
 Eindhoven University of Technology

MASTER

Design of an embedded microprocessor for array intensive tasks

Wijffels, A.

Award date:
1996

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8ae01496-3ae3-444c-9861-efe8ce2af461

Technische UniversiteittÛ)Eindhoven

Faculty ofElectrical Engineering
Section ofDigital Information Systems

Master's Thesis:

Design of an embedded
microprocessor for array
intensive tasks.

ing. A. Wijffels

Coach

Supervisor

Period

: dr. ir. A.C. Verschueren

: ir. L.C. Benschop

: prof. ir. M.P.J. Stevens

: July 1995-April 1996

The Faculty ofElectrical Engineering of Eindhoven University ofTeclmology does not
accept any responsibility regarding !he contenls of Masters Theses

Preface

Preface

In 1985 I got my Bachelor's degree in Electronics and became an employee at the
Eindhoven University of Technology. Three years later I decided to register as a student
again and in my spare time started a study at the university to achieve my Master's
degree. This report is the final part of that study.

During my years of study at the university I had the pleasure to study with my colleague
and roommate Wido Kruijtzer. We have spent a lot of time together. In our sodal live we
spent time together playing tennis, biking in the Belgium Ardennes and trying to win the
first price of the Eindhoven University of Technology car rally. I thank him a lot for his
support and company during those years.
Ilike to thank my boss and coach prof. ir. M.P.J. Stevens, who gave me the opportunity
to realise this study. Also I Iike to thank him for this project which I enjoyed a lot. llike to
thank my other coaches dr. ir. A.C Verschueren and ir. L.C. Benschop for their support
on this work.
I like to thank all of my colleagues who supported me with my study and in particular our
secretary Rian van Gaaien for her cheerfulness. Together with her and Frank Volf we
had good times baking the 'oliebollen' for the 'end of the year celebration'. Also I like to
thank Frank for his support of the computer management which gave me more time for
my study. I still need his good support during the car rallies.
Furthermore, like to thank my wife Tineke for all the support she gave me during my
study and especially for her care during the last few weeks in which I had to finish this
report.
Last but not least I Iike to thank my parents for their support during all my years of
education. I know this achievement makes them very proud.

Abstract

Abstract

For his PhD thesis ir. L.C. Benschop has defined a VLSI circuit that can compress and
decompress data in hardware at a speed of 100 Megabit per second. The functionality of
the circuit has been analysed and for all functions the optimum implementation
technique has been selected. The resulting architecture consists of several parts
including an embedded microprocessor. This report explains the design of this
microprocessor.
The processor to be designed must perform the intermediate rate, high complexity tasks
of a lossless data compressor and decompressor. More specifically it must generate the
optimum Huffman code from statistics of the data. Further it must encode and decode
descriptions of these Huffman codes. These descriptions are included with the
compressed data. Finally it must program the code into the Huffman encoding and
decoding hardware. These algorithms use simple operations (like addition) and no
multiplication or division. They do frequently access arrays in a random order. Therefore
array indexing must be very efficient. Speed requirements are high for this
embedded processor (target is 50 MHz).
The proposed processor has a Harvard architecture. This means that the program
memory and the data memory are separate. Instructions and data can be accessed at
the same time. The program memory is a ROM and the data memory is a RAM. A small
part of the data address space will be mapped to 1/0 devices.
The step by step design path is shown according to the method as shown by Patterson
and Hennessy in their book 'Computer organisation and design, the hardware/software
interface'. First the datapaths are defined necessary to execute the several addressing
modes of the binary operations. A stack pointer and the datapaths for the (conditional)
branch instructions are added and finally a datapath is added to implement the interrupt
feature.
To increase the throughput of the microprocessor pipelines are implemented. As the
pipeline became too long the design specification was changed and the microprocessor
was given a load-store architecture.
To decrease data hazards data-forwarding has been added.
The final design is model led and simulated with IDaSS, an interactive design and
simulation environment for synchronous digital circuits.
To know whether the timing requirements are achieved the design can be translated to
VHDL. With a silicon compiler the design can then be implemented in silicon and a more
accurate timing analyses can be done.

iii

Table of contents

Table of contents.

Preface ii
Abstract iii

1 Introduction 1
1.1 Overview of the VLSI design project.. 1
1.2 Compression methods 2
1.3 The architecture 2

2 The microprocessor specification 5
2.1 Introduction 5
2.2 Overview of the architecture 6
2.3 Memory and 1/0 interfacing 8
2.4 The instruction set 9
2.5 Application-specific instructions 15
2.6 Interrupts 15
2.7 Variations 15
2.8 Modifications and supplements to the original concept 16
2.8.1 Changing to a load-store architecture 16
2.8.2 Changing the suggested encoding of the instructions 16
2.8.3 The displacement in case of a conditional branch instruction 20
2.8.4 The bidirectional databus changed to two separate busses 20

3 Designing an architecture for the embedded processor 21
3.1 Constructing a datapath for the program counter 21
3.2 . Constructing the part of the datapath for the binary operations 21
3.2.1 Register to register binary operations 22
3.2.2 Direct addressing binary operations 23
3.2.3 Indexed addressing binary operations 24
3.2.4 Immediate addressing binary operations 25
3.2.5 Putting the parts together for the binary operations 26
3.3 Adding the part of the datapath for the unary operations 28
3.4 Adding the part of the datapath for al the jump operations 29
3.5 Constructing the part of the datapath for the other operations 31
3.5.1 Constructing a datapath for the till instruction 31
3.5.2 Constructing a datapath for the rti instruction 33

4 Adding pipelines to the design 37
4.1 Chopping the datapath into pipe stages 37
4.2 Data hazards 44
4.3 Branch hazards 46

5 Modelling and simulation 51
5.1 The microprocessor environment.. 52
5.2 .The fetch stage 53
5.2.1 The logic block namuxc 53
5.2.2 The logic blocks amux and imux 54
5.2.3 The finite state machine controller intctrl 55

iv

Table of contents

5.3 The decode stage 59
5.3.1 The logie bloek deeetrl 60
5.3.2 The logie bloek wbetrl 61
5.3.3 The logie bloek fbetrl 62
5.3.4 The logie bloek stall 63
5.3.5 The finite state machine controller idetrl 65
5.4 The exeeute stage 66
5.4.1 The logie bloek fbetrl 66
5.4.2 The logie bloek exetrl 68
5.5 The write-baek stage 70
5.5.1 The logie bloek flgen 70
5.5.2 The logie bloek brlogie 72
5.6 Test verifieation 73
5.6.1 Testing of the instruetion set.. 73
5.6.2 Testing of the interrupt feature 73
5.7 Critieal path analyses 73

6 Conelusions and reeommendations 81

Bibliographies 83

Appendix
A: The IDaSS models of the mieroproeessor 85
B : The assembler code for testing the instruetion set. 169
C : The assembler code of a realistic program 173

v

chapter 1

1 Introduction.

Introduction

Modern software for personal computers asks for a lot of disk space. Three years ago
one would buy a new PC with a harddisk of 100 MegaByte. That was sufficient at the
time but nowadays 10 times that amount is needed. The explosive growth of software
and information data makes it necessary to store data more efficiently. Software tools
like 'DoubleSpace' have been introduced to compress data when written to hard disk
and decompress when read from the disk.
Because of the growth of information data, the transport of this data increases also. The
user of a communication line is charged for the amount of bits which he sends over the
line. To decrease the amount of data to be transmitted and to gain speed the data can
best be compressed before it will be transmitted and decompressed at the receiving
side.

These techniques are not new and are already used on a large scale. But most of the
time it is done by software, which makes it relatively slow.
For his PhD thesis ir. L.C. Benschop has defined a VLSI circuit that can compress and
decompress data in hardware at a speed of 100 Megabit per second.

The VLSI circuit that must be designed has the following features:
• Optimised for lossless data compression of typical computer files, like English text

and computer programs.
• A speed potentialof 100 Megabit per second or more (rate of uncompressed data).
• A compression ratio comparable to that of widely used software methods (2.9

bits/byte).

Apart from these features there is a requirement that the design is sufficiently generic, so
that it can be adapted to specific requirements.

The functionality of the circuit has been analysed and for all functions the optimum
implementation technique has been selected. The resulting architecture consists of
several parts including an embedded microprocessor. All functions have been mapped
to the architecture.

1.1 Overview of the VLSI design project.

The VLSI circuit operates as a peripheral within a normal computer system. It is usabie
with a wide variety of computer bus architectures, employing a data bus of 8, 16 or 32
bits wide. It employs two DMA channels, one to receive the input data and one to write
the output data. The device is programmabie by the host system through 1/0 ports. It
sends interrupts to the CPU in the host system whenever CPU attention is needed. CPU
attention is needed for the allocation of new memory buffers for the DMA process, but
not for steps of the compression process itself. The device can either be used for
compression or for decompression, but it can only perform one of the tasks at a time.

1

chapter 1

1.2 Compression methods.

Introduction

The device uses the LZH (Lempel Ziv+Huffman) method, which is a combination of two
methods, sliding window coding (a variation of LZ77) and Huffman coding. The popular
PC programs PKZIP, LHA and ARJ are known to use this method. lts compression ratio
is considerably worse than that of the most advanced software methods (arithmetic
coding and a method of context modelling), but better than either Huffman coding or
Lempel-Ziv coding perform alone. At the moment, very high speed implementation of
methods that perform better than LZH seems infeasible.
The format of the compressed data is compatible with that of the data produced by the
LHA program.
True dynamic Huffman coding has been considered, but its algorithmic complexity was
found too high for the required speed. Static Huffman coding is used. This means that
blocks of data are collected and for each block the Huffman code is computed from the
frequency statistics.

host epu DMA
control host RAM Host System

.....---ext bu_-----

Compression Processor

figure 1.1. The main madules af the VLSI circuit far data campressian and decampressian.

1.3 The architecture.

The device contains the following main modules as can be seen in figure 1.1:

2

chapter 1 Introduction

• Bus interface
It reads the input data and writes the output data through two DMA channels of
the host computer. Further it communicates with the host computer through 1/0
registers and interrupts.

• Sliding window coder
It performs compression or decompression using sliding window coding.

• Buffering and statistics module
It stores blocks of lengths, literals and addresses into a separate external RAM
and retrieves them later. When storing the data, it compiles frequency statistics.
When the device is decompressing, the modules pass the data, using the external
memory as a FIFO (first in/first out).

• Huffman coder
It performs Huffman coding or decoding of lengths, literals and addresses, using
code descriptions stored in a RAM. It also enables the internal processor to send
and receive bit fields in the compressed data stream.

• Internal processor
It contrals all other main modules, it performs the Huffman tree computation and it
sends and receives Huffman tree descriptions in the compressed data. Note that
Huffman tree computation can be performed efficiently in software.

Sliding window coding, Huffman tree computation and Huffman coding are the stages of
a high-level pipeline. They are performed concurrentlyon different data blocks.

There is an internal processor bus to which all main modules are connected. The other
main modules have 110 ports through which they are controlled and give status. The
modules can also generate internal interrupts. The internal processor is the only bus
master on the internal processor bus. Only the bus interface module is connected to the
host system bus.

This report contains the design of the embedded microprocessor. Chapter 2 describes
the specifications of the microprocessor and the main parts it must contain. It will have a
RISC architecture (reduced instruction set computing) and the instruction set and
encoding is given. Chapter 3 describes the design of the datapaths that conneet the
main parts of the microprocessor, necessary to execute the instructions. To gain speed
the microprocessor is given a pipelined architecture. The modifications to the datapath
necessary to implement these pipelines are shown in chapter 4. A high-level design tooi
is used to implement the design. This is shown in chapter 5. It also contains an analyses
of the critical paths. The final chapter gives the conclusions and recommendations.

3

chapter 2 The microprocessor specifications

2 The microprocessor specifications.

This chapter contains the specification of the embedded microprocessor as proposed by
ir. L.C. Benschop. Section 2.8 contains some modifications on the original specifications.

2.1 Introduction.

Many ASICs perform tasks whose functionality is best implemented in software. They
therefore contain a programmed embedded processor. This processor is integrated into
the ASIC and it is not accessible from outside.

In a complex system we can distinguish several types of tasks.

• High rate tasks that cannot be performed at the required speed by a programmabie
computer. Dedicated hardware is needed to perform these tasks. The dedicated
hardware performs a single or very few different operations at high speed. Sometimes
many operations are performed in parallel.

• Intermediate rate tasks. These tasks can be performed by a programmed computer. If
they are repetitions of a single operation they are usually not implemented that way as
a complex device is tied up nearly all the time by a simple operation. If these tasks are
very complex, they are implemented by a computer. The computer often has to have
special capabilities, for example with digital signal processing.

• Low rate tasks. Any embedded processor has enough computing power to handle
these. These tasks would usually require certain 110 facilities and an interrupt
capability of the processor.

The processor to be designed must perform the intermediate rate, high complexity tasks
of a lossless data compressor and decompressor. More specifically it must generate the
optimum Huffman code from statistics of the data. Further it must encode and decode
descriptions of these Huffman codes. These descriptions are included with the
compressed data. Finally it must program the code into the Huffman encoding and
decoding hardware. These algorithms use simple operations (like addition) and no
multiplication or division. They do frequently access arrays in a random order. Therefore
array indexing must be very efficient. Speed requirements are high for an
embedded processor.

As the designed processor is the only processor in the device, it will also handle the low
rate tasks. We decided not to use a second processor for the low rate tasks for the
following reasons.

• The task performed by the device is not real-time. It is therefore acceptable that the
intermediate rate tasks are interrupted for a short time to perform low rate tasks.

• The processor already needs a fairly extensive 110 capability to perform the
intermediate rate tasks.

5

chapter 2 The microprocessor specifications

This section is a specification for a processor that meets the following requirements.

• The word size and the size of the addressable memory are adapted to the tasks that
must be performed.

• The instruction set is adapted to the tasks that must be performed. Multiplication and
division are left out whereas some unusual instructions are included.

• The processor must run at a very high speed.

• Addressing modes are optimised for random access of arrays.

• The instruction set is general enough to be used for typical low-rate control tasks.

• The processor interfaces to the rest of the system.

• It must be implemented in IDaSS and/or VHDL so it can be integrated into the rest of
the design.

2.2 Overview of the architecture.

The proposed processor has a Harvard architecture. This means that the program
memory and the data memory are separate. Instructions and data can be accessed at
the same time. The program memory is a ROM and the data memory is a RAM. A small
part of the data address space will be mapped to 1/0 devices.

Operations of up to 16 bit quantities are required, hence the data registers and memory
locations are 16 bits wide. The proposed instruction encoding requires an instruction
width of 16 bits as weil. Program addresses are Iimited to 12 bits, but the only basis for
this limitation is the encoding of the jump and jsr instructions. Extension to 13 or even 16
bits should be possible, if necessary. Data addresses are 16 bits, but they could be
reduced, e.g. to 12 bits if that is sufficient. In the proposed application 12 bits would be
sufficient. As a consequence the base registers and stack pointer could all be reduced to
12 bits.

The processor would have the following registers.

• index base registers
There are up to 16 index base registers. They are added to an index register to
obtain the address in indexed addressing mode. These registers are typically set to
the start address of an array and remain constant during the execution of an
algorithm. The index registers are used as the array index and vary far more
frequently.

• direct base registers
There are up to 2 direct base registers. They are added to a 6-bit direct address to
obtain the address in direct addressing mode. These registers are typically set to a
memory area for various variables and the 1/0 address area respectively.

6

chapter 2 The microprocessor specifications

The direct addressing mode is then used to address either one of 64 variables or
one of 64 I/a ports.

• general purpose registers
There are up to 8 general purpose registers. Arithmetic and logic operations always
have a general purpose register as the destination. One of the source operands is
the same register as the destination and the other source operand is either a
general purpose register, a memory operand, or an immediate value. General
purpose registers also serve as index registers in indexed addressing mode. If the
word 'register' is used in this paper, its default meaning is one of the general
purpose registers.

• program counter
The program counter addresses an address in ROM where the next instruction will
be loaded from.

• stack pointer
The stack pointer addresses the top of stack in RAM. The stack will grow downward
as registers or return addresses are pushed on it. The stack is used by the
push/pop instructions, the jsr/rts instructions and by interrupts.

• status flags
The status flags indicate the result of the last compare instruction, whether the
result of the last instruction was zero or whether the result of the last instruction
was all bits set.

The execution of an instruction takes the following steps.

• Fetch the instruction from ROM at the program counter address.
• Decode the instruction.
• Get the values of the register operand(s).
• Compute the address of the memory operand and address the memory.
• Get the value of the memory operand.
• Compute the result.
• Increment the program counter or assign a new value to it Uump).
• Store the result in a register if appropriate.
• Store the appropriate flag values.
• Check for interrupt, if it occurs save program counter and status flags, reload program

counter with start address interrupt routine.

Many of these steps can be combined into one cycle by using combinatorial
logic and pipelining.

The following operations will each take a clock cycle.

• Accessing the RAM for either reading or writing.
• Actually storing values in registers.
• Accessing the ROM for reading an instruction.

7

chapter 2 The microprocessor specifications

Each instruction accesses only one RAM location (either reading or writing), reads only
one ROM location and modifies at most one register, not counting stack pointer, program
counter or status bits.
By careful design it should be theoretically possible to finish each instruction in exactly
one cycle. A practical pipelined processor will have certain inter-instruction
dependencies that require at least one cycle between them.

2.3 Memory and 1/0 interfacing.

The processor has the following connections to the rest of the system.

• data
This is a 16 bit wide bi-directional bus. It carries all data from and to the RAM and
the 110 devices.

• address
This is a 12 bit wide bus driven by the processor. It carries the address of the RAM
location or the 1/0 device that is accessed.

• read
This is one line driven by the processor. If set high, the RAM (or the addressed 1/0
port) must place a value on the bus at the next clock edge.

• write
This is one line driven by the processor. If set high, the RAM (or the addressed 1/0
port) must accept the value on the data bus at the next clock edge.

• interrupt
This is an input \ine for the processor. If it is high at the active clock edge, the
processor interrupts its normal program flow.

The ROM is part of the processor itself and the connections to it are not
described here.

The external interface is similar to a traditional processor bus, except that it is a
synchronous design in which all bus cycles take exactly one clock cycle. If an address is
placed on the address bus along with the read and write signais, the addressed data
(either read from RAM or written to RAM) appears on the data bus during the next clock
cycle and by that time the next address may already appear.

An address decoding circuit will decode the address into the signals necessary to select
the various pieces of RAM and 110 devices. This decoder is primarily a combinatorial
circuit. In the designed system a 4 kiloword address range is expected, divided into the
following regions.

• 2 kilowords of RAM that is only accessible by this processor.

• About 1 kiloword of RAM that is swappable between the processor and the Huffman
encoder/decoder. There are two 'banks' of this RAM, one being exclusively accessible
by the Huffman coder and the other being exclusively accessible by the processor.
While the Huffman coder uses one of the memory banks, the processor prepares the
other bank for the next set of codes. The banks are swapped by setting one input to
the address decoding circuit.

8

chapter 2 The microprocessor specifications

• About 0.5 kilowords of RAM that is swappable between the processor and the
statistics collecting module.

• A 16 byte 'parameter RAM', which is shared between the processor and the bus
interface of the device.

• Various control, status and other ports of the other modules. These are the 110
addresses, preferably mapped to one consecutive range. It is expected that less than
64 addresses are needed.

2.4 The instruction set.

The proposed processor must have the following instructions. The mnemonics of similar
instructions on widely used processors are used.

add Add, binary operation.

and Logical bitwise and, binary operation.

emp Compare, destination is not changed, only flags indicate whether destination
was above, below or equal to the source operand, using unsigned binary
arithmetic.

epi Complement register (unary operation).

djnz (optional) Decrement a register and jump if it was not zero.

ja Jump if flags indicate Above.

jae Jump if flags indicate Above or Equal.

jb Jump if flags indicate Below.

jbe Jump if flags indicate Below or Equal.

je Jump if flags indicate Equal.

jmp Jump to ROM address.

jne Jump if flags indicate Not Equal.

jns Jump if All-set flag is not set.

jnz Jump if Zero flag is not set.

js Jump if All-set flag is set.

jsr Jump to subroutine at ROM address, push old program counter on stack.

9

chapter 2

jz Jump if Zero flag is set.

The microprocessor specifications

mhi Move immediate data to high 8 bits of destination register.

mov Move source operand to destination operand. Both can be registers, the source
can be a memory or immediate operand, in which case the destination is a
register. The destination can be a memory operand, in which case the source
must be a register. If either of the operands is a non-general purpose register
(base register, stack pointer), the other operand must be a general purpose
register. As opposed to other instructions, mov occurs in many different
instruction formats.

or Logical bitwise or (binary operation).

pop Pop a register from the stack (unary operation).

push Push a register onto the stack (unary operation).

rti Return from interrupt.

rts Return from subroutine.

set Set register to all ones (unary operation).

shl8 Shift a general purpose register left 8 places (unary operation).

shr Shift a general purpose register right (unary operation). There is no shl, because
an add of the register to itself already does this.

shr8 Shift a general purpose register right 8 places (unary operation).

sub Subtract source from destination (binary operand).

xor Logical bitwise xor (binary operation).

Next to these instructions there are three more application specific instructions: sel2,
sel3 and the till operation. They will be discussed in section 2.5.

The instructions fall into several categories.

• Binary operations
These are add, sub, and, or, xor, cmp, mov and mhi. There are 8 binary operations.
mhi only occurs with immediate addressing. With the other addressing modes there
are two different forms of mov, one to move the source operand to the destination
register (Ioad) and one to move the destination register to memory at the address
of the source operand (store). With register to register operations, only seven
binary operations are possible.

10

chapter 2 The microprocessor specifications

• Unary operations
These are epi, pop, push, set, shl, shr and shr8. These operations have one
register as an operand. Up to 16 different unary operations can be specified. push
and pop access memory and modify the stack pointer.

• Jump operations
These are djnz, ja, jae, jb, jbe, je, jmp, jne, jns, jnz, js, jsr and jz. jmp and jsr have a
12 bit address that can be any ROM /ocation. The other jump operations specify an
8-bit signed displacement with respect to the current program counter. At this
stage of the specification it is not important whether or not the program counter was
already incremented before the displacement is added to i1.

• Other operations
These are rti, rts and other application specific instructions.

The binary operations have the following possible addressing modes.

• register to register
The souree operand and the destination operand are both registers.

• direct addressing
The destination operand is a register and the souree operand is in memory at an
address that is the sum of a direct base register and a 6-bit address specified in the
instruction. There are two directly addressable areas of 64 locations each. One of
the areas will be used to store certain variables and the other one will be the 1/0
area.

• indexed addressing
The destination operand is a register and the souree operand is in memory at an
address that is the sum of an index base register and a general purpose register
(used as index register). This is the primary mode to access arrays.

• immediate addressing
The destination operand is a register and the souree operand is an 8-bit value. The
high bits of this value are O. mov with an immediate operand sets the high bits of
the destination to zero. mhi sets the high bits of the destination register to the
immediate value and leaves the low bits unchanged.
The proper way to set r1 to the value 1234h is therefore

mov r1,34h
mhi r1,12h

The logical operations with immediate addressing are often needed to select
certain flag bits in 110 operations. Therefore we willlimit the width of 1/0 ports with
flag bits to 8 bits.

11

chapter 2 The microprocessor specifications

A possible encoding for the instruction set with each instruction fitting in 16 bits is shown
in table 2.1. The fields have the following meaning.

addr12

bd

basei

bop

cond

direct6

disp

imm8

jop

regd

regi

regs

uop

12-bit address in jmp or jsr instruction.

1-bit direct base register specifier.

4-bit index base register specifier.

3-bit specifier for binary operation.

4-bit specifier for jump condition.

6-bit direct address.

a-bit signed displacement in jump conditions.

a-bit immediate value.

1-bit specifier to select jmp to jsr.

3-bit specifier for destination register.

3-bit specifier for index register.

3-bit specifier for source register.

4-bit specifier for unary operation.

It is not required (maybe not desirabie) to use the exact same encoding, but
this one shows that it is possible to encode all instructions in 16 bits.

Table 2.2 contains the encoding of the several fields of the instructions.

12

chapter 2 The microprocessor specifications

--...;.;;....;-------disp8-...;-~-- x --regd--

1 1 0 0 x x x x x ----uop---- --regd-- Unary operation

1 1 0 1 x x x --regs-- --bop--- --regd-- Binary operation, register

1 1 1 ---basei--- --regi-- 0 0 0 --regs-- FILL

1 1 1 ---basei--- 0 0 0 0 0 1 --regs-- Movto base register
.

1 1 1 x x x x 0 bd 1 0 0 1 --regs-- Movio direct base reg

1 1 1 x x x x 1 0 0 0 0 1 --regs-- Mov to SP

1 1 1 x x x x x x x 1 1 0 x x x RTS

1 1 1 x x x x x x x 1 1 1 x x x RTl

table 2.1. One way to encode the instructions.

13

chapter 2 The microprocessor specifications

.. ".
. . .

. Binaryoperalions(bop field) ...
.'.. 0 0 0 Mov '.,. ..' ,.....".'.'.'./'

bêf1, Mov(r'everse cfiiéetion),Mhi with immediate

Il:IIlliiii;;~~!~::::tt > Ct ti iii >< >< >

111 .. <Cmp

lJn~~~p:rati~ns(uop tleIICll·/·'·

,<0 00 0 Pöp
/0 0 0 1 Push
001 0 C I... P
0011 Set
o1 0 0 (reserved)
010 1 Shr
01 1 0 Shl8
o1 1 1 Shr8
1 0 0 0 Sel2
1 0 01 Sel3

Jump operations GoP field)
o Jmp
1 Jsr

Jump eonditions (eond field)
o0 0 0 Jbe (below or equal)
o0 0 1 Ja (above)

." .. 0 0 1 0 Jb (below)
00 1 1· Jae (aboveor equal)
01 0 0 Je (equal)

.0 10 1 Jne (not equal)
o 1·1,0 Jz (zero).,,> />

Io1·1·1 ,.,. Jnz (riofzef6) .. » ,,•••••••••••••• ,.
1ÓO0 .. Js (all set) >

'·'ro or Jns(notallset)/ ...

\
I
I Last eompare
I
I
I
\ Zero flag
I

. \ All-set flag
I /'

tab/e 2.2. Eneoding of the bop. uop, jop and eond sub fie/ds.

14

chapter 2

2.5 Application-specific instructions.

The microprocessor specifications

For the specific application of Huffman tree computation the following special
instructions are desired.

fill Fill a memory region with a certain value. The value is in the source register.
The memory region is specified by an index base and an index register. The
source register is stored in memory at the address that is the sum of the index
base register and the index register. Then the index register is decremented by
one. If the index register is decremented below zero (it then contains all 1 bits),
the instruction terminates, else the instruction does not increment the program
counter and repeats itself.
This way a region could be filled one location per clock cycle.

sel2 Select second field (unary operation). Shift the destination register right four
places and 'and' with 15.

sel3 Select third field (unary operation). Shift the destination register right eight
places and 'and' with 31.

2.6 Interrupts.

When the microprocessor is reset it starts execution at ROM address O. When an
interrupt occurs, the program counter and status bits are saved and execution proceeds
at ROM address 1. The rti instruction restores the program counter and status bits that
were saved by the interrupt. Only one interrupt is planned. The interrupt handier would
poll the various possible interrupt sources to see which event caused it. 8etween an
interrupt and an rti, the interrupt is disabled.

As program addresses are 12 bit and there are four status bits (two for compare result,
an all-set flag and a zero flag), it would be possible to combine them in one 16-bit word
and push that onto the stack.

Alternatively one can use a special-purpose register to save the program counter and
status bits.

2.7 Variations.

It would be possible to simplify the processor considerably if the following modifications
could be carried out.
Whether these variations are acceptable is highly dependent on the program that is run
on the processor. It is probably only known after the software is written.

15

chapter 2

The following variations are proposed.

The microprocessor specifications

• Leave out the stack pointer, the push and pop instructions and the jsr/rts instructions.
For the interrupt facility use a special-purpose register to save the program counter
and the status.

• Hardwire all or some base registers to fixed locations. These registers can than be
replaced by ROM cells, or even a combinatorial circuit. For the direct base registers,
this is almost certainly possible.

2.8 Modifications and supplements to the original concept.

This section describes the modifications made to the original concept during the course
of the design.

2.8.1 Changing to a load-store architecture.

All binary operations can also be pertormed on data which comes directly from the Data
Memory. When implementing pipelines in the design it became clear that there were two
extra pipeline stages necessary to make this possible. These extra pipeline stages
would cause some extra stalling of the throughput of the pipeline. Therefore the decision
was made to change the concept and to give the processor a load-store architecture.
This means that no operations can directly be done on data coming from or going to the
Data Memory.
If an operation must be pertormed on data from the Data Memory, this data must first be
transferred to one of the General Purpose Registers. Then the operation can be
pertormed on the data after which it will be written back to one of the General Purpose
Registers. Then this result can be written back to the Data Memory.

2.8.2 Changing the suggested encoding of the instructions.

In the assignment suggestions were made for the instruction encoding. After a closer
study some changes have been made.

The suggested encoding of the instructions for "direct binary operations" and for "move
to direct base register" were:

15 14],3 12 11 10 9 8· 7 6 5 4 3 2 1 0 ...< ..

(»01l:>ef--..;--ctlrect6----- -..;bop~~- --regd-- Binary operatiml,dirê2t

1 11) x x x x 0 bd 10 0 1 "'--regs-- Mov to direct base règ

As bit 12 of the "mov to direct base reg" is a don't care it would be more logical to use
that same bit for assigning which direct base register is to be used.

16

chapter 2

The encoding then changes to:

The microprocessor specifications

15 1413 12 11 10 9 8 7 6 5 4 3 2 1 o

f)ië» 1 bd -----direct6...----,..-bop--,.. --regd~~ Biriary op~rátiÓl'1igir~çf

Another change has been made to the encoding of the "Mov to ... 11 instructions. With the
aforementioned change the encoding would have been:

151413121L109

ii1t----B~s~~-iS
1 1bd x x x

8 >7 6 5 4 3 2 1 0

0 0 0 <0 0 1 --regs--:

1

::::.:».:::<>
11 x x x x

o

1

01

o 0

o

o

o

o

·M'··""··"·':"'·;t>ibIC~t·························••••••••••••••.. ".
ov 0 ase reglser«

1 --regs--MOv to direct base reg
••• • •• 0.

1 --regs-- Mov to SP

Less hardware for instruction decoding can be used if bits 6 to 8 each have a one in a
different place. This changes the encoding into:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 ---basei--- 0 0 1 0 0 1 --regs-- Mov to base register

1 1 ·'··1· bd· x x x 0 1 0 0 0 1 --regs-- Mov to direct base reg

1 11 x x x x 1 0 0 0 0 1 --regs-- Mov to SP

It is necessary to have an instruction which does nothing, the so called NOP instruction.
The best value for this instruction is all ones or all zeroes. In the suggested encoding the
easiest way is to choose for all ones. This means that the bit assignment for the RTl
instruction must be altered. It can be changed into:

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0
,, ,
,, ,

Ril1 1 i< x /"·'·x x X X X x 1 0 0 x x x ,, ,

It will still remain having only one bit different (bit 4) with the RTS instruction which it is
c10sely related to.
Next to the newly introduced NOP instruction there is also need for an instruction to teil
the microprocessor to start an interrupt routine. This will be called the INT instruction.
The NOP and INT instruction can be encoded as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 ····"·"1·"',·
..,
x 0 1 0 INT.. x"· x x x x x x x x

.. : ... ::>.".

1 1 1 x x x x x X x 1 1 1 x x x NOP

17

chapter 2 The microprocessor specifications

The complete encoding as will be implemented is shown in table 2.3.

........ ' -..:

151413 1:2 11 10 98 76 54 3 2 1 0

0··· 0 ····.0 ·L~-basei--'- --re9'i-~ ·-~bop--- --regd-- Binaryoperati6r1,igde~èèr
·••••••••ö••••••••·.··6·....·.· ••·••i·•••• b&·······~-'-·~:dii~cf.g:L·~î2·· ·.~·îbop--- --iegd~-. ·f3ir1~~···op~f~ii·8R, ••••8if~·gt ••••••••••••••••••••••••••••.

/6<1 ...~2~l_- __·-----f~8--20=L~ ... ~~bbp--- -~regd~~ B. i~~ry··.·.·. ()p<e.i.(~.~ti6ri,. i.m.··.···.·•.·.·.m.··.·.·.·••.· ••.·.~·.di~t~
U}/::: ' "

1 <l.·•• l() ~.~----------disp8---------cond---- condition~I]U~6i·
.

