells sets for two connected cells will often
share many cells, reducing the amount of cells that must be loaded and thus reducing delay times.

Another advantage is that it is possible to exactly predict when a delay will occur (i.e. only when the viewer moves into
another cell) and how long this will take (the loading time of each cell can be measured, so the delay time is the sum of
the loading times of all cells that are loaded).
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Fig. 29 Potentially visible cells for two different cells in the world.

When combined with a separate thread for loading cells and with enough memory available, the potentially visible cells
sets can be used to pre-fetch the potentially visible cells for each of the connected cells of the current camera cell. This
will further reduce program freezes and can even eliminate them when the loading time of these cells is less than the
time it takes for the camera to leave the current cell through a portal different from the one through which it entered.

4.2 Implementing a dynamic cell manager in vrSS

In order to implement dynamic cell management for the vrSS engine three new classes are introduced into the vrSS
framework: FCCellManager, FCCellData and FCCellLoader. An UML-diagram of the framework extension for
implementing dynamic cell management is shown in Fig. 30, the classes themselves are explained in the next sections.

FCCeliManager
FCCellLoader CellLoader »
+virtual FCCell GetCell(String, bool) = 0 FCCell i FCCeliData
*| +virtual FCCell GetConnectedCell(FCPortal, bool) = 0 0. 0.1 String CeliN
+virtual void UpdateLoadedCells(Time) = 0 list of loaded cells
+void SetUpdatelnterval(Time) .
connected cell

+void RegisterCel(FCCell, String)
+void. RegisterPortal(FCPortal, String)

portals connecting to [ 0-.

FCPortal

© FCCellLoader

+virtual FCCell RequestCell(Siring, bool) = 0
+virtual void RequestAli{(FCRootCell) = 0
+virtual int GetCeliCount() = 0

+virtual String GetCeliNo(int) = 0

+virtual FCCell RefrieveFirstPendingCell() = 0
+virtuat FCCell RetrieveNextPendingCeli() = 0

Fig. 30 UML diagram of framework extension for dynamic cell management.

4.21 The FCCellManager class

FCCellManager

FCCellLoader CellLoader

+virtual FCCell GetCell(String, bool) = 0 — FCCell
+virtual FCCell GetConnectedCeli(FCPortal, bool) = 0 ——
+virtual void UpdateLoadedCells(Time) = 0 list of loaded celis

+void SetUpdatelnterval(Time)

+void RegisterCell(FCCell, String) B
+void RegisterPortal(FCPortal, String)

Fig. 31 The FCCellManager class.
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The task of the FCCellManager class is to make the numerous possible ways of loading and removing cells completely
transparent to the rest of the system. To do so the FCCellManager class defines a few abstract methods to be
implemented by a derived class that must be used by the rest of the system when requesting access to a cell tree. These

methods are:

o FCCell GetCell( String cellname, bool immediately ) to get (a pointer to) the root node of the cell tree, and;
e FCCell GetConnectedCell( FCPortal p, bool immediately ) to get (a pointer to) the root node of the cell tree
of the connected cell of portal p. : ‘

When set to true the Boolean immediately is used to signal the method not to return before the cell tree of cell cellname
is loaded into memory, when set to false the manager can decide to load the cell ata later point in time and in the mean
time e.g. return an empty cell tree. '

The cell manager also defines the abstract UpdateLoadedCells method that is called every interval seconds to evaluate
which cells (if any) can/will be removed from memory. The interval can be set using the SetUpdatelnterval( Time
interval ) method.

4.2.2 The FCCellData class

FCCellData } i FCPortal
0,1 connected cell R I8
String CellName

FCCell

portals connecting to

Fig. 32 the FCCellData class.

Due to the dynamic nature of the set of cells currently loaded into memory, a portal cannot simply store a pointer to its
connected cell's cell tree: At the time of creating the portal the connected cell may not exist, and once the connected cell
is created it cannot set the pointer for the portal connecting to it because it has no knowledge of its existence due to the
separation of the cell trees (see chapter 3).

So whenever the connected cell of a portal is needed, the portal processing algorithm has to search the world graph for
that cell using the only piece of information the portal has of it, the cell name. This is a slow process especially since it is
performed multiple times during the rendering of a frame. To speed up this search, the cell manager could keep a list of
all cells currently loaded allowing a look-up of the cell in this list by name. If the cell is not in the list, the cell manager
will load it into the cache. »

This string Jook-up is still wasteful considering that once a cell has been loaded into memory its pointer will never
change and can safely be stored by portals to speed up access to the connected cell. Only when the cell is removed again
a problem arises because now the pointer becomes invalid.

To solve this problem the FCCellData class is introduced which restores a bi-directional link by providing the connected
- cell of a portal with information of that portal connecting to it. For each cell, one instance of an FCCellData object is
created once the cell, or a portal connecting to it, is created. The FCCellData objects holds a list of portals connecting to
that cell, and holds a pointer to the cell tree if it exists and is NULL otherwise. Both the cell and the portals connecting to
it keep a pointer to the FCCellData object.

Now when the connected cell of a portal is required this no longer has to be looked up in a list of loaded cells, but instead
the pointer to the cell tree in its FCCellData object is evaluated: if it is NULL the cell tree is not loaded so the cell
manager must retrieve it. : :

In order to set this pointer when creating a cell or portal, cells and portals must register themselves with the cell manager
which performs this task. Requiring them to do so also has another advantage: due to the syntax of the registration
methods (see Fig. 31) the programmer is forced to provide the engine with all the information required for portal
processing. In the case of registering a cell both a pointer to the cell tree and the name of that cell must be passed as
parameters and in the case of a portal both a pointer to the portal and the connected cell name must be passed.
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Once a portal or a cell is deleted, the FCCellData object is updated so the information it contains about the world is
always correct. If a cell tree no longer exists and no more portals connecting to that cell exist then the object deletes

itself.

The only problem that remains is setting the F CCellData pointer of the cell and portal§ by the cell manager. This is done
using a string look-up function as was described above’. This lookup has to be done only once when a cell or portal is
created after which the FCCellData object can be used to get the cell pointer.

4.2.3 The FCCellLoader class

FCCellLoader

+virtual FCCell RequestCell(String, bool) = 0
+virtual void RequestAll(FCRootCell) = 0
+virtua! int GetCellCount() = 0

+virtual String GetCeliNo(int) = 0

+virtual FCCell RetrieveFirstPendingCell() = 0
+virtual FCCell RetrieveNextPendingCeli() = 0

Fig. 33 The FCCellLoader class.

Because cells can be stored on and retrieved via many different mediums which may require substantially different
accessing methods, and also to keep the cell manager as flexible as possible, the loading of cells is done using an
instance of the abstract FCCellLoader class which defines a set of methods that can be used by an implementation of the
abstract FCCellManager class to load cells into memory.

Again, an immediately Boolean is used by method RequestCell to signal the loader whether or not it has to return the cell
tree immediately. If a cell tree is retrieved later, it can be retrieved by the cell manager using the
RetrieveFirstPendingCell and RetrieveNextPendingCell methods. o

4.3 Summary

There are as many different approaches to dynamic cell management as there are situations in which to use it, and each
approach and situation has its own specific set of advantages and problems. Therefore creating a cell manager for a
certain situation will require a thorough examination of the situation and the problems that must be overcome. Although
in this chapter some hints were given on how one could create a cell manager for some common situations, these are not
the only possible approaches to solving the problems and there may be other conditions making the hints given difficult
to use. L ' ‘

Because of this the addition of dynamic cell management to vrSS is less an actual implementation then it is an interface a
programmer can use to integrate his cell manager into the portal processing framework designed for vrSS.

® Nevertheless, searching the tree is also possible if memory resources are of concern.
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Chapter 5: Inter-Cell Objects‘ and Dynamic Portals

Until now, it was assumed that a VR-world could be completely partitioned into separate cells whose only inter-relation
~ was the portals connecting them. However objects like light- and sound sources can extend their influence beyond their
physical cell, and a moving (dynamic) object can be partially inside two cells at the same time when moving through a

portal. These objects cause extra inter-relations between cells and are therefore called inter-cell objects.

Tnter-cell and especially dynamic inter-cell objects are often a problem when it comes to static visibility determination
schemes like BSP-trees [2], and even most research papers [3], [4], [7] on portal processing (which is a dynamic

- visibility determination solution) never mention them. Often when a world has dynamic objects they are simply
processed every frame {using the camera frustum for clipping) and visibility determination is completely left to the Z-
buffer. This approach always works correctly but sacrifices the frustum narrowing properties of portals leading to the
unnecessary rendering of invisible dynamic objects, thus reducing performance. :

This chapter explores how processing inter-cell objects can also profit from frustum narrowing using portal processing
and solves the problems that arise. The problems introduced by adding inter-cell objects to the world are identified and,

when possible, solved.

In addition, there is no reason why portals should remain static. Imagine a sliding door where a portal is used for

determining what is visible on the other side of the door. Using a static portal, this would have to be the size of the

maximum door opening resulting in a lot of redundant rendering of objects only to be overdrawn by a half open door, but
" using a dynamic portal that changes along with the door opening this can be prevented.

Dynamic portals and their consequences are also discussed in this chapter. The chapter then continues with the
framework extension required for using inter-cell objects in the vrSS portal processing environment created in the
previous chapter and ends giving a summary of the results.

5.1 The problem with objects influencing the appearance of more than one cell

With portal processing the world tree is partitioned into cell trees where each cell tree holds the objects defining the
appearance of that cell. The only way these objects will be processed using the current portal processing algorithm is
when a visible portal connecting to that cell is processed (or if the cell is the physical camera cell). However, consider
the situations depicted in Fig. 34:

Cell 1 \i\ @ Cell? Cell 1 l o C?
7 N\ ' object j V
I3 A}
'/ light source Vo
i .
\ ® k | Frustum o
‘\ ," Root Frustum
\\\ I,I W
Fig. 34-a Fig. 34-b

Fig. 34 Scene errors in the portal processing environment.

Both situations will result in an erroneous rendering of the final scene! In the case of Fig. 34-a the light source that is a
child of Cell I shines it light through the portal into Cell 2 lighting object k (the sphere of light is depicted by the dotted
line). However, since the portal is not visible (it is not in the frustum) the cell tree of Cell 1 will not be processed and

therefore neither will the light source leaving the object unlit.
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In the case of Fig. 34-b the object j is a child of Cell 1 (its root is in Cell 1) but sticks through the portai into Cell 2 where
it intersects the frustum and is therefore visible. Again, since the portal is not visible Cell / will not be processed and
thus j is not rendered.

The problem is caused by the fact that objects belonging to the cell tree of one cell can influence the appearance of
neighboring cells through portals. However due to the division of the world into separate cell trees and the properties of a
tree, if the parent cell of the object is never processed, then neither will the object be even if its influence is visible in -
another cell. '

5.1.1 Solving the problem using global objects
The easiest approach to solve this problem is to make these objects global (see chapter 3): global objects have no cell
parent and are processed every frame using the initial (camera) frustum, so the problems described above cannot occur.

However, there are disadvantages:.

e Global lights/sounds are not restricted by cell boundaries, so a light source in one cell could shed light on an |
object in another cell through an opaque wall; '

¢ Global objects are processed every frame using the initial frustum, so the advantage of frustum narrowing is
sacrificed (see Fig. 35);

Fig. 35 Global object 'car’ is visible in F,;, but not in F¢p,.

e  The parent-child relation is lost, forcing the programmer to move the global object along ‘'manually’ with the
cell it is in, if that cell is moved. :

Due to these disadvantages, global objects should only be used for objects that must be processed every time a frame is
rendered, e.g. a global (ambient) light source or a heads-up display.

5.1.2 Solving the problem using object referencing
A better solution is to have all cells whose appearance can be influenced by the object keep a reference to that object
(which in effect makes the object a child of multiple trees). Now, when a cell is processed not only will its cell tree be

processed, but also any object references the cell has to objects in other cell trees.

Using this approach all cells influenced by the object must be determined so they can get a reference to the object. This
can be done using the recursive algorithm shown in Fig. 36:
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void SetObjectRefs( Object o, FCCell ¢ = NULL )

{
// -add an object reference to the current cell

if( ¢ )
c.AddRef( o ) ¢
else
¢ = o.GetParentCell() ; // only on initial call

// prevent infinite recursion
c.CelllLocked = true ;

// now check whether the portals of the current cell
// intersect the objects shape
for( int £ = 0 ; £ < c.Portals.Count() ; £ ++ )
if( !c.Portals{ £ j.ConnectedCell.CellLocked )
if( c.Portals[ f ].IntersectsWith( o.Shape ) )
SetObjectRefs( o, c.Portals[ £ ] .ConnectedCell ) ?

c.CellLocked = false ;

Fig. 36 The recursive object-referencing algorithm.

