
 Eindhoven University of Technology

MASTER

Modelling and identification of a laser deflecting system

Slots, T.D.

Award date:
1994

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/540d233a-96df-46b4-b048-b811883a4ffc


EINDHOVEN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING
Measurement and Control Section

Modelling and identification of a
laser deflecting system

by T.D. Slots

M. Sc. Thesis on Practical training period
carried out from February 1994 to August 1994
commissioned by Prof. Dr. Ir. P.P.J. van den Bosch
under supervision of Dr. Ir. AAH. Darnen and Ing. R.A Zorge
date: August 1994

The Department of Electrical Engineering of the Eindhoven University of
Technology accepts no responsibility for the contents of M.Sc. Theses or
reports on practical training periods.



Summary

In the measurement and control section a laser deflecting system has been designed. The
system consists of a hemispherical mirror in an air bearing, allowing it to rotate. A control
system keeps the air gap between the mirror and the bearing system constant.
Three arms are attached to the mirror, at angles of 120°. The arms are directed slightly
upwards from the mirror surface, at an angle of 15°. Attached on the arms by very stiff strings
are three actuators. The actuators work on the mirror arms on the same principle as music
speakers; activating a coil in a magnetic induction field. This way the actuators can move
frictionless. The actuators are attached to the base of the system by springs. The purpose of
these strings is to put pretensioning on the mirror.
The goal of this research is to gain insight in the behaviour of the deflecting system and to
model and identify the dynamics of the system. The modeling and identification of the
deflecting system serve the ultimate goal of designing a controller to manipulate the
movements ofthe mirror, so it can be used for tracking purposes.
The position ofthe system is described using Bryant angles. With these a non-linear
differential equation is derived describing the dynamics of the system.
The non-linear differential equitation is linearized to obtain a linear model. The sensors ofthe
system are designed in a way that the normal ofthe surface of the mirror can be measured.
The rotation of the mirror around the normal cannot be measured. In the linearized model, the
rotation round the normal of the mirror is not expressed. The linear model consists of two
SISO systems, describing two angles of the mirror. With these angles the normal can be
calculated.
At the time of this research the system was undergoing alterations, so the real system was not
available for the identification. A simulation of the mirror control is implemented in the
Simulab environment of Matlab, based on the non-linear differential equitation using Bryant
angles. Two of the Bryant angles describe the position ofthe normal to the mirror. The third
describes the rotation round the normal. Rotation round the normal does not directly influence
the normal, but it influences the dynamics ofthe system, and so influencing the other Bryant
angles and thus the normal.
The simulation is used to provide the input and output dataset for the identification. The input
to the system is a noise series. From the generated data a MIMO model has been identified.
The identified model describes two angles defining the normal ofthe mirror. These angles are
the same as those measured by the sensors. The model has been validated by a second dataset
from the simulation, again with a noise series as input. The model describes the system well.
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1. Introduction

The Measurement and Control section of the Department ofElectrical Engineering of the
Eindhoven University ofTechnology finds study topics in the measurement, identification and
control ofprocesses. The Measurement and Control section has several laboratory processes
on which theoretical strategies can be tested and developed.
One of the laboratory processes is a laser deflecting system. Intended use of this system is
tracking purposes in flexible automation, for example to track the tool center point (TCP) of a
robot. In Figure 1.1 a schematic view of such a tracking system is shown.

Laser sensor
Laser

One-way mirror

Robot

Laser deflecting system

Figure 1.1: Schematic view of a laser tracking system.

In Figure 1.1 a laser beam is passed through a half-way mirror and deflected on the laser
deflecting system. The deflecting system aims the laser beam on a special reflector fixed on
the TCP of a robot. The laser beam is reflected back parallel to the incoming beam. The beam
follows the same path back until it is bounced of the half-way mirror and comes onto the laser
sensor. The sensor information is led into the deflecting system. The orientation of the
deflecting system can then be adjusted to follow the TCP of the robot.
The position of the TCP can be calculated using two deflecting systems, or by using one
deflecting system together with the distance information of the TCP. The distance information
can be obtained by modulating the laser. By analyzing the phase shift of the returning laser
beam the distance information can be obtained.
The laser deflecting system consists ofa hemispherical air bearing: a half circle bearing acting
as a mirror in a bearing seat. The mirror can be positioned through three actuators.
A preliminary study of the deflecting system has been done by the faculty of Mechanical
Engineering, see [5].
During this research the laser deflecting system was in revision. The goal of the research is to
gain insight in the laser deflecting system, so a controller for the positioning of the mirror can
be developed and later tested on the real system.
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For this purpose a simulation model will be designed. The simulation data will be used to
identify the system, and based upon that a controller can be designed.
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2. System description

The laser deflecting system consists of a hemispherical air bearing. A schematic view of the
laser deflecting system is shown in Figure 2.1. Three arms are attached to the mirror. These
arms are attached to the actuators by stiff strings. Each string is fixed with joints, indicated in
Figure 2.1 by dots. The actuator is a coil moving in air along its core. The core is fixed to the

Figure 2.1: Schematic view of the laser
deflecting system.

base of the system. This means that the actuator can only move in a straight line. The actuator
is fixed to the base of the system with a spring. The spring is used for pretensioning the
muror.
Air is blown from below into the bearing seat. This causes the mirror to float on an air
cushion. To maintain a constant gap between the mirror and the seat, a control system is
designed. The control systems acts upon the actuators, controlling the gap.
The assumption is made that the gap between the mirror and the bearing seat is constant,
consequently the mirror can only rotate in the seat. The center of rotation is the middle of the
sphere of which the mirror is a half.
Two frames can be defined: a global frame and a local frame.
The global frame is fixed to the base of the system. The origin of the global frame is the
center of rotation of the mirror.
The local frame is fixed to the surface of the mirror, moving along with the movements of the
mirror. The origin of the local frame is also the center of rotation of the mirror. When the
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mirror is not rotated, both frames coincide. The Cartesian coordinate system will be used for
both frames.
The coordinates of a vector defined in the global frame will be given the subscript G, the
coordinates of a vector in the local frame will be given no subscript. The orientation of the
mirror with respect to both frames is depicted in Figure 2.2. In Figure 2.2 the mirror is not

z

y
.71

Figure 2.2: Orientation of
the mirror.

rotated and the y-axis is directed into the page.
Note that the arms are physically non existent to avoid interference with the laser beam. The
connections of the strings to the mirror have been realized by a framework at the edge of the
mirroL
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2.1 Mirror description

The arms of the mirror are positioned at an angle of 1200 between each other. Each arm is
positioned at an angle of 150 to the surface of the mirror. Top and side views of the mirror are
shown in Figure 2.3. The arm numbering is also shown in Figure 2.3.

2

3

y

Top view
(x-y plane)

X
j--~-----t~ ----->

Side view
(x-z plane)

3

Side view
(y-z plane)

2

Figure 2.3: Top and side views of the mirror.

2.1.1 Mirror orientation

To determine the orientation of the local and global frame to each other, Bryant angles will be
used. With the use of the Bryant angles, the coordinates of a vector can be transformed from
one frame to the other [8]. The Bryant angles are angles of rotations transforming the global
base to the local base. The Bryant angles used here are \If, eand~. The transformation is
displayed in Figure 2.4.
First the global frame is rotated round the x-axis, the angle of rotation is \If. This results in the
frame XG', YG" ZG'. This frame is rotated round YG" with angle e, resulting in the frame XG",

YGil, ZG"' Finally this frame is rotated round ZG"' with angle~. All rotations are directed
around the positive axes. The result is the frame XG"', YG"" ZG'"' This frame is the local frame
X, Y, Z. If a vector defined in local coordinates ~=[x y z]T is taken, then the coordinates of
this vector can be transformed to global coordinates, using the transformation matrix Rs :

( 2.1)

With the transformation matrix Rs [8]:

[

cos(S)cos(~) -cos(S)sin(~) sin(S) ]

RB = cos('V)sin(~) + sin('V)sin(S)cos(~) cos('V)cos(~) - sin('V)sin(S)sin(~) -sin('V)cos(S) (2.2)

sine 'V) sine~) - cos( 'V) sin(S) cos(~) sine 'V) cos(~) + cos('V) sin(S) sine~) cos( 'V) cos(S)

The inverse matrix ofRs is simply RsT, since Rs is an orthonormal matrix: RsT.Rs=I. The
coordinates of a vector can be transformed from global to local frame coordinates using RsT,
in the same way as in (2.1). If the Bryant angles are known, the exact position of the mirror
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XG XG=XG'

XG

XG"

YG'=YG"
,/7

YG

ZG"=ZG"'=Z
\'<,

---'-

XG

YG
'-'-,,'

"--'-------------'"

XG"'=X

Figure 2.4: Transformation from the global to the local frame
using Bryant angles.

relative to the global frame is known. The vector r. is defined as a vector containing the Bryant
angles: r.=[ \V 8 ~{

2.1.2 The mirror sensor

The laser deflecting system will be used to aim a laser beam. The normal of the mirror surface
defines the way the laser beam is deflected. The angle of the normal to the z-axis of the global
frame is limited to 26°. This limits the range of the deflecting system. Three coils are fixed to
the system to determine the position of the normal. One coil is fixed to the mirror, and two
coils are fixed to the base of the system. A top and two side views are shown in Figure 2.6.
The base coils are positioned at an angle of 45° to the x and y axes. An alternating current I is
led through the mirror coil. This causes a magnetic induction B. The contribution of the length
dl of a coil winding to the magnetic induction is dB. If the vector from dl to dB is r then for
dB can be written [9] (see Figure 2.5):

dB = & I dl x r ( 2.3)
- 4n r 3

In (2.3) !lo is the magnetic permeability of vacuum. In the first side view of Figure 2.6 the
mirror is not tilted, and only one base coil is depicted. The magnetic flux ~m is give by (2.4).

( 2.4)

It can easily be seen that there is no resulting flux through the base coil in the first side view.
The second side view shows the mirror tilted 30°. The resulting flux through the base coil is
again given by (2.4) The flux is not zero now, and causes a current to flow through the base
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coil. The current through the base coil is a measure of how much the mirror is tilted. The same

dl
(/~_.._(-~dB)
" -/

"-,,·,_·····_··.·!r-~

I
Figure 2.5: The magnetic induction.

principle can be applied to the other base coil. Both current signals from the base coils are
processed, and the resulting sensor signal gives infonnation about the position of the nonnal
vector to the mirrors surface. The sensor gives the angles a and p,see Figure 2.7. The nonnal
nof the mirror is projected to the yz en xz plane of the global frame. The angle of the yz
projection to the z-axis is a, and the angle of the xz projection to the z-axis is p. a is positive
if YG is negative, and p is positive XG is positive.

Base coils

~ J, /y

~
l'

Mirror coil

Figure 2.6: The mirror sensor.

No research has been done to find the current through the base coils as a function of how the
mirror is tilted, nor how the current signals should be processed to get angles a and p.

y

X
/"-:-".--=-----

Figure 2.7: Sensor angles.
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The sensor angles define the position of the normal to the mirror, but they do not define the
position of the mirror itself: the rotation of the mirror around the normal is not expressed
through a and ~. Rotation of the mirror around its normal does not effect the path of the laser
beam, but does effect the resulting momentum on the mirror, and by doing so the dynamics of
the mirror. The dynamics of the mirror can therefore not be described using only the sensor
angles.
The rotation round the normal is given by <II when using Bryant angles. This means the sensor
angles can be described by the Bryant angles \If and 8. The normal to the mirror given in local
coordinates is: n=[O °I( The coordinates in global coordinates are:

[

X
G

] [0] [ sin(8) ]
~ = RB • ° = -sin(\If)cos(8)

ZG 1 cos(\If)cos(8)
/I

If the sensor angles are used (see appendix A):

[~:] = I [_tan~i:~~os(~)]
ZG /I ~1+cos2(~)tan2(a) cos(~)

If (2.5) and (2.6) are equalized the angles become:

\If=a

8 = sin-'( I Sin(~)J
~l + cos2(~)tan2(a)

And:

a=\If

~ = tan-'( tan(8))
cos(\If)

With (2.7) the sensor and Bryant angles can be transformed from and to each other.
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2.2 Actuator description

The actuator works on the same principle as a speaker. The actuator is shown in Figure 2.8.