DJNZL 0 1 1 ------------disp8------ x --regd--

1 1 0 0 x x x x x ----uop---- --regd-- Unary operation

1 1 0 1 x x x --regs-- ~-bop--- --regd-- Binary oper~tion, register

·1··· 1 1 -'--basei--- --regi-- 0 0 0 --regs-- FILL

1 1 1 ---basei--- 0 0 1 0 0 1 --regs-- Mov to base register

1 1 1 bd x x x 0 1 0 0 0 1 --regs-- Mov to direct base reg

1 1 1 x x x x 1 0 0 0 0 1 --regs-- Mov to SP

1 1 1 x x x x x x x 0 1 0 x x x INT

1 1 1 x x x x x x x 1 0 0 x x x RTl

je x x x x x x 1 1 0 x x x RTS

1 1 1 x x x x x x x 1 1 1 x x x NOP

table 2.3. The encoding of the instructions as they will be implemented.

18

chapter 2 The microprocessor specifications

Next to the encoding of the instructions are some modifications made to the encoding of
the unary operations. The suggested encoding was:

Unaryoperatiohs (uop field)

ggg~ ·~3~H/i ... /.
..••...~g .•~ ..•~ ·~~ii
o1 0 0 . (résèrved)<
010 f SHR .
0·110 •........•. (·$141...8
0111 ·/SRR8

<1ÓÖOSEL2
.1Ö01 SEL3

From these instructions only the POP and the PUSH operation are not using the ALU.
The binary operations consist of 8 different ALU-operations. The unary operations also
have 8 different ALU-operations. By changing the first bit of the unary operations
needing the ALU into a one, it is easier to generate the control signals for the ALU.
Binary operations will start with a zero and unary operations will start with a one.
The encoding also has one encoding free (reserved). This will be used for the
'decrement' operation which is necessary in case of an DJNZ instruction.
The new encoding will now be:

Unary operations (uop field)
0000 POP
0001 PUSH
1 01 0 CPL
1 01 1 SET
1 100 DEC
1 1 01 SHR

.... 1 1 10 SHL8· .
·1·1 1 1 SHR8

1 000 SEL2
1001 SEL3

As the dec operation is added for the djnz instruction this unary operation can now also
be used as an extra instruction.
The binary operations have two possible MOV operations: one to transfer data from one
of the General Purpose Registers to the Data Memory and one to transfer data the other
way. To make it more clear which is which:

bop field•.....................
000 MOV is used for data transfer from memory to a register (Ioad)
001 . MOV is used for data transfer from a register to memory (store) .i

19

chapter 2 The microprocessor specifications

One encoding which was failing from the suggested encodings was the flag assignment.
The assignment will be:

flagbit 0 :
Jlà9pif 1:
f1ágbif2:

/flaghif 3 :.

. all zero
allset .

. 5mallèr•.. .
greatér··•••...•...•.•

The 'smaller' and 'greater' flags will only be changed by a CMP instruction (compare).
No flag will change by the instructions JMP, JSR, RTS, NOP, INT and one of the
conditional jump instructions, except for the DJNZ instruction which is able to change the
f1ags.
In case of an interrupt the return address will be saved on the stack together with the
flags. On a 'return from interrupt' all flags will be restored from memory.

2.8.3 The displacement in case of a conditional branch instruction.

In section 2.4 the specification left open whether or not the program counter was
incremented before the displacement is added to it in case of a conditional branch
instruction. In the final design in case of a conditional branch instruction the
displacement is added to the incremented program counter contents.

2.8.4 The bidirectional databus changed to two separate busses.

In the specification the external databus of the embedded microprocessor is a
bidirectional databus. The disadvantage is that the bus can not write to the Data Memory
one clock cycle after it has done a read operation from that Data Memory as both
operations then need the databus at the same time.
To prevent these unnecessary stalIs and extra tri-state buffers the databus is separated
into a data-input-bus and a data-output-bus.

20

chapter 3 Designing an architecture for the embedded processor

3 Designing an architecture for the embedded
processor.

This chapter will describe the steps which were taken in designing this microprocessor.
During the course of the design the decision was made to give the processor a load
store architecture. This means that no operations can directly be done on data coming
from the Data Memory. To show why this decision was made the original idea will first be
worked out. When appropriate I will change to the load-store concept.

The processor will contain the following major parts:
• an Instruction Memory (4Kx16 ROM)
• a Data Memory (4Kx16 RAM)
• 8 General Purpose Registers (GPR)
• 16 Index Base Registers (IBR)
• 2 Direct Base Registers (DBR)
• 1 Stack Pointer Register (SPR)

The first step is to construct a datapath to interconnect all these parts. This is done
according to the design concept presented by Patterson and Hennessy in [Pat94]. A
reasonable way to start a datapath design is to examine the major components required
to execute each type of instruction. By looking at which datapath elements each
instruction needs the sections of the datapath will be built up from these elements for
each instruction type. When the datapath elements are shown initially, the control
signals will be shown. To prevent the figures to be blurred by all the control signals they
will be left out until the final datapath will be presented.

The instructions fall into several categories:
• binary operations
• unary operations
• jump operations
• other operations

3.1 Constructing a datapath for the program counter.

A 12 bit register can be used as the Program Counter (PC). The program counter
addresses the instructions, which are stored in the Instruction Memory (Read Only
Memory). The program counter can be incremented by an adder to be able to address
the next instruction. The datapath for this part is shown in figure 3.1.

3.2 Constructing the part of the datapath for the binary operations.

The binary operations are add, sub, and, or, xor, emp and mov. These operations,
except for mov, can best be performed by an ALU. As can be seen in table 2 the mov
operation has two different encodings and wil! be explained for each addressing mode.

21

chapter 3

wn"te

Designing an architecture for the embedded processor

Instruction
Memory

4Kx16

12 Program
Counter

1----.1__12+ __-1 address dàta out 16

instruction

figure 3.1. A part of the datapath used for fetching instructions and incrementing the program counter.

The binary operations can be divided into the following addressing modes:
• register to register
• direct addressing
• indexed addressing
• immediate addressing

3.2.1 Register to register binary operations.

The two operands both come from a General Purpose Register. The ALU performs an
operation on the data. The result of the operation is always wriUen back to source one of
the source registers. This results in a datapath as shown in figure 3.2.
In case of the mov operation, the ALU functions as a multiplexor and only passes the
data. The data can only be copied (mov) from source2 to source1 (destination). For this
mov operation the encoding 000 will be used. The movencoding 001 will not be used
with this addressing mode.

write

3 sourcell
destination data1

General
source2 Purpose

Registers

data in data2

ALUop

1o-__ f1ag

16

figure 3.2. The datapath for register to register binary operations.

22

chapter 3 Designing an architecture tor the embedded processor

3.2.2 Direct addressing binary operations.

These operations must also be handled by an ALU. With direct addressing one operand
comes from one of the General Purpose Registers and the second operand for the ALU
comes from a memory location. The memory is addressed by the sum of the contents of
a selected Direct Base Register and a six bit number specified in the instruction. This six
bit number is complemented with 6 zeroes to form a 12 bit number. This number can be
added by the output from the selected Direct Base Register by means of a dedicated
address adder.
The mov operation must function in both directions, Le. from a General Purpose Register
to a memory location and vice versa. In that case the ALU will have to function as a
multiplexor. For data transfer from a General Purpose Register to the Data Memory the
encoding for the mov operation is 001. For data transfer from the Data Memory to a
General Purpose Register the encoding for the mov operation is 000.
The result of all other operations must always be written back to the selected General
Purpose Register which was also functioning as a source.
The Direct Base Registers can be written to by one of the General Purpose Registers.
Only the least significant 12 bit of the dataword wil! be used as these registers are only
12 bit wide. The datapath is shown in figure 3.3.

source1/ 16
instruction destination data1

General
source2 Purpose

Registers

data in data2

address data out

write read
6

L...--+--I select

....-.;.:12r-1S.;..b_-I data in

data out t-_12-+--I
Direct Base
Registers

16

data in

Data
Memory
4Kx16

figure 3.3. The datapath for direct addressing binary operations.

The only way here to write data into a Data Memory location is a mov operation from a
General Purpose Register to the Data Memory. There are no other sources that can
write to the Data Memory. In figure 3 the data from the General Purpose Register is first
passed through the ALU and then written into memory. It is very simple to shorten the
path by connecting the output of the General Purpose Registers directly to the Data
Memory. This modification is shown in figure 3.4.
The transfer of Memory data to a General Purpose Register wil! still go through the ALU.
Writing data into one of the Direct Base Registers doesn't have to go through the ALU
either. The only source for the Direct Base Registers is the data1 output of the General
Purpose Registers. So a direct path can be made of only the least significant 12 bit.

23

instruction

chapter 3 Designing an architecture for the embedded processor

source1/ 16
r----t destination data1 t---......,I....--r-----------t

General
source2 Purpose

Registers

..---+---1 data in data2

12 Isb

6
0 data in data out

Data

address
Memory
4Kx16

12
data in data out

select Direct Base
Registers

figure 3.4. The modified datapath for a register to memory data move operation.

3.2.3 Indexed addressing binary operations.

With indexed addressing the memory address is the sum of the contents of a General
Purpose Register (used as an index register) and the contents of a selected Index Base
Register. From the contents of the General Purpose Register only the 12 least significant
bits are used as the address is only 12 bit wide.
Again the mov operation must function in both directions, i.e. from a General Purpose
Register to a memory location and vice versa. For data transfer from a General Purpose
Register to the Data Memory the encoding for the mov operation is 001. For data
transfer from the Data Memory to a General Purpose Register the encoding for the mov
operation is 000. The result of all other operations is always written back to the selected
General Purpose Register.
Like with direct addressing binary operations, data transfers from a General Purpose
Register to the Data Memory don't have to pass through the ALU as weil as data
transfers from a General Purpose Register to one of the sixteen Index Base Registers.

source1/ 16
instruction destination data1

General
source2 Purpose

Registers

data in data2

121sb

121sb

write

12
data in data out

4
Index Baseselect
Registers

data in

address

16

data out

Data
Memory
4Kx16

figure 3.5. The datapath for indexed addressing binary operations.

24

chapter 3 Designing an architecture for the embedded processor

From the data written to a selected Index Base Register only the least significant 12 bits
are used as the Index Base Registers are only 12 bit wide.
The resulting datapath for indexed addressing is shown in figure 3.5.

3.2.4 Immediate addressing binary operations.

With immediate addressing one operand is the contents of a General Purpose Register.
The lower a bits of the other operand is part of the instruction and the upper a bits are
made zero. The result of the binary operation is written back to the selected General
Purpose Register.
In case of a mov operation with encoding 000, the a-bit value from the instruction (bits 6
to 13) will be used as the least significant bits of the result. The a most significant bits
are made zero. This result will be written to the destination register. The other mov
operation with encoding 001 will here be called an mhi instruction (move high).
In case of an mhi instruction the a-bit value from the instruction will replace the upper a
bits of the source/destination register and leaves the lower bits unchanged.
With the register-to-register, indexed and direct addressing modes the mov operation
with encoding 000 pass the data through the lower part of the ALU. The mov operation
with encoding 001 has so far not been going through the ALU. To keep the ALU as
simpIe as possible it would be convenient to have all mov and mhi operations pass
through the lower input port of the ALU. A possible implementation for the datapath of
this addressing mode is given in figure 3.6.

8

source1/
instruction destination data1

General tlags
source2 Purpose Isb

Registers

data in data2

figure 3.6. The datapath for immediate addressing binary operations. Both mov and mhi operations pass
through the lower input port of the ALU.

Another possible solution is to have the mov operation pass through the lower input port
of the ALU and the mhi operation pass through the higher part of the ALU. The
multiplexor wil I merely move to the other input of the ALU and the same amount of
hardware is needed. This is shown in figure 3.7.
It is now quite clear that hardware can be saved. The lower a bits of the dataword for the
upper part of the ALU must always pass unchanged. If the 16-bit dataword is split into
two a-bit parts then only the upper a bit need to be multiplexed.
The multiplexor now only needs to be half the size. This is shown in figure 3.8.

25

chapter 3 Designing an architecture tor the embedded processor

8

instructien

seurce1/
16destinatien data1

General
seurce2 Purpese

Registers

data in data2

f1ags

16

figure 3.7. The mhi operation now passes the data through the upper input port of the ALU.

Isb 8

flag

msb 8o

8

data1 t-1_6.J--I----&__m_sb---.,8f----.......-....,.-I

General
Purpese
Registers

d~ain da~2

seurce1/
t----I destinatien

.....__-1 seurce2

instructien

16

figure 3.8. The databus for the upper input port of the ALU can be split into two parts of 8 bit.

3.2.5 Putting the parts together tor the binary operations.

AI! the parts of the datapath as we have seen so far can be combined into one
schematic. The direct addressing mode and the indexed addressing mode both share
the same adder to calculate the effective memory address. A multiplexor for both inputs
of the adder wil! make the switching between the two modes possible.
Another multiplexor is needed to select the data for the lower ALU input. It must be
possible to select between the immediate number from the immediate addressing mode,
the output of the souree 2 register in case of a register-to-register addressing mode and
between the output of the Data Memory in case of a direct or indexed addressing mode.
Each multiplexor wil! have its own control signais. They wil! not be shown here yet.
The combined datapaths are shown in figure 3.9.

26

g.
Il)

~
CD..,
W

o
CD
In

<5"
~,
::J

<0
Il)
::J
Il)

g.
;::0:
CD
Sl
c:
alo..,-::r
CD
CD
3
C"

~
Co

~

a
g
~
o..,

msb

Data
Memory
4Kx16

8

16

L... -1 data in

..J-_....:.12':./-_--1 address

o

data out

Direct Base
Registers

data in

select

6

L.. --' 12

Isb

[12)

12 Isb

[11 ..6]

[13..6]

data in data out

[12..9] Index Base
L.;_"';'~ select Registers

[2..0) source1/ 16
instruction ~-.;..~ destination data1 I-----------..,.-.....:~--+-.J..-...,,..:;.::..--...;.;r---.....

data out General
[8..6)

source2 Purpose
Registers

data in data2

Instruction
Memory

4Kx16

1--1.--1 address

ca'
§
CD

~

!O
()
0
3
0-
S'
5'

1O
S
CD
~
Q)

~
0.....

ProgramS
CD Counter

~ar
~
Q)

S
0'
""'

'"
S
CD

-.....J 0-
S"
Q)

~
.g

CD
ii3
~
:::3
~

chapter 3 Designing an architecture tor the embedded processor

3.3 Adding the part of the datapath for the unary operations.

The Unary operations are pop, push, epi, set, shr, shlB, shrB, sel2 and sel3.
Except for the pop and push operations all unary operations can be performed by the
ALU. So there must be a path from the General Purpose Registers through the ALU and
back. As this is already implemented for the register-to-register binary operations, no
further path modifications have to be made.
The pop and push operations need a stackpointer. A stackpointer needs to be toaded,
incremented and decremented. The contents of the stackpointer addresses a memory
location of the Data Memory. As the address adder already addresses the Data Memory
another multiplexor is necessary here. This is shown in figure 3.10.

o

Data
Memory
4Kx16address

"-----t data in data out

data out

Index Base
Registers

data out

Direct Base
Registers

t----I data in

1----1 data in

1---4-_--1 select

'---+-----1 select

6

write incr deer

'----I data in data out 1------------1

Stack Pointer
Register

figure 3. 10. Adding the Stack Pointer Register to the datapath.

In this configuration it is quite clear that when the Data Memory is addressed by the
Stack Pointer Register, the adder is not used. It can be used to increment or decrement
the contents of the Stack Pointer Register. This makes the Stack Pointer Register more
simpte and changes it into an ordinary register.
The stack pointer points to the top of stack which is an unused memory location. As the
stack pointer points to the next free /ocation, the address pointed to by the stack pointer
must be used to address the Data Memory in case of a push instruction. At the same
time the address can be decremented by the address adder and be directed back to the
input of the Stack Pointer Register. At the next clock the decremented data will be
clocked into the Stack Pointer Register which will now point again to the next free
location.
In case of a pop instruction the contents plus 1 must be used to address the Data
Memory. This value can be extracted from the address adder after it has incremented
the contents of the Stack Pointer Register. This value will also be written back to the
Stack Pointer Register.

28

chapter 3 Designing an architecture tor the embedded processor

Another multiplexor is needed to switch between data to be written into the Stack Pointer
Register by a 'Mov to Stack Pointer Register' instruction and an updating of the register
after a decrementation or incrementation.
The modification is shown in figure 3.11.

0 6 msb

6 12

data in data out

Data
12

address
Memory

data in data out 4Kx16

Direct Base
select Registers

1----1 data in data out

Index Base
"'----+----t select Registers

write

12
data out ~f--JL....-_------tr----

Stack Pointer
Register

figure 11. Using the address adder to increment and decrement the Stack Pointer Register.

3.4 Adding the part of the datapath for all the jump operations.

Another set of important operations are the jump operations. The jump operations are
djnz, ja, jae, jb, jbe, je, jmp, jne, jno, jnz, jz and jsr. Except for jmp and jsr, all jump
operations are a-bit signed displacements with respect to the current program counter
and depend on flags set by an ALU operation. They are called the conditional jump
operations or branch operations.
The flag register will contain the following flags:

flag bit:
o
1
2
3

all zero
all set
smaller
greater

Combinational logic will decide whether to branch or not depending on the type of
branch instruction.
An extra adder is needed to calculate the address to be jumped to. The displacement
which is part of the instruction is an a-bit two's complement signed binary number. For
example the number -3 is represented by the a-bit signed binary number 11111101.
This way the calculation of the branch address can easily be done by adding the
displacement to the current address.
As the current address is 12 bit wide the a-bit signed number must be extended to 12 bit.
This can be done by copying the most significant bit 4 times.

29

chapter 3 Designing an architecture for the embedded processor

If for example the current program address is 3E6h and the displacement is 2Bh address
places forwards (43 decimal) the new address wil! be:

displacement (8 bit): 0010 1011 2Bh

displacement extended: 0000 0010 1011 2Bh 43
current program address: 0011 1110 0110 3E6h 998

------------------------- ~ ------ ~

summation: 0100 0001 0001 411h 1041

If the jump must be 2Bh address places backwards the displacement wil! be the two's
complement of 2Bh:

the number 2Bh: 0010 1011
two's complement of 2Bh (-2Bh): 1101 0101

The new address wil! be:

displacement (8 bit): 1101 0101 - 2Bh

displacement extended: 1111 1101 0101 - 2Bh - 43
current program address: 0011 1110 0110 3E6h 998

------------------------- ~ ------- ~
summation: 0011 1011 1011 3BBh 955

As the displacement is only 8 bits wide the displacement can only reach from -128 to
~127 places from the current program counter. The programmer should be aware of that
limitation. If any branches must be taken to program locations further away the
programmer must use the jmp instruction.

The jmp and jsr instructions hold a 12-bit address where to jump to and can be any ROM
location. The extra modifications necessary for the jsr operation wil! be added later.

12

[11..0] 12

sourcell
instruction 1------4 destination data1

data out General
...-_....... source2 Purpose

Registers

data in data2

Instruction
Memory

4Kx16

1--""-----1 addressProgram
Counter

figure 3. 12. The modifications for the jump operations.

30

chapter 3 Oesigning an architecture tor the embedded processor

To switch between the incremented next address, the branch address and the jump
address another multiplexor is needed. Figure 3.12 shows the modification for the jump
operations.

The jsr instruction Uump subroutine) is a bit more complicated. Together with the rts
instruction (return from subroutine) it enables the programmer to use a specific part of
the program more than once. In case of a jump to a subroutine the address following the
jsr instruction must be saved on the stack which is part of the Data Memory.
To save this address on the stack a path must exist from the 'address incrementing
adder' to the Data Memory. To be able to restore the address from the stack to the
Program Counter Register a path must exist from the Data Memory to the Program
Counter Register.
During ajsr instruction the contents of the Stack Pointer Register must be decremented
by 1 just like with a push instruction. During an rts instruction the contents of the Stack
Pointer Register must be incremented by 1 just like with a pop instruction.
The additions to the datapath for all the jump and branch instructions are shown in figure
3.13.

3.5 Constructing the part of the datapath for the other operations.

There are only two instructions left to be implemented. These instructions are tiJl and rti
(return from interrupt).

3.5.1 Constructing a datapath tor the fill instruction.

The fill instruction must fill a specified memory region with a value from one of the
General Purpose Registers. This value is stored in memory at the address that is the
sum of the contents of an Index Base Register and the contents of another General
Purpose Register which functions as an index register. This register is decremented by
one and the operation repeats itself until the index register decrements below zero. The
program counter will not be incremented until the fill operation terminates.
There is already a path from the General Purpose Registers and the Index Base
Registers for the data to and address for the Data Memory. What needs to be added is
the decrementation of the index register.
During the fill operation the adder for calculating the jump address is not used. This
adder can be used to decrement the contents of the index register. There must be two
extra multiplexors added to the input of the adder to select between the address
calculation and the decrementation of the index register. There must be an extra
multiplexor added to the data input of the General Purpose Registers to select between
the write back data from the decremented index register and the output data of the ALU.
This is shown in figure 3.14. Mind that the adder is only 12 bits wide. As only the 12
least significant bits of the data from the index register are used for calculating the Data
Memory address it is not necessary to increase the width of the adder.
Figure 3.15 shows the datapaths so faro

31

,;u
u

~ I~
1

8 s~n 12

12. ,...,
8, 8, MAD

.' ~,... ~ ~ msb

sourcell M 16. msb """ write
U 8 Isb 16.

instruction destination data1 X
Program address data out General """ ~.~"Counter Instruction source2 Purpose

ALU
Memory Registers o~msb ~ ~8.lsb 164Kx16 data in data2 t- 16, M

---' U
12 X

Isb V
12,lsb

04lSb ,...
6 12 "'"'"---I M

1'" U
·H X data in data out

V ,...
Data

rL:
AD

~~
Memory

I-- data in data out address 4Kx16

Direct Base ~ X
select Registers V

WF~I-- data in data out

Index Base
select Registers

,...,
M 12
U data in data out,.....
X

V Stack Pointer
Register

o
CD
lil

CCI
::J
5'

CO
I\)
::J
I\)

o
:::T
;:0:
CD
Sl
c:
@

ö'
~

st
CD
CD
3
0"
CDa.
a.
CDa.

"0a
g
~o
~

chapter 3 Designing an architecture for the embedded processor

8

0

12

source1/ Isb

instruction destination data1

General
source2 Purpose

Registers

data in data2

12

Isb

figure 3. 14. Using the jump address adder 'or the index register decrementation.

3.5.2 Constructing a datapath tor the rti instruction.

Most microprocessors have a control signal via which external logic can demand the
microprocessor's attention. This processor must also be fitted with such a feature which
is cal/ed an interrupt. If the interrupt signaI is activated the processor must postpone its
current program and start an interrupt routine. After it has finished this temporary activity
it must continue where it left off. To remember where it left off the program counter must
be saved. Next to saving the program counter the flags also need to be saved. When
finishing the interrupt routine the rti (return from interrupt) instruction must restore the
program counter and the status flags.
When the interrupt signaI is activated the processor wil/ have to finish the last instruction
it was executing after which it wil/ have to save the next instruction address and the flags
on the stack. It wil/ then load the Program Counter Register with value 1 to proceed with
the interrupt routine. To save the Program Counter Register contents there must be a
path from this register to the Data Memory. As program addresses are 12 bit and there
are 4 flag bits, they can be combined and saved together on the stack. So there must
also be a path from the flag register back to the Data Memory. Both paths need to be
build with multiplexors.
When the interrupt routine has finished the return address and flags must be restored
from the stack. So there must also be a path from the Data Memory to the Program
Counter Register. But that is no problem as it has already been implemented for the rts
instruction. There must also be a path from the Data Memory to the flag register as the
flags have to be restored as weil. Another multiplexor can be used to implement that
path.
These adaptations are shown in figure 3.16.

33

Instruction
Memory

4Kx16

°41Sb ,...
6. 12. - M

l- U
·i- X data in data out

U ,....
Data

..- data in data out

It~
:liD

~~ address
Memory
4Kx16

Direct Base - X
select Registers V

wrU
I- X

12 """"10- data in data out

Index Base
select Registers

,...
M 12

...- U data in data out
X

U Stack Pointer
Register

I

o
CDen

CÖ'
;:,
:;'

CC
Cl)
;:,
Cl)
""\
C'l
::r
;::0:
CD
$1
c::
Cil
ö'
""\::r
CD
CD
3
0
CD
C.
C.
CD
C.
'0a
C'l
CD

~o
""\

msb

,....
MI--
U

r~

8

,....
M 16
U
X

V

16

I

12 Isb

,....

M~
U

·1- X

:liD

~~
12. r~

data out

ÄD,....-_.....I

1-....--1 addressProgram
Counter

cà'
~

ëa
!-<J.....
~

~
S'
10
S
CD
l:J"
QJ
::3g.
Q)

8:
ëa
enen
Q)

8:
CD..,
Q)
c;;
0

0'
w

..,
,l::o. s

CD
;:!'I::::::
0

"tJ
CD
QJ
g:
~

~
~
Cl)

~
......
~

):-
Q.

~
IQ

s:
Cl)

"'0
Q)

s:
0'..,
s:
Cl)

S'
ëi)

2
"'ö....
tb'
Q)....
~
~

W
01

I :~1 I
u 1_"'"

-1- X M

~ .~D
U I--

~D r~~Mxt U
X 4 I-

I
12 ~

12. ,....,"T 8 8. M

tf-o
8' ~

12 - p~ msb

M msb V
sourcell 16

instruction destination
U 8 Isb 16... address

data1 X
Program data out

,

~:Counter
General

12, """ -
Instruction source2 Purpose I- ftag
Memory ,...., Registers Isb

o4,msb
AL U

4Kx16 ... M data2 8 Isb 16,1~ X
~16. ,M VU data in

X ---i~
'""'" 12,

Isb U
12 Isb

04-i
Sb ,....,

6. 12. I..- M, ,
l- U
-l- X data in data out

'""'" - Data

,....- data in data out

~';
~

~ f-Er- address
Memory
4Kx16

Direct Base - X
select Registers """

WF~- data in data out

Index Base
select Registers

,...
M 12,

r--I U data in data out
X

V Stack Pointer
Register

g-
O)
"0-CD.,
W

o
CD
(Jl

CÖ'
::J
5"

CO
0)
::J
0)

g.
;::0:
CD
Sl
c::::
@

0-.,-=r
CD
CD
3
0"
CDa.
a.
CDa.
"0o
~
~o.,

chapter 4

4 Adding pipelines te the design.

Adding pipelines to the design

Pipelining is an implementation technique in which multiple instructions are overlapped
in execution. Today, pipelining is the key to making processors fast.
A pipeline is like an assembly line: in both, one step completes one piece of the whole
job. On a weil balanced assembly line a product exits the line in the time it takes to
perform one of the many steps. Note that the assembly line does not reduce the time it
takes to complete an individual product; it increases the number of products being built
simultaneously and thus the rate at which products are started and completed.

As in an assembly line, the work to be done in a pipeline for an instruction is broken into
small pieces, each of which takes a fraction of the time needed to complete the entire
instruction. Each of these steps is called a pipe stage or a pipe segment. The stages are
juxtaposed to form a pipe: instructions enter at one end, are processed through the
stages, and exit at the other end. Once again, pipelining does not reduce the time it
takes to complete an individual instruction. It increases the number of simultaneously
executing instructions and the rate at which instructions are started and completed.

The time required to move an instruction one step down the pipeline is ideally one clock
cycle. The length of a clock cycle is determined by the time required for the slowest pipe
stage, because all stages must proceed at the same rate. It is important to balance the
length of each stage. Otherwise, there will be idle time during a stage.

4.1 Chopping the datapath into pipe stages.

In a pipeline each pipeline stage is separated by a pipeline register. All clocked
elements of the datapath can equally be classified as pipeline registers.
Of course the program counter is a clocked register. The register for the flags is also a
c10cked register. The General Purpose Register, Direct Base Register, Index Base
Register and Stack Pointer Register can be asynchronously read and will not be
regarded as pipeline registers. Writing to these registers on the other hand, will be
synchronous which means that writing to these registers will be c1ocked.
The Instruction Memory (ROM) and the Data Memory (RAM) will also be clocked
modules and will form a part of a pipeline register.

Next we want to know what are the slowest parts of the design. The ALU is such a 'slow'
part. So a pipeline stage needs to be right in front and right behind the ALU. Other 'slow'
parts are the memory modules in spite of the fact that they are clocked. So they also
need to have a pipeline stage in front and behind them.

Information which will be necessary in a further stage of the pipeline must be there
together with the rest of the instruction. So next to shifting of the instruction through the
pipeline all other necessary information must be shifted as weil.
The ALU is nearly at the end of the pipeline. In case of a jump operation the result of the
ALU flags determine whether there will be a jump in the program or not. So the jump
address must be shifted through the whole pipeline together with the instruction.

37

chapter4 Adding pipelines to the design

In the design without the pipelines, the instruction holds the address of one of the
General Purpose Registers. This register functions as a source and as the destination
where the ALU result must be written back to. When pipelines are implemented the
selected write-back register address must be stored until needed. So this information
must be piped as weil. This brings another change into the design. When data must be
written back to one of the General Purpose Registers this stage of the pipeline is already
processing another instruction and other register addresses may be selected. So the
General Purpose Register need to have separate inputs for selecting the registers for
reading and for writing. Therefore the source/destination input needs to be split into a
separate source input and a separate destination input. Figure 4.1 shows the design with
the pipeline registers added. There are six pipeline stages.

Each pipeline register holds several parts of the datapath. The width of each pipeline
register depends of the number of lines of each datapath part. In some of the pipeline
stages this width can be decreased by moving some parts of the datapath. The
multiplexors, which are situated just before the ALU, can be moved to the stage where
the General Purpose Registers are situated.
As the ALU can only write to one of the General Purpose Registers, which behave
synchronously for writing, it is possible to skip the last pipeline stage for the ALU output
and the destination address.
These modifications lead to the design of figure 4.2.

Because this microprocessor is an embedded processor it will run just one specific
program which will be placed in the ROM. As this program is already known, it is clear
that it will contain a lot of loops. This means that the program wil! be using a lot of
conditional jump operations. In the design layout of this processor so far t all conditional
branch instructions must ripple through all pipeline stages. At the last stage of the
pipeline the decision is made whether the branch has to be taken or not. All instructions
which come directly behind the conditional branch instruction and are already in the
pipeline, must be flushed in case of a branch. This means a lot of waste of time. For that
reason the decision was made to change the concept of the processor and give it a load
store architecture. This means that there are no other operations than move operations
to and from the Data Memory. The output of the Data Memory must first be written to one
of the General Purpose Registers before it can go to the ALU for any arithmetic
processing.

With this modification two pipeline stages become obsolete but the pipeline stage
behind the ALU wil! be added again. This is necessary to prevent instructions passing
each other. The output of the Data Memory was first going through the ALU and from
there on back to the General Purpose Registers. As the memory data is no longer going
through the ALU there is now a need for an extra multiplexor to switch between data
from the ALU and the Data Memory. As the ALU and the Data Memory can never be
used at the same time, and as they are in the same pipeline stage, they can not be
writing back to the General Purpose Registers at the same time.
No other major changes have to be made. The design changes to that of figure 4.3.
Each stage can be given a name. The stage between the Program Counter Register and
the ROM will be called the Pre-fetch stage. The stage right behind the ROM will be
called the Fetch stage. The next stage will be called the Decode stage as all instruction
decoding will be done here. The stage containing the ALU will be called the Execute
stage. The last stage will be called the Write-back stage.

38

»a.
a.
5"
ee
"0
ij

~
::J
CD
lil-o-=r
CD
a.
CD
!!l.
ee
::J

-
12,..
,.

~~
U _

.... .
... ..

o..!,t,~..t::'l
IA

tt========l~

.-ûI.~ 0". : ~_:..I-JL...-~:.,;",;;....--------I
....mory :
41(;"_Ol'

1-------,,...-1--1----------1-1--------1-

.... l-.!--=:;::==~PwpO••
R.,.II.,.

d••2~

I-
-~vDndB•••...... "egllle,.

IA
U

•
t- ûIIeOt.l:~

"'xBn•.- ROfIIOI...

~ .2.....
steek PoIrnr
"·1111«

1-+--..,
I--- lCU'Ce2

~~J:;:..""~ '----_......
~~\.:.....:.Jr-------+-......

O~lb
1-_-+_.-1-__......_'2+- ,;-::1 ~

., .

-

...... :::t---
Inllrud10n : InIINdIon
....."'Y
4Kx11

note: The Instruction Memory and
the Data Memory both read on
the cloek : they contain pipeline
registers.