. When using this algorithm all cells that have a portal connecting to them that intersects with the object's shape'® get a
reference to the object (except for the actual parent cell of the object who already has an explicit reference to the object
in its cell tree). This technique is called object referencing and an example of the references found for a light source is
shown in Fig. 37. : '

Cell 1*[ Cell 2 \‘\¢Cell 3
\\

4
/
-@ light source
l
1
1
\
\
AY
\

Cell 4 Cell 6

Refs( light source ) = { Cell 1, Cell 3,
Cell 4, Cell 5}

Fig. 37 Object referencing (dotted line is the shape of the object).

10 For light and sound sources this is usually a sphere of influence, for geometry it is either the actual render shape of a
bounding volume.
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5.1.3 Inter-cell objects and occlusion culling

When using light sources (and to a lesser degree, sound sources) in a portal processing environment a strange
phenomenon can be observed in certain situations as is shown in Fig. 38:

Time t0 Time t1

Cell 1 l Cell 2

light source

Fig. 38 Flickering light problem.

At time #0 the portal is visible and therefore the light source in Cell 1 will be processed. This is usually done by

sending the light source to the render API which then uses it to light the other objects it renders. When lighting objects
most render APT's (e.g. DirectX, OpenGL) do not check for occlusion of that object by other objects. In Fig. 38, due to
the visibility of Cell I at time #0, the light source will be processed and the render API will erroneously light object &,
which is in the sphere of influence of the light source (dotted line), through the opaque wall. When the camera moves to
its new position at time ¢/, Cell I is no longer visible so object & is now no longer lit by the light source. This results in a
'flickering light' that can be very annoying to a viewer.

The source of this problem is not the portal processing algorithm, but the way in which render API's handle lighting. To
make real-time rendering of complex scenes possible the render API does not check for occlusion culling when lighting
objects. Therefore, when rendering the scene using the tree-processing algorithm the exact same problem is present,
however it is less noticeable because the scene will be lit erroneously all the time.

To make the problem less noticeable when using portal processing, the occlusion culling properties of portals can be
used for light as well as is shown in Fig. 39:

i light source l -
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!
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\
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Fig. 39 Light Frustums.

As can be seen from this figure using the light source and the portal a 'light frustum' can be constructed that can be used
to evaluate which objects are lit by the light source in other cells and which aren't. Using this property requires that for
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each object the sources lighting it can be set in the render API''. Selecting the light sources for each object can be done
at pre-run-time for static objects and light sources, or run-time but then it requires an extra processing pass where the
light sources for each object are selected. :

5.2 The problem with dynamic objects

Dynamic objects in a portal processing environment introduce two problems that have to be solved.

The first problem is caused by the fact that most dynamic objects have a shape requiring the objects to be referenced by

~ the cells in which they are visible (for which the object referencing technique was introduced in the previous section). -
However, since the objects can change, the cells requiring a reference to the object can also change. So i.e. whenever the
object moves the cells requiring a reference to the object must be re-evaluated. This is called dynamic object referencing
and an example showing the references of an object  at three different times is shown in Fig. 40:

time t0 i time t1 : time t2
Cell 1 i Cell 1 Cell 1
k
o o— |—ofme— | —© O—
k

Cell 2 | cell2 ~ Cell 2

Refs(k, 10) = { Cell 1} Refs(k, t1) = { Cell 1, Refs(k t2) = { Cell 2}
, Cell 2} ,

The second
problem is caused
by the question whether or not an object passing through a portal should change parent cells and become a child of the
connected cell's cell tree. Both situations may occur based on the properties of the object:

Fig. 40 Object references for k at 3 different times.

In the case of a Man walking through a portal connecting a Tunnel cell to a Boat cell, as long as the Mar in inside the
tunnel he is not affected by the rocking of the boat, but once he passes through the portal on to the boat he will rock -
along with the boat. : )

So the Man should change parent cells from the Tunnel cell to the Boat cell once he passes through the portal so that
because of the parent-child relation he will move along with any movement of the Boat cell. This type of moving object
is called a slave object because it will always be a child of the cell tree of the cell in which it physically resides.

In the case of a Ufo object hovering through a series of Tunnel cells, if the cell in which the w.f.0. is hovering moves, the
w.f.0. should not automatically move along since the two have no physical connection. In this case, the Ufo object should
not change parent cells when moving through a portal. This type of moving object is called a free object.

Implementing free objects can be done by making them global but only processing them through object references found
using dynamic object referencing. This way, the object has no parent cell, and is only processed using the frustum(s) for
the celi(s) in which it physically resides. = -

Implementing slave objects requires that the object changes parent cells once it moves through a portal to keep the
parent-child relations correct. This brings up two questions of which the first is: Most objects have a shape and size so
when moving through a portal it will temporarily be physically in two (or more) cells at once. At what point should the

11 Although DirectX and OpenGL allow switching lights on and off while rendering a frame, unfortunately vrSS has no
provisions for this yet. It's an all-lit or all-unlit deal due to the separate lighting pass used by vrSS when processing the
tree.
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object now change its parent cell? To solve this problem the design decision is made that once the root of the slave object
" tree (which is a single point with a position but no size) is physically inside a cell the slave object should be a child of
that cell. This requires that a modeler chooses the position of the root of an object wisely (e.g. NOT two meters removed
from the object!).

The second ciuestion is how to detect when the root of an object has moved into another cell. There are basically two
different approaches to detecting whether an object has moved into another cell: the point-in-cell check and the line-
intersects-portal check. Fig. 41 shows the point-in-cell check:

bounding volume ' !
Cell;7 [ ToTTTooommmmmmmmmT

object k l : bounding volume
Cell 2

FCCell PointInCellCheck( Object o }

{
// get the position of the root of the object
Vector p = o.GetWorldPosition() ;

// find the cell in whose bounding volume this root lies by searching a list
// of all cells in the world
for( int £ = 0 ; £ < Cells.Count() ; £ ++ )
if( Cells] f ].BoundingVolume.PointInBoundingVolume( p ) )
return Cells[ £ ] ;

// root is not inside any bounding volume->ERROR!
return NULL ;

Fig. 41 Point-in-cell check.

When using the point-in-cell check every cell must have a bounding volume (whose outline is shown using a dotted line
which, for clarity purposes, is drawn within the actual bounding volume which would coincide with the cell walls) By
finding the physical cell for the root of the object whenever it has moved, and comparing this cell to the physical cell of
the old root position, it is easy to determine whether the root has changed physical cells.

The biggest advantage of this approach is that an object can be randomly positioned in the world and the algorithm will
make sure the object becomes part of the correct cell tree. The disadvantages are that a bounding volume must be created
for every cell and that these bounding volumes may not overlap to keep determining the physical cell of a point using the
point-in-cell check simple (see Fig. 42).

Another disadvantage is that it is never checked whether the object has actually passed through a portal or not.
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Fig. 42 k lies in two bounding volumes, which one should be the
physical cell for £?

The line-intersects-portal check is shown in Fig. 43:

Cell 1 Cell 2 Cell 3

oldpos k

FCCell LineIntersectsPortalCheck( Object o )
{ ,
// start in the current parent cell of the object
FCCell cpc = o.GetParentCell() i

// create the line from the old position of the root to the new one
Line 1 = Line( o.LastWorldPosition, o.GetWorldPosition() )

bool exit = false ;
while( !exit )
{

exit = true ; // for ending loop

// check the portals of the current parent cell
for( int £ = 0 ; f < cpc.Portals.Count() ; £ ++ )

// on intersect update the parent cell pointer
if( cpc.Portals[ £ ].LineIntersects({ &l ) )
{
cpc = cpc.Portals| £ ] .ConnectedCell ;
exit = false ;
break ;
}
} .

return cpc ;

}

Fig. 43 line-intersects-portal check.

If an object moves, this method checks whether the line between the old and the new root position intersects with one of
the portals of its current physical cell. If so then the search is continued in the connected cell of the portal and now for
this cell the line is checked against its portals™?. This process continues until no new portals are found that intersect the
line. The last cell whose portals were checked for intersection with this line is now the new physical cell of the object.

12 Making sure that the (bi-directional) portal through which the line entered is not checked again for intersection as this
would lead to an infinite recursion! ’
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As can be seen most of the (dis)advantages given for the point-in-cell check are the exact opposite with the line-
intersects-portal check: no bounding volumes are required and the object must actually pass through the portal in order to
enter another cell, but care must be taken that the object is initially positioned within its physical cell.

5.3 Dynamic portals

One last problem that must be taken into account is dynamic- or moving portals. When a world has moving portals, not
* only can a moving object pass through a (static) portal, but a moving portal can also ‘pass over' a (moving or static)
object. This is shown in Fig. 44 where due to the moving of Cell 2 to the left, even though object & did not move between

time 70 and ¢1, at ] the object is now inside CelJ 2 because the portal passed over the cell.

If the portal processing algorithm bnly checks for physical cell changes of objects when the objects move then this
situation is not detected. Therefore not only must the algorithm check for physical cell changes when an object moves, -
but also whenever a portal of the objects physical cell has moved. Moving portals also require that the object references

by cells are updated after a move of the portal as can be seen in Fig. 45.

time t0 time t1
Cell 1 v Cell 1
| Cell 2 | Cell 2
object k . object k , :
® ' { ‘
Fig. 44 A moving portal.
time t0 ) ' time t1
Cell 1 Cell 1
A T | Cell 2 I A ‘I Cell2 I
/I light source ‘\‘ ‘,’/ | light source ‘\
S SN N
\\ /II t - T g \\ ,I'
Refs(k t0)={Cell 1} Refs(k tl1)={Celll, Cell2}

Fig. 45 Object referencing when moving portals (the light source is static).
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5.4 Inter-cell objects and dynamic cell management

Inter-cell objects requiring object referencing make dynamic cell management more difficult. When a visible cell ¢ is
under the influence of a light source in a neighboring cell » that has not yet been loaded, the appearance of ¢ is abruptly
changed once 7 is loaded into memory. To prevent this for static inter-cell objects, a pre-run-time evaluation of the cells
under the influence of an inter-cell object can be made so that if one cell under the influence of the inter-cell object
becomes visible, all other cells under the influence of that object are also loaded by the cell manager.

Should the inter-cell object also be able to move, then this evaluation must be done at run-time after every move of the
object. Because this requires every cell under the influence of the object to be loaded in order to evaluate their portals,
this can require many invisible cells to be loaded which could be an expensive task. In the case of a dynamic light
source, it would probably be cheaper to make the light source a global object.

The same is true for dynamic portals: re-evaluation of object references due to changes of the portal must be done at run-
time, requiring every cell under the influence of the object to be loaded in order to evaluate their portals.

When removing cells from memory, the cell manager must take into account that some cells may not be visible but are
under the influence of inter-cell objects so they should not be removed indiscriminately.
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5.5 Implementing inter-cell objects in vrSS

In order to implement inter-cell objects and dynamic portals for the vrSS engine two new classes are introduced into the
vrSS framework: FClnterCellContainer and FCDynamicPortal. Most classes already defined in the previous chapters

* will also require some additional code: The FCCellManager class (defined in chapter 4) is expanded with new
functionality for managing and updating inter-cell objects, the FCPortal class (defined in chapter 3) must check if an
inter-cell object has passed through it in order to update that object's physical cell and has to signal the cell manager
whenever the portal has changed/moved in order to update the object references and finally the FCCell::ProcessCell and
the FCRootCell:: Process methods (also defined in chapter 3) also require some additional functionality.

An UML-diagram of the framework extension for implementing inter-cell objects in vrSS is shown in Fig. 46:

s opiect CTEntity FCPortal
¢}
G
+virtual void Process(Frustum) +virtual i t t Seg ts(Vector, Vector)
lﬁ ST , Ay
CTGroup N

+virtual void Process(Frustum)

5
[ |

FCinterCeliContainer FCCell

0.. | CTShape BoundingVolume
DFlags Flags
FCinterCeliContainer Parent

+virtual void ProcessCell(Frustum)

object references

+virtual void Process(Frustum) T

Referencing cells 0..
) 0.. 3
g
FCCeliData é FCRootCell
Physical Cell s
" | +virtual void Process(Frustum)
FCCellManager FCDynamicPortal
+DTransform LastWorld Transform
+RegisterinterCellObject(CTEntity, CTShape = NULL, DFiags) asMo
+void UpdateinterCellObjects() :a?":: P ved(z Vector, Vector)

Fig. 46 UML-diagram of framework extension for inter-cell objects.

