EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Towards SPARE time
a new taxonomy and toolkit of keyword pattern matching algorithms

Cleophas, L.G.W.A.

Award date:
2003

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e8cb71ad-bb90-43b5-bbce-9acf84824ec2

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

MASTER’S THESIS

Towards SPARE TIME

A New Taxonomy and Toolkit
of Keyword Pattern Matching Algorithms

by
L.G.W.A. Cleophas

Supervisors: prof. dr. B.W. Watson
dr. ir. G. Zwaan

Advisor: drs. W. A. A. Nujj

Eindhoven, August 2003

Abstract

We present a new taxonomy and toolkit of keyword pattern matching algorithms. The new
taxonomy is an extension of a prior taxonomy of such algorithms. It includes a number
of algorithms (including factor- and factor oracle-based and bit-parallel prefix-based pattern
matching algorithms) that have been published or received a lot of attention in the last decade.

Based on the new taxonomy, we developed a pattern matching toolkit. This toolkit is a
revision and extension of the SPARE PARTS toolkit that had been developed based on the
original taxonomy. We present the architecture of the new toolkit, which is named SPARE
TIME.

Samenvatting

We presenteren een nieuwe taxonomie en toolkit van algorithmen voor keyword pattern match-
ing. De nieuwe taxonomie vormt een uitbreiding van een eerdere taxonomie van zulke algo-
rithmen. Ze bevat een aantal algorithmen (waaronder algorithmen gebaseerd op factoren en
factor oracles en bit-parallelle algorithmen gebaseerd op prefixen) die in de afgelopen tien jaar
gepubliceerd zijn of veel aandacht gekregen hebben.

Op basis van de nieuwe taxonomie hebben we een pattern matching toolkit ontwikkeld. Deze
toolkit is een herziene en uitgebreide versie van de SPARE PARTS toolkit die was ontwikkeld
op basis van de originele taxonomie. We presenteren de architectuur van deze nieuwe toolkit,
genaamd SPARE TIME.

‘The man who graduates today
and stops learning tomorrow
is uneducated the day after.’

— Newton D. Baker

Contents

I Preliminaries 9
1 Introduction 11
1.1 Problem statement 11

1.2 Thesis structure. e 12

2 Notation and definitions 13
2.1 Notation e e e 13
2.2 Basicdefinitions e 14
2.3 Strings, Languages and Automata 15

II The taxonomy 21
3 A new taxonomy 23
3.1 Introduction e 23
3.2 Thetaxonomy o i i i v e 23
3.3 The problem and some naive solutions 25
3.4 Suffix-based pattern matching oL oL 27
3.4.1 Suffix-based sublinear pattern matching 29

3.4.2 The multiple-keyword Horspool algorithm 30

3.5 The single-keyword Horspool algorithm 32
3.6 A generalization of suffix-based algorithms 35
3.6.1 A change leading to smaller automata 37

3.7 Factor-based pattern matching L., 39
3.7.1 Factor-based sublinear pattern matching 40

3.7.2 Cheap computation of a particular shift function 43

3.8 Factor oracle-based pattern matching00 45
3.8.1 Factor oracle-based sublinear pattern matching 46

1

3.9 Prefix-based pattern matching 47

3.9.1 Towards the Aho-Corasick and Knuth-Morris-Pratt algorithms 48

3.9.2 Bit-parallel ancestors of AC and KMP: Shift-And and Shift-Or algorithms 49

3.9.3 A bit-parallel Aho-Corasick algorithm 55

4 Constructing factor oracles . 61
41 Introduction. 61
4.1.1 Related work [R 62

4.2 Construction based on suffixes 63
4.3 Equivalence to original algorithms 67
4.4 Language of factororacles e 68
4.5 Construction basedontrie. L. 70
4.6 Conclusions and future work 73
III The implementation 75
5 From SPARE Parts to SPARE Time 77
5.1 Imtroduction e 77
511 Useof CH++ o e 78

5.1.2 Usefulreferences 79

5.2 Code structure and class presentation 79
5.3 The design and implementation of SPARE PArTs 80
5.4 Bringing SPARE PARTS up-to-date 82
5.4.1 TUsing the Standard Template Library 82

542 C++ LanguageIssues 83

5.5 New or changed classes in SPARE TIME 84
5.5.1 The Commentz-Walter pattern matcher 85

5.5.2 The Commentz-Walter shifters 86

5.5.3 Newautomata 87

5.6 Obtaining SPARE TIME 88
IV Epilogue 89
6 Conclusions 91
7 Future work 93

A Algorithm and problem details

B Object-oriented terminology

97

101

List of Figures

3.1
3.2

41
4.2
4.3
4.4

A new taxonomy of pattern matching algorithms 24
Optimal Aho-Corasick Automaton for P = {he,she,hers} 55
Factor oracles for abbc and abbcca 61
Factor oracles for baabba and abbaadb 70
Factor trie, factor DAWG and factor oracle for abbe 71

Factor oracle and alternative factor oracle recognizing superset of fact(abcacdace) 74

Preface

This document presents the master’s thesis for my study Technische Informatica at the Tech-
nische Universiteit Eindhoven. The research and practical work that is part of this thesis
took place from October 2002 to August 2003 within the Software Construction (SoC) group
of the Department of Mathematics and Computing Science’s Division of Computing Science.
During this period, I was supervised by Prof. Dr. Bruce W. Watson, head of the group, and
Dr. Gerard Zwaan.

Acknowledgements

The research in this thesis started out based on an earlier taxonomy of keyword pattern
matching algorithms by Bruce Watson and Gerard Zwaan. As a result, this thesis heavily
builds on that work, and I thank them for allowing me to use it as a starting point. The
practical part of this thesis, in the form of the SPARE TIME toolkit, is based on the earlier
SPARE PARTS toolkit developed by Bruce Watson. I have often used or built on ideas from
both the taxonomy and the toolkit, and sometimes reused parts of their papers and thesis on
the subject. Wherever I did so, I have indicated this as such.

Bruce Watson allowed me to freely choose the direction in which I wanted to take my work,
yet kept coming up with interesting new directions to choose from all the time.

I thank Gerard Zwaan in particular for his meticulous attention to details: although it took
me some time to get used to, I am confident that it greatly improved the quality of this thesis
and will contribute to the quality of any work I may do in the future as well.

I thank Wim Nuij for joining my thesis committee, especially since my thesis colloquium and
defence were planned during the summer period.

Finally, I would like to thank my friends and family for their support during these ten months.
In particular, I thank Michiel Frishert for his constructive criticism, our brainstorm sessions—
whether in person or over the internet—and reading parts of this thesis, and Jeroen Heijmans
for his comments on parts of it as well.

Loek Cleophas
Eindhoven, August 2003

Part 1

Preliminaries

Chapter 1

Introduction

In this chapter, we provide the problem statement and its context, as well as an overview of
the structure of this thesis.

1.1 Problem statement

One of the oldest and most frequently studied problems in computing science is the keyword
pattern matching problem. Informally, this is “the problem of finding all occurrences of
keywords from a given set as substrings in a given string” ([WZ96]). Among the best known
and most used solutions for the problem are such algorithms as Aho-Corasick, Boyer-Moore,
Knuth-Morris-Pratt, Commentz-Walter.

Watson and Zwaan (in [WZ96)], [Wat95, Chapter 4]) constructed a taxonomy of these algo-
rithms. They showed that the algorithms could all be derived by adding algorithm details
and problem details in some order, starting from a simple high-level algorithm. In addition,
Watson constructed a toolkit of C++ implementations of these algorithms ([Wat95, Chapter
9]). The aim of constructing the taxonomy and toolkit was to overcome three deficiencies:

1. The difficulty of comparing the algorithms, due to differences in programming language
or style, or due to the addition of unnecessary details.

2. The non-existence of large collections of implementations of such algorithms.

3. The lack of information about practical running time performance of such algorithms.

Their taxonomy and toolkit proved a significant improvement over the situation as it existed
before.

In the last ten years or so however, a number of new algorithms has been developed, while
other algorithms have gained more and more attention. These include bit-parallel algorithms
such as Shift-And, and factor- or factor oracle-based algorithms such as Backward DAWG
Matching and Backward Oracle Matching. In this thesis, we extend both the taxonomy and
the toolkit so that the first two deficiencies that we described apply even less to the field of
keyword pattern matching. Future benchmarking using the extended toolkit can do the same
for the third deficiency.

11

1.2 Thesis structure

This thesis is divided into four parts. The first part contains this chapter and Chapter 2, an
overview of the notation and definitions used.

The second part includes the theoretical parts of this thesis. In Chapter 3 the new taxonomy
of keyword pattern matching algorithms and the new algorithms in that taxonomy are pre-
sented. Each of the algorithms is presented by deriving it from a simple high-level algorithm.
This is done by introducing algorithm details—transformations applied to an algorithm—and
problem details—restrictions of the problem—in a particular order. Chapter 4 discusses fac-
tor oracles, particular data structures used in some of the previous chapter’s algorithms, in
more detail. Two new construction algorithms and some properties regarding the language
recognized by factor oracles give more insight into such automata.

Part III discusses the more practical part of the thesis. Chapter 5 discusses general issues
in toolkit (re)design and extension, and how these were used to bring the original toolkit
SPARE PARTS up to date with respect to present day C++ and Standard Template Library
standards and implementations. The extension of this 2003 version of SPARE PARTS to
SPARE TIME is then discussed.

The final part of this thesis contains the epilogue, consisting of the conclusions (Chapter 6)
and ideas for future work (Chapter 7).

12

Chapter 2

Notation and definitions

In this chapter we introduce most of the notation and definitions used in this thesis. Some
definitions that are only used in small parts of the text, are introduced as needed in the main
text instead.

We advise the reader to initially skip this chapter, and refer back to it whenever a notation
or definition is unclear or unknown to him or her.

2.1 Notation

Since a large part of this thesis consists of derivations of existing algorithms, we will often use
notations corresponding to their use in existing literature on those algorithms. Nevertheless,
we tried to adopt the following standard conventions for naming variables, functions and sets
whenever possible.

Convention 2.1. The following general naming conventions are used:

e A, B, C for arbitrary sets.

V for the alphabet.

a, b, ¢, d, e for alphabet symbols.

p, 7,8, t, u, v, w, z, y, 2 for words over alphabet V.

e L, P for languages.

P, Q for predicates.

h, i, 3, k, I, m, n for integer variables.

M for finite automata.

q, v for states, and @ for state sets. Note that states will often also be identified by
integer variables.

§ and ~ for automata transition functions.

13

Sometimes functions, relations or predicates are used that have longer names than just a
single character. Subscripts, superscripts, prime symbols etc. are sometimes used as well. In
cases where more than one of the above conventions uses the same symbol, the meaning of
such a symbol will be clear from the context in which it is used. O

Notation 2.2 (Symbol L). We use the symbol L (‘bottom’) to denote an undefined value,
usually in the codomain (range) of a function. O

2.2 Basic definitions

Notation 2.3 (Quantifications). A basic understanding of the meaning of quantifications
is assumed. We use the following notation:

(®a: R(a) : f(a))

where @ is the associative and commutative quantification operator (with unit eg), a is the
dummy variable introduced, R is the range predicate on the dummy, and f is the quantified
expression. By definition, we have:

(Pa : false: f(a)) = eg

The following table lists some of the most commonly quantified operators, their quantified
symbols, and their units:

Operator \% A U | min | max | +
Symbol 3 vV |U|MIN | MAX | ©
Unit false | true | @ | +o0 —o0 | 0

a

Notation 2.4 (Natural numbers). We use the symbol N to denote the set of all natural
numbers. For notational convenience, we assume +oo, —oo € N. O

Definition 2.5 (Minimum and maximum). Define min and max to be infix binary
functions on integers such that

iminj =if{ < j then i else j fi
imaxj =if¢> j theni else j fi

Recall from Notation 2.3 that min and max have +00 and —oo as units respectively. O

Property 2.6 (Conjunction and disjunction in MIN quantifications). For predicates
P, @ and integer function f we have

(MINi: P(3) A Qi) : f(3)) = (MIN4 : P(3) : f(z))max (MIN < : Q(2) : f(4))
(MIN:: P(i) VQ@): f(3)) = (MIN:: P(3) : f(¢))min (MIN: : Q(2) : f(2))

14

Notation 2.7 (Function signatures). For any two sets A and B, we use f € A — B to
indicate that f is a total function from A to B. Set A is the domain of f while B is the
codomain or range of f. O

Definition 2.8 (Powerset). For any set A we use P(A) (the powerset of A) to denote the
set of all subsets of A. 0

Definition 2.9 (Precedence of operators). The set operators in order of decreasing prece-
dence are: x, N, U. O

Definition 2.10 (Dual of a function). Let R4 and Rp be the reversal operator for sets A
and B respectively. Two functions f € A — B and f; € A — B are eachother’s dual if and
only if

£(@)F® = fo(aF)
O

Definition 2.11 (Symmetrical function). A symmetrical function is one that is its own
dual. O

Definition 2.12 (Nondeterministic algorithm). An algorithm is called nondeterministic
if the order in which (some of) its statements can be executed is not fixed, or if the guards
in a selection statement are not mutually exclusive. O

Notation 2.13 (Conditional conjunction/disjunction). We use cand and cor for
conditional conjunction and conditional disjunction respectively. A conditional conjunction
(disjunction) is one in which the second operand is evaluated if and only if this is necessary
to determine the value of the conjunction (disjunction). a

2.3 Strings, Languages and Automata

Definition 2.14 (Alphabet). An alphabet is a finite non-empty set of symbols or characters.
O

Definition 2.15 (Set of all strings). Given alphabet V', we define V* to be the set of all
strings over V. 0

Notation 2.16 (Empty string). We use ¢ to denote the string of length 0 (the empty
string). O

Definition 2.17 (String reversal function R). Assuming alphabet V, we define string
reversal function R recursively by e = ¢ and (aw)® = wfa (for a € V, w € V*). We will

use R on sets of strings as well. 0

15

Definition 2.18 (String operators 1, |, [, |). Assuming alphabet V, we define four infix
operators 1, |, [, | € V* x N — V* as follows:

e wk is the k min |w| leftmost symbols of w
e w|k is the (|w| — k) max 0 rightmost symbols of w
e wlk is the k min |w| rightmost symbols of w

e w|k is the (|w| — k) max 0 leftmost symbols of w

The four operators are pronounced ‘left take’, ‘left drop’, ‘right take’ and ‘right drop’ respec-
tively. O

Property 2.19 (String operators 1, |, |, |). For string opcrator 1, |, | and |,

(wlk)(w]k) = w
(wlk)(wlk) = w

O

Example 2.20 (String operators 1, |, [, |). (hers)13= her, (hers)|1 = ers, (hers)[5 =
hers and (hers)|10 = €. O

Definition 2.21 (Language). Given alphabet V', any subset of V* is a language over V. O

Definition 2.22 (Concatenation of languages). Language concatenation is an infix op-
erator - € P(V*) x P(V*) — P(V*) (the dot) defined as

Li-Ly=Uz,y:z€Li Ay € Ly: {zy})

The singleton language {€} is the unit of concatenation and the empty language @ is the zero
of concatenation. O

Notation 2.23 (Concatenation of languages). We often use juxtaposition instead of
writing operator -, i.e. we use Lj Ly instead of Ly - Ly. For language L and string w, we take
Lw to mean L{w}. a

Definition 2.24 (Functions pref, suff and fact). For any given alphabet V, define pref €
P(V*) — P(V*), suff € P(V*) - P(V*) and fact € P(V*) — P(V*) as

pref(L) = (Uz,y :zy €L:{z})
suff(L) =(U y,z: yzeL:{z})
fact(L) = (Uz,y,z:zyz€ L: {y})

Informally, pref(L) (suff(L), fact(L)) is the set of all strings which are (not necessarily
proper) prefixes (suffixes, factors) of strings in L. a

Property 2.25 (Idempotence of pref, suff and fact). pref, suff and fact are idempotent.
O

16

Property 2.26 (Relationship between fact and suff, pref). Function fact can also be
defined in terms of the functions suff and pref:

fact(L) = pref(suff(L))
and
fact(L) = suff(pref(L))
Proof: We will prove only the first equality. The proof of the second is similar.

y € pref(suff(L))

= { property of pref }
(3z 1 yz € suff(L))

= { property of suff }
(Fz :: 3z :: zyz € L))

= { nesting }
(3z,z s xyz € L)

Il

{ definition of fact }
y € fact(L)

O

Property 2.27 (Duality of pref and suff). Functions pref and suff are each other’s duals.
This can be seen as follows:

r € pref(L?)

i

{ property of pref }
(Jy :: zy € L?)