W
<.0

~

~
L...--

'~
~ DO

....---- I ~®1~~ 12--------

'f-

""---
4,+-0 12

~ -Jillî
......1 U Ie

L- ~L....- I--- dala1 X !sb
f'rvl"'m

._. dal.N2mt_

~
General 12

~
C....er InSlrudion Pwp... sb Al U

MIlllOIY Rep..ers

.~-~
X ""--- 111111datl ft

F&
4Kl<1e r-- dlla2 l- Ie M Ie lil>

deltilation I U M
X U

Rij X

....
""--- Ie

'" o_~·~t
e 12 M

1 U L...... 4 .,..,
-1 X d'I' iI dil.'"

rtl
Dat.

12 DO 12
~

MIlllOIY
f- al. iI dal. cu addr"l 4Kl<1e

Direcl Base
.elect Registel'l

M
U
X

12
I- data iI dat....

Indel(Base
.e1ect Registert

F@ 12
dlll in dali CU

Stack PoiCer
Register

3

L-..~L..- L-.. L-..

6:c.
:r
ce
"0
'6'
~
:r
CD
lil-o::r
CD
c.
CD
lil
lÖ'
::J

~
12 !sb 16

~
4 ~

'--- msb

'~ ~ 0

r-- - ~ - r--12 f-I-

f-- 1j'-- 4rf-O 12

~
m~~ m~

~
......cel

~
16

'--- Program adltess data out - data1 !sb

~ -,
uI--

CCUltar Ins1Iuc1ion Ins1ruC1ion General
12'ISb Al. ~

t1ags
M""""Y

P,"""se
RegIsten;

'-'I,-~4Kx16 - U data In
16 ~ 16

=m~~OO
da1a2 I--

~

I-IM
- I--I~

..... 04-lSb
- 16

~
6 12 ----j M

1-1 U '---- data In data out -·1-1 X.....
~

Data

~
:0.0 12 M""""Y- data in dato out

~~J
~ adltess 4Kx16

select
Direct Base ,...
Regsten;

M -U
X

- data In data out 12

Index Base
select Registers

ij- ~.. 12
data out ,

..... Stack Pointer
Reglstar

3

-1- '--

g.
Il)

"E-
CD..,
•

~
c.
:;'

10

"g.
"0
~:;-
CD
UI-o'::TCD
C.
CD
UI
lÖ'
='

Write-backExecuteDecadeFetchPre-fetch
..

chapter 4 Adding pipelines to the design

In the design layout before we added the pipeline registers there was a flag register with
its own control signaI to keep the flags in case they shouldn't change. As this flag
register is now part of a pipeline register it will always be written to on each dock. To
freeze the f1ags on instructions that do not allow the flags to change, there must be a
path from the output of the flag register back to the input of the flag register.

Before we switched to a load-store architecture all data that could change the flags was
going through the ALU. The ALU could then create all 4 flags. But now that the data from
the Data Memory is not passing the ALU any more a slight change has to be made.
The generating of the 'below' and 'above' flags must still be done by the ALU. But the 'all
set' and 'all zero' flags must be generated from the data coming from the ALU output or
from the memory output, depending on the type of instruction.
Therefore the decision is made to move the flag generating to the Write-back stage. This
flag generator will also restore the flags in case of a 'return from interrupt'.
Because the flags are still depending on the Data Memory output the new flags are only
known at the end of the Write-back stage.
Figure 4.4 shows the changes in the flag generating.

gs

.
12'lsb

--

~
- -

L nag
'above' and 'below' nags - gene-

ALU r-- rator na

W r"<
M

- U- X

data in data out - V

Data
Memory

address 4Kx16

figure 4.4. To assure proper functioning of the flags a feed-back line is needed.

Another problem that occurs is that in case of an interrupt the flags are copied to the
stack while there might still be instructions further on in the pipeline that can change the
flags. So the copying of the flags must be postponed until the Execute stage. This is yet
not a good solution as this will create a criticaI path. As the flag values can also depend
on the output of the Data Memory the flags will only be stabie at the end of the clock
cycle. But when those flags will also serve as inputs for the Data Memory the setup time
will be not be made. So the flags which can be saved must first go through a register.
That makes it exactly the output of the feed-back line implemented in figure 4.4. In that
case no instruction that can alter the flags may precede the int instruction. This can be
assured by preceding the int instruction by a nop instruction. This change is shown in
figure 4.5.

42

5:
c.
5'

CO

"!2,

~
::l
CD
Cl!-o-~
CD
C.
CD
UI

eëi"
::l

go

4~
12 Isb

~
O+tmsb

L...--

'~ f"'O 0

- ~

~
12 ..-- -

f-

~1-
~~,:

-~~ 4,+0
"'--- "'" 12,

sOU'ce1
:X Isbdata 1 nag..... ad<ta.. data out ----I'rolram SOU'Ce2 General 12 '"' f- gene-Cololler lns1Nc1lon lns1ruc1ion

~
AlU retor naPl6JlO" IsbMemory Registers

~-.~ ,...4Kx16 - datatn
l- 16, ~ 16

~g
data2

f-destinati""

~~
4

- J'~ff1msb
l....- 16-

04ï
b

L...(,;6. 12

1={ U data In data out I-01 X 12 'Isb

"'" r;:'l Data

~
AD 12 Memory

I- dataln data out r0 .-. 4Kx16

seled
Direct Basa ,....
Registers

M .--
U
X

12 "'"10- data In data out

Index Ba..
seIed Registers

,...
~t dataln

12
data out

"'" SlIck Pointer
Register

3

~~L.....- ~

c5'
c:
àl
~

~

:;t
CD

2
~
5'

IQ
0....
s:
CD

~
IQ
Cl!

0
s:
CD
Cl!
Q)

~
:3
c:
Cl!

.to. -W ~
CD

"t)
0
Cl!
-S
0
::::1
CD
Q.

§
:a:
s
CD

~
CD
(')

~
Cl!
Q)
IQ
~

chapter 4 Adding pipelines to the design

The path from the fetch stage to the Decode stage to pass the 'next instruction address',
in case of an jsr instruction, can also be used for passing the address of the next
instruction in case of an interrupt. This change is also shown in figure 4.5.

4.2 Data Hazards.

Pipelining is an implementation technique in which multiple instructions are overlapping
in their execution. But what happens if the instructions in the pipe have dependencies. If
the result of one instruction is going to be used by the following instruction, it has to wait
for its execution until that result is available. Such dependencies are called data
hazards. T0 resolve the problem of data hazards it is important to know where the
dependencies can occur.

The most common data dependency is that of an instruction that must write its ALU
result back to one of the General Purpose Registers and the following instruction(s)
using that result. For example the loading of a Direct Base Register with an immediate
value.
First, one of the General Purpose Registers needs to be loaded with the lower 8
bits of the data word by means of an immediate move. The execution of moving the
higher 8 bits needs to wait until the result of the first immediate move is written back into
the General Purpose Register. The execution of moving the result of the whole 16 bit
word to the selected Direct Base Register must be stalled until the result of the second
immediate move has been written back to the General Purpose Register.

Another type of data dependency is that of an instruction needing data from the Data
Memory. It has to wait until the data from the Data Memory has been written into one of
the General Purpose Registers. In these cases forwarding may resolve same stalling.

Forwarding can best be done by adding two multiplexars at the inputs of the ALU. Data
from the Write-back stage can then be directed back as inputs for the ALU.
As the General Purpose Registers act as a pipeline stage when they are written to, it can
be convenient to forward the data input of the General Purpose Registers to the outputs
if they have the same register number. An exception must be made here in case of the
fill operation where this forwarding is an unwanted situation.

A disadvantage of this solution is that the critical path becomes too long. As the output
from the Data memory is very slow it can't be directly routed back to the input of the ALU
which is also a time consuming part. So the data from the Data Memory can only be
forwarded to the decode-stage of the pipeline. When data is fetched from the Data
Memory and the following instruction is an operation on that data stalling one clock cycle
is inevitable. Forwarding the data from the ALU output can still be done to both decode
and execute stages. This is shown in figure 4.6.

In case of a fill instruction the pipeline has to be stalled as long as there are write-back
operations further on in the pipeline, because it wants to write to the General Purpose
Registers itself. Forwarding can not solve this problem.

44

g.
ll.l
-g,
CD...,
~

»
Co
9:
::J
IC
"0

~
:;"
CD
VI-o-;;;r
CD
Co
CD
VI

cC'
::J

gs

~ .
12 Isb

~
O+tmsb

'---
-1 ~

'$- ~ 0

.-- .-- I ~c::> '~ 12 - .--

~1-
n

.
~u

~

~ ..
"-- x 4r+-O 12 12 ~

~ij-
n ...v I

-'rf
!sb M

SCU'ce1 U...... Program ed<tess deto out - Generel UI !sb X

~Cou1Ier lns1rucUon n sOLI'ce2 P~se X "'" V - gene- 10
lns1nlction
MIITlOIY Registers ~

~J
U

~~-1M O..!f,msb
4Kx16 .--

~
deto In deto2 - iM}- 16 M 16
destinetion ~ I U~ ...

~~V IX V....
4

-
~-

V "'--- 16

o-4lsb r-
6. 12. '---I M

I~U
-1 X J 12 !sb

detoln deto out -
V n Deto

- dete out

~
"'0

~~
MIITlOIY

detoln ed<tlss 4Kx16

Direct Bese ~X

select Registers V

-

- 12
deto In dato out

Index Base
selec1 Registefs

ij- _. 12
deto out

V Steek Pointer
Register

3

-1- --

ca'
§
(Ij

~
!=J)

~
(Ij.....
á}
äl
~
Ol
N
Ola
(Ij

0
Ol
::3
tr
CIl
Ol
;§
g:
Q.

~
0'

.tl. ~0'1 a:i"
IQ

á}
!»

chapter 4 Adding pipelines ta the design

In case the Execute stage contains an instruction which alters the data for one of the
General Purpose Registers which is also used in the Decode stage for an indexed
operation, the pipeline has to be stalied until that data is available.

Now that the forwarding paths are implemented let's take a closer look at the loading of
an immediate value in one of the General Purpose Registers. If a 16-bit value must be
loaded into one of the registers it must be done by two immediate move operations. In
this example we will only concentrate on the execution of these two instructions.
While the first instruction is decoded in the Decode stage the next one is fetched from
the Read Only Memory. The Decode stage will prepare the data for the lower path of the
ALU. This data will contain the a-bit immediate value as the lower byte and a zeroes for
the higher byte. On the clock this data will be shifted to the Execute stage. In this stage it
will only pass the ALU without any arithmetic operations and is ready to be shifted to the
Write-back stage. But at the same time the next immediate move operation is a mhi
instruction. This instruction needs the lower a bits of the dataword which is still in the
Execute stage. As there is no path back from that stage to the Decode stage astall will
be necessary. When the data from the first immediate move operation is shifted from the
Execute stage to the Write-back stage the stall will be cancelled and the second move
operation can proceed.
This stall can be prevented by a simple change of the datapath. In figure 4.2 we moved
the multiplexors which were just in front of the ALU more to the front to save width of the
pipeline registers. If we shift the two multiplexors that are responsible for the immediate
move operations back to the Execute stage the stall will be prevented. This is shown in
figure 4.7.
Now let us take a look again at the loading of a 16-bit immediate value in one of the
General Purpose Registers. The first move operation will do nothing in the Decode
stage. The a-bit immediate value will be merely passed to the Execute stage. When it
arrives in that state the a-bit immediate va/ue will be provided by a zeroes and on the
dock shifted to the Write-back stage. In the meanwhile the second move operation was
decoded in the Decode stage. As this stage doesn't do any data manipulations but only
passes the immediate value to the Execute stage, no stall will be necessary. When the
second move operation arrives at the Execute stage, the result of the first move
operation is needed. As that data is now present in the Write-back stage it can be
forwarded to the Execute stage. The complete 16-bit immediate value can now be
formed and on the next dock be shifted to the Write-back stage.

4.3 Branch Hazards

Next to the data hazards are the branch hazards. An instruction must be fetched every
clock cyde to sustain the pipeline, yet in this design the decision about whether to
branch doesn't occur until the Write-back pipeline stage. One solution is to stall until the
decision whether to branch or not is taken. The drawback is that many times a
conditional branch wil! decide against branching, and the work that would have been
accomplished fetching and decoding the following instructions is exactly what will need
to happen anyway.
A common improvement over stalling when a branch instruction is in the pipeline is to
assume that the branch will not be taken and so will continue execution down the
sequential instruction stream. If the branch is taken, the instructions that are being
fetched and decoded must be discarded. Execution continues at the branch target.

46

~
0
S'

10

~,
"0
~
5'
CD
lil-o-=r
CD
0
CD
!a,

10
:J

gs

~xJ-....

12 !sb

~~
O+:msb-

'$- ~ 0

r-- .--

~ 12 .-- ""='"

~t 8
f--

~X 4,+0 12 12 f"'lo
'---- V

f"'lo
Isb

--1~ M
16 U

sowee1
datal~ M

~
- Hx ~- Progllm a<lens. data out ---- SOU"ce2 Gener" U -.....

O!,c,msb ALU - r.':na
COI01Ier lns1ruc1Ion lns1rUction

~
P\rpose X

-f
16 M 16

Mem<llY Registers ~ • U

~~
4Kx16

r-- data In data2 ~ M 16
~J

X
destination U -.... ,..

X ~ ---I X
V 4 V

-
~-

16
V -

o4-lSb -r;6 12

'=r data In _out~-1 X 12 !sb
~ f"'lo Data

f- IL
1'\0

~~~
Mem<llY

data in data out adlt... 4Kx16

Direct Base

0select Registers V

~
.--

.- data in data out

Irdex Base
select Registers

f"'lo

~ ~t datal.
12

data out

V Stack Pointer
Register

3

--l-- -

e5'
§
(Ij

~
:"l

~
(Ij

~
::3
g:
<0
Dl
Cl)

El::::::

~
CD
::3

0-
Dl

~
<0
Dl
.....
0)

I

t:r
:::;:

~
§'

....... 3
CD

~
(j)

~c:
~



chapter 4 Adding pipelines to the design

To discard instructions in the pipeline the pipeline registers need extra control signals to
flush their contents.
Just flushing the pipeline is not always the correct solution. All write operations to the
registers and the Data Memory by instructions following the branch instruction must be
stalled until the branch decision is clear. It is not possible to undo these write operations.
Instructions Iike jsr, rts, rti, pop and push alter the contents of the Stack Pointer Register.
The fill instruction alters the contents of one of the General Purpose Registers and
moving data from a General Purpose Register to one of the Direct Base Registers, Index
Base Registers or Stack Pointer Register is also done in the decode stage.
Except for the complexity of the control logic no other architectural changes have to be
made.

Stalling the pipeline is assumed when an instruction is decoded in the Decode stage and
not all the data for the execution is available, or the instruction wants to alter register
contents which it can't undo in case of a branch. The instruction will be kept in the
Decode stage until no further stalling is necessary. In case of astall everything in front
of the Execute stage will stall its operations. This means that no new instruction will be
fetched and the program counter will not be incremented.

A small problem occurs with a stall as the Read Only Memory is clocked and its output
can not be 'held'. When no stall occurs, the Read Only Memory will generate a new
instruction while the Program Counter Register generates the next address for the
following instruction. On a sta11 the Program Counter Register will hold its current value.
But the Read Only Memory can not hold its current output and a new input address is
already generated. The solution is to either save the former input address of the memory
or save the output of the memory. This can be done with an extra register and a
multiplexor to switch between the old and the new data. Both possibilities are shown in
figure 4.8. The final design is shown as figure 4.9.

,....
- - M

Program U I- address data out ~
Counter X Instruction

V Memory

4Kx16

l Save
Program r-
Counter

,....
- Program address data out ..... M

Counter Instruction U r-

Memory X

4Kx16
V

l Save r--
Instruction

figure 4.8. Saving the input or output of the Read Only Memory in case of a stal/.

Saving the former instruction address has a disadvantage for timing reasons. The
address setup time for the Read Only Memory is relatively long. If astall occurs, which
takes a relatively long time to detect, the multiplexor in front of the memory has to switch
and the address for the memory may not be stabie in time. The setup time for a normal
register is much shorter so switching the output data is preferred above switching the
input address.

48



~
C.
:J

CC

"U

~
S·
(1)
lil-o::T(1)

C.
(1)
lilcö·
:J

gs

~
12 !sb

~~
O+tmsb-

'~
>: DO

...-- ....--

~ 1~""'- r;:=-

1-(.')- '14
8

M msb
I--I~

-

~~
4r+- 0 12 12

~""'-- """
~

Isb
~

-<ij-
datal I--t M1 16

~J !sb ~sOllce1 U -
dabl OU! X .... :':na- ~m ed<tess

SOU"ce2
Genere' ~J ~ 8 msb ,... ALU

Counter Instruclion -

~~
PI6pose ~

....
~

O~16.1 M 16
Memory

''- ~ 1
• U

~~
4Kx16

V
data in

deta2 M 16
-1~J

Xr-- ....
destneton

~J
....

~ V ,......-t X

L.....-~ ..... 4. .....
,....R~

~
16

""---""" °41
b

L(; ~~ msb""--- 6 12. msbV

.1~ ~ dablln dabl OU! I--
12 !sb

V
~ Deta

Or
ÄD rj ~Pt ed<tess

Memory
ro- data In debl OU! 4Kx16

DireCl Bese ,.... XJ
seleCl Registers """M -U

X

t- dota In deblOU! 12 V

Index Bese
seIeC1 Registers

"l-
12

U data In data OU!
r-I X

V Stock Poinler
Register

3

""---~""--- ""---



chapter 4 Adding pipelines to the design

As mentioned before, stalling will prevent the program counter from being updated.
If there is a branch taken the program counter must be updated so it can not be kept in a
'hold' position as in case of a stal I. So all pipeline stages must continue their operations.
In case a conditional branch instruction decides the branch to be taken it takes two cJock
cycles to have the Fetch stage produce the next valid instruction for the Decode stage.
As the Fetch stage continues all its operations it will still produce unwanted instructions
during those two clock cycles. The Decode stage will receive instructions which were not
meant to be processed. This can be solved by filling the instruction register (the input
register for the Decode stage) with two consecutive nop instructions. The nop instruction
tells the processor to just do nothing in that particular stage the instruction is in. Filling
the instruction register with nop instructions can be done by pre-setting the register.
As the number of nop instructions to be inserted can differ for the several instructions
which can cause a branch hazard, it is necessary to use a finite state machine controller
to control the loading of the nop instructions into the instruction register of the Decode
stage. In the next chapter, which will describe the implementation of the microprocessor,
this finite state machine will be explained in more detail.

The rts and rti instructions are very alike. The only difference is that the flags are
restored as weil in case of an rti instruction. Can the call for the interrupt routine be as
simpIe as the call for a normal subroutine? The answer is yes. The only difference is that
the call for the interrupt routine must also store the flag bits together with the return
address. In case of an interrupt a special instruction can be forced into the instruction
register so each pipe stage will know what to do. This will be called the int instruction.

In case of a jsr instruction it is obvious to save the return address of the next instruction
following the jsr instruction. An interrupt can also be considered as a jump to a
subroutine (the interrupt routine). But what will the return address be? With 4
instructions already in the pipeline it is not trivial what address that will beo
If there are no branch instructions in the pipeline the current program counter contents
can be saved as the return address.
But in case there is a branch instruction in the pipeline, the pipeline needs to be drained
to decide if the branch needs to be taken. As soon as there is no branch instruction left
in the pipeline the instruction for the interrupt can be started.
Instructions still in the pipeline can be finished normally if no branches are taken. The
address of the last instruction in the pipeline, incremented by one, must then be saved
on the stack as the return address. If a branch must be taken the branch address must
be saved on stack and the instructions following the branch instruction must be
discarded.
If the pipeline contains an rts instruction when an interrupt occurs, the pipeline has to be
drained to resolve the return address from memory. This address can then be regarded
as the return address.
In the next chapter this will be explained in more detail.

50



chapter 5

5 Modelling and simulation.

Verification by simulation

Verifying the design can be done by simulation. There are several tools for simulating
digital circuits. Each tooi has its own particular way of modelling the parts of the design.
A hardware description language many people use today is VHDL. But VHDL is only a
description language. One needs a good compiler and an environment to check the
results. If a test is run and an error has been detected in the design, the simulation
application must be stopped and the editor must be started to edit the design. Then the
design must be recompiled, the simulator can be started again and another test can be
run.
This design has been modelled with IDaSS. IDaSS is an interactive design and
simulation environment for synchronous digital circuits. The advantage of IDaSS is that
the models can be changed during the tests without quitting the simulator. Each
modification is instantaneous. If a function is changed during a test, the output of the
corresponding function immediately adapts according to the change.
This chapter will describe the way the design is implemented in IDaSS. The design is
divided into several smaller parts. These parts are the pipeline stages as have been
defined in chapter 4. They are shown again in figure 5.1. The pipeline stages Pre-fetch
and Fetch will be combined into one part named Fetch.

12j~

::I: -"" ~
U o.u U

::I: -.... ""',.
~UJ U =>

LL. .... U •• UJ UJ UJUJ LL. >< ....0:= UJ
~a.

"

figure 5.1. The design op the microprocessor devided into 5 stages.

As the datapaths for the microprocessor have a/ready been explained in chapter 4, this
chapter wil! concentrate on the control logic for the parts of that datapath.

51



chapter 5 Verificatien by simulatien

Each pipeline stage is drawn in IDaSS with a layout corresponding to that of the
datapath layout as shown in figure 4.9. Appendix A contains the details of the IDaSS
modeis.

5.1 The microprocessor environment.

The microprocessor will be part of chip for data compression as is explained in chapter
1. In our design the Data Memory was part of the datapath but it is actual an external
part of the microprocessor. The microprocessor will be fiUed with input and output
busses and signais, which will be called the addressbus and the databus, and the
control signals necessary to control these busses. This is shown at the right side of
figure 5.2. The left side shows the interrupt input. As the Read Only Memory is also a
complex and large part of the microprocessor it is also drawn as an external part though
it is part of the microprocessor.

r-a
r-o

r-d
"Ir-

up ah
di

int
do

figure 5.2. The microprocessor must communicate with the extemal Data Memory.

The read (rd) and write (wr) signals control the external databus. Mind however that the
Data Memory is not all Random Access Memory (RAM) but also contains memory
mapped 110. Further more it contains separate busses for data to and for data from that
memory.

The microprocessor is split into 4 parts as shown in figure 5.2. These parts represent the
pipeline stages as defined in chapter 4.

~~ int
ad::: ~ad

ha ~ ~ ha Ja~ ~Ja

pa-.:l ""'ra dj. : :: dj. gs ~ ~nit::: ~ it at
121 1'0 d2 :: ~d2ar ar~ ,...ar

Ma: ~ ..a
tetch decode eKecute writeback

id
sd: :: sd

IW I-z..iw id: :id ie: ~ie

t~~l.~
-Il.~ l[IH ~15L

~ MO

'U5Tr-- ~t -_IE :~ stlll~ r~"O
r

::d I

:tl 1:1: :I:~
I I I I

- I•
r'li

figure 5.3. The microprocessor can be split into smaller parts.

52



chapter 5

5.2 The Fetch stage.

Verification by simulation

This stage actually includes the Pre-fetch stage and the fetch stage. This stage ho/ds
the Program Counter and the datapaths for generating the instructions. The Read Only
Memory is part of this stage but is placed externally.
This stage drawn in IDaSS is shown in figure 5.4.

l;n'Cb11

Figure 5.4. The fetch stage drawn in IDaSS.

The registers nia (next instruction address), pcs (program counter save), and si (save
instruction) form the pipeline which separates the actual Pre-fetch stage from the actual
Fetch stage.

This stage needs control signals for the multiplexors. The multiplexor namux (next
address) is controlled by namuxc. The multiplexors amux (address) and imux
(instruction) are controlled by intctrl which is a finite state machine controller that takes
care of starting the interrupt call at the right time. The external interrupt signal will first be
synchronised by a register. This register is called ireg. The register sic controls the
register si.

5.2.1 The logic block namuxc.

The multiplexor namux switches between the several busses which can generate the
'next instruction address' for the program counter.

53



chapter 5 Verification by simulation

The controller namuxe contrals the multiplexor namux. This multiplexor must switch
between 5 different inputs. In the IDaSS drawing the multiplexor only has 4 inputs but
one of the 5 inputs is a constant value. This value is generated internally.
These 5 values are coded with 3 bits as is shown in table 5.1.

sela4.<>·
\··56Ià1<··
< 56Ia3</·······

.••••••••••••••••••••••••~.~.:.~~ •••••••••••••.•.•..•...

a4··
a1········
83··

. . ···2....••....> ···a .
.....••.... ·1················0·0·1hvaue

load incremented program counter/
load jump addresS··..<
load return address\)
load branch addres5\\
load interru t startadcl~é5kbö1h

table 5.1. The control signals for namux.

The control signal C is formed by the functions as shown in figure 5.5. The signal id is
the instruction which is active in the Decode stage. The signal iw is the instruction which
is active in the Write-back stage. The signal br is 1 in case a conditional branch
instruction in the Write-back stage decides that a branch must be taken.

-----------------v----------------------
"~mp is 1in case id is a jsr or jmp instruction"
~mp:= ((id from: 13 to: 15) = %100).
"_ret is 1 if iw is a rts or rti instruction"
_ret := ((iw trom: 13 to: 15) = %111) /\ (iw at: 5)/\ ((iwat: 3)not).
"_int is 1 in case id is an interrupt caU"
_int := ((id trom: 13 to: 15) = %111) /\ ((id trom: 3 to: 5)=%010).

". ".-'. .

"note:execution ot rts or rti inserts 4 nops in the decode stage."
"So ~mp and _ret can not be active at the same time"
"_int can not be active together with a branch, ~mp or _rts"

c := _int,(br V_ret),(br V~mp)_________________" _

figure 5.5. The model for namuxc.

5.2.2 The logie bloeks amux and imux.

The Logic block amux is an ordinary multiplexor. It switches between the two inputs nia
and pes as is shown in table 5.2. Switching is done by the finite state machine controller
intetrl.

table 5.2. The functions of multiplexor amux.

The logic block imux is also a multiplexor. The control however is somewhat more
complex. The finite state machine controller intetrl switches between three functions.
One of these functions is the generating of the nop instruction. Another is the generating
of the int instruction.

54



chapter 5 Verification by simulation

The third function is named normal and is an ordinary multiplexor function which
switches between the two inputs rom and si. Switching between these two inputs is
controlled by the input signal sic. This is shown in table 5.3.

~~:~: .~~~~~ i>
frbminput róm< ..
frbrninüt si ....

table 5.3. The outputs of logie bloek imux.

5.2.3 The finite state machine controller intctrl.

This part of the microprocessor is probably the most complex part. In case of an interrupt
it takes care of saving the right return address on the stack and activates the interrupt
routine at the proper time.
This microprocessor does not allow nested interrupts. If an interrupt routine is started the
interrupt signaI will be masked until the interrupt routine has finished.
The interrupt routine would poll the various possible interrupt sources to see which event
caused i1. Reading the status register of the interrupt source must deactivate the
external interrupt signa!. After finishing the interrupt routine a new interrupt routine can
be started if the external interrupt signal is active again.

As we have seen in paragraph 4.1 (figure 4.5) the flags must come from the flag register
of the Write-back stage. Between the interrupt instruction and the last instruction of the
interrupted program, a nop instruction must be inserted to assure that the proper flags
are saved on the stack.

The most simple case for starting the interrupt routine is when there are no address
altering instructions in the pipeline (conditional branch instructions, rii, ris, jmp andjsr)
and the stall signal (sf) is not active. As the finite state machine is implemented as a
Moore-machine during the first clock cycle when the synchronised interrupt signal is
active, the interrupt signal wil! only prepare the finite state machine to jump to another
state. During that clock cycle the microprocessor will continue its uninterrupted
operation. On the next clock the instruction which was prepared by the Fetch stage will
be clocked into the instruction register of the Decode stage. At the same time the pcs
(program counter save) register will hold the address of the next instruction that is
fetched from the Read Only Memory. So if we hold that address, discard the instruction
that resides at that address (which at that time comes from the instruction memory or the
si register) and present a nop and an int instruction sequentially the interrupt routine call
can be started. Together with the interrupt instruction the return address coming from the
pcs register wiJl be passed to be saved on stack.

But what happens if there are address altering instructions in the pipeline or astall
occurs at the time the internal interrupt signaI is activated? Each of these possibilities wil
be examined.

55



chapter 5 Verification by simulation

1. As expJained above when no stalIs occur and/or there are no address altering
instructions present in the pipeline the pcs register must be held and a nop
instruction must be inserted. Then the int instruction will be inserted together with the
contents of the pcs register which is the return address that has to be saved on the
stack.

2. If astall occurs the interrupt has to be stalled as weil until the stall is lifted. If no
further address altering instructions are present in the pipeline the interrupt call can
be initiated as in situation 1.

3. If the branch signal (br) is active a conditional branch must be taken. All instructions
in the pipeline are discarded and need no further investigation. The address to be
branched to will be present in the pcs register after 2 dock cycles. That address
must be saved as the return address of the interrupt routine. During those two clock
cycles nop instructions can be inserted. This is not really necessary because the
controller of the Decode stage will reset the instruction register during those clock
cycles as we will see later when the function of that controller is explained.

4. In case there are conditional branch instructions present in the Decode stage and/or
the execute stage, the pipeline has to be drained until the last conditional branch
instruction is present at the Write-back stage. During that time the pcs register must
keep its contents. If the branch must be taken situation 3 occurs again. Jf no branch
occurs situation 1 will arise.

5. If the Write-back stage contains a jmp or jsr instruction the Fetch stage has already
fetched the new instruction from the Instruction Memory. The pcs register will hold
the address of the new instruction. The Decode stage and Execute stage will contain
nop instructions due to the presence of the jmp or jsr instruction in the Write-back
stage so it is not necessary to check for the instructions in the rest of the pipeline.
Situation 1 can be applied here again.

6. If the Write-Back stage contains an rts instruction the address coming from the Data
Memory must be used as the return address for the interrupt routine. Two nops have
to be inserted before the address is present in the pcs register. Then the int
instruction can be inserted. The Decode stage and Execute stage will contain nop
instructions due to the presence of the rts instruction in the Write-back stage.

7. If the Execute stage contains an rts instruction situation 6 occurs again except that
an extra nop must be inserted before the int instruction can be inserted. The Decode
stage will contain a nop instruction due to the presence of the rts instruction in the
Execute stage.

8. If the Execute stage contains a jmp instruction (and the branch signal is not active)
or jsr instruction the Program Counter Register is already holding the address of the
next program instruction. While inserting a nop instruction the pcs register must be
Joaded with the contents of the Program Counter Register after which the int
instruction can be inserted in the next dock cycle.

56



chapter 5 Verificatien by simulatien

9. If the Decode stage contains an rts instruction it is possible that the Execute stage
contains a conditional branch instruction. This will however result in astall while the
conditional branch instruction moves on to the Write-back stage. If the condition
decides against branching the rts instruction can proceed its execution. After one
clock cycle the rts instruction has moved on to the Execute stage after which
situation 7 occurs again.

10. If the Decode stage contains a jsr instruction it is possible that the Execute stage
contains a conditional branch instruction. This will however result in a sta 11 while the
conditional branch instruction moves on to the Write-back stage. If the condition
decides against branching the jsr instruction can proceed its execution. After one
clock cycle the jsr instruction has moved on to the Execute stage after which
situation 8 occurs again.

11. If the Decode stage contains a jmp instruction it is possible that the Execute stage
contains a conditional branch instruction. This wil! not result in a stal!! The jmp
instruction will proceed its normal behaviour and can be overruled if the condition
decides to branch when arrived at the Write-back stage. In that case situation 3
occurs again. If the condition decides against branching the jump address has
already arrived at the Program Counter Register. The pcs register must load the
jump address on the next clock. This jump address will be saved as the return
address.

All these situations must be controlled by the finite state machine controller intctrl. The
state description diagram is presented as figure 5.6. For each of the states the functions
of the two multiplexors imux and amux and the register pcs are shown in table 5.4. The
IDaSS model is to large to show here. It can be found in Appendix A.

State 11 is entered when the int instruction has been inserted into the pipeline. It will not
continue to state 1 until the rti instruction has arrived at the Write-back stage. This
prevents nesting of interrupt routines.

If there are no address altering instructions in the Decode stage, Execute stage and/or
Write-back stage the finite state machine will proceed to state 9 on an interrupt. When
arrived at that state the Decode stage will have received a new instruction which still
needs to be processed. This instruction can again be an address altering instruction. If
not, the finite state machine will proceed to state 3 where it will insert the instruction int
to start the interrupt routine.

57



chapter 5 Verificatien by simulatien

stall-br-iebr-idjmp +

stall-br-idjsr +

stall-br

br

stall-br-(idbr + iebr-idjmp)1------......;...---+17

stall-br-iebr-idjmp

stall

stall-br-idrts5

int-stall-br-idbr +
int-stall-br-iebr-idjmp

int-stall-br +

int-staij-br-iwrts +

int-stall-br-idjsr +

int-Staii-br-idjmp-iebr

stall-idbr-idrts-idjmp-idjsr

figure 5.6. The state transition diagram of intetrl.

nia
pcs ....
pcs.·
pcs
pCs
pcs
pcs
pcs
pCS

pCS

nia

laad
Ibad
laad
hald
laad
laad
hOlçt
hald ..

hord
·IOad
laad

table 5.4. The funetions of amux, imux and pes in eaeh state of intetrl.

58



chapter 5

5.3 The Decode stage.

Verification by simulation

The Decode stage holds all the Data Registers. These are the 8 General Purpose
Registers (GPR), the 16 Index Base Registers (IBR), the 2 Direct Base Registers (DBR)
and the Staek Pointer Register (SPR). As the latter 3 type of registers are never used at
the same time they ean be elustered into one big registerfile of 19 registers. They are
modelled as the logie bloek regs. The address selection of these registers is done by a
logie bloek named regsel. The pipeline register is formed by the registers adreg and
idreg. The instruetion addresses are passed by adreg. The instruetions that are
generated by the Feteh stage are eloeked into the instruetion register idreg whieh is
controlled by a finite state machine controller idetrl.
The Decode stage drawn in IDaSS is shown in figure 5.7. At the top of the drawing are 4
logie bloeks whieh control this stage. The logie bloek deeeirl contrals most parts of this
stage, sueh as the multiplexors. The logie bloek wbetrl generates the write signal for the
General Purpose Registers. The logie bloek fbetrl controls the feedback multiplexors of
this stage. The logie bloek stal/ generates the stall signa!.

I
sel

hr " hr sel - ~sel ;S ~.iW ~ lrl iW ;;1-• i. ~~cctZ" ...betrl betr
C lel " ld " id

ie stall 0

r-~.d sC --0~: 1!
- -

~

I ------,
I I iel

-----J I I I

I
I

lI I I 1 I§
B-~i ~ oEI- :5: ad

adreg I aeleler

lI>li'? " i d out ... ba

B f-- I "dZ 'oP

fB ,--,d ~~ od ~ • • [--§]
~ e dJ...u>c

~ id slill lil sJ.

~I
f-- dl rilf--~ cU 01 a :5: elJ. l'I\'l

gprsel elZ mf--I:J dZ
B-l!Ii ollf- s~'-- In sZ

idreg
Ch..u>c

EJoZ

...!REG
CPR ~EJ"o ...

" iel ~
eles ..u)(

l!Iao
'oP

lil iw de~-I;Ides

{Sdin JRAi

~fl ~ lil• 1.. 0

B
dinMux

I1TF~"0I" ao mi

B 'E
EI ~2 aeldrlil-EJ" lel

::iel ~
aeldrsel

spChlll
:rR!JIi. ~ IS - l!I s.l o· .....go

""'" ~
regs

~ oril - ~dat
r- IiJspCh

regMU>C
JRAi

ISdJ. r()i

figure 5.7. The IDaSS drawing of the Decade stage.

59



chapter 5

5.3.1 The legie bleek decctrl.

Verification by simulation

This block is actually the instruction decoder. It switches the functions of several logic
blocks. Those logic blocks are shown in tables 5.5 to 5.10.

table 5.5. The functions ofmultiplexor d1mux.

select bits 0..2 of iw as input
sèlect bitsS..8 of id as in ut

table 5.6. The functions of multiplexor desmux.

table 5.7. The functions ofmultiplexor regmux.

Multiplexor dinmux is somewhat more complex. It has 3 input busses to be switched to
which means that it needs 2 controllines. One of those control lines comes from the
controller deeetr/. It switches between the output of the adder (at the top) in case of a ti"
instruction and the output of the Write-back stage. The latter however can be the output
of the ALU or the output of the Data Memory. An extra control line is needed to select
between those two inputs. This controlline is not fitted as one signal but as the
instruction bus iw. A function internalof dinmux determines which input must be
selected. This internal signal will be called am (ALU or memory). If it is zero, data from
the ALU will be selected. If it is one, data from the Data Memory is selected.

functien contraI value am value
·alumem ..

......... ...

SadderS<

o

1

o
1

select input ao
select input mo
select in ut fl

table 5.8. The functions of multiplexor dinmux.

The logic block named adder at the top of figure 5.10 contains the adder which
calculates the branch address. The branch address is calculated by adding the
displacement to the next instruction address. The displacement is formed by bits 4 to 11
of the instruction word id extended to 12 bits. This adder is also used to decrement the
contents of one of the General Purpose Registers in case of a ti" instruction. The
controller deeetrl will switch between those two functions.

ut d2.

table 5.9. The functions of logic block adder.

60



chapter 5 Verification by simulation

The last block controlled by decctrl is the logic block addrsel. This block contains the
adder to calculate the Data Memory address. The adder is also used to decrement or
increment the contents of the Stack Pointer Register.

).9ireS.t / ••• ·
·ihdexéd .•.••••...

<pop··
..... üsh<

table 5.10. The funetions of logie bloek addrse/.

Table 5.11 shows the several types of instructions and the functions of the logic blocks
for each of those types. The wrreg signal is the write signal for the register file regs. Next
to the instruction input id the logic block decctrl has another input. This is input sd. This
input will be 1 if a stall or a branch occurs. In those cases the Decode stage must switch
to a passive state. This is done by making all the control signals zero.

a r d d w d a
d e i e r 1 d
d g n s r m d
r m m m e u e
s u u u g x r
e x x x

instruction word t e of instruction I
%OOOXXXXXXXXXXXXX indexed binary operations 01 0 0 0 .0 0 0
%001 XXXXXXXXXXXXX direct binary operations 00 0 0 0 0 0 0
%01 XXXXXXXXXXXXXX immediate binary operations 00 0 0 0 0 0 0
%1OOOXXXXXXXXXXXX jump instruction 00 0 0 0 0 0 0
%1001 XXXXXXXXXXXX jump subroutine 11 1 0 0 1 1 0
%101 OXXXXXXXXXXXX conditional jump 00 0 0 0 0 0 0
%1011 XXXXXXXXXXXX the djnz instruction 00 0 0 0 0 0 0
%11 OOXXXXXOXXOXXX the pop instruction 10 1 0 0 1 0 0
%1100XXX)(XOXX1XXX ..... the push instruction 11 1 0 0 1 0 0
%·11 00XXXXX1 XXXXXX other unary operations 00 0 0 0 0 0 0

.. %1101)()()()()()()() reg. to reg. binary operations 00 0 0 0 0 0 0
.%111 xx>oo<xxOOOXXX the fill instruction 01 0 .1 1 0 0 ...... 1
%1J1XX>OO<XX001XXX move to IBR, DBR or SPR 00 0 0 0 1 .......• 0 0··

%111 XXXXXXX01 OXXX jump to interrupt routine 11 1 ···0······ 0 «1 ····1 ··.....•.. 0.....
%111 XXXXXXX1 XOXXX return from il1t.1subroutine 10 1 0 0 >1 ·0 g%111 XXXXXXX111 XXX the no ihstruction 00 0 0 0 0 0

table 5.11. The logie bloek deeetrl controls the funetions of six other logie bloeks.

5.3.2 The logie bloek wbctrl.

This logic block contrals the 'write'-signal of the General Purpose Registers. The fil!
instruction is the only instruction in the Decode stage that can write to these registers.
All other instructions that can modify the contents of one of the General Purpose
Registers will only do so when they are in the Write-back stage of the pipeline.

61



chapter 5 Verification by simulation

These instructions are:

• The binary operation mov, which moves data from the Data Memory to a General
Purpose Register. This can be either an indexed or direct binary operation.

• Any other binary operation except for the emp operation.
• All unary operations except for the push operation.
• The djnz instruction.

These conditions are modelled with IDaSS and shown in figure 5.8.

---'""''''"--'''"------v--------------------
"writebacktoaGPR"

~f.llid:Ç«idirom:13to:15) = 1)10111) 1\ «idfro~:3 to: 5) = %OOO).i'thefill instruction"
_binwriw := «(iw from: 14 to: 15) = %00) 1\ «iwat: 3) = %0» V "direct or indexed mov opèration"

««iw from: 14 to: 15) = %01) V«iw from: 12 to: 15) = %1101» 1\ "other binary operations"
«iw from: 3 to: 5) -= %111». "except cmp"

_unwriw:= «iw from: 12 to: 15) = %1100) 1\ «(iw from: 3 to: 6) = %0001) not). "all unary except push"
_djnziw := «iw from: 12 to: 15) = %1011). ''the djnz instruction"

wr := _fillid V_binwriw V_unwriw V_djnziw__________________A _

figure 5.8. The IDaSS model of wbctrl.

5.3.3 The logie bloek fbetrl.

This logic block controls the two feed-back multiplexors of the Decode stage. The logic
block fbmux contains those multiplexors and table 5.12 shows the coding of the control
signais. Each of the two multiplexors switches between the output of the General
Purpose Register, the output of the ALU or the output of the Data Memory. The outputs
are named 01 and 02.

function control value out ut 01 out ut 02
normal ...
fbd1alu

fbd1mém
fbd2àlu .

fbd2merl'l
. fbbothalu

/fbbothmem

XOO
001
101
010
110 ...
011
111

data from GPR
data from ALU
data from Data Memory
data from GPR
data from GPR
data from ALU
datafrom Data Memo

data from GPR
data from GPR
data from GPR
data from ALU
data from Data Memory ...•...
data from ALU
data from Data Memo

table 5.12. The coding of the control signal C for logic block fbmux.

Of course these feed-backs will only be necessary in case the Write-back stage contains
data to be written in one of the General Purpose Registers and the instruction currently
in the Decode stage needing that data. In case of a feed-back the data comes from
either the ALU or from the Data Memory. They can not produce their data at the same
time.
The instructions at the Write-back stage that can write data to one of the General
Purpose Registers are already discussed at section 5.3.2. Figure 5.9 shows the IDaSS
model of fbefrl.

62



chapter 5 Verification by simulation

c:= __mêrri./ . / .. . .. .
«(iw from:O to: 2) = (id from: 6 to: 8» 1\ _RGWiw) "fb02"

--..----.-~~~~~·-·v----·-··-----····----
"feedbàêkcol1trol forthe decode stage"
"fb01 = (iws1 = ids1) and RGWiw : feedback data of source1" .
"fb02= (iws1= ids2) and RGWiw : feedback data of source2"< ....

")~~~is1ig6~~e ofarnemory to register move andincase of a pop"
_mem:=«(iw from:14 to: 15) = %00) 1\ ((iwfrom: 3 to: 5) = %000» .

< «(iwfrom: 12 to: 15)= %1100) 1\ ((iw from: 3 to: 6r= %0000».<

";;it~6~gktbthpR"· ......•.. . ... .... /,X\l;~[2{<2{.,,2{,,)1
"'birïwriw :=«((iw from: 14 to: 15) = %00) 1\ ((iwat: 3) = %0» V "direct and indl~xel~binar m

i «(iwfrom: 14to:15) = %01) 1\ ((iw from:3 to: 5)-=%111» V "imm
) «((iwfrom: 12 to: 15) = %1101) 1\ ((iwfrom: 3 to: 5)~=%111»."reg-reg biniarYop~; e)l:~~)r6Imï

2ûnwriw:=((iwfrom: 12 to: 15) = %1100) 1\ «(iw(rom: 3 to:6) = %0001) not).
~djnziw :=((iwfrom: 12 to:15)=%1011)."thedjl1zinstruction" ...••...

"__~~VVi;iSfif the instruction iM i;w~tes b:Ck to on~ ofthe GPRs"
_RGWiw := _binwriw V_unwriw V_djnziw..

..:,
«(iwfrom: 0 to: 2) = (id from: 0 to: 2» 1\ _RGWiw) "fb01"

• • ...._A ••~~ _

figure 5.9. The IDaSS model of fbetrl.

5.3.4 The logie bloek stalI.

This block is the most complex part of the Decode stage. It will produce the stall signals
for the microprocessor. In case an instruction arrives at the Decode stage that can not
start its operation because it needs data that will not be available until the next clock
cycle, it will have to stall the fetching of the next instruction. The instruction in the
Decode stage must stay passive until it can start its operation. The instructions at the
Execute and Write-back stages must continue their operations. There are several
reasons why astall can occur:

• As the Data Memory is a relatively slow device, the data from that memory can not be
fed-back to the Execute stage. This means that any instruction that loads data from
the Data Memory and that is immediately followed by an instruction needing that data
must be stalied.

• The ti" instruction will write back data to one of the General Purpose Registers on
each clock cycle. It must stall its operation if there are instructions in the Execute
and/or Decode stage that want to write back their results to one of the General
Purpose Registers even if different registers are used.

• If there is a mov instruction to one of the Index Base Registers, Direct Base Registers
or to the Stack Pointer Register and the data to be written to that particular register is
going to be produced by the preceding instruction the mov instruction has to be
stalled until that data is produced by the Write-back stage one clock cycle later.

• An indexed operation needs the contents of one of the General Purpose registers for
the calculation of the memory address. If the contents of that particular register is
going to be changed by the instruction preceding the indexed operation then a stall is
inevitable.

63



chapter 5 Verification by simulation

• If there is a conditional instruction in the Write-back stage and the condition decides
for branching all other instructions in the pipeline have to be flushed. Therefore no
alterations to register contents may be made by the instructions directly following the
conditional branch instruction. Instructions that alter register contents in the decode
stage are: fil! (General Purpose Register), pop, push, jsr, rts and rti (Stack Pointer
Register) and moves to one of the Direct Base Registers, Index Base registers or
Stack Pointer Registers.

There are different conditions for stalling the Decode stage and for stalling the Fetch
stage. Both pipeline stages will have to stall on the conditions mentioned above. But the
Fetch stage also has to stall when the Decode stage contains the fill instruction until the
contents of the selected General Purpose Register has been decremented to zero.

On a stall all control signals of the Decode and Fetch stage will get a passive value
which results in a situation where no modifications are being made. For the Fetch stage
it will amongst other things result in not incrementing the program counter. The stall
signal std will force the instruction register of the Execute stage to load a nop instruction
during the next clock cycle.
Flushing the Decode stage in case of a branch will have the same effect for the control
signals as in case of a stal I. So these signals can be combined into one signaI. The
Fetch stage on the other hand must continue its operation in case of a branch and may
not respond to the stall signal when the branch signal is active.
As the IDaSS model is too long to print here only a summary of the IDaSS model will be
given here as figure 5.10. The complete model can be found in Appendix A.

----------------------v----------------------
"stf is the stall signaI for the Fetch stage"
"std is the stall signal for the Decode stage"

"jd is the instruction in the Decode stage"
"ie is the instruction in the Execute stage"

. . ..

"~..idmemrd is fwhen data will go from memory to a register"
"_samereg1 is 1 if the write-back registerof ie is also used in id as register1"
"_sàrnèreg2 is 1if the write-back register of ie is also used in id as register2"
"_regop is1in case an instruction uses oneof the General Purpose Registers"
"_regwrieis1 if ie will write-back to a register"
"_règwdwis1if iw will write-back to a register"
"_indid··isfifid Tsànindexed opëration"··
" fillidiSfifid is a fill instruction" .
"=popidisJlf iëris àpop instructio""
II-f5Ûshid Îsfif idlsa pLJsh instruction"./ ..
"_retLJrJ1Idis1ifidis an·rti or rts instrudióri"
"jsrid is fif idis a jump subroutine instrudion"
"_movridis 1 if id is ä move to IBRIDBRISPR instruction"
"_co"dbfieis 1 ifTéis a conditional bränc:hinstruction"
"_stdtoreuse thé equälion of std for stf'

64



chapter 5

figure 5. 10. Part of the IDaSS model of stalI.

Verificatien by simulatien

5.3.5 The finite state machine controller idctrl.

The last block of the Decode stage that hasn't got any attention so far is the finite state
machine controller idctrl. This finite state machine contrals the functions of the instruction
register idreg. This register can be hold, preset or loaded. In case of astall it must be
hold.
In case of some instructions nop instructions need to be inserted to guarantee proper
operation of the pipeline. For instance in case a jmp instruction is decoded in the
Decode stage it takes two clock cycles to select the new program address and fetch the
new instruction from the Instruction Memory. As the Fetch stage can not flush any
instructions the instruction register id will have to do that. During the two clock cycles
after the jmp instruction has left the decode stage the instruction register id must be
preset to produce the nop instruction. The two instructions produced by the Fetch stage
will automatically be rejected.
The instructions that need this feature are the instructions jmp, jsr, ris, int and rii. The
instructions ris and rii need four nop instructions inserted. The other three instructions
need only two nop instructions inserted. Two nop instructions need also be inserted in
case a conditional branch is taken.
If there is a jmp instruction in the Decode stage and a conditional branch instruction in
the Execute stage the finite state machine controller will start producing two sequential
nop instructions. When the conditional branch instruction arrives at the Write-ba.ck stage
one clock cycle later and the condition decides that the branch must be taken the
pipeline must be flushed and the jmp instruction must be discarded. The finite state
machine controller has only produced one ,nop instruction at that time. It must be
stopped generating the second nop instruction but on the other hand for the branch to be
taken it must again start to generate two sequentiaI nop instructions.
In case the function of the instruction register must be changed it must be done before
the next clock. Therefore this finite state machine must be implemented as a Mealy
machine.
The state transition diagram is shown in figure 5.11. With each transition the function for
the instruction register idreg is given.

65



chapter 5

tir-sf/hold

br/reset +--br·sf-(jmp+jsr+int)/reset

figure 5. 11. The state transition diagram of idctrl.

5.4 The Execute stage.

br-sf-rts-rti·jmp-jsr-intlload

br/reset

Verificatien by simulatier

-/load

The Exeeute stage holds the ALU and it prepares the data for the Data Memory. As the
Data Memory is a synehronous device it will be part of the pipeline register between the
Exeeute stage and the Write-baek stage. The parts of the Exeeute stage are controlled
by two logie bloeks. The feed-baek multiplexor is controlled by fbetr!. The other parts are
controlled by exetr!. The latter also generates the read and write signals for the Data
Memory. The IDaSS drawing of the Exeeute stage is shown in figure 5.12.

5.4.1 The logic block tbctrI.

The logie bloek fbetr! contrals the two feed-baek multiplexors whieh are modelled as logie
bloek fbmux. As the Data Memory is a relatively slow device it will not be fed-baek to the
Exeeute stage. The only data that ean be fed-baek is the data from the ALU once it has
passed the pipeline register at the output of the ALU. If the instruetion in the Exeeute
stage needs the data whieh is going to be written back by the Write-baek stage it simply
switches the multiplexors to that data.

66



chapter 5 Verificatien by simulatien

I br~ ~br af' - I.r.af' Ird aol t'"'
..r~

I i .. ...I Zi .. o~ r- exctrl rd Ii f'bc trI 19 - ctrl:- Bie rnp - C Ie l'iVi: I.r. ..r IOP ï

~ie I
I I ï'