The line-intersect-portal check was chosen for detecting physical cell changes of inter-cell objects due to the fact that
using this approach modelers/programmers don't have to provide/update bounding volumes for every cell and it allows

the greatest degree of freedom when designing VR-worlds. :
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5.51 The FCinterCellContainer class

FCinterCeliContainer

0.. | CTShape BoundingVoiume
DFlags Flags
FClnterCellContainer Parent

object references

+virtual void Process(Frustum)

Referencing cells
0..

FCCeliData

Physical Cell

Fig. 47 The FCInterCellContainer class

The FCInterCellContainer class is derived from CTGroup but only contains one child, the inter-cell object. The
FClnterCellContainer object stores a pointer to the FCCellData object of the cell in which the root of the inter-cell
object currently physically resides (recall that in the case of a slave object this will always be the slave object's parent
cell), and is provided with a shape (currently only a bounding box or sphere are supported) that is used for (dynamic)
. object referencing of its inter-cell object. . -

The FCInterCellContainer class has a list of FCCellData objects that reference the object, so that when the object is
removed from the world this list can be used to quickly remove the object reference from these cells, and also the last
transform of the inter-cell object is cached so that any movement of the object requiring an update of the object
references can be detected.

5.5.1.1 Creating an inter-cell object

To create an inter-cell object the container for that object must be set using the method
FClnterCellContainer: :SetEntity( CTEntity entity, CTShape shape, DFlags flags, FCCell physicalcell ).

The first parameter entity is the object that becomes the inter-cell object. Any type of vrSS tree node can be an inter-cell

object, both leaf nodes (like lights, sounds and geometry) as well as group nodes. The container positions itself in
. between the entity and that entities parent in the cell tree.

The second parameter shape provides the FCInterCellContainer with the shape to be used for (dynamic) object
referencing. There are currently two types of shapes allowed: a sphere or a box. A sphere will mostly be used for light

and sound objects while a box is more common for geometry objects. Using a box instead of the actual geometry has the

advantage that intersection testing is performed much faster, but has the disadvantage that it can result in erroneous

object references as can be seen in Fig. 48: the bounding box intersects the portal however the object does not, so when

Cell 2 is processed object k is being processed unnecessary since it will not be visible in Cell 2.

Bounding box
for k ,’A\\

Cell 1

Fig. 48 Bounding box intersects portal.
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Usually a hybrid form is adapted: first use the cheap bounding volume check to determine whether the object might be
visible, and then use the exact geometry check to determine if the object is visible. The current implementation only does
the bounding volume check to maximize the performance. It allows for the erroneous object reference inefficiency based
on the observation that inter-cell objects usually move resulting in this reference to exist only for a short time, while
using the expensive geometry-portal intersection test will usually result in a much higher performance loss.

If the shape parameter is NULL the inter-cell object is considered to have no size. The camera is the most common
example of such an inter-cell object. A camera has no size, but because it is usually a moving object whose physical cell
must be kept track of (recall that rendering in the portal processing environment always starts in the physical camera
cell) this is easiest done using an inter-cell object, Obviously, object referencing can be skipped for inter-cell objects
with no shape since they can only be in one cell at a time.

5512 Inter-cell object flags

The third parameter flags of the SetEntity method is used to configure how the inter-cell object will be processed. The
flags are: ~

e ICCF_DYNAMIC: by setting this flag dynamic object referencing will be used to update the physical cell of
the object and its referencing cells whenever the object moves. By default an inter-cell object is assumed to be
static, so object referencing is only required when the object is created and whenever a portal is added”.

e ICCF_DONT_UPDATE_REFS and ICCF_REFS_SET: the ICCF_REFS_SET flag is a status flag that
signals when the object references for the object have been set. The ICCF_DONT_UPDATE_REFS flag is used
in situations where the code will unnecessarily update the object references. Imagine the situation depicted in

Fig. 49:
time t0 time t1
Cell J--=~~ <] Cell2 Cell 3---=~ <} Cell2
’/,, \\\\ [I,, \\\\
! light source \‘ ! light source \‘
® ! ® !
I3 1]
A / A} I3
\ 7 \ /
\ 7 N\, 7
\\ ?/ \\ ,1

Fig. 49 Object referencing with moving portals.

~

The portal will only move in between the two extremes shown at time 0 and 7/ so the object references to the
light source never change. A programmer can make use of this observation by setting the ICCF_
DONT_UPDATE_REFS flag. Now object referencing is only performed when the ICCF_REFS_SET flag is not
set which is when the inter-cell object is first created.

When at some point during program execution an update of the object referencing cells is required the
ICCF_REFS_SET flag can simply be reset again resulting in a new single update.

. ICCF_FREE_OBJECT: By default an iriter-cell object is assumed to be a slave object resulting in the object
changing parent cells when passing through a portal. When the ICCF_FREE_OBJECT flag is set only the
physical cell pointer of the FCInterCellContainer is changed when moving through a portal, but not the parent
cell. ’ '

e ICCF_RESET: This is an internal flag used to signal the cell manager that the object references of the inter-
cell object must be updated.

13 The new portal can intersect with the shape of the inter-cell object thus requiring an update of the object references.
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The fourth and final parameter is optional and in the case of free objects sets the initial physical cell for the object. If this
parameter is not provided SetEntity will search the tree from the entity upwards for the parent cell that will become the
initial inter-cell objects physical cell.

_ When a slave object passes through a portal the cell container (and thus also the inter-cell object) will change parent
cells. This requires that in the case of slave objects the physical cell of the object must always be loaded into memory but
also in the case of global objects the physical cell because otherwise the object can never again leave the cell because no
portals exist. Therefore, the cell manager should never remove cells from memory that have inter-cell objects in them.

5.5.1.3 Child Inter-cell objects

An inter-cell object can be a child of another inter-cell object and in that case should never change parent cells when
moving through a portal, unless the parent inter-cell object also moves through this portal. Fig. 50 clarifies this showing
the cell trees of Cell 1 and Cell 2 at three different times: :

el cel 1
Celll JREE -
O.b ect k Container

f . X Group k
object rooé
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root object k T

| Camorn I
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Cell 1 ‘CellZ ( Container J (Container Camera )

\ i | 1
“' c (Growr ) [ comee |
yd ) ; .

Geometry
object k

time 2
Cell 1 (’ *Cell 2 ( Container) ( Container Camera )
| 0
Geometry
? object k&

Fig. 50 Child inter-cell objects.
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The camera is attached to object & and because a camera is automatically converted into an inter-cell object the tree for &
will look like the tree in Fig. 50 at time 0. At time ¢] the camera has moved physically into Cell 2 but the root of £ is still
in Cell 1. If the camera container were to change parent cells now it would detach itself from object & and would no

longer move along as is shown at time £2.
5.5.2 The updated FCRootCell::Process method
As a pre-condition to rendering a new frame all object references must be updated. Rendering a frame using portal

processing always starts in the root cell and this cell is processed only once per frame, so updating the inter-cell objects
is done in the FCRootCell: :Process method as is shown in Fig. 51 (lines that are printed in italic represent the changes):

void. FCRootCell::Process( Frustum Fr )

{
UpdateAllInterCellObjects() ;

// process all global objects
FCCell::Process( Fr )

// get the cell the camera currently resides in
FCCell cpc = ( ( FCInterCellContainer ) ( GetCamera () .GetParent () ) ) .GetPhysicalCell() ;

// start the portal processing algorithm
cpc.ProcessCell( Fr ) ;

Fig. 51 The updated FCRootCell::Process method.

After the inter-cell objects (including the camera) have been updated and the global 6bjects have been processed the
physical cell of the camera is retrieved. Now the portal processing algorithm is started by calling that cell's ProcessCell
method. : :

The FCRootCell class also automatically converts a camera into an inter-cell object to make this process transparent to
the programmer (this is not shown in Fig. 51).

5.5.3 The updated FCCellManager class

FCCellManager FCinterCeliContainer

CTShape BoundingVolume
0..} DFiags Flags

+RegisterinterCellObject(CTEntity, CTShape = NULL, DFiags) references to | T CinterCeliContainer Parent
+void UpdatelnterCellObjects()

+virtual void Process(Frustum)

Fig. 52 The updated FCCellManager class.

Until now the task of the cell manager was to manage the loading of cells into memory and removing them from
memory. The cell manager is now extended to also be responsible for managing and updating inter-cell objects. This
choice has been made because managing and updating inter-cell objects works together closely with (dynamic) cell
management. :

In order to keep a uniform programming interface fof working within the portal processing framework, inter-cell objects
are created by registering them with the cell manager just as were cells and portals. When registering the
FClnterCellContainer::SetEntity method is called resulting in the container being added to the cell tree.

Inter-cell objects are updated at the start of every frame by a call from the root cell (see Fig. 5 1) to the cell manager's
UpdatelnterCellObjects method, which is shown in Fig. 53:
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void FCCellManager::UpdateInterCellObjects ()

{
// Pre-condition: if any portal has changed vertices the PortalsChanged flag will

// be set to true.

// update the dynamic portals
for( int £ = 0 ; f < DynamicPortals.Count() ; £ ++ )
PortalsChanged |= DynamicPortals[ f ].HasMoved() ;

// the inter-cell object references must be updated
if( UpdateReferences )
for( int £ = 0 ; f < InterCellObjects.Count() ; f ++ )
InterCellObjects{ £ ]->SetFlag( ICCF_RESET ) ;

// update the inter-cell objects
for( int £ = 0 ; f < InterCellObjects.Count() ; £ ++ )
{
// is this a dynamic object? - _
if ( InterCellObjects[ f ].GetFlag( ICCF_DYNAMIC ) )
{ .
// has the object moved?
if( InterCellObjects| f }.HasMoved{) )

// find the physical cell for the object's root
GetPhysicalCell( InterCellObjects[ £ ] )
UpdateObjectReferences( InterCellObjects{[ £ 1 )

}
else if( InterCellObjects| f ].GetFlag( ICCF_RESET Y )
UpdateObjectReferences (  InterCellObjects[ £ 1 ) :
}

// must the object references for the static inter-cell object be updated? .
else if ( InterCellObjects{ f ].GetFlag( ICCF_RESET ) )
UpdateObjectReferences( InterCellObjects[ £ 1 ) 7
}

// reset the PortalsChanged flag for the next frame
PortalsChanged = false ;
} .

Fig. 53 The FCCellManager's UpdateInterCellObjects method.

- Whenever the vertices of a portal's polygon change (e.g. when creating a portal new vertices are added), the portal sets
the cell manager's ChangedPortals flag to true. The UpdatelnterCellObjects method then uses this flag, combined with a
separate test of whether a dynamic portal has moved (see next section), to determine whether the cell references for all
inter-cell objects should be updated and if so it sets the ICCF_RESET flag for those objects.

The method then continues with updating the inter-cell objects: for dynamic inter-cell objects it checks whether they
have moved and if so whether the root has passed through a portal into a new physical cell using the UpdatePhysicalCell
method. This method also changes the parent cell for slave objects that have passed through a portal. If the object has
moved then also a call to UpdateObjectReferences is performed. This method checks whether or not the
ICCF_DONT_UPDATE_REFS flag for the inter-cell object is set before the object references are updated. If the -
dynamic inter-cell object has not moved or in the case of static inter-cell objects the UpdateObjectReferences method is
only called when the ICCF_RESET flag is set.
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554 The FCPortal and FCDynamicPortal class

FCPortal

+virtual intersect_t Segmentintersects(Vector, Vector)

i

FCDynamicPortal

+DTransform LastWorldTransform

+bool HasMoved()
+virtual intersect_t Segmentintersects(Vector, Vector)

Fig. 54 The FCDynamicPortal class.

The portal class signals the cell manager whenever the vertices of its portal polygon change by setting the cell managers
PortalsChanged flag. The portal class also implements the line-intersects-portal check in a virtual SegmentIntersects
method. The default implementation (used for static portals) performs this check in world space. However, when using

dynamic portals this implementation of the check can fail as can be seen in Fig. 55: o
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Fig. 55 Line-intersects-portal check in portal space.

