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Abstract

This thesis treats the design of an antenna intended for operation at the base station of a broadband
wireless LAN demonstrator. This demonstrator will be developed in the framework of the ACTS
project MEDIAN (Wireless Broadband Customer Premises NetworkILocal Area Network for Profes­
sional and Residential Multimedia Applications). The applied frequency band is 62-63 GHz.

According to MEDIAN specifications, the antenna has to radiate downwards and it has to provide a
circular footprint at 3 metress below. The diameter of this coverage plane-section should be 8 metress.

Two antenna types have been investigated, viz: the bended biconical-horn antenna and the shaped
reflector antenna.

Analysis of the radiation pattern of the bended biconieal-horn antenna yields an unacceptable fluctu­
ation of the fieldstrength in the coverage plane-section of many dB's. Therefore, this option can be
ruled out for our application.

On the contrary, analysis of the shaped reflector antenna on the basis of Geometrical Opties and Uni­
form Theory of Diffraction yields prornising results; the reflector with a diameter of only 30 centime­
tres could be shaped so that the spatial fluctuation of the fieldstrength remains below 0.5 dB in the
coverage plane-section whereas outside this coverage plane-section the fieldstrength faUs off very
rapidly.
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1. General introduction

1.1 Introduction

Indoor radio LANs operating in the millimetre (mm) frequency range may offer a large information
transport capacity and sharply defined cell boundaries [1]. The use of mm-wave frequencies enables
the creation of high traffic/user density cells, in case the boundaries of an indoor pico-cell (cell radius
< 100 m) are formed by walls and floors consisting of 'hard' materials, like concrete and steel through
which mm-waves cannot propagate. Radio coverage within a pico-cell can be controlled and opti­
mized by appropriately dimensioning the applied antennas.

From 1995, the Telecommunications Division ofthe Eindhoven University of Technology participates
in the ACTS project MEDIAN (Wireless Broadband Customer Premises NetworkILocal Area Net­
work for Professional and Residential Multimedia Applications) initiated and managed by IMST1

•

One of the objectives of this project is to evaluate and optimize the performance of a wireless LAN,
suitable for multimedia applications. Furthermore, a demonstrator system should be implemented for
examination and demonstration of the concept. This system will consist of one base station and two
(wireless) portable stations. The transmission of information between the portable stations will take
place via the base station. The system will be tested in various user environments. Characteristics that
distinguish the MEDIAN concept from conventional wireless LAN's are the unprecedented aggregate
transport capacity (totally up to 150 Mbits/s) and the applied frequency band (62-63) GHz.

Typical applications are broadband cableless LAN's in which the portable stations are essentially
fixed during operation but also broadband vehicular applications like cableless cameras in TV-studios
and Autonomous Guided Vehicles (AGV) in factories.

The Telecommunications Division is responsible for the design and manufacturing of the antennas to
be used in the MEDIAN demonstrator system. This graduation thesis treats the design of the base
station
antenna as well as the portable station antennas. The objective is to achieve a more-or-less uniform
coverage in a pre-defined coverage area.

This report contains six chapters. In this chapter some requirements of the Median demonstrator are
given. Chapter 2 contains a short description of the standard biconical hom antenna. This description
serves as a starting point from which the design of a more sophisticated hom antenna, namely the
bended biconical hom antenna, can be derived. In Chapter 3, the bended biconical hom antenna is
treated. A design of a reflector antenna is described in Chapter 4. Chapter 5 deals with the calculation
of the electric field on the coverage area. Chapter 6 deals with the design of a shaped reflector di­
mensioned on an extended coverage area and the calculation of its shape and the realized field distri­
bution over the coverage area.

1 Institut fuer Mobil- und Satellitenfunktechnik, Kamp Lintfort, Germany
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1.2 Demands of the Median demonstrator scenario

The MEDIAN demonstrator has to cope with a very stringent linkbudget. Therefore, it is likely that
the coverage area will be limited to dimensions in theorder of a few metress at maximum. Conse­
quently, antennas must be designed for the MSS (Median Server Station) that uniformly illuminate the
plane-section of the coverage area in which each MPS (Median Portable Station) antenna is supposed
to be present.

According to proposed Median scenarios the antenna of the base station is fixed on a height of 3 me­
tre from the coverage plane-section whereas the coverage is more or less constant within a circular
surface plane-section with a diameter of 8 metre and outside there is no coverage. A sketch of this is
depicted in Fig. l.I. The antennas of the portable stations in the coverage plane-section will now
considered to be isotropic antennas and the carrier frequency isf = 60 GHz.

MSS-antenna

y:
I

I

:~h=3 m
I

I

- - - - - - - - - -~ - - - - - - - - -
I Coverage
I

"'-----------------c8~m--------------"l\ plane-section

Fig. 1.1: Coverage area within a circle with a diameter of8 meter

The maximum coverage angle 'y' is: y =2.arctan(4/3) = 106 0

This coverage may be achieved in several ways. Three types of aperture antennas will be investigated
for possible application as the MSS antenna, viz:

1. Tilted-beam biconical-horn antenna for a ring-shaped coverage

2. Reflector antenna for uniform coverage

3. Corrugated-horn antenna for uniform coverage

In the next sections the tilted-beam biconical-hom antenna and the reflector antenna are discussed.
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2. Uniform coverage with biconical­
horn antenna

2.1 Introduction

Unifonn coverage in an indoor pico-cell can be obtained by compensating path loss by antenna gain.
The principle is illustrated, schematically in Figure 2.1 [1]. This figure shows a typical layout of an
indoor radio network consisting of a Median Server Station (MSS) with its antenna located in the
middle of the indoor area and two Median Portable Stations (MPS 1 and MPS2). All antennas exhibit
an omnidirectional pattem in the azimuth plane and an approximately figure-eight-shaped beam in the
elevation plane.

Reflective
Wall

MSS-antenna

~
\

'- r
\

!1h '-
\e

Reflective
Wall

MPS2

I+~===::'Si~+=:::==+.:JL_--+~==::s:;;:;;::::,,==:::==+- Coverage
C==~-+-"'''''f--~---' plane-section

Fig. 2.1: Layout ofindoor radio network

If a portable station is located in the vicinity of the MSS-antenna such as MPS 1, then the direct ray
will not only experience a low path loss, but also a small antenna gain. If a portable station is located
at a relatively large distance from the MSS-antenna like MPS2, then the direct ray suffers a relatively
high path loss, but both antennas exhibit a higher antenna gain. This indicates that path loss and an­
tenna gain may compensate each other to some degree resulting in a more-or-less uniform coverage.
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2.2 Biconical-horn antenna

Uniform coverage with biconical-hom antenna

Figure 2.2 shows [3] a cross-section of a biconical hom antenna. The antenna consists of a radial sec­
tion, i.e., the spacing between the lower antenna part and upper antenna part with spacing distance a
and diameter b, a circular waveguide with interior diameter di and a biconical hom. The hom has an
aperture width A and a length L which is measured from the (virtual) hom apex in the radial section to
the centre of the aperture. The taper transforms the incoming linear 'fEol mode into TEn mode. The
circular waveguide contains a polarizer which transforms the TEIl mode into two perpendicularly
directed waves which are mutually 90° out of phase, thus resulting in a circularly polarized wave.

b

att:============:::::E:~~:::=

wave
guide

taper

matching
screw teflon

A

Fig 2.2: Cross-section ofthe biconical-horn antenna

Since the radialline is excited with a circularly polarized wave, the biconical hom exhibits an omnidi­
rectional radiation pattem in the azimuth plane. Hence, the antenna gain function solely depends on
the elevation angle e (see Fig. 2.1). For a good omnidirectional radiation pattem, the launched wave is
vertically polarized. For this, we have to take a < 1f2À, otherwise undesirable modes will propagate in
the radial section. The radiation pattem is determined by the hom dimensions A and L. The propaga­
tion path i from the hom apex to the hom aperture increases towards the hom edges, so the aperture
plane is not a equiphase plane. The phase variation in the aperture plane is given by
exp[-j21t(i-L)/À]. This is similar to the aperture phase distribution in the E-plane of an E-plane secto­
rial hom antenna with aperture width A and length L. The radiation pattem in the elevation plane cao
therefore be calculated by the method described for sectorial homs with the corresponding mode
which is the 'fEol mode in that case.
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2.3 Achievement of near uniform coverage

The normalized magnitude of the electric field in the elevation plane is equal to

where C(x) en Sex) are the Fresnel integrals [3]. These integrals are given as

9

(2.1)

(2.2a)

and

From Fig. 2.1 it follows that

M
sine =-.

r

(2.2b)

(2.3)

de dep

The parameter s represents the phase error on the antenna aperture and is equal to

1(A J2 1s=g ~ 1>..