Figure 2.8: The actuator.

I

:+
UMOV

u

+

A permanent magnet produces a magnetic field with induction B between the core and upper
magnetic conductor. This induction is assumed to be constant in the gap. A coil can move in
the gap. The coil is wound on a cylinder connected to the stiff string, and the pretensioning
spring. The string is connected to a mirror arm and the pretensioning spring is connected to
the base of the system.

2.2.1 Actuator force using current control

If a charge q moves through a magnetic field with induction B and speed y, a Lorentz force is
exercised on the charge [9]:

F L =qy x B ( 2.8)

In the case drawn in the right plot ofFigure 2.8, the Lorentz force is always directed
downwards, and exercised on the actuator coil. For this force can be written:

I

FL = I JBdl = IBI ( 2.9)
o

If the coil has radius r, and there are N windings in the magnetic field (2.9) becomes:

FL =2nrNIB ( 2.10)

If the current is reversed, the force is directed upwards. FAis the actuator force caused by a
current I. FA is defined positive upwards, and I is defined positive as indicated in Figure 2.8.
For the actuator force is found:

FA =-2nrNIB =-AI

12
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And therefore for the actuator constant A by definition:

A = 2nrNB

2.2.2 Actuator force using voltage control

( 2.12)

A voltage U is now put on the coil. In the right plot of Figure 2.8 a piece off coil is shown.
The voltage causes a current to flow through the coil, in its tum causing a Lorentz force
downwards. If the Lorentz force causes the coil to move downwards with speed VD, an
induction voltage UMOV is generated by the movement [9]. UMOV is directed opposite of the
externally applied voltage U. If the coil has resistance R and inductance L the following is
found [9]:

U - U MOV = RI + Li ( 2.13)

UMOV is caused by the movement of the charge in the coil through B. For UMOV can be found:
[9]:

U MOV =VD Bl =2nrNVD B = AVD (2.14)

The position of the coil will be given by hA- hA is the position of the coil from the equilibrium
position, and is positive directed upwards along the actuator core. This means:

( 2.15)

( 2.17)

By substituting (2.15) and (2.14) in (2.13) the following is found using the Laplace notation:

U + sAhA = RI + sLI ~

1= U + sAhA (2.16)

R+sL

The actuator force is found by substituting (2.11) in (2.16) and is a function of the applied
voltage U and of the actuator position hA:

F
_ -AU -sA2hA

A -
R+sL
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3. System dynamics

In this chapter the dynamics of the system will be discussed. For this purpose the dynamics of
the mirror and the actuator are treated separately. First the variables and parameters will be
discussed.
In Figure 3.1 the mirror with one actuator is shown.

r

Q

Figure 3.1: Mirror with one actuator arm.

The meaning of the abbreviations will now be described.
r : Length of the arm attached to the mirror.
Rm : Radius of the mirror half sphere
H: Length ofthe string connecting the mirror arm and the actuator. H is the equilibrium

length.
Q: Length of the string and spring together. Q is the equilibrium length.
M: Mass of the actuator coil.
Cs : Spring constant of the stiff string.
Cv : Spring constant of the pretensioning string.
D: Damping between the actuator and base.
Jo: Inertia matrix of the rotations around the local frame axes. Johas been calculated in [5]:

[
tmR

;, 0 0 J
Ja = 0 tmR;, 0 =tmR;, . I =fa .I

o 0 ImR 2
5 m

In this equation m is the mass of the half mirror sphere.
E : Angle of any mirror arm to the mirror surface.
fli: Vector to end of mirror arm number i. flj is defined as: flj = [x YZ]Tj. This vector is

constant if defined in local coordinates.
Ai: Vector to actuator number i. Actuator i is the actuator on arm i.
B i : Vector to the base of the system where the spring is connected. B j is defined as:

B i = [X Y Z]T j ,with [X Y Z]Tj =RsT'[XG YGZG]T j • This vector is constant if defined in
global coordinates.

hA : Movement from the equilibrium position off the actuator along the actuator core. hA is
positive upwards along the core. In the subscript an i is added to indicate the movement
of the different actuators.
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The following actuator variables are not shown in Figure 3.1:
A: Coil constant, as indicated in (2.12).
R : Resistance of the actuator coil.
L : Inductance of the actuator coil.

In Table 3-1 the units of the parameters and variables are given, and, if applicable, the values.

Table 3-1: The parameters and variables.

Q
M

Cv
D

Jo

A
R
L

Unknown m
9.5·10- kg
1.5·10 kg·s-

Unknown kg's-
5.6-10- kg·m

n/12 rad
m

3.5 Q

The damping of the mirror is caused by the mirror rotating in air, and is assumed to be
negligible. The value of the damping D has not been measured. This damping is caused by the
actuator moving in air, and should also be negligible. The damping is introduced so that if
damping is added later the equations still hold.
The mirror is assumed to be symmetrical. Because of this, the inertia matrix is symmetrical as
well. All actuators are assumed to be identical.
The local coordinates of flj can be calculated now r is known. The coordinates can be
transformed to global coordinates when the Bryant angles are known, using RB •

The global coordinates of Ai can be calculated when hA is known. The coordinates can be
transformed to local coordinates using RBT. The calculation of fli and Ai is explained in
appendix B.

3.1 Mirror dynamics

The dynamics of the mirror will be described using Eulers axiom. Eulers axiom states that the
time derivative of the impulse momentum of a rigid body equals the resulting momentum on
the body at any time.
Eulers axiom is valid relative to any position. In case of the mirror it is applied relative to the
point of rotation of the mirror, in this case the origin of both the local and global frame.
The Bryant angles are used as the kinematic variables. For this reason the angular velocities
and angular accelerations have to be known expressed in Bryant angles. The components of

15



(3.1)

the angular velocities relative to the local frame are described by the vector co. For co can be
found [8]:

[

cos(8) cos(~) sine~) 0]
Ql =WB(y} 1 = -cos(8)sin(~) cos(~) 0'1

sin(~) 0 1

As a result for the angular acceleration can be found [8]:

ill =Wn .r + filBB

And by definition [8]:

[

cos(~)~8 - sin(~)cos(8)~~ - cos(~)sin(8)8~ ]

IDBB = - sine~)~8 - cos(~) cos(8~~~ + sine~) sin(8)8~

cos(8)8~

( 3.2)

( 3.3)

Eulers axiom is applied to the mirror in the local frame. Eulers axiom is given by (3.4) . All
vectors used in (3.4) have to be in local coordinates.

Lo = Mo

In (3.4) Lo is the impulse momentum of the mirror relative to the origin, and 110 is the
resulting momentum on the mirror. Loand 110 are given by:

Lo = fpz:xtdV
v

( 3.4)

( 3.5)

( 3.6)

( 3.7)

( 3.8)

In (3.5) p is the mass density of the body.
In (3.6) M j is the momentum on the mirror caused by actuator i.
In the local frame (3.4) can be written as [8]:

.10' dl +n· (.10Ql) =Mo

In (3.7) the following holds [8]:

[

0 -co 3 co 2 ] [ 1 0 0]
Q,=RRT = co 3 0 -COl and.1o =io' 0 1 0

-co 2 co I 0 0 0 1

(3.1), (3.2), (3.3) and (3.8) are substituted in (3.7). This results in the nonlinear differential
equitation for the mirror:

( 3.9)
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cos(~) sin(~)
0

1 8~ _ sin(8) \jJ8

m~j;'
cos(8) cos(8) cos(8) cos(8)

sin(~) cos(~) 0 Mo- -cos(8)\jJ~ ( 3.10)

-cos(~)tan(8) sin(~) tan(8) 1 sin(8) 8~ sin
2
(8). 8 (8) ·8- + \jI + cos \jI

cos(8) cos(8)

With (3.10) the dynamics of the mirror are described. The momentum on the mirror are
caused by the string forces on the mirror. The momentum will now be described.

The force Ei is exerted on the mirror arm by the string. This force is caused by change in
length of the string and the pretensioning. The change in length of the string is defined
positive if the string is lengthened, and negative if the string is shortened.
For change in length can be found:

Iia-AII -H-I -12 (3.11)

For the magnitude of the string force working on the actuator arm due to length change can be
written:

( 3.12)

( 3.13)

The pretensioning force magnitude is Fo. The direction of Ei is flj - A j • The total string force is
the string force due to length change plus the pretensioning force. This means that for Ej can
be written:

(a·-A-)r
F; = 11- 1 -il ,-Cslla; - Ad2 + CsH - Foa -A-I -12

This is the force working on the mirror arm. The arm Ij on which Ei works is the same as the
vector flj. Thus for M j can be found:

( 3.14)

All vectors in (3.14) must be given in local coordinates.

3.2 Actuator dynamics

The actuator coil can only move along the core. Movement along the core is indicated by hAi.

The direction of each actuator is given by C j (see appendix B). A j and hAi are related as
follows:

A=O+h.·C.-I -I AI-I ( 3.15)

Only the part of forces working along the actuator core influence the movement of the
actuator. The string force on the actuator coil is working in opposite direction of the string
force working on the mirror arm. Magnitude of these forces are equal.
As a result the five forces working on the actuator coil are:
1. Inertia force: EM
2. Damping force: ED
3. String force: -Ei

17



( 3.16)

4. Spring force:
5. Actuator force:

Of these forces only the string force is not working along the core. The part of the string force
working along the core is the dot product of the string force and the direction of the core. This
force is defined as Fs. The forces can now be given in magnitude along the core (directed
upwards is positive):

FM =-Ms2hA

FD =-DshA

F's=-E;-C
Fv =CVhA - Fa

F - -AI F _ -AU -sA
2
hA

A - or A-
R+sL

FA depends on whether current or voltage control is used.
With (3.13) and with the fact that the sum ofthe forces is zero the dynamics of the actuator
are found in the form of a nonlinear differential equation:

- Ms
2
hAi - DshAi + 1(1ai - AII"I) (liai - A;'112 .Cs - HCs + Fa) - C - CVhAi - Fa + FA

ai -Ai 2

18



4. Modellinearization

In this chapter a linearized model of the system will be derived. In Figure 4.1 the linear and
non-linear model are shown. Only one mirror arm is shown. On the left the non-linear system
is shown in two positions. In the first position the mirror is not rotated. In the second position

Non-linear model

Figure 4.1: Non-linear model and linear model.

Linear model

the mirror is rotated 25°. As can be seen the coil moves along the actuator. The joints are
indicated by dots, the string is drawn by a thick line and the spring is drawn by a thin line. The
direction ofthe string (and therefore the string force) is related to rotation and the mirror and
the movement of the actuator along the core.
The string force is not aligned to the actuator core if the mirror is rotated. The angle of the
difference in alignment is 't, and is a function of the Bryant angles ":I. and of the actuator
position hA- The part ofthe string force along the actuator core is -F j cos('t). In the linearized
case this results in the string force being aligned along to actuator core, resulting in the linear
model shown on the right.
In the linear model the direction of the spring and of the string are aligned. The direction in
the linearized model is therefore only related to the rotation of the mirror which can be
described by the Bryant angles.
The part of the string force working sideways on the coil are not zero. This force does not
influence the system however because the forces working sideways are assumed to be
frictionless.

Lateral movement of the actuator will not be taken into account in the linearization. In the
simplified model the string force is working parallel to the other forces working on the
actuator. In the real system this is not the case.