Between time 70 and ¢J object » moves from position 7,, , to 7., ; (at 0 the position at #/ is indicated using the gray dot
and vice versa) in world space, and the portal (world transform) moves from p,, 0 10 Py, u- Using the line-intersects-portal
check in world space will not detect the passing of r through the portal in this situation (both at 70 and ¢] the line between '
7, 10 and r,, ,; does not intersect the portal). However by transforming r,,, , into the local portal space for p,, », resulting

in 7, 49, and transforming r,, ; into the local portal space for p, 4, resulting in 7, ,;, and then performing the line-
intersects-portal check in the local space of the portal the passing through of r is detected.

Because this check is slightly more expensive (due to the transformation of the start- and end position of 7 into the local

space), and also because in order to use this check the last world transform of the portal must be cached (in order to
compute 7,, ;o at time ¢/ which is the time when the check is performed!), a special FCDynamicPortal class has been
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derived from FCPortal. This class overrides the virtual Linelntersects method with the check described above and has an
extra HasMoved method used by the cell manager when deciding whether to update all inter-cell object references.

The updated FCCell::ProcessCell method

The updated ProcessCell method is shown in Fig. 56 (changes are again shown in italic print). It should be noted that in
the actual implementation the object references for a cell are stored in its FCCellData object.

{

}

// CellFr is the frustum constructed for current cell
void FCCell::ProcessCell( Frustum Fr )

// lock the cell
CellLocked = true ;

// make sure the parents world transform is up-to-date
// and then process the cell tree using vrSS process ()
GetParent () .UpdateWorldSpace () 7

CTGroup::Process{ Fr ) ;

// process all references to inter-cell objects
for( int £ =0 ; £ < InterCellObjects.Count() ; £ ++ )
InterCellObjects[ £ ].Process{( Fr ) ;

// now process the portals
for( int f = 0 ; £ < Portals.Count() ; £ ++ )
{
// is the connected cell of the portal locked?
if ( Portals[ £ ] .ConnectedCell.CellLocked )
continue ;

// is the connected cell visible (check the portal polygon against
// ‘the current cells frustum) :
if( !Portals[ f ].ConnectedCell.IsVisible( Fr ) )

continue ; : '

// -Construct a new frustum for the connected cell
Frustum ConnCellFr = Portals| £ ].AdjustFrustum( GetCameraPosition(), Fr ) :

// process the connected cell with the new frustum
Portals[ f ].ConnectedCell.ProcessCell({ ConnCellFr );

}

// and finally unlock the .cell
CellLocked = false ;

Fig. 56 The updated FCCell::ProcessCell method.

Before processing its portals the cell now first processes all object references it has before continuing processing the
portals.
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5.6 Summary

Because most render API's today use (amongst others) a Z-buffer for exact visibility determination, any kind of object,
including (dynamic) inter-cell objects, can be added to a scene by just rendering them every frame and let the Z-buffer
decide whether they are visible or not. However using the few simple adjustments that were shown in this chapter,
(dynamic) inter-cell objects can be made to fully profit from the visibility determination speed-up provided by portal
processing. Since often these dynamic objects (i.e. people, cars, space ships) benefit from having a high polygon count
that make their appearance more realistic, this reduction in processing time can be highly beneficial when there is a good
change the dynamic object will often be inside the initial view frustum without being visible (e.g. the characters in a
multiplayer shoot-em-up game who are hunting each other through a maze).

However, also some problems with using inter-cell objects have been identified, like the 'flickering light' problem and
unnecessary object (re-) referencing. Avoiding these problems are mainly a task of the modeler who designs the virtual
world. Therefore, he should adhere to the following standards:

e When placing light sources in a world that are not meant to be global, see to it that their influence on objects in i
other cells through opaque walls is either none or not noticeable to a viewer exploring the world;

‘e Make the position of the root of a dynamic object relevant to that object. In the case of the Man boarding the
Boat from a Tunnel example, if the root of the man is positioned ten meters behind the man, to the viewer the
man is already on the boat and should be rocking, but since the root is still in the tunnel the Man object has not
yet changed parent cells and therefore does not rock along with the boat; ‘

e  When using a dynamic portal, check if dynamic updating of an inter-cell object's references with every change
of the portal is necessary. If not, flag the object with the ICCF_DONT_UPDATE_REFS flag.

When following these rules the advantages of portal processing and inter-cell objects are optimally used ’allowing for
more complex worlds and objects to be designed and used.

The implementation of inter-cell objects in vrSS only requires the programmer to register the inter-cell object with the
cell manager and set its shape and flags as an extra task. After this all updating is done transparent to the programmer
making the use of inter-cell objects very easy to a programmer experienced in vrSS. '
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Chapter 6: Special FX portals

Special FX (‘effects') portals allow the addition of interesting visual effects to virtual reality worlds. Some examples are:
mirrors, tinted glass windows, reflective windows, etc. As this chapter will show, portals can be used to implement these
effects but many of them require changes to the core portal processing classes (derived in the previous chapters). By
implementing some special FX portals and making these changes to the core classes, the basis for incorporating many
other special FX portals is created. ‘

The layout of this chapter differs with the previous chapters in that it immediately starts with the 'implementation in vrSS'
section. This was done because for each of the discussed special portal types, their behavior is often easiest explained by
showing the code or class changes. :

6.1 Implementing portals in vrSS

In each of the next sections, a special FX portal type is discussed and (when possible'*) implemented in vrSS. The
sections have been arranged so that each section builds on the changes made in the previous ones.

6.1.1 Translubent portals

Translucent portals give the impression that the viewer is Jooking through some translucent material when looking
through the portal. Actually, there is nothing special about this type of portal; the only difference with a regular portal is
that an alpha texture (a transparent texture) is drawn on the portal polygon once it has been processed to simulate
looking through glass or some other translucent material. To create even more interesting effects an animated texture can
be used, e.g. to simulate a force field of some sort. '

Because almost every other special portal type described in this chapter can also require the portal polygon itseif to be
rendered, this functionality is added to the FCPortal base class as shown in Fig. 57:

FCPortal

CTMaterial Material = NULL

+virtual void SetMaterial(CTMaterial)

+virtua! void UpdateRenderShape(bool systemcall = faise)
+void InvalidateRenderShape() :

+void RenderPortai()

Fig. 57 Extensions to the FCPortal class.

By default the Material variable has value NULL, which prevents the portal polygon from being rendered. The portal
polygon is rendered by providing FCPortal with a material using the SetMaterial method. By default, method
_UpdateRenderShape creates a simple rendershape” used to render the polygon interior with the provided material, but
this method can be overridden to allow for e.g. animated rendershapes or textures.
The (portal processing) system calls the InvalidateRenderShape method whenever the portal polygon has changed,
which in turn calls UpdateRenderShape with the systemcall parameter set to true. This allows the programmer to identify
the system updating the rendershape and one of his own methods. The actual rendering of the portal is done by the
FCCell:: ProcessCell method (see section 6.1.4) which calls the RenderPortal method.

1 Due to both time constraints and unavailability of software some portals could not be implemented.
15 A structure used by vrSS to store the information needed (vertices, faces, etc.) to render an object.
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6.1.2 Mirror portals

Mirror portals mimic reflecting surfaces by mirroring the camera positibn and orientation when processing the portal
before creating the new frustum. Mirror portals connect to their parent cells, which causes 2 problem with the current cell
locking mechanism (introduced in chapter 3): :