~~~.;j EJ
r sdi I I I

lfI lfI
lid*- l=Ji~ 0-

_ _ c c
• lMM ;E: al uJ. grsM :: I.r. gS Iiereg ... I"'" al uJ. ::

F
JRE(

iMMMUX ALUI dJ. *- ~c~
l:Ji o~IL-S dJ. Co J. : ~ dJ.dJ. reg

l5E(f'bMUX alu2 :: ;::: alu2 resul t :: ~ar I
I *- W- S d2 02- ~d2

d2 .i 0 - tOP roPl:Jd2reg I!l -Sf'b lM
..IRE< OP

I

I ao ~ ';" dJ. ~...

If'l~
f'IMux ... I,., Mi I0

::: f'l - F
OP

B-f~._~---------------------iEJ

figure 5.12. The IDaSS drawing ofthe Exeeute stage.

The two multiplexor outputs are 01 and 02. They can be switched between data from the
Decode stage and the feed-back data. Table 5.12 shows the control signals for the logic
block fbmux.

function contral value out ut 01 out ut 02
normal
fbdata1

·fbdáta2
fbboth

00
01
10
11

data from input d1
data from ALU feed-back
data from input d1
data from ALU feed-back

data from input d2
data from input d2
data from ALU feed-bêck
data from ALU feed-báck

table 5. 12. The eoding of the control signal C of the logie bloek fbmux.

The simplest way to detect if a feed-back is necessary is to check whether the instruction
in the Write-back stage is going to write back to one of the General Purpose Registers
and then check if that specific register is also used by the instruction in the Execute
stage. The simplest way is to check if the bits with which the registers of the General
Purpose Registers are selected (bits 0..2 and bits 6..8) have a match with the write-back
selection address of the instruction in the Write-back stage (bits O..2) independent of the
instruction in the Execute stage.
There is one exception to this solution. No feed-back may be applied if the instruction in
the Execute stage is a jsr or int instruction. The data from the Decode stage must pass
output 01 the multiplexor as it must be written to the Data Memory. This data is the
return address which must be written on the stack.

67

chapter 5

The IDaSS model of fbetrl is shown in figure 5.13.

Verification by simulation

--------------v-----------~~--------

"feedback control"
"fbo1 = (iws1 = ies1) and RGWiw and (ie <> jsr) and (ie <> int)"
"fbo2 = (iws1 = ies2) and RGWiw" ..

"vIriteb~~lc;toaGPR O~lyjromthe ALU()utput"•......•...... .«.
_binwriw := «(iw from: 14 to: 15) = %01) 1\ «iw from:3 to: 5)"'=%111» V "imm binary
<.(Ww from: 12 to: 15) = %1101) 1\ «iw from: 3 to: 5)-=%111». "reg-reg binary ops

_unwriw:= «iw from: 12 to: 15) = %1100) 1\ ((iw from: 3 to: 6):"'= %0001). "all unaryops _..__...:.
_djntiw :=((iw from: 12 to: 15)=%1011). ''the djnz instruction"

;~katVi~~~1if the instruction in iw writes its ALU output back to one ofthe GPRs"
_RGWiw:= _binwriw V_unwriw V_djnziw..
...... ..::::-::-.... ::...:.:". .

~trl:~«((i~ ir~m: 0 to: 2) = (ie from: 6 to: 8» 1\ _RGWiw) "fbo2"
,
«(iwfrom: 0 to: 2) = (ie from: 0 to: 2» I_RGWiw 1\) "fbo1"
«ie from: 12 to: 15) -= %1001) 1\) "not in case of a jsr instruction"
««ie from: 13 to: 15) = %111) 1\ «ie from: 3 to: 5) = %010» not» "not in case of an int instruction"

------------------,,----------------------
figure 5.13. The IDaSS model of logic block tbctrI.

5.4.2 The logie bloek exctrl.

This bloek is aetually the instruetion decoder. It switches the funetions of the logie bloeks
flmux, immmux and ALU and generates the control signals for the Data Memory. The
logie bloeks are shown in tables 5.13 to 5.15.

The logie bloek flmux always passes the lower 12 bits of input d1. The upper 4 bits ean
eome from input d1 or from input fI.

table 5.13. The functions of muftiplexor f1mux.

The logie bloek immmux is the multiplexor that switches between normal data feed
through or data modifieations eoneerning immediate data operations. This logie bloek
eontains two multiplexors that are switehed by two control signais. These signals are
eoded as shown in table 5.14.

funetion control value
immlow
irnmhigh

..opimrn
() nonnal

00
01
10
11

alu2 its lower part is imm value extended with zeroes
alu1 its upper part is imm value, lower part that Of d1
alu1 gets value of d1, alu2 same as immlow
alu1 ets value of d1, alu2 ëts value of d2

table 5.14. The coding ofthe control signal C of logic block immmux.

68

chapter 5 Verification by simulation

The logic block ALU can perform 16 different arithmetic operations. These operations
are already discussed in section 2. Some adaptations have been made to the encoding
of the unary operations. These are discussed in section 2.8. Table 5.15 shows the
encoding of the functions the ALV must be able to perform.

sel2
sel3
cpl
set
dec
shr
shl8
shr8

0000··
Ö001
0010
0011
0100 ...

. ..

. 0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

the output gets the value of input alu2 .•.
théoUtpufgètsthe váluéof input àlu1 .
alu1+ alü?> ...•••...

älü1 -~.lu2 ..>/..•.... ···jtlhlnlodt{> >n» }
a bitwiseandópèration on he
a bitwise or operation oh both
a bitwisèxor operation' on both
the value of alu1 compared to that of
select the second nibble of alu1 (bits 4..7)
select the third nibble of alu1 (bits 8.. 12, note: 5 bits)
a bitwise invert of the bits of alu1
the output bits all get value 1
alu1 - 1
shift all bits of alu1 right one bit, a zero is shifted in
shift all bits of alu1 left 8 bits, zeroes are shifted in
shift all bits of alu1 ri ht 8 bits, zeroes are shifted in

table 5.15. The coding of control signal C of logic block ALU.

To keep the ALU as simple as possible the add and subtract functions are done with the
same adder. Subtraction is done by adding the two's-complement value of the alu2 input.
Therefore it is necessary to implement the adder as a 17-bit adder. The result will be the
16 most significant bits. Both ALU inputs wil I form the 16 most significant bits of the
adder. On addition the least significant bit of both inputs will be zero. On subtraction the
least significant bit of both inputs will be one.

The logic block ALU also generates two flags. They form the output grsm (greaterl
smaller). The input alu1 will always be compared with input alu2. The coding of the
signal grsm is shown in table 5.16.

alu1 =alu2 ..
ähJ1 > alu2
àlu1 <alu2

table 5. 16. The coding of the signal grsm.

Table 5.17 shows the several types of instructions and the functions of the logic blocks
for each of those types. The readmem and writemem signals are the 'read' and 'write'
control signals for the Data Memory. The a/tflag signal is used in the Write-back stage
and denotes that the 'all set'-flag and 'zero'-flag may be altered by that instruction.
Next to the instruction input ie the logic block exctr! has another input. This is input br.
This input will be 1 if a branch occurs.

69

chapter 5 Verification by simulation

In those cases the Exeeute stage must switch to a passive state. This is done by making
all the control signals zero, exeept the read signalof the Data Memory whieh will be one.

f a a a i w
1 1 1 1 m r
m u u t m i
u 0 0 f m t
x p P 1 u e

3 2..0 a x m
9 e

instruetion word t e of instruetion m
%OOOXXXXXXXXXXXXX indexed binary mov operation 0 0 a) ·}",'>,,··1 ·······'·'·11 p) •••' ""'e

<11.,°1Ó001XXXXXXXXXXXXX direct binarymov operation 0 0 "a) '·'··1 '·<b)·'•• •• e
%01 XXXXXXXXXXXXXX immediate binary operations 0 0 a) 1 d) 0 1
%1OOOXXXXXXXXXXXX jump instruetion 0 0 a) 0 11 0 1
%1001XXXXXXXXXXXX jump subroutine 0 0 a) 0 11 1 C
%101 OXXXXXXXXXXXX eonditional jump 0 0 a) 0 11 0 1
%1011 XXXXXXXXXXXX the djnz instruetion 0 1 100 1 11 0 1
%1100XXXXXOXXOXXX the pop instruetion 0 1 a) 1 11 0 1
%11 OOXXXXXOXX1XXX the push instruetion 0 1 a) 1 11 1 C
%11 00XXXXX1 XXXXXX other unary operations 0 1 a) 1 11 0 1
%1101 XXXXXXXXXXXX reg. to reg. binary operations 0 0 a) 1 11 0 1
%111 XXXXXXXOOOXXX the fill instruetion 0 0 a) 1 11 1 C
%111 XXXXXXX001 XXX move to IBR, DBR or SPR 0 0 a) 1 11 0 1
%111 XXXXXXX01 OXXX jump to interrupt routine 1 0 a) 0 11 1 C
%111 XXXXXXX1 XOXXX return from int.lsubroutine 0 0 a) 0 11 0 1
%111XXXXXXX111XXX the no instruetion 0 0 000 0 11 0 1

note a) : bits 5..3 of instruction word ie.
note b) : bit 3 of instruction word ie.
note c) : inverted bit 3 of instruction word ie.
note d) : ((ie from: 4 to: 5)-=%OO),((ie from: 3 to: 5)=%001)

table 5.17. The logic block exctrl contrals the functions of 3 other logic blocks.

5.5 The Write-back stage.

The Write-baek stage is the last stage in the pipeline and eontains only a few logie
bloeks. Logie bloek flgen generates the flags. Logie bloek flctrl controls that bloek.
At this pipeline stage the deeision for a eonditional branch is made. This is done by logie
bloek brJogic. It generates the br signa!. The IDaSS model is shown as figure 5.14.

5.5.1 The legie bleek flgen.

This logie bloek determines the flags from the ALU and memory outputs. There are 4 flag
bits: flag bit 0: all zero

flag bit 1: all set
flag bit 2: smaller
flag bit 3: greater

70

chapter 5 Verification by simulation

Ll:J i o- Ir. ti I- Îtlr.g

...JJrEC

I gs ~ :::i om I - r:J old
gsr.g :i:grs...

JREG :::: alt tlags m,-

;ti om~I at ~
tlg.n

::::"'0atr.g

JREG
::: ao

- l!Jiw 0

I ...0 ~ Fc1roP

I ar~ -- 0:~I
:::iw om-arr.g
Clotrl

...!RE<
roP

LI!J ClI ie rrl 0:~ I.j
~br IIwreg br ..

I%JRE(
..

_ . brlogic
.:.IW

I
::: ao

OP

I EJ
Ir. ao IÎ

figure 5.14. The IDaSS model ofthe Write-baek stage.

function control value
normal .

readmem
restore

00
01
10

generate the new flags if necessary
the 'all zero' and 'all set' flags can change on memorydata
restore the fla s from the stack .

table 5. 18. The funetions of the logie bloek flgen.

The most simple function is the restore of data from the stack. If an interrupt occurs the
int instruction will be inserted and will save the flags on the stack. On an rii instruction
the flags must be restored back into the flag register flreg.

The 'smaller' and 'greater' flags will only be changed by a compare instruction. The new
values for these flags will be determined by the ALU in the Execute stage. These flags
will be piped to the Write-back stage by register gsreg (greater,smaller).

None of the flags wil I change by the instructions jmp, jsr, ris, nop, int and one of the
conditional branch instructions, except for the djnz instruction. The Execute stage
generates a control signal that indicates whether the flags may be changed or not.
This af signal (alter flags) is piped to the Write-back stage by the register afreg.

71

chapter 5 Verificatien by simulatien

Most flag changes will originate from ALU operations. In case of a load from memory
operation, the data read from memory can also change the 'all set' and the 'all zero'
flags. As there are two data sources that can change these flags for each source there is
a separate function.

The function 'readmem' will be used in case data is loaded from the Data Memory. The
'greater' and 'smaller' flags will not change in this case as they can only be changed by
the cmp instruction.

The function 'normal' will be used in all other cases. The 'all set' and 'all zero' flags will
be determined by the ALU output which will be piped from the Execute stage to the
Write-back stage by the register arreg (ALU result).
If the af signal is active the flags may be changed by the flag generator flgen. Otherwise
the old flags from the flag register flreg must be kept and fed-back to the flag register.

Note: The actual flags are the ones that are already stored in the flag register. They
were stored there by the preceding instruction. At the time the flags are needed, which is
in case of a conditional branch instruction arrives at the Write-back stage, the flags will
be stabie and can be used for the branch conditions.

5.5.2 The legie bleek brlegic.

The logic block brlogic generates the br signal (branch). If this signal is active it indicates
that all instructions in the pipeline must be flushed and that the branch address must be
loaded by the Program Counter Register. The branch signal can only be activated by
conditional branch instructions. Table 5.19 shows these instructions and the flag
conditions on which the branch signal must be activated. The djnz instruction is also a
conditional branch instruction but does not check on the flags. If the ALU result is not
zero it will decrement. One could say that it then should check on the 'all zero' flag. But
as the flags first need to be stored in the flag register they are only up to date one clock
cycle later than the instruction that caused the flag change. So the djnz instruction can
not check on the flags. It will have to check directlyon the ALU output register.

instruetion encodin flag conditions
••.••••.•.•••••.... jbe .

J6>
·••••• ·••·]~e
··········]ne .

.j:Z:»
jnz
js
'ns

...0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

(flag 3) not
flag 3
flag 2
(flag 2)not
(flag 2)not and (flag 3)not
flag 2 or flag 3
flag 0
(flag O)not
flag 1
fla 1 not·

below or equal
above
below
above or equal
equal
not equal
zero
not zero
set
not set

table 5.19. The conditional branch instructions and the f1ags they check on.