The directivity D(S,s) of the biconical hom antenna can be obtained by

41t
D(e ,s) = -21t-~"""--------

JJIF(e )1
2

case
o -~

The following equation can be written for the antenna gain function GaCS)

(2.4)

(2.5)

(2.6)

where La and Lm in (2.6) represent the antenna losses and the impedance mismatches, respectively.

Using the well-known 'radio equation' for the direct ray [5], the power received by the remote sta­
tions is equal to
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Pr (r,8 ,s) = G~ (8 {4~rJ~ , (2.7)

with PI the total power radiated by the MSS antenna.

The gain of the transmit and receive antenna are equal. The received power is equal to

(2.8)

Fig. 2.3 shows curves of relative received power against the product of the antenna-dimension pa­
rameter IJA and antenna-distancelheight-difference ratio rlM for different values of s relative to the
no phase error case (s=O, the aperture is a equiphase plane). These curves are normalized to the
maximum value for s= 0.5.

6

s=0.12
s=0.25
s=0.32
s=0.37
s=0.50

53 4
(XIA)(rILl.hl

2

~~----::---------------:::::::::
.............................. . .

........................
.""-0,........

........................
.........---.....

i \,
, \
!:.... \
I·' ',',. "P' ". "-
.;1 \ ;
1:1 \ til,;t., , " I

11 '.f,,, '-"','
'\ JI" •, 1. Jl' ,

\l' I '\ I

I •.
i '-'
r

0

~
~ -5
~
0
Q.

"IJ
QI

-10>
Qi

~
QI
.~ -15
'CO
Gicr:

-20
0

Fig. 2.3: Universal coverage curves

The curve with s= 0.32 has the optimum performance because a near uniform coverage is achieved
with only about 3 dB variation [2] in the received power in the region 0.6 < (IJA)(r/M) < 5. Consider­
ing the curve of s= 0.32 (Fig. 2.3), the minimum value is (IJA)(r/M)= 0.6 [2]. Hence, r= 10.8 m for
M= 3 mand A/À;:::. 6. The horizontal distance on the coverage plane-section (see Fig. 2.1) is equal to

d = ~r2 - (M)2 = WAm.

This means that there is almost no coverage for d < 1004 m on the coverage plane-section. Actually,
the biconical-hom antenna exhibits a ring-shaped coverage instead of near uniform coverage.
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3. Coverage of bended biconical-horn
antenna

3.1 Bended biconical-horn antenna

The cross-section of the bended biconical-hom antenna is depicted in Fig. 3.1. The bended biconical­
hom antenna is achieved by bending the upper antenna part and the lower antenna part of the biconi­
cal-hom antenna towards the circular waveguide.

teflon

b

circular
wave guide

matching
screw

Fig. 3.1: Cross-section ofthe bended biconical-horn antenna

The diameter b of the radial section can be larger than that of standard biconical-hom antenna. The
hom has an aperture width A and a length L. The incoming linear TEm mode is transformed by the
taper into the TEil mode. The circular waveguide contains a polarizer which transforms the linear
polarized TEil mode into two perpendicularly directed waves which are mutually 90° out of phase,
resulting in a circularly polarized wave. Since the radial line is excited with a circularly polarized
wave, the bended biconical-hom antenna exhibits an <p-independent ring-shaped radiation pattem
directed to the ground. The spacing distance between the upper and lower antenna part a < 1f2À is in
this case also valid for a good radiation pattem. The radiation pattem is determined by the hom di­
mensions A, Land the angle of bending '~'. The phase variation is given by exp[-j21t(l-L)/À], with J!.
being the propagation path in the hom.
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3.2 Achievement of ring-shaped coverage area

The biconical hom antenna shown in Fig. 3.2 must be bent in such a way that the field distribution in
the coverage plane-section within a circle with a diameter of 8 metre is about constant whereas out­
side this area, the field is about zero. To achieve the required coverage, a suitable value for the angle
of bending '~' must be chosen.

Bended biconical­
hom antenna

,,,,,,,,,,,,,

,-------------------- Ceiling

,,,,,,,,,,
!1h=3m " ,,,,,,,

Fig. 3.2: Geometry of the rays from the bended biconical-horn antenna

In Fig. 3.2, the variabIe d gives the distance from the central point of the coverage plane-section. It
varies from 0 to 4 metre.

To determine the required coverage of the bended biconical horn-antenna, '~' must be introduced into
the formulas. For this it is obvious that cos e in equation (2.1) and sine in equation (2.2) are re­
placed by expression (3.1) and (3.2), respectively.

M 1
cose =

r cos ptan[arcsin(~h) - p]+ sin P

. M tan[arcsin(~)- p]
sme =

r cos ptan[arcsin(~)- p]+sin p

(3.1)

(3.2)

A derivation of expression (3.1) and (3.2) is given in Appendix A. Now for the boundaries of the
Fresnel integrals for the bended biconical-hom antenna, expression (3.3) and (3.4) are valid.
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r, = 2Jll-I-_I(A M tan[arcsin(Af) - ~ ] J~
1 4s À r COS ~ tan[arcsin(~ ) - ~ ] + sin ~ U

r. = 2-JlI--1 (A M tan[arcsin(Af)- ~ ] J~
2 L 4s À r cos ~ tan[arcsin(~ ) - ~ ] + sin ~ U

Then, the structure function F(e,s) is equal to

where cose is replaced by the expression given in equation (3.1).

The parameter s is the same as in (2.4)

The directivity is now equal to

41t
D(S ',s) = -27t-~""'2--------

f f IF(S 'f cosS' dS' dep
o -~

The power received by the MPS (isotropic) aotenna is equal to

2 r À 12

P, (r,S ',s) oe D(S ',s) IF(S ')1 L41trJ

13

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

This formula for the calculation of the received power, cao be expressed as a function of the horizon­
tal distance d as it is shown in Fig. 3.3.

2 r À 12

P,(d,~,s)oeD(S',s)IF(S')ll ~ J
41t d 2 + (M)2

(3.9)

By talcing a suitable value for the ratio A/À., the optimum coverage of the bended biconical-hom an­
tenna can be determined. In Fig. 3.3, the coverages for various values of s are shown. These cover-
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(3.10)

ages show the by the isotropic MPS-antennas received power relative to the maximum power against
the horizontal distance d. This has been done for some values of ~ with the parameters: A.. = 5 mm,
M = 3 mand A/À. =6 [1]. The curves are normalized to the maximum value for s= 0.5. The value of
A/À. has been taken the same as for the untilted biconical-horn antenna. If the beams of the 2 horns
overlap each other, then the formulas described before are not valid anymore. So, the value of ~ must
be limited to a maximum. The angle of bending ~ has been deterrnined by taking equidistant radii d of
circles on the coverage plane-section (see Fig. 3.2). The angle of bending ~ can be calculated by

~ = 90 - arctan(~) .

In table 3.1, the values of d and ~ are given.

d [ml ~ [degrees]

1 71

2 56

3 45

Table 3.1: Angle of bending

Universal coverage curves, lambda=5 mm, Beta=45, Anambda=6
0,---------.----.------.----.------.----,.,..-----.----.------.-------,

: ....

" :" :
"

:_._._._.>=0.7

............... ~.. . .

; s=O.8

-5 ········0··

/.
.ll .......; /

: /0-':;" ,
. /

/
... : /

·:f / - ..... ?
ai' 1:/
~ ,'./

~ -10 :-:: { .

g, ,:
] I:
.~ .... :i,,: ,,/:
'""" \ I :
.~-l5 \:/,1..: :
os ..

<l '
~ ,

I
\ ,

-20 '\/'" ., -: -: :- .

-25'---------'---.1.------'---.1.------'---.1.------'---.1.----'------'
o 0.5 1.5 2 2.5 3 3.5 4 4.5 5
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Universal coverage curves, lambda=5 mm, Beta=56. AIIambda=6
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Universal coverage curves, lambda=5 mm, Beta=7l, A11ambda=6
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From all these universal coverage curves we can see that the coverage in the area from d = 0 to
d = 4 m is not constant. For ~ = 56° (see Fig.3.3 b), we can see that the coverages are fluctuating. If
we take for instance the coverage with s = 0.6 (~ = 56°), we can observe that it fluctuates within 3 dB
in the area between d = 1 to d ::=3.2 m. From d = 0 to d =1 mand from d::= 3.2 to d =5 m, it decreases
quickly. Hence, we can conclude that there is a ring-shaped coverage area with a ring width of about
2 m. If ~ is increasing, then the ring-shaped coverage area becomes narrower and it slides to the cen­
tre. A sketch of the footprint of the ring-shaped coverage area is depicted in Fig.3.4.