-
————

~~~~~~~~~~~ camera
soz==l)

Fig. 58 Mirror portals and cell locking. - ‘When the scene
‘ in Fig. 58 is

processed without cell locking, object k would be rendered twice (three times actually, counting its reflection in the
mirror, but identically rendered twice from the initial camera position and orientation), once when processing Cell 1
using frustum F, and once when processing the portal from Cell 2 leading back into Cell 1 using frustum F, ., ;.
However, processing the scene with cell locking results in the mirror casting an empty reflection because it is denied
access to the cell tree of Cell 1! - .
In order to solve this problem, a cell is now locked in a camera context: any portal that changes the camera's position
and/or orientation which (potentially) requires a locked cell to be processed again creates a new camera context, in which
every cell is initially unlocked again. Now 'regular’ portal processing can continue, again locking cells being processed in
the new camera context. When processing the special portal is finished, the old camera context, in which the portals
parent cell was (and still is) locked, is restored and processing of that cells other portals continues.
In the case of Fig. 58, when processing the scene, Cell 1 is locked in the initial camera context cc;. When encountering
the mirror portal, the camera position and orientation is mirrored and a new camera context cc; is created. In this context,
all cells are unlocked again, so using the mirror portal frustum (shown by the dotted lines leaving the mirrored camera)
now Cell 1 and Cell 2 can be processed again. Now the mirror portal is finished processing, so camera context cc; is
restored in which Cell 1 is still locked, so when processing Cell 2 the portal leading back into Cel 1 is again correctly
ignored.

Whether or not Cell 2 is processed before or after the mirror portal is processed doesn't matter in the final result: if Cell 2
is processed before the mirror portal, due to Cell ] being locked in cc;, the portal leading back into Cell 1 is ignored, so
when processing the next portal of Cell I, the mirror portal, this again creates cc; in which both Cell I and Cell 2 are
unlocked. : ‘ '

Again, due to the general nature of this problem, instead of deriving new classes, core portal processing classes are
updated and the only new class introduced is FCCameraContext as shown in Fig. 59:
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FCRootCell FCCameraContext

[ @———— -intiD=0

+int NewContext()
+int RestoreContext()
+int ContextiD()

FCCell

1.

3 >— > i
+void ProcessCell(Frustum, FCCameraContext) FCContextLock {ordered} LockBit

#void LockinContext(FCCameraContext)
#void UnlockinContext(FCCameraContext)
#int LockedinContext(FCCameraContext)

FCPortal FCMirrorPortal

float MinimumArea = 0

+virtual bool UpdateContext(FCCameraContext) 4———' +virtual Frustum AdjustFrustum(Vector, Frustum)
+virtual void RestoreContext(FCCameraContext) +virtual void UpdateContext(FCCameraContext)
+void SetMinimurnArea(fioat) +virtual void RestoreContext(FCCameraContext)

+virtual float ComputeArea(Vector,Frustum)

Fig. 59 Implementation of mirror portals.

The FCRootCell class creates an instance of class FCCameraContext, which is then passed along with every call to
FCCell::ProcessCell (see section 6.1.4). This method calls FCPortal:: UpdateContext before processing a portal and
calls FCPortal:: RestoreContext afterwards. By default these methods do not change the camera context, but derived
class FCMirrorPortal overrides these methods to create a new camera context (in UpdateContext) by calling
FCCameraContext::NewContext, which simply increases a counter, and later to restore the old context (in
RestoreContext) by calling FCCameraContext::RestoreContext.

In order to keep track of all camera contexts in which a cell is locked/unlocked, each cell creates an instance of the
FCContextLock class, which stores an array of bits that represent the locked status given a camera context ID. By
checking this list before processing a cell, setting the bit when processing a cell in a camera context and resetting the bit
when finished processing in a camera context, the implementation of the camera context solution is now complete.

Class FCMirrorPortal overrides the AdjustFrustum method to create the mirror frustum by first mirroring the camera
position in the portal plane and then using this mirrored position to create the mirror frustum using the (clipped) portal
vertices. Only one potential problem remains: infinite recursion.

If two mirror portals are placed opposite and facing each other, an infinite recursion could follow due to the mirrors
reflecting into each other. A first solution to prevent this from happening is to have the portal count the number of times
it has been processed in a frame and disable itself after a pre-defined maximum has been reached. This solution will not
always work correctly as is shown in Fig. 60: ) :

Monitor portal
camera

Fig. 60 Mirror portal recursion.
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Here a world consisting of two mirror portals and one monitor portal (discussed in the next section) is rendered from the
viewers position in initial camera context cc;. Suppose both mirrors have their maximum recursion count set to 1: Mirror
portal 1 is being processed, resulting in Mirrorportal 2 being processed, after which Mirror portal 1 again becomes
visible but is not processed anymore due to the maximum amount of recursions being reached. Processing Cell I now
continues by processing the Monitor portal, which renders the scene as seen through the Monitor portal camera. In this
frustum (shown by the two dotted lines), Mirror portal 1 is visible again but will not be processed because the maximum
amount of recursions has already being reached, resulting in a 'gap' in the final rendered scene!

To fix this problem using a counter requires some way of keeping track how many times a portal has been processed as
seen through some portal sequence x (e.g. how many times has Mirror portal I been processed as seen through portal
sequence Mirror portal 1 — Mirror portal 2 — Monitor portal). This is a complex and expensive solution, so another
approach has been chosen to prevent infinite recursion.

Instead of counting how many times a portal has been processed, the visible area of the portal in screen space is
computed. If this falls below a pre-set minimum area, further recursion of the portal is stopped. The minimum area can
be set for each portal using the FCPortal: :SetMinimumArea method (see Fig. 59) which sets the MinumumArea variable,
and the visible area can be computed using the Fi CPortal::ComputeArea method.

When the FCMirrorPortal: : UpdateContext method is now céill'ed, first the visible area is computed, and when this is less
than MinimumArea the method returns false, signalling FCCell: : ProcessCell not to process the connected cell of the

mirror portal.

This solution is not perfect, and situations in which recursion continues for a very long time exist (e.g. two giant mirror
opposite and facing each other at a very close distance, and the camera at the center and in the middle of both mirrors
with its viewing direction perpendicular to one of the mirrors) exist, but finally recursion will end and in most situations
this solution is adequate both in terms of performance as well as correctness of rendered scenes.

Not just mirror portals require a way to prevent infinite recursion, basically every portal type that can change the camera
position and/or orientation can cause infinite recursion and must be guarded against it.

6.1.3 Monitor portals

Actually, monitor portals are not really portals in the definition used so far because they cannot narrow the frustum. A
monitor portal shows what is being filmed by a camera placed elsewhere in the world. This requires that the world as
seen through this camera is rendered as a bitmap and then texture-mapped on top of the portal. Displaying this rendered
texture-map does not require the use of a portal, but the functionality of rendering a texture map and then mapping it on
top of a portal is also required by reflecting window portals and their likes (discussed in the next section).

Monitor portals present a problem: vrSS cannot use multiple cameras while rendering a single frame, and unfortunately
at the time of this writing this functionality has not yet been added to vrSS so an actual implementation does not yet
exist. Therefore in the following the existence of a function CT7exture RenderTexture( Camera ) is assumed that returns
the scene, rendered using the the passed camera, as a texture. After this texture has been rendered, it can be mapped on to
the portal polygon using the RenderPortal method that was added to FCPortal in section 6.1.1.

6.1.4 Multiple pass portai

An example of a multiple pass portal is a reflecting window portal, which mimics a window that also partially reflects
the world on the viewers side of the window. This type of portal requires processing two (different) connected cells when
processing the portal: one cell must be processed to render the 'outside’ portion of the window, and the other to render the
'inside' portion, the reflection. Rendering the reflection is done first, as this must be transformed into a transparent texture
to overlay on the outside rendering.

Multiple-pass portals require yet another update of the core portal processing classes as shown in Fig. 61:
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FCPortal

int ProcessCount = 1 FCReflectingWindowPortal

+virtual void RenderPortal( int pc)

+virtual FrustumAdjustFrustum(Vector, Frustum, int pc ) 4__

+virtual bool UpdateContext(FCCameraContext, int pc ) +virtual Frustum AdjustFrustum(Vector, Frustum, int pc)
+virtual void RestoreContext(FCCameraContext, int pc ) +virtual void UpdateContext(FCCameraContext, int pc)
+virtual void SetConnectedCell(int, String) +virtual void RestoreContext(FCCameraContext, int pc )

+FCCell GetConnectedCell(int)
+int GetProcessCount()

is parent of

1.. | connects to

FCCell

+void ProcessCell(Frustum, FCCameraContext)

Fig. 61 Implementation of reflecting window portals.

For every processing pass of the (multiple-pass) portal, the connected cell of the portal is stored in a list to which
connected cells can be added using method FCPortal::SetConnectedCell( int processingpass, String ConnectedCell-
Name ). For a 'regular’ portal this list will contain only one connected cell. Now when processing its portals,
FCCell::ProcessCell (see chapters 3 and 5 and Fig. 62) iterates through this list for each portal (added/changed code in
Fig. 62 is shown in italic print, this new implementation also incorporates all changes required by the previously
discussed portals). ’

Using multi-pass portals also requires a revision of the code for restoring the bi-directionality of portals needed for
(dynamic) cell loading (see chapter 4), and requires some changes in the F1 CCellManager class: the RegisterPortal
method must be changed to allow setting multiple connected cells for a portal and the F CCell::GetPhysicalCell method,
used to determine the physical of a moving inter-cell object (see chapter 5), must have a way of knowing which of the
multiple connected cells is the one the object moved into when it passed through the portal. The code changes for
implementing these changes are not shown here.
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void FCCell::ProcessCell( Frustum Fr, FCCameraContext CamCtx )

{

// lock the cell in the current camera context (see section 6.1.2)
LockInContext( CamCtx ) ;

// make sure the parents world transform is up-to-date
// and then process the cell tree using vrSS process()
GetParent () .UpdateWorldSpace() i/

CTGroup: :Process( Fr ) ;

// process all references to inter-cell objects
for( int £ = 0 ; f < InterCellObjects.Count() ; f ++ )
InterCellObjects[ £ 1.Process( Fr ) ;

// now process the portals
for( int £ = 0 ; £ < Portals.Count() ; £ ++ )

{
FCPortal p = Portals[ £ ] :

// is the portal visible in the frustum?
if( !p.IsVisible( Fr ) )
continue ;

// iterate through the connected cells of the portal (see section 6.1.4)
for( int g = 0 ; g < p.GetProcessCount() ; g ++ )
{
// update the camera context for the current processing pass(alsc prevents infinite
// recursion, see section 6.1.2)
if( !p.UpdateContext( CamCtx, g }. )
continue ;

// is the connected cell of process pass g of the portal locked in the camera context?
if( p.GetConnectedCell( g ).LockedInContext( CamCtx ) )
continue ;

// Construct a new frustum for the connected cell
Frustum ConnCellFr = p.AdjustFrustum( GetCameraPosition(), Fr, g ) 7

// process the connected cell with the new frustum
p.ConnectedCell.ProcessCell (- ConnCellFr );

// render the portal (e.g. texture map the portal with rendered reflection)
p.RenderPortal( g ) ; // (see section Fout! Verwijzingsbron niet gevonden.)

// reset camera context
p.RestoreContext ( CamCtx, g ) 7
}
}

// and finally unlock the cell
UnlockInContext ( CamCtx ) ;

Fig. 62 The FCCell::ProcessCell method, updated for special FX portals.
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6.1.5 Teleporting portals

' The final special portal type that is discussed in this chapter is a teleporting portal. This lets the viewer see into parts of
the world as if he were standing somewhere else. In order to implement teleporting portals the camera is re-positioned
just as was done with mirror portals, but now the (clipped) portal is transformed to a pre-defined position and orientation
before the adjusted frustum for processing the connected cell is computed (see Fig. 63).

Cell 1 Cell 2

clipped teleporting

teleporting

portal -
teleport.

position & orientation.

Fig. 63 A Teleporting portal.

The extra complication with teleporting portals is that when the viewer moves through them, he must also be teleported
to a new position in the world. This presents some difficult problems that have unfortunately not been solved due to time
constraints: the problems mentioned consist of dealing with objects physically being in two different places at the same
time when sticking through a portal (recall that when solving this problem in chapter 5 at least the world position of the
object in both cells was the same) and related to this, determining the position of child inter-cell objects (chapter 5).

6.2 Summary

As was shown in this chapter, portals allow the addition of a multitude of interesting and exciting features to a virtual -
reality world. However there is a price to be paid (of course!): processing time. Most special FX portals require extra
information to be rendered (e.g. reflection, TV-screen images), a process that takes up valuable processing time,
especially when very deep recursions can occur -(e.g. the two mirrors opposite and facing each other example).
Therefore, they must be used carefully as not to bring performance down to a crawl.

Special FX portals also carry another price: they often require extensive changes to the code of the portal processing
environment. Each of the examples above required one change or another to the vrSS portal processing framework, some
simple (translucent portals), others quite extensive (reflective window portals). Although the changes currently made to
the framework will allow many different type of special FX portals to be added to vrSS, no doubt many other special FX
portals require yet more changes. In this case the programmer should consider very carefully how the changes required
to get the desired effect will affect overall performance: if this is seriously harmed maybe he should consider an
alternative or forget about implementing the portal type completely (e.g. in the case of reflective window portals, due to
the changes in FCCell:: ProcessCell now the connected cells are processed in a loop, but most portals only have one
connected cell making this loop expensive and unnecessary overhead for them).
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Chapter 7: Potentially Visible Sets

In the previous chapters, all visibility determination optimization was done at run-time by using the portals to narrow the
frustum. This chapter deals with pre-run-time visibility determination or in other words, computing in advance the
superset of potentially visible objects to a viewer given a (set of) camera position(s). This information can then be used
for several different purposes, like:

e Completely foregoing run-time portal processing: using the potentially visible set, a well-chosen superset of
visible items is already at hand;

e Further optimizing visibility determination: objects which are never visible to the viewer don't have to be
checked for intersection with the (narrowed) frustum; ,

e  Determining which cells are potentially visible to a viewer so that a cell manager can use this information to
(pre-) load these cells; _

o  For complex scenes, implement a level-of-detail hierarchy of the visibility of objects within cells: only load
those objects into memory that are potentially visible to a viewer; '

e Collect heuristics about a world, i.e. find an upper limit for the number of polygons that must rendered, so that
this information can be used by the modeler to further optimize the model.

This chapter deals with computing potentially visible sets, which are sets of objects potentially visible from the viewer's
position and orientation. A step by step approach to computing potentially visible sets using the occluding properties of
portals is given, after which a short explanation of how to use the potentially visible sets in the examples above is given.
The chapter then continues describing the framework extension to incorporate potentially visible sets in vrSS. N

7.1 The potential visible volume of cells

Computing the potentially visible volume of a cell at pre-run-time is different from computing it at run-time: at run-time
the viewers position and orientation in a cell is given so an exact frustum for each visible cell can be created. However,
at pre-run-time, the viewers position and orientation nor its physical cell are known. However, as long as the viewer is
restricted to a position inside one cell it is possible to determine which parts of other cells are potentially visible as is
shown in Fig. 64 for a viewer positioned in Cell I:

—
. ? Cell 8
—® *—
Cell 9 Cell 10 l
Cell 11

Fig. 64 Potentially visible volume (gray) for viewer in Cell 1.

The actual potentially visible volume of a cell for a viewer in Cell 1 is defined by the union of every point in that cell that
can be reached by a line of sight originating from Cell 1. For our purposes, taking into account all occluders in a world
(like the occluding wall and object in Fig. 64), is too heavy a computational task. This would require some form of ray
tracing, which can result in unacceptable computation times for large complex worlds. So instead of honoring all
occluders, it is therefore faster to use only a well chosen subset of these occluders. In the following the subset of
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occluders used are the portals, because they can cause large parts of their connecting cells to be occluded thus potentially
yielding large sets of invisible objects. The potentially visible volume for a cell found using this set of occluders is called
the potentially visible volume (or p.v.v.) of the cell.

The p.v.v. is a superset of the actual potentially visible volume, guaranteeing that no visibility information is lost when
_rendering a scene. o

The next section deals with finding a potentially visible volume for all cells that can be seen from the source cell.

7.2 Finding the potentially visible volume set for a cell

In the following PVV, 1 - p2 —a4p (see Fig. 65) denotes the set of clipping planes whose intersection of negative half
spaces (see chapter 2) defines the potentially visible volume for a cell'® (the destination cell or dc) as seen through the
portal sequence sp — pl —> p2 —> dp from the viewer's physical cell (the source cell or sc). The portal through which
the viewer's line of sight exits the source cell is called the source portal and the portal through which it enters the
destination cell is called the destination portal. '

clipping
plane

T

Fig. 65 Portal sequences and potentially visiblé volumes.

Note that the cell boundaries are implicitly a part of the p.v.v. because no objects belonging to a cell will be positioned
behind that cell's boundaries.

Because there can exist several different portal sequences from a source cell to a destination cell, let PS;. _, 4 denote the
set of all these sequences. Now the combined potentially visible volume CPVV. _, 4 is defined by:

CPVWVies de = Ypeers. . PVVrs

Note that CPVV,, the combined visible volume of the source cell, is completely defined by the source cell boundaries:
The viewer can move anywhere in the source cell so nothing in it is invisible. :

. If C denotes the set of all cells in the world, and by noting that for invisible destination cells CPVV, _, 4 = J, then the
potentially visible volume set for the source cell is: :

PVVS, = YieC CPVV i

' In the text it will be implicitly assumed that planes are created such that this property is true.
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This set holds the potentially visible volume for any cell in the world for a viewer positioned in cell source cell. By
computing this set for all cells in the world a complete picture for pre-run-time visibility determination has now been
drawn: given a source cell, for each object in a destination cell visibility can be determined by checking the object

againSt P Wdeslinmian cell found in P VVSsaurce cell-

7.3 Finding portal sequences

To find PVVSspurce coit fOr a given source cell, every portal sequence ps starting with a portal of the source cell must be

found and its P¥V,, must be computed. This is done using the algorithm shown in Fig. 66.

PVVS CreatePVVSet( Cell sourcecell )

L {
PVVS pvvs ; // this holds PVVSsource cez: ONCE FindPVVS finishes

// set the source cell for the pvvs
pvvs.SourceCell = sourcecell ';

for( int £ = 0 ; f < sourcecell.Portals.Count() ; f ++ )

{
Portal sp = sourcecell.Portals[ £ ] 7

// use a stack to store the portal sequence
PortalStack portalstack ;
portalstack.Push( sp ) 7

// create the p.v.v. for the connected cell of sp
PVV pvv = CreatePVV( portalstack ) ; // (see Fig. 68)

// find all portal sequences starting with source portal sp leading to
// potentially visible cells.
FindPortalSequences( sp.ConnectedCell, portalstack, pvv, pvvs ) ;

}

bool FindPortalSequences (- Cell cell, PortalStack portalstack, PVV pvv, PVVS pvvs )
( ; .

// add PVVportai seguence £tO P.V.V. set

pvvs.AddPVV( portalstack, pvv ) ;7

for( int £ = 0 ; £ < cell.Portals.Count() ; £ ++ )

{
Portal p = cell.Portals{ £ 1

// is the current portal potentially visible given the p.v.v for cell?
if ( pvv.IsObjectVisible( p )
{

// create p.v.v. for connected cell of portal

portalstack.Push( p ) .}

PVV pvv_concell = CreatePVV( portalstack ) ; // (see Fig. 68)

// if no p.v.v. for the connected cell stop traversing the sequence
if ( pvv_concell == NULL )
continue ;

// and recurse through it -
FindPortalSequences( p.ConnectedCell, portalstack, pvv_concell, pvvs ) ;
portalstack.Pop() ?

b :
}

return true ;

Fig. 66 Finding portal sequences (and p.v.v.'s).
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For every source cell portal sp, function CreatePVVSet creates PV V., using function CreatePVV . 1t then calls function
FindPortalSequences which checks the portals in the connected cell of sp for (potential) visibility. For every visible
portal cp in the connected cell PVV, _, , is created and FindPortalSequences then recursively calls itself to check the
connected cell of portal ¢p. This process is repeated until no further visible portals are encountered.

A stack is used to store the portal sequence, which is needed to determine the p.v.v. for a destination cell, and every
p.v.v. that is created is stored in the p.v.v. set pvvs so that when CreatePVVSet finishes it returns PVVSource portar-

The only function now left to implement is CreatePVV. This will be done next.

7.4 Creating the potentially visible volume

How to create the potentially visible volume for a portal sequence differs based on the length of the sequence. As was
mentioned before, for a sequence of length zero the p.v.v. is defined by the source cell boundaries resulting in all objects
in the source cell to be potentially visible. For a sequence of length one (source portal = destination portal), the algorithm
for creating the p.v.v. is simple because only one occluding portal has to be considered. For a sequence of two portals
this algorithm is expanded because an extra occluding portal must be considered and for sequences of three or more
portals some extra optimizatjons are added to the algorithm that further reduce the p.v.v. for the destination cell due to
the occluding properties of the portals in between the source- and destination portal. '

7.41 Creating the potentially visible volume for a portal sequence of length one

Cell 1

source cell

(source por

Fig. 67 Potentially visible volume for an immediate neighbour cell of
the source cell.

Finding PV Vsource poriat 1 €8Sy (see Fig. 67): the only portal occluding destination cell Cell 2 from sight from the source
cell Cell 1 is source portal p;,. Since the only restriction to the viewers position is that it must be inside the source cell,
the viewer can be positioned anywhere on portal p;,. Lines of sight cannot bend around comers so the destination portal
plane is added to the p.v.v. Because the portal is the only occluder, this will be the final p.v.v. for the destination cell, so
PVVy12={ pizplane }. Function CreatePVV for a portal sequence of length one will thus ook like Fig. 68:

‘PVV CreatePVV( PortalStack portalstack )

{
PVV pvv ;

// add the destination portal plane to the p.v.v.
pvv.AddPlane ( portalstack.Top().Plane ) ; // add destination portal plane

return pvv ;

}

Fig. 68 Function CreatePVV for a portal sequence of length one.
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7.4.2 Creating the potentially visible volume for a portal sequence of length two

Because now there are two portals occluding the destination cell from view from the source cell, (usually) a much larger
volume will be occluded than was the case with a portal sequence of length one. To find this occluded volume (and the
potentially visible volume which is the inverse of the occluded volume) the function CreatePVV is altered to Fig. 69
(code printed in italic is the code added to function CreatePVV of Fig. 68):

PVV CreatePVV( PortalStack portalstack )

{
PVV pvv ;

// add the destination portal plane to the p.v.v. (always!)
pvv.AddPlane ( portalstack.Top().Plane ) ; // add destination portal plane

if( portalstack.Size() == 1)
return pvv ;

// for each edge of the destination portal (which lies on top of the stack)
// find the separating plane . .
for( int f = 0 ; f < portalstack.Top().Edges.Count() 7 £ ++ )
{
.Plane m = FindSeparatingPlane( portalstack.Bottom (), portalstack.Top(), £ ) ;
if(m)
pvv.AddPlane( m ) ;
b
return pvv ;

}

enum HALFSPACE { INTERSECTS, POS_HALF, NEG_HALF } s

Plane FindSeparatingPlane( Portal sp, Portal dp, int i)
{

for( int £ = 0 ; £ < sp.Vertices.Count() ; £ ++ )

{ .
// create plane through ps vertex and pd edge
Plane m = Plane( sp.Vertices[ £ }, dp.Edges[ i ].) 7

// is sp competely on one side of this plane?
HALFSPACE hsp = CheckPortalWithPlane( sp, m ) ;
if ( hsp == INTERSECTS ) continue ;

// same for pd
HALFSPACE hdp = CheckPortalWithPlane( dp, m } 7
if ( hdp == INTERSECTS ) continue ;

// are sp and dp on opposite sides?

if( hsp != hdp ) return m ;
}
// no separating plane exists, so return NULL
return NULL ;

Fig. 69 Algorithm for finding the potentially visible volume for a portal sequence of length two.

For every edge ¢; of the destination portal dp, function CreatePVV uses function FindSeparatingPlane to find a
separating plane (if it exists) through this edge and a vertex v; of the source portal that completely separates the source-
and destination portal. This separating plane divides the destination cell into an occluded volume and a potentially visible
volume and is therefore added as a clipping plane to the p.v.v. of the destination cell. Why is this correct?

Due to the convexity of the portal and by recalling that a portal can be seen as an infinite opaque wall with an opening in

it, e, can be considered to be the edge of a wall (called the edge wall) coinciding with the portal plane and stretching into
infinity that occludes part of the destination cell from view (see Fig. 70).
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Fig. 70 Finding the clipping plane for an edge ¢; of the destination portal (edge ¢; is perpendicular to this paper).

The separating plane now divides the destination cell into the volume completely occluded from sight from the source
cell by the edge wall and the volume not occluded (and thus potentially visible) by the edge wall. The validity of this
statement is easily understood when looking at Fig. 70: Every line of sight through the source portal into the destination
cell will start in the positive half space of the separating plane and end in the negative half space, or the line of sight
coincides with the separating plane. No line of sight through the source portal can see into the occluded volume without
intersecting the edge wall and only through the source portal can a line of sight exit the source cell’”, so the volume of
the destination cell that lies in the positive half space of the separating plane is completely occluded from sight.
Everything in the negative half space of the separating plane is not occluded by the wall and would therefore be visible if
the edge wall would be the only occluder.

By taking the intersection of the non-occluded volumes for destination portal edges, the p.v.v. for the destination cell is
- now PVV, .4, = { p;i : p; = FindSeparatingPlane(" source portal sp', 'destination portal dp', 'destination portal edge i') }
V) destmatzon portal plane, which is returned by CreatePVV.

What happens when FindSeparatingPlane cannot find the separating plane and returns NULL? This situation can only
occur when the destination portal plane intersects with the source portal as shown in Fig. 71:

source , destination
cell cell
~ problem
behind edge
£ in front 1 problem m =
plane edge wall :
normal ® plane ‘

Fig. 71 Edge without separating plane.

" In this case, for problem edge no plane completely separating the source- and destination portal exists and therefore the
edge wall does not occlude part of the destination cell to a viewer in the source cell. The destination portal plane

17 Remember, PV ¥, purece portal — destination portal 1S DEINg computed, so the assumption that the source cell has only one portal is
valid in this case.
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'separates' the source portal into a volume behind and a volume in front of the destination plane, and only lines of sight
originating in the in front volume can see into the destination cell. So the clipping plane that this problem edge would
add to the p.v.v. is the destination portal plane which is already a part of the p.v.v and is therefore not added a second
time. ' )

7.4.3 Creating the potentially visible volume for a portal sequence of length three or more

' While using the current version of CreatePVV would also result in a valid p.v.v. (i.e. it is a superset of the actual
potentially visible volume) for portal sequences of length three or more, usually the extra portals in between the source-
and destination portal introduce extra occlusion which can reduce the p.v.v. for the destination cell significantly as
shown in Fig. 72: '

Cell I )
p.v.v. for
Cell 4 as
\\\\\\\\\ created by
‘‘‘‘‘‘‘‘ current
~~~~~ ’ function
CreatePVV.
J
source destination
cell ' D23 cell
Cell 4
. . . - Using the old
Fig. 72 Occlusion by portals and reduced potentially visible volumes. CreatePVV
function would