The function to be linearized is the function described by (3.10). The product terms in this
equation may be linearized separately because only higher order terms will be introduced

19



when doing so. The total momentum on the mirror Mo is caused by the string forces Ej • The
string force Ej is the product of the force direction dj and the force magnitude F j • The
momentum caused by one arm is:

( 4.1)

The terms in (4.1) may be linearized separately, because only the product operator is used.
After finding the linearization ofM j , Molinearized can be calculated. This can be substituted
in the linearization of (3.10). Higher-order terms may be omitted to result in the linearized
model for the mirror.
First Ej will be linearized.

4.1 Linearizing string force magnitude Fj

The force magnitude can be found by looking at the forces on one actuator. The actuator is
shown in Figure 4.2.

.a;

Figure 4.2: The Actuator.

hM;
(-"

The actuator is attached to the mirror in .aj. The change oflength of the string is hMi -hAi.

In this case the nonlinear differential equitation (3.15) becomes a linear differential equitation:

-Ms2hAi - DshAi + CS(hMi - hAi ) + Po - CVhAi - Po + FA;

FA for current control is:

FA = -AI

FA for voltage control is:

-AU -sA2h
F - AA-

R+sL

If (4.3) is substituted in (4.2) hAi for current control is found:

h
A
"= CShMi - Ali
I Ms 2 +Ds+Cv +Cs

If (4.4) is substituted in (4.2) hAi for voltage control is found:

h
A
"= (R+sL)CshMi -AUi
I (R+sL)(Ms2 +Ds+Cv +Cs)+A2s

The string force magnitude can be given by:

F; =CS(hAi -hMJ-Fo

( 4.2)

( 4.3)

( 4.4)

( 4.5)

( 4.6)

( 4.7)
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( 4.8)

( 4.9)

The string force can now be expressed as a function ofhMi. By substituting (4.5) in (4.7) the
string force for current control is found:

F = -(CSMs
2

+CsDs+CsCv)hMi -CsAli -F
o

I Ms 2 + Ds + Cs + Cv

By substituting (4.6) in (4.7) the string force for voltage control is found:

-CShMi {R+sL)(Ms2 + Ds+Cv)+ A2s }-CSAUi
F= -~

I (R+sL)(Ms2 + Ds+Cs +Cv)+ A2s

Now hMi needs to be expressed in y-. hMi will be calculated from the coordinates in the local
frame, so by transforming Ai to local coordinates, subtracting the coordinates from !!i in local
coordinates and then calculating the change in length. This means that in the local frame the
coordinates of!!j are constant and the coordinates of Ai are a function ofy-o We find:

I[X] T[XG
- [X - X]I

hMi = Ilai - Bil12 - Q = y - RB Yc, - Q = y - Y I - Q

Z ZG II z-z
- 2 2

= ~(x - X)2 + (y - Y)2 + (z _ Z)2 - Q

And to linearize hMi :

( 4.10)

a~(x-X)2 +(y_y)2 +(Z-Z)2
+----'------------1

as

a~(x - X) 2 + (y - y) 2 + (z - Z) 2
+------------1

a<jl

·8 ( 4.11)

( 4.12)

If (4.11) is applied for hMi linearized is found:

1
hMi = - {(z - ZG)Yc, - (y - Yc,)ZG}V

Q r=O

1
+ Q {(x - XG)ZG - (z - ZG)XG}e r=O

1
+-Q {(y - YG)XG- (x - XG)Yc,}<p r=O

The linearized string force can now be calculated using (4.12) and (4.9), and can be applied to
the three actuator arms.
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4.2 Linearizing the string force direction dj

The direction of the string force has to be known in local coordinates, because Eulers axiom is
applied in the local frame. For the direction can be found:

For the linearized direction can be found:

( 4.13)

( 4.14)d ad; ad; I ad;
_i = C; + - . \jf + - ·8+ . ~

a\jf Ij/=O as I 6=0 ~ ~=O

When (4.14) is applied to (4.13) the following is found for the string force direction in local
coordinates:

The equations in (4.15) can be applied to the different actuator arms.

4.3 The momentum M1 on arm 1

In the equilibrium position the following holds for actuator and arm 1:

g§9tQU1~1~,t::

x rcos(E)
y 0
z rsin(E)
X rcos(E)+Qsin(E)
Y 0
Z rsin(E)-Qcos(E)
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C.-I

[
-Si~(E)]

COS(E)

The linearized momentum can be calculated using the previously derived equations for F j and

di ·

The momentum is given by:

( 4.16)

First rjxdi will be calculated. The following is found using (4.16):

For hMI is found using (4.13):

hM \ = -r8

( 4.17)

( 4.18)

Equation (4.18) can be used with (4.8) and (4.9) to calculate the string force magnitude F i . For
current control the string force magnitude becomes:

F.
- (CsMi + CsDs + CsCv)r8 - CSAI\ _ F

\- 0
Mi +Ds+Cs +Cv

With (4.17) the momentum on arm 1 becomes for current control:

M _ [-(CSMS
2+CsDS+C~Cv)r28+rCAI\ D]\- +~o

- Mi +Ds+Cs +Cv
o

2 2

_lr + ~sin2(E) 0 -rsin
2
(E) - ~ [ ]

4 Q 4Q ~

-F 0 0 0 . 80 22
2 r r 2 ,f,.

rcos (E) -- 0 tr + -cos (E) 'I'
4Q Q

For voltage control the string force magnitude becomes:

r8Cs {R + sL)(Ms2 + Ds + Cv ) + A 2s}- CSAU\
~= -~

(R + sL)(Ms2 + Ds + Cs + Cv ) + A2s

With (4.17) the momentum on arm 1 becomes for voltage control:
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[

-r28CS {(R + sL)(Ms
2

+ Zs + Cv) + A2s}+ rCSAUj ]

M= +~
- (R + sL)(Ms2 + Ds+ Cs + Cv ) + A2s

o
2 2

-F, -tr
+~ Sin':E) ~ -rSin';) - ;Q .[~]

rcos2(E) - ~ 0 lr + ~COS2(E) 'I'
4Q 4 Q

( 4.22)

4.4 The momentum M2 on arm 2

-Y2rcos(E)x

In the equilibrium position the following holds for actuator and arm 2:

.w.M#;q~p~~~::

y Y2 3rcos(E)
z
x
y

z

rsin(E)
-Y2(rcos(E)+Qsin(E))
Y2 3(rcos(E)+Qsin(E))
rsin(E)-Qcos(E)

C.-I

[

}; sinCE) ]
-}; -J3 sinCE)

COS(E)

The linearized momentum can be calculated using the previously derived equations for F j and

di ·

First Ijxdi will be calculated. The following is found using (4.15):

r2

--./3- sin2 (e) + Ti,-./3r
4Q
3 3r

2
• 2--r+-sm (e)

16 4Q
2

1 M 2 M r-,,3rcos (e) - ,,3-
2 8Q

2

-...!..r+~sin2(e)
16 4Q

r2

+ Ti,-./3r--./3-sin2 (e)
4Q

r2

-1rcos2(e) +-
8Q

For hM2 is found using (4.12):

hM2 = t-J3r\ll + t r8

For current control the string force magnitude becomes:

( 4.23)

m
( 4.24)
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M 2 =

F
_ -(CS Ms

2
+CsDs+CsCv)(t-J3r'V+trS)-CsAI2 _ L'

2 - F O
Ms2 +Ds+CS +Cv

With (4.17) the momentum on arm 2 becomes for current control:

-(CS Ms2+ CsDs + CsCv)(fr2 'V + }-J3r28) - t.J3rCS A/2 I M3
---=-------=-----=------.:'-----"-----'----------"------"----=-----=- - - -v "rF

Ms2+Ds+Cs+Cv 2 0

-(CS Ms2+ CsDs + CsCv)(t.J3r2~ + }r28) - trCS A/2 1
---=-------.-=------.:--'-----------'-----=------=- - - rF

Ms2+ Ds + Cs + Cv 2 0

o

( 4.25)

( 4.26)
2

1 r. 2( )
-~r+-sm E

16 4Q
2

l-J3r -.J3 ~sin2(E)
16 4Q

2
1 2 r--rcos (E) +-
2 8Q

r2

--J3 - sin2(E) + -&,-J3r
4Q

3 3r
2

• 2 )--r+ -sm (E
16 4Q

2
1 M 2 h r--v3rcos (E) - -v3
2 8Q

M 2 =

For voltage control the string force magnitude becomes:

-(t-J3r'V + trSCs){R + sL)(Ms2 + Ds+ Cv ) + A 2s}- CS AU2
~= -~

(R + sL)( Ms2 + Ds + Cs + Cv ) + A 2s

With (4.17) the momentum on arm 3 becomes for voltage control:

-(fr2~ + }-J3r28)Cs kR + sL)(Ms2+ Ds + Cv) + A2s}- t.J3rCsAU2 1 M
----------'~'--------------___,____~----- - --v3rF

(R + sL)(Ms2+ Ds + Cs + Cv) + A2s 2 0

-(}-J3r2~ + }r28)Cs kR + sL)(Ms2+ Ds + Cv) + A2s}- trCS AU2 1
_______----'~'______------= ::__--L----_ - - rF

(R+sL)(Ms2+Ds+Cs +CV)+A2s 2 0

o

( 4.27)

( 4.28)

r 2

--J3-sin2(E) + kfjr
4Q
3 3r2

• 2
--r + -sm (E)

16 4Q
2

1 M 2 M r--v3rcos (E) - -v3
2 8Q
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tr + -COS
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4.5 The momentum M3 on arm 3

-Y2rcos(E)x

In the equilibrium position the following holds for actuator and arm 3:

gQ9tqjn~t~

y -Y2 3rcos(E)
z
x
y

z

rsin(E)
-Y2(rcos(E)+Qsin(E))
-lh 3(rcos(E)+Qsin(E))
rsin(E)-Qcos(E)

C.-1

[

Y2 sinCE) l
Y2 -J3 sineE)

COS(E)

The linearized momentum can be calculated using the previously derived equations for F i and
dj •

First Ijxdi will be calculated. The following is found using (4.15):

2

-~r + !-sin2 (c)
16 4Q

r2

+ --k-f3r + -f3-sin2 (c)
4Q

2
1 2 r--rcos (c)+-
2 8Q

For hM3 is found using (4.12):

hM3 = - t -J3r\ll + t r8

For current control the string force magnitude becomes:

( 4.29)

( 4.30)

F
_ -(CS Ms 2 +CsDs+CsCv)(-t-J3r\ll+tr8)-CsAI3 _ D

3 - 1'0
Ms 2 +Ds+Cs +Cv

With (4.17) the momentum on arm 3 becomes for current control:

( 4.31)
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( 4.32)
2

I r. 2( )--r+-sm E
16 4Q

2

- F: -...L.J3r + .J3~ sin2 (E)
o 16 4Q

2
1 2) r

-Zrcos (E + 8Q

For voltage control the string force magnitude becomes:

-(-tJ3r\jl + treCs ) {R + sL)(Ms2 + Ds + Cv ) + A 2s}- CS AU3
~= -~

(R+sL)(Ms 2 +Ds+Cs +CV )+A2s

With (4.17) the momentum on arm 3 becomes for voltage control:

-(tr2\j1- i.J3r28)Cs {R + sL)(Ms2+ Ds+ Cv) + A2s}+ 1.J3rCsAU3 r;;
-----------"------------"----------+ ~'\,I3r~

(R+sL)(Mi +Ds+Cs +CV )+A2s 2

-(-i.J3r2\j1 + ir28)Cs JcR + sL)(Ms2+ Ds + Cv) + A2s}- t rCsAU3 1
--------~~-------______:-~----- -rF:

(R+sL)(Ms2+Ds+Cs +Cv)+A2s 20

o

( 4.33)

( 4.34)