The coverage for ~ = 71° (Fig. 3.3c) is an example where we can see that the beams of the 2 horns
are just overlapping. So, we can conclude that the maximum angle of bending ~ = 71 0.

Ring-shaped
Coverage area

8m

Fig. 3.4: Footprint ofthe bended biconical-horn antenna

In Fig.3.5, coverages are shown for various values of A/À. at ~ = 56° where s=0.6, À = 5 mm and
M = 3 m. In this figure, we can see that as the term A/À. decreases, the ring-shaped coverage area
becomes wider, but on the other hand the fluctuation in the ring-area becomes higher.
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Universal coverage curves, lambda=5 mm, Beta=56, s=0.6
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Fig. 3.5: Universal coverage lor ~=56° and s=O.6 with A/À as parameter

The conclusions that we can take from these computations are:

• ~ establishes the ring-coverage on the coverage plane-section

• the uniformity of the ring-coverage can be arranged with s

• the width of the ring-area can be arranged with All..

Now, from these computations we can determine the optimum values of~, s and All... These are:

• 45°~~~71°

• s =0.6

• AIÀ=6



19

4. The reflector antenna

4.1 General approach

As is mentioned in the general introduction, the reflector antenna is the second option that will be
investigated for indoor radio communication system. The design of this antenna is based on the theory
of a shaped double reflector antenna as is shown in Fig. 4.1 [4].

Sub reflector
Hyperbola

Feed

<

Symmetry axis
Main reflector
Parabola

Fig. 4.1: Double reflector antenna

In this design the feed is aconical corrugated-horn antenna that has a radiation pattern Gr(",) with the
form of a eosine to the power n. The main reflector of the original double reflector antenna is replaced
by the coverage plane-section. That means that this is a single reflector antenna system (see Fig. 4.2).
The antenna is fixed to the ceiling (3 metres above the coverage plane-section).

Reflector

3m

Ceiling

Coverage

----------------------------7>1 plane-section

8m

Fig. 4.2: The reflector antenna in the MEDIAN demonstrator scenario
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The objectives of this thesis is to examine the relationship between the surface shape of the reflector
and the variation of the field (ripple) over the coverage plane-section. Furthermore, we have to de­
termine a surface of acceptable dimensions in the order of (20-30 cm) that yields an acceptable ripple
(e.g. 1 dB). There are some assumptions on the design of this antenna system, these are:

• The reflector is placed on a height of three metre from the coverage plane-section.

• The field is constant within the coverage plane-section that has a diameter of 8 metre.

Because the carrier frequency is very high (j =60 GHz, À= 5 mm), we use geometrieal opties for the
design of the reflector antenna. Because of the use of geometrical opties, the design of the reflector
antenna must satisfy the following conditions:

1. The law of Snel for reflecting surface: angle of incidence is equal to angle of reflection with re­
spect to the normal vector.

2. Law of conservation of power: the energy per unit of time that passes through a surface within a
ray tube is independent of that surface (see Fig. 4.3). The energy in the circle surface on the reflec­
tor is equal to the energy in the circle surface on the coverage plane-section. So the powerflow in a
ray tube is constant.

3. The law of Malus: the surfaces of constant phase are surfaces perpendieular to the rays, also after
one or more reflections.

~•••~\ Reflector

Coverage
plane-section

Fig. 4.3: Power conservation

Applying these conditions on the antenna system leads to a number of equations whieh the system
must satisfy. Application of Snel's law of reflection for the reflector (see Fig. 4.4) leads to the follow­
ing differential equation

dy, = tan[.l'}li _.l'}l']dx 2 2 ,,
(4.1)

where 'Pi and 'Pr are the angle of incidence and angle of reflection, respectively, with respect to the
horizontal plane.
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(4.2)

x -x
tan('Pr) =; r

- Yr
(4.3)

Substitution of (4.2) and (4.3) into (4.1) yields the following differential equation

dy r = tan[-t arctan( ~ J--t arctan( x c~ X r J] .
~r F ~ 3 ~

(4.4)

Dj2

pr
max

pr

3m

Feed

>1

'Pi

F

D/2 - - - - - - - - - - ­

Po

Shaped
reflector

Fig. 4.4: Geometry ofthe rays ofthe shaped reflector antenna
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There are two coordinate systems in Fig. 4.4, one describes the coordinates (xr,Yr) of the reflector and
the other one describes the coordinates (xe,Ye) of the coverage plane-section. Tbe parameters used in
this figure are described below. Because of the rotationally syrnmetry with respect to the horizontal
axis of the antenna system, only the situation for xr>O is described.

(xr,Yr) a coordinate point of the reflector

(xe,Ye) a coordinate point of the coverage plane-section

pi the ray length from the feed to the reflector

Po the maximum ray length from the feed to the reflector

pr the length of the reflected ray

p~ax the maximum length of the reflected ray

'Pi the angle between the horizontal axis and the ray from the feed

a the maximum angle between the horizontal axis and the ray from the feed

'Pr the angle between the horizontal axis and the reflected ray

'P~ax the maximum angle between the horizontal axis and the reflected ray

D diameter of the reflector

De diameter of the coverage plane-section

F the distance between the feed and the origin of (xr,Yr) coordinate system

Because of the rotational symmetry of the antenna system, the relative power radiated by the feed
between the angles 0 and 'Pi can be written as

'P;

Pt = 21t fGt ('V) sin'V d\jI ,
o

with Gt<:'P) the gain function of the feed

for

for

(4.5)

(4.6)

According to the second condition, the relative power given in equation (4.5) is equal to

Xc

Pt = 21t fH(r) rdr ,
o

(4.7a)

with H(r) the illumination function of the coverage plane-section. Tbe reflected powerflux S flows
not perpendicularly through the coverage plane-section. So, it must be corrected by taking the in­
product of the power flux and the normal vector to the coverage plane (see Fig. 4.5).



The reflector antenna

S

Coverage
plane-section
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Fig. 4.5: Power flux through the coverage plane-section

The absolute value of the powerflux flowing perpendicularly through a surface is equal to

Isi = IËI
2

, with Ë the electric field and Zo the intrinsic impedance of free space. Generally, the
2Zo

powerflux flowing through a surface is equal to Isi = IË!2 cos \{I'. Since the illumination function
2Zo

H(r) oe Isl, the power intercepted by a circle with radius 'xc' on the coverage plane-section is equal to

Xc

Pt = 21t fH (r) cos(\{I') r dr

°
(4.7b)

After normalizing equation (4.5) and (4.7b) to the total radiated power by the feed to the reflector and
then combining these equations, yields

~ ~

fH(r) co~\{I'(r)) r dr fGt ('I') sin'l' d\v
...,,0'-:- =-"0'-- _
D%, (X

fH(r) cos(\{I' (r)) r dr fGt ('I') sin'l' d\v
° °

Here De = 8 m.

Furthermore, there are two boundary conditions, these are:

D
tana. =- ,

2F

and

( )
D -D

tan \{I~ax = e 6 .

(4.8)

(4.9)

(4.10)

Now with \{Ii, \fr, the ratio D/D" H(r), G.t<\fi), the total system is determined. If for instance Xc is
given, then Xn Yr and further \fi, \fr can be calculated.
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4.2 Design of shaped reflector antenna

The reflector antenna

To determine the shape of the reflector surface, the coordinates (x"Yr) must be calculated. The
essence of the design of the reflector is that the field in the coverage plane-section has an acceptable
ripple. Outside the coverage plane-section the field must be as low as possible. The spatial fluctuation
of the field on the coverage plane must be below a specified limit. Hence, the illumination function
H(r) of the coverage plane should be constant and equation (4.8) can be simplified to

Xc '1"

f cos(\{/' (r») rdr fGf ('I') sin 'I' d\jI
-:'0'-;- =-"0'-- _

~ lX

fcos(\{/' (r») r dr fGf ('I') sin 'I' d\jI

° °

Substitution of equation (4.3) and (4.6) in equation (4.11) yields

X,. 'Pi

f cos[arctan(;=~:)] rdr f2(n+1)cosn'l' sin'l'd\jI
° = -"0'-- _

D~ a

fcos[arctan( ;=~:)] r dr f2(n +1) cosn 'I' sin 'I' d\jI

° °

(4.11)

(4.12)

The solution of the left integrals of (4.12) have an analytical expression calculated by the mathemati­
cal software 'Mathematica' [15]. The solution ofthe numerator is equal to

1eotarcta{;=;: )] r dr = -(y, - 3)[x, aresinh(B)+x, aresinh(,;:,)+

+Iy, -~'~9+x; -2x,xc +x; -6y, + y; -~9+x; -6y, + y; ]

The solution of the denominator is equal to

1eotarct~;=;:] rdr =--(y, -3)[x, aresin~~)+x,aresinh(,;:,)+

+ly,-~.~9+x;-2x, D;{+(D;{)2 -6y,+y; -~9+x;-6y,+y;]

The solution of right integrals of (4.12) gives also an analytical expression.