result in the separating planes mz and m; of the p.v.v. for Cell 4 as shown by the dark gray and the dotted dark gray area, '
however: ’ :

¢  Part of portal ps, is occluded by portal p; as can be seen when looking at the p.v.v. for Cell 3: any part of
portal ps, outside of the p.v.v. of Cell 3 is invisible. Therefore volume 4, is also invisible and can be omitted
from the p.v.v. for Cell 4. By clipping the destination portal against the p.v.v. for that portals parent cell, and
then using this clipped destination portal (in this case p;,-shown using the dotted line) before creating the p.v.v.
for the destination cell, the volume resulting from an invisible part of the destination portal in function
CreatePVV will be omitted from the computed p.v.v; :

e Portal p,; occludes part of portal ps, from sight from a viewer positioned in Cel! I, however portal p,; also
occludes part of portal p;, from sight from a viewer positioned in Cell 4! A line of sight from source cell Cell I
into destination cell Cell 4 cannot intersect the occluded volume of either portal, so by traversing the portal
sequence back to the source portal, creating the p.v.v. for each cell as if Cell 4 were the source cell, the non-
occluded volume p;, of portal p;; can be found by clipping portal p;» against PVV,  _,, asshown in Fig. 73.

By using clipped portals p,» and ps, with the current version of CreatePVV now clipping planes m;, and m; are found

resulting in the much smaller p.v.v. for Cell 4 shown by the dark gray area in Fig. 72. Note that in the two observation

made above, no assumptions have been made about the number of portals in between the source and the destination

portal. Therefore, these optimisations are applicable to any portal sequence of length greater than two. The final version

of CreatePVV is now given in Fig. 74. Note that the implementation of functions ClipDestinationPortal and
ClipSourcePortal is left to the reader.
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Cell 1 Cell2 -Cell 4

Fig. 73 Traversing the inverted portal sequence to find the non-occluded volume of the source portal.