{ operator R }
By =gzl e L)

{ change of bound variable: ¢/ = y% }
By =y'zRel)

{ property of suff }
xR ¢ suff(L)

{ operator R }
z € suff(L)?

17

Property 2.28 (Symmetry of fact). Function fact is symmetrical. This can be seen as
follows:
fact(L%)

{ Property 2.26 }
pref(suff(L?))

{ Property 2.27 }
pref(pref(L)?)

{ Property 2.27 }
suff(pref(L))F

{ Property 2.26 }
fact(L)R

i

O

Notation 2.29 (String arguments to functions pref, suff and fact). For string w € V*,
we will write pref(w) (suff(w), fact(w)) instead of pref({w}) (suff({w}), fact({w})). O

Property 2.30 (Languages and pref, suff, fact). For any L, L C pref(L), L C suff(L)
and L C fact(L). a

Property 2.31 (Non-empty languages and pref, suff, fact). For any L # @, ¢ €
pref(L), € € suff(L) and ¢ € fact(L). a

Definition 2.32 (Prefix and suffix partial orderings). Partial orders <pr <p, <s and
<s over V* x V* are defined as

u <p v =u € pref(v)
u <p v =u € pref(v)\{v}
u <s v = u € suff(v)

u <s v = u € suff(v)\{v}

O

Property 2.33 (Language intersection). If A and B are languages over alphabet V and
a € V, then

VANV’ B#2=V*ANB# 3V ANV*B# &
and

VaANV*B# S =VaANB#@VANV*B#Q2

18

Definijtion 2.34 ((Deterministic) Finite Automaton). A (deterministic) finite automa-
ton is a 5-tuple M = (Q,V, 6, gy, F) where

e () is a finite set of states.

e V is an alphabet.

e) €@ xV — Q@ is a transition relation.
® g9 € Q) is a start state.

e ' C () is a set of final states.

O

Definition 2.35 (Extending transition relation §). We extend transition relation § €
QxV —Qtod*eQxV*— Q defined by

0*(g,e) =¢q
and

(g, wa) = 6(6(q,w),a)

19

Part 11

The taxonomy

21

Chapter 3

A new taxonomy of keyword
pattern matching algorithms

3.1 Introduction

The (exact) keyword pattern matching problem can be described as “the problem of finding
all occurrences of keywords from a given set as substrings in a given string” ((WZ96]). This
problem has been frequently studied in the past, and many different algorithms have been
suggested for solving it. Watson and Zwaan (in [WZ96|, [Wat95, Chapter 4]) derived a set
of well-known solutions to the problem from a common starting point, factoring out their
commonalities and presenting them in a common setting to better comprehend and compare
them. This leads to a taxonomy of such algorithms as the single-keyword Knuth-Morris-
Pratt ([KMP77]) and Boyer-Moore algorithms ([BM77]), as well as the multiple-keyword
Aho-Corasick ([AC75]) and Commentz-Walter algorithms ([CW79a, CWT79b]).

Although the taxonomy contained a large number of variations on these four basic algo-
rithms, some efficient variants were not included. Among these are the single and mul-
tiple keyword Boyer-Moore-Horspool algorithms ([Hor80, NR02]). In addition, bit-parallel
algorithms related to the four basic algorithms (such as (Multiple) Shift-And and Shift-Or
([WM92, BYGS89])) were not considered. Lastly, a new category of algorithms—based on
factors instead of prefixes or suffixes of keywords—has emerged in the last decade. This
category includes algorithms such as (Set) Backward DAWG Matching ([CCG*94, NRO0O])
and (Set) Backward Oracle Matching ([ACRO1, AR99]). In this chapter we systematically
and formally derive all those algorithms and show how they fit in an extended version of the
original taxonomy as presented in [WZ96] and [Wat95].

3.2 The taxonomy

Figure 3.1 shows the new taxonomy, combining the results of [WZ96] and [Wat95, Chapter
4] with the additions and changes discussed in this chapter. This graph can be viewed as an
alternative table of contents to this chapter, leading the reader to the algorithms or algorithm
families he or she is interested in.

23

3.4
GS

3.25
EGC

3.27;3.8 (RsA); &

3.34 (RFA); 3.46 (RFO)
LMIN OKW
SL
3.30
@v
SSD INV 3.19
3.11 (RSA); 3.35 (RFA); M1
3.47 (RFO)
NFS 3.22%
3.36 (RFA) | INDICES
Y L,&;U/l MO
OPT FWD REV oM
SL
BMCW ///\\\\
NONE SFC FAST SLFC
GS
LSKP R~
BMH e
3.42 T
(SO)
A
oy
RSA RFA RFO (RSO)

Figure 3.1: A new taxonomy of pattern matching algorithms. Branches and detail names in

grey are from the original taxonomy in [WZ96] and [Wat95, Chapter 4]. A list of the algorithm
and problem details used plus a short description of each detail is given in Appendix A.

24

The various algorithms are derived from a common starting point by adding algorithm and
problem details. The addition of such a detail results in a new algorithm solving the same
original problem or a restriction of that problem. To indicate a particular algorithm and form
a taxonomy graph, we use the sequence of details in order of introduction. This method was
used in [WZ96, Wat95, Jon83, Mar90] before. We use predicate calculus in our derivations
([DF88, DS90, Kal90]) and present our algorithms in an extended version of Dijkstra’s guarded
command language ([Dij76]). The extensions that we use are:

e as b — S sa as a shortcut for if b6 — S | -b — skip fi

e for z : P — S rof for executing statement list S once for each value of z initially
satisfying P (assuming that there is a finite number of such values for z), where the
order in which values of z are chosen is arbitrary. The for-rof statement is taken from
[vdE92].

The notation and definitions used are introduced in Chapter 2, unless their use is very local,
in which case they are introduced when needed. Most algorithm and problem details will be
defined in the course of the text, but a list of the details plus a short description is available
in Appendix A as well.

3.3 The problem and some naive solutions

In this section, we start out with a naive solution to the problem and derive more detailed
solutions from there. The text in this section is based on—and partially taken from— [WZ96,
section 2].

Formally the keyword pattern matching problem, given an alphabet V (a non-empty fi-
nite set of symbols), an input string S € V*, and a finite non-empty pattern set P =
{po,p1,...pip|-1} € V*,is to establish!

R: O=(U Lv,r:lor=SAveP:{(lvr)}).

that is to let O be the set of triples (I,v,r) such that [, v and r form a splitting of S in three
parts and the middle part is a keyword in P.

A trivial (but unrealistic) solution to the problem is

Algorithm 3.1()

O:=(U Luvr:lor=SAveP:{(lvr)}
{R}

!Note that the problem definition is slightly different but equivalent to that used in [WZ96, Wat95], where
R: 0= (U Lv,r:lor=8:{l} x ({v}NP)x {’r}) is used. As a result, the algorithms given in this text
will be slightly different in structure but equivalent in meaning to the algorithms of the same name in those
texts.

25

The sequence of details describing this algorithm is the empty sequence (sequences of details
are introduced in Section 3.2 and Figure 3.1).

Two basic directions in which to proceed while developing naive algorithms to solve this
problem are, informally, to consider a substring of S as “suffix of a prefix of $” or as “prefix
of a suffix of §”. Only the first possibility is considered here, since the second possibility only
leads to algorithms that are the mirror images of algorithms obtained by following the first
possibility (basically, it amounts to reversing all strings in the problem). Moreover, this is
the way that the algorithms we consider treat substrings of input string S.

Formally, we can consider “suffixes of prefixes of S$” as follows:

(U Lv,r:luor=5AveP:{(lvr)})

= {introduce u:u=1lv}
(UbLvruiur=SAlv=unveP:{(l,v,r)})

= { nesting }
(Uu,rrur=8:(U Lv:lv=uAveP:{(lvr)}))

A simple non-deterministic algorithm is obtained by applying “examine prefixes of a given
string in any order” (algorithm detail (P)) to input string S. It results in

Algorithm 3.2(p)

0:= g,
for (u,r) :ur=8 —

O=0U(U Lv:lv=uAveP:{(lvr)}
rof{ R }

This algorithm is used as a starting point in Section 3.9 to derive the shift algorithms as well
as a bit-parallel version of the Aho-Corasick algorithm. Here, we consider how to update O
in the repetition of the preceding algorithm. The update can be computed with another non-
deterministic repetition. This inner repetition would consider suffixes of u. Thus by applying
“examine suffixes of a given string in any order” (algorithm detail (S)) to string u we obtain
algorithm

Algorithm 3.3(p, s)

0:=g;
for (u,r):ur=38 —
for (l,v):lv=u—
asveP—- O0:=0U{(l,v,r)} sa
rof
rof{ R}

26

Algorithm (P, S) consists of two nested non-deterministic repetitions. In each case, the repeti-
tion can be made deterministic by considering prefixes (or suffixes as the case is) in increasing
(called detail (+)) or decreasing (detail (~)) order of length. This gives two binary choices.
Since the Boyer-Moore, Commentz-Walter and Boyer-Moore-Horspool algorithms examine
string S from left to right, and the patterns in P from right to left we focus our attention on
the following algorithm:

Algorithm 3.4(p, Sy)

u,r:=¢,S;
ifee P—0:={(c,6,5)} | e ¢ P— O:= 2 fj
{invariant: ur =SAO0=(Uz,y,2:2yz=SANay<purye€P:{(z,y,2)})}
dor#e—
u,r:=u(r]l),r|l; l,v:=u,¢;
ase € P— 0:=0U{(u,¢e,r)} sa;
{ invariant: u =lv }
dols#¢—
Lv:=1]1,(1]1)v;
asve P—0:=0U{(,v,r)} sa
od
od{ R}

This algorithm has running time ©(|S|?), assuming that computing membership of P is a
©(1) operation.

3.4 Suffix-based pattern matching

We will now improve the running time of Algorithm 3.4 (P4, S4) by considering the set
of suffixes of keywords, suff(P). We know that w € suff(P) = 3z:z e V*:zwe P). It
follows that if w ¢ suff(P) any extension of w on the left is not an element of suff(P) either.
Consequently, the inner repetition in Algorithm 3.4 can terminate as soon as (I[1)v ¢ suff(P)
holds, since then all suffixes of u that are equal to or longer than (I[1)v are not in suff(P)
and hence not in P. The inner repetition guard can therefore be strengthened to

l # ¢ cand (I[1)v € suff(P).

Observe that v € suff(P) is now an invariant of the inner repetition. This invariant is initially
established by the assignment v:= € since P # & and thus ¢ € suff(P). Direct evaluation of
(I11)v € suff(P) is expensive. Therefore, it is done using the transition function 0z sus p of
a finite automaton recognizing suff(P)?, where § r,f£,p has the following properties:

Property 3.5 (Transition function of automaton recognizing f(P)®). The transition
function dg¢p of a (weakly deterministic) finite automaton M = (Q,V,dr P, qo, F') recog-
nizing f(P)® has the property that

e plao, wh) # L=wf e f(P)F

27

and we assume
OrspP(9.€) =¢
O

Note that Property 3.5 is possible only if pref(f(P)®) C f(P)f, i.e. if suff(f(P)) C f(P).
Also note that w® € f(P)® = w € f(P).

Since we will always refer to the same set P in the remainder of this document, we will use
dr¢ instead of dg ¢ p.

Transition function dg sy can be computed beforehand, as in [WZ96, subsection 4.1]2.

Algorithm detail 3.6. (Gs=s). (Guard strengthening = suffix). Strengthen the guard of
the inner repetition by adding conjunct (I[1)v € suff(P). O

By making ¢ = &% ¢,g(q0, ((! [1)v)F) an invariant of the inner repetition of the algorithm, we
can use the following algorithm detail:

Algorithm detail 3.7. (EGC=RsA). (Efficient Guard Computation = Reverse suffix Automaton).
Given a finite automaton recognizing suff(P)® and satisfying Property 3.5, update a state
variable ¢ to uphold invariant ¢ = 6% cug(0, ((/ [1)v)®). The guard conjunct (i]1)v € suff(P)
then becomes ¢ # L. 0

These two algorithm details are equivalent to the introduction of algorithm detail (RT)
in [WZ96, Wat95], where the first detail (the strengthening of the guard) is introduced im-
plicitly. We replace its name by two separate algorithm detail names here in anticipation of
the generalization of guard strengthening and efficient guard computation in Section 3.6.