2
1 r. 2( )--r+-sm E

16 4Q
2

- F: -...L.J3r + .J3~ sin2 (E)
o 16 4Q

2
I 2() r-"2rcos E + 8Q

4.6 The total momentum Mo on the mirror

The total momentum on the mirror can be calculated by simply adding the momentum on the
arms. This way for current control can be found:
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3

Mo = IM; =>
;=1

M o =

-(CsMs2+ CsOS + CsCJ(t r2",)+ t-f3rCSA(I3 - 12)

Ms2+Ds+Cv +C s

-(CsMs2+ CsDs + CsCJ(t r
2e)+ rCsA(I1 - t12- t13 )

Ms2+ Ds + Cv + Cs
o

{
3 3r

2
• 2 }

'" -8r + 2Q sm (I::)

e{ 3 3r
2

• 2 }--r+-sm (I::)
8 2Q

${ j r + 3~ CO"«)}

For voltage control:

( 4.35)

M o =

-tr2",Cs{(R + sL)(Ms2+ Os + CJ + A 2s} + t-f3rCSA(U3- U2 )

(R + sL)(Ms2+ Ds + Cv + Cs) + A2s

-tr2eCs{(R + sL)(Ms2+ Ds+ CJ + A2s} + rCSA(UI - tU2 - t U3)

(R + sL)(Ms2+ Ds+ Cv + Cs ) + A 2s
o

-P-o

( 4.36)

4.7 The linear system description

The equations (4.35) and (4.36) must be substituted into (3.10) to get the equations that
describe the system. A linear system description needs to be found. The equations (4.35) and
(4.36) only contain first-order terms. This means that (3.10) may be reduced to a zero-order
equation, because higher order terms will be discarded after substitution. Leaving only zero
order terms (3.10) becomes:
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( 4.38)

If(4.35) and (4.36) are substituted in (4.37) the linear system description is found for C11ITent
and voltage control. The linear differential equations become for current control:

t-!3rCsA(l3 -12)
\jI=

N;

8 = rCsA(l1 -t12 - t13 )

N;

$=0

The denominator in (4.38) and (4.39) is:

N; = j oMs 4

+j oDs3

+{jo (Cv +Cs )+tr2 MCs + MFoV}S2

+Gr2DCs + DFoV)s

+(Cv + Cs )FoV + t r2cvCs

V is given by:

V =- t r sineE) cos(E) + 3r 2 sin2 (E) = -i r + 3r 2 sin2 (E)
2H 2H

For voltage control the equations become:

8 = rCSA(U1- tU2 - tu3)
Nu

~=o

For the denominator N u in (4.43) and (4.44) can be written:

N u = j oMLs 5

+jo(DL + MR)S4

+[jo{DR + L(Cs + Cv) + A2}+ FoVML + tr2CsML]s3

+{joR(Cs + Cv) + FoV(DL + MR) + tr2Cs(MR + DL)}S2

+[FoV{DR + L(Cv + CS) + A2}+ tr2Cs(RD+ CvL + A2)]s

+FoVR(Cv +Cs)+tr2RCvCs

( 4.39)

( 4.40)

( 4.41)

( 4.42)

( 4.43)

( 4.44)

( 4.45)

( 4.46)

For current control the system is of 8th order. This can be understood as follows:

The system is linearly described by two rotations, one around 'II, and one around 8. The 3
actuators together have order 6. Because of the linearization the actuators become of order 2
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( 4.47)

for every rotation. The mirror is of order 2 for every rotation. Because the system is linearly
described by two rotations, the result is 2 systems of order 4. The total order is therefore 8.
The transfer functions for the angles a and pare the same as for \jJ and e. For a this can
easily be seen since a=\jJ. If(2.7) is linearized it is easily found that p=e.
The transfer functions can be rewritten to form SISO functions. 111I and Ie are defined as:

IIjJ =13 - 12

Ie = I) --t I2 --t I3

and therefore:

Using (4.49) in (4.39) and (4.40) results in two SISO functions:

tJ3rCsAlljJ
\jJ =----'-

N;

( 4.48)

( 4.49)

e= rCsAle ( 4.50)
N;

In case of voltage control, the system is of loth order. Here the mirror is again is a 2nd order
system for every rotation. The 3 actuators together are of order 9. Because of the linearization
the actuators become of order 3 for every rotation. The result is 2 systems of order 5 for every
rotation. In the linear case the only rotations are around", and e. The result is a lOth order
system.
Simular to the current controlled system for the voltage controlled system can be defined:

Using (4.52) in (4.44) and (4.45) results in two SISO systems:

tJ3rCsAU'l'
\jJ =------'-

Nu
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4.8 Linear characteristics

From the transfer functions it can be seen that ~ cannot be controlled for current and voltage
control. The sensor on the mirror measure sensor angles a and ~. From these variables ~

cannot be calculated. In the linear case it is therefore impossible to control ~.

4.8.1 Pole placement

From the transfer functions it can be seen that for both current and voltage control the linear
system has no zeros. When current control is used, the system has 4 poles. When voltage
control is used the system has 5 poles. It can also be seen that F0 influences transfer functions.
The equilibrium length of the spring and the string together is Q. Q is not known, but still
influences the transfer function. Fo is chosen zero. In that case Q and Fo do not influence the
transfer functions. If F0 is taken to be zero the transfer functions become:

5.4013.10 12 '/1jI
\II = S4 + 2.1267 .108 S2 + 8.28-9-5-.-10-1-1

8 = 6.2368.10
12

• If)
S4 +2.1267.108s2 +8.2895.1011

for current control and

\11= S5 +3.5.103 s4 +2.1372.108 s3 + 7.4434. 1OII s 2 +2.0777.1014 s+2.9013.1015

8= 6.2368.10 15 ,Uf)
S5 +3.5.103 s4 +2.1372.108s3 +7.4434.1OII s 2 +2.0777.1014 s+2.9013.10 15

for voltage control.

( 4.54)

( 4.55)

From these functions the poles can be calculated if F0 is zero. The poles for current control are
two imaginary conjugate pole pairs. The poles are at:

• 1.4583·10
4
j

• -1.4583·10
4
j

• 6.2433.10
I
j

• - 6.2433.10
Ij

The resulting resonance frequencies are at 2.32 kHz for the first pole pair, and 9.93 Hz for the
second pole pair.

When voltage control is used, there are three real negative poles and one complex pole pair.
The poles are at:
• - 6.1233.10

1
+ 1.4586·104j

• - 6.1233.10
1

- 1.4586·10
4j

• - 3.1944.10
3

• - 2.8966.10
2

• - 1.4739.10
1

The resonance frequency of the complex pole pair is at 2.32 kHz. This is a slightly damped
oscillation: the damping ratio is 4.20.10.5.
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The pole at -1.4739.101 determines the largest time constant. The largest time constant ofthe
linear system is 0.43 seconds. .
If the pretensioning force is increased, the pole placement changes. Pole placement as a
function of the pretensioning force is calculated using Matlab. How the poles change can be
seen in Figure 4.3, note that the plot is not correctly scaled. The crosses indicate the poles
when F0 is zero. The arrows indicate the direction of the pole movement when F0 increases.
In case of current control poles move towards to origin.
Increasing the pretensioning using voltage control causes the slowest pole to move to the
right. From the transfer functions it can be concluded that the system can become unstable

Re

Current control Voltage control

~I 1m

~

Figure 4.3: Pole movement as a function ofFo•

when the pretensioning force is increased. Physically this is not possible however. The
pretensioning force cannot be bigger than the length of the string and the spring together times
the spring constant of the spring:

Po < Q·Cv

Under this condition the transfer function is never unstable.

4.8.2 Step responses

( 4.56)

From the transfer functions the step responses of the linear system can be calculated. For this
purpose Matlab is used. A unity step was not applied since the rotation of the mirror is
limited, and a unity step would cause the mirror to rotate beyond that limit. The step
amplitudes for current and voltage control are shown in Table 4-1.

Table 4-1: Step amplitudes.

€iu~~t:'F9!~~:::::::::::m:::::}::::::::::::::::::::::m\L::::::::::I:::::i: ::::::::::::::::::::::::::j:::: ::lq~tig~:99P.iI9~::::j:::::::::H:::::::::i::\:::::::::::::::t:::::\:\::::::::::::::::::;:;:::::;:::::::::::::::::::::::::::::::::::

IIJI =50mA UIJI =0.15 V
Ie =50mA Ue =0.15 V
Only the gains ofthe transfer functions are different. For this reason only the step responses of

\If will be shown. (The characteristics for \If and 8 are the same.)

32



The step responses are shown in Figure 4.4.

Current control Voltage control
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~

Figure 4.4: Linear step responses.

From the step response using current control it can be found that the resonance frequencies for

both 'I' and eare about 9.9 Hz, as expected from the pole placement.
When voltage control is used, the step response shows that the final value is reached after
about 0.5 seconds.

4.8.3 Bode plots of the linear model

In this section the Bode plots will be given. Since only the DC gain is different for the \jJ and
e, only the plots will be given for \jJ. The characteristics for both plots are the same. The plots
are shown in Figure 4.5.
For both current and voltage control the amplitude and phase plots are shown. Also the Bode
plot over a limited frequency range is shown. The resonance frequencies show up clearly in
the Bode plots.
From the Bode plots it can be seen that the -40 dB point from the DC-gain are at about
100 Hz. This is the point at which the amplitudes have decreased a factor 100 from the DC
gain.
The -3 dB point from the DC-gain will be called the cutoff frequency. The cutoff frequency is
decreased when Fo is increased. This can be seen in Figure 4.3. The slowest pole moves
towards the origin if F0 is increased. Measurements were done on the real system, showing
that the cutoff frequency is at 5 Hz using voltage control. This value cannot be achieved in the
simulation, the highest value for the cutoff frequency is 2.35 Hz. The reason for this might be
that the system parameters used in the simulation differ from the real values. The real system
might be given a faster response by decreasing the F0 .

The simulation will be used to identify the system. Therefore F0 will be given the value zero,
to resemble the response of the real system the most. Also the unknown length of Q has no
influence in this case. The system behaviour in this case is as shown in Figure 4.4.
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Current control Voltage control
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Figure 4.5: Bode plots of the linear model.
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5. System simulation

The nonlinear differential equations (3.10) and (3.15) are used to build a simulation of the
laser deflecting system. The simulation is programmed using Mathworks' Simulink [7], and is
not based on the simplified model used in the linearization, but based on the actual model. In
Figure 5.1 a block diagram is shown of how the equations are implemented in the simulation.

+

input ===ir====i:::1
'--_----.J

to other
actuators

Figure 5.1: Block diagram of the simulation.

In the top part of Figure 5.1 the mirror dynamics are shown. In the bottom part one actuator
is shown. For clarity the other actuators are omitted The other actuators work in the same way
as the one shown. Double line arrows indicate vectors, single line arrows indicate scalars.

The functions will now be described.
Function that calculates the force £1 of the string on mirror arm 1, using y- and
hAl as inputs. In this block the following is done:
• Al is calculated in local coordinates using RBT.

• String vector flj-Aj is calculated in local coordinates.
• Change in length flj-Aj-H is calculated.
• String force due to change in length is calculated.
• String force value F j is calculated.
• String direction is calculated.
• String force £j is calculated multiplying string direction and F j. £j is in local

coordinates now.
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f(y, y)

f(y, M o)

f(input)

Function calculating W;/ ill BB , as described in (3.1 0).

Function calculating Wi/ Jo' Mo as described in (3.10).

Function calculating FA using the input vector. If current control is used, the
input vector I contains the three currents through the actuators. If voltage
control is used, the input vector 11 contains the three actuator voltages. If

voltage control is used, the extra input hAi is needed, indicated by the dashed
line. In the simulation voltage or current control can be chosen by setting a
parameter. With this parameter also mixed control can be chosen. See appendix
E, the MIRINI.M file.

The block diagram for the block f(input) for current and voltage control is shown in Figure
5.2.