PVV CreatePVV( PortalStack portalstack )

PVV pvv ; A

// add the destination portal plane to the p.v.v. (always!)

pvv.AddPlane ( portalstack.Top().Plane ) ; // add destination ;Sortal plane

if( portalstack.Size() == 1)
return pvv ; :

// clip the destination portal against”the,p.v.v. for the its parent cell

Portal cdp = ClipDestinationPortal( portalstack ) ;
'// clip the source portal (if not visible from the destination cell then
// stop recursion)
Portal csp = ClipSourcePortal( portalstack ) i
if( csp == NULL )

return NULL ;

// now find the separating planes for csp and cdp
for( int £ = 0 ; f < cdp.Edges.Count() ; f ++)

{ .
Plane m = FindSeparatingPlane( c¢csp, cdp, £ )} 7~
if( m) )
pvv.AddPlane( m ) 7
1

return pvv ;

Fig. 74 Final implementation of function CreatePVV.
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7.4.4 The camera far plane

Should the camera have a far plane to limit its view there is another clipping plane that can be added to the p.v.v. of a
cell as can be seen in Fig. 75:

Fig. 75 Camera far plane. o The camera far
: plane limits how
far can be seen into neighboring cells by adding an extra clipping plane to the frustum. In the example above, the camera
is positioned on the source portal where the far plane partly clips Cell 2 and completely clips cells Cell 3 and Cell 4. By
computing ! = d/ cos( 0.5 * fov ) and adding a plane parallel to the source portal at distance / to the p.v.v, for each cell
this plane'® now adds an extra upper bound to the p.v.v.

7.5 Using potentially visible sets

Now that PVVS,purce cett €an be computed how can this information be used to-speed up visibility determination?

First, it is now possible to completely forgo run-time portal processing while still having a well-chosen superset of
visible objects. For each cell the viewer can be in, a set of potentially visible objects exist, and only the objects in this set
are tested for visibility against the initial camera frustum. This was the approach originally taken by Funkhouser et. al.
[4] who have reported that on average almost 95% of the world could be culled using a potentially visible set.

When combining potentially visible sets with run-time portal processing, and only checking those objects for intersection
with the (narrowed) frustum that are in the potentially visible set, also a slight performance gain is achieved. However, as
frustum intersection is not a true bottleneck in the render pipeline, the performance gain will only be noticeable when
very complex worlds, consisting of thousands of objects, are used.

A better way to geta performahce gain using the combination of pre-processing the world and portal processing is to use
the p.v.v. set of a cell to determine the visible area (e.g. in pixels) of a portal. If this area is smaller than a pre-defined
threshold, a (pre-rendered) bitmap is used to represent the connected cell(s), otherwise the connected cells are rendered
at run-time.

This level-of-detail scheme saves time by not processing cells visible through a small frustum, but has the disadvantage
that the visible portal area must be small because otherwise the viewer will notice the 2D-nature of the bitmap.

Expanding on this thought, the p.v. set can also be used to determine which objects must be loaded in the cell tree of a
cell visible from the source cell, and what the level-of-detail of the objects themselves should be [4]. This saves on both
memory resources and visibility processing time, because only those objects potentially visible are loaded into program
memory at an adequate level-of-detail (use a lower polygon count for objects farther away), requiring less and smaller
objects to be processed for visibility.

In addition, the delay caused by a cell manager (running in the same program thread) loading previously invisible cells
into program memory is shortened: when a cell becomes visible only the potentially visible objects in that cell are loaded
instead of all objects belonging to that cell. Every time the viewer changes physical cells, the cell tree of each visible cell
is updated: if more objects of a cell become potentially visible they are loaded into that cells cell tree, and if objects in 2
cell become invisible they can be removed from the cell tree and from memory.

This technique spreads loading of all objects in a cell over several short intervals instead of one long delay when loading
a complex cell. The performance gain is dependent on the organization of the cells, their interiors and the portals: if by

18 Another way of adding a 'far plane' to the p.v.v. would be to find the source portal vertex closest to the destination
portal and then adding a plane perpendicular to the destination portal at distance dp, from this vertex.
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turning around a corner all of a sudden a cell with thousands of objects in it becomes completely visible then the
performance gain will be none. In addition, there are also consequences for the required amount of storage space due to
storing objects at muitiple levels of detail. '

Unfortunately, due to time constraints, using potentially visible sets to create level-of-detail cell trees has not been
examined further. :

To try and prevent this and other problems with program performance, the potentially visible sets can be used to find an
‘upper bound for the amount of objects and polygons loaded into memory. By collecting heuristics about (potential)
object/polygon visibility in certain situations and acting accordingly overall smoother performance can be achieved.

7.6 Implementation of Potentially Visible Sets in vrSS

Currently three uses of p.v.v. sets have been implemented in vrSS: computing the set of visible cells from a source cell
for use with a dynamic cell manager, computing the set of visible objects in those cells (for use with either run-time
portal processing or just as a PVS) and gathering heuristics to help build better models for real-time applications.

For these purposes the following major classes are introduced into the vrSS framework: FCPVSBuilder, F CCelllndexer,
FCPVCSet and FCPVVSet. Some changes are also made to CTEntity, FCPortal and FCCell. Note that this is the first
time a change to a core component of the vrSS toolkit is required”®. A UML-diagram of the framework extension for
implementing potentially visible sets in vrSS is shown in Fig. 76: '

FCPortal
p- - +virtual PVV CreatePVV(PVV, PortalStack)
GCTEntity +boot ClipAgainstPVV(PVV)
4/ #Plane FindSeparatingPlane(FCPoly, int edge)
#int PVSindex

#FCCell ParentCell

+virtual void Process(Frustum)

T FCPVCSet

FCPWVSet Focan -
String SourceCeliName
#String CurmrentSourceCellName
+bool VisibilityListExists(String) #FCVisibilityList CurrentVisibilityList +boot CellVisible(String)
+Visibilityl.ist GetVisibilityList{String) +VisibleCeliData GetVisibleCellData(String)
+bool Load(String) +virtual void ProcessCell(Frustum) . +int SequenceLength(String)
+bool Save(String) +bool Load(String)
; +boot Save(String)
)
0. ) . 0.
isibili visibility bits 0-- —
FevisibilityData FovisibilityList id VisibilityBit VisibleCellData
+String SourceCellName ¥ g +String VisibleCellName

+int portalsequencelength

FCPVSBuilder
FCCellindexer

+void CreatePVCSetForSourceCell(FCCell, bool) -
+void CreatePVVSetForSourceCell(FCCell, booi) +int IndexCell(FCCell)
+void SaveHeuristics(String)

Fig. 76 UML-diagram of framework extension for potentially visible sets.

The functionality of these classes will be discussed in the next sections.

7.6.1 Creating a visible cells set

1 Although by only using special classes derived from CTEntity this could be avoided, but could create confusion for

programmers.
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When a dynamic cell manager has knowledge about the set of cells potentially visible from the physical camera cell, it

makes deciding which cells to remove from memory simpler: those cells not in the potentially visible cells set (p.v.c. sef)

- are the first candidates to be removed. Computing the p.v.c. set is already implicitly performed by the algorithm for
computing p.v.v. sets described in this chapter: if a potentially visible volume for a cell exists, that cell must be visible.
Therefore, using a skinned-down version of this algorithm, the visible cells set and the length of the portal sequence
connecting them to the source cell can easily be computed. The length of the portal sequence can be used by the cell
manager to 'think ahead": which cells are visible to the physical camera cell through a portal sequence of length x?

" Should these celis also be kept in memory to get a smoother performance? . :

Instead of just storing the length of the portal sequence, the actual portal sequence or the distance between the source-
and destination portal in the sequence or other potentially useful information for the cell manager could be stored along
with the visible cells p.v.c. set. For now this has not been implemented, but doing so when required by a cell manager is
a simple task. '

7.6.2 Creating a potentially visible volume set

By storing the visibility information of objects in such a way that looking up this information is much faster than
performing an object-frustum intersection test, processing and rendering complex worlds where each cell can consist of
thousands of objects can be accelerated. To implement a fast look-up scheme the leaf nodes of each cell tree are provided
with a unique index that is used to look-up their visibility bit in an array as shown in Fig. 77:

group
2
| Object | | Object | group
=
/O/ 1 0 I Object I I Object I
1 -1
index
Visibility lists for a given source cell:
Visibility List | 1|0 | 0 | 1| (bits) . Visibility List | 0 | 1 | (bits)

for Cell I for Cell 2

0, 1, 2, 3  (index) 0, 1 (index)
Fig. 77.Object indexing and visibility lists.

Objects, whose visibility cannot be determined by the p.v.v. (e.g. an object tagged as a dynamic object), are given an
index of -1, which tags them as visible in the p.v.v. so that actual visibility determination will be done at run-time. By
doing this the length of the visibility lists can be restricted. The indices are now stored with the objects, or they can be re-
created at run-time but then care must be taken that each object gets the same index again (so in the case of a recursive
indexing function the cell tree structure should be identical).

Initially all bits in the visibility list of a cell for a given source cell are set to 0, which tags the object as invisible. Using
the computed pv.v.'s, for visible objects this bit is set to 1. Run-time visibility determination can now be done by each
object first checking the visibility list stored in its parent cell”, and only if its visibility bit is 1 continue with the object-
frustum intersection test. Because the base class of every tree object in vrSS is CTEntity and visibility processing is done
in the virtual Process method, the adjusted CTEntity::Process method now becomes (changes shown in italic print):

2 Or going one step beyond, also provide group nodes where all children are invisible with an index.
2! Note that storing the p.v.v. set for a source cell has been distributed over all destination cells to localize visibility
information and to implement a fast look-up scheme.
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void CTEntity::Process( Frustum Fr )

{
// has visibility been determined pre-run-time for this object?

if( ParentCell && PVSIndex != -1 )

// if the objeét is invisible, stop further processing

if( ParentCell.VisibilityList[ PVSIndex ] == 0 )
return’;

. rest of Process method ...

Fig. 78 Adjusted CTEntity::Process method.

This requires that CTEntity gets an extra member variable, PVSIndex, which is initially set to -1. Oniy if the entity has
been indexed and a visibility list is selected will its visibility be evaluated using the visibility list, otherwise the default
visibility determination implemented in the Process method of its descendants will be used.

Because usually there are several source cells that can see into a destination cell, a list of source cells and their
accompanied visibility lists has to be stored for a destination cell. When the camera changes physical cells, the cell
should notice this and select the according visibility list. Should there exist no such list for the current source cell, an
empty visibility list is selecting signalling the CTEntity::Process method to skip checking the visibility list. The adjusted
FCCell:: ProcessCell now becomes:

void FCCell::ProcessCell( Frustum Fr )
{ .
// has the camera changed cells?

if( GetPhysicalCameraCellName () != CurrentSourceCellName )

{ .
CurrentSourceCellName = GetPhysicalCameraCellName () ;

// if there exists a visibility list for this source cell select it,
// otherwise use the default list in which each object is visible.
if( PVVSet.VisibilityListExists( CurrentSourceCellName ) )
VisibilityList = PVVSet.GetVisibilityList( CurrentSourceCellName ) ;
else :

VisibilityList = NULL ;

. rest of ProcessCell method ...

Fig. 79 Adjusted FCCell::ProcessCell method.

7.6.3 Gathering heuristics

N

When computing the p.v.v. sets for a world, several statistics are gathered and written to a file. These statistics for a
given source cell include:

List of visible cells;

Number of objects in a visible cell;

Number of visible objects in a visible cell;

Number of triangles in a visible cell (approximation);
Number of visible triangles in a visible cell;

Total number of triangles for all visible cells;

Total number of visible triangles for all visible cells.

By carefully studying these statistics when creating a model, or by evaluating the weak spots in a model with weak
performance, smoother overall performance can be gained.

Each of the tasks described above is performed by class FCPVSBuilder, which still has a very simple interface as will be
shown next. ‘ ) '
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7.6.4 The FCPVSBuilder class

FCPVSBuilder
FCCellindexer

+void CreatePVCSetForSourceCell(FCCell, bool) -
+void CreatePVVSetForSourceCeli(FCCell, bool) +int IndexCell(FCCell)
+void SaveHeuristics(String)

Fig. 80 The FCPVSBuilder class.

The FCPVSBuilder class has a method CreatePVCSetForSourceCell that, when passed a source cell, computes the
potentially visible cells list for that cell and stores it in the source cell's FCPVCSet object.

FCPVSBuilder also has a method CreatePVVSetForSourceCell that, when passed a source cell, computes the visibility
list for each visible cell and stores this in the FCPVVSet object of each visible cell. In order to index the objects in the
cell tree FCPVSBuilder uses an instance of class FCCellIndexer.

For both methods, if store is set to true, FCPVSBuilder will call the Ft CCell: :StorePVCSet resp. the CCell::StorePVVSet
methods to store the computed information. These sets are stored by the FCCell class to keep the information as local as
possible. ’

* In addition, FCPVSBuilder can save all the heuristics gathered after computing the p.v.v. set or p.v.c. set for a source
cell to disk by calling SaveHeuristics. '

7.6.5 The updated FCPortal class

FCPortal

+virtual PVV CreatePVV(PVV, PortalStack)
+bool ClipAgainstPVV(PVV)
#Plane FindSeparatingPlane(FCPoly, int edge)

Fig. 81 The FCPortal class.