Algorithm 3.8(P4, S}, GS=S, EGC=RSA)

u,r:=¢,8S;
ifecP—0:={(c,¢e0S8)}|e¢gP— O:=2fj
{ invariant: ur = SAO=(Uz,y,2:2yz=SANzy<p,uAy € P:{(z,y,2)}) }
dor#e—
u,m:=u(r1l),r]l; Lv:=u,€; ¢:= 0rsum(q0,!1);
ase € P— O0:=0U{(u,&,7)} sa;
{ invariant: u = lv A v € suff(P) A g = 8} gug5(q0, (111)0)F) }
dol#¢ecand g # 1 —
Lv:=111,(1)v;
q:= ORrsuf(q,1);
asveEP - O0:=0U{(,v,r)} sa
od
{l=-¢cor (I[1)v & suff(P) }
od{ R}

*In [WZ96], the transition function is called 7p. It is called 7p, in [Wat95] to distinguish it from the forward
trie function. We generalize the function by means of a parameter f and make it into a transition function on
automata in anticipation of its use in Section 3.6.

28

Assuming P is constant, (MAXp:p € P: |p|) is constant and this algorithm has ©(|S|)
running time®. Tt will serve as a starting point for the derivation of the algorithms in the
following two sections.

3.4.1 Suffix-based sublinear pattern matching

In section 3 of [WZ96), a family of sublinear keyword pattern matching algorithms is derived
starting from Algorithm 3.8 (P4, sS4, GS=S, EGC=RSA). The basic idea is to make shifts
of more than one symbol. This is accomplished by replacing u,r := u(r|l),r|1 by u,r :=
u(r1k),r|k for some k satisfying 1 < k < (MINn:1<n Asuff(u(rin)) NP # & : n). The
upperbound is the distance to the next match, the maximal safe shift distance. Any smaller
number k satisfying the equation is safe as well, and we thus define a safe shift distance as:

Definition 3.9 (Safe shift distance). A shift distance k satisfying
1<EkE<(MINn:1<nAsuff(u(rin)) NP # @ :n)
is called a safe shift distance. O
Algorithm detail 3.10. (ssb). Replace assignment
u,r:=u(r|l),r|1
in Algorithm 3.8(P4, S+, GS=S, EGC=RSA) by assignment
u,r:=u(rlk),rlk
using a safe shift distance k. O

In [WZ96], various approximations from below of the maximal safe shift distance are derived
by weakening the predicate suff(u(rin)) NP # &. This results in safe shift distances that are
easier to compute than the maximal safe shift distance. In these derivations, the u = lv A
v € suff(P) part of the invariant of the inner repetition in Algorithm 3.8 is used. By adding
[,v := g, to the initial assignments of the algorithm, we turn this into an invariant of the
outer repetition. This also turns [= ¢ cor (I[1)v ¢ suff(P)—the negation of the guard of the
inner repetition—into an invariant of the outer repetition. Since shift functions may depend
on [, v and r, we will write k(l,v,r). Hence, we arrive at the following algorithm skeleton:

Algorithm 3.11(P;, Sy, GS=S, EGC=RSA, SSD)

u,7:=¢,S;
ifee P—>0:={(c,¢6,5}]| ¢ P— O:= 2 fi
lLlvi=¢,¢;

{ invariant: ur =S A0 =(Uz,y,2:2yz=SANay<p,uAry € P:{(z,y,2)})
Au=lv A v & suff(P)
A (Il =¢cor (I[1)v & suff(P)) }

3We will from now on use this assumption on P when discussing running time of algorithms.

29

dor#e¢—
u, 7= u(r1k(lv,r)), rlk(lv,r); Lv:=u,& q:=drsum(qo,!1);
asc € P— O0:=0U{(u,¢e,r)} sa;
{ invariant: g = 8% sua(q0, ((111)0)7) }
dol!#ecand g# L —
Liv:=11,(1)v;
q:= r,sum(q,!I1);
asve P —0:=0U{(,v,7)} sa
od
od{ R}

Based on this algorithm skeleton, various shift functions are derived in [WZ96]4, leading
among others to the Commentz-Walter, Fu-San and multiple keyword Boyer-Moore algo-
rithms.

3.4.2 The multiple-keyword Horspool algorithm

In this section, we consider two particular weakenings of the range predicate suff(u(r{n))NP #
.

VVPNV*P £ @
(used in algorithm detail (NLA) given in [WZ96, section 3.7]) and
V*(II1)oVP N V*P £ o

(used in [WZ96, section 3.2, page 13]). Note that the new predicates only refer to | and v,
but not to r. Informally, this amounts to discarding any right lookahead.

Convention 3.12 (Shift function signatures). Whenever r is not used in a shift function,
we will use k(l, v) instead of k(l,v,r). O

We now further weaken the first predicate, assuming v # ¢:

VAV AVP £ @
= A{o=(ul)(u)}

VIl (@[)VP A V*P £ @
= {vl]leV*}

V*IVENV*P £ o

We now further weaken the second predicate, assuming v = ¢:

“The algorithm skeleton is called (P+, S+, RT, SSD) there.

30

V*IMVr N VP £ @
= {v=e¢}

VIV N VP + @

Note the close resemblance between the two weakened predicates: the only difference is that
the first refers to (v[1) (assuming v # €) whereas the second refers to (I|1) (assuming v = €).
Using these predicates (depending on whether v = € or v # €) we get a practical safe shift
distance. We show the case v # ¢ (i.e. (v[1) occurs in the predicate) here:

(MINn:1<n<|r| Asuff(u(rin)) NP # & :n)
> { weakening steps above }
(MINn:1<nAV*u)V*NV*P # @) : n)
= { definition charp, ([WZ96, section 3.4] }
charym(vil)

To get to a safe shift function, we need [# £ to hold in case v = £. Using the above deriva-
tion, we could then use chary,(I]1) as a safe shift distance. Note that in Algorithm 3.11
(P4, Sy, GS=S, EGC=RSA, SSD), | # ¢ does not hold initially. Assuming ¢ ¢ P, we
can solve this by changing the initialization to u,r:= S{lminp, S|iminp (where lminp =
(MINp:p€ P:|p|)). This then allows the use of

Definition 3.13 (Shift function k). Shift function kynp is defined as:

| charpm(vi1) if v # e,
kbmn(l,v) = { charom(Il1) ifv=c.

O

Algorithm detail 3.14. (BMH). (Boyer-Moore-Horspool). Calculating the shift distance
using kpnp is algorithm detail (BMH). O

The use of shift function kp,, yields algorithm (P4, Sy, GS=S, EGC=RSA, SSD, NLAU, OPT,
BMCW, BMH)®, the Set Horspool algorithm ([NR02, subsection 3.3.2]). Adding problem detail
(oKW) leads to the single-keyword Horspool algorithm ([NR02, subsection 2.3.2], [Hor80]).

Remark 3.15. In Section 3.5, we will derive the single-keyword Horspool algorithm in a
different way. O

5The characterization of the algorithm is debatable, as it can be seen as a member of the algorithm family
(P4, S4, GS=S, EGO=RSA, SSD, NLAU, OPT, BMCW) in case v = ¢ and as a further development of algorithm
(P4, S+, GS=S, EGC=RSA, SSD, NLAU, OPT, NLA) in case v # €.

31

3.5 The single-keyword Horspool algorithm

In Section 3.4.2, we derived the Boyer-Moore-Horspool algorithm from algorithm (., S,
GS=S, EGC=RSA, $SD), the same algorithm that gives rise to the Commentz-Walter multiple-
keyword pattern matching algorithm family (see [WZ96, section 3]). Horspool originaly came
up with his algorithm as a simplification of the single-keyword Boyer-Moore algorithm, and we
therefore show that it is possible to describe a single-keyword version of the algorithm based
on the Boyer-Moore algorithm (OKW, OBM, INDICES, MO, SL=FAST) (see [Wat95, section 4.5)).
Before we give this algorithm, we first give a number of definitions (from [Wat95]) in order
to make it more readable:

Definition 3.16 (Perfect match predicate PerfMaitch). 6 We define a ‘perfect match’
predicate

PerfMatch((l,v,r)) = (lor = S Av =p)
Notice that p is an implicit parameter of PerfMatch. O

Function shift shifts the position of v in S to the right by k symbols, extending I to the right
by k symbols and removing the k leftmost characters from r:

Definition 3.17 (Shift function shift). Define right shift function shift € (V*)2 x N —
(V*)? by

shift(l,v,r, k) = (l(vr1k), (v(r1k))]k, T]k)
O

The single-keyword Boyer-Moore algorithm variants in Section 4.5 of [Wat95] and in this
section are quite different from the multi-keyword versions derived in Section 4.4 of that text
and Section 3.4.2 of this thesis.

The algorithms in [Wat95, Section 4.5] use a skip loop in order to make a shift before a
match attempt is made, and a shift after the match attempt. In addition, the order in which
characters of v and p are matched is not necessarily right-to-left.

As a result, the following algorithm not only uses details (Okw), (0BM) and (INDICES) to
arrive at a general single-keyword Boyer-Moore algorithm, but adds (M0O) and (SL=FAST) for
the match order (mo) and skip loop details respectively. We do not discuss these algorithm
details any further here, but refer the reader to Appendix A for a brief description of the
details, and to [Wat95] for a more detailed discussion.

The actual safe shift function used in the following algorithm is function sl; as in [Wat95,
Definition 4.163]:

Definition 3.18 (Function sl). Given j:1 < j < |p|, we can define function sh € V — N
by

sh(a) = MINk:1<kA(1+k<j=>a=pj_k) k)

Note that sl depends implicitly on j. a

6 Although a name like Match or CompleteMatch might have been more clear, we use the original name
here.

32

Algorithm 3.19(0OKw, 0BM, INDICES, MO, SL=FAST)

Lv,r:=¢,51|p|, S|lpl; O:= ;
{ invariant: lvr = SA O = (U z,v, z : PerfMatch((z,y,2)) A (zy <p W) : {(z,y,2)})
Al £ A (vl <|pl=r=¢)}
do [v| = [p| —
{Iv]=1pl }
do 1 < |r| A (v = pip)) —
(Lyv,7) = shift(l, v, 7, sly (vp)) min [r|)
od;
{ll=lpl A (v =pp Vr=e)}
i:= match(v, p, mo);
{Q<i<lp+1)
A(@E<Z|pl= Umo(i) #pmo(i) N (V] 1<y < Umo(j) :pmo(j)))
A@i=Ipl+1=>v=p)}
asi=|p|+1—-0:=0U{({,v,7)} sa;
(l,v,7) = shift(l,v,7,1);
od
{0 = (Ul,v,r: PerfMatch((l,v,7)) : {(z,y,2)}) }

Remark 3.20. Note that we do not give an implementation for function match, but that it
is sufficiently specified by the annotation of the above algorithm. See [Wat95, p. 103] for a
possible implementation. O

In the above algorithm, the shift distance at the end of the outer loop is still equal to 1,
that is, no information from the previous match attempt is used to compute a greater shift.
In [Wat95, Subsection 4.5.2}, algorithm detail (M1) (for Match Information) is introduced to
make use of this information to get larger shifts. As is done there, and similar to what we
saw in Subsection 3.4.1 for the multiple keyword Boyer-Moore-Horspool algorithm, we now
want to compute a safe shift distance based on the maximal safe shift distance

(MINk : 1 <k < |r| A PerfMatch(shift(l,v,r, k)) : k)
We weaken the range predicate:

PerfMatch(shift(l, v,r, k))
= { derivation of [Wat95, page 105] }
(VR 14k < B < Jpl: o = pei)
= { domain split, one-point rule — b’ = |p| }
1+k < |p| = vp| = Pppi-k
Remark 3.21. The last predicate in the preceding derivation is related to predicate I:',,' :

(i < |p| cand 1+ k < m0(i) = Umo(i) = Pmeo(s)—k) given on page 109 of [Wat95]. This makes

33

sense, since this predicate leads to auxiliary function chary (i) of the Boyer-Moore algorithm,
on which Horspool based his algorithm.” O

Based on the above derivation, a safe shift distance is:
(MINK: 1<k <[pl A 1+k < [p| = vy = pppjos) k)

This safe shift distance equals sl (v},) which we previously defined.

Using function sl; can be seen as another instance of algorithm detail (M1) (Match Information)
(see Appendix A). We have thus shown that the single-keyword Horspool algorithm can be
viewed as a variation on the Boyer-Moore algorithm skeleton (OKwW, OBM, INDICES, MO, SL,
MI):

Algorithm 3.22(0OKW, OBM, INDICES, MO, SL=FAST, MI=BMH)

l,v,r:=¢,51|pl, S||p|; O:= o;
{ invariant: lvr = S A O = (U z,y, 2 : PerfMatch((z,y, 2)) A (zy <p W) : {(z,y,2)})
Aol <D A (vl <lpl=r=¢)}
do |[v| = |p| —
{ lvl=1pl }
do 1 < |[r| A =(vpp = ppp)) —
(v, 7) = shift(l,v,r, sl1(v)p) min|r|);
od;
{lwl=Ip| A (vp =pp Vr=¢)}
i := match(v, p, mo);
{A<i<pl+1)
N (Z < lp| = Umo(i) 7é Prmo(i) N (VJ 1< < *Umo(j) :pmo(j)))
ANi=lpl+1=v=p)}
asi=[p|+1—-0:=0U{(,v,r)} sa;
(l,v,7) = shift(l,v,r, sli(vp));
od
{O=(Ul,v,r: PerfMatch((l,v,7)) : {(z,y, 2)}) }

"Note that the predicate is also related to predicate 1 + k < j = v; = pj_i given at the top of page
106 of [Wat95]. In fact it is the equivalent of that predicate when using J2((I,v,7)) = v|p| = pjp| instead of
J3((l,v,7r)) = (v; = p;) (for some j: 1 < j < |p|) as a weakening of PerfMatch (see [Wat95, pages 105,107]).
This is why we have used predicate J2 (i.e. choice (FAsT) for algorithm detail (SL)) in the skiploop of the
algorithms in this section.