(4.13)

(4.14)
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'l'i

f2(n +1) cos
n
'" sin", d", ()cosn+1 'Pi -1-"0'-- =

IX cosn+1a -1
f2(n +1) cosn'" sin", d'If
°
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(4.15)

Combining (4.12) with (4.15) and using (4.2) for 'Pi and the boundary condition (4.9) for u yields the
power equation

xc

-"-[....,.c_o_s[_ar_c_t_an_(_;=_~'_J_] _r_d_r = cosn+1[arctan(~)] -1

DefV, cosn+l[arctan(2~ )]-1 '
cos[arctan( ;=~:)] r dr

°

(4.16)

where the numerator and the denominator of the left part must be replaced by the expressions (4.13)
and (4.14), respectively.

To calculate the surface function of the reflector, the differential equation given in (404) has to be
solved numerically for a given value of XC' By using a Pascal Procedure for the solution of the differ­
ential equation, a lot of pairs of (x"Yr) coordinates are produced. These (xr,Yr) coordinates must be
substituted into the power equation (4.16). If a single pair of-(x"Yr) coordinates satisfy the power
equation. then that pair of coordinates is a unique point of the reflector that is valid for the given Xc

value. Before substituting the (x"Yr) coordinates into the power equation, the value of n in (4.16) has
to be known. The value of n is related to the illumination from the feed.

Determination of n:

Assume that the ray power from the feed to edge of the reflector is -10 dB compared with the ray to
the centre of the reflector and the semiflare angle of the feed 'u' is equal to 45° (see Figo4.6).

Pedge

Feed

Fig. 4.6: Edge llluminationfrom thefeed
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Gf= 2(n+l) cos\'P)

a=45°

Pedge= 2(n+l) cos\45)

Prentre= 2(n+ I) cos\O)

Edge illumination from the feed = -10 dB

Pedge = 0.1 Prentre

2(n+l) cos\45°) = 0.1 2(n+l) cos\O)

ln[cos\45°)] = ln[O.I]

n = In[0.1] = 6.6
ln[cos(45)]

The reflector antenna

There are some values of n given in Table 4.1 for different edge illuminations from the feed to reflec­
tor edge and a = 45°.

a=45°

edge illumination -10 -20 -30
from the feed (dB)

n"'" 7 13 20

Table 4.1: Values of n for different edge illuminationsfrom thefeed

For the determination of the edge illuminations at the reflector, the free space loss from the feed to the
reflector edge must be taken into account.

There is another point that deserves attention. During the substitution of the (x"Yr) coordinates in the
power equation, we saw at first that there weren't any (xe,Ye) points that satisfied the power equation.
The reason of this is that the values of Xc along the coverage plane are equidistant values. The values
of Xr along the reflector are also (lower) equidistant values. To solve this problem we have introduced
a relative error 'Erel' in equation (4.16) and we got another power equation given in (4.17). The physi­
cal meaning of 'Erel' is that the power radiated by the feed is not anymore equal to the power on the
coverage plane-section but it slightly deviates from it.

Xc

[ cos[arctan(~)] rdr cosn+! [ arctan(--FY:)] - 1

DfYz [ (r-x,)] = cosn+! [arctan( 2~ )] -1 + E
rel

cos arctan 3-y, rdr
o ~

(4.17)
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with

PI: Relative power on the coverage plane-section,

pz: Relative power radiated by the feed.

The relative error 'Erel' is defined as

Expression (4.18) can be wriUen as

Ji -(1+ )- _E rel
Pz

and in (dB)
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(4.18)

(4. 19a)

(4.19b)

The power difference on the coverage plane-section related to the power radiated by the feed can be
calculated by equation (4.19). Hence, the electric field can also be calculated. This is given in Table
4.2 for different values of 'Erel' .

Power and E-field on the Erel

coverage plane-section 1e-5 1e-4 1e-3 1e-2

pdB= 10 log (HEreI) ±4.34 e-5 dB ±4.34 e-4 dB ±4.34 e-3 dB ±4.32 e-2 dB

EdB=20 log...jp ±4.34 e-5 dB ±4.34 e-4 dB ±4.34 e-3 dB ±4.32 e-2 dB

E%ripple 0.005 % 0.005 % 0.05 % 0.5 %

Table 4.2: The effect ofthe relative error 'Eret' to thefield in the coverage plane-section
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4.3 Example of shaped reflector antenna

The reflector antenna

In this section, the shape of the reflector antenna is given. The design of the reflector is based on the
theory described in the previous section. To deterrnine the shape of the reflector surface, some as­
sumptions are made and there are some boundary conditions.

Assumptions: De = Sm

D =30cm

Edge ill. from feed = -10 dB

F/D=O.S

Boundary conditions: Xr = 0

Xr = DI2 and Yr = 0

Input parameter: Xc

Output variabIe: Xr, Yr

for Xc = 0

for Xc = 4 m

The reason why the edge illumination from the feed has been taken -10 dB is that the spillover and the
blocking are acceptable. An edge illumination from the feed of -20 dB yields a lower spillover, but
the blocking becomes higher.

The value of Xc varies from zero to 4 m with a step size of 1 cm. For every value of Xc, there is one
(Xr,Yr) calculated coordinate pair that satisfies the power equation.

The relative error 'Erel' varies from (9 e-7) to (1 e-2). The variations of the power on the coverage
plane-section related to the power from the feed are given below.

PdB= (3.9 e-6 --------- 4.32 e-2) dB

and

E%ripple = (9 e-S --------- O.SO) %

So, we can see that the fluctuation in this case is negligible smalI.

A cross-section of the entire shaped reflector with F/D=O.S is depicted in Fig. 4.7. In Fig. 4.7, the
cross-sections of the shaped reflectors for F/D=O.4; F/D=0.6; F/D=0.7 are also drawn to observe the
effect of shaping of the reflector when the FlD-ratio changes. The reflector diameter of 30 cm and the
edge illumination at the feed of -10 dB have been taken fixed for all these reflectors. From Fig. 4.7
we can see that the depth of the reflector is increasing as the FlD-ratio increases.

The ray pattem of the antenna with F/D=O.S is drawn in Fig 4.S. In this figure, the angle between the
rays from the feed is about 2°. Between the incident and reflected rays, the law of Snel is satisfied.
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Shaped reflectors for different F/D-ratios, D=30 cm, Edge ill.=-10 dB, Dc=8 m
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Fig. 4.7: The shaped reflector antennaslor different F/D-ratios
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Symmetrie shaped reflector with incident and reflected rays

0.1 .....

o ........

The reflector antenna

-0.05
-0.2 -0.15 -0.1 -0.05 0 0.05

x-coordinate rml
0.1 0.15 0.2

Fig. 4.8: Ray pattem ofthe shaped reflectorantennafor F/D=O.5

Ray pattern of shaped reflector antenna with the following specifications:

• Diameter reflector D = 30 cm

• F/D =0.5

• Edge illumination at feed = -10 dB

• Diameter of coverage plane-section De = 8 m

• Angle between the rays from feed = 2°

In the next chapter, the calculation of the diffracted field using UTD and the total field on the cover­
age plane-section are described.
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5. UTD Analysis of the radiation from the
shaped reflector antenna

5.1 Introduction

The GTD (Geometrical Theory of Diffraction) ([9],[11],[12]) describes the diffraction phenomena by
introducing various kinds of diffracted rays, such as single-diffracted rays and multip1e-diffracted
rays. The corresponding diffracted waves are assumed to follow the laws of diffraction and to diverge
according to GO laws. Consequently, the points of diffraction and the paths of the rays can be found
from the laws of diffraction, and the amplitude of the fields along the rays can be found from the
principle of energy conservation. So, this theory does not only provide a qualitative description of
diffraction in terms of the diffracted rays, but also permits a quantitative determination of the dif­
fracted field as weIl. In this report only single-diffracted rays are considered. So, the small contribu­
tions of multiple-diffracted rays are neglected.