Computing the potentially visible volume for a cell is performed by the destination portal. This allows for the use of
special portals like mirrors (see chapter 6) to define correct p.v.v.'s to use for pre-run-time visibility determination.

7.7 Summary

Using portals, well-chosen supersets of potentially visible objects at cell-to-cell level (that is, objects in one cell visible
to a viewer in another cell) can be computed that can be used for more than visibility determination alone: they are also -
quite helpful for dynamic cell management and heuristics gathering.

Currently though, only these three applications of potentially visible sets have been implemented in vrSS but other very
useful applications, like the level-of-detail cell trees discussed in section 7.5, exist and are worth studying further.
Unfortunately due to time constraints, this could not be done within the time period for this project.

Although not a real performance booster when combined with real-time portal processing, by considering more
occluders than portals alone when computing potentially visible sets, the resulting superset of visible objects could be
reduced even further. This could make their influence noticeable even when combined with real-time portal processing
in less complex worlds. However, even though potentially visible sets are computed pre-run-time, considering ALL
occluders in a complex world will quickly become too heavy a computational task so a balance must be struck. This
would also be worth studying further. ’
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Chapter 8: Summary and conclusions
8.1 Thesis summary

Over the course of the previous chapters, portal processing and many of its applications have been examined. As was
shown, portal processing can be used to speed up visibility processing for both static scenes (chapter 3) and dynamic
objects (chapter 5). This performance gain is caused by:

e Early culling of invisible objects by the narrowed frustums, creating a smaller superset of visible objects than
would have been created using the standard view frustum;

e  Enhancing Z-buffer performance, used for exact visibility determination, by ordering cells near-to-far,

e The ability to apply the visibility determination algorithm to dynamic objects also by keeping track of the cell(s)
the objects physically reside(s) in, therefore allowing the visibility of those objects to be determined using the
narrowed frustums for those cells.

It was shown that, due to the nature of the algorithm, the major disadvantage of the portal processing algorithm is that it
is highly dependent on the availability of large occluders in a scene, restricting its use to (building) interior type scenes.
Another disadvantage is that the scene must be partitioned into cells and portals at design time, or that otherwise a scene
must be partitioned (automatically) later on. : '

However, as was shown in chapter 4, 'due to the partitioning of the scene inte cells and portals, a favorable subdivision of
the world is created that can be used for dynamic memory management. In this chapter, some situations requiring
memory management were addressed and the different dynamic cell managers best suitable for handling those situations
were discussed. ’ :

Chapter 5 showed how to incorporate inter-cell objects (e.g. light- and sound sources) into scenes, and how dynamic
objects can also be made to profit from visibility determination using the narrowed frustum. Chapter 5 also showed that
cells and portals themselves are not required to be static structures: both cells and portals can have a dynamic nature,

- allowing the creation of much more interesting virtual worlds, while still benefiting from portal processing's performance
gains. :

The subject of creating interesting worlds was further discussed in chapter 6, which showed how, using portals, a
multitude of special effects (like mirrors/monitors/reflecting windows/etc.) could be added to a world. However, these
additions come at a price: extra processing time, required to process/render the extra information (e.g. the reflection of a
mirror). Also often, for a certain type of effect to be achieved, changes to the core portal processing code are required
which can influence the overall portal processing algorithm performance.

Finally chapter 7 concentrated on scene pre-processing in order to compute potentially visible sets, and it was argued that
even though they don't add much to the performance gain already achieved when using (run-time) portal processing,
their usefulness in other areas (e.g. dynamic cell management, level-of-detail cell trees) is undeniable.

When combining all applications discussed in this thesis, near-infinite size interior-type scenes of very high detail can be
created and used interactively. Using dynamic cell management and an implementation of the level-of-detail scheme
discussed in chapter 4, memory resources can be adequately managed (as was shown by Funkhouser [4]). Due to the
portal processing algorithm, culling the majority of objects in the visible cells positioned farther away from the viewer,
most of the rendering power can be concentrated on drawing detailed objects close to the viewer. Add to this the
flexibility of using dynamic objects, including cells and portals themselves, and special effects portals to enhance the
viewers experience, the range of applications is near infinite, ranging from architectural walkthroughs to computer
games.
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8.2 Empirical performance evaluation

Unfortunately, Mondo Bizzarro B.V. ceased all activities in October 2001, effectively grinding down further vrSS
development to a halt**. This made the implementation of some of the more advanced features described in this thesis
(such as special effects portals, but also in part level-of-detail cell trees) within the time window for writing this thesis,
impossible. Therefore, the empirical results presented in this chapter are confined to those parts that have been
implemented.

To test the performance of portal processing vs. standard vrSS tree processing, and also to test the performance of inter-
cell objects, a simple 3D game of pacman was created: The maze consists of 583 cells, and the walls of the maze account
for 29,988 polygons (triangles). There are 2735 energy dots for pacman to eat, each consisting of 20 polygons. The
smallest cells will only contain one energy dot, whereas the largest cells will contain up to 12 energy dots.

Note how this layout is also representative for other indoor-type scenes, e.g. an office building: an office building is also
made up of multiple cells, some large and some small, but for each the majority of polygons is usually determined by the
objects inside the cell, not the cell boundaries (walls) themselves. Larger rooms will usually contain more geometry just
as the larger cells in the maze contain more energy dots. Also, only a small subset of the total set of cells in the world
will be visible.

Fig. 82 Screen shot of Pacman and Inky.

Fig. 83 shows the percentage of polygons processed from 290 sample points using both standard vrSS processing and
portal processing, taken from the point of view of pacman when moving along a pre-defined path through the maze.
Notice the scale difference of the values along the Y-axis! While without portal processing up to 67.76% of the total
amount of triangles is processed, the maximum amount with portal processing is only 0.69%, a reduction of almost a
factor 100!
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Fig. 83 % of triangles processed.
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With portal processing, performance is mainly dependent on the complexity of the visible cells. When more (complex)
cells are visible, performance is less than when less (complex) cells are visible. In Fig. 83, for the “with portal
processing’ graph, the peaks represent the moment pacman enters a new corridor and can see the entire corridor with its
power dots and all corridors connecting to it (the situation depicted in Fig. 82), while the valleys represent the moment
pacman turns around a corner basically seeing only the corridor walls.

Without portal processing, there is an extra factor resulting in performance loss: the depth complexity of the scene.
Here the peaks in Fig. 83 represent the camera being positioned and oriented so that most of the maze falls within the
frustum. The valleys represent the camera being positioned and oriented so that most of maze falls outside of the -
frustum, resulting in performance equal to that of the portal processing algorithm.

As can be seen from Fig. 83, the depth complexity of the scene causes most of the performance loss, or in other words,
portal processing and scene partitioning effectively reduce redundant rendering. :

For the standard algorithm, moving objects can only worsen performance as they add extra depth complexity to the
scene. However, for the portal processing algorithm, inter-cell objects have been created (see chapter 5) to enhance
performance of moving objects. To examine the performance gain of inter-cell objects versus the alternative, global
objects, four ghosts (Blinky, Pinky, Inky and Clyde, each consisting of 11,188 triangles) chasing pacman are added to

the maze. In this test, both pacman and the ghosts move along a pre-defined path as to be able to create an identical set of
sample points for both cases. Fig. 84 shows the difference between the amount of triangles processed in the case of using
global objects for the ghosts and in the case of using inter-cell 0bjects (#yiangies processed using global objects = Fobjects processed using inter-

cell objects):

25000

20000

15000

10000 -

Delta trfangles processet

5000

Sample Points

Fig. 84 Inter-cell objects versus global objects.

As Fig. 84 shows, when using global objects, unnecessary extra depth complexity is added to the scene by ghosts that
intersect the frustum but are residing in an invisible cell. From this it can be concluded that inter-cell objects indeed
speed-up performance, based on the amount and complexity of moving objects that can intersect the frustum without
being visible to the viewer. ' ' R =

Unfortunately, determining the ‘Z-buffer performance gain’ by using near-to-far processing of cells could not be
performed within the time period for writing this thesis. This was due to both time constraints and vrSS limitations:

the performance gain is achieved by reducing the amount of overdrawn pixels in the Z-buffer, however vrSS has no
provisions for measuring this overdraw. Measuring frame rates is not very accurate as the test programs are running on a
multi-tasking system where system processes running in the background can interfere. Also, currently vrSS does not

- support some of the more time consuming pixel operations like bump mapping and reflection mapping, making
overdraw with today’s fast hardware accelerators not a limiting factor. A simple test program consisting of a world of ten
consecutive cells, each containing 200.000 polygons lit by four light sources showed an estimated performance gain of
only 0.2 frames per second. ' .

However, even though the performance gain is small, it comes free with the portal processing algorithm and might
improve performance of future versions of vrSS more significantly.

2 However, chances are that development will be continued soon.
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8.3 Portals vs. BSP-trees

A comparison that quickly comes into mind, and is therefore included in this thesis, is that of visibility determination
using BSP-trees and visibility determination using portal processing. Although both algorithms indeed speed up visibility
determination, they each do so in a very different way.

~ BSP-trees spatially partition a scene using separating planes, where each object intersecting one of these planes is split
" into two separate parts (creating more polygons than were originally in the scene). When determining the visibility of
objects in the view frustum, due to an object having been split up into several parts, often some of these parts are culled.

Portals, on the other hand, don't split objects. When an object intersects the view frustum, the entire object is processed
(in vrSS). The speed-up using portal processing comes from view frustum narrowing by the portals, therefore culling
more objects from view. ' ' ‘

Both algorithms suffer from the same problem: when many objects are positioned behind each other, with the nearer
objects occluding (most of) the farther objects, no performance gain is achieved (even worse, performance is lessened
due to the extra processing overhead). However, interior-type scenes with many occluding walls portal processing will
generally perform better due to a (much) higher number of culled objects.

" Therefore, from these observations made about the two algorithms, it is only logical to conclude that they complement
each other very well: using portal processing for inter-cell visibility, and then use a BSP-tree for (static) intra-cell
visibility, the best of both worlds is combined. Portal processing creates narrowed frustums for the visible cells that are
then used to cull large parts of split objects. '

Although with this combination the Z-buffer is no longer required for exact visibility determination (since portal-

processing can be adapted to process cells far-to-near, and BSP-trees allow exact visibility determination within the
~ cells), it facilitates incorporating dynamic objects in the world and is therefore best kept. '
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8.4 Future points of research

Finally, to finish this thesis, a summary of potentially interesting subjécts that were touched upon, but not examined
further, is given. Unfortunately, portal processing and its many uses is too comprehensive a subject to examine
completely within the time period for writing a master thesis. The following subjects are therefore open for further

investigation and will hopefully be addressed in the near future:,

o  Determining when to use a narrowed frustum to process the connected cell of a portal, and when to use the
frustum used to evaluate the parent cell of that portal or another frustum. Fig. 85 explains this:

Fig. 85 When not to use frustum narrowing.

Only a very small fraction of Cell 2 is actually occluded from sight to the viewer positioned in Cell I, resulting
in having to traverse the cell tree of Cell 2 three times when using portal processing, once for each of the
frustums F,, created by portal pi. Smce in the final scene, probably all of Cell 2's objects have now been
rendered, it would have been faster to just process its cell tree once using frustum F,;, or another suitable
frustum;

e  Automating the process of partitioning a world into cells and portals. A method for this has already been
proposed by Teller and Séquin [3] but their design can be improved on. In addition, using an automated process,
usually more cells and portals are created then when leaving this task to a modeler, potentially resulting in ;
better performance, but also potentially reducing performance: a careful balance must therefore be struck;

e  Combining the inter-cell portal processing algorithm with intra-cell BSP-trees. This combines the best of both
worlds: the portals narrow the view frustum, and due to the splitting of polygons in the BSP-tree usually only a
part of the object intersecting the narrowed frustum is rendered. Another option is to use the pre-computed

-potentially visible volumes to split objects so that no more splits than required are created that can be used to
speed up processing objects in the connected cells of the current camera cell;

e  Adapting the portal processing technique for real-time occlusion culling: by pointing out large occluders in a
scene, a shadow frustum [5] can be created to quickly cull away portions of the scene.
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