34

3.6 A generalization of suffix-based algorithms

We observed in Section 3.3 that it is possible to strengthen the guard of the inner loop
(I #¢)tol # ¢ cand (I|1)v € suff(P). This then led us to introduce the automaton
transition function ég sy to easily compute (I[1)v € suff(P). The use of this function leads
to Algorithm 3.8 (P4, Sy, GS=S, EGOC=RSA), which we repeat here for easy reference:

Algorithm 3.23(p,, S;, GS=S, EGC=RSA)

u,r:=¢,8S;
ifecP—0:={(ce08)}|e¢gP—0:=02fj
{ invariant: ur =SAO0 = (U z,y,2:2y2=SAzy<p,ury € P:{(z,y,2)})}
dor#e—
u,m:=u(rll),r|l; l,v:=u,¢&; q:= drsus(qo,![1);
ase € P> 0:=0U{(u,¢g,r)} sa;
{ invariant: u = lv A v € suff(P) A g = 0% cum(g0, (armw)®) }
dol#ccand ¢# 1 —
Lv:=11,(I1N)v;
q:= 6R,suﬁ'(Q7”1);
asveP—-0:=0U{(,v,r)} sa
od
{l=-¢cor (I|1)v & suff(P) }
od{ R}

Since w € P = suff(w) C suff(P), suff(w) € suff(P) = w ¢ P. The essential properties of
suff that we use here are that P C suff(P) and suff(suff(P)) C suff(P) (suffiz-closedness).
Hence, we can use other functions f satisfying P C f(P) and suff(f(P)) C f(P) to strengthen
guard [# &. Since (I]1)v & f(P) = ({[1)v & P, (I[1)v & £(P) = w(l[1)v € f(P) = w(l|1)v &
P (for every w), the guard can be strengthened to [# & A (I[1)v € f(P)8. We thus introduce
algorithm detail (GS):

Algorithm detail 3.24. (GS). (Guard Strengthening). Strengthening the inner repetition
guard | # ¢ to l # ¢ cand ({[1)v € f(P) for function f € P(V*) — P(V*) satisfying P C f(P)
and suff(f(P)) C f(P). m|
This algorithm detail leads to the following algorithm skeleton:

Algorithm 3.25(p4, s, GS)

u,r:=¢,S;
ifeeP—0:={(,6,9} | e¢g P - O0:=2fi
{invariant: ur =SAO0 =(Uuz,y,2z:2yz2=SANzy<puiy€P:{(z,9,2)}) }
dor+#e—
u,r:=u(r1l),r|1; l,v:=u,s;

8This is the reason why we replaced detail (RT) by detail sequence (Gs=S, EGC=RSA) in Section 3.4.

35

ase € P— 0:=0U{(u,&,1)} sa;
{ invariant: u =lv A v € f(P) }
dol# e cand (I[1)v € f(P) —
Lv:=1U1,(I1)v;
asveEP - 0:=0U{(,v,r)} sa
od
{l=ccor(I[1)v ¢ f(P)}
od{ R}

Several choices for function f are possible, of which we mention the following:

o suff. This choice was discussed in Section 3.3 (and more extensively in [WZ96, Wat95]).
e fact. We discuss this choice in Section 3.7.

e A function that returns a superset of fact. An implementation of this choice using
factor oracles is discussed in Section 3.8.

e A function that returns a superset of suff. This could be implemented using sufforacle,
i.e. the function defining the language recognized by a suffiz oracle([ACR01, AR99]) on
a set of keywords. We will not explore this option in this thesis.?

In order to easily compute the conjunct (I[1)v € f(P) introduced by algorithm detail (Gs),
an automaton is often introduced recognizing the language f(P)®. This leads to

Algorithm detail 3.26. (EcC). (Efficient Guard Computation). Given a finite automaton
recognizing f(P)® and satisfying Property 3.5, update a state variable ¢ to uphold invariant
q= 5}},f(q0, ((I11)v)®). The guard conjunct (I[1)v € f(P) then becomes q # L. O
This algorithm detail leads to the following algorithm skeleton:

Algorithm 3.27(p4, Sy, GS, EGC)

u,r:=¢,95;
ifee P—>0:={(,¢,9)} | e ¢ P—> O:= 2 fj;
{invariant: ur =S A0 =(Uz,y,z:ayz =S Azy<,uAy€P:{(z,y,2)}) }
dor+#e—
u,m:=u(r1l),r|1; l,v:=u,e; ¢:=re(qo,!l1);
ase € P— 0:=0U{(u,¢&;r)} sa;
{ invariant: u = lv A v € f(P) A ¢ = 6} ¢(qo, (rHv)y }
dol#ccand q# 1L —
Lv:=11, (111)v;
q:= dr (g, 111);

9Since the language of a suffix oracle—like the language of a factor oracle—has not yet been defined
independent of the automaton, it would be necessary to construct the suffix oracle to get a working algorithm.
The construction of a suffix oracle is more complicated and less memory efficient than that of a factor oracle
however. See [ACRO1, AR99] for details.

36

asve P - O0:=0U{(,v,r)}sa
od
{l=¢ccor (v &f(P)}
od{ R}

We have seen one particular choice of this detail, (EGC=RSA), in Section 3.3. The other choices
will be discussed together with the corresponding choices for detail (GS), i.e. in Sections 3.7
and 3.8. Note that guard v € P can be efficiently computed, i.e. computed in ©(1), in this
and following algorithms by providing a map from states of the automaton to a boolean.”

3.6.1 A change leading to smaller automata

In practice, the multiple-keyword algorithms using automata (among them the algorithm
family (P4, Sy, GS, EGC)) often use automata recognizing f(P')® where P/ = {v : v €
pref(P) A |v| = Iminp} instead of f(P)®. Informally, an automaton is built on the prefixes
of length Iminp, in order to obtain smaller automata.

Algorithm detail 3.28. (LMIN). The automaton used in algorithm detail (EGC) is built on
f(P') where P’ = {w : w € pref(P) A |w| = lminp} instead of on f(P). O

Remark 3.29. Note that this algorithm detail could be applied to any of the pattern match-
ing algorithms in the taxonomy shown in figure 3.1. a

As a result of using algorithm detail (LMIN) with Algorithm 3.27 (P4, Sy, GS, EGC), after
assignment [, v:= |1, ({[1)v in the inner loop, v € f(P’) holds (instead of v € f(P) as before).
Due to Property 3.5, in case |v| = Iminp (i.e. v € P’) we need to verify any matches
v(r]i) € P for i < lmaxp — Iminp (where lmazp = (MAXp:p € P : |p|)). Since there is a
longest keyword, we do not need to increase i past the mentioned maximum value. This leads
to the following algorithm skeleton (where details (Gs) and (EGC) still need to be instantiated):

Algorithm 3.30(P4, S, GS, EGC, LMIN)

u,r:=¢g,S;
ifeeP—0:={(e8)}]e¢gP—0:=02fi
{invariant: ur = SAO =(Uz,y,z:zyz=SAzy<p,uAye€P:{(z,y,2)}) }
dor#e—
u,m:=u(r1l),r|1; l,v:=u,e; q:=rs(qo,l[1);
ase € P— 0:=0U{(u,¢,r)} sa;
{ invariant: u =lv A v € f(P) A ¢ = 5% ¢(qo, ((I1)v)y }
dol#¢ecand g# L —
Lv:=11,0]1)v;
q:=0Ope(q,11);

10The construction of such a map may require quite some precomputation time. We do not consider the
relative precomputation times of the various algorithms, since they are both relatively hard to compare in
terms of O notation and are assumed to be relatively small compared to the time taken to perform the actua}l
pattern matching (i.e. the text on which the matching is performed is assumed to be relatively long).

37

od,;
{l=¢ecor (I[1)v¢&f(P)}
as |v| = lminp —
w, s = v,7r;
aswé€ P — 0:=0U{(l,w,s)} sa;
do |w| # lmazp A s # e —
w, s:= w(s]1), s]1;
aswéeP— 0:=0U{(l,w,s)} sa
od
sa
od{ R}

This algorithm also has ©(|S]|) running time, assuming P (and thus (MAXp:p € P: |p|))
to be constant.

Remark 3.31. It is possible to improve the last part of this algorithm by introducing a
forward trie function (as in [Wat95, subsection 4.2.2]), assuming that the initialization to
0*(qo, v) in the forward trie is a ©(1) operation. This can be achieved for example by having
a mapping between each element of f(P’) of length Imin and the corresponding state of the

forward trie. Since |v| = Iminp always holds when the forward trie is used, it might be
possible to only construct the parts of the trie of depth Iminp or greater. We do not further
discuss this option. a

The use of algorithm detail (LMIN) has the following effects:

¢ Reduced size of automaton: Since Iminp might be less than |p;| for some ¢, the automa-
ton might have less states and less transitions. This gain may (partially) be offset by
the time spent executing the new as |v| = lminp — ... sa statement, or by the space
and time spent when introducing the forward trie as in Remark 3.31.

e Reduced maximal shift distances with detail (SsD): Since |v| might be less than |p;| (for
i such that |p;| > Iminp), there is less information from v that can be used. Hence shift
distances might be smaller, leading to a larger total number of shifts.

e Reduced number of character comparisons: Let there be keywords p;,p; € P, such
that p; # p; and p; € pref(p;). In this case, using detail (LMIN) it will take less
comparisons to verify a match of both keywords. Originally, for an occurrence of p;
in S, |pi| + |pj| comparisons are needed to detect both matches. Using detail (LMIN),
Imin + (|pi| — Imin) = |p;| comparisons are needed.

e Increased number of character comparisons: Let there be an occurrence of u € f(P’)
in S such that u & f(P), |u| + 1 character comparisons will be made (assuming that
au ¢ f(P'), with a the next character in S following the occurrence of u). When not
using detail (LMIN), less than |u| + 1 comparisons will be made.

The effects thus depend on the set of keywords P and the text S.

38

3.7 Factor-based pattern matching

We now derive a family of algorithms by using the set of factors of P, fact(P). We introduce

Algorithm detail 3.32. (Gs=F). (Guard strengthening = Factor). Strengthen the guard of
the inner repetition by adding conjunct (I{1)v € fact(P). O

The above guard strengthening may be used because P C fact(P) and suff(fact(P)) C
fact(P). The inner repetition guard then becomes

l # ¢ cand (I]1)v € fact(P)

As with (I[1)v € suff(P) before, direct evaluation of (I[1)v € fact(P) is expensive. Instead,
we will use the transition function of an automaton recognizing the set fact(P)®. Using
function dp fact introduced in Section 3.4 and making ¢ = 0% gaet (g0, ((1I1)v)®) an invariant
of the inner repetition, the guard becomes

l#eccand g # 1

Algorithm detail 3.33. (EGC=RFA). (Efficient Guard Computation = Reverse Factor Auto-
maton). Given a finite automaton recognizing fact(P)F and satisfying Property 3.5, update
a state variable g to uphold invariant ¢ = 6% g,c4(g0, ({[1)v)®). The guard conjunct (I[1)v €
fact(P) then becomes g # L. ’ O

Note that various automata exist whose transition functions can be used for dg act. One is
the trie built on fact(P)f, another is the suffir automaton or dawg (for directed acyclic word
graph) on fact(P)® ([CR94, CH97)).

The use of algorithm detail (EGC=RFA) leads to

Algorithm 3.34(P,, S;, GS=F, EGC=RFA)

u,r:=¢,95;
ifeeP—0:={(e,e,9)} |e¢ P— O:=2 fi
{ invariant: ur = SAO = (U z,y,z:zyz=S Azy<,uAy € P:{(z,y,2)}) }
dor#e—
u,r:=u(ril),r]l; Lv:=1u,& q:= g fact(q0,{1);
ase € P — 0:=0U{(u,e,7)} sa;
{ invariant: u = lv A v € fact(P) A g = 0%, gact (90, ((Irv))y
dol#ccand ¢# L —
Liv:=11,(1)v;
q:= 5R,fact(Qa”1);
asveP —-0:=0U{(,v,r)}sa
od
{l=c¢cor (I[1)v ¢ fact(P) }
od{ R}

39

This algorithm has ©(|S|) running time, just like Algorithm 3.8 (P4, Sy, GS=S, EGC=RSA).

The use of detail sequence (GS=F, EGC=RFA) instead of (GS=S, EGC=RSA) has the following
effects:

o More character comparisons: In cases where (I[1)v € suff(P) yet ({[1)v € fact(P), the
guard of the inner loop will still be true, and hence the algorithm will go on extending
v to the left more than strictly necessary.

o Larger shift distances with detail (SSD): When the guard of the inner loop becomes
false, (I[1)v ¢ fact(P), which gives potentially more information to use in the shift
function than (If1)v ¢ suff(P). This aspect will be used in the derivations leading to
algorithm detail (NFs) in Subsection 3.7.1.

3.7.1 Factor-based sublinear pattern matching
We can introduce the notion of a safe shift distance, as was done for suffix-based algorithms

with Algorithm 3.11 (P, S, GS=S, EGC=RSA, SSD) in Subsection 3.4.1 (and in more detail
in [WZ96]). This leads to:

Algorithm 3.35(P4, S+, GS=F, EGC=RFA, SSD)

u,7:=¢,5;
ifee P—0:={(c,e,9}]|e¢P— O:=2fi
lLbv:i=¢,¢;

{invariant: ur =S A0 =(Uz,y,z:2yz=SAzy<p,uAy € P:{(z,y,2)})
Au=1lv Av € fact(P)
A (I =€ cor (I]1)v & fact(P)) }
dor#e—
u, 7= u(r1k(l,v,r)),r|k(l,v,7); l,v:=u,€; ¢:=06Rsact(q0,[1);
ase € P— 0:=0U{(u,e,r)} sa;
{ invariant: ¢ = 0% g4 (%0, ((Ir)v)R) }
dol#eccand g# 1L —
Lv:=11,()v;
q:= 5R,fact(Qalr1);
asveEP—O0:=0U{(,v,r)} sa
od
od{ R}

From this algorithm skeleton, we can once again derive various algorithms by using the safe
shift functions derived before (since (I[1)v & fact(P) = (I]1)v & suff(P)). We can however
do better, since (I]1)v ¢ fact(P) is stronger than (I[1)v ¢ suff(P). We derive:

suff(u(rin)) NP # &

{ ()}

I

40

suff(v(rin)) NP # @
= { suff(z) N P # @ = |z| > lminp, [v(rin)| = |v|+n }
suff(v(rin)) NP # @ A |v| +n > lminp (%)
We now show that the step marked (x) is valid:
ecasel =¢:
suff(u(rin)) NP # &
= {u=ll=¢}
suff(v(rin)) NP #£ @
o case [# ¢ (hence (I[1)v & fact(P)):
suff(u(rin)) N P # @
{u=l}
suff(lv(rin)) NP £ @
{1#c}
suff((L|1)(1)v(rin)) NP # @

Ii

I

{ property of suff: suff(zay) = suff(z)ay Usuff(y) }
(suff(111) (11)o(r1n) Usuff(u(rin)) N P # o
= { N distributes over U }
(suf(t11) (U1)u(rn) N P) U (suff(v(r1n)) NP)#2
{ (IN)v & fact(P) = V*(I[1)vV* N P = @, hence suff((|1) (I[1)v(rln) NP = }
suff(v(rn)) NP # o

Using (%), we observe that the left conjunct of (%) is equivalent to the predicate suff(v(rin))N
P # & used to derive safe shift distances in [WZ96, Wat95]. Let Weakening(suff(v(rin)) N
P # @) be any weakening of that predicate. Then:

(MINn:1<nAsuff(v(rin)) NP # & A |v| + n > lminp : n)
> {}

(MINn : 1 <n A Weakening(suff(v(rin)) N P # @) A |v] +n > lminp : n)
> { Property 2.6 }

(MINn : 1 <n A Weakening(suff(v(rin)) N P # @) : n)
max (MINn:1<nA |v|+n>Ilminp :n)

= {}

(MIN 7 :1 < n A Weakening(suff(v(rin)) N P # @) : n) max(1 max(Ilminp — |vl]))

41

We may thus use any shift function
(MINn : 1 < n A Weakening(suff(v(rin)) N P # @) : n) max(1 max(Iminp — |v|)) .