The initial value of the diffracted field at the point of diffraction is obtained by multiplying the vector
of the incident wave by the dyadic diffraction coefficient, which was first obtained by KeIler by com­
paring his diffraction expressions with Sommerfeld's exact solutions for various canonical problems.
Although the diffraction coefficients are derived for canonical problems, such as the diffraction of a
plane, cylindrical, conical or spherical wave at perfectly conducting infinite half plane or wedge, the
theory can be used to calculate the field diffracted from other objects as long as their dimensions are
large compared to the wavelength. In that case only the immediate neighbourhood of points of dif­
fraction effectively contributes so that the diffraction can be considered as a local phenomenon.

According to KeIler's GTD ([11], [12]), the contributions to the field in an observation point P(r,e,<jl)
come, in the case of the symmetrical reflector antenna (see Fig. 5.1 ), mainly from two points Qi
(i=1,2), which are the intersection points of the plane containing the lines O'P and O'F with the edge
of the reflector. UTD (Uniform Geometrical Theory of Diffraction) gives diffraction coefficients
which are also valid in the shadow and reflection boundary where KeIler' s theory fails. UTD gives a
compact form of the dyadic diffraction coefficient for electromagnetic waves obliquely incident on a
curved edge (of a perfectly conducting reflector surface). Since UTD is basically an extension of
GTD, they both are based on the same principles.

The coordinates of the diffraction points are given by (Fig. 5.1) [7]:

ç, = 4>

Ç2 =4> +1t

(5.1a)

(5.1b)
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UTD analysis of the radiation from the shaped reflector antenna
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Fig. 5.1: Geometry ofdifJracted rays

The diffracted field Ed(P) due to the diffraction point Q; can be expressed by [10]:

(5.2)

where ij the is the dyadic diffraction coefficient, A(s: ,s:) is the caustic divergence factor, s: is the

distance from the feed to the point of diffraction, s: is the distance from the point of diffraction to

the observation point and Ë i (QJ is the incident field at point Qj. Because Q1> Q2, P, F and 0' are
lying in the same <I> -plane, we can consider the case as a two dimensional problem and only take a
single <I> -plane to analyze the diffracted fields as shown in Fig. 5.2.
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P(r,e,</>
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DI2

Po

y

Coverage
plane-section

3m

Fig. 5.2: Two dimensional geometry to analyze the difJractionfield

The distances given in Fig. 5.2 are described below:

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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s; and sg are the distances from the upper and lower edge of the reflector, respectively, to the obser­

vation point on the coverage plane-section.

To be able to calculate the diffracted field, the following procedure is followed. First the caustic di­
vergence factor is determined followed by a derivation of the dyadic diffraction coefficients. This will
be done in the following paragraphs.

5.2 Calculation of Caustic Divergence factor

For diffraction of an incident spherical wave at a curved edge, the caustic divergence factor takes the
form [10] of equation (5.8). This is the general formula for the caustic divergence factor.

(5.8)

where

(5.9)

The terms used in equation (5.9) represent the following:

pc the distance between the caustic at the edge and the second caustic of the diffracted ray,

Pg the radius of the curvature of the edge at the diffraction point,

p: the radius of curvature of the incident wavefront at the edge, fixed plane of incidence which

contains the unit vectors s/ and the unit vector t tangent to the edge at Qi ,

~o the angle between s/ and the tangent t to the edge at the point of diffraction,

iî the unit vector normal to the edge at Qi and directed away from the centre of the curvature,

s/ the unit vector in the direction of the incident ray (Fig. 5.2),

s/ the unit vector in the direction of the diffracted ray (Fig 5.2).

In the following sections, equation (5.8) will be worked out for our specific geometry.
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5.2.1 Caustic divergence factor for the upper diffraction point Ql

In Fig. S.3, the upper diffraction point Ql and the associated vectors are given in detail.
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e "
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Il.

Si,
y

Po

a Feed

0' z x

Fig. 5.3: Geametry afincident and difJracted rays at QJ

From Fig. S.2 and Fig.S.3 it is easy to find:

- -i . (S.lOa)n·s. =sma ,

- -d . 8 (S.lOb)n· s. = SIn • '

with

a = arctan(~ ) , (S.lOc)

8.=1t-1l., (S.lOd)

11. = arctan( Xc ; ~) , (S.lOe)

i (S.lOf)Pe = Po '
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(S.lOg)

(S.lOh)

Substituting equation (S.lO) in equation (S.9), then Substituting the result of this into equation (S.8)
gives the following expressions for Pc and Ah respectively:

sina
Pel = Po sine '

I

(S.ll)

d .
SI Po sma

(S.12)

5.2.2 Caustic divergence factor for the lower diffraction point Q2

In Fig. S.4, the lower diffraction point Q2 and the associated vectors are given in detail. For the lower
diffraction point the following expressions are valid:

with

- -î .n 'S2 = sma ,

- -d . en .S2 = - SIn 2 '

i
Pe = Po '

D
Pg =2"'

(S.13a)

(S.13b)

(S.13c)

(S.13d)

(S.13e)

(S.13f)

(S.13g)
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/
/

/

ISB n RSB

z x

-y

Fig. 5.4: Geometry ofincident and difJracted rays at Q2

Substituting equation (5.13) in equation (5.9) and then substituting the result into equation (5.8) gives
the following expressions for Pc and Ah respectively:

sina
Pcz =-Po sine

z

d •
Sz Po sma

Po sina -s~ sinez

(5.14)

(5.15)
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5.3 Calculation of diffraction coefficients

The dyadic diffraction coefficient [10] can be written as

- (-Ds
D= o (5.16)

with

Ds the scalar diffraction coefficient for the soft boundary condition, which rr~ converts to
-dPo (see Fig. 5.5)

Dh the scalar diffraction coefficient for the hard boundary condition, which f~ converts to
-d

<1>0 (see Fig. 5.5)

T

_----+----~-- observation points
in the far field

/ • .,..4---- plane of diffraction

t'-++++-r..-plane of incident

Fig. 5.5: Diffraction at an edge

The description of the unit vectors follows below:

f~ the unit vector perpendicular to the incident plane, which contains the vector Si and the unit

vector f,



UTD analysis of the radiation from the shaped reflector antenna 39

<!>Od the unit vector perpendicular to the diffraction plane, which contains the vector Sd and the

unit vector f,

the unit vector parallel to the incident plane and related to the vector
r:fi _ Si X",-i
1-'0 - '1'0 '

i and <!>~ by

the unit vector parallel to the diffraction plane and related to the vector

~Od = Sd X<!>Od •

d -d
S and '1>0 by

The diffraction coefficient D s can generally be written in the following form [10]:
h

(5.17)

with

ri the angle between the incident ray and reflector surface tangent, which is perpendicular to the
plane of incidence (see Fig. 5.3),

rd the angle between the diffraction ray and reflector surface tangent, which is perpendicular to
the plane of diffraction.

F(z) = 2j.[i exp(jz) Jexp(-ft 2 )dt ,
Jl.

(5.18)

involving a Fresnel integral.

The function F(z) will approach one if Z..-700 (see Fig. 5.6).

1.0 50

45

0.8 - 40

}!\ ;;

~0.6
w

:::>
30 :i'.. Cl

i - 25 ~

i 0.4 --:'IQ,""

'"15 oe
:I:...

9-2 10

Fig.5.6 Modified Fresnel Transitionfunction {lO}
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L i and L' denote the distance parameters defined as

E _ Sd(p; +Sd)p;p; sin 2 ~o

- p;(p; +Sd)(p; +Sd)

UTD analysis of the radiation from the shaped reflector antenna

(S.19)

(S.20)

(S.21)

p; and p~ are the principal radii of curvature of the incident wavefront at Qj.

p; and p; are the principal radii of curvature of the reflected wavefront at Qj.

p; is given by

1 1 2(iîrefl • iî) .(Si. iîrefl )

Pg sin
2
~o

(S.22)

with iîrefl as the normal unit vector to the reflector surface at Qi.

In the following section the diffraction coefficients for the reflector geometry under consideration will
be derived.

5.3.1 Diffraction coefficients for the upper diffraction point Ql

For the upper diffraction point QI (see Fig. S.3) the following expressions are valid:

i
Pe = Po '

7t
~O=2 '

Substitution of (S.23) in (S.20) yields a simplified expression for the L i
:

(S.23a)

(S.23b)

(S.23c)
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d
Ti _ SI Po
L - d

PO+SI

From Fig. 5.3, the angles ,J and r d for the upper diffraction point can be derived:

. 1t
'i' ="2-a -0 ,

d 31t
r, =--o-S
I 2 I '

with

Hence,

(
r,d - r,i J (a -S )cos I 2 I =- sin 2 I ,

(
'i

d +'ii J (20 +a +SI)cos = -cos .
2 2

Substitution of (5.26) in (5.19) yields the next two expressions:

(
di) 2 2 (20 +a +SI)a 'i + 'i = cos

2

Now, the first transition function of the diffraction coefficient (5.17) is equal to

with k = 2~ .
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(5.24)

(5.25a)

(5.25b)

(5.25c)

(5.26a)

(5.26b)

(5.27a)

(5.27b)

(5.28)
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To determine P; given in (5.22), we need the following expressions (see Fig. 5.3):

iî refl • iî = sinÖ ,

s: .iîrefll = -cos(a + Ö) ,

i
Pe = Po '

D
Pg ="2'

Substitution of (5.29) in (5.22) yields the expression for P; :

r Po D
Pe = D+4 posinÖ cos(a +Ö) .