I

Figure 5.2: Block diagram of the input function.

On the left is the block diagram if current control is used, on the right is the block diagram if
voltage control is used.
To the outside the mirror simulation has three inputs and three outputs:
inputs: the three actuator inputs.
outputs: the three Bryant angles.

5.1 Simulation characteristics

Only simulations were done using voltage control. This was partly due to time restrictions,
but also because this system seems to be the best to use. By changing the pretensioning force,
the "fastness" ofthe voltage controlled system can be controlled as shown in the previous
chapter. Because of the damping of this system, the system is easier to control using voltage
control. For these reasons voltage control is chosen. The voltage controlled system might be
too slow for the tracking purposes it is designed for. In that case the current controlled system
must be analyzed.
The simulations described further are simulations using voltage control.

Simulations were done to find some of the non-linear characteristics and to compare the non
linear simulation with the linearized model. To determine some characteristics several step
response simulation were done. Two different type of step responses were done:
1. Step responses on each actuator: a step is put on one of the three actuators, and the

response of the system is analyzed. The step response of every actuator is simulated.
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2. Step responses ofVIjI and Va: A step was put on each of these variables. The step on the
actuators can then be described with (3.49). The response of the Bryant angles and sensor
angles is analyzed.

Also tests were done to compare the linear model with the simulation.

5.1.1 Step responses of each actuator

In these simulations a step was put on one actuator. A step of 0.15 volt was used. The
responses of the system are shown in Figure 5.3.
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Figure 5.3: Step responses of the step on one actuator.

In the first plot of Figure 5.3, the step response ofa step on actuator 1 is simulated. Only

Bryant angle eis affected. The result is that mirror arm 1 moves downwards in the y=O plane.
In the second plot, a step is put on actuator 2. All Bryant angles are affected. If the
coordinates of the end of arm 2 are transformed to global coordinates using the Bryant angles,
it can be verified that the movement of arm 2 is the same as the movement of arm 1 when a
step was put on actuator 1: arm 2 moves downwards in the y = --V3·x plane. The global y
coordinates were verified to be the same. No rotations round the local or global z axes were
present in the simulation.
The third plot concerns arm 3 and actuator 3. Here arm 3 move downwards in the
y = -V3·x plane. Again no rotations round the local or global z axes were present in the
simulation.

When a step is put on one actuator the rotation <\> remains small.
In all three plots, no overshoot is present.
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5.1.2 Step responses using UIjI and Ua

In these simulations a step was put on the inputs UIjI and Ua. The actual actuator inputs of the
system can be calculated using (4.51). A step of 0.15 was put on UIjI and Ua. First the response
of a step on UIjI will be discussed.

The response ofa step of 0.15 on UIjI is shown in Figure 5.4.
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Figure 5.4: Step response on UIjI'

In Figure 5.4 the response of the Bryant angles "', eand <I> are shown as well as the sensor
angle ~, sensor angle a is the same as Bryant angle",. All angles are effected by the step. The

response of", is the most significant, as was expected. Bryant angles eand <I> are also affected.
This can be explained when looking at the mirror layout. When the mirror is rotated round the
x-axis, then this does not only cause a momentum round the x-axis, but also round the y-and
z-axis. This affects all the angles involved.

In this case the rotation <I> is significant. This means that the linear model does accurately
describe the situation.

The settling time of", is about 0.5 seconds. This however is not the settling time of the
normal of the mirror. This can be seen by looking at the sensor angle ~. This angle settles
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after about 0.8 seconds. The open loop bandwidth of the system using this settling comes to
1.25 Hz.

The step response of a step on Ua will now be discussed. The step response is shown in Figure
5.5.

0 ....1~~=================1
0.3

025

0.05

% 0.1 02 ~ ~ 05 ~ U U Q9 1
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Figure 5.5: Step response on Ua.

When a step is put on Ua, only the Bryant angle e is affected, the other Bryant angles remain
zero. If the other Bryant angles are zero, it means that only sensor angle ~ is affected. The
reason that only e is affected is that if the mirror is rotated around the y-axis, only a
momentum round the y-axis is caused. The resulting momentum round the x- and z-axis
remain zero. The result is a response simular to that if only actuator 1 is used.

From the equilibrium position Uadoes not affect the other angles. U", affects '1', but also the
other angles.

5.1.3 Comparing the linear system with the simulation

In this section it will be tested whether the simulation corresponds with the linear model for

small angles. For the inputs of the linear system the inputs U", and Ua will be used. The same
inputs will be applied to the simulation. In order to keep the angles small, a small input will

be applied. For U", and Ua a sine signal is chosen with amplitude 0.01 and the frequency will
be that of the cutoff frequency: 2.4 Hz.
The linearity of the simulation will also be tested for larger angles. The same inputs will be
used, only the amplitude in this experiment will be 0.15 for both inputs. .

It is expected that if input Ua is applied, the simulation will have a relative larger response for

larger angles than if input U", is applied. This is because input Ua only effects output e, and

all the energy of the input goes into the excitation ofe. Input U", not only effects '1', put also
the other Bryant angles. The effect on the other angles will cause the input energy to be

divided over all angles, so the amplitude of 'I' will be relatively less than that of '1'. For small
angles the system should follow the linear model.

In Figure 5.6 the simulation response ofU", on 'I' and ofUa on e are shown, together with the
linear response to the same input. The input amplitude is 0.01, keeping the angles small. The
linear response has been made thicker and grey to allow the signals to be distinguished.
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It can be seen that the simulation follows the linear response for small angles.

In Figure 5.7 the simulation response ofU'l' on 'If and ofUe on 8 is shown, together with the
linear response using the same input. The input amplitude is 0.15, so the response is larger.
Again the linear response has been made thicker and grey to distinguish the signals. It can be
seen that for larger angles the simulation response is larger than the linear response. It can also

be seen that the response of 'If is less than the response 8, as was expected.

~1 ~ u u ~ OA U U U
T""."'IIICIDNII

e

Figure 5.6: Simulation and linear response on U'l' and Uefor small angles.
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Figure 5.7: Simulation and linear response on U'l' and Ue for large angles.
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6. Identification of the simulation

A simulation model is identified using the Minimal Polynomial Identification toolbox MPI,
developed by Heinz Falkus [4]. The simulation described in the previous chapters is used to
generate the input output data. Sensor noise is added to the output data. The sensor is accurate
to 0.1 %0. For this reason noise is added to the signal, so that the signal noise ratio of the
output data is 80 dB. The added noise is zero mean normally distributed white noise.
The outputs are the sensor angles a and P, since these are the angles that define the normal to
the mirror. The normal is the parameter that determines the path of the laser beam. The inputs

used in the identification are VII' and Ve, because in the linear case they independently control

the sensor angles by two SISO transfer functions. Vsing VII' and Ve the system will be
strongly decoupled. The identification will therefore be a MIMO identification, with 2 inputs
and 2 outputs.

From the step responses ofVII' and Ve it was shown that if only Ve is excitated, this only has

an effect on e. A step on VII' excites 'V the most, but the other angles are also influenced. The
decoupling is still strong though.

The input to VII' and Ve will be two uniformly distributed noise series. These input datasets
generated using Matlab. The input datasets are sampled by a zero-order hold before they are
led into the system. The sample frequency of the zero-order hold is chosen the same as the
sample frequency of the output.
A schematic view of the system, system inputs and outputs, and identification inputs and
outputs is shown in Figure 6.1.
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Figure 6.1: Schematic view of the identification.

The process plus disturbance in Figure 6.1 is from the inputs V 1> V 2 and V 3 to the outputs al;

and PI;. This is what normally the real system would be.
The identification will be performed on the system as shown.
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6.1 Model structure and the minimization criterion

The general model structure is given by [1],[2]:

A( -I)f: = Bit (Z-I) U B;nu(z-I) U + C:,(Z-I) ';:;'
Z k,; F(z-I) k-nkn,I+'" F(Z-I) k-nk,.,nu D(Z-I) ~k,1

where

( 6.1)

( 6.2)

describe the input/output data and the independent white noise sequences for N data samples
of a multi variable system with nu inputs and ny outputs.
From Figure 6.1 it can be seen that the noise is additive noise to the outputs. Therefore an
output error (DE) model is chosen for the identification. The model used for the identification
becomes:

Y.
_ Bj) (Z-I) U B;nu (Z-I) ';:;'

k . - k k I +... Uk k + ~k .
,I F(z-I) -nn, F(z-I) -ni.,nu ,I

The polynomials are defined as:

( 6.3)

B b b -I b -nb··+1
I).. = I).. I + 1)··2 Z +...+ I).. nb.Z lj
., • IJ

F( -I) 1 I" -I f. -nfz = +JIZ +"'+nfz

i =1... ny, j = l...nu
( 6.4)

All polynomials coefficients can be combined in a parameter vector 0 defined by:

The predictor is defined as:

1ii ;(0) = -I [Bit Uk-nk 1+'" B;nu Uk-nk nul =Wk;(0), F(z) ", m.',

The prediction error for an DE model the prediction error becomes:

E k .(0) = Y.k - f.k . = Y.k . - w'k .(0)
,I " ,I " ,I

Define the maximum delay required for initialization by:

n =max([nbij + nkij -1 nf)]
I,j

and introduce the following regression matrices:

( 6.5)

( 6.6)

( 6.7)

( 6.8)

.. , -fv,,~nf+1,; ]

-WN-nf+I,1

( 6.9)

The predictor can now be written in a pseudolinear regression form [3] [4]:

f. (0) =<D(S)0

where
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( 6.14)

( 6.13)

and

~Ull ~Ul"U 0 0 0 0 0 ~Wj(0)

0 0 ~U21 ~U2"U ~W2 (0)

<D(0) = 0 0 ( 6.12)

0 0

0 0 0 0 0 0 ~U"YI ~u"""u ~w"Y (0)

The prediction error for multivariable systems when using a minimal polynomial model
structure in vector form is given by:

E v = Y. -~,
For prediction error minimization the normalized loss-function is:

1 T
J E (0) =-Ev E v

N v

where Nv = ny(N-n) in a least squares criterion. The criterion is valid only if the white noise
sequences disturbing the process are mutually independent and that the input-output data is
scaled in such a way that the white noise sequences have equal variance. The minimization
method used to minimize (6.14) can be found in [4], resulting in the estimator 0.

6.2 Experiment design

The input to U", and Ue are noise series. These series are uniformly distributed white noise
series. The series are created in Matlab.

6.2.1 Data collection sample frequency

The sample frequency with which the data is collected, is set by the time step in the
simulation. For voltage control the time step is chosen to be 1.10-5 seconds. This time step
gives a reliable simulation run. This means that the data collection sample frequency is
100 kHz.

6.2.2 Identification sample frequency fs

A practical choice for the sample frequency [3] is:

101 B 5. Is 5.301B ( 6.15)

fB is the bandwidth of the process, and is defined as the cutoff frequency. From the linear
Bode plots it is found that the cutoff frequency is at about 2.4 Hz. If this criterion is used, the
identification frequency should be between 24 Hz and 72 Hz. Knowledge of the poles of the
linear system can also be used to determine fs. The second slowest pole is at m=-2.8966·1 02

rad/s or f=46.1 Hz. To correctly identify this pole also, the sampling rate should be at least
twice this frequency. For this reason fs is chosen 100 Hz. By reducing the data collection
frequency by a factor 1000, fs is reached.
In order to perform delay-time corrections, it is necessary to analyse the cross-correlations
between inputs and outputs. The cross-correlations are calculated on data sampled at 10 times

43



the identification frequency [1]. This frequency is reached by reducing the collection
frequency by a factor 100.

6.2.3 Determining experiment duration

The experiment duration should be 5 to 10 times the largest relevant time constant. The
largest relevant time constant is about 3 times the settling time of the process [1]. The settling
time can be determined from the simulation of the step responses. The settling time is about
0.8 seconds. The experiment duration should be between about 4 and 8 seconds. The
experiment duration is set at 5 seconds.