It is clear that the left operand of the outer max corresponds to any safe shift function
from [WZ96], represented by the various detail sequences given there. The right operand
corresponds to the shift in case (I[1)v is not a factor of a keyword.

Algorithm detail 3.36. (NFs). (No Factor ghift). The use of
kssd,nfs(l’ v, T) = kssd(la v, 7”) max(l max(lmznp - |U|))

in a shift, for any safe shift function kssq given in [WZ96]. (It is called no-factor shift since it
uses (I]1)v ¢ fact(P).) 0O

The use of such shift distances results in algorithm (P, Sy, GS=F, EGC=RFA, SSD, NFs) and
variants where detail (SsD) is further weakened using other details derived from it. One such
weakening is that to true, leading to:

(MINn:1<nAtrue:n)

= {}
1

Algorithm detail 3.37. (ONE). The use of shift distance kone = 1. |

Remark 3.38. In [WZ96], this shift distance corresponds to the one in algorithm (P, Sy,
RT) (our Algorithm 3.8 (P4, S4, GS=S, EGC=RSA)), i.e. to not using larger shift distances
by introducing detail (SsD). a

From this we derive a new shift distance:

1 max(l max(Iminp — |v]))

= {}

1 max(Iminp — |v|)

This equals the shift distance used in the basic ideas for backward DAWG matching ([NR02,
page 27]) and—combined with algorithm detail (LMIN) discussed in Subsection 3.6.1—set
backward DAWG matching ([NRO2, page 68]). The actual Backward DAWG Matching
([CCG*94], [NRO2, page 28-29]) and Set Backward DAWG Matching ([CCG94], [NRO2,
page 68]) algorithms use an improvement based on a property of DAWGs. We discuss this in
Subsection 3.7.2.

42

3.7.2 Cheap computation of a particular shift function

Earlier in this section, we discussed the weakening of suff(u(r|n))NP # @ to true, leading to
algorithm detail (ONE) and a constant shift function equaling 1 (or 1 max ks, in case detail
(NFS) is introduced as well). Here, we consider a different weakening of suff(u(rin))NP # @:
suff(u(rin)) NP # @

{ u=lv,if l #¢ then (I|1)v ¢ fact(P),if | =e thenu=v }
suff(v(rin)) NP # @

{ introduce last = (MAXm :0 < m < |v| Avim € pref(P) :m) }
suff((v[last)(rin)) N P # &

Ml

= { n <|r|, rIn € V™, monotonicity of suff and N }

suff((vilast)V*) NP # &
We now derive

(MINn:1<nAsuff((vflast)V*")NP # @ :n)
= { property of suff: sufflA)NB#P=ANV*B#a }
(MINn:1<nA (vflast)V*"NV*P # & : n)

Vv

{ last < |v], vllast € V!4 monotonicity of suff and N }
(MINn l<nAaViesttnay*p £ g n)
> { Property 2.6 }
(MINn:1<n:n)max (MINn cViasttn X p £ o n)
= { lminp=(MINp:pe P:[p|) }

1 max(Iminp — last)

The last quantification depends on last = (MAXm:0 < m < |v| A v]m € pref(P) : m),
which seems to be rather difficult to compute. When using a DAWG to implement the
transition function O fact Of algorithm detail (EGC=RFA) however, we may use a property
of this automaton to compute last ‘on the fly’: the final states of the DAWG correspond to
suffixes of some p® € PE, i.e. to prefixes of some p € P. Thus, last equals the length of v at
the moment the most recent final state was visited.

We can thus use the following shift function without any need for precomputation:

Definition 3.39 (Shift function kjgp). Shift function kisp is defined as:

kiskp = 1 max(Iminp — last)

43

Remark 3.40. Note that this shift function does not depend on I. It can therefore be seen as
a variant of algorithm detail (NLA). The shift function does not directly depend on v either,
but it indirectly depends on v due to its dependence on last.

Algorithm detail 3.41. (LSKP). (Longest suffix that is Keyword Prefix). Calculating the
shift distance using kiskp is algorithm detail (LSKP). O

Using variable last and shift function ki, the algorithm becomes:

Algorithm 3.42(P, S, GS=F, EGC=RFA, SSD, NLAU, OPT, NLA, LSKP)

u,r:=¢, S,

ifee P—>0:={(e¢05)}]|ec¢gP—0:=0 fi
lLLbvi=c¢,¢;

last:= 0;

{invariant: ur =S A0 =(Uz,y,2:2yz2=SAzy<puAy€ P:{(z,y,2)})
Au=Ilv A v € fact(P)
A (Il =€ cor (I[1)v & fact(P)) }
dor#e—
k:=1max(lminp — last);
u,r:=u(rlk),rlk; Lv:=u,¢;
g, last := 6g fact (40, 1[1),0;
ase € P— O:=0U{(u,¢e,r)} sa;
{ invariant: ¢ = 6% gaet (g0, ((/)v)F)
Alast = (MAXm:m < |v]| Avlm € pref(P) : m) }
dol#¢ccand ¢# L —
Lv:=1]1,([1)v;
q:= 6R,fact(Qa l fl)
as g € F — last:= |v| sa;
asveP—0:=0U{(l,v,r)} sa
od
od{ R}

This algorithm is a variant of the actual Set Backward DAWG Matching ([CCG194], [NR02,
page 68]) algorithm, which is the same except for the addition of algorithm detail LMIN: it
can be described as (P4, S4, GS=F, EGC=RFA, LMIN, SSD, NLAU, OPT, NLA, LSKP), while (P,
S+, GS=F, EGC=RFA, SSD, NLAU, OPT, NLA, LSKP, OKW) describes single-keyword Backward
DAWG Matching.

The reader may have noticed that algorithm detail (NFS) (introduced in the previous subsec-
tion) is not included in either of the two detail sequences. This is done because the no-factor
shift can never be larger than the shift according to kisp:

Iminp — |v]

< { last < |v] }

44

Iminp — last
= { definition kiskp }

Kiskp

In addition, we note that the quantification (MINn :1<n A (v|last)V*"NV*P #£ & : n)
in the second line of the last derivation above equals dgp(vllast) ((WZ96, page 98]) resp.
da(vllast) ([Wat95, page 89]). It follows that shift function kskp gives an approximation from
below of that function.

Note that we do not include algorithm detail LMIN in the detail sequence of the single-keyword
Backward DAWG algorithm either: Although this would make sense since it is the single-
keyword version of Algorithm (P, S;, GS=F, EGC=RFA, LMIN, SSD, NLAU, OPT, NLA, LSKP),
the addition of algorihm detail LMIN does not influence the algorithm when combined with
problem detail okw. We therefore opt to use the shortest possible detail sequence that
describes the algorithm.

3.8 Factor oracle-based pattern matching

We now derive a family of algorithms by using the language of a factor oracle on PF,
factoracle(P®). Although the exact definition of this language is not yet known, it has
been proven to be a superset of fact(P®) and to be suffix-closed'!. We introduce

Algorithm detail 3.43. (GS=F0). (Guard strengthening = Factor Oracle). Strengthen the
guard of the inner repetition by adding conjunct (I[1)v € factoracle(P?)E. O

Remark 3.44. Note that factoracle(P?) and factoracle(P)® are not in general the same;
see Remark 4.14 for an example. O

Since P C factoracle(P%)F and suff(factoracle(P?)®) C factoracle(P®)® both hold, this
guard strengthening may be used. The inner repetition guard then becomes

1 # ¢ cand (I]1)v € factoracle(PR)®

Since the exact definition of factoracle independent of the factor oracle automaton is cur-
rently unknown, direct evaluation of (I[1)v € factoracle(P®)® is not possible. Instead,
we will use the transition function of the factor oracle (see Chapter 4, as well as [ACRO1,
AR99]) recognizing the set factoracle(PT). Using function Sfactoracle(PR)12 and making
4 = O croracte(PR)(g0, ((IT11)v)®) an invariant of the inner repetition, the guard becomes

l#¢ecand g # L

1'We prove this for the single keyword factor oracle in Chapter 4, and it is proven for the multiple keyword
version in [AR99]. Proofs for the single keyword version can be found in [ACRO01] as well.

128ince in general factoracle(P)” # factoracle(P~), we cannot use dp, factoracle tO describe the transition
function of the automaton used. We therefore introduce the notation dgactoracle(pr): the transition function

of the automaton recognizing factoracle(P%).

45

Algorithm detail 3.45. (EGC=RFO). (Efficient Guard Computation = Reverse Factor Oracle).
Given a finite automaton recognizing factoracle(PR) and satisfying Property 3.5, update a
state variable ¢ to uphold invariant ¢ = 5factorac1e(PR)(qO, ((11)v)E). The guard conjunct

(II1)v € factoracle(P®)F then becomes q # 1. O
The use of algorithm detail (EGC=RFO) leads to

Algorithm 3.46(P., S;, GS=F, EGC=RFO)

u,r:=¢,S;
ifee P—>0:={(c,e,9}]| e ¢ P—0:=02fi
{invariant: ur = SAO=(U=z,y,2:2yz=SANxy<puAyeP:{(z,y,2)}) }
dor+#e—

U, = u(r11)’ r|l; Lvi=u,g g:= 6factoracle(PR)(q0a”1);

ase € P— O0:=0U{(u,¢,r)} sa;

{ invariant: u = lv A v € factoracle(P®)E A g = 5factoracle(PR)(q0’ ((r)v)®) }
dol#ccand g# 1 —
L= U1, (1)o;

q:= 5factoracle PR) (g,

1);
asvEP - O:= OU{(l

,v,7)} sa
od
{1 =¢cor (I[1)v ¢ factoracle(P®)! }
od{ R}

This algorithm has ©(|S|) running time, just like Algorithm 3.8 (P4, S, GS=S, EGC=RSA)
and Algorithm 3.34 (P4, S4, GS=F, EGC=RFA).

The use of detail sequence (GS=F0, EGC=RFO) instead of (GS=F, EGC=RFA) has the following
effects:

e Easier construction of and more compact automata: The factor oracle recognizing
factoracle(PF) is easier to construct and may have less states and transitions than
an automaton recognizing fact(PF) (see Chapter 4).

e More character comparisons: When (I[1)v ¢ fact(P)® yet (I]1)v € factoracle(PR)%,
the guard of the inner loop will still be true, and hence the algorithm will go on extending
v to the left more than strictly necessary.

Note that the effects of using (GS=FO, EGC=RFO) instead of (GS=S, EGC=RSA) are a com-
bination of the effects mentioned here and those described in Section 3.7 when comparing
(GS=F, EGC=RFA) and (GS=S, EGC=RSA).

3.8.1 Factor oracle-based sublinear pattern matching

We can introduce the notion of a safe shift distance, as was done for suffix-based algorithms
in Subsection 3.4.1, and for factor-based algorithms in Subsection 3.7.1. This leads to:

46

Algorithm 3.47(p,, s;, GS=FO, EGC=RFO, SSD)

u,7:=2¢,S;
ifeecP—-0:={(ge95)}]|cgP—0:=0fi
lv:i=¢,¢;

{invariant: ur =SAO0 = (U z,y,z:2yz =S Azy <pu Ay € P:{(z,y,2)})
Au=lv Av € factoracle(PR)F
A (I = ¢ cor (I[1)v € factoracle(P)F) }
dor#e—
U, = u(r]k(l, v, r))’ rl k(l’ v, ')"); Lvi=u,e; ¢:= 5factoracle(PR) (QO, ! rl);
ase € P— O:=0U{(u,¢,r)} sa;
{ invariant: 9= ;actoracle(PR)(qO’ ((l [I)U)R) }
do!#¢cand g# L —
Lv:=11,(1)v;
q:= 6fact0racle(PR) (q’ 1);
asveEP—0:=0U{(,v,r)} sa
od
od{ R}

We derive

(I1)v ¢ factoracle(PE)R
= { factoracle(PR)E D fact(PR)R = fact(P) }
(I11)v ¢ fact(P)

Therefore any shift function may be used satisfying
(MIN 7 : 1 < n A Weakening(suff(v(rin)) N P # @) : n) max(1l max(Iminp — |v|))

as derived for factor-based algorithms in Subsection 3.7.1.
The Set Backward Oracle Matching algorithm ([AR99], [NR02, pages 69-72]) equals our algo-
rithm (P4, Sy, GS=FO, EGC=RFO, LMIN, SSD, NFS, ONE), while the single keyword Backward

Oracle Matching algorithm (JACRO1], [NRO2, pages 34-36] and Chapter 4 of this text) corre-
sponds to (P, S}, GS=FO, EGC=RFO, SSD, NFS, ONE, OKW).

3.9 Prefix-based pattern matching

In this section we show how to derive the Aho-Corasick and Knuth-Morris-Pratt algorithms
and variants thereof, as well as the Shift algorithms. The first part of this section is based
on [Wat95, section 4.3].

In Section 3.3, a triple format was used for set O. We remove the redundancy of that format
by registering matches by their end-points only; i.e. by dropping the first component of the
triples in O.

47

Problem detail 3.48. (E). (Endpoints). Matches are registered by their end-points. O

Dropping the first component of the triples allows some efficiency improvements to the al-
gorithms. The postcondition R can be rewritten as in [Wat95, page 59|, leading to the new
postcondition

Re: O, = (U u,r:ur=S/\v€suff(u)ﬁP:{(v,r)}).