72

chapter 5

5.6 Test verification.

Verification by simulation

To test the microprocessor model a set of instructions must be run to check if each type
of instruction has the proper functioning. This program must be loaded into the Read
Only Memory as a hex-file. This file contains the binary codes of all the instructions of
the test program.
To generate such a file ir. L.C. Benschop has also created an assembler program. With
this assembler the instructions can be edited in a text file as mnemonics. The assembler
checks the syntax of the text file and if correct produces the binary codes of the hex-file.

5.6.1 Testing of the instruction set.

Appendix B contains the text file with the instructions as tested. This program is only
meant to test all instructions and special sequences of instructions. Appendix C contains
a more realistic program. This program looks a lot like the final program to be run by the
microprocessor when embedded into the data compressor chip.
At each clock cycle an instruction should be processed. But stalIs and address altering
instructions can diminish the instruction throughput. To check the throughput of the
microprocessor a counter has been temporarily added that counts the number of nop
instructions that passes through the Write-back stage. Another counter has been added
to count the number of stalIs that occurred running the program.
The result is shown in table 5.20.

table 5.20. Some test results of an ordinary program.

The stalIs are caused by data hazards and by the till instruction. Each stall causes a nop
instruction in the Write-back stage. Next to the stalIs the nop instructions are basically
caused by the jmp, jsr, rts and the conditional branch instructions that actually cause a
branch.

5.6.2 Testing of the interrupt feature.

In section 5.2.3 the finite state machine controller that takes care of the interrupt
mechanism has been explained. The test program of Appendix B has been used to test
all possible cases the finite state machine might react to. All those cases are numbered
and are shown in table 5.21. The table also contains the instruction addresses where the
situations of the test occur.
If the comment line is indented it means that the processor has moved up to the next
dock cycle.

5.7 Critical Path analyses.

The goal of this microprocessor is to make it fast. As long as there hasn't been a
complete 'place and route' of this model on chip level the actual timing is unknown.

73

chapter 5 Verification by simulation

Each logic block modelled has its own particular signal transition delays as proposed by
the simulator. These delays are bases on an inverter delay of 2 nano seconds which is
somewhat unrealistic for a 0.8 nano seconds ASIC process. Some of these delays were
too long and were changed to a somewhat more realistic value. These delays can also
be found in Appendix A.
According to these delays the critical path of the microprocessor has been examined.

- stall
- branch taken
- iwrts
- iejmp (no branch)
- iejsr
- ierts
- idjmp and no iebr
- idjsr (no branch)
- idrts
- idjmp and iebr

- branch taken
- branch not taken

- no (stalI, br, iwrts, iejmp, iejsr, ierts, iebr, idjmp, idjsr, idrts, idbr)
- stall
- idjmp
- idjsr
- idrts
- idbr

- branch taken
- branch not taken

- no (stalI, idjmp, idjsr, idrts, idbr)
- idbr or iebr and no idjmp

- stall
- branch taken
- idrts
- idjsr
- idjmp and not iebr
- idjmp and iebr

- branch taken
- branch not taken

- no (stalI, branch, iebr, idjmp, idjsr, idrts, idbr)
- idbr or iebrand noidjmp

- branch taken
- no iebr
- iebr

- branchtakeri
- branch not taken <

085h
084h

05Bh
05Bh
008h

088h
097h
088h
08Dh
05Fh

OA8h
OA8h

088h
OABh
06Fh
06Dh

047h
05Ch
06Eh
060h
06Fh
06Eh
060h
06Fh
06Eh

OA7h
OA7h
09Ch

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

)~~ .

31 .
····32······

33
34.< •.•.
·35·················,·····················

36
37 .

table 5.21. The several different situations during the occurrenee of an interrupt.

Figures 5.15, 5.16, 5.17 and 5.19 show the IDaSS models of the four pipeline stages.

74

chapter 5 Verification by simulation

The input names of the logic blocks have been replaced by the transition delays and are
given in nano seconds. If a logic block has two outputs the transition delay for each
output is given separated by a comma. In that case the left delay is for the top output
and the delay behind the comma is for the lower output.
On a clock all registers (except for the register files) refresh their output values after 10
nano seconds. The signal changes ripple through the rest of each pipeline stage. The
'worst case' timing of each signal is also shown in the figures.

31

46

i n te tl:'l

10

10
27

figure 5. 15. The critical path analyses of the Fetch stage.

According to these delays and signal changes the critical path can be examined. The
signals need to be stabie at a specific time before the next clock. This is called the
'setup time' for the clocked device. The setup time for the ordinary pipeline registers is
12 nano seconds. If a signal changes 30 nano seconds before the next clock it means
there is 18 nano seconds of 'spare time' before the setup time has been reached. The
smallest of all these 'spare times' determines how much faster the clock can be made.
The setup time for the register files is 16 nano seconds for the data and 12 nano
seconds for the address. The setup time for the finite state machines is 35 nano
seconds.

75

chapter 5 Verificatien by simulatien

For the simulation a clock frequency of 100 nano seconds was used.

For each of the pipeline stages the critical path has been examined. The 'fastest' stage
is the Write-back stage. The branch signal appears 26 nano seconds at the latest after
the clock. The last possible signal change appears 39 nano seconds after the clock. This
leaves 61 nano seconds of 'spare time'. This is shown in figure 5.19.

sd

I lor ~
18

"=" ',8 sd:
31

L. 14 ~~~ ~~15 I~~ ~I>ot:~
30

r:- 19,22 ~~ootr 10 'wl>otr'i

I ie
stal I

c 1. ~ • 11 ~ tOP

rrt~'.., -~ --------EJ• 19,22 sr - 1• ..10 lni

I II iel
~I I I I

I
4~ I

TlI I I
ag

~l!J ~ 0:: 10 10
;::17

12

I I Iadreg aelder

..1REC 10 "="17 out: 59 EJB ~
r:- 17

~

fB 25 45

I 30 1!!~ 6 ~~ 0 Ei:~elJ. Ic LQ dJ. ...ux
12 dJ. E::~ l!J 6,6 1t1 ::

42
~ !OP

M-liJ oti~
gprsel d2l!!~ !:J 1,6

s2 r;;oj 12 ra 12-roP ~ CI>MUX
42~idreg 02 :;46 CPR ~8 1,1

I'REC 1100- 6 ~ 0 81,1~ 12
...l'Oïde SMUK 57

~l:J 6 ele~""--l:J setup 12
OP ~

46 ~. setup16 JRAi

~~ 6
~

'20 12 0 Ei: 65

8 30
dinMuK

30 I.;- 11

ll.ll.liJ 11 ~
45

B'0
~ -EJ-1;1 17,17 a.ddr [l

I .:.17,17

10
~ 12

ag addrsel
12 spCI> [l ~9

r.gse~ I'il ..E.... 312 0"
:w

::: 17,17..
~ roP

regs
45

~
~ ol'il~ 3 setup 1.

86
r.!JMUK

J'Riiii
F86 Iiq>

figure 5.16. The critical path analyses of the Decode stage.

In the Decode stage the latest signal change of signals for the pipeline registers appears
at 59 nano seconds after the clock. The setup time is 12 nano seconds. This leaves 29
nano seconds of 'spare time' for those registers.
The setup time of the destination input of the register files is 12 nano seconds. The
latest signal change for those inputs is 57 nano seconds after the clock.

76

chapter 5 Verification by simulation

The setup time for the data inputs of the register files is 16 nano seconds. The latest
signal change for those inputs is 65 nano seconds after the clock. This leaves a 'spare
time' of 19 nano seconds for the register files.
The setup time of the finite state machine is 35 nano seconds. The finite state machine
idctrl uses the contents of idreg and the signaIs sf and br. The last that possibly changes
its value is sf at 52 nano seconds after the clock. This leaves a 'spare time' of 13 nano
seconds. So the overall 'spare time' for the Decode stage is 13 nano seconds.

I 21
21 af" P .0 .0 I..... c I~~ .,.

.0 la1 zod •,",zo ~ 411

I Iw..l1o 10
:::21 0 III ,.!.' .xctzol .0 zod IÎ C~Dtlt"1 40

~ t:l21!!. g22 ctzol
Q\i 'ÖP 40 I.....Wlt" II

10 I.", I I
I

i' e

~bap.!j"
10 b..J II a

r sd Î I
40 40

I I

lfJ lfdI id*-
t:I ~ .. 10 10

::: 8,8• 0

alul =52
;:: 13,23 gzos ... :: 15 I..... Iiezoeg ...

I
g

•JR"E(
31

I d~*- t:I oE
1f112 iux ALU

~ t:lI,1 01 ::
43

~ 1,1d~zoe!l
52 nL IJ'RE"G C~...ux alu2 " • 13,25 Z'esul t " AZ'

10
t:lI,1 02 :

43
~ 6,6

r
I d2 *-1iJ 0 ~~ roP roP

d2Z'esr r- liJ 1,8
roP

JR"E(
40

I

I ao ~
43

;::1
lfI
12

Cl ...ux _ 52 I..... ... 1 IICl~
10 ':08 o_ I

!"'" foP

Bf_p.!j....:.1=-0 -----"'-=---10 EJ

figure 5.17. The critical path analyses ofthe Execute stage.

In the Execute stage the latest signal change of signaIs for the pipeline registers
appears at 77 nano seconds after the clock. The setup time is 12 nano seconds. This
leaves 11 nano seconds of 'spare time' for those registers.
The path that causes this delay is not realistic. It is marked in figure 5.17 with a thick
line. If a branch occurs the ALU will switch to the mov operation which means it will pass
the input data without any arithmetic calculations. It takes 9 nano seconds to pass the
data through the ALU and it will be even faster than the output grsm which always has a
delay of 13 nano seconds. The output grsm will then produce its output 65 nano seconds
after the dock. This leaves a 'spare time' of 23 nano seconds.
If the branch signal is not active the criticaI path changes to that of figure 5.18. This path
is far more realistic. The last signal now changes 74 nano seconds after the clock. With
a setup time of 12 nano seconds this leaves 14 nano seconds of 'spare time'.
The data setup time for the external Data Memory has been modelled as 30 nano
seconds. The last signal change appears 52 nano seconds after the clock. This leaves
18 nano seconds of 'spare time' for the Data memory.

77

chapter 5 Verificatien by simulatien

As this is also not arealistic path a more realistic path would lead to a last signal change
at 49 nano seconds after the clock. This is mostly caused by the feedback multiplexors
of this stage.
The overall 'spare time' of the Execute stage is 14 nano seconds.

I1 2
•

26
::: 14 at" .. 40

40 ~ar I10... .,
..el· .0

w.. ...;

I Iw ~ 10
tO

Z2t 018 ~' .xct.. l .0
ll'el I

f'hot ... l ct..l:
.0

!!S 21 ~19 22
rop löP 40 ~w ... I

10 ~ Ie I
I 10E]I ha*-~ 0-

10
• ba..eg ..

...JR'E'G

I selI .0 40.. I I I

lfJ lfJI iel rt- lEI LQ -
10 10

~.,.• 0 .
aluJ. ::

52
;:: 13,23 g ..SMo :: '5 Ir. gs Ii~ ..~g ..

I
~ 31

I elJ. *-[3 dJ.ll'e~ E
12 iMMoMUX ALU

~ [3',6 oJ. 43
• 6,6..

JR'E"G alu2 .'.
52

..~sul t·
T1L ... IrbMoUX o 13,25

10 [36,6
43

I el2 *-S 0E~
02 " • 6,6

'oP 'oP
d2ll'~sr r- :iJ -,' rop

t'6EG
.0

I

I ao ~
~ '="- ~r-

CIMUX .. 52 I,., MI IICl~
10 ... 0 ..

o • F
r- 'oP

B-t".~~--"'-10 ----- ':':"'10EJ

figure 5. 18. A more realistic critical path for the Execute stage.

The Fetch stage holds the Program Counter Register. The data for this register will be
stabie 46 nano seconds after the clock. This stage also holds the Instruction Memory.
The address setup time is modelled as 30 nano seconds. As this address comes directly
from the Program Counter Register it has plenty of time to get stabie for the next clock.
The output of the memory module is stabie 15 nano seconds after the clock.
The finite state machine intctrl is implemented as a Moore-machine. The multiplexors
amux and imux which are controlled by this finite state machine will switch their functions
15 nano seconds after the clock.
The finite state machine depends on the values of the instructions from the Decode
stage (id), the Execute stage (ie) and from the Write back stage (iw). As they all come
directly from a register they all appear 10 nano seconds after the clock. Next to those
instructions the finite state machine also depends on the branch signal br (26 nano
seconds after the clock) and the stall signaI sf (52 nano seconds after the clock).

78

chapter 5 Verificatien by simulatien

As we have seen before with the finite state machine of the Decode stage the finite state
machine has a setup time of 35 nano seconds. This means the 'spare time' here is 13
nano seconds.
The overall 'spare time' of the Fetch stage would be 13 nano seconds.

B--t J.~j---=":"-10-----EJ

o m--.:..:l0 +-.-~ .. 1
.. 1 re go

gos IOI--I!I

ae 121--8

i e IOI----I!I

10

.. lagos
eIgen

o

39

figure 5.19. The critical path of the Write-back stage.

'---------8

The overall 'spare time' of all stages would be 13 nano seconds. This is caused by both
the finite state machines of the Fetch stage and the Decode stage. The Execute stage
follows very closely with a 'spare time' of only 14 nano seconds.
From these delays can be concluded that the pipeline stages are weil balanced.

79

chapter 6 Conclusions and recommendations

6 Conclusions and recommendations.

It is not easy designing a fast architecture for a microprocessor. The necessary steps to
be taken are not very weil documented. The best book that can be used when one hasn't
got any experience in designing a microprocessor is [Pat94] though the example given is
quite simpie. When a more complex instruction set is used other microprocessor
architectures need to be studied.
What was missing from any book I have seen, that explains the design of a
microprocessor is the way the interrupt mechanism is implemented in the architecture.
This was the hardest part to be implemented.
The memory modules used in this design are synchronous which means they become
part of the pipeline registers. This makes the design somewhat more complex. In spite of
being clocked the data coming from the memories still have a relatively long delay.
Therefore this data can not be fed back into other pipeline stages to have those stages
perform time consuming (arithmetic) operations on them.

The design can now be converted to VHDL and this can then be used by a silicon
compiler to generate a placement and routing on chip level. The results from that 'place
and route' will give more accurate timing information. With th is information another
critical path analyses can be done and modifications might be necessary.

A modification can probably be made to the finite state machine of the Fetch stage. If
turned into a Mealy-machine it can probably become a Iittle bit less complex. Or if the
'next address incrementer' ine will be provided with an extra function pass it might be
possible to lose the register pes and use the register nia instead.
As both finite state machines from the Fetch stage and from the Decode stage influence
the data of the instruction register of the Decode stage it might be possible to combine
both finite state machines into one new one.
The feedback controller tbctrI of the Execute stage determines a great deal of the delay
of that stage. As the signaI generated by this controller only depends on the instructions
of the Execute stage and the Write-back stage it must be possible to generate this signal
earl ier in the Decode stage. Note however that the logic becomes more complex as the
branch signal br and the stall signal sd can change the instructions of the pipeline
stages on the next clock.
The stall signal sf determines the criticaI path of the Decode stage. This critical path is
also determined by the feedback controller. Here it will be even harder to generate the
control signals for the feedback multiplexor in an earl ier stage.

81

Bibliographies

Bibliographies

[FLY95]

[HEU92]

[KOG81]

[PAT90]

[PAT94]

[VER90]

Flynn, Michael J.
Computer Architecture: Pipelined and parallel processor design.
London: Jones and Bartlett, 1995

Heudin, J.C. and C. Panetto
RISC Architectures.
London: Chapman & Hall, 1992
translated from French: Les Architectures RISC.
Paris: Dunod Editeur, 1990
Kogge, Peter M.
The architecture of pipelined computers.
Washington: Hemisphere, 1981

Patterson, David A and John L. Hennessy
Computer Architecture: A Quantitative Approach (second edition).
San Fransisco: Morgan Kaufmann, 1990

Patterson, David A and John L. Hennessy
Computer Architecture: The Hardware/Software interface.
San Mateo: Morgan Kaufmann, 1994

Verschueren, AC.
IDaSS for ULSI (IDaSS manual).
Section of Digital Information Systems, Faculty of Electrical Engineering,
Eindhoven University of Technology, March 1990

83

Appendix A

Appendix A.

The IDaSS models of the microprocessor

The IDaSS models of the microprocessor

Part 1. The direct environment of the embedded microprocessor.

:ra
:ro

:rd c :rd
w:r c w:r

up :raM
ah • ah do
di • di

int A

do

The top level of the embedded microprocessor consists of the unit up and the instruction
memory rom. The instruction memory is placed external though it is part of the
microprocessor. When translating the microprocessor to VHDL this memory need not be
translated.
The data memory ram is modelled here as one block but actually consists of several
separated banks of memory and memory mapped 110. This is not part of the
microprocessor but is added for testing purposes.
A register int is added to simulate the interrupt signa!. This register is only added for
testing purposes.

Slacks

int: register
Purpose: interrupt generation; This register can simulate an interrupt signa!.

The meaning of the int bit is shown in the following tabie:

Inputs: none.
Outputs: '0', 1 bit.
Reset value: 0

ram: RAM
Purpose: data memory; This RAM will hold the data to be processed.
Inputs: 'ab', 12 bits; RAM address.

'di', 16 bits; data input.
'rd', 1 bit; the control connector for the read signa!.
'wr', 1 bit; the control connector for the write signa!.

Outputs: 'ro', 16 bits; data output.

85

Appendix A

Size: 4096 x 16 bits
Technology: IDaSS default technology.

System-defined timing for control input 'rd':
Bus to command delay: 6n sec.

The IDaSS models of the microprocessor

•.••.•••...•.•.•.••••. < ······<1

System-defined timing for control input 'wr':
Bus to command delay: 6n sec.

Delays:
Addr. to output delay (async): 25n sec.
Clock to (addr.) output delay: 20n sec.
Port address setup time: 20n sec.
Port command setup time: 18n sec.
Clock to (fixed) output delay: 15n sec.
Write data setup time: 30n sec.

rom: ROM
Purpose: program ROM; It contains the instructions that must be executed. It's default

function is 'read' .
Inputs: 'ra', 12 bits; ROM address.
Outputs: 'ro' I 16 bits; ROM output.
Size: 4096 x 16 bits
Technology: ASA synchronous read only memory
Delays:
Addr. to output delay (async): 35n sec.
Clock to (addr.) output delay: 15n sec.
Port address setup time: 30n sec.
Port command setup time: 20n sec.

up : schematic
Purpose: the actual microprocessor. For a more detailed description see part 2.

86

Appendix A

Part 2. Description of the schematic up.

The IDaSS models of the microprocessor

int ba ba Ja Ja
ad ad

Ir'A dj. dj. 9S 9S
iC ie aC aC

1r'0 d2 d2 air' air'
Ma Ma

Cetch decode execute "Ir'i teback
sd sd

id
i .. id id ie ie
t~
MO
ba
sC

Connectors
name 1/0 bits
ab 0 12
di 0 16
block.
do 16
RAM.
int I 1
ra 0 12
rd 0 1
block.
ro 16
ROM.

description
address bus; generated by the execute block.
data in; data to be stored in the RAM; generated by the execute

data out; data loaded from the RAM; generated by the external

interrupt signa!.
ROM address; generated by the fetch block.
the read signal for the external RAM; generated by the execute

ROM output; the instruction read from the ROM; generated by the

wr 0
block.

Blocks

1 the write signal for the external RAM; generated by the execute

decade : schematic
Purpose : The pipeline stage named decode. This stage receives the instruction from

the fetch stage and decodes the instruction.

execute : schematic
Purpose : The pipeline stage named execute. This stage operates on the data

generated by the decode stage. The result is written to the external RAM or
piped to the writeback-stage.

fetch : schematic
Purpose : The pipeline stage named fetch. This stage generates the next instruction

address and receives the instruction from the ROM. This instruction is piped
to the decode stage. This pipeline stage also contrals the interrupt
mechanism.

87

Appendix A The IDaSS models of the microprocessor

writeback : schematic
Purpose : The pipeline stage named writeback. This stage writes the result from the

execute stage back to the registers of the decode stage. The flags are
modified and the branch signaI is generated by this stage.

Part 2.1. The description of the schematic fetch.

[.c.]
OP

Connectors
name 1/0 bits
ad 0 12
ba I 12
branch.
br I 1
id I 16
ie I 16
if 0 16
int I 1
iw I 16
mo I 16
ra 0 12
ro I 16
sf I 1

description
the address of the next instruction.
branch address; the address to jump to in case of a conditional

the branch signa!.
the instruction present at the decode stage.
the instruction present in the execute stage.
the instruetion generated by the fetch stage.
the interrupt signa!.
the instruction present in the writeback stage.
memory out; the output of the RAM.
ROM address
ROM output; this is the instruction fetched from the ROM.
the stall signal for the fetch stage.

88

Appendix A

Blacks

The IDaSS models of the microprocessor

amux : operator
Purpose: address multiplexor; This multiplexor switches between the 'next instruction

address register' (nia) and the 'program counter save register' (pcs). The
output of this multiplexor will be piped to the decode stage. It can be saved on
stack or used to calculate the branch address. The functionality is shown in
the following tabie. Switching between the two functions is controlled by the
finite state machine controller intctrl.

Inputs: 'nia', 12 bits; next instruction address.
'pcs', 12 bits; program counter save.

Outputs: '0', 12 bits; output of multiplexor.

IDaSS description:

System-defined timing for output '0':

Data transfer delay: 2n sec

System-defined output multiplexor delays:
For output '0': 4n sec

Text for function nia:

Text for function cs:
"select pcsave-register"

~:ipcs·•. ··•·····

imux : operator
Purpose: instruction multiplexor; This multiplexor has three functions which are

controlled by the finite state machine controller intctrJ. One of these functions
is the generating of the nop instruction. Another is the generating of the int
instruction. The third function is named normal and is an ordinary multiplexor
function which switches between the two inputs 'rom' and 'si'. Switching
between these two inputs is controlled by the input signal 'sic'. This is shown
in the following tabie.

89

Appendix A

function sic si nal out ut value

The IDaSS models of the microprocessor

ipt··.·.·····\
\>hdp .•••.••••...•...

. ./ ·1······
.··norma

valueFFD7h ..
yall.leFFFFh .•..
frómihput rOm··
fromiriutsT>

Inputs: 'rom', 16 bits; instruction from ROM.
'si', 16 bits; saved instruction.
'sic', 1 bit; control signal to select between input 'rom' and input 'si'.

Outputs: 'if 1 16 bits; instruction generated by the fetch stage.

IDaSS description:

System-defined timing for output 'if:
Data transfer delay: 2n sec

System-defined output multiplexor delays:
For output 'if: 4n sec

Text for function 'int':
"eall iriterrüpt routine"

Text for function 'nop':
"irïsèrt ärïdpinstruction"

it:=%1111111111111111

Text for function 'normal':
"no interruptcall"
......::.. «::::::-:-:-..

.... ':-:-:- "':-:::.
.................. .."

if := sic ifO: rom
.... ift: si

Internal time delays for function 'normal':
From 'rom' to 'ir: Sn sec
From 'si' to 'ir: Sn sec
From 'sic' to 'ir: Sn sec

inc : operator
Purpose: incrementor; This operator increments its input value.
Inputs: 'i', 12 bits.
Outputs: '0', 12 bits.

IDaSS description:

90

Appendix A

System-defined timing for output '0':
Data transfer delay: 2n sec

Text for function 'increment':

The IDaSS modeIs of the microprocessor

Internal time delays for function 'increment':
From 'j' to '0': 11 n sec

intetrl : state machine controller
Purpose: interrupt controller; In case of an interrupt it takes care of saving the right

return address on the stack and activates the interrupt routine at the proper
time.
This finite state machine controller controls the logic blocks amux, imux and
peso The controller consists of 11 states. The function of the controlled blocks
is shown for each of the states in the following tabie.

1
2
3·
4
5
6
7
8
9
10

.... 11

load
Ibad
load·

··hold
load
load
hold
hold
hold
load
load

In the following figure the state transition diagram is shown. The condition 'idjmp' means
that there is a jmp instruction in the decode stage (ie: execute stage; iw: writeback
stage). The condition 'idbr' means that there is a conditional branch instruction in the
decode stage.

91

Appendix A The IDaSS models of the microprocessor

stall-br-iebr-idjmp +

stall-br-idjsr +

stallobr

br

stall-br-(idbr + iebroidjmp)
1-------.;....---..;..-...... 7

stall-br-iebr-idjmp

stall

stall-br-idrts5

int-stallobr +

int-staii-broiwrts +
int-stall-br-idjsr +

int-stallobroidjmp-iebr

int-stall-br-idbr +
int-stallob'r-iebroidjmp

stall-idbr-idrtsoidjmp-idjsr

A short description of each state:

State 1:
This is the initial state where it will remain as long as there is na interrupt signa!. If an
interrupt signaI appears at the time of a stalI, na state change will occur until the stall
signaI is passive again.

State 2:
State 2 inserts a nop instruction to enable the right flags to be saved on the stack.

State 3:
In this state the int instruction is generated.

92

Appendix A The IDaSS models of the microprocessor

State 4:
This stage will be entered if the decode stage contains a conditional branch instruction
or the execute stage contains a conditional branch instruction without a jmp instruction in
the decode stage. The pcs register holds the return address in case the branch is not
taken.

State 5:
If the decode stage contains an rts instruction the pipe must be drained and nops are
inserted to retrieve the return address from the stack. This address will be saved on the
stack again as the return address of the interrupt routine.

State 6:
If the execute stage contains an rts instruction (the decode stage will always contain a
nop instruction in this case) the pipe must be drained and nops are inserted to retrieve
the return address from the stack. This address will be saved on the stack again as the
return address of the interrupt routine.

State 7:
If a branch occurs the branch address must be saved as the return address and it takes
another 'wait state' (state 2, a nop instruction is inserted) to let the program counter load
the return address. If no branch occurs and there is no conditional branch instruction in
the execute stage the interrupt instruction can be started (state 3). But if the execute
stage does hold a conditional branch instruction it must first be evaluated (state 8).

State 8:
If a branch occurs the branch address must be saved as the return address and it takes
another 'wait state' (state 2, a nop instruction is inserted) to let the program counter load
the return address. If no branch occurs and there is no conditional branch instruction in
the execute stage the interrupt instruction can be started (state 3).

State 9:
This state is entered if there are no instructions in the decode, execute and writeback
stage that can change the program counter contents. At this state the decode stage is
loaded with an instruction which was already fetched from the instruction memory. This
instruction must be examined to see if it can change the 'normal' program flow (can
change the program counter contents: conditional branches, jumps, etc.).

State 10:
This state is entered if the decode stage contains a jmp instruction and the execute
stage contains a conditional branch instruction. At this state the conditional branch
instruction has moved to the writeback stage and it will be clear if the branch is to be
taken (state 2 is next state) or not (state 3 is next state).

State 11:
As this microprocessor does not allow for nested interrupts, this state will not be left until
the rti instruction is executed.

The IDaSS description:

This state machine controller has 11 states.

93

Appendix A The IDaSS models of the microprocessor

No stack is available for 'subroutine' calls.
This controller is enabled following system reset.

This state machine controller has no connectors.

System-defined timing for this state machine controller:
Clock to state delay: 15n sec
State/test to command delay: 10n sec
Test to clock setup time: 25n sec

. ,... . .

·§i~i~·1··:··..·.·.· ·· · ··.········· .
iniuxnOrmál;
pèSload; ..
amuXniá: ...
[sf "is there á stalI"
I %1~> state1
1%0 .

... [iregi'is there an interrupt"
·1 %0 '7>staté1

1%1« .
<.> [btllisthefe an active branch"
.·1%1..;>stafe4
1%0< .
[_idbr:= ((id from: 13 to: 15)=%101).
_idbr"is there a branch instructionin id"
%1'7> státe4
%0
[_iêjump:=((ie from: 13 to: 15)=%100).
_iejurhp "does ie contain a jsr Or jmp instruction"

1%1 ->.state3
1%0/••... . .

....idJsr:= ((id frölll: 12 to:15)::::%i Obi) .•....
«~iidjsr"does id contäina jsrihstructiön" ..

ii~i(:il;~~i'lLI;~i~1,~;.:~31~:;'if~~j!~i!~:liiI7:!;!;
••21~~~ •••,~.~Z~1~~n~~i.;);~W~ ••~~~.trJciio;,I ••••••.•••••••••••••....•.•••..•..

1~6-0s~~te2 </ ••••.••..••.•.... •··i• .•... ./

.r.....îerts := (((ie from:13 to: 15)=%111) /\ .

••i·~rts ••·,,~~tZ1:~în~~:i;~~o/rt:1·i~~t·ructio.h" ...

7jii:l!ij;i:l"pX~:s:t~I&;i~;:ró~.~~;~;:i!~;~~;~~J{i'"
·((id from: 3t6: 5)=%110)):<·

94

Appendix A The IDaSS models of the microprocessor

Internal time delays tor this state:
From bloek 'id' to '_idbr' in test #4: 6n sec
From bloek 'ie' to '_iejump' in test #5: 6n sec
From bloek 'id' to '_idjsr' in test #6: 6n sec
From bloek 'iw' to '_iwrts' in test #7: 9n sec
From bloek 'ie' to 'Jerts' in test #8: 9n sec
From bloek 'id' to '_idrts' in test #9: 9n sec
From bloek 'ie' to '_iebr' in test #10: 6n sec
From bloek 'id' to '_idjmp' in test #11: 6n sec
From bloek 'id' to '_idjmp' in test #12: 6n sec

Text tor state number 2:
"ThisiSstate2" .

f!rf!~~!«I .•·•.II··
~6gî(raO&;/ .•.••..•.. / ..
8rilUx pcs;«·•.....•...•.... <·······
1>5tate3//········

95

Appendix A The IDaSS models of the microprocessor

Text tor state number 3:
"thiSi5 state 3n

·~~!t~~: ••••••••••••••••••• ••••·•••••·.••••••••·••••••••..
imûXnbp;/ .
pcshold;
al11uxptS;
[sf "is thare astall"
1% 1 -> stata4
r%Ö ..
. [br "is there a branch to be taken"
I%1<·>state2
1%0/>

<1Jdb(:::: ((id trom: 13 to: 15)=%101).
,-idbr "isthere a branch instructionin id"

I %1 L>state7
....• J%0 <:..

··f_idjsr:= ((id trom: 12 to: 15)=%1001).>
.........·LJdjsr "does id containa jsr instruction"

>1~6->state2••.••..•..•••. .

... [....idrts := (((id trom: 13 to:15)=%111) 1\/

..........>.. . ((id trom: 3to: 5)=%110)). .
i idrts"doesid cohtain anrtsirîstruetióni

,

.<.1%12> state5 ..

lr~ebt:;:. ((ie trom:· 13 to:15)=%1 01).<
<:>iébf"isthereabrahèhinstrUë:tióriTn ié">·../

.......U\ J·••~1<: · ·.·..................</ >•.••••••.•••..•••••. ·· ••••••••••.•i· · ·.· / <: ••••.•••••.•••••••••••••••••••••••••••••••••••••••.

TJdjrnp:=((i(nróm:12tq:15)~%1000).<>
y·.·.y ..••..·· .•·•· ..·•·•·•···.....idjlTlp ·"doès···id·.•cóhtäina.Jmp···ihstr'OèHóhîî

·..••••••••••••••..i I %t b staté1 0 •••••......

<[%9 ~;stàtaT . .

l;l!!!i;tH~):~!i{(i~'tioffi·:.12 tb:;15)~~!~~r:
/2.idjl1lp "does idcontaihájl1lpirystfüdión"<:.<J%1;;':>state2. . ..

1
············<f%03 statè3
.... ········<:·· ·1········ .

96

Appendix A The IDaSS models of the microprocessor

Internal time delays tor this state:
From bloek 'id' to '_idbr' in test #3: 6n sec
From bloek 'id' to '_idjsr' in test #4: 6n sec
From bloek 'id' to 'Jdrts' in test #5: 9n sec
From bloek 'ie' to '_iebr' in test #6: 6n sec
From bloek 'id' to '_idjmp' in test #7: 6n sec
From bloek 'id' to '_idjmp' in test #8: 6n sec

Text tor state number 5:
"This is state 5"

...... :-:-:-: :-

state5:··
imux nop;.
p~~I?ad;

arnuxpes;
:'>state6

Text tor state number 6:
"This is state 6"

state6:>
iml.J)(!1op; ..
pes load;
amux pes;
->state2

Text tor state number 7:

· .
... :- .-:::: ..:-::.:::::::::::: .

«·1
>1

"This is state 7"

st~t~;': •••••••••• ••••••••••••••••••••••••· •••••• •••·•·ImÛ)(hOp;<.
pcshOlêJ;
~mÛxp(;§: > •••••.••••

[bf"islHêfea branch" ..
l%r"~státé2 .

Tr~ebr:=((ietr6m:13t6: 1S)~%101} .
. iébf"döesié eontaina eonditiönal branchlnstruetión"

l%f S state8 . .
1%Ö ..>sfate3

I]i)
I]q·····

97

Appendix A

Internal time delays ter this state:
From bleek 'ie' te '_iebr' in test #2: 6n sec

The IDaSS models of the microprocessor

Text ter state number 9:
"This is state 9"

............:.-:

stat~9:
Îrnux nop;
pèShOld;
äIllUxpcs;·.·.
lSf"is thèreà sfall"
T%f s stàtè9
1°A:0

r2ridjUrTÎW:f:((id trem: 13te: 15)=%100). .. <>
j.JdjullIp "does id eentain a jmp er jsrinstruCtien"

I% 1;'> state2

1%0····~;\L>. .•.. ... /.... , -0

l;;;..ldbL,~ ((Id trem. 13 te, 15)- %101). /
Lidbri'deès idcentain a eenditiOrlálbraneh instruétien"

~>·statê7

Internal time delays ter this state:
Frem bleek 'id' te '_idjump' in test #2: 6n sec
Frem bleek 'id' te 'Jdbr' in test #3: 6n sec
From bleek 'id' te '_idrts' in test #4: 9n sec

98

Appendix A The IDaSS models of the microprocessor

Text for state number 11:
"This is state 11,wait until theinterrupt"
"servicE! routine has ended."

sfate1 :
imuxhormal;
pcsload;)
amuxhia' .,
[_iwrtT:=((iw from: 13tó: 15)=%111) A

) ((iwfrom: 3 to: 5)=%100).
.....iwrti "islheihterrupt routine finished"

I %0 ..::>statel1
I %f"'>state1] .

Internal time delays for this state:
From block 'iw' to '_iwrti' in test #1: 9n sec

ireg : register
Purpose: interrupt register; This register first synchronises the external interrupt. The

value of the register contents is read by the state machine controller intctrl.

Inputs: ei', 1 bit.
Outputs: none.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

99

Appendix A The IDaSS models of the microprocessor

namux : operator
Purpose: next address multiplexor; A5-input multiplexor which is controlled by namuxc.

One of the inputs is generated internally. The following table shows the
functions of this block.

function control value select in ut
sela4 ... ·.·000 ..
seh:f1··············/ OOf

•.•.•.•...•.•..•.•...•..•...•.•.•.•.•.•..•.•.•..•.•..•.•..•.•..•..•.•.•s~.e.e.••••.• ·~.•.:.••.••.•~.......••.•.•••....•.•••.•.••.••...•.•.•.. >.•.••..(..•.•.. <. 010>i
°1······xx11 .•.·•.•..•..•.·.•.·....•.•...·.•.· .. seliht·

.... load incremented program counter
lead JUmpàddress«>

< ::~;(H<llóad+efurnàddresSi··.

;6~~~~?~~t~r~~~Jd~r~~s~81~+
Inputs: Ca1', 16 bits, only 12 bits are used; the jump address.

'a2', 12 bits; the branch address.
'a3', 16 bits, only 12 bits are used; the return address.
'a4', 12 bits; the incremented program counter.
cc', 3 bits; the control input connector.

Outputs '0', 12 bits.

IDaSS description:

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output '0': 7n sec

Control s ecification:
"select an input of the multiplexor"

-,,: :.: : .

%000séla4.
%001séla1.
%OfOsela3.
%01fsela2./
%100·selirif·

System-defined timing for the control input cc':
Bus to command delay: 6n sec

Text for function 'sela1':
"~êlecfinpl.Jfä1 :thé jump address'\ , .. " -, ..

Text for function 'sela2':
I"selectinpÛra2:branchaddress"/I
I>·> I

I_O_:=_à_2_·~-",---",---",---",---",---",---",---",--=.=.;.-",---",---",---",---",---",--_-",---",---",---",--I

100

Appendix A

Text for function 'sela3':
"sélect inputa3: return

·S••• :.@·.•·~·~···f~O~:····O ··t6:·····;··1················

The IDaSS models of the microprocessor

Text for function 'sela4':
"selecfinplJt .:llA·n......n'.:lllinr·..6,Yioln+.:ll+inln"· •

•~•••:.I••• ä~... . ,···~·~·ï••·••• ·••• /. i >< >••••••••••••••••••••••••••

Text for function 'selint':
"generàte the interruptroutine start áddress(001h)"

namuxc : operator
Purpose: next address multiplexor controller; This operator controls the multiplexor

namux.

Inputs: 'br' I 1 bit; the branch signa!.
'id', 16 bits; the instruction in the decode stage.
'iw', 16 bits; the instruction in the writeback stage.

Outputs: '0', 3 bits;

IDaSS description:

System-defined timing for output '0':
Data transfer delay: 2n sec

Text for function 'doit':
"this operator controls the next program counter"
'iàddress multiplexer."
"c(OOO)= a4 :normal incrememtatiol1". ..
"c(001)==a1: loadjump address"} ../<
"c(010):: 83 : load retur~ áddréssl.>/ .
"<::(911) ==à2:10àd bràrichaddress">···· .
';6(100rSloádintérruptstartáddrêss(()Ö15),'·

"~~~•••• I§·••··1·····.i·~····c~s·~ ••••id····i·s·· a· js.r.··6r.j·~p •••igstr~8ti.()g" ••••••••••••••••••••••••••••••••••••••..•....•..
.:imp:==((idHóm:1310:1S)== %100).
'ifêfls1ifiWis a rtsofrti instl"lJction"
lr~t::::({iWfrom:13 to:15) = %111) /\(iwat: 5)/\ ((iwat: 3)not).
"il1fis firicase id is an interrupt caH"•...... ...
.:inf:::«idfrom: 13 tO:f5)= %111)]\(idJr(jf1Î:áto:5)=%01 0).
"h6fê:executiortOfrts or rti·insèrts4hopsihlhe<decodestagé.ii

"S6..Jmpáhd ret· can notbeactivêáfthesámélirhé" ..
"/ihrcanriot beàctivetogetherwith at5ránêh,.:impbr __rts"

101

Appendix A

!6i=inf,(bfV ret),(br'V..Jmp)
Internal time delays for function 'doit':

From 'id' to '..Jmp': 6n sec
From 'iw' to '_ret': 12n sec
From 'id' to '_int': 9n sec
From '..Jmp' to '0': 3n sec
From '_ret' to '0': 3n sec
From 'br' to '0': 3n sec

The IDaSS models of the microprocessor

nia : register
Purpose: next instruction address; As the instruction memory is a synchronous ROM

the 'next instruction address' that accompanies the instruction must be piped.
This is done by this register.

Inputs: 'i', 12 bits;
'c', 1 bit; the control connector

Outputs: '0', 12 bits;

IDaSS description:

Default function: 'Ioad'
Reset value: 0

Control s ecification:
"holdwhehstalled"

.. .,)t... <\::»<\:»:r .:::. :.. -:."
%Oload.
%1hold

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

pc : register
Purpose: program counter register.

Inputs: 'j', 12 bits.
'c', 1 bit; the control connector.

Outputs: '0', 12 bits.

102

Appendix A

IDaSS description:

Default function: 'Ioad'
Reset value: 0

Control s ecification:
"hold whënstalled" ...

i6···ig·~~ .•••••••••••••• •••••••••··••••••••••••••••••••.•......•....................................
%1holä>\.··· .

System-defined timing for control input Cc':
Bus to command delay: 6n sec

System-defined timing for output '0':

Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

The IDaSS models of the microprocessor

pcs : register
Purpose: program counter save register; In some cases, when an interrupt occurs, it is

necessary to save the contents of the program counter. It will then be saved in
this register. This register is controlled by the state machine controller intctrl.

Input: 'i', 12 bits.
Outputs: '0', 12 bits.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

103

Appendix A The IDaSS models of the microprocessor

si : register
Purpose: save instruction; In case of a sta 11 the instruction memory can not 'hold' its

current output. To prevent the data to be lost on the next clock the data is
saved in this register. After a sta 11 the multiplexor imux selects the output of
this register to generate the next instruction. This register is controlled by sic.

Inputs: 'I', 16 bits.
'c', 1 bit; the control connector.

Outputs: '0', 16 bits.

IDaSS description:

Default function: 'hold'
Reset value: 65535 (OFFFFh)

Control s ecification:
"this signal contrals the 'save instruction' register"

%Oioàd.
%lhold/

System-defined timing for contraI input 'c':
Bus to command delay: 6n sec

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

sic: register
Purpose: save instruction controller; In case of astall the output of the instruction

memory must be saved. During the first clockcycle of astall, the 'hold' control
signal must be postponed one clock cycle to enable the si register to load the
output of the instruction memory.

Inputs: 'I', 1 bit.
Outputs: '0' I 1 bit.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

104

Appendix A

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

105

The IDaSS models of the microprocessor

Appendix A The IDaSS models of the microprocessor

Part 2.2. The description of the schematic decode.

EJ1
sd

Io"~ 1.:-1.. sd: L. sd ~,!j:- ~+it..j- ~iit~!tr:- i. ~itcct..
C Iel

.talli.

fcUî st - - st
Q\i

I 1.1

I I ~
• I If 0ad ad

ad...g add...
I'ii"i'/; • id out Ioa

B • d2

"'"1- I

B ~ ~ ael b 0 r=:rE]
~ el1..u>c

~I
aid dlil~~d .11 r=:~l!Jd1 oJ. r.t .IJ. /i\ii

gp.... l d21i~ I:Jd2
ir i oll! I-- s2J!~~sZ "h..u>c

Id"~1J OP
03 - EJ

l'iiV
CPR 9-

:"iel ~ ~ao
Q<i!des"uK

I!JI .. d.~l:Jd".
OP ~din

~

~fl ~ IiU• 1W 0

a dinMuK

1F~::: /Ni

a I
~

t:1.,tZ add.. r=:Br:- Id

ic'id ~
aelel.... 1

5prhm
"~IJS~~ Ii

~~sd o. • I'ego

Iffi "'""'9'.

~ oll! ,....-!adat
- ~ sprlo

regMux
...ooii

l~d1 'OP

Connectors
name 110 bits
ad I 12
ao I 16
ba 0 12
br I 1
d1 0 16
d2 0 16
id 0 16
ie I 16
if I 16
iw I 16
ma 0 12
mo I 16
sd 0 1
sf 0 1

description
next instruction address.
ALU output.
branch address; used in case of a conditional branch.
the branch signa!.
data1.
data2.
instruction in the decode stage.
instruction in the execute stage.
instruction in the fetch stage.
instruction in the writeback stage.
memory address of the data memory.
memory output of the data memory.
the stal! signal for the decode stage and execute stage.
the stal! signal for the fetch stage.

106

Appendix A

Slocks

The IDaSS modeIs of the microprocessor

adder: operator
Purpose: This block contains the adder which calculates the branch address. The

branch address is calculated by adding the displacement to the next
instruction address. The displacement is formed by bits 4 to 11 of the
instruction word id extended to 12 bits. This adder is also used to decrement
the contents of one of the General Purpose Registers in case of a filJ
instruction. The operator decctrl controls the switching between these two
functions. The functions are shown in the following tabie.

Inputs: 'ad', 12 bits; the address of the next instruction.
'c', 8 bits, only bit 0 is used; the control connector.
'd2', 16 bits; data2.
'id', 16 bits; the instruction in the decode stage, containing the displacement.

Outputs: 'out' I 12 bits;

IDaSS description:

System-defined timing for control input IC':
Bus to command delay: 6n sec

System-defined timing for output 'out':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output 'out': 4n sec

Text for function 'add':

107

Appendix A

Internal time delays for function 'add':
From 'ad' to 'out': 11 n sec
From 'id' to 'out': 11 n sec

The IDaSS models of the microprocessor

Internal time delays for function 'decr':
From 'd2' to 'out': 11 n sec

addrsel : operator
Purpose: address selection; This operator contains the adder to calculate the effective

address of the data memory. The adder is also used to decrement or
increment the contents of the Stack Pointer Register. This operator has 4
functions which are shown in the following tabie. Switching between the 4
functions is controlled by decctrl.

Inputs: 'c', 8 bits, only bits 6 and 7 are used; the control connector.
'd2', 16 bits; data2.
'id', 16 bits; the instruction in the decode stage.
'rego', 12 bits; the output of the registers DBRlIBRISPR.

Outputs: 'addr', 12 bits; the effective address of the data memory.
'spfb', 12 bits; the stack pointer feedback value.

IDaSS description:

108

Appendix A

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output 'addr':
Data transfer delay: 2n sec

System-defined timing for output 'spfb':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output 'addr': 4n sec
For output 'spfb': 4n sec

Text for function 'direct':
"dêtéfrhihêdirectaddreSS"..

ad~·~·•••~·I.· ••~~.~.~ •..•+·..(6··.·z~roesl •••••(id frórn:···.6••••tO:•••••1•.·1••))..
spfb:=Q< ..

Internal time delays for function 'direct':
From 'id' to 'addr': 11 n sec
From 'rego' to 'addr': 11 n sec

Text for function 'indexed':
"dëtêhhfriëindexed address"

äd~r:::rego+ (d2 trom: 0 to:11).
spfl:):;§O .

Internal time delays for function 'indexed':
From 'd2' to 'addr': 11 n sec
From 'rego' to 'addr': 11 n sec

The IDaSS models of the microprocessor

Internal time delays for function 'pop':
From 'rego' to 'addr': 11 n sec
From 'rego' to 'spfb': 11 n sec

109

Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'push':
From 'rego' to 'spfb': 11 n sec

adreg : register
Purpose: address register; Part of the pipeline register between the fetch stage and the

decode stage. This register holds the address of the next instruction. This
register is controlled by the stall signal for the fetch stage, generated by logic
block stall.

Inputs: 'c', 1 bit; the control connector.
'j' I 12 bits.

Outputs: '0', 12 bits.

IDaSS description:

Default function: 'Ioad'
Reset value: 4095 (OFFFh)

System-defined timing for control input 'c':
Bus to command delay: 6n sec

Control s ecification:

,,9ri~~~~lrbold this register"

••~8.··,§~d •.•••••••••••••••••••·····
%1hOlêf

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

d1mux: operator
Purpose: multiplexor for d1 ; A plain multiplexor in datapath d1 that switches between

data from the General Purpose Registers (output d1) and data from the
address register adreg. Logic block decctrl contrals the switching between the
two inputs. This is shown in the following tabie.

110

Appendix A The IDaSS models of the microprocessor

seleçfil'lp9tQt
selé6fih ·üfád

Inputs: 'ad', 12 bits; address to be saved on stack
"c', 8 bits, only bit 1 is used; the control connector.
'd1', 16 bits; the data from the General Purpose Register.

Outputs: '0', 16 bits; output of the multiplexor.

IDaSS description:

Contral s ecification:
-···(·1··) .

:·0··.)[0········.'.. '.U.·.·····.·I••••••••••••••••t••••••••di1>;,.<· .70 . se ec .
sêldi.<.···••
X01i'~~I~êfad"
·::sélädiii

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output '0': 4n sec

Text for function 'selad':
'1~~(jthröUghthe·instrucfion a·1ddr·es~s" ••• ·· ••·••·.·.·:·./\

~::::(4zeröes) , ad.. ..<\.:.:.:.......... :•••••...

decctrl : operator
Purpose: decode stage controller; This is the controller for most parts of the decode

stage. The following table shows the several types of instructions and the
functions of the logic blocks for each of those types. The 'wrreg' signal is the
write signal for the register file regs. Next to the instruction input "id' the logic
block decctrl has another input. This is input 'sd'. This input will be 1 if astall
or a branch occurs. In those cases the Decode stage must switch to a passive
state. This is done by making all the control signals zero.

111

Appendix A The IDaSS models of the microprocessor

Inputs: 'id', 16 bits; instruction of the decode stage, configured as a control connector.
'sd', 1 bit; stall of the decode stage.

Outputs: '0', 8 bits;

IDaSS description:

112

Appendix A The IDaSS models of the microprocessor

System-defined timing for control input 'id':
Bus to command delay: 6n sec

System-defined timing for output '0':

Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output '0': 7n sec

Text for function 'filI':

113

Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'fill':
From 'sd' to '0': Sn sec

Text for function 'imm':
"No.thingsp~cialfor immediate operätior'ls"/ ..

Text for function 'ind':
"Indexed Binaryoperations" ..

114

Appendix A The IDaSS models of the microprocessor

Internal time delays tor tunction 'int':
From 'sd' to '0': Sn sec

Text tor tunction "c':
"Thêjûmpconditional operation"

Text tor tunction "m ':
"Nothingspecialtor the jump operation" ..

115

Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'jsr':
From 'sd' to '0': Sn sec

Text for function' 0 ':

"Ihepopoperation"

Internal time delays for function 'pop':
From 'sd' to '0': Sn sec

116

Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'push':
From 'sd' to '0': Sn sec

Text for function 're ':
"Régistêtêinary operations"

Internal time delays for function 'regwr':
From 'sd' to '0': Sn sec

117

Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'return':
From 'sd' to '0': Sn sec

:~:>-:-::<'.:\/.:.. . . ' ..".";."' ::...:::<:\.:.::.::":>:. <~«:/ .. -: "..

....tiêroeS,"address addérfuhttrbri"

.•••1•••••~:~~:·:: ::~:t~i~~~t;·'BRlO·B·RlS.P·R" •. · ...

/«1 zeroès "data t6GPR oneif fill"
•••••••••••••••.••••••••.••••... \>1.····zêroes:··"sèlect·..a.. <3PR,••• one••••if••ffll"./ .•

/<1zercès, ·"wHfeIBRl08R1SPR,,·····
U·.>l:Z:èrbes, "data1.mux;;/> .

1zêroes ·;'ádêfèrSèlect, orie iffill"

desmux : operator
Purpose: destination multiplexor; Writing data to one of the registers of the General

Purpose Register (GPR) is mostly done by the writeback stage. In case of a till
instruction the addressing is done by the instruction in the decode stage.
Selection between these two is controlled by decctrl. The following table
shows the functions of this bloek.

··.?\\\.~~I.iW.·.····················
·/sèlid

Inputs: 'c', 8 bits, only bit 3 is used; this is the control connector.
'id', 16 bits; the instruction in the decode stage.
'iw', 16 bits; the instruction in the writeback stage.

Outputs: 'des' I 3 bits; the destination register.

IOaSS description:

118

Appendix A The IDaSS models of the microprocessor

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for this output:
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output 'des': 4n sec

Text for function 'new':
,irègTster~electionWith·fill operätiorl"<»··

. .. . ",.

............ . .
"0":::::::::::::-::,., :. "' "

d~~:~icffrÓfr1:6tö:· 8

Text for function 'old':
"(jé3Jäfrorpthe write back stage"

:::::::::::::::::::::::/:::::::::}:-.' : ,-::,', -":-..::: .. :::-:".' .

·d·~.~..•;.#••••ÎW··fr6fr1: .•••~ ··to:····2 ...

dinmux : operator
Purpose: data input multiplexor; It has 3 input busses to be switched to which means

that it needs 2 control lines. One of those control !ines comes from the
controller decctrl. It switches between the output of the adder (at the top) in
case of a till instruction and the output of the Write-back stage. The latter
however can be the output of the ALU or the output of the Data Memory. An
extra control line is needed to select between those two inputs. This control
line is not fitted as one signal but as the instruction bus 'iw'. A function internal
of dinmux determines which input must be selected. This internal signal wil1
be called '_am' (ALU or memory). If it is zero, data from the ALU will be
selected. If it is one, data from the Data Memory is selected. The functions are
shown in the following tabie.

........ , ...

>äaàer

119

sèlèct..•iOPQt··8q···
.......... ····1 : t •....'/.....•.•: ·t·.•...........,.<
s~eclnpu. ·m.o
sèlêcfih urfl

Appendix A The IDaSS models of the microprocessor

Inputs: cao', 16 bits; ALU output.
'c', 8 bits, only bit 4 is used; this is the control connector.
'fl', 12 bits; the output of the adder in case of a fill instruction.
'mo' I 16 bits; data memory output.
'iw' I 16 bits; the instruction in the writeback stage.

Outputs: '0', 16 bits; the actual dat to be wriUen to one of the GPR registers.

IDaSS description:

System-defined timing for control input IC':

Bus to command delay: 6n sec

System-defined timing for output '0':

Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output '0': 4n sec

Text for function 'adder':
"feedfhr6ughdata from adder"

0'" •••••• , • ..:::... :::::>..;::../:-..... ::::-.".-:'

B:~12~r()g~, fl

Text for function 'alumem':

aluor mem"
memory toregistermove and in case ofapóp"

Internal time delays for function 'alumem':
From 'iw' to '_am': 12n sec
From '_am' to '0': Sn sec
From 'ao' to '0': Sn sec
From 'mo' to '0': Sn sec

120

Appendix A The IDaSS models of the microprocessor

fbctrl : operator
Purpose: feedback control; This logic block controls the feedback multiplexor fbrnux.

Inputs: 'id', 16 bits; the instruction in the decode stage.
'iw', 16 bits; the instruction in the writeback stage.

Outputs: '0', 3 bits;

IDaSS description:

System-defined timing for output '0':
Data transfer delay: 2n sec

Text for function 'doit':
t1fe~dbaêkcontr6rföl"thê~ëcod~stagê"<··

·.;;~~~•••~.· ••f:~~.~ •••••:··:~:J.~ •.••~h·~· •.~g~:~::...................... ...

"I~~rri ••••i.~· ...~·.....iR•••cá·;e··.8f··a.·••~.e~·0~ •••t8••·.registêf·••rll·00e····and· ·in···êasè••·8f a...pop,,···········

~~·~.~ ••••:.~ •••((iW· frOm:·····1.·4···to: .•15)••••=····%0()·.X·••«.i;··frQrn·: s···io·;····S). =·..%QOO))···V
«(ivifrorii:12 to: 15)=%1 1ÖÖ) A«iWfrom:3tb: 0) =%OÖÖÖ));

u~fit~6~êktoa GPR"
2binWriW:#«(iWfrorii:14 to:15)= %00)1\ «iW at3) = %O))V

< «(iwfröm: 14 to: 15)= %01) f\ «(iwfrom:3 to:5)~=%111»V"e)(cept I"m'...."<·.·.·.········.····
<.«(iWfrom: 12to: 15) = %1101)N((iw from: 3 to: 5)-::%111». "S",cept "mi"'''·.·.·.·.·

ÊlJHwfiw:=«iw from:12 tb: 15) = %1100)/\
i < «(iwfrom: 3 to: 6) =0(00001) nqtJ~"allexcept a push"
g8jf'lziw(:: «iwfrom: J? to:15)=%1{J1f),

2~~\rJiÜI:=_binwriw V_unwriwV:ajrizi~.

Internal time delays for function 'doit':
From 'iw' to '_mem': 9n sec (user-changed)
From 'iw' to '_binwriw': 9n sec (user-changed)
From 'iw' to '_unwriw': 7n sec (user-changed)
From 'iw' to '_djnziw': 4n sec (user-changed)
From '_binwriw' to '_rgwiw': 3n sec (user-changed)
From '_djnziw' to '_rgwiw': 3n sec
From '_unwriw' to '_rgwiw': 3n sec (user-changed)
From '_rgwiw' to '0': 6n sec (user-changed)
From 'id' to '0': Sn sec (user-changed)
From 'iw' to '0': Sn sec (user-changed)

121

Appendix A The IDaSS models of the microprocessor

fbmux : operator
Purpose: feedback multiplexors; This block contains two multiplexors. Each of the two

multiplexors switches between the output of the General Purpose Register,
the output of the ALU and the output of the Data Memory. This block is
controlled by fbctrl. The functions of fbmux are shown in the following tabie.

thormal>·······••··r> «'ir]> «>1 datäfrpriiGPR.y········ ·.·.~.at~.tpm~PRc
•••••• >fBd1··atü··............. ·d~t~fr(jl1lAÇLJ> •••• >•••••••• <···•••••••••••.••.••••~at~ .••t9Jfl<3e.Ri) ••.•.••••••..f8êl1hiéhi) dátäffÓffiOátäMerftÓ ··········d···ff···············GPR···

... ··········aàtáff6n'lGPR<ury.•...•..•.•...•.•..••.••..•....•.•..•.•...•.•..•.•.•...••.•.•.•.••...••.•.•.•.•..••..••...••..•••.•.••...•.•.•••.••.•..••.•.dd.•••.•..•.•.••. aa•.

a

.•.•...••..•.tt·.•..•·.•.aaa.••·.•·.•..•.·.••·.•.·.•.•.·.•••f•.
f

.•.·.•.·•.r~.•. ·.·.· ••·.·.60•.·.••...·.•.·.••.•.~m•.••.•..•.•.•..•....•.·.·.•.·.•.•..••••••A.D·.••.••.•.·•.·.•..•.·.•.La·.•••.·•·.•.•.·.·.t·.p.···.·a·.···....•··.•·•..•·•.•·•.•·••.•···..••.••·M·.·.··.·•.•·.• •.•··.•.••.• •.• •.··.·e···•.•••.••··.••.••·•..···.·.·.·m.•·• •.·· .••·•.•.••.•.•.•.•· •..•.•·•••.0···.•. •.•···..••.• ··•.••.•••.·.•.rv.·.·.·.•..·.•·.• •.·.··.•.·.·.·...•.•. •.·... ·.·...•...•...•...•.....•....•.•..•.....•.•..f~~~~~~~t~fç8mgpR) ... •.• ~1
ftjt>CSm~I.~·...........dáfä.ffÓrft.ALU.· •••• C•••••••••••••••••••••••••.••••••..•.•••.•••.••..• dátà·frórft••·ALU••·••.••·.U

>fbb6thrfterft······· ···datà···itdh,···Oé3là···îVIéhib ···d~t~··frOm6ata···l\ÎlèmÖ············<····

Inputs: 'ao', 16 bits; the output of the ALU.
'c', 3 bits; the control connector.
'd1', 16 bits; data input 1.
'd2', 16 bits; data input 2.
'mo', 16 bits; the output of the data memory.

Outputs: '01', 16 bits; data output 1.
'02', 16 bits; data output 2.

IDaSS description:

ecification:
feedthrough"

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output '01':
Data transfer delay: 2n sec

System-defined timing for output '02':
Data transfer delay: 2n sec

122

Appendix A

System-defined output multiplexer delays:
For output '01': 4n sec
For output '02': 4n sec

The IDaSS models of the microprocessor

123

Appendix A The IDaSS models of the microprocessor

GPR:RAM
Purpose: General Purpose Registers; Thsi is a register file of 8 registers, each 16 bits
wide.

Inputs: 'c', 1 bit; this is actually the write signal for the selected register.
'des', 3 bits; the destination selection.
'din', 16 bits; the input data for the selected register (des).
's1', 3 bits; address select for output 1.
's2', 3 bits; address select for output 2.

Outputs: 'd1', 16 bits; output 1.
'd2', 16 bits; output 2.

IDaSS description:

This RAM uses the 'ASA 6-ported register file' technology.
It contains 8 words of 16 bits each.
There is no contents file attached.
The contents are 0 after system reset.

Control s ecification:
"Write.. regist~e'·· .

··O%1·•••·~;if~······.······················· .

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output 'd1':
Data transfer delay: 2n sec

System-defined timing for output 'd2':
Data transfer delay: 2n sec

The functions of the (non-control) connectors are as follows:

Two Read-only ports:
These port's technology is called 'ASA asynchronous read only port'.
Cycle and mode settings are as follows:
This port reads asynchronously.

System-defined timing for these read port:s
Addr. to output delay (async): 12n sec

One Write-only port:
This port's technology is called 'ASA synchronous write only port'.
Cycle and mode settings are as follows:
A write cycle takes 1 clock.
The input must be valid when the write cycle is started.
The memory cells are updated in clock cycle 1.
The default writing command is 'nowrite'.

124

Appendix A

System-defined timing for this write port:
Clock to (addr.) output delay: 20n sec
Port address setup time: 12n sec
Port command setup time: 12n sec
Clock to (fixed) output delay: 15n sec
Write data setup time: 16n sec (user-changed)

The IDaSS models of the microprocessor

gprsel : operator
Purpose: General Purpose Register select; Filter the addresses from the instruction in

the decode stage to select the two registers from GPR. This block is only
necessary in 10aSS. In the actual circuit the input ports of the GPR can be
directly connected to the appropriate bits of the instruction in the decode
stage.

Inputs: 'id', 16 bits; the instruction in the decode stage.
Outputs: 's1', 3 bits; address of the first port of the GPR.

's2', 3 bits; address of the second port of the GPR.

10aSS description:

System-defined timing for output 's1':
Data transfer delay: 2n sec

System-defined timing for output 's2':
Data transfer delay: 2n sec

Text for function 'select':
]l~~I~(#!B~t~gistêrsfrQWJI1E:lln~ttücHgh"

••~.~••··.t~·.I~.·~~g~;· •••·()···t8:·.·2..·•·..•·•··.·· ..
$~··i~iafrqm:6 to:S)·······

idctrl : state machine controller
Purpose: In some cases the instruction in the instruction register of the decode stage

must not be loaded with a new instruction on the next clock. In case of a stal!
the instruction must be held. In case of some instructions nop instructions
need to be inserted to guarantee proper operation of the piperine. This is
done by resetting the instruction register. In case the function of the
instruction register idreg (Ioad, hold, reset) must change, it must be done
before the next clock. Therefor this finite state machine must be implemented
as a Mealy Machine. The following figure shows the state transition diagram.
The next function of the instruction register idreg is shown for each transition.

125

Appendix A

br-st/hold

IDaSS description:

br/reset +

j;-St-(jmp+jsr+int)/reset

The IDaSS models of the microprocessor

brost-rts-rti-jmp-jsr-intlload

br/reset

This state machine controller has 7 states.
No stack is available for 'subroutine' calls.
This controller is enabled following system reset.

This state machine controller has no connectors.

System-defined timing for this state machine controller:
Clock to state delay: 15n sec
State/test to command delay: 10n sec
Test to clock setup time: 25n sec

126

Appendix A The IDaSS models of the microprocessor

127

Appendix A The IDaSS models of the microprocessor

128

Appendix A The IDaSS models of the microprocessor

Text for state number 6:

Text for state number 7:
"insèrt1nop"
popi.: ••••••••••••.•.•.••• ».·····
iar~gI8ad;
'::>honop/

idreg : register
Purpose: instruction register for the decode stage; This register will hold the instruction

to be processed by the decode stage. It receives its contents from the fetch
stage. In some cases it is necessary to hold the contents or to reset the
register. Control is done by the finite state machine controller idctrl.

Inputs: 'j', 16 bits;
Outputs: '0' J 16 bits;

IDaSS description:

Default function: 'Ioad'
Reset value: 65535 (OFFFFh)
Reset command value: 65535 (OFFFFh)

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

129

Appendix A The IDaSS models of the microprocessor

regmux : operator
Purpose: register file data input multiplexor; This multiplexor switches between the data

from the data1 output of the General Purpose Registers and the stack pointer
feed back from addrsel. The following table shows the functions of this bloek.

Inputs: 'c', 8 bits, only bit 5 is used; the control connector.
'd1', 16 bits; the data1 output of the General Purpose Registers.
'spfb', 12 bits; stack pointer feedback.

Outputs: '0', 12 bits;

IDaSS description:

Control s ecification:
~lê~t~SêlèCtion for·theIBR/DBRlSPR'i
(5)<········......•...•...........•..
%phdatafrOrîi GPR"·
dátät•.. ····••.................... ".. .

°%1 "dCifáfr-om adder"···
·fêêc:Jbaêk•••••••. <

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output '0': 4n sec

Text for function 'data1':
''Wtitédát?from a GPRtOa register"

·6•••:.~ •••d.i·.·.if()nî:.·.·.() to:.···1•• 1·•••••••••• ·•··············

130

Appendix A The IDaSS models of the microprocessor

regs: RAM
Purpose: This is a register file of 19 registers, each 12 bits wide. The first 16 registers

are the Index Base Registers (IBR). The next 2 registers are the Direct Base
Registers (DBR). The last register is the Stack Pointer Register (SPR). They
are c1ustered together for silicon compilation reasons (a register file takes less
space than separate registers).

Inputs: 'c', 8 bits, only bit 2 is used; the control connector.
'dat', 12 bits; the data input.
'seI', 5 bits; the address input of the registers.

Outputs: '0', 12 bits.

IDaSS description:

This RAM uses the 'ASA 6-ported register file' technology.
It contains 19 words of 12 bits each.
There is no contents file attached.
The contents are 4095 (OFFFh) after system reset.

Control s ecification:
"Wfite.régistér"
(:2J •...
%fWrifê

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output '0':
Data transfer delay: 2n sec

The functions of the (non-control) connectors are as follows:

Combined read/write port:
This port's technology is called 'ASA async read/sync write port'.
Cycle and mode settings are as follows:

This port reads asynchronously.
A write cycle takes 1 clock.
The input must be valid when the write cycle is started.
The memory cells are updated in clock cycle 1.
The default writing command is 'nowrite'.

System-defined timing for this read/write port:
Addr. to output delay (async): 12n sec
Clock to (addr.) output delay: 20n sec
Port address setup time: 12n sec
Port command setup time: 12n sec
Clock to (fixed) output delay: 15n sec
Write data setup time: 16n sec (user-changed)

131

Appendix A The IDaSS models of the microprocessor

regsel : operator
Purpose: register selection; This block selects the appropriate register from the register

file regs. The selection depends on the type of instruction.

Inputs: 'id', 16 bits; instruction in the decode stage, configured as a contraI connector.
Outputs: '0', 5 bits; the address of the selected register.

IDaSS description:

~·666_·••i·'Î·r1di~·~d····6·i·~a·~···8·~.~·~~tigg" •• ··
jiiaêxed.. >•••.. .•.....< .
%Q(1)OQö<XXX)OOÖ<XX"direct biriarydpêràtion" .
difêêÜ»••...•.... >.>...•
%bl_"irnrhêdiate biri·Óperation"»
lndêxêd.i.·········· .
0'1··O·OXXXXXXXXXXXXX·...... w·· ·d··.,li
10 Jmp an J~I·•·· ••.•••·.. .Stàêk.··/..•.•..•••.•...».•.•••.... ...

·%1Ó1)()(){)()()()() "conditiolJä'jwTlP"··················
irîdêxed.(....•••......••••••...• .

~ti~~~"popandPus~an~()thêrs"

%fi l)OQö<XXXbobXXX··i'filI operatiöri"
ihdêxêd.· •..........••• />.> ./.

o)1·····1/1···XXXX···0··.·01·0···0··1···XXX·.". .•• t ·····'··S··R····;'··
10 .i.... . ..move 0 >•...
liiaèkêd3>.. .. ./.. •......//
l>%1115OOö<010()Ó1XXX"m()vEftbbBR"

~~~l~\Ó6ÖÖ1xi)("mov."tcfSê~"
st9~.~'/·. .... .... ..... •.•••••••.
%111XXXXXXX1XOXXX "rtsand rti"

1~~~01;i~"!s~";ii...i.
qrld~~~111~l'ri()p"<

System-defined timing for control input 'id':
Sus to command delay: 6n sec

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output '0': 4n sec

Text for function 'direct':

132



Appendix A

H»·<> < «
§t§(16h~§,~iéfoés,licfät:1 .,.,.,.,..... "....'...'

The IDaSS modeIs of the microprocessor

stal! : operator
Purpose: stall signal generator; This block will produce the stall signals for the

microprocessor. In case an instruction arrives at the Decode stage that can
not start its operation because it needs data that wil! not be available until the
next clock cycle, it will have to stall the fetching of the next instruction. The
instruction in the Decode stage must stay passive until it can start its
operation. The instructions at the Execute and Write-back stages must
continue their operations. The output signal 'sf' takes care of stalling the fetch
stage. The output signal 'sd' takes care of stalling the decode stage.

Inputs: 'br', 1 bit; the branch signaL
'd2', 16 bits; the data 2 output of the General Purpose Registers.
'id', 16 bits; the instruction in the decode stage.
'ie', 16 bits; the instruction in the execute stage.
'iw', 16 bits; the instruction in the writeback stage.

Outputs: 'sd', 1 bit; the stall signal for the decode stage.
'sf, 1 bit; the stall signal for the fetch stage.

IDaSS description:

System-defined timing for output 'sd':
Data transfer delay: 2n sec

System-defined timing for output 'sf:
Data transfer delay: 2n sec

Text for function 'stalI':
f·'~f •• is·<thèstáll ·signal forthe··.fefC::h··st~g§'J ••••••• / ••••• «··••·•••·· ••••••••••••••••••••••• ,.,',.,.•.,..... '.,....
lisaisthêsfallsignárfoflhêdecödês!~g~ll< .<', •...•,','.,.,..

'Eld~ernt~is1Wherrqata wHlg()frornmemorytóarèglgtgt" ....."". "."""'...,.......•,., •• ,'.• ) •
.l.i$l'l1~mfa:#(((ièfrÖI'l1: 1-4JO:1§)#%OO)l\lnë!ft9riî:~t(j:$)êo~p()()Jr\l)

i(( ie'from~'·"1'2·io:·.·••1••5)s%11••(jQ)J\.((i~ ••,frQm:$]9:.6)::%dQ(jO»}•••••••••••••••••••••••••••••••••••••••••••••••••• >....
1':~< ••sàffiêtég1.··.·is·<1if thê·••writè±6~tk'tégi$t~tQfÎ~isêIS()·.Llsêd. ir1Ja.ésYègistét1.~'

133



Appendix A The IDaSS models of the microprocessor

134



Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'stalI':
From 'ie' to '_iememrd': 9n sec (user-changed)
From 'id' to '_samereg1': 6n sec
From 'ie' to '_samereg1 ': 6n sec
From 'id' to '_samereg2': 6n sec
From 'ie' to '_samereg2': 6n sec
From 'id' to '_regop': 12n sec (user-changed)
From 'ie' to '_regwrie': 12n sec (user-changed)
From 'iw' to '_regwriw': 12n sec (user-changed)
From 'id' to '_indid': 4n sec (user-changed)
From 'id' to '_fillid': 6n sec (user-changed)
From 'id' to '_popid': 6n sec (user-changed)
From 'id' to '_pushid': 6n sec (user-changed)
From 'id' to '_return': 6n sec (user-changed)
From 'id' to 'jsr': 4n sec (user-changed)
From 'id' to '_movrid': 6n sec (user-changed)
From 'ie' to '_condbrie': 4n sec (user-changed)
From '_condbrie' to '_std': 4n sec (user-changed)
From '_fillid' to '_std': 4n sec (user-changed)
From '_iememrd' to '_std': 4n sec (user-changed)
From '_indid' to '_std': 4n sec (user-changed)
From 'jsr' to '_std': 4n sec (user-changed)
From '_movrid' to '_std': 4n sec (user-changed)
From '_popid' to '_std': 4n sec (user-changed)
From '_pushid' to '_std': 4n sec (user-changed)
From '_regop' to '_std': 4n sec (user-changed)
From '_regwrie' to '_std': 4n sec (user-changed)
From '_regwriw' to '_std': 4n sec (user-changed)
From '_return' to '_std': 4n sec (user-changed)
From '_samereg1' to '_std': 4n sec (user-changed)
From '_samereg2' to '_std': 4n sec (user-changed)
From '_std' to 'sd': 1n sec (user-changed)
From 'br' to 'sd': 3n sec
From '_fillid' to 'sf: 4n sec (user-changed)
From '_std' to 'sf: 4n sec (user-changed)
From 'br' to 'sf: 6n sec (user-changed)
From 'd2' to 'sf: 8n sec (user-changed)

wbctrl : operator
Purpose: writeback control; This logic block contrals the 'write'-signal of the General

Purpose Registers. The ti/l instruction is the only instruction in the Decode
stage that can write to these registers. All other instructions that can modify
the contents of one of the General Purpose Registers wil! only do 50 when
they are in the Write-back stage of the pipeline.

135



Appendix A The IDaSS models of the microprocessor

Inputs: 'id', 16 bits; the instruction in the decode stage.
'iw', 16 bits; the instruction in the writeback stage.

Outputs: '0', 1 bit; the write signalof the General Purpose Registers.

IDaSS description:

System-defined timing for output '0':
Data transfer delay: 2n sec

Text for function 'writeback':
;;wfltê6áêktöa·GPR~~i·

U((iW froll1: 14 t<:>:j$)= %01) V((iwfrorïi:12tö>t5) = %1 101)}A
> ((iW from:3 t6:5)~= °41f1)."~xc~ptcrnpu ..

zûl1wHW:d niwfrorn:12 to: 15)=%1100)/\ ..
/«(O\?Jfrörn: 3tö:6) = %0001) not}.

zd1Q#iw:§niwfrom: 12 to: 15)= %10t1).
:;:;:;:::::::;::::::::}}::;":::":::;:;:::::::;>"':""" ." ." :-:-.-:.-::: "-:-:::: ";::::."

à:#Êfrllid.·V•• bih\Vri\VV••~ÛriwriW·.V·=~jhziW •••••••• ·· .

Internal time delays for function 'writeback':
From 'id' to '_fillid': 6n sec (user-changed)
From 'iw' to '_binwriw': 10n sec (user-changed)
From 'iw' to '_unwriw': 6n sec (user-changed)
From 'jw' to '_djnziw': 4n sec (user-changed)
From '_binwriw' to '0': 3n sec (user-changed)
From '_djnziw' to '0': 3n sec
From '_fillid' to '0': 3n sec (user-changed)
From '_unwriw' to '0': 3n sec (user-changed)

136



Appendix A The IDaSS models of the microprocessor

Part 2.3. The description of the schematic execute.

I bZO:: ;B: bzo af - ~af Izod

I iw~
Wl/'_

zod. I:5:iw oEf- exctzol..,
fbctzol tg. ctzol::

.- lEI ie
roP

- C Ie mi
~wzo IOP

~ie I
I I

~t.r.!j EJ
r sd lZj I .1 I

~ ~

I id '*- lEIi~ 0" ';'" iMM C
c

iezoeg - - aluJ.:: ::: al uJ. gZOSM :: b.. gS Ir'
...J'REG

I d1.12j-
\C~ iMMMUX iA LU

lEI i 013~ lEI dJ. coJ. = :::: dJ.dJ.zoeg

...J'REG alu2 :: ;:: al u2 zoesul t:: k. azo IfbMUX FI 12j-' ~IEId2 02::: ::: d2
roP 'oPd2 • 1 0

!:Jd2ZOegl3 -lEIfb fM
JïfE'( OP

I

I ao ~ ::: dJ. ~

IEl~

flMUX
o

_ b.. Mi I':'fl ... r'
~ roP

B-t~-l'J--------------------------iEJ

Connectors
name 1/0 bits
ab 0 12
at 0 1
ao I 16
ar 0 16
ba I 12
br I 1
d1 I 16
d2 I 16
ti I 4
gs 0 2
id I 16
ie 0 16
iw I 16
ja 0 12
ma I 12
mi 0 16
rd 0 1
sd I 1
wr 0 1

description
address bus ot data memory.
alternate tlags.
teed back ot ALU output.
ALU result.
branch address.
branch signa!.
data 1 bus.
data 2 bus.
tlags to be saved on stack.
'greater' and 'smaller' tlags.
instruction currently in the decode stage.
instruction currently in the execute stage.
instruction currently in the writeback stage.
branch address.
data memory address.
data memory input data.
read signal tor data memory.
stall signa!.
write signal tor data memory.

137



Appendix A

Blocks

The IDaSS models of the microprocessor

ALU : operator
Purpose: Arithmetic Logic Unit; This block can perform 16 different arithmetic

operations. The following table shows the encoding of the functions of this
bloek.

This block also generates two flags. They form the output 'grsm' (greater and smaller).
The input 'alu1' will always be compared with input 'alu2'. The coding ofthe signal 'grsm'
is shown in the following tabel.

alü1=alu2
alU1 >é11L/2 .
alÜ1<alü2

Inputs: 'alu1', 16 bits; input 1 of the ALU.
'alu2', 16 bits; input 2 ofthe ALU.
'c', 7 bits, only bits 2,3,4 and 5 are used; the control connector.

Outputs: 'grsm', 2 bits; the flags 'greater' and 'smaller'.
'result', 16 bits; the result of the arithmetic operation.

IDaSS description:

138



Appendix A The IDaSS models of the microprocessor

System-defined timing for this input 'c':
Bus to command delay: 6n sec

System-defined timing for output 'grsm':
Data transfer delay: 2n sec

System-defined timing for output 'result':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output 'result': 7n sec

Text for function 'add':
"Bé:l~ic add operation"
... .. .

!!~~~1d~:~1i:~~roès) + (afÓ~, 1i~rdès) ..
gr'sfrf;Ë(8/Û1·> aIÛ2),(alu1 <·8Iu2)

Internal time delays for function 'add':
From 'alu1' to 'result': 14n sec
From 'alu2' to 'result': 14n sec
From 'alu1' to 'grsm': 11n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'and':
l'B~sÎcàl1çfÓperàtion" .

Internal time delays for function 'and':
From 'alu1' to 'result': 3n sec
From 'alu2' to 'result': 3n sec
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

139



Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'cmp':
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Internal time delays for function 'epi':
From 'alu1' to 'result': 2n sec
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'dec':
"E3é1slcdecrement operatioh"

r~~~lt:::JaIÜ1,1ZerOeS)+ (160nès,rZ~"oes)<rrOm:1 to:f6. . .

gt~m:~(alu1> alu2),(alu1<aILl2)

Internal time delays for function 'dec':
From 'alu1' to 'result': 14n sec
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'mhi':
"rJl§\(~~§ltêl trom theinpÛtALU t. töthepyipLJt"

~llltr;~I~~'':~'d2):(::~1<.alu~;3i·
Internal time delays for function 'mhi':

From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'mov':
"m9\jefdatêl frominpYt,ALÛ1
........................................

...···.·.·.···.···.·.·.··l···t>(> ··.·.······1 ··>2reSLJ;= au.

140



Appendix A The IDaSS models of the microprocessor

l·grsm •••:#(ál.U·1··· ··;:.-····a lu21,·(ald1•••• <allj21•••• <>•• >•• >·.<>······ . ······························<.····.·••••u··>il

Internal time delays for function 'mov':
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Internal time delays for function 'or':
From 'alu1' to 'result': 3n sec
From 'alu2' to 'result': 3n sec
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

"UHflry~eleçt seçond nible operatiön"
Text for function 'seI2':

:<>:,.. <.: '::>::;::«<.:.:' :,,«::<.:.:.

j[ffflP:==äJurshr: 4.·
rê$lJlt:S trllP l\%OOOOOOOÖ0000111J.
§rsm:#:(álü1> àlu2),(aIU1 < alu2)

Internal time delays for function 'seI2':
From '_tmp' to 'result': 3n sec
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'seI3':
"Un~ryS~lëct third nible öperation'L

~f'i'!~~fJ+~hr'8. ..., ····i,;;i~'f)}i

.~;~~~:~(~~·df ••~~G02~~~~g1o~O~E~.~ •••1•••1••J••.••••.•.••••••••••.••••••••••••••••••.•••.•.............

Internal time delays for function 'seI3':
From '_tmp' to 'result': 3n sec
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'set':
"Unf:irysetöperation"<

Internal time delays for function 'set':

141



Appendix A The IDaSS models of the microprocessor

From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'shI8':

Internal time delays for function 'shI8':
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'shr':
"UnarYsbiffright···opèfaHoh"« .

:-:.:-:::.:-:::::-:-:-..:.. ::-:.<::::::- :.. : .

i~~ult:==~IU1· shr:1·,
grshl :=(älu1>alu2), (a1u1o<àlu2)

Internal time delays for function 'shr':
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'shr8':
"qnêrYshift right·over 8 bits operátióh'\

fg~8It:=áll.ltshr:·8.
grsl'l1:~(áI1.l1 > alu2),(aluf<alu2) ..

Internal time delays for function 'shr8':
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'sub':
I "R~c:::;ii"'c",htr'o:l,,.t operation"

Internal time delays for function 'sub':
From 'alu1' to 'result': 14n sec
From 'alu2' to 'result': 16n sec
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

Text for function 'xor':
Il'sàSiêeXlusiveÖroperation"i>·< .

1<··<······
IrésÜlf:=áILJ1 ·>.<àlu2>>

142



Appendix A

Internal time delays for function 'xor':
From 'alu1' to 'result': 4n sec
From 'alu2' to 'result': 4n sec
From 'alu1' to 'grsm': 11 n sec
From 'alu2' to 'grsm': 11 n sec

The IDaSS modeIs of the microprocessor

bareg: register
Purpose: branch address register; This is the pipeline register for the branch address.

Inputs: 'i', 12 bits;
Outputs: '0', 12 bits;

IDaSS description:

Default function: 'Ioad'
Reset value: 4095 (OFFFh)
System-defined timing for output '0':

Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: Sn sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

d1 reg: register
Purpose: data 1 register; This is the pipeline register for the data 1 bus.

Inputs: 'i', 16 bits.
Outputs: '0', 16 bits.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: Sn sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

143



Appendix A The IDaSS models of the microprocessor

d2reg : register
Purpose: data 2 register; This is the pipeline register for the data 2 bus.

Inputs: 'i', 16 bits.
Outputs: '0', 16 bits.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

exctrl : operator
Purpose: execute stage controller; This block is the instruction decoder for the execute

stage. It contrals the blocks ALU, flmux and immmux and also generates the
contro! signals for the data memory. The following table shows the several
types of instructions and the functions of the logic blocks for each of those
types. The readmem and wrifemem signals are the 'read' and 'write' control
signals for the Data Memory. The a/tflag signa! is used in the Write-back
stage and denotes that the flags may be altered by that instruction.
Next to the instruction input 'ie' this logic block has another input. This is input
'br'. This input will be 1 if a branch occurs. In those cases the Execute stage
must switch to a passive state. This is done by making all the control signals
zero, except the read signalof the Data Memory which will be one.

144



Appendix A The IDaSS models of the microprocessor

···%OOOxxxxxxxxxxxxx.•·•••· ....!n8~X~.q.RiÓ~.r>' •••m9Y8B~.r~!i8n
·~Q91_ ••••••••••9it~Ç[Rip~l"YmpY9P~t~tipQ.·.
~q1.~i ••••imm~gi~~~RiQ~tX ••9R~t~li9Q$·.·· .•
~lPqq~j@npiP$ttqctiQh..>

>%10ö1XXXXXXxxxxXX···· Jümpsû~t9ûtiJ)è.?>

%1chö_..••··· cönqiJiÖQ~ljump ....

.•...•..••..••..••.... oo.•..~o.11.•·.•....·.01..·...• ··••0101Xxxxxx··.·.·x·.·.·.x•• ·•· •.•xxx.··.··•• ·•·•· •.·.o···.·.xxxxxxxx..... oxxx· ..•... the djnziristruction
,cthepöpTnstnjctiöH .
~J1goXX}()Q<6xx1XXX>/thêpü$6iriStrÛêfiön··········· .
}Yo1100)()()()QS1XXXXXX othërünarY9P~r~ti()ris·
%l1b1)()()()öö()()() ..•••• reg. tbreg.Rin~rYtjperatiöns>
~i1J)()()()()()<5<öooxxx . .•• tre fillipstrüçti6d .. .. .
o~r11~q01xxx ··movet6IB8,DêRtj(SPR .
%1j1~91 oxxx jUmp t(jihter[up(röqlihe
%1f1~1XOXXXrefurnfrQmiritlsubroutirie

%111:>oöOööO<f11 xxx the nóinstructiörl>

note a) : bits 5..3 of instruction word ie.
note b) : bit 3 of instruction word ie.
note c) : inverted bit 3 of instruction word ie.
note d) : ((ie from: 4 to: 5)-=%00),((ie from: 3 to: 5)=%001)

1·11 eX ç)

:•...••.1...•.:.:...:..:.••
0
•.1:.•.••.••..•.••..•l~~ .: •• ::••~iJ ~Il

•••• ,1 .·.iQ ... f>
>6 <ff /iUp.
.••••. o. ··rf/01
1110>'·

.······.·.1. 11 ..•••..• () ..>1
1 ·11//1 >0

1·······11</01
1t1 /01>
1/111.0

&>~l\~6
•· ••• 0·. 11//0U 1
.0··· 11>0>1

Inputs: 'br', 1 bit; the branch signa!.
'ie', 16 bits; instruction in the execute stage, configured as a control connector.

Outputs: 'af, 1 bit; acontrol signal that denotes that the flags may be changed.
'ctrl', 7 bits; the control word for the execute stage.
'rd', 1 bit; the 'read' signal for the data memory.
'wr', 1 bit; the 'write' signal for the data memory.

IDaSS description:

Control s ecification:

'~ê~Ç99~lb~Îhstrûçtiorl··.ld~6·•.Ë~hV91~ign~.!§il.. ••••••U••·.>i ·.L · .

•~b~~~~··."·'·hdèxed••••móvè"............................................................................. .

.·~lli~J.~••I.'Di.rect••••rT1ó~el,.................................................... .. ..•.•.••.•........ ..

·.I~~~ •••'II.~.k.~.~.iat; ••••~.~.~.rsti.~.~" •••••••••••••••••••••••••••••••••••••••••••••.•••••.•••.•.•••.••..••••.••••••.•.••.•.........••.•••...
~1888~"Jümpql1~9riqi!iQb~l'i>····

.·]mp?? .••••.•••••>·.·.·.···········

145



Appendix A The IDaSS models of the microprocessor

System-defined timing for output 'af':
Data transfer delay: 2n sec

System-defined timing for output 'ctrl':
Data transfer delay: 2n sec

System-defined timing for control input 'ie':
Bus to command delay: 6n sec

System-defined timing for output 'rd':
Data transfer delay: 2n sec

System-defined timing for output 'wr':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output 'af: 4n sec
For output 'ctrl': 7n sec
For output 'rd': 4n sec
For output 'wr': 4n sec

146



Appendix A The IDaSS modeIs of the microprocessor

Internal time delays for function 'dir':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': Sn sec
From 'br' to 'af: 2n sec
From 'br' to 'wr': Sn sec
From 'ie' to 'wr': Sn sec
From 'br' to 'rd': Sn sec
From 'ie' to 'rd': 7n sec

..." " .. "::.: .:.:-:.:.) :: .

',~émrÎ1lJ)ch();rnal" .
·::AALL<UU?~h~2'têe"'i···« ..

. opera Ion
li66rmálröüté·'

Internal time delays for function 'djnz':
From 'br' to 'ctrl': Sn sec
From 'br' to 'af: 2n sec

147



Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'fill':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': Sn sec
From 'br' to 'af: 2n sec
From 'br' to 'wr': 2n sec

Internal time delays for function 'imm':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': 13n sec
From 'br' to 'af: 2n sec

148



Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'ind':
From 'br' to 'ctrl': 5n sec
From 'ie' to 'ctrl': 5n sec
From 'br' to 'af: 2n sec
From 'br' to 'wr': 5n sec
From 'ie' to 'wr': 5n sec
From 'br' to 'rd': 5n sec
From 'ie' to 'rd': 7n sec

Text for function 'int':
'P9rrypinterrupt subroutineoperation"· .....

1 ones, ....
1 zeroes,

.. (ie from: 3 to: 5),
20ries
7:z:eroes,

Internal time delays for function 'int':
From 'br' to 'ctrl': 5n sec
From 'ie' to 'ctrl': 5n sec
From 'br' to 'wr': 2n sec

149



Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'je':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': Sn sec

1 zeroes,

CU >i U•••.•.••••••••••••••••·•.•.1zeroes, ..
(ie from:3to: 5),
20nes
7 zeroes.

Internal time delays for function 'jmp':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': 5n sec

150



Appendix A

. "rnem write" ....................•..•..........•......
.............. . .

..•• ·:·:·:::)"ng~~~~é~&"·:· ..••.

Internal time delays for function 'jsr':
From 'br' to 'ctrl': 5n sec
From 'ie' to 'ctrl': 5n sec
From 'br' to 'wr': 2n sec

"flags l"I'lay él1ter'i

Internal time delays for function 'movreg':
From 'br' to 'ctrl': 5n sec
From 'ie' to 'ctrl': 5n sec
From 'br' to 'af: 2n sec

Text for function 'no ':
"f'Jo Operätion: nothing may charge" ....

151

The IDaSS models of the microprocessor



Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'pop':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': Sn sec
From 'br' to 'af: 2n sec

Text for function' ush':
."PLlsh óperation"

Internal time delays for function 'push':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': Sn sec
From 'br' to 'af: 2n sec
From 'br' to 'wr': 2n sec

152



Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'reg':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': Sn sec
From 'br' to 'af: 2n sec

Internal time delays for function 'return':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': Sn sec

Text for function 'uno ':
"üther unary operations"

Internal time delays for function 'unop':
From 'br' to 'ctrl': Sn sec
From 'ie' to 'ctrl': Sn sec
From 'br' to 'af: 2n sec

153



Appendix A The IDaSS models of the microprocessor

fbctrl : operator
Purpose: feedback control; This block contrals the two feed-back multiplexors which are

modelied as logic block fbrnux. As the Data Memory is a relatively slow
device it will not be fed-back to the Execute stage. The only data that can be
fed-back is the data from the ALU once it has passed the pipeline register at
the output of the ALU. If the instruction in the Execute stage needs the data
which is going to be written back by the Write-back stage it simply switches
the multiplexors to that data.

Inputs: 'ie', 16 bits; the instruction in the execute stage.
'iw' I 16 bits; the instruction in the writeback stage.

Outputs: '0', 2 bits.

IDaSS description:

System-defined timing for output '0':
Data transfer delay: 2n sec

Text for function 'doit':

::::::::::::::::::::::::=::::::::::::::::::::::::::::::::::.-..... ".:

d::::«óWfrom: 0 to: 2) ={i~·•. fr()m:6to:t3))I\ __R<3VViwJ
nl.. .. .. . .....•.....··i> .•••.••••.•.. ...••..•••.•••.•.•.•••••.•.•.•...•. .... .... .«. ....>.>?••••••••

({(iWfról11: 0 to:2)=(i~frollJ:PJC);2))I\ __RGWiwl\>. . .. ...< .
«(i~frc>[r1:1?t?:1pJHÊ%1991J~i>

. ((((ièfróHï:13tQ:1 t5)#%111 )1\ (( ieJrQHï:3 tö: 5):: %010Hnot)}

::::::::::::::::::::::~<:::::::::::;}:.. >.::::::::::;::::.

ÊRGv\IiW:#_binwriw V_unwriwV_djn?:hv.

"feedbáêk control"
"tb3=(hlv's1:::ièS1) áhdRGWiw and i'
"(i~')~jsr)and (ie<> int)" .
"fb4:::{iwsf= ies2) and RGWi'v\'f1

"wtit~backlo a GPR" .. . ... ... . . ..
....bifiwriW:= (((iw from:14to:15) =%Ö1)J\Ww from: 3 to: 5)-=%111))V"excepfêrnp"

i.·.····(((iwfrom:·12 to:··15) =%11ö1rÎ\((iWf~orn:3 to:5)4:;:%111})."èxcepfcrnp"
Î.üI1Wriw:=r((iw from:J2lo:15)=%ftÖó)Jt· .

(iwfrórn:3tó:6)·~= %Ó001)~.i'áll .. except a push"
.2djhziw:§:((iw from: 12to: 15):::%1011).

Internal time delays for function 'doit':
From 'iw' to '_binwriw': 8n sec (user-changed)
From 'iw' to '_unwriw'; 6n sec (user-changed)
From 'iw' to '_djnziw': 4n sec (user-changed)
From '_binwriw' to '_rgwiw': 3n sec (user-changed)
From '_djnziw' to '_rgwiw': 3n sec
From '_unwriw' to '_rgwiw': 3n sec (user-changed)
From '_rgwiw' to '0': 8n sec (user-changed)
From 'ie' to '0': 8n sec (user-changed)
From 'iw' to '0': 8n sec (user-changed)

154



Appendix A The IDaSS models of the microprocessor

fbrnux : operator
Purpose: feedback multiplexor; This multiplexor switches between data coming from the

decode stage and data forwarded by the writeback stage. This multiplexor is
controlled by fbctrl. The following table shows the functions of this block.

Inputs: 'c', 2 bits; the contro\ connector.
'd1', 16 bits; the data 1 bus.
'd2' I 16 bits; the data 2 bus.
'fb', 16 bits; feedback from the piped ALU output.

Outputs: '01', 16 bits; output of the multiplexor in the path of the data 1 bus.
'02', 16 bits; output of the multiplexor in the path of the data 2 bus.

IDaSS description:

Control s ecification:
%00 normaL
%01fbdata1.
°/Ó1gn>data2.
%11· fbboth

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output '01':
Data transfer delay: 2n sec

System-defined timing for output '02':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output '01': 4n sec
For output '02': 4n sec

Text for function 'fbboth':
"feedbäck for both

155



Appendix A

Text for function 'fbdata1':

1''fè~dbai:Kf9f dálá1diîfy"

:~!!lili;~'Fi:,:ii"

The IDaSS models of the microprocessor

Text for function 'normal':

flmux: operator
Purpose: flag multiplexor; This block always passes the lower 12 bits of input d1. The

upper 4 bits can come from input d1 or from input fl. The latter will be selected
if the instruction is int. Switching is controlled by exctrl. The following table
shows the functions of this bloek.

Inputs: 'c' J 7 bits, only bit 6 is used; the control connector.
'd1', 16 bits; the data 1 bus.
'fl' J 4 bits; the flags from the writeback stage.

Outputs: '0', 16 bits; the data to be written to the data memory.

System-defined timing for contral input 'c':
Bus to command delay: 6n sec

System-defined timing for this output:
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output '0': 4n sec

156



Appendix A

Text for function 'normal':
.i'Wh~Qa~télWill·.be··WfittE3d•••tq•••m~rlib,yt' ••••••••••• •· •••• •·········· ...
••~•••[.~ •••~.~ ••••••••••••••••.•••••••....•......

Text for function 'save':

The IDaSS models of the microprocessor

iereg : register
Purpose: This register will hold the instruction currently in the execute stage. It can be

'reset' by the stall signal 'sd'.

Inputs: 'c', 1 bits; the control connector.
'i', 16 bits;

Outputs: '0', 16 bits;

IDaSS description:

Default function: 'Ioad'
Reset value: 65535 (OFFFFh)
Reset command value: 65535 (OFFFFh)

Control s ecification:
•• 0'" ,. •

"onsfáll lead a NOP instruction"
.:.::::::::: ..:::;:; ..;.::.:::.::;::.... ::;:;:;:;:::;:;:;:;::::.

~ÓIB~d.·······

%fsétf6:$ffff

System-defined timing for this control input:
Bus to command delay: 6n sec

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

157



Appendix A The IDaSS models of the microprocessor

immmux : operator
Purpose: immediate operations multiplexor; This block is the multiplexor that switches

between normal data feed-through or data modifications concerning
immediate data operations. This logic block contains two multiplexors that are
switched by two control signals from exctrl. The functions of this block are
shown in the following tabie.

Inputs: 'c', 7 bits, only bits 0 and 1 are used; the control connector.
'd1', 16 bits; the data 1 bus.
'd2', 16 bits; the data 2 bus.
'imm', 16 bits, only bits 6 .. 13 are used; the immediate value from the

instruction.
Outputs: 'alu1', 16 bits; the first operand for the ALU.

'alu2', 16 bits; the second operand for the ALU.

IDaSS description:

Control s ecification:

System-defined timing for output 'alu1 ':
Data transfer delay: 2n sec

System-defined timing for output 'alu2':
Data transfer delay: 2n sec

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined output multiplexer delays:
For output 'alu1 ': 4n sec
For output 'alu2': 4n sec

Text for function 'immhi h':

1l~~t§r9Ûtrr1gjncáseof an." .
"i.rnrn~diat~m()Vê·t"Iigh···Opetêtion"·················

!igfIIglil!lib~:~i6: 13;,;§~f(6~:§i&i~'i;;l;j{i

158



Appendix A

Text for function 'immlow':

The IDaSS models of the microprocessor

Text for function '0 normal':
IIroÛt&JoP§$eOf a normal operation"
<}::::\.<:~;.;~<.:-:::::><":~::::::::/:/<:::::::::::>:>

aIU1:=d1.... ·.
älü2:= d2

mareg: register
Purpose: memory address register; This register is a pipeline register for the data

memory address.

Inputs: 'i', 12 bits.
Outputs: '0', 12 bits.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

159



Appendix A The IDaSS models of the microprocessor

Part 2.4. The description of the schematic writeback.

IJa~~arej---__~La I

L[:Ji 0- b'- l I.. i''-1X"eg

-mEG

I gs ~ :E:i omI - l!Jolcl
gsX"eg l!J gX"SM

JREG~
;:: al t tlags m -

I at ~ ':"i om
tlgen

....
[:] MOatX"eg
'""ao

JREG ~

- [!JiN e

I MO rrI Fc1rQP
I

I aX" rrI ... o-
I

~I ..
:E:iN om -aX"X"eg
tletX"1

J'R"EG
fOP

LtEltlI ie =' Ti 0-
'.I.j '"'" ..

I-r, LX" IiNX"eg
LX" =e i'

rCJtR"EC' ... LX"logie
.:.,IN

':" ao

I
....

fOP

I ~iW I
ba~ Ii'

Connectors
name 1/0 bits
af I 1
ao 0 16
ar I 16
ba 0 12
br 0 1
fl 0 4
gs I 2
ie I 16
iw 0 16
ja I 12
mo I 16

description
if active this signal permits the flags to change.
the piped output of the ALU.
the direct output of the ALU.
the piped branch address.
the branch signa!.
the flags.
the 'greater' and 'smaller' flags.
the instruction currently in the execute stage.
the instruction currently in the writeback stage.
the branch address.
the output of the data memory.

160



Appendix A

Blacks

The IDaSS models of the microprocessor

afreg : register
Purpose: alternate flags register; This is the pipeline register for the signal that permits

logic block flgen to change the value of the flags.

Inputs: 'j' I 1 bit.
Outputs: '0', 1 bit.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Cloek to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

arreg : register
Purpose: ALU result register; This is the pipeline register for the ALU result.

Inputs: 'i', 16 bits.
Outputs: '0', 16 bits.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

161



Appendix A The IDaSS models of the microprocessor

brlogic: operator
Purpose: branch logic; This block generates the 'br' signal (branch). If this signal is

active it indicates that all instructions in the pipeline must be flushed and that
the branch address must be loaded by the Program Counter Register. The
branch signal can only be activated by conditional branch instructions. The
following table shows these instructions and the flag conditions on which the
branch signal must be activated.

instruction encoding flag conditions

1~~····i··ggg~
·• ••••J'8.·.·.·. < .. ....../
·.·jêl~.· ••.••.•••••••••••••••••••••••••••••.••••••..••.gg.~ .•~•.••••
jêf ····0106
~ge .. ... 9101
JZ . 0110.·
jnz 0111
js· 1000
'ns/ 1001

Inputs: 'ao', 16 bits; the piped output ofthe ALU.
'fl', 4 bits; the flags.
'iw', 16 bits; the instruction in the writeback stage.

Outputs: 'br', 1 bit; the branch signa!.

IDaSS description:

System-defined timing for output 'br':
Data transfer delay: 2n sec

•••••~.6[~ ••~~ •••0~]~.1 ••••••••••••••••
9~18~>
abóVéptéqüär
eqüàl<

·t·······················:·I····· .no equa
zer9
nófiero
set
notset

Text for function 'branch':
'I;rhédqtpyfJndicates a.brarich tobetak~n"i>
\:/iU:C::i/..··· :::<:/:"., :··:\::":··\::::::C ":::::"::.:' . :::>:"".. ::::.

L~t:.::((iwfröni: 12 tO:<15) = %101(»).
êdjlÎz:§(nWftom:f2Jo:·15)=%1Qj1).< ..
.2.alün()tZ~r(): =(ao-=$OOOP). . .

162



Appendix A The IDaSS models of the microprocessor

·...••••••• ?.••.••••••.••••••••••••••••••••••••••••••I
Internal time delays for function 'branch':
From 'iw' to '_br': 6n sec
From 'iw' to '_djnz': 6n sec
From 'ao' to '_alunotzero': 6n sec (user-changed)
From '_alunotzero' to 'br': 8n sec (user-changed)
From '_br' to 'br': 8n sec (user-changed)
From '_djnz' to 'br': 8n sec (user-changed)
From 'fl' to 'br': 14n sec (user-changed)
From 'iw' to 'br': 14n sec (user-changed)

flctrl : operator
Purpose: flag control; This block generates the control signals for the logic block flgen.

The encoding of the output is shown in the following tabie.

instruction word t e of instruction out ut
%OOXXXXXXXXXXOXXXread ffomdata memorY 01
%111XXXXXXX1XOxxx. restÓrsdatà from theStack 10
all others 00

Inputs: 'iw', 16 bits; the instruction in the writeback stage.
Outputs: '0', 2 bits; the control signal for logic block flgen.

IDaSS description:

System-defined timing for output '0':

Data transfer delay: 2n sec

Text for function 'doit':
"Outür01when: iw=OOXXXXXXXXXXOXXX"
"f6r~èrlîl'~ad." .. .>\u./
1I0û!pqr~q'Nhen:iw=111 )()()ö()()ö(1Xq?Q9S'\

;:~~f;5:~6;6r~IIÓthêrs.ÎI<..>·

~~~~tg~~ ••••:.~ ••••((ti~·.·fro·m.: ...••1.3·.·.tÓ·:••••.1.S):o41···1·••1.·)..·d•••(.(.iw•••at:···.$)...."'...·(lW .at:·····S)not»).•••••••••·•••·•··•• .... < \
mêrnr~à~:={((iW Hom:14l6:1s):f%Qö)i\ (OW àt:3)not)).•..••..••••.•.•.•••j

ó;Ërrfêslofê,Lmemrêad

Internal time delays for function 'doit':
From 'iw' to '_restore': 4n sec (user-changed)
From 'iw' to '_memread': 4n sec (user-changed)

163

Appendix A The IDaSS models of the microprocessor

flgen : operator
Purpose: flag generator; This logic block determines the flags from the ALU and

memory outputs. There are 4 flag bits:
flag bit 0: all zero
flag bit 1: all set
flag bit 2: smaller
flag bit 3: greater

This functions of this block are shown in the following tabie.

Inputs: 'alt', 1 bit; if this signal is active the flags are allowed to change.
'ao', 16 bits; the piped output of the ALU.
'c', 2 bits; the control connector.
'grsm', 2 bits; the 'greater' and 'smaller' flags.
'iw', 16 bits; the instruction in the writeback stage.
'mo', 16 bits; the output of the data memory.
'old', 4 bits; the flags generated by the former instruction.

Outputs: 'flags', 4 bits; the new flags.

IDaSS description.

Control s ecification:
%PQ"feèdthrough Of flags"
.H.§rrTÎ~/...<< •.. . .
%01"détetniiheflagsfrorTl mèmreél9"reàdmèm.•.. . .
%lC)",.estqre flags from sfack

j
; .•.

rêstdrè<

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output 'flags':
Data transfer delay: 2n sec

System-defined output multiplexer delays:
For output 'flags': 4n sec

164

Appendix A The IDaSS models of the microprocessor

Internal time delays for function 'normal':
From 'ao' to '_allones': 4n sec (user-changed)
From 'ao' to '_allzeroes': 4n sec (user-changed)
From 'iw' to '_compare': 8n sec (user-changed)
From '_compare' to '_grsm': Sn sec
From 'grsm' to '_grsm': Sn sec
From 'old' to '_grsm': Sn sec
From '_allones' to 'flags': Sn sec
From '_allzeroes' to 'flags': Sn sec
From '_grsm' to 'flags': Sn sec
From 'alt' to 'flags': Sn sec
From 'old' to 'flags': Sn sec

Text for function 'readmem':
"chécKforteroor all set in case'~ <
;'6fi3mêm()ry rëad'.'<
...... .

=~IIOri~~:~(mo = ;ffff); ...•..
..:.àll:iêroes := (mo = $0000).

Internal time delays for function 'readmem':
From 'mo' to '_allones': 3n sec (user-changed)
From 'mo' to '_allzeroes': 3n sec (user-changed)

Text for function 'restore':
"'ç9Pytb~fléJgsJr9m..•.._. ,.__.-
"êásê6fafétûrn from

;I~~~:~~gfr~m: t~to:1$<

16S

Appendix A The IDaSS models of the microprocessor

flreg : register
Purpose: flag register; This is the pipeline register for the flags.

Inputs: 'i', 4 bits.
Outputs: '0', 4 bits.

IDaSS description:

Default function: 'Ioad'
Reset value: 0

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

gsreg: register
Purpose: greater and smaller flags register; This register pipes the 'greater' and

'smaller' flags, generated by the ALU, from the execute stage to the writeback
stage.

Inputs: 'j', 2 bits.
Outputs: '0', 2 bits.

IDaSS description:

Default function: 'load'
Reset value: 0

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

iwreg : register
Purpose: This register holds the instruction currently in the writeback stage.

Inputs: 'i', 16 bits.
Outputs: '0', 16 bits.

166

Appendix A

IDaSS description:

Default function: 'Ioad'
Reset value: 65535 (OFFFFh)

The IDaSS models of the microprocessor

System-defined timing for control input 'c':
Bus to command delay: 6n sec

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

jareg : register
Purpose: This is the pipeline register for the branch address.

Inputs: 'j', 12 bits.
Outputs: '0', 12 bits.

IDaSS description:

Default function: 'Ioad'
Reset value: 4095 (OFFFh)

System-defined timing for output '0':
Data transfer delay: 2n sec

System-defined timing for this register:
Clock to data delay: 8n sec
Clock to status delay: 7n sec
Data setup time: 12n sec
Command setup time: 7n sec

167

Appendix 8 The assembler code tor testing the instruction set

Appendix B.

The assembler code for testing the instruction set.
0000: 8006 s~ar~up jmp s~ar~

0001: 80AC iD~s~r~ jmp iD~rou~

0002: ~

0002: 4054 ~es~jsr iDC r4 ~his is some code ~o

0003: D17C cmp r4,r5 ~es~ ~he jumpiDg from
0004: D085 mov r5,r2 address 0000 ~o label
0005: 1:030 r~s sur~.

0006: 4000 sur~ clr rO rO :- OOOOh
0007: 43C8 mhi rO,Ofh rO :- OfOOh
0008: 4441 mov r1,llh r1 :- OOllh
0009: 4882 mov r2,22h r2 :- 0022h
OOOA: 488A mhi r2,22h r2 :- 2222h
0008: 4CC34CC8 movd r3,3333h r3 :- 3333h
OOOD: DOC4 mov r4,r3 r4 :- 3333h
OOOE: D085 mov r5,r2 r5 :- 2222h
OOOF: D142 mov r2,r5 r2 :- 2222h
0010: D046 mov r6,r1 r6 :- OOllh
0011: D186 mov r6,r6 r6 :- OOllh
0012: D007 mov r7,rO r7 :- OfOOh
0013 : 1:04F mov bO,r7 bO :- fOOh
0014: 1:24F mov b1,r7 b1 :- fOOh
0015: E24E mov b1,r6 b1 :- Ollh
0016: E44D mov b2,r5 b2 :- 222h
0017 : E08D mov dO,r5 dO :- 222h
0018: F08C mov d1,r4 dl :- 333h
0019: E108 mov sp,r3 sp :- 333h
001A: E10A mov sp,r2 sp :- 222h
0018: 40004208 movd rO,0800h rO :- 0800h
001D: 40014249 movd r1,0900h r1 :- 0900h
001F: E088 mov dO,rO dO :- 800h
0020: F089 mov d1,r1 dl :- 900h
0021: 7F8243CA movd r2,Offeh r2 :- Offeh
0023: E10A mov sp,r2 sp :- ffeh
0024: 2409 mov dO[10h],r1 mem[810h] :- 0900h
0025: 304A mov d1[01h],r2 mem[901h] :- Offeh
0026: 2402 mov r2,dO[10h] r2 :- mem[810h]-0900h
0027: 244A mov dO[llh] ,r2 mem[811h] :- 0900h
0028: 0009 mov bO[rO],r1 mem[700h] :- 0900h
0029: 0248 mov b1[r1],rO mem[911h] :- 0800h
002A: 0007 mov r7, bO [rOl r7 :- mem[700h]-0900h
0028: 004F mov bO[r1],r7 mem[800h] :- 0900h
002C: 0046 mov r6,bO[r1] r6 :- mem[800h]-0900h
002D: 0045 mov r5,bO[r1] ~ r5 :- mem[800h]-0900h
002E: DOW ~es~ ~he o~her biDary opera~ioDs

002E: D010 add rO,rO rO :- 1000h
002F: D1D5 add r5,r7 r5 :- 1200h
0030: D157 add r7,r5 r7 :- 1bOOh
0031: 4057 iDC r7 r7 :- 1b01h
0032: 4057 add r7,l r7 :- 1b02h
0033: 43E7 aDd r7,Ofh r7 :- 0002h
0034: DOA5 aDd r5,r2 r5 :- OOOOh
0035: D138 cmp r3,r4 equal
0036: D038 cmp r3,rO grea~er

0037 : DOF8 cmp rO,r3 smaller
0038: 407F cmp r7,Olh grea~er

0039: 408F cmp r7,02h equal
003A: 40FF cmp r7,03h smaller
0038: 7C2F or r7,OfOh r7 :- 00f2h
003C: D028 or r3,rO r3 :- 3333h
003D: D033 xor r3,rO r3 :- 2333h
003E: 7FF4 xor r4,Offh r4 :- 33cch
003F: DllF sub r7,r4 r7 :- cd26h
0040: 405E dec r6 r6 :- 08ffh

169

Appendix B The assembler code tor testing the instruction set

0041: ;t.est.iIl9 of t.he fil! illst.ruct.ioll
0041: 4004404C IDOvd r4,0100h r4 :- OlOOh
0043: 4443444B mavd r3,llllh r3 :- lll1h
0045: 43CS mav rS,Ofh rS :- OOOfh
0046: ES4C mav b4,r4 b4 :- OlOOh
0047: E943 fil! b4[rS],r3 ; mem[0100h •• 010fh] :- 1111h
004S: ; t.est.iIl9 of t.he ullary operat.iolls
004S: COOB push r3
0049: COOC push r4 ;swit.ch r3 alld r4
004A: C003 pop r3 r3 :- 0100h
004B: C004 pop r4 r4 :- lll1h
004C: COS4 cpl r4 r4 :- eeeeh
004D: COSD set. rS rS :- ffffh
004E: 40SD dec rS rS :- fffeh
004F: C06D shr rS r5 :- 7fffh
0050: C075 shlS rS rS :- ffOOh
0051: C07D shrS rS rS :- OOffh
0052: 4D0444SC mavd r4,1234h r4 :- 1234h
0054: 770S7FSD mavd rS,Ofedch rS :- fedch
0056: C044 sel2 r4 r4 :- 0003h
0057: C04D sel3 rS ; rS :- 001eh
OOSS: ;t.est.iIl9 of t.he cOlldit.iollal braDch iDst.ruct.ioDS.
OOSS: 4100 mav rO,4
0059: 4101 mav r1,4
OOSA: 4102 IDOV r2,4
OOSB: 40SS label1 dec rO
OOSC: AFE7 jllz label1
OOSD: 4100 mav rO,4
OOSE: A026 label2 jz label3
OOSF: 40SS dec rO
0060: SOSE jmp label2
0061: 4059 label3 dec r1
0062: AFE9 jlls label3
0063: 4101 mav r1,4
0064: A02S label4 js labelS
0065: 4059 dec r1
0066: S064 jmp label4
0067: 4050 labelS iDC rO
006S: 4051 illc r1
0069: BFD2 djDz r2,labelS
006A: A046 jz label7
006B: 41CO label6 mav rO,7
006C: 4101 mav r1,4
006D: 41C2 mav r2,7
006E: E030 rt.s
006F: 9002 label7 jsr t.est.jsr
0070: 4051 labelS iDC r1
0071: D039 cmp rl,rO
0072: AFDO jbe labelS
0073: 4051 illc r1
0074: 4050 label9 iDC rO
0075: D039 cmp r1,rO
0076: AFD3 jae label9
0077: 4059 lab10 dec r1
007S: DOB9 cmp r1,r2
0079: AFDl ja lab10
007A: 4051 labll iDC r1
007B: D039 cmp rl,rO
007C: AFD2 jb labll
007D: 4059 lab12 dec rl
007E: DOB9 cmp rl,r2
007F: AFDS jlle lab12
OOSO: D039 lab13 cmp rl,rO
OOSl: A024 je lab14
00S2: 4051 illc r1
00S3: SOSO jmp lab13
00S4: 906B labl4 jsr label6
ooss: 90S7 jsr lablS
00S6: SOSA jmp lab16
00S7: 4059 lab15 dec r1

170

Appendix B The assembler code tor testing the instruction set

OOSS: AFE7 jnz lab1S
00S9: E030 rt.s
OOSA: 90SC lab16 jsr lab17
OOSB: S090 jmp lab19
oosc: 40SA lab17 dec r2
OOSD: A016 jz lab1S
OOSE: 90SC jsr lab17
OOSF: E030 lab1S rt.s
0090: 4000 lab19 clr rO
0091: 4001 clr r1
0092: D07S cmp rO,r1
0093: A04S jne lab20
0094: A03S jne lab20
0095: A02S jne lab20
0096: A014 je lab20
0097: 4001 clr r1
009S: 4051 lab20 inc r1
0099: 4039 cmp r1,0
009A: A014 je lab21
009B: A004 je lab21
009C: 43CS lab21 mov rS,Ofh
009D: 4051 inc r1
009E: 4000 clr rO
009F: 403S cmp rO,O
OOAO: A04S jne lab22
00A1: D07S cmp rO,r1
00A2: E943 til! b4[rS],r3
00A3: 4000 clr rO
00A4: 40C1 mov r1,3
OOAS: 4050 lab22 inc rO
00A6: D07S cmp rO,r1
00A7 : AOll ja lab23
OOAS: SOAS jmp lab22
00A9: 4040 lab23 mov rO,l
OOAA: 4041 mov r1,1
OOAB: S006 endlab jmp st.art.
OOAC: ;
OOAC: 4007 int.rout. clr r7
OOAD: EE4F mov b7,r7
OOAE: 407F cmp r7,1
OOM: E020 rt.i
OOBO:

SYMBOL TABLE
ENDLAB P OOab IN'rROUT P OOac IN'rSTRT P 0001 LAB10 P 0077

LABll P 007a LAB12 P 007d LAB13 P OOSO LAB14 P 0084
LAB1S P 00S7 LAB16 P OOSa LAB17 P OOSc LAB1S P OOSf
LAB19 P 0090 LAB20 P 009S LAB21 P 009c LAB22 P OOaS
LAB23 P 00a9 LABEL1 P OOSb LABEL2 P OOSe LABEL3 P 0061

LABEL4 P 0064 LABELS P 0067 LABEL6 P 006b LABEL7 P 006f
LABELS P 0070 LABEL9 P 0074 START P 0006 STARTUP P 0000

TESTJSR P 0002

171

Appendix C The assembler code of a realistic program

Appendix C.

The assembler code of a realistic program.
This program was written by ir. L.C. Benschop to calculate the length/literals of a block
of data.

;freqtolen, compute code word lengths from frequency

belongs to pass 1 of bin sort.
iszero mov b1[r2],r1

jmp pas1cont

;rO Number of symbols.
;bO Address where frequencies reside.
;b1 Address where lengths come.

mov r7,rO
registers.

movd r3,binheads
mov b2,r3
movd r3,binlist
mov b3,r3
movd r3,bintails
mov b4,r3
movd r3,binheads1
mov b5,r3
movd r3,binlist1
mov b6,r3
movd r3,sfreqs
mov b7,r3
movd r3,nclass

;Set length to zero for

;Direct page area.

;Initialize direct memory base

movd r1,Oa80h
mov d1,r1 ;Initialize 1/0 base register.
movd r3,freqs
mov bO,r3
movd r3,lengths
mov b1,r3
movd rO,512
jsr freqtolen
movd rO,512
jsr lentocode
jmp 4095

clr rO
mov dO,rO

equ 0800h
dorg OcOOh
ds 1024

dorg 0
ds 64
ds 16
ds 0
ds 32
ds 16
ds 32
ds 32
ds 512
ds 512
equ 0600h

initialize

sfreqs

; Memoryareas.
directpg
stack
staktop
binheads
binheads1
bintails
nclass
binlist
binlist1
lengths

freqs

freqtolen
; Set the base

0000:
0000:
0000:
0040:
0050:
0050:
0070:
0080:
OOAO:
OOCO:
02CO:
0600:
0000:
0800:
OCOO:
OCOO:
0000:
0000: 4000
0001: E088
register.
0002: 60014289
0004: F089
0005: 40034208
0007: E048
0008: 40034188
OOOA: E248
0008: 40004088
OOOD: 9014
OOOE: 40004088
0010: 90D9
0011: 8FFF
0012:
0012:
distribution.
0012:
0012 :
0012 :
0012 :
0012:
0012:
0012: 0289
0013: 803C
zero-freq
0014:
0014: D007
0015:
0015: 54034008
0017: E448
0018: 70034008
001A: E648
0018: 60034008
001D: E848
001E: 5C034008
0020: EA48
0021: 70034088
0023: EC48
0024: 40034308
0026: EE48
0027: 68034008

173

Appendix C The assembler code of a realistic program

0029: F04B mov b8,r3
002A: C051: set r6
002B: Prepare for pass 1 of the bin sort.
002B: 43C2 mov r2,15
002C: 1:486 fill b2[r2] ,r6 ;Set heads array.
0020: 4001 clr r1
0021:: 4002 clr r2
002F: 4004 clr r4
0030: 0083 pas1loop mov r3,bO[r2]
0031: AE06 jz iszero
0032: 4054 inc r4
0033: 431:3 and r3,15
0034: 04C5 mov r5,b2[r3]
0035: A029 jns paslels
0036: 04CA mov b2[r3] ,r2
0037: 803A jmp pas1endi
0038: 08C5 paslels mov r5,b4[r3]
0039: 074A mov b3[r5],r2
003A: 08CA pas1endi mov b4[r3],r2
003B: 0681: mov b3 [r2], r6
003C: 4052 pas1cont inc r2
0030: 01FA cmp r2,r7
0031:: AF15 jne pas1loop
003F: Prepare for pass 2 of the bin sort.
003F: 43C2 mov r2,15
0040: I:A86 fill b5[r2] ,r6 ;Set binheads1 array.
0041: 43C1 mov r1,15
0042: 0442 pas2loop mov r2,b2[r1]
0043: AOC8 js pas2next
0044: 0083 pas2inn mov r3,bO[r2]
0045: C043 se12 r3
0046: OAC5 mov r5,b5[r3]
0047: A029 jns pas2else
0048: OACA mov b5 [r3], r2
0049: 804C jmp pas2endi
004A: 08C5 pas2else mov r5,b4[r3]
004B: 004A mov b6[r5],r2
004C: 08CA pas2endi mov b4[r3],r2
0040: OC81: mov b6[r2],r6
0041:: 0682 mov r2 ,b3 [r2]
004F: AF49 jns pas2inn
0050: 4059 pas2next dec r1
0051: AF09 jns pas2loop
0052: ; Prepare for pass 3 of the bin sort.
0052: 47C2 mov r2,31
0053: 1:486 till b2 [r2], r6 ;Set binheads array.
0054: 43C1 mov r1,15
0055: OA42 pas3loop mov r2,b5[r1]
0056: AOC8 js pas3next
0057: 0083 pas3inn mov r3,bO[r2]
0058: C04B se13 r3
0059: 04C5 mov r5,b2[r3]
005A: A029 jns pas3else
005B: 04CA mov b2 [r3], r2
005C: 805F jmp pas3endi
0050: 08C5 pas3else mov r5,b4[r3]
0051:: 074A mov b3[r5],r2
005F: 08CA pas3endi mov b4[r3],r2
0060: 0681: mov b3[r2],r6
0061: OC82 mov r2,b6[r2]
0062: AF49 jns pas3inn
0063: 4059 pas3next dec r1
0064: AF09 jns pas3loop
0065: ; Bin sort done. Place sorted frequencies in sfreqs array.
0065: 4002 clr r2
0066: 47C1 mov r1,3l
0067: 0443 wsortloop mov r3,b2 [rl]
0068: A058 js wsortnext
0069: 00C5 wsortinn mov r5,bO[r3]
006A: 01:80 mov b7[r2],r5

174

Appendix C The assembler code of a realistic program

006B: .052 iDC r2
006C: 06C3 mov r3,b3[r3]
006D: AFB9 jDs wsort:iDD
006E: .059 wsort:Dext: dec r1
006F: AF79 JDS wsort:loop
0070: Now ready for t:he Lu/CheD Algorit:hm
0070: CODt:ract:ioD St:age.
0070: i-rl Ip-r2 m-r3
0070: t:ot:-r. aux-rS
0070: .041 mov r1,1
0071: D102 mov r2,r.
0072: .ODA sub r2,3
0073 : .003 clr r3
007.: D106 mov r6,r.
0075: .OSE dec r6
0076: OF8S mov rS,b7[r6]
0077: .OSE dec r6
0078: OF86 mov r6,b7[r6]
0079: D19S add rS,r6
007A: OE86 cODt:rloop mov r6,b7[r2]
007B: D1BD cmp rS,r6
007C: AOA2 jb cODt:relse
007D: OE80 mov rO,b7[r2]
007E: D086 mov r6,r2
007F: DU6 add r6,r.
0080: DOSE sub r6,r1
0081: .09E sub r6,2
0082: OF88 mov b7[r6],rO
0083: .053 iDC r3
008.: .OSA dec r2
0085: A1E8 js cODt:reDd
0086: 807A jmp cODt:rloop
0087 : D086 cODt:relse mov r6,r2
0088: DU6 add r6,r.
0089: DOSE sub r6,r1
008A: .09E sub r6,2
008B: OF8D mov b7 [r6], rS
008C: OC.B mov b6[r1],r3
008D: .051 iDC r1
008E: D106 mov r6,r.
008F: .09E sub r6,2
0090: D1B9 cmp r1,r6
0091: A12. je cODt:reDd
0092: D106 mov r6,r.
0093: DOSE sub r6,r1
009.: .OSE dec r6
0095: D1BA cmp r2,r6
0096: A06S jDe cODt:2else
0097: OE8S mov rS,b7[r2]
0098: D196 shl r6
0099: OF86 mov r6,b7[r6]
009A: D19S add rS,r6
009B: .OSA dec r2
009C: 807A jmp cODt:rloop
009D: D196 cODt:2else shl r6
009E: OF8S mov rS,b7[r6]
009F: .OSE dec r6
OOAO: OF86 mov r6,b7[r6]
00A1: D19S add rS,r6
00A2: .OSB dec r3
00A3: 807A jmp cODt:rloop
OOA.: D10S CODt:reDd mov rS,r.
OOAS: .09D sub rS,2
00A6: 80AA jmp cODt:2Dext:
00A7: OC.B CODt:21oop mov b6[r1],r3
00A8: .OSB dec r3
00A9: .051 iDC r1
OOAA: D179 cODt:2Dext: cmp r1,rS
OOAB: AFB2 jb cODt:2loop
OOAC: ~ Next: t:he expaDsioD st:age.

175

Appendix C The assembler code of a realistic program

;LeDtocode Compute caDoDical HuffmaD codes from leDgths.
;b1 poiDts to array of code word leDgths, b7 POiDts to area
;where code words are stored, rO is Dumher of code words.
leDtocode mov r7,rO

set r6
; First Pass: collect the code word leDgths iD each iD their OWD

OOAC:
OOAC: 4042
OOAD: 108A
OOAE: 4052
OOAF: 108A
0080: 4083
0081: D101
0082: 40D9
0083: A146
0084: 1085
0085: OC46
0086: D17E
0087: A063
0088: 1086
0089: 405E
OOBA: 108E
0088: 4052
OOBC: 1088
008D: 80C6
008E: D085
008F: 405D
OOCO: 1146
00C1: 4051:
00C2: 114E
00C3: 1086
00C4: 4096
00C5: 108E
00C6: 4059
00C7: AEC7
00C8:
00C8: 4043
00C9: lOCS
OOCA: 47C1
00C8: 0442
OOCC: A098
OOCD: 403D
OOCE: A035
OOCF: 4053
OODO: lOCS
00D1: AFD6
00D2: 0288
00D3: 405D
00D4: 0682
00D5: AF79
00D6: 4059
00D7: AF39
00D8: E030
00D9:
00D9:
00D9:
00D9:
00D9: D007
OODA: C05E
00D8:
biD.
00D8: 4442
OODC: E486
OODD: 4002
OODE: 0283
OODF: A086
OOEO: 04C4
00E1: A029
00E2: 04CA
00E3: 80E6
00E4: 08C4
00E5: 070A
00E6: 08CA
00E7: 068E
00E8: 4052
00E9: D1FA

exploop

expelse

expeDdi

;FiDally
expeDd

IgeDloop

IgeDiDD

IgeDwhile

IgeDeDdwh

IgeDcoDt

ltclloop

ltclelse

ItcleDdi

ItclcoDt

mov r2,l
mov b8[r2],r2
iDC r2
mov b8[r2],r2
mov r3,2
mov rl,r4
sub rl,3
jz expeDd
mov r5,b8[r2]
mov r6,b6[rl]
cmp r6,r5
jae expelse
mov r6,b8[r2]
dec r6
mov b8[r2],r6
iDC r2
mov b8 [r2] , r3
jmp expeDdi
mov r5,r2
dec r5
mov r6,b8[r5]
dec r6
mov b8[r5],r6
mov r6,b8[r2]
add r6,2
mov b8[r2],r6
dec r1
jDZ exploop

geDerate the code word
mov r3,l
mov r5,b8[r3]
mov rl,3l
mov r2,b2 [rl]
js IgeDcoDt
cmp r5,0
jDe IgeDeDdwh
iDC r3
mov r5,b8[r3]
jz IgeDwhile
mov bl [r2] , r3
dec r5
mov r2,b3[r2]
jDs IgeDiDD
dec rl
JDS IgeDloop
rts

mov r2,l7
till b2[r2],r6
clr r2
mov r3,bl[r2]
jz ItclcoDt
mov r4,b2[r3]
JDS Itc1else
mov b2[r3],r2
jmp ItcleDdi
mov r4,b4[r3]
mov b3[r4],r2
mov b4[r3],r2
mov b3[r2],r6
iDC r2
cmp r2,r7

leDgths.

176

Appendix C

OOEA: AF35
OOEB:
OOEB: "00"600C
OOED: "005
OOEE: "042
OOEF: ""Ol
OOFO: 0"S3
00F1: AO"S
00F2: OECD
00F3: D1l5
OOF": 06C3
00F5: AFC9
00F6: C06C
00F7: "052
OOFS: "059
00F9: AF67
OOFA: E030
OOFB:

The assembler code of a realistic program

jlle lt.elloop
Seeolld Pass: Assigll code words t.o illereasillg lellgt.hs.

movd r4,SOOOh
elr r5
mov r2,1
mov rl,16

lt.e21oop mov r3,h2[r2]
js lt.e2eollt.

lt.e2illll mov h7[r3],r5
add r5,r4
mov r3,h3[r3]
jlls lt.e2illll

lt.e2eollt. shr r"
ille r2
dec rl
jllz lt.e21oop
rt.s

SYMBOL TABLE
BINHEADS D 0050 BINHEADSl D 0070 BINLIST D OOeO BINLISTl D 02eO
BINTAILS D OOSO CONT2ELSE P 009d CONT2LOOP P 00a7 CONT2NEXT P OOaa

CONTRELSE P 00S7 CONTREND P OOa" CONTRLOOP P 007a DlRECTPG D 0000
EXPELSE P OOhe EXPEND P OOeS EXPENDI P 00e6 EXPLOOP P 00h4

FREQS C OSOO FREQTOLEN P 0014INITIALIZE P 0000 ISZERO P 0012
LENGTHS C 0600 LENTOCODE P 00d9 LGENCONT P 00d6 LGENENDWH P 00d2
LGENINN P OOed LGENLOOP P OOeh LGENWHILE P OOef LTC1CONT P OOeS

LTC1ELSE P 00e4 LTC1ENDI P 00e6 LTC1LOOP P OOde LTC2CONT P 00f6
LTC2INN P 00f2 LTC2LOOP P OOfO NCLASS D OOaO PAS1CONT P 003e
PASlELS P 003S PAS1ENDI P 003a PAS1LOOP P 0030 PAS2ELSE P 004a

PAS2ENDI P 004e PAS2INN P 0044 PAS2LOOP P 0042 PAS2NEXT P 0050
PAS3ELSE P 005d PAS3ENDI P 005f PAS3INN P 0057 PAS3LOOP P 0055
PAS3NEXT P 0063 SFREQS D OeOO STACK D 0040 STAKTOP D 0050
WSORTINN P 0069 WSORTLOOP P 0067 WSORTNEXT P 006e

177

	Design of an embedded microprosessor for array intensive tasks
	Preface
	Abstract
	Table of contents
	1. Introduction
	2. The microprocessor specifications
	3. Designing an architecture for the embedded processor
	4. Adding pipelines to the design
	5. Modelling and simulation
	6. Conclusions and recommendations
	Bibliographies
	Appendices