(5.29a)

(5.29b)

(5.29c)

(5.29d)

(5.2ge)

(5.30)

The principal radius of curvature 'p; , of the reflected wavefront at Ql (see Fig. 5.7) is equal to

r D
PI = . [ (D -D)] .2 sm arctan ----T-

(5.31)

The principal radius of curvature ' P; , of the reflected wavefront at Ql (see Fig. 5.8) is equal to

(5.32)

This is the distance between the edge of the reflector and the intersection point of the reflected ray
through the edge with the reflected ray that lies very close to it (see Fig. 5.8). The (xs,Ys) coordinates
describes the intersection point.
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p'max
D/2

43

DI2

Fig. 5.7: Incident and reflected rays through the edge

p'max

p' D/2

Fig. 5.8: Incident and reflected rays through the edge and near to the edge

Now, the Lr be equal to

E =_S-=;~"":'(':"P'::";_+--'S~7');-,p:....l=-r.:....P.:..;~
p;(p; +S~)(p; +S~)'

where p; , p; and p; are given in (5.30), (5.31) and (5.32) respectively.

(5.33)
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The second transition function of the diffraction coefficient (5.17) is equal to

(5.34)

Then, the scalar diffraction coefficient (5.17) becomes:

(5.35)

Now, the vector property of the fields still have to be considered. This can be done by expressing the
incident and diffracted fields in terms of two components according to the two orthogonal directions
defined in Fig. 5.5. These are:

(5.36a)

(5.36b)

Inserting equation (5.36) in (5.2), and then comparing it with equation (5.16) shows that the relation
between the incident fields and the diffracted fields can be written as:

-d (E~ J (-D.
E (p)= i:: = 0'

-jksd
e 1 (5.37)

For the symmetrical antenna configuration, the incident radiation from the feed is normal to the edge
of the shaped reflector (see Fig. 5.5). So, ~o equals rt/2 and the directions of the different vectors can
be shown as in Fig. 5.9, where the incident fields are projected on the plane (of incident) containing

Si and t, and the diffracted fields from point Qi are projected on the plane (of diffraction) contain-

ing Sd and t. Since these two planes generally do not coincide, the projection of all vectors onto

the plane through the diffraction point Qi and perpendicular to the tangent t of the edge is drawn in

Fig. 5.10.
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~

T

4S

Plane of
diffraction

~O

Ê,d
Sd ~o SJ

Qi
~O

fao
Plane of
incident

Fig. 5.9: DifJraction at an edge (two dimensional in plane pararllel to Tat Q)

Plane of
diffraction

~O

Plane of
incident

Fig. 5.10: Diffraction at an edge (two dimensional in plane perpendicular to T at Q;)

Considering the diffraction point on the edge of the reflector, the following relations are found for the
vector components of the incident and diffracted fields at the diffraction point QI (Fig. 5.11):

E: =-E: ' (5.38a)
1 Ol

Ed =_Ed (5.38b)
al <!lOl '

Ei =Ei (5.38c)/301 fiIIl'

E~ =E~ . (5.38d)
Ol 1
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y
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~-_........---t4I'J Feed

X
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y

z
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y

82

~2 -y
Z X

Fig. 5.11: DifJraction at the shaped reflector [7J
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The dyadic diffraction field can be written as

The incident field Ër(Po,a,ç) = <1» can be written in the form:

with

- jkste

47

(5.39)

(5.40a)

(5.40b)

this is valid for a Huygens feed, where Pt is the total power radiated by the feed and

Zo =1201t ,

is the intrinsic impedance of free space.

is valid for a Huygens feed.

The feed power functions considered are:

(5.40c)

(5.40d)

(5.41)

where n is a positive real.

Combining the equations (5.12), (5.35), (5.39) and (5.40) gives a general expression for the dyadic
diffraction field valid for the shaped reflector.
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(5.42)

If only a y-polarized incident field is considered and <I> =1tI2, then both E~t = 0 and E:t = O. This

leads to a diffraction field, equation (5.43), that contains only the scalar diffraction coefficient for the
hard boundary 'Dh' condition .

d
SI Pel - jksf

de.
Pel + SI

(5.43)

Now, the diffraction field for the y-polarized incident field is described by expression (5.44):

G/a)s~ Po sina

5.3.2 Diffraction coefficients for the lower diffraction point Q2

(5.44)

Proceeding similarly as in the previous section for Q2, it is possible to find expressions for the angles
,J and rd for the lower diffraction point (see Fig. 5.4). These are:

Hence,

. 1t
r;' =--(l-O
2 2 '

(
r;d - r;i J . (8 +(l )cos 2 2 2 = sm 2 2 '

(5.45a)

(5.45b)

(5.46a)
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Substitution of (S.44) in (S.19) yields the two expressions:

( di) . 2(82+a Ja r2 - r2 = sm 2 '

( ) (
8 -a -2ö J

a r2
d + r~ = cos2

2 2 .
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(S.46b)

(S.47a)

(S.47b)

L i and V for Q2 are the same as (S.24) and (S.33) respectively.

Substitution of the equation (S.4S), (S.46) and (S.47) into equation (S.17) yields expressions for the
scalar diffraction coefficients for Q2:

(S.48)

From Fig. S.ll, the following relations are found for the vector components of the incident and dif­
fracted fields at the diffraction point Q2:

E: =E~ , (S.49a)
2 02

E;2 =E:02 ' (S.49b)

Ep =E~ , (S.49c)
02 2

E~ =E~ . (S.49d)
02 2
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The dyadic diffraction field for Qz cao he written as

d
Sz Pcz - jkst

d e
Pcz +sz

Writing Ëf ( Po ,ex. '<;z = <l> +7t) at Qz in the form:

-jksfe

(5.50)

(5.51)

and comhining the equations (5.15), (5.48), (5.50) and (5.51) gives a general expression for the dif­
fraction field valid for Qz.

(5.52)

1

By takjng <l>=1tI2 and Ua=l makes E~2 = 0 , so that we have a diffraction field with only the diffrac­

tion coefficient for the hard houndary 'Dh' condition.

d
Sz Pcz - jkst

d e
Pcz + Sz

(5.53)
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By substituting the expression (5.48) for Dh and (5.51) for E~l into (5.53), the diffracted field E;l can

be written as

(5.54)

5.4 Total electric field

The total electric field at the observation point P is equal to the sum of the diffraction field originating
from the two diffraction points Qj, Qz and the reflected field. Assuming that there is an isotropic an­
tenna placed in the observation point P, which is only sensitive for the S-components of the incident
fields. Then the voltage at the terminals of this antenna can be written as

(5.55)

The constants Cl and Cz are introduced because the reflected and diffracted fields are not normaiized to
the same power.

The normalized diffracted field on the coverage plane-section from QI is equal to

the normalized diffracted field from Qz is equal to

EdZ(xJ =E;l '

and the normalized reflected field on the coverage plane-section is equal to

where 'xc' is the variabie along the coverage plane-section (-4 m:C;;; Xc ~ 4 m).

Now, V(xc) can be written as

(5.56a)

(5.56b)

(5.56c)

(5.57)

The value of Cl and Cz can be found by using the boundary conditions. At the edge (xc =4 m) of the
coverage plane-section, the following condition is valid:
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Hence,
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(5.58a)

(5.58b)

At the edge (xc = -4 m) of the coverage plane-section, the following condition is valid:

c2 Ed2 (xc = -4)= -tE'(xc = -4) .

Hence,

Substitution of (5.58) and (5.59) into (5.57) yields an expression for the voltage:

(5.59a)

(5.59b)

(5.60)

After normalizing the voltage V(xc) to the voltage due to the reflected field in the middle of the cover­
age plane-section V(xc=O), equation (5.60) can be expressed as (dB)

20 10 V(xC> = 20 10 E' (xC>
g V'(xc =0) g E'(xc =0)

E'(xc = 4) Ed1(XC>

2Edl (xc =4) E'(xc=O)

E'(xc = -4) E d2 (XC>

2 Ed2 (xc =-4) E'(xc =0)

(5.61)

The amplitude of the reflected field IE' (xc)1 on the coverage plane-section is equal to the root of the

illumination function H(xc). So:

(5.62)

Because, the illumination function H(xc) is a constant and equals one, the amplitude of the reflected
field E'(xc) on the coverage plane-section is also a constant and equals one.