Adding details (+) and (E) to Algorithm 3.2 (P) of Section 3.3 and using the modified post-
condition gives

Algorithm 3.49(p,, E)

u,r:=¢,S;
ifeecP—0.:={(9}]|eg P— O.:=02 fi
{ invariant: ur = SA O = (U z,y,z:22=S Az <punyesuff(z)NP: {(y,2)}) }
dor#e—
u,r:=u(ril),r|1;
Oc:=0.U(J v:vesuff(u)NP:{(v,r)})
od
{ Re }

3.9.1 Towards the Aho-Corasick and Knuth-Morris-Pratt algorithms

In Algorithm 3.49, new matches are registered whenever suff(v) N P # &. The essential
idea of both the Aho-Corasick and Knuth-Morris-Pratt algorithms is to introduce an easily
updateable state variable that gives information about (partial) matches in suff(u) and allows
easy computation of the set suff(u) N P.

To facilitate the update to O, a variable U is introduced, related to u by the invariant
U = suff(u) N pref(P). Since P C pref(P), U N P = suff(u) N P and we may use U N P in
the update of variable O,.

Algorithm detail 3.50. (SP). (Set of prefixes of P). Introduction of U = suff(u) N pref(P)
to facilitate updating Oe. O

The introduction of this detail leads to the following algorithm:!3

13The introduction of variable U is discussed in more detail in [Wat95, subsection 4.3.1], although it is
not treated as an explicit algorithm detail. Algorithm 3.51 (P4, E, SP) corresponds to the nameless Algo-
rithm [Wat95, 4.38].

48

Algorithm 3.51(p,, E, sP)

u,r:=¢,5; U:={e};
ifecP—0Oc:={(8}|ecgP— O.:= o fi
{ invariant: ur = SA Qe = (U z,y,2:22=S Az <pu Ay € suff(z) NP : {(y,2)})
AU = suff(u) N pref(P) }
dor#e—
U:= (U(r11) N pref(P)) U {e};
u,r:=u(rll), r|l;
Oe:=0.U(UNP) x{r}
od
{ Re }

Variable u is now superfluous, but will be kept to help formulate invariants.

In [Wat95, page 61| the remark is made that “we see no easy way to implement this algorithm
in practice (given that U is a language) — it appears difficult to implement the update
statement U := (U(r11) Npref(P))U{e}.” Although U indeed is a language, its size will often
be fairly small, since it is limited by |pref(P)|. We will use this observation in Subsection 3.9.2
to derive the well-known Shift-And, Shift-Or and Multiple Shift-And algorithms.

Algorithm 3.51 (P4, E, sP) is further developed into the optimal and failure function Aho-
Corasick algorithms and the Knuth-Morris-Pratt algorithm in [Wat95, subsections 4.3.1-4.3.2,
4.3.4-4.3.6]. A bit-parallel version of the optimal Aho-Corasick algorithm (which also uses
the above observation) will be discussed in Subsection 3.9.3.

3.9.2 Bit-parallel ancestors of AC and KMP: Shift-And and Shift-Or algo-
rithms

In [BYGB89], Baeza-Yates and Gonnet use the idea of bit-parallel updating of variable U =
suff(u) N pref(P). In this section, we show that (Multiple) Shift-And and Shift-Or ([BYG89,
WM92]) can be derived as part of our taxonomy as well.

The set U = suff(u) Npref(P) is of course bounded from above in size by |pref(P)|, but it is
also bounded from above in size by the weaker (Zlleal |pn]) + 1 (note that P was defined in
Section 3.3 as the finite non-empty set {po,p1,...ppj-1} € V™), where the term 1 is necessary
to include the empty prefix €. It is not hard to see that U always contains € however, and we
therefore choose not to represent it explicitly. We therefore introduce a bitvector to store set

U—{e}
|P|-1

Definition 3.52 (Bitvector Dp). Bitvector Dp is defined for 0 < i(k,1) < (3,29 |Pn|) by
Dpli(k,)]=pll €U

where 0 <k < |P|—1and 1 <1 < |px| and i = (55 [pm|) +1— 1. We use i(k,) to indicate
that ¢ is dependent on both £ and [. 0

49

Remark 3.53. Somewhat counterintuitive, we will start the numbering of bit-positions in a
bitvector from the right in our examples. This is exactly opposite to the normal positioning
of elements in vectors from left to right, but it is the way bitvectors are normally used in
computing science literature. O

Example 3.54 (Bitvector Dy, she hers})- For P = {he, she, hers}, Dpli(k,1)] will be de-
fined as follows

Position 8 7 6 5 4 3 2 1 0
Dp hers her he h she sh s he h
€ € € € € € € € ¢
U v U U U U U U U

Note that for this particular set of keywords (and in general for any set of keywords including

ovad STU UL AT YULWUS adali

keywords with one ore more equal prefixes not equaling £), there is duplication of information
going on. In section 3.9.3, we will use a bit-parallel encoding of the optimal Aho-Corasick
automaton instead, in order to remove this redundancy. O

We now derive for the update to Dpli(k, 1)]:

Dpli(k, D)(U = (U(r11) N pref(P)) U {c})
{ definition of Dp }

pell € (U(r11) N pref(P)) U {e}
{ pelis#¢e }

prll € U(r11) N pref(P)

{ property of N }
vl € U(r11) A pll € pref(P)
= { pi1l € pref(P) by definition, due to values k and [}
pell € U(r11)

We distinguish two cases:

ecasel =1:

pell € U(r11)
{eeU,r#¢c}
p[l] =71
{ introduction of Bp as below }

Bp[ri1][i(k,1)]

1%

4

o case 1 <[< |pgl:

50

pell € U(r11)
{ definition 1/[, 7 #¢ }
prl(l—1) € U Apgfl] =1l

Il

il

{ definition of Dp, introduction of Bp as below }
Dpli(k,1) — 1] A Bp[r11][i(k, 1)]
As noted in these derivations, we introduce a bitmatriz Bp:
DeﬁnitionI 1:33| 515 (Bitmatrix Bp). The bitmatrix Bp is defined for v € V and for 0 <
i(k, 1) < (Xn=o Ipal) by

Bplu)[i(k, D)] = pi(l] =
where 0 < k < [P| —1and 1 <1< |pg| and i(k,1) = (58 |pm|) +1 - 1. O

Example 3.56 (Bitmatrix Bipe shehers))- For P = {he,she, hers} and V = {e, h,i,7, s},
Bp will be defined as follows

s e he h s e h
Position 8 7 6 5 4 3 2 1 0
Bple] 001010010
Bplh] 000101001
Bpli] 0 00O0O0OOUOOO
Bp[r] 01 000O0TGOGO0OOQO
Bp|s] 1 00000100

O

Based on the above derivations, the update of Dpli] should be Dp[i] := Bp[r{1][i] in case
[=1, and Dp[i]:= Dp[i — 1] A Bp[ri1]i] in case 1 < < pg|.

We would like to update Dp as a whole using the left shift operator <<. This operator shifts
each bit to the left by one position, dropping the highest bit and inserting a 0 bit at position 0
(note that we assume bits to be numbered in increasing order from right to left). The update
would then become Dp:= (Dp << 1) & Bp[r1l].

That update is incorrect however for positions i(k,!) of Dp for which [= 1. The update would
be correct if, after shifting Dp to the left, we mark such positions i by 1, before applying &.
Thus, we introduce a bitvector Ip:

Definition 3.57 (Bitvector Ip). Bitvector Ip is defined for 0 < i(k,l) < (3 IPI Y lpa]) by
Iplik,)] =l=1
where 0 < k < |P| —1and 1 <1< |pg| and i(k,1) = (X5 Ipml) +1— L. O

Using Ip, the single update statement becomes

Dp:= ((Dp << 1)|Ip) & Bp[ril].

51

Example 3.58 (Bitvector Ije she hers})- For P = {he,she, hers}, Ip will be

s e h e h s e h
Position 8 7 6 5 4 3 2 1 0
Ip 000100101

Using the bitvectors Dp and Ip and bitmatrix Bp, we get the following algorithm:

Algorithm 3.59()

u,r:=¢,8; U:={e};
Initialize BitVectors;
ifec P—Oc:={(8)}]|ec¢ P — O.:= & fi
{ invariant: ur =S A O, = (U z,y,2:z2=8S Az <puAyesuff(z)NP:{(y,2)})
A U = suff(u) N pref(P)
A Dp represents suff(u) N pref(P) — {c} }
dors#e—
U:= (U(r11) npref(P)) U {c};
Dp:= ((DP << l)llp)&Bp[T] 1];
u, = u(r]l),r]1;
Oc:=0.,U(UNP)x{r}
od
{ Re }

We assume that InitializeBitVectors initializes Dp, Ip and Bp correctly. A possible imple-
mentation of InitializeBit Vectors is briefly discussed at the end of this subsection.

To completely replace U, the update to O, needs to be replaced by

ase € P— Oq:=0,U{(e,7)} sa
Oe = Oe U (U k- DP[i(k’ ka|)] : {(pknr)})

Algorithm detail 3.60. (BpspP). (Bit parallel set of prefixes of P). Use bitvectors Dp and
Ip and bitmatrix Bp to maintain the set U introduced by algorithm detail (SP). a

The set U has now become redundant and may be removed. This brings us to the Multiple
Shift-And algorithm ([BYG89], [NR02, p. 45-47]):

Algorithm 3.61(P,, E, SP, BPSP)

u,r:=¢,9;

Initialize BitV ectors;

ifeeP—0c:={(c,9)} | e € P> O := & fi;

{invariant: ur =SA 0. = (U z,y,2:xz2=S Az <puAyesufiiz)NP:{(y,2)})

52

A Dp represents suff(u) N pref(P) — {¢} }
dor#e—
Dp:= ((Dp << 1)|Ip)&Bp[r11];
u,r:=u(ril), r|l;
ase € P — O.:= 0. U{(e,r)} sa;
4 Oe = Oe U (U k: DP[/L(kv |pk|)] : {(pk,’f')})
o

{ Re }

Thus, the Multiple Shift-And algorithm can be described by detail sequence (P4, E, SP, BPSP),
while (P4, E, SP, BPSP, OKW) describes the single-keyword Shift-And algorithm ([BYG89],
[NRO2, p. 19-21]).

In the latter case, i.e. for single keyword pattern matching, we may use a trick to remove
Ip from the algorithm altogether: we invert the meaning of the bits of Dp, Bp and Ip and
derive:

((Dp << 1)|Ip)&Bp[r1l]
= {]=&&=]|}
((Dp << 1)&Ip)|Bp[r11]

{Tr=17""0}
(Dp << 1)|Bp[r11]

We can thus completely remove Ip by inverting the meaning of the bits, and may then use
the update statement

Dp:= (DP << 1) [BP[T‘T 1].

Algorithm detail 3.62. (1nv). (invert). Invert the bits in bitvector Dp and bitmatrix
Bp, leading to the removal of bitvector Ip from the algorithm, if detail (OKW) has been
applied. a

The addition of algorithm detail (INV) leads to the Shift-Or algorithm:

Algorithm 3.63(P., E, SP, BPSP, OKW, INV)

u,7:=¢,5;
InitializeBitVectors;
ifecP—0.:={9)}|ec¢gP— O.:=2 fi
{invariant: ur =SA 0. = (U z,y,z:22=S Az <p,unyesuff(z) NP: {(y,2)})
A (—~Dp) represents suff(u) N pref(P) — {} }
dor#e—
Dp:= (Dp << 1)|Bp[r1l];
u,r:=u(ril),r(1;

53

ase € P — 0.:=0,U{(e,r)} sa;
4 Oe = Oe U (U k)l : ﬂDP[i(kv kal)] : {(pkar)})
{ Re }

Initialization of Ip, Dp and Bp

The bitvectors Ip and Dp and bitmatrix Bp that are used in the preceding algorithms may
be initialized as follows.!* Note that these initializations describe the situation without use
of detail (INV); for the initialization when using that detail, all 0 bits should be replaced by

1 bits and vice versa. In the following text, we use s = zﬁ'o‘l Ip;| and s(n) = S04 pil.

Initially, U = {e} hence U — {¢} = &. Dp can be initialized by
Dp:=0°
Based on the definition of Ip, Ip may be initialized by

Ip:= 0%
forn:0<n<|P|l—

Ip:=Ip|0s—5(m)-110s(n)
rof

For Bp, we use the following initialization:

forv:veV —
Bplv] := 0%,

rof;

forn:0<n<|P|—
for j:0<j<|pn| —

Bp{pn[fl][s(n) +j]:= 1

rof

rof

Remark 3.64. Note that the initializations in this section are intended to give an idea of
how such an initialization could be performed, but have not been refined to be translatable
statement-by-statement into C++ code for example. Based on the above GCL code however,
such a translation is relatively easy: variables s and s(n) should be introduced to update the
value of s and s(n) on the fly, and the data type used to represent bitvectors should allow for
individual bits to be set. The bitset in C++’s STL supports this for example. O

MThese initializations are based on those described in [NRO2, p.46-47].

54

Figure 3.2: Optimal Aho-Corasick Automaton for P = {he, she, hers}. States are labeled
both by their state identifier as well as by the shortest string to the state from state 0.

3.9.3 A bit-parallel Aho-Corasick algorithm

As we mentioned in Example 3.54 of Subsection 3.9.2, the bitvector Dp may contain re-
dundant information, depending on the particular keyword set P used. In terms of finite
automata, we can think of the algorithms in that subsection as bit-parallel encodings of | P|
separate automata, each recognizing pref(p) for different p € P.

In this section, we show that it is possible to encode the optimal Aho-Corasick automaton
(ACOpt) instead. This automaton is an extension of the trie recognizing pref(P).!> Fig-
ure 3.2 shows ACOpt(P) for P = {he, she, hers}. '

In that automaton, for each state, except for state 0, all incoming transitions of the state are
labeled by the same symbol.

We introduce a bitvector to store the active state of the ACOpt machine:

Definition 3.65 (Bitvector D). Bitvector D is defined for 0 < 7 < |ACOpt(P)| by
D[i] = v;(0,u) =1

a

15The automaton corresponds to function v; as used in [Wat95, subsections 4.3.1-4.3.2). The algorithm we
derive in this section thus can be seen as an encoding of (P4, E, AC, AC-OPT) in [Wat95]. That algorithm would
be called (P4, E, SP, AC, AC-OPT) in our taxonomy.

55

We now derive for the update to D:
Dli}(u:= u(r]l))

{ definition D }
77(0,u(r11)) =i

{ definition 7} }

1i

v (V5 (0,u),711) =i

{ “case distinction” (working towards application of definition of D) }
(37 =750, u) =5 A ys (G, r11) = 4)

{ definition D }
(37 = DI} Avg(G,r11) =)

We now make a case distinction, recalling that incoming transitions to state 0 can have
different labels, while all incoming transitions of any other state have the same label, and
derive for case i # 0:

@3 5 D) Ay (Gyri1) =)
{ for each state, all incoming transitions are on the same symbol }
(3 = DIl A (B 277G, @) = 6) A (3 = 97 (k,711) = 1)
{ introduction of Bp as below }
(3 5 DU} A (Ba 77, @) = §) A Belri1][i)
{ introduction of T, 7 # 0 }
(35 = Dlj] A TT5][e] A Bp[r11][i])

M

{ calculus }

(35 = DI} AT[IED) A Be[r11]ld]

{ working towards bitoperations on rows of bitmatrix T }
(5 : D[} - THDLE] A Belr11][i]

{ (7 : D{j] : T[4]) selects unique row in T" with row nr. equal to active bit in D }
(T[D)&Bp[r11])[i]

For case i = 0 we derive:
D[0](u:= u(rl))

{ definition D }
75(0,u(r11)) =0

{ 7y transition function of deterministic automaton }

56

(V7 : 0 <j:797(0,u(r11)) # j)
= { definition D }
(Vj:0<j:-D[j])

As noted in these derivations, we introduce bitmatrices Bp—whose rows indicate states reach-
able by a given symbol—and T—whose rows indicate states reachable from a given state.'8:

Definition 3.66 (Bitmatrix Bp). The bitmatrix Bp is defined for v € V and for 0 <i <
|ACOpt(P)| by

Bpllli] = (37 = v7(j,v) = 4)

. a
Definition 3.67 (Bitmatrix T). The bitmatrix T is defined for 0 < ¢ < |[ACOpt(P)| and
0 <j < |ACOpt(P)| by

Tl = Fv e V = y5(i,v) = J)
(]

Example 3.68 (Bitmatrix Bpe shehers})- For P = {he, she, hers}, V = {e,h,i,r, s}, and
ACOpt/~s as in Figure 3.2, Bp will be defined as follows

State 7 6 5 4 3 2 1 0
Bple] 0010010 1
Bplh] 00 0 1 00 10
Bplii 0000000 1
Bplr] 0100000 1
Bpls] 10001000

O

Example 3.69 (Bitmatrix T). For V = {e, h,i,7,s}, and ACOpt/vs as in Figure 3.2, T
will be defined as follows

State 7 6 5 4 3 2 1 0
Tl 00011001
T] 100000 11
T] 010010 11
T[4 00101011
T3 00011001
T2l 01001011
TH] 00001 1 1 1
T] 000010 11

O

16We name these in accordance with the naming of these structures in the bit-parallel Glushkov regular
expression pattern matching algorithm as described in [NR02, pages 122-123]. Note that in that algorithm, an
NFA is used and more than one state can be active.

57

Using Bp and T', D may be updated by

D:=Tl[q] & Bp[r11];
D[0]:=(D=0vD=1);

where ¢ is the unique state such that D[g] = 1.

Algorithm detail 3.70. (BPAC). (Bit parallel Aho-Corasick). Use bitvector D and bitma-
trices Bp and T to encode the optimal Aho-Corasick automaton as used in algorithm detail
(Ac-0PT). a

As in the previous section, we need to replace the update of O, as well. We first introduce
function Qutput, the Aho-Corasick output function, defined as:

Definition 3.71 (Function Output). Function Output € Q — P(P) is defined by
Output(q) = suff(w) N P

where w is the shortest string such that ~} (0, w) = ¢ (i.e. w is the label of the path to ¢ in
the trie part of ACOpt). O

Using this function and given that ¢ is the unique state such that D{g] = 1, the update of O,
becomes

O := O U Output(q) x {r}

The bit-parallel Aho-Corasick algorithm then becomes

Algorithm 3.72(P.4, E, SP, AC, AC-OPT, BPAC)

u,r:=¢,S;
InitializeBitVectors;
q:=0;
ifeeP—>0.:={(,9}]ec¢P— O.:= o fi;
{invariant: ur = SAOe = (U z,y,2z:z2=S Az <punyesuff(z)NP: {(y,2)})
A D represents the active state of ACOpt(P)
ADlg] =1}
dor#e—
D :=Tlq)&Bp[r11};
Dl0}:=(D=0Vv D=1)
u,7:=u(ril), r|1;
ase € P — 0.:=0.U{(e,7)} sa;
qg:=0;

58

do Dig| #1 —

g:=q+1
od,;
Oe := O U Output(q) x {r}
od
{ R}

Compared to the Multiple Shift-And algorithm derived in Subsection 3.9.2, the following
differences can be observed:

e Amount of states to be encoded: The ACOpt machine used in the bit-parallel Aho-
Corasick algorithm may have less states than used in Multiple Shift-And, since prefixes
of keywords may overlap. As a result, the encoding of the states might still fit the size

of a particular computer’s word size (e.g. 32 or 64) when the encoding of states in
Multiple Shift-And does not.

¢ Amount of bitoperations for active state update: For Multiple Shift-And, 3 full bitoper-
ations are needed to update Dp (<<, |, and &), whereas for bit-parallel Aho-Corasick,
1 full bitoperation is needed to update D (&}, but 2 operations on parts of D are needed
as well (1 for comparing all bits except bit 0, 1 for setting the last bit).

e Work needed to update O.: The updates of O, are quite different in both algorithms.
A more detailed analysis and/or implementation of both algorithms should give more
insight into which update is easier to perform.

e Construction time/space for ACOpt: For the bit-parallel Aho-Corasick algorithm, the
ACOpt machine needs to be temporarily constructed in order to encode it.

e Memory usage: The bit-parallel Aho-Corasick algorithm will use more memory space
in most cases, since it uses two bitmatrices and one bitvector, vs. the one bitmatrix
and two bitvectors used for Multiple Shift-And.

Concluding, it seems necessary to actually implement, benchmark and optimize both algo-
rithms before their comparative efficiency can be established.

Initialization of D, Bp and T

Since initially state 0 of the ACOpt automaton is active, D can be initialized (using s =
Pl-1
S i) by
D:=0°"11
The bitmatrices Bp and T can be initialized by using a breadth first traversal of the state of

the trie that is part of the ACOpt automaton. (Note that during this traversal, transitions
that are not part of the trie are used as well.) We do not further discuss this here.

99

Chapter 4

Constructing factor oracles

In this chapter, we describe two alternative ways of constructing factor oracles for a sin-
gle keyword. Such automata may be used in pattern matching algorithms as described in
Section 3.8.

A somewhat shorter version of the research in this chapter, co-authored by Gerard Zwaan
and Bruce Watson, was accepted to the 2003 Prague Stringology Conference ([CZWO03al), to
be held in Prague from September 22 to September 24.

The research as reported in this chapter was also submitted for publication in the Comput-
ing Science Report series of the Department of Mathematics and Computing Science of the
Technische Universiteit Eindhoven ([CZWO03b]).

4.1 Introduction

A factor oracle is a data structure for weak factor recognition. It can be described as an
automaton built on a string p of length m that (a) is acyclic, (b) recognizes at least all factors
of p, (c) has m + 1 states (which are all final), and (d) has m to 2m — 1 transitions (cf.
[ACRO1]). Some example factor oracles are given in Figure 4.1.

Factor oracles are introduced in [ACRO1] as an alternative to the use of exact factor recog-
nition in many on-line keyword pattern matching algorithms. In such algorithms, a window

Figure 4.1: Factor oracles for abbc (recognizing abc ¢ fact(p)), abbcca (recognizing
abe, abce, abeca, abea, abbea, bbea, bea & fact(p))

61

on a text is read backward while attempting to match a keyword factor. When this fails, the
window is shifted using the information on the longest factor matched and the mismatching
character.

Instead of an automaton recognizing exactly the set of factors of the keyword, it is possible to
use a factor oracle: although it recognizes more and thus might read backwards longer than
necessary, it cannot miss any matches (see Section 3.8 for more information). The advantage
of using factor oracles is that they are easier to construct and take less space to represent
compared to the automata that were previously used in these factor-based algorithms, such
as suffix, factor and subsequence automata. This is the result of the latter automata lacking
one or more of the four essential properties of the factor oracle.

The factor oracle is introduced in the previously cited article by means of an O(m?) construc-
tion algorithm that is used as its definition. Furthermore, an O(m) sequential construction
algorithm is described. It is not obvious by just considering the algorithms that it recognizes
at least all factors of p and has m to 2m — 1 transitions (i.e. that (b) and (d) hold). For both
algorithms, a number of lemmas are needed to prove this.

In this chapter, we give two alternative algorithms for the construction of a factor oracle.
Our first algorithm, in Section 4.2, constructs a factor oracle based on the suffixes of p. This
algorithm is O(m?) and thus not of practical interest, but it is more intuitive to understand
and properties (b) and (d)—two important properties of factor oracles—are immediately
obvious from the algorithm. The acyclicity of the factor oracle however—corresponding to
property (a)—is not immediately obvious. Our proof of this property (part of Property 4.7) is
rather involved, whereas the property is immediately obvious from the algorithms in [ACRO1].
We prove that the alternative construction algorithm and those given in that article construct
equivalent automata in Section 4.3.

Section 4.4 shows that the language of a factor oracle is prefix-, suffix- and therefore factor-
closed. A precise characterization of the language (independent of the automaton itself) is
still open. We show that the occurrence of repetitions and the occurrence of states (other
than the start state) with at least 2 outgoing transitions are necessary for the language to
contain strings other than factors.

In Section 4.5 we present our second algorithm, which constructs a factor oracle from the
trie recognizing the factors of p. Although this algorithm is O(m?) as well, it gives a clear
insight in the relationship between the trie and dawg recognizing the factors of p and the
factor oracle recognizing a superset thereof.

Finally, Section 4.6 gives a summary and overview of future work.

4.1.1 Related work

As mentioned before, factor oracles were introduced in [ACR01] as an alternative to the use
of exact factor recognition in many on-line keyword pattern matching algorithms. A pattern
matching algorithm using the factor oracle is described in that paper as well.

Apart from their use in pattern matching algorithms, factor oracles have been used in a
heuristic to compute repeated factors of a string [LLO00] as well as to compress text [LL02].
An improvement for those uses of factor oracles is introduced in [LLA02] in the form of the
repeat oracle.

62

Related to the factor oracle, the suffiz oracle—in which only those states corresponding to a
suffix of p are marked final—is introduced in [ACRO01]. In [AR99] the factor oracle is extended
to apply to a set of strings.

4.2 Construction based on suffixes

Our first alternative algorithm for the construction of a factor oracle constructs a ‘skeleton’
automaton for p—recognizing pref(p)—and then constructs a path for each of the suffixes
of p in order of decreasing length, such that eventually at least pref(suff(p)) = fact(p) is
recognized. If such a suffix of p is already recognized, no transition needs to be constructed.
If on the other hand the complete suffix is not yet recognized there is a longest prefix of such
a suffix that is recognized. A transition on the next, non-recognized symbol is then created,
from the state in which this longest prefix of the suffix is recognized, to a state from which
there is a path leading to state m that spells out the rest of the suffix.

Build_Oracle_2'(p = p1ps ... pn)
1: for i from 0 to m do

2: Create a new final state 1

3: for i from 0 to m — 1 do

4: Create a new transition from i to i + 1 by p;4+1

5: for ¢ from 2 to m do

6: Let the longest path from state 0 that spells a prefix of p; . . . p,, end in state 7 and spell
out p;...px (1—1< k<m)

7. if k # m then

8: Build a new transition from j to k 4+ 1 by pr+1

Note that this algorithm is ©O(m?). The factor oracle on p built using this algorithm is referred
to as Oracle(p) and the language recognized by it as factoracle(p).

The first two properties we give are obvious given our algorithm. They correspond to (b) and
(c)-(d) respectively as mentioned in Section 4.1.

Property 4.1. fact(p) C factoracle(p).
Proof: The algorithm constructs a path for all suffixes of p and all states are final. 0O

Property 4.2. For p of length m, Oracle(p) has exactly m + 1 states and between m and
2m — 1 transitions.

Proof: States can be constructed in steps 1-2 only, and exactly m + 1 states are constructed
there. In step 4 of the algorithm, m transitions are created. In steps 5-8, at most m — 1
transitions are created. O

Property 4.3 (Glushkov’s property). All transitions reaching a state 7 of Oracle(p) are
labeled by p;.

Proof: The only steps of the algorithm that create transitions are steps 4 and 8. In both,
transitions to a state 7 are created labeled by p;. O

T Although this it the first factor oracle construction algorithm we present, we name it Build_Oracle_2 to
distinguish it from algorithm Build_Oracle given in [ACRO01] (and repeated in Section 4.3).

63

Property 4.4 (Weak determinism). For each state of Oracle(p), no two outgoing transi-
tions of the state are labeled by the same symbol.

Proof: The algorithm never creates an outgoing transition by some symbol if such a transition
already exists. O

We now define function poccur(u, p) to give the end position of the leftmost occurrence of u
in p (equivalent to the same function in [ACRO01]):

Definition 4.5. Function poccur € V* x V* — N is defined as

poccur(u,p) = (MINt,v:p=tuv: |tu]) (p,t,u,ve V*)

O
Note that if u ¢ fact(p), poccur(u,p) = co.
Property 4.6. For suffixes and prefixes of factors we have:
wv € fact(p) = poccur(v,p) < poccur(uwv,p) (p,u,v € V¥)
uwv € fact(p) = poccur(u,p) < poccur(uv,p) — |v| (p,u,v € V*)
O

We introduce min(i) for the minimum length string recognized in state i—either in one of
the partially constructed automata or in the complete automaton.

In the following property, we use j; and k; to identify the values j and k attain when consid-
ering suffix p; ... pm of p in steps 5-8 of the algorithm.

Property 4.7. For the partial automaton constructed according to algorithm Build_Oracle_2
with all suffixes of p of length greater than m — 7 4+ 1 already considered in steps 5-8
(2 <i<m+1), we have that

i. it is acyclic
ii. for each h with 1 < h < 1, all prefixes of py, ... pm are recognized

iii. for each state n and outgoing transition to a state ¢ Zn + 1,
g < kmag + 1 holds where kpyor = (MAX A : 1< h<iAkp<m:ky)

iv. for each state n, min(n) is an element of fact(p), min(n) is a suffix of each string
recognized in n, and n = poccur(min(n), p)

v. if u € fact(p) is recognized, it is recognized in a state n < poccur(u,p)

vi. for each state n and each symbol a such that there is a transition from n to a state g
by a, min(n) - a € fact(p) and ¢ = poccur(min(n) - a,p) .

vii. for each pair of states n and ¢, if min(n) <; min(q), then n < g, and as a result, if
min(n) <, min(q), then n < g

64

viii. if w is recognized in state n, then for any suffix u of w, if u is recognized, it is recognized
in state ¢ < n

Proof:

We first consider the automaton constructed in steps 1-4 of the algorithm. It is straightforward
to verify that the properties hold for ¢ = 2.

Now assume that the properties hold for the automaton with all suffixes of p of length greater
than m — i + 1 already considered. We prove that they also hold for the automaton after the
suffix of length m — i+ 1, p; ... pm, has been considered.

If K = m in step 6, suffix p;...py, is already recognized, no new transition will be created,
the automaton does not change and the properties still hold.

If K < m, then we need to prove that each of the properties holds for the new automaton.

Ad i: By v., string p;...pk is recognized in state j < poccur(p;...pg,p). Since p;...pr <s
p1 ... pk and poccur(py . ..pg, p) = k, poccur(p; . . . pr,p) < k due to Property 4.6. Since j < k,
the transition created from j to k + 1 is a forward one.

Ad ii: Trivial.
Ad iii: We prove that the property holds for the new automaton by showing that k = k; >
kmaz, i.e. k will become the new k;,qz.

If kar = —00, k > kma, clearly holds.

If kpe > —00, assume that ke > k, then there is an h such that 1 <h <i Ak, <mA
ky = kmaz- Factor pp, .. .px is recognized in g < k due to ii. and v.

If g = k, then py, ... px is recognized in &k and py, ... pm is recognized in m; so kp = m which
contradicts ky, < m.

If g < k, then py,...pg is recognized in g < k. Since p;...pg is recognized in j = j; and
Pi--. Pk <sDh---Dk, due to viii., j < g.

If j = g, then pp...pg is the longest prefix of py ...pm, recognized by the old automaton,
which contradicts ii.

If 5 < g, then 7 < g < k. We know that min(g) <; pp...pr (using iv.), min(j) <
Ph.-.pr (using iv. and p;...pr <s Dn...pr) and therefore that min(j) <, min(g) (due
to vii.). Let [be the state to which the transition by pr41 from g leads, i.e. [is the state in
which py, ... pga1 is recognized. Using vi., we have that | = poccur(min(g) - pxk+1,p). Using
Property 4.6 we have that | < poccur(py...prk+1,p) and the latter is < k + 1 due to the
definition of poccur (since k + 1 marks the end of an occurrence of pp,...pr+1). We have
poccur(min(j) - pr+1,p) < poccur(min(g) - pr+1,p) = I since min(j) <, min(g). We want to
prove that k + 1 < poccur(min(f) - pr+1,2). Assume that poccur(min(j) - pr+1,p) < k+ 1.
If the first occurrence of min(j) - pr+1 starts before position i of p, then it is a prefix of a
suffix of p longer than p;...pn, and thus by ii. min(j) - px41 is recognized. Since min(j) is
recognized in j, a transition from j by px41 must exist and we have a contradiction. If the
first occurrence of min(j) - px41 starts at or after position ¢ of p, then there exists a shortest
string = such that z-min(j)-pr+1 € pref(p; ... px) and z-min(j)-pr+1 is recognized in a state
< j. But then z - min(j) is recognized in a state n < j. By viii., since min(j) <s z - min(j),
this means that min(j) is recognized in state s < n < j and we have a contradiction. Thus

65

k +1 < poccur(min(j) - pr+1,p) < 1 and therefore, since ! < k+ 1 holds, [= k + 1. In that
case, Ph - .. Pk+1 1s recognized in | = k+1 and py, . . . pp, is recognized in m. But then kj, = m,
and we have a contradiction.

Thus, kmaez = kn, < k = k; and iii. holds for the new automaton.

Ad iv: Let s = min(j), t = min(k + 1) and u = min(h) (k + 1 < h < m) respectively in the
old automaton. Due to the proof of iii., k = k; > ke, and therefore a unique path between
k+1 and h exists, labeled r, and-—due to iv—u <; tr.

If |spgy17r| > |u|, u remains the minimal length string recognized in state h. Since s <j

Di---Pks SPk41T Ss Di-..Pr+17- Since u < tr, tr < py...pgr and [spryar]| > |ul, u
spr+17 and—due to iv.—u <; §'pry17 as well for any s’ recognized in state j.

IA

S

If |spgt1r| < |u|, spx+17 is the new minimal length string recognized in state h. Since
8 <s Pi---Pks SPk+1T <s Pi---Pr17. Since u <, tr, tr <g p1...pgs1r and [spryar| < |ul,
8Pk+17 <s u and—due to iv.—spry17 <5 §'pr117 as well for any s’ recognized in state j.
Since p; . .. pr4+17 Was not recognized before, it is not a prefix of p, p2...pm, ..., Pic1...DPm
(using ii.), hence poccur(p; . . . pr417,p) = k+1+|r|. Since s <; p; ... pk, poccur(spry1r,p) <
k+ 1+ |r|. Assume that poccur(spxs1m,p) < k -+ 1+ |r|, then p;...ppp17 = uspry17v
(u,v € V*, v # ¢, |u| minimal), since spg, 17 cannot start before p; because in that case it
would have already been recognized by the old automaton. Factor us is recognized in state
g < j (using i.) and—since viil. holds—s <; us is recognized in a state 0 < g < j. This
contradicts s being recognized in j. As a result poccur(spiy17m,p) =k + 1+ |r|.

Ad v: Any new factor of p recognized after creation of the transition from j to k 4 1 has the
form vpr4+1r and is recognized in k + 1 4+ |r| with v € fact(p) recognized in state j. Since
k+ 1+ |r| = poccur(min(k + 1)r,p) (using iii., iv. holding for the new automaton plus the
fact that k is the new kpqz) and min(k + 1) - r <; vpgy17 due to iv. holding for the new
automaton, k + 1+ |r| < poccur(vpyy17, p) using Property 4.6.

Ad vi: The states n we have to consider are n =jandn=hfork+1<h <m.

For n = j, a new transition to k 4 1 is created and by iv., min(j) < p; ... pk., hence we have
man(j) - Pk+1 s Pi - - - Pkt1s Phtl—|min()| - - - Ph41 = MIn(J)- prs1, min(j) - prs1 € fact(p) and
poccur(min(j)-pr+1,p) < k+1. Since min(j)-pr+1 is recognized in state k+1, due to v. for the
new automaton, k + 1 < poccur(min(j) - pg+1,p). Therefore k+ 1 = poccur(min(j) - pry1, D).

For n = h with k 4+ 1 < h < m, min(h) changes to spyy17 if and only if |spri17| < |u]
(with r, s,u as in the proof of iv.). We know that ua € fact(p) and ¢ = poccur(ua, p). Since
spr+17T Zs U, Spg+17a < ua, hence spriira € fact(p) as well and poccur(spgiira,p) <
poccur(ua, p) = ¢, but due to v., ¢ < poccur(spg+17a,p) hence ¢ = poccur(spg+17a, p).

Ad vii: Assume min(n) <; min(g). We have poccur(min(n),p) < poccur(min(q),p) due to
Property 4.6, which according to iv. is equivalent to n < ¢.

Ad viii: By induction on |w|. It is true if |w| = 0 or |w| = 1. Assume that it is true for all
strings x such that |z| < |w|. We will show that it is also true for w, recognized in n.

Let w = za (z # €), z is recognized in h (0 < h < n). Consider a proper suffix of w,
recognized in state g. It either equals ¢ and is recognized in state 0 < n or it can be written
as va where v <g .

Suffix va of w is recognized, therefore suffix v of x is recognized and according to the induction
hypothesis, v is recognized in state [< h. Let Z = min(h) and ¥ = min(l). Due to iv. for

66

the new automaton, Z <; z and ¥ <, v. We now prove that ¥ <; . If | = h, then 7 = Z.
Now consider the case | < h. Since v <5 z and 7 <; v, ¥ <z . Due to vii.,, T &, 7.
Thus, since ¥ and Z both are suffixes of z, v <, Z. Since Z is recognized in h and there
is a transition by a from h to n, by vi. for the new automaton we have that za € fact(p)
and n = poccur(Za,p). Since ¥ is recognized in ! and there is a transition by a from [to
q, va € fact(p) and g = poccur(va,p) due to vi. for the new automaton. Since va < Za,
poccur(va, p) < poccur(Za, p) due to Property 4.6 and hence ¢ < n.

We have shown that the properties hold for every partial automaton during the construction.
Consequently, they hold for the complete automaton Oracle(p). O

Note that Property 4.7, i. corresponds to property (a) in Section 4.1.

4.3 Equivalence to original algorithms

A factor oracle as introduced in [ACRO1] is built by the following O(m?) algorithm:

Build_Oracle(p = pip2...pm)

1: for ¢ from 0 to m do
Create a new final state i
: for i from 0 tom — 1 do
Create a new transition from i to i 4 1 by p;+1
: for i from 0 tom — 1 do
Let u be a minimal length word in state ¢
for all 0 € £,0 # p;i+1 do
if uo € Fact(pi—jy|+1---Pm) then
Build a new transition from 7 to*
i ~ |u| + poccur (uo, pi—_|uj+1 - - - Pm) by @

© 0 NS G s W

To prove the equivalence of the automata constructed by the two algorithms, we need the
following properties.

Property 4.8. For any state ¢ of both Oracle(p) (i.e. the factor oracle constructed accord-
ing to algorithm Build_Oracle_2 and the factor oracle constructed according to algorithm
Build_Oracle), if u = min(z) then

uo € fact(p;_|y+1-.-Pm) = uo € fact(p)

Proof: =»: Trivial. <: By Property 4.7, iv. (for Build_Oracle_2) and [ACRO01, Lemma
1] (for Build_Oracle), i = poccur(u,p). By Property 4.6, poccur(uc,p) > i, hence uo €

f"-'lct(pi—|u|+1 <+ Pm)- 0

Property 4.9. For any state ¢ of an automaton constructed by either algorithm, if u = min(:)
and uo € fact(p) then

i — |u| + poccur(uo, pi_jy|41 - - - Pm) = poccur(uo, p)

*Note that in [ACRO01] the term —|u| is missing in the algorithm, although from the rest of the paper it is
clear that it is used in the construction of the automata

67

Proof:

i — |u| + poccur(uo, p;_jyj+1 - - - Pm)
= { definition poccur }
i— |u| + (MINt,v ! Diefu|+1 - - - Pm = tuov : |tua|)
= { u = min(¢), hence recognized in i = poccur(u,p) }
i—|u| + (MIN¢t, v : p=tuov: tuo| — (i — |u]))
= { uo € fact(p), property of min }
i—|u|+ (MIN¢t,v:p=tuov: |tuc|) — (i — |u|)
= { calculﬁs, definition poccur }

poccur(uo, p) O

Property 4.10. The algorithms Build_Oracle_2 and Build_Oracle

construct equivalent automata.

Proof: We prove this by induction on the states. Our induction hypothesis is that for each
state j (0 < j < i), min(j) is the same in both automata, and the outgoing transitions from
state j are equivalent for both automata.

If i = 0, u = min(i) = € in both automata. Consider a transition created by Build_Oracle_2,
say to state k by o # p;41. Since this transition exists, us € fact(p) and k = poccur(uc, p)
(due to Property 4.7, vi.). Using Properties 4.8 and 4.9, such a transition was created by
Build_Oracle as well. Similarly, consider a transition created by Build_Oracle, say to state
k by o. This transition, say on symbol o, leads to state k = ¢ — |u|+poccur(uo, Diful+1 - - - Pm)
and was created since uo € fact(p;_|y+1--.Pm) (see the algorithm). Using Properties 4.8
and 4.9, such a transition was created by Build_Oracle_2 as well.

If © > 0, using the induction hypothesis and acyclicity of the automata, ¢ has the same
incoming transitions and as a result min(i) is the same for both automata. Using the same
arguments as in case ¢ = 0, the outgoing transitions from state ¢ are equivalent for both
automata.

As a result, the two automata are equivalent. O

4.4 Language of factor oracles

A definition of the language factoracle(p) not employing an automaton and its construction
algorithm was left as an open question in [ACRO1]. It is straightforward to see that it is
bounded from above by seq(p), the set of all subsequences of p: factor oracles are acyclic, all
transitions go from a state ¢ to 7 > 4, and all transitions going to some state j are labeled by

pj.
In this section, we show that the language is prefix-, suffix- and hence factor-closed. We also
give two properties showing sufficient conditions for factoracle(p) D fact(p) to hold.

68

Property 4.11. The language factoracle(p) is prefix-closed:
w € factoracle(p) = pref(w) C factoracle(p) (p,w € V™)

Proof: Follows directly from the fact that all states of Oracle(p)—and thus all states on the
path from state 0 spelling w—are final. a

In [ACRO1, Lemma 5], the authors prove that the language recognized by a factor oracle is
suffix-closed. Their proof is rather hard to follow and we therefore give a slightly different,
longer version here.

Property 4.12. The language factoracle(p) is suffix-closed:

w € factoracle(p) is recognized in state n =
suff(w) C factoracle(p) and u € suff(w) is recognized in state o < n
(p,u,w € V7)

Proof:

By induction on |w|. It is true if |w| = 0 or |w| = 1. Assume |w| > 2 and that it is true for
all strings z such that |z| < |w|. We show that it is also true for w, recognized in n.

Let w = za (z # €), z is recognized in h (0 < h < n). Consider a proper suffix of w. It either
equals ¢ and is recognized in state 0 < n or it can be written as va where v <, z.

According to the induction hypothesis, v is recognized in state [< h. Let Z = min(h) and
o = min(l). Due to Property 4.7, iv., Z <, z and ¥ <; v. We now prove that v <, z. If
l = h, then ¥ = Z. Now consider the case | < h. Since v <; z and ¥ <5 v, v <5 2. Due
to Property 4.7, vii., T £ ¥. Thus, since ¥ and Z both are suffixes of z, ¥ <; Z. Since %
is recognized in h and there is a transition by a from h, by Property 4.7, vi. we have that
Za € fact(p) and n = poccur(Za,p). Since Za € fact(p), Zaz <, p for some z € V*, hence
Taz <s p as well, hence ¥a is recognized. Since 7 is recognized in [, there is a transition by a
from ! to a state 0. We know that o = poccur(va,p) due to Property 4.7, vi. Since ta <; Za,
poccur(Ta, p) < poccur(Za,p) due to Property 4.6 and hence o < n. |

Property 4.13. The language factoracle is factor-closed:
w € factoracle(p) = fact(w) € factoracle(p) (p,w € V™)

Proof: Follows from Properties 4.11 and 4.12 and fact(w) = pref(suff(w)). O

Remark 4.14. For fact(p