6.3 Data preprocessing

Data preprocessing is concerned with handling the data before estimating. It concerns input
and output data of the process. In case of the simulation the output is not simulated process
output: noise has to be added first. The simulation output is added with noise, setting the
signal noise ratio of the output at 80 dB. Simulation output added with this noise is the
simulated process output. The preprocessing steps of process input and output will be
described in this section.

6.3.1 Sample rate reduction

In case of the simulation the input and output data sample rate has to be reduced to 10 times
fs' before further processing. Before the actual identification the sample rate should again be
reduced to fs. An anti aliasing filter should be applied while doing so. Matlab provides tools
for sample rate reduction.

6.3.2 Detrending and peak shaving

The output of a process experiment should undergo detrending and peak shaving. Peaks occur
in the output through for example switching behaviour of high power process machinery. In
the case of the simulation, no spikes are present, so peakshaving is not necessary.
No trend is present in the simulation. The mean of the input signal should be zero, since this is
zero mean white noise. Because of the absence of trend, the output signal should be zero mean
also. Because the mean might not be exactly zero, the mean of the signals should be removed.

6.3.3 Delay time correction

In real processes considerable time delays may occur in the output signals. If the signals are
not corrected for the delays, they have to be estimated as part of the model. Delay times can
be determined by cross-correlation analysis of all inputs and outputs. The MPI toolbox
provides tools for the cross-correlation analysis. Cross correlation analysis is done at 10 times
fs· In this identification of a simulation, no such delay times are present. The only delay time
present, is the delay time of the simulation: this delay time is 1 time step, which is 1.10-5

seconds.
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6.3.4 Signal scaling

The input/output data should be scaled in such a way that the white noise sequences
disturbing the process have equal variance to avoid relative weighting. An accurate estimate
can be obtained by estimating a high order ARX-model. A high order ARX model can
approximate any linear system well for sufficiently high order. The standard deviation of the
prediction error computed from the ARX model can be used as scaling factors. The scaling
has to be verified after completing model estimation.

6.4 Model estimation

Model structure has already been selected: the selected structure is an DE model. The order of
the model has to be determined also. This can be done by loss function analysis. If the loss
function is plotted to the model order, the order can be estimated.

6.5 Model validation

In the validation phase, the estimated model is checked. In this section the ways used to
validate the model are discussed.

6.5.1 Correlation between inputs and residuals

If the model is estimated correctly, the cross correlation between inputs and residuals should
be white. If the residuals are white all information in the residuals is explained by the
estimated model.

6.5.2 Comparing real and estimated output

The real output in this case is the process output of the simulation. The estimated outputs are
the simulated output using the estimated model. If the outputs resemble, this is an indication
that the model is correct.

The identification process described above will be applied to the system. The results are
described in the next chapter.
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7. Identification results

The identification is carried out as described in the previous chapter. One second of the input
and output data is shown in Figure 7.1. The sampled inputs, and the outputs are shown. One
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Figure 7.1: Input and output data.

data set of 10 seconds is generated. This set is split in a identification and validation part, as
will be described later in this chapter. The steps of the actual identification will be described
in this chapter.

7.1 Data preprocessing

Noise is added to the data from the simulation shown in Figure 7.1. The noise is added so that
the signal noise ratio of the outputs are 80 dB. This is done by scaling the noise so that the
standard deviation ratio of the output signal and the noise is 80 dB.
Next the simulation sample frequency determined by the step size of the simulations reduced·
to 10 times the identification sampling frequency fs. In this step, the first simulation sample is
discarded, to correct the signal from the one step time delay caused by the simulation. This is
only a delay of 10 ms. The step time of the simulation is set at 1.10.5 seconds, corresponding
to a frequency of 100 kHz. The reduction is done using the Matlab function DECIMATE,
using a FIR filter.
The next steps of the identification can be performed with the MPI identification tool [4].
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7.1.1 Peakshaving and detrending

Detrending and peak shaving is not necessary for the simulation results. The MPI
identification tool provides the functions to do this, but this resulting signals which are the
same as the unprocessed signals. The input and output signals were mean corrected.
Theoretically the signals should have zero mean, but the signals proved to have a little offset.
The offset is subtracted from the signals.
The MPI tool which performs peakshaving and detrending is MPI_DET.

7.1.2 Delay time correction

No delays should be present in the output signals. In order to verify this, the cross-correlations
between all inputs and outputs over the estimation data set is computed. The resulting cross
correlations are depicted in Figure 7.2. The vertical bars indicate the oversampling ratio, so
the delay times can be determined at a multiple of the identification frequency. The
oversampling ratio used in is 10.
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Figure 7.2: Cross correlations between inputs and outputs.

The 95% confidence interval is also shown. It can clearly be seen that there are no delays
between input U", and outputs a, and between input Ue and output ~. The correlations
between U", and ~, and between Ue and a not very correlated. Still some correlation is visible,
and it can be concluded that no delays are present. The fact that the system is uncorrelated
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between UIjf and p, and between Ue and a is an indication that the system can be described by
two SISO functions. No delay time correction is done.
The MPI tool used for calculating the cross-variance is MPI_CC, and the tool performing
delay time correction is MPCDC.

7.1.3 Sample rate reduction to fs and normalization

The next step of the data preprocessing is the sample rate reduction. Also the data set is split
in an estimation set and a validation set of both 5 seconds. The sampling frequency is reduced
by 10 to fs' the identification sample frequency of 100 Hz. The estimation and validation data
set length is therefore 500 samples.
In the same step the estimation data is normalized so that the standard deviation of the input
and output data equals 1. This is done by scaling. Scaling has to be applied a second time in
such a way that the white noise sequences disturbing the system have equal variance. This
step is described in the next paragraph.
The MPI tool for sample rate reduction to the identification frequency and normalization is
MPI DRN.
The scaling factors for the inputs and outputs are given in Table 7-1.

Table 7-1: Normalization scaling factors.

Scaling factor 19.189 16.857 11.929 12.034

7.1.4 Equal variance scaling

For minimal polynomial model identification it is necessary that the input/output data is
scaled in such a way that the white noise variance disturbing the system have equal variance.
If this is not done a relative weighting will be done during the identification. Normally, the
white noise variances are not known.
A linear system can be described well by an ARX model of sufficiently high order. The
scaling factors can be calculated using the standard deviation of the prediction error computed
from the high order ARX model. The scaling factors for each output are proportional to the
inverse of the standard deviation of the prediction error of the output.
A high order ARX model of the scaled data can be used to check if the standard deviations of
the prediction error is equal. The scaling has to be verified after completing the actual
identification model.
In this identification a 50th order ARX model is used.
The high order ARX model estimation is done using the MPI tool MPI. The prediction error
of the high order model is calculated using MPI_PE.
The variances of the prediction error before and after scaling are given in Table 7-2. The
scaling factors of the outputs are also given.

Table 7-2: Equal variance scaling parameters.

lilll~~lllrl~i:r:I~Ir.Il!!I!!liiil\lII~~~~::~~E~~!:!:!\!\!\
Output a 0.0051 0.0045
Output P 0.0044 0.0043
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( 7.1)

(7.2)

It can be seen that the prediction error variances of the scaled high order model are about
equal.
The parameters of the identified model are based and the scaled inputs and outputs. The
parameters have to be corrected for the scaling afterwards.

7.2 Model estimation

An OE model is be estimated for the system. The order is determined by looking at the loss
function. Models have been calculated from oth order to 8th order. The loss function of the
models versus the model order is shown in Figure 7.3.
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Mod81Dr1W

Figure 7.3: The loss function versus
model order.

It is clear that the model order should be 2.
Theoretically the loss function should be decreasing for increasing model order. This is not
always the case due to the fact that the global minimum of the criterion function can not
always be found, and that the minimization terminates in a local minimum. This is the case for
the model with order 7.
The MPI tool used to identify the models is MPI.
The results for the identified second order system are:

a(k) = -1.0715.10-
4

+1.6889·1O-
lz-1

+7.1175·1O-
2
z-

2
U (k)

1- 9.2555.10-1Z-I + 5.4308 .10-2Z-2 IjI

-5.3592.10-4
- 2.8551.10-3

Z-l + 3.3107 .10-3
Z-2 U k

+ 1- 9.2555.10-1Z-I + 5.4308 .10-2 Z-2 e( )

P(k) = 9.737·10-4 +2.7632·10-
3
z-

1
+3.2568·1O-

3
z-

2
U (k)

1- 9.2555 .10-1Z-I + 5.4308 .10-2 Z-2 IjI

+ 1.030.10-3 + 1.9247.10-1
Z-I + 8.3855.10-2

Z-2 U (k)
1- 9.2555.10-1Z-I + 5.4308 .10-2 Z-2 e

The Z-transformations of (7.1) and (7.2) are transformed to Laplace transforms. This is done
using Matlab. The equations are processed using a zero-hold correction, for a sample
frequency of 100 Hz. The resulting Laplace transforms are:
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a(s) = -1.0715·10-
4
s

2
-1.0598s+7.6177·10

3 U (s)
S2 + 2.9113.102

S + 4.0875 .103
IjI

+ -53592·10-4 s2 +3.0248·10-l s-2.1275·102 U (s)
S2 + 2.9113.102

S + 4.0875 .103 e

( 7.3)

( 7.4)

~(s) = 9.7372 ·10-4 S2 -1.2767.10-
1

S + 2.2202 .10
2 U (s)

S2 + 2.9113.102
S + 4.0875 .103

IjI

+ 1.030.10-3i -1.4023.10-1
S + 8.8046.103 U (s)

S2 + 2.9113 .102s + 4.0875 .103 e

Let B jj be the numerator polynomial of the transfer function of input i to output j. The roots of
this polynomial gives the zeros of the corresponding transfer function. The roots of the
denominator polynomial F give the poles of the system. The roots of the polynomials are
given in Table 7-3 for both the time discrete and the time continuous case.

Table 7-3: Roots of the F and B polynomials.

:TlmeMlscrete::'i':':::::::::::::!::::'::::::!::::::::'/:)'::::::::::::::::::j;im~..9.pi:lIiiH~:::::::::: ::::.:,r::::::::::::::::::::::::::::::::::::::::::::::iii:::::::::::::::::::::

F 8.6259.10- 1 6.2959·1O-L -2.7653·10'"
Bl1 1.5767·10"' -4.2131.10-1 -1.4720·10"
B 12 -3.6218 -1.7056 2.8220·lOL +

5.6333.102j
B21 -1.4189 + 1.1539j -1.4189 - 1.l539j 6.5556.10 1 +

4.7298.102j
B22 -1.8635·lOL 4.3671.10- 1 6.8042·10'" +

2.8428.103j

-1.4781.10 1

4.8297·10.3

2.8220·10L


5.6333.102j
6.5556.10 1



4.7298.102j

6.8042·10'" 
2.8428·103j

It can be seen that the two slowest poles of the linear model are nearly the same as those of
the estimated system.

The transfer function from U", to a and the transfer function from Ue to ~ should show
considerable symmetry. The zeros of these functions are the roots ofthe Bl1 and B22

polynomials. When looking at the zeros the symmetry cannot be found. The symmetry is lost
because of the difference in estimation of the first factor of the B 11 and B22 polynomials. This
factor is relatively small. In the B 11 polynomial this factor is estimated negative, in the B22

polynomial this factor is estimated positive. If these factors were estimated the same, the
symmetry would show up. If, in the time continuous case, the first factor of the B l1

polynomial would have been estimated the same as that ofthe B22 polynomial, the roots of
B l1 would change considerably. The roots in this case can be seen in Table 7-4. The roots are
the time-continuous roots.

Table 7-4: Roots of the B l1 and B22 polynomials.

5.1423·10 - 2.6699·10 j
6.8042·10 - 2.8428·10 j

The symmetry in this case is much more clear. In the same way this can be done the other way
around. The roots of the polynomials, if the first factor of the B22 polynomial would have been
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estimated the same as the first factor of the B ll polynomial, can be seen in Table 7-5. Now
the roots of B II remain the same.

Table 7-5: Roots of the Bll and B22 polynomials.

-1.7724·10
-1.4720·10

4.6364·10
4.8297·10

Again the symmetry is clear. The first factor of the polynomials is relatively small. Because of
the 'smallness', the factor is estimated with a different sign for B ll and B22. The fact that it is
estimated with a different sign doesn't mean that the identification results are unreliable. The
zeros are far from the poles for B ll and B22, so the influence of the zeros is only slight.

The impulse response can be analyzed to check the validity of the model.
The cross-correlation between the input and output of a system excitated with inter-channel
zero mean white noise can be given by [1]:

\}Jyu(t) =cr2 (u)' M t (7.5)

Here cr2(u) is the variance of the input signal and M t are the elements of the impulse response.
By scaling the cross-correlation with the variance of the input signal the impulse response can
be calculated. This impulse response can be compared with the impulse response of the
identification using the estimated discrete transfer function.

The scaled cross-correlation of the inputs U", and Ua to the outputs a and ~ are shown in

Figure 7.4. The impulse responses of the estimated discrete transfer functions ofU", to a,
and of Ua to ~ are also shown.

1\
0.2 "

I

I,
~ 0.15 I

i '
.£
~ 0.1

'[

~
0.05

'I
I I

I

I

- - - - - - . Estimated impulse response
--- Cross-correlation input to output

Figure 7.4: Scaled cross-correlations between inputs and outputs, and estimated impulse
responses.

It can be seen that the impulse responses match reasonably well, indicating that the
identification results are reliable. The inter-channel influence is very small as can be seen
from factors of the B 12 and B21 polynomials. These factors are small compared to the factors
ofB ll and B22. In the next section it will be shown that the influence is negligible. The
impulse responses of those transfers are omitted for this reason.
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The linear model derived in chapter 4 follows the non-linear model reasonably well. Ifthe
impulse responses of the linear model and the estimated model are alike, then this is an
indication that the identification is reliable. The impulse responses ofthe linear model and the
estimated time-continuous model are shown in Figure 7.5.

Here the impulse responses are practically identical. Again this is an indication that the
identification results are reliable. The impulse response of the linear system are displayed with
a thick line to allow better distinction.

•50 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
lime in .econds lirnein.l8condl

Impulse response of estimated model_it_ Impulse response of linear model

Figure 7.5: Impulse responses of the linear model and the estimated time continuous model.

7.3 Model validation

For correct identification the variance of the prediction error of both outputs should be equal.
The variance of the prediction error ofoutput 1 and 2 are:
Prediction error variance output 1: 1.279.10-5

Prediction error variance output 2: 1.138.10-5

The variances are of approximately the same size indicating correct scaling.

The cross correlation between the inputs and prediction error of every output is shown in
Figure 7.6. The cross correlation of every input to the residuals is within the 95% confidence
interval, indicating that the all process behaviour has been captured.
The estimated model has been tested on a validation data set. The cross correlation between
the inputs of the validation set and the model error of the validation set, using the estimated
model is shown in Figure 7.7. Here also the cross correlation is within the 95% confidence
interval indicating a correctly estimated model.

In Figure 7.8 the output generated by the system simulation is shown together with the output
of the identification using the same input. Simulation output is displayed grey and thick, to
allow distinction. The estimated model output is almost identical to the simulation output,
again indicating a correctly estimation.
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Correlation function: U. to the prediction error ofa
0.' _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Correlation function: U. to the prediction error of II
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Figure 7.6: Cross correlation between inputs and prediction errors.
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Correlation function: U. to prediction error of a Correlation function: U. to prediction error of II
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Figure 7.7: Correlation between validation inputs and residuals.
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Figure 7.8: System and estimated output.
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7.4 Siso model validation

It has been shown that the relation between UII' and ~, and the relation between Ue and a are
uncorrelated. This indicates that the system can be described by the estimation discarding the
B12 and B21 polynomials. This would result in two SISO systems, described by the transfer
functions (7.3) and (7.4), omitting the B12 and B21 polynomials.

The check whether these functions describe the system well, the cross-correlation between UII'
and the prediction error of a using the SISO description is calculated. The same is done for Ue
and ~. The resulting cross-correlation is shown in Figure 7.9.

Correlation between input U. and the prediction error ofC1 Correlation between input U, and the prediction error of ~
0.1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0.1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ - - - - - -

, --------~
"".1'li!---~-----'107-0-----!=-,.-~.. .. 30

li'n8 Lsg (aampla)

..0.1 - - - -

-o.1S0'----------,~--:,:-:-0--,07-.--..=:---=..-----='..
Tm8 Lsg C_mpla)

Figure 7.9: Cross correlation between SISO inputs and SISO prediction errors.

It can be seen that the cross-correlation is almost within the 95% confidence interval. This
means that the system behaviour can be described reasonably well by the two SISO transfer
functions.

The system output and the output of the SISO model is shown in Figure 7.10. The system
response is grey. It can be seen that the response is almost identical: the SISO functions
describe the system well.
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::l....
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~
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Figure 7.10: SISO response and system response.
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8. Conclusions

A non-linear model has been developed. The simulation is based on 4 differential equations: 1
for the mirror and 3 for the actuators. The simulation is a qualitative good rendition of the
mirror behaviour. However, the characteristics of the cutoff frequency of the simulation and

the cutoff frequency of the real system when only V", or Ve are excitated do not correspond.
This might be due to the fact that the parameters used in the simulation do not correspond
with the those of the real system. By increasing the spring constant ofCy for instance, the
cutoff frequency can be made higher. The parameters will have to be checked with the real
system when it comes available again.
The simulation indicates that the system is well damped when voltage control is used. The
system has a open loop bandwidth of about 1.25 Hz. A control system can be developed to
increase the bandwidth to about the cutoff frequency.
A linear model has been derived from the non-linear differential equations describing the
system. The linear model can be transformed into a SISO model with 2 inputs and two

outputs. The outputs of the system are the Bryant angles", and 8, In the linear case they are
the same as the sensor angles a and ~. The linear system does not describe rotations of the
mirror around the normal to the mirror surface. In the linear case this rotation can therefore
not be controlled.
The bandwidth of the system can be enlarged by increasing the spring constant Cy . This can
be checked by calculating the poles of the linear system. If the bandwidth of the system is not
large enough using voltage control, the current control option has to be analyzed. The system
is on the edge of instability if current control is used. A controller for current control has to
provide the needed stability in this case. If it can be realized, a mixed voltage and current
control can be used. This way the damping of the voltage control can be combined with the
bandwidth of the current control. The simulation has the option to use voltage control, current
control or mixed control.
The sensors of the mirror cannot measure rotation of the mirror round the normal to the mirror
surface. This rotation does not directly influence the path of the laser, but it does influence the
behaviour of the system, which might indirectly influence the path. A controller for the mirror
has to compensate for this influence.
If the rotation round the normal proves to be essential for controlling the mirror, it might be
possible to develop a Kalman filter which makes observability possible.

An output error model has been used to identify the system. The inputs and outputs used for
the identification are the same as those of the linear model. A second order OE model proves
to describe the system well. The poles of the identified system correspond to the slowest poles
of the linear model.

There is very little correlation between V", and~, and between Ve and a. The MIMO system
can reasonably be transformed to 2 SISO systems by discarding the cross polynomials. The
system is reasonably described by the SISO models.

58



References

[1] Backx, A.C.P.M. and AJ.W. van den Boom
TOEGEPASTE SYSTEEMANALYSE
Eindhoven: Technische Universiteit Eindhoven, 1993.
Dictaatnr. 5770.

[2] Boom, A.J.W. van den and A.A.H. Darnen
STOCHASTISCHE SYSTEEM THEORIE
Eindhoven: Technische Universiteit Eindhoven, 1987.
Dictaatnr. 5686.

[3] Bosch, P.PJ. van den and A.C. van der Klauw
STOCHASTISCHE SYSTEEM THEORIE
Eindhoven: Technische Universiteit Eindhoven, 1994.
Dictaatnr. 5686.

[4] Falkus, H.
MINIMAL POLYNOMIAL IDENTIFICATION
USER GUIDE
Eindhoven: Technische Universiteit Eindhoven 1994.

[5] Jong, de M.
ANALYSE VAN EEN 3-D LASERAFBUIGSYSTEEM
Stageverslag, Eindhoven: Technische Universiteit Eindhoven, 1986.
Faculteit Werktuigbouwkunde, Vakgroep Fundarnentele Werktuigbouwkunde.

[6] Mathworks
SIMULAB USER'S GUIDE FOR USE WITH THE MICROSOFT WTI'l"DOWS
SYSTEM
December 1991

[7] Sauren, A.
MULTIBODY DYNAMICA
Eindhoven: Technische Universiteit Eindhoven, 1986.
Dictaatnr. 4659.

[8] Schot, J.A.
BEGINSELEN DER ELEKTROMECHANICA
Eindhoven: Technische Universiteit Eindhoven, 1986.
Dictaatnr. 5672.

59



Appendix A: Transforming the local normal coordinates to
global coordinates using sensor angles

The normal to the mirror surface n and the sensor angles are shown in Figure AI, in the
global frame.

Z

y

x,. X
".-

Figure AI: Mirror normal and sensor angles.

The coordinates XG and ZG can be given as a function of the length of the xz projection:

X G = Isin(p)

ZG = Icos(P)

Coordinate YG can be found as follows:

-y
tan(a)=-G~

ZG

YG = -/tan(a) cos(P)

This way for n is found:

11 =[~:] =[-/~~:~~~s(P)]
ZG cos(P)

The normal has length one, using this we find the value for 1:

~(l2 sin2 (P) + 12 cos2 (P) + 12 tan2 (a) cos2 (P) = 1~

1= 1
~1 + tan 2 (a)cos2 (P)
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Substituting (A 4) in (A 3) we find:

l
XG] l sin(~) ]1

n = YG = -tan(a)cos(~)

- ZG ~1+tan2(a)cos2(~) cos(~)
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( B.3)

( B.2)

( B.1)

Appendix B: Calculation of 3.b Ai and Bi

First the vectors gj will be calculated in local coordinates:

_[X1- [r cos( I;)]ell - Y - 0

Z I rsinCTD

el2 = [:] = [-:~:~i;~.~:C~;] = [;X:::~~)]
Z 2 r sm(IT) r sm(IT)

el3 = [:1 = [=;:::~1~;;::;~] = [-t~~::~~~)]
Z 3 r sm(IT) r sm(IT)

Next the vectors Ai will be calculated. The actuator moves along the core. The position of the
actuator ifhAj=O will be defined as the offset position OJ. The direction of the actuator will be
defined as Cj. Subsequently:

Ai =Qi +hAi'C

For Q i and C i can be found:

[

r cos( I;) + R sine I;)]
QI= 0

r sin(I~) - RcosC;) G

[

- t {r cos( I; ) + R sine I~ )} ]

Q 2 = t -J3{r cos(11-) + R sine I;)}

r sin(-"'-) - Rcos(J'-)
12 12 G

( B.4)

( B.5)

( B.6)

( B.7)

C - ell -Al
_I-

lia. -All
-, ~I 2 Equilibrium [

-Sin(t;)]
= 0

COS(I~) G

( B.8)
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I [ tsin(fr) ]
C3 = _(1_3-_A_3 I = t-J3 sinC;)

11(1; - A;112 Equilibriwn cosC;) G

If the Bryant angles are known, the vectors Ai can be calculated in local coordinates.

For the vectors B i can be found:

B; =-C .Q+(1;

This results in:

[

sineI;)] [r cos( I;)]
B 1 =Q. 0 + 0

- cos( I; ) r sine I; )

[ I' (")] [I (")]--sm - --rcos -
2 12 2 12

B2 = Q t -J3 sin~ I;) + t -J3~ cO:(-fD
- cos(IT) r sm(IT)

[

I' (") ] [ I (") ]
- - sm - - - r cos -

2 12 2 12

B3 = Q -t-J3 si~C;) + -t~rc~sc;)
- cos(IT) r sm(IT)
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Appendix C: The simulation blocks

The mirror dynamics are grouped in a block called "Mirror". This block contains the system
dynamics, using three inputs. The inputs can be the voltages or the currents on the actuators,
dependent on whether voltage or current control is used. Before the simulation can be started
certain parameters should be set in the Matlab workspace. The parameters to be set are:
• Cv Spring constant of pretensioning spring. (Used value :40)
• Cs Spring constant of string. (Value used: 1.5e5)
• D Damping of actuator. (Value used: 0)
• M Mass of actuator. (Value used: 9.5e-3)
• J Inertia of mirror. (Value used: 5.6e-8)
• L Inductance of actuator coil. (Value used: le-3)
• R Resistance of actuator coil. (Value used: 3.5)
• A Actuator constant. (Value used: 3.16)
• FO Pretensioning force. (Value used: 0)
• VC Parameter indicating whether Voltage Control or current control is used. For voltage

control set this parameter to 1, for current control set this value to O. "Mixed" control can
be achieved by assigning a value between 0 and 1.

The parameters can easily be set in the Matlab workspace, or using the initialization file
MIRINI.M.

If the group mirror is opened the simulation layout can be seen. In the group layout can be
seen. Only one group "Momentum on arm 1 (local)" is shown in the diagram. The group
mirror also contains the groups "Momentum on arm 2 (local)" and "Momentum on arm 3

Mirror Momentum Forces on arm 1 Actuator
on arml and actuator 1 position
(local) arml

Cross vector (global)
;) WB-l*wBB product arm 1

(local) RIb
;) J-l*WB-l*

sum(Mo) CalcFAl Rb

;) RO arm 1 l Forces on arm 1
and actuator 1

Dot product

Figure A 2: Layout of the simulation.

(local)" but they are omitted for clarity.
The layout shows how the groups are incorporated in other groups. The groups marked bold
italic are displayed below.
The function of every group is listed below.
• Mirror: total mirror simulation. The inputs are the 3 actuator inputs, the outputs are the

Bryant angles.
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• Momentum on arml (local): calculates the force on mirror arm 1 as a function of the
Bryant angles and of the actuator position in local coordinates. The same goes for the other
"Momentum on armi (local" groups.

• WB-I *wBB: calculates ~-ldlBB.

• J-I *WB-I *sum(Mo): calculates j~l~-l Mo.
• Forces on arml and actuatorl: calculates the forces on arm 1 and actuator 1. The force

on the arm is calculated in local coordinates, the force on the actuator is calculated in
global variables.

• Calc FAI: calculates the actuator force FA for current and voltage control.
• Actuator position arml global: calculates the actuator position hA along the core.
• Forces on arml and actuatorI (local): calculates the forces on the actuator and the mirror

arm both in local coordinates.
......

..al. lis lis

~
r-

d(ps021 d Psi/dt Psi ·d2t ·-1

In1 Momentum ·on arm 1 "-
(local) SumMoX

.....r;- r--
r-I!k,.i.

1/s lis It.. r---
d(Thetai)21d Theta/d Theta WI ·

IV~2 ,....~ f--
In2 Momentum

on arm 2 SumMoY
Oocal) f---t.r;-

...
.~ ,--. f--
~J

~
~. - J·1';;;va.1·

'L!i§ sum(Mo)
3 I ·U\'d'2t' U-,,"u, -",

Momentum su~ozIn3
on arm 3

(locaO

~
WB-t'WBB

~
2 Phi out

~Thetaout
Psi out

Figure A 3: Simulink block Mirror.

Figure A 4: Simulink block Momentum on arm1 (local).

65



Figure A 5: Simulink block WB-l *wBB.

Figure A 6: Simulink block J-l *WB-l sum(Mo).

Actuator
position

arm1
global

F on act.1
(global)

Figure A 7: Simulink block Forces on arml and actuator!.

SWitch on
current
control

Figure A 8: Simulink block Calc FAI.

Sum

1

FA1
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rO =veclor along which aclua!or moves.
y = movemen! of acluator along rOo

Figure A 9: Simulink block Actuator position global.

Length
Gain Force on

aclua!or!

Figure A lO: Simulink block Forces on arml and actuator! (local).
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Appendix D: Notes on running simulations in Simulink

The simulation of the system is more 'stable' when voltage control is used. This can be
verified by looking at the bode and step responses of the linearized model. This can also be
seen by the fact that there is no damping in the system when current control is used, and there
is a considerable damping due to the induction voltage when voltage control is used.
Due to the great stiffness of the string very small time steps must be taken while simulating.
In this section a few notes on how to use the simulation are described.
• The algorithm used for the simulations done in this research work is the Runga Kutta 4/5

method.
• If voltage control is used, time steps of about 1.10-5 need to be used. When current control

is used, time steps as little as 1.10.7 need to be used.
• An indication of whether the simulation is giving an accurate result is by monitoring the

string force of the actuators. If the string force shows an oscillation in every time step, it
means that the time step is too large. The time step should be made smaller.

• Regarding the settings in the parameter section of the simulation menu:
The minimum time step is the smallest time step the simulation is allowed to make to
achieve the tolerance. If the tolerance can not be achieved using the minimum time step,
then the minimum time step will still be used, though the tolerance is not achieved. The
maximum value is the largest time step the simulation is allowed to take, even if the
tolerance is achieved. If the tolerance can be achieved with a larger time step than the
maximum time step, still the maximum time step will be used. Time steps are varied
during the simulation between the maximum and minimum time step, using the largest
possible time step to achieve the tolerance.

• If a simulation is run for identification purposes, the time step usually needs to be constant
for use with the identification algorithm. This can be achieved by giving minimum and
maximum time step the same value. This value should be chosen so that the simulation is
accurate through the whole simulation.

• When small time steps are used, large amounts of data are generated. If all this data is to be
stored in the computer's memory the system can slow down dramatically due to the fact
that it is constantly swapping to the hard drive, or run out of memory altogether. To avoid
this it is best to write data to disk during the simulation. A Simulink block is available for
this purpose. Beware to not store to many variables in one file, because if too many
variables are stored in one file, the file might become too large to read. To avoid this, store
all variables in different files.

• All variables are stored with the time vector. This means that every file saved contains the
time vector, which is as large as the variable vector. Storing variables unnecessary in
different files will cost valuable disk space, due to the fact that the time vector is saved
several times. Consideration should therefore be taken whether to save variables in one file
or in different files.

• Usually the time steps used by the simulation are smaller than the time steps necessary for
further manipulation of the data. To save disk space and to increase processing time
considerably it is better to reduce the data immediately ones the simulation is done.
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Appendix E: Matlab M-files

MIRINI.M
% initialize mirror model
% Cv= Spring constant of actuator spring
% D= Damper actuator
% M= Mass actuator
% FO= Force on actuator due to pretensioning of Cv
% Cs= Spring constant of arm-actuator connection
% J= Inertia mirror
% A= Coil gain
% L= Coil inductance
% R= Coil resistance
% VC Supply control parameter.
% VC=1 Indicates voltage control
% VC=O Indicates current control

clear
pack
Cv=40;
D=O;
M=9.5e-3;
FO=O;
Cs=1.5e5;
A=3.16;
J=5.6e-8;
L=le-3;
R=3.5;
VC=I;

CAALFAV.M
%calculate denominator for voltage control

V=-(3/8)*7e-3+1.5e-3*(7/25)* sin(pi/12)*sin(pi/12);
s5=J*M*L;
s4=J*(D*L+M*R);
s3=J*(D*R+L*(Cv+Cs)+A*A)+FO*V*M*L+1.5*4.ge-5*Cs*M*L;
s2=J*R*(Cv+Cs)+FO*V*(D*L+M*R)+1.5*4.ge-5*Cs*(M*R+D*L);
sl=FO*V*(D*R+L*(Cv+Cs)+A*A)+1.5*4.ge-5*Cs*(R*D+Cv*L+A*A);
sO=FO*V*R*(Cv+Cs)+1.5*4.ge-5*R*Cv*Cs;
den=[s5 s4 s3 s2 sl sO];

%calculate numerator for voltage control

num=[O 0 0 0 0 .5*sqrt(3)*7e-3*Cs*A];
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CAALFAI.M
%calculate denominator for voltage control

V=-(3/8)*7e-3+ 1.5e-3*(7/25)*sin(pi/l 2)*sin(pi/l 2);
clear num den;
s4=J*M;
s3=J*D;
s2=J*(Cv+Cs)+FO*V*M+1.5*4.ge-5*Cs*M;
sl =FO*V*D+1.5*4.ge-5*Cs*D;
sO=FO*V*(Cv+Cs)+1.5*4.ge-5*Cv*Cs;
den=[s4 s3 s2 sl sO];

%calculate numerator for voltage control

num=[O 0 0 0 0.5*sqrt(3)*7e-3*Cs*A];

CABETAV.M
%calculate denominator for voltage control

V=-(3/8)*7e-3+ 1.5e-3*(7/25)*sin(pi/12)*sin(pi/12);
clear num den;
s5=J*M*L;
s4=J*(D*L+M*R);
s3=J*(D*R+L*(Cv+Cs)+A*A)+FO*V*M*L+1.5*4.ge-5*Cs*M*L;
s2=J*R*(Cv+Cs)+FO*V*(D*L+M*R)+1.5*4.ge-5*Cs*(M*R+D*L);
sl =FO*V*(D*R+L*(Cv+Cs)+A*A)+1.5*4.ge-5*Cs*(R*D+Cv*L+A*A);
sO=FO*V*R*(Cv+Cs)+1.5*4.ge-5*R*Cv*Cs;
den=[s5 s4 s3 s2 sl sO];

%calculate numerator for voltage control

num=[O 0 000 7e-3*Cs*A];

CABETAI.M
%calculate denominator for voltage control

V=-(3/8)*7e-3+ 1.5e-3*(7/25)*sin(pi/12)*sin(pi/12);
clear num den;
s5=J*M*L;
s4=J*(D*L+M*R);
s3=J*(D*R+L*(Cv+Cs)+A*A)+FO*V*M*L+1.5*4.ge-5*Cs*M*L;
s2=J*R*(Cv+Cs)+FO*V*(D*L+M*R)+1.5*4.ge-5*Cs*(M*R+D*L);
sl=FO*V*(D*R+L*(Cv+Cs)+A*A)+1.5*4.ge-5*Cs*(R*D+Cv*L+A*A);
sO=FO*V*R*(Cv+Cs)+1.5*4.ge-5*R*Cv*Cs;
den=[s5 s4 s3 s2 sl sO];

%calculate numerator for voltage control
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num=[O 0 0 0 0 7e-3*Cs*A];

ADNOISE.M
function[signal]=adnoise(signal,S2N);
% function[signal]=adnoise(signal,S2N);
%
% Add normally distributed noise to a vector
% Signal to noise ratio: S2N
% Where S2N is the power ratio in dB (lO*loglO(signal power/noise power))

randnCseed',sum(lOO*clock));
% generate a 'random' seed

e=randn(size(signal));
% generate a normally distributed noise signal

sigdev=real(std(signal));
% calculate standard deviation of signal vector

noise=e*(sigdev/std(e))* 10/\(-S2N/20);
% calculate noise;

% 1O*logl 0(sigdev/\2/(std(noise))A2)
% calculate actual signal to noise ratio

signal=signal+noise;
% add noise to signal
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