The reflected field on the coverage plane-section can be written as

(5.63)

where kepi + PJ represents the phase of the field on the coverage plane-section, with pi and pr the
length of the incident and reflected rays as given in (5.4) and (5.5), respectively, (see Fig. 5.2).

The total field on the coverage plane-section using the shaped reflector antenna with FID=O.5,
D=30 cm and the edge illumination from the feed of -10 dB, is given in Fig. 5.12
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In Fig. 5.12, we can see that the maximum ripple of the field is about 1.5 dB. The field at the edge of
the coverage plane-section attenuates to about -6 dB. This attenuation of the field at the edge of the
coverage plane-section is unavoidable. The ripple of 1.5 dB can not be reduced by lowering the edge
illumination from the feed or varying the FlD-ratio, because by changing one of these parameters, the
reflector gets another shape. The diameter of the reflector is not going to change, because the diameter
of 30 cm is chosen to be fixed.

In Fig. 5.13, the electric field on the coverage plane-section is given using the shaped reflector with
FID=0.5, D=30 cm and an edge illumination from the feed of -20 dB. This has maximum ripple of
about 2.8 dB

In Fig. 5.14, the electric fields are given using the shaped reflectors with the following F/D-ratios:
F/D=O.4 and F/D=0.6 with an edge illumination from the feed of -10 dB. For each other shaped re­
flector the electric field has a maximum ripple larger than 1 dB.

Lowering the edge illumination from the feed or varying the FID-ratio do not result in reduction of the
ripple.

These computations are unreliable around xc=O. According to the equation of caustic divergence fac­
tor (5.12), there is a caustic at xc=O. The UTD-method for the calculation of diffraction fails around
xc=O. In this region the well known method EEC (Equivalent Edge Current Calculation) must be ap­
plied for the calculation of diffraction. This is a 8-region (see Fig. 5.2) of about 3° [7, page 70]. This
8-region correspond with a xc-region of (-0.16 < Xc < 0.16 m).

The conclusion that we can take from these computations, is that the total electric field using the re­
flector with F/D=O.4 and an edge illumination from the feed of -10 dB has the lowest ripple, but it is
not low enough. To get an even lower ripple, a new reflector must be designed. This will be described
in Chapter 6.

Total electric field, FfO:=O.S, 0:=30 cm, Edge iII.:=-10 dB, Oc:=8 m
3.------,.---,.---,.----.--------,,----,----,--------,

2
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-4 ~ : ; : ; ; ..
· .· .· .
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...: -: ; . ..... : ~ .

.7'------J'------J'------JL....-----JL....-----J----'----'----'4
-4 -3 -2 -1 0 1 2 3

Coverage plane-section, Xc rml

Fig. 5.12: Total electricfield on the coverage plane-sectionfor a shaped reflector with F/D=O.5
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Total electric field, F/0=0.5, 0=30 cm, Edge iII.=-20 dB, Oc=8 m
3r---,------.------.---0lIT"------.-------r--r-r-----,

2 .
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. ...........................................................................

-4 , , : : , , ..

-5

-6 .................... ,· .

-7'---------'--------'-------'----'--------'------'-------'------'
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Coverage plane-section, Xc [m]

Fig. 5.13: Total electric field on the coverage plane-section for a shaped reflector with edge

illumination from the feed of-20 dB

Total electric field, F/O=O.4, 0=30 cm, Edge ill,=-1 0 dB, Oc=8 m
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Fig. 5.14a: Total electric field on the coverage plane-section for a shaped reflector with F/D=O.4
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Total electric field, F/D=0.6, 0=30 cm, Edge iII.=-1 0 dB, Oc=8 m
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Fig. 5.14b: Total electric field on the coverage plane-section for a shaped reflector with FlD=O.6
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6. Shaped reflectortor extended
coverage area

6.1 Design of the shaped reflector antenna

The ripple of the electric field within the coverage area with a diameter of 8 m can be reduced con­
siderably by using a shaped reflector antenna dimensioned on a coverage plane-section of which the
diameter is larger than 8 m, so that the maximum ripple will be found outside of the desired coverage
area (this is the coverage plane-section with a diameter of 8 m). In our design, the diameter of the
coverage area has been extended to 10 m. At the edge of the coverage plane, there is an attenuation
larger than 6 dB, but this will also be found outside of the desired coverage area. The illumination
function H(xc) on the coverage plane-section must be chosen so, that it is constant within the area
with diameter of 8 mand outside of this it goes down. This has been done to make the ripple smaller.

The illumination function H(xc) is equal to

for 0 ~ xc::; 4

for 4< Xc ~ 5 '
(6.1)

with 'a' the slope of the function. Because IE(xc)1 = ~l- a (4 - xc)2 ,the slope must He within the

area: (0 < a < 1). Proceeding the design procedure of the reflector antenna as described in section 4.2,
the reflector can be designed considering the illumination function H(xC> given in (6.1). Starting point
is equation (4.8) in section 4.1.

Xc ~j

JH(r)cos(\}I'(r))rdr JGf(",)sin", d'If
° _-'0'-- _

D'Iz (X

JH(r) cos(\}I'(r)) rdr JG/",)sin", d",

° °

Equation (4.8) can be worked out for the different region.

For 0 < x& ::; 4

JH(r) cos(\}I' (r)) r dr

°4 5

JH(r) cos(\}I' (r)) r dr + JH(r) cos(\}I' (r)) r dr

° 4

"';

JGf (",) sin", d",

°(X
JGf (",) sin", d'If
°

(4.8)

(6.2a)
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For 4 < xI.: ~ 5

Shaped reflector for extended coverage area

4 Xc 'l'i

I H(r) cos('p' (r») r dr + I H(r) cos('p' (r») rdr I G f (\jI) sin \jI d\v
~o ~o~ = -'0'-- _

4 5 IX

I H(r)cos('P' (r»)rdr+ I H(r)cos('P' (r»)rdr I Gf (\jI) sin\jl d\v
° 4 °

(6.2b)

with De = 10 m, 'Pi = arctan( X, J,
F-y,

, --(Xe - X, J _J D )
'P = arctèU\ 3- y, and a = arctèU\2F .

Substituting equation (6.1) in (6.2) yields the following solution:

For 0 < Xl: ~ 4:

Xc

I cos [arctan( 3'-_yx:)] r dr [ ()]. cosn+1 arctan -/:!y; -1
-------....;o~--------------=

I

4
I5 cosn+1 [arctan( 3,)] - 1 '

cos[arctan( ;=~:)] r dr + cos[arctan( ;=~:)] [1- a(4 - r)2] r dr
° 4

(6.3a)

For4 < Xc ~ 5:

4 ~

~[_co_s_[ar_ct_an_(_;=_~_:)_]_r_dr_+---;..f_co_s_[ar_c_t_an_(_;=_~:_) ]_[_I_-_a_(4_-_r)_2_]_r_dr = cosn+1
[ arctan(-/:!y;)] _ 1

I

4
I5 cosn+1 [arctan( 3,)] - 1 .

cos[arctan( ;=~:)] r dr + cos[arctan( ;=~:)] [1- a(4 - r) 2] r dr
° 4

(6.3b)

Using 'Mathematica' [15], the integrals from (6.3) can be solved.

Xc

The integral,Intl= Icos[arctanG=;:)][I-a{4-r)2]rdr, from equation (6.3) has an analytical
4

solution. This is:
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Int] = ~ Iy, - 31· {-~25-8x, + x; - 6y, + y; [6+a(4+52x, -l1x; - 24y, +4y;)] +

+~9+x; -2x,xc +x~ -6y, + y; .

. [6+ a(-60+ 72x, -l1x, + 24xc -5x,xc - 2x~ - 24y, +4y;)]}+ 6.4)

+ ~ (y, - 3)[2x, +a(-72 -5x, + 16x; - 2x; +48y, -18x,y, -8y; + 3x,y;)] .

. {arcsinh( x;:_x; )- arcsinh( ;~~3)}
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5

The integral,Int2=Jcos[arctan(;=~:)][1-a(4-r)2] rdr, from equation (6.3) has a similar ana­
4

Xc

lytical solution with xc=5. The solution of the integral, Int3 = J cos[arctan( ;=~:)] r dr, from (6.3) is
o

given in equation (4.13). This is:

Int3= Iy, -31'(~9+x; -2x,xc +x~ -6y, + y; -~9+x; -6y, + y;)+

- (y, - 3) (x, arcsinh( xr:;) + x, arcsinhL:~3))
(6.5)

4

The integral, Int4 = J cos [arctan( ;=~:)] r dr, from equation (6.3) has a similar analytical solution as
o

the solution of Int3 with xc=4.

The shaped reflector antenna with F/D=0.5, D=30 cm, edge illumination from the feed = -10 dB and
the boundary conditions:

Xr = 0 for Xc = 0,

Xr = DI2 and Yr = 0 for Xc = 5 m,

has the form as given in Fig. 6.1 for a =0.5 and a =0.99. In this figure, we can see that the reflector
dimensioned for the illumination function with a slope near to one is less deep than that with a lower
slope.
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Shaped reflector, F/0=0.5, 0=30 cm, Edge i11.=-10 dB, Oc=10 m
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Fig. 6.1: Shaped reflector for extended coverage plane-section
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In Fig. 6.2, the ray pattem of the shaped reflector is given where the slope 'a' of the illumination
function is equal to a=0.5. The angle between the rays from the feed is about 2°. Between the inci­
dent and reflected rays, the law of Snel is satisfied.

Symmetrie shaped reflector with incident and reflected rays

E

~
.~ 0.1
"E
o
8

I
>.

o

-0.05
-0.2 -0.15 -0.1 -0.05 0 0.05

x-coordinate rml
0.1 0.15 0.2

Fig. 6.2: Ray pattern ofthe shaped reflector antennafor the extended coverage plane-section

Ray pattem of the shaped reflector antenna with the following specification:

• Diameter of reflector D = 30 cm

• F/D =0.5

• Edge illumination at feed =-10 dB

• Angle between the rays from feed = 2°

• Diameter of coverage plane-section =10 m

• Illumination function on coverage plane-section: H(xc) =1-a (4 - xc) 2

• a =0.5
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6.2 Total electric field on extended coverage area

The calculation of diffraction and total field on the extended coverage plane-section is based on the
principle described in the previous section. In Fig. 6.3 , the total field is given for a = 0.5, a = 0.9 and
a = 0.99. Assurning that there is an isotropic antenna placed in the observation point P, the voltage at
the terminals can be written as

with the boundary conditions:

dIl,
clE (xc =5)=-2 E (xc =5),

and

Substitution of (6.7) into (6.6) yields

where the E'(xc) for (0 ~ Xc ~ 4) is equal to

and for (4 < Xc ~ 5)

(6.6)

(6.7a)

(6.7b)

(6.8)

(6.9a)

E'(xJ = ~1-a(4-xn (6.9b)

with pi and pr given in (5.4) and (5.5) respectively. Normalizing equation (6.8) to the voltage due to
the reflected field in the rniddle of coverage plane-section V(xc=O), the voltage can be written (in dB)
as

20 10 V(xJ = 20 10 E' (xJ _ E' (xc = 5) E
dl

(xJ
g V'(xc = 0) g E'(xc = 0) 2Edl (xc = 5) E'(xc = 0)

E'(xc = -5) E d2 (XJ

2Ed2 (xc = -5) E'(xc = 0)

(6.10)
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From Fig. 6.3, we can observe clearly that the attenuation much larger than 6 dB at the edge of the
coverage plane-section and the maximum ripple appear outside the desired (coverage area with a
diameter of 8 m). We can also observe that the highest value of the slope of the illumination function
leads to the smallest diffraction.

Total electric field, F/0=0.5, 0=30 cm, Edge iII.=-10 dB, Oc=10 m, a=O.5
3.------r--,----r--,-----y---,----r--,----r----,

2

............ , ~ .. , ', . . . .. . ., ,

0

iii' -1:!:!.
"'C
Qj
'9 ·2 ....
w
(ij
Ö -3 '"l-

-4 ....... ~ ..

-5 ............

-6

-7
-4 -3-5 -2 -1 0 1 2

Coverage plane-section, Xc [mI
3 4 5

Fig. 6.3a: Total electrical field on the extended coverage plane-section where the illumination func­
tion has a slope of a = 0.5
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Total electrical, F/0=0.9, 0=30 cm, Edge i11.=-10 dB
3,-------,------.-------,,------.---,------.-----.---,-------r------,
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-S -4 -3 -2 -1 0 1 2 3 4
Coverage plane-section, Xc [mI

Fig. 6.3b: Total electrical field on the extended coverage plane-section where the illumination func­
tion has a slope of a = 0.9

Total electric field, F/O=O.S, 0=30 cm, Edge i11.=-10 dB, Oc=10 m, a=0.99
3r-----,--,------,--,------.--.,------,----.,-----,------,
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-S : : :- ..
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Coverage plane-section, Xc [mI

Fig. 6.3c: Total electrical field on the extended coverage plane-section where the illumination func­
tion has a slope of a =0.99
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7. Conclusions and Recommendations

7.1 Conclusions

Antennas for the (MSS) Median Server Station have been designed that will be used for the Median
demonstrator. The demand that was made on the design was that the antenna, flxed at a height of 3 m,
should exhibit an uniform coverage on the coverage plane-section (circle area on the ground with a
diameter of 8 m).

The flrst antenna that has been designed is the bended biconical-horn antenna. This antenna derived
from the standard biconical-horn antenna by bending it downwards. The performance of the bended
biconical-horn antenna does not satisfy the demand of uniform coverage because it exhibits a ring­
shaped coverage with a ring width of about 2 m. By increasing the angle of bending, the ring-shaped
coverage area becomes narrower and it slides towards the centre of the coverage plane. This antenna
can be used in special applications.

The second antenna that has been designed is the shaped reflector antenna with a diameter of 30 cm.
The reflector is shaped in such a way that there arises always a uniform coverage on the coverage
plane. Because of diffraction at the edges of the reflector, ripples appear in the field on the coverage
plane. The maximum ripple is larger than 1.5 dB and there is an attenuation of 6 dB at the edge of the
coverage plane-section. The ripple can not be reduced by varying the FlD-ratio or lowering the edge
illumination at the feed, because by changing one of these parameters the reflector gets another
shape. This problem has been solved by shaping the reflector for a coverage plane-section with a
diameter larger than 8 m, so that the maximum ripple and the attenuation larger 6 dB at the edge of
coverage plane-section will be found outside the desired coverage area. By taking a tapered illumina­
tion function on the coverage plane, a smaller ripple is realized. The maximum ripple was found to be
smaller than 0.5 dB. So, we can conclude that the coverage of the shaped reflector antenna is almost
uniform and it is therefore a suitable antenna for the Median demonstrator.

7.2 Recommendations

In the general introduction (Chapter 1), three types of antennas are mentioned that can be used for the
Median demonstrator. The performances of the flrst two antenna types have been investigated and it
was concluded that the shaped reflector is a suitable antenna for the Median demonstrator. It is rec­
ommended to analyze also the third type, i.e., corrugated-horn antenna and compare its performance
with that of the shaped reflector antenna.

The second recomrnendation is to investigate the influence of blocking on the performance of the
shaped reflector antenna. Another recomrnendation is to realize the shaped reflector with the appro­
priate parameters and verify its performance by measurements.
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AppendixA

Derivation of expression (3.1) and (3.2).

Nt
sinS ::j:­

r

S'=a.+S

Nt
sinS' = sin(a. +S) =­

r

Substituting of

sin(a. + S ) = sina. cosS + cosa. sinS

in (A3) yields

Nt
sin a. cos S + cos a. sin S = - .

r

Dividing left and right of equation (A4) by case gives

Nt 1
sina. + cosa. tanS = ---S '

r cos

tlh ( )-1cosS = - sina. +cosa. tanS .
r

With S = S ' - a. , equation (A5) becomes

Nt 1
cosS =

r sin a. + cos a. tan( S ' - a. )

Substituting of S' = arcsin( ~) in (A6) yields

M 1
cosS = -------------

r sina. +cosa. tan[arcsin( ~)-a.]

69

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A?)
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!1h
sin a cos a + cos a sin a =­

r

Dividing left and right of equation (A4) by sine gives

sina !1h 1
cosa+--=---

tana r sina '

!1h tana
sina = .

r cosa tana + sma

With a = a ' - a ,equation (A8) becomes

. 1ill tan(a ' - a )
sma = .

r cosa tan(a' -a) + sma

Substituting of a' = arcsin(~) in (A9) yields

. !1h tan[arcsin( ~ ) - a]
sma = -------=----'-----'--------=-"---

r cosa tan[arcsin( ~h ) - a] + sina

Apendix A

(A4)

(A8)

(A9)

(AIO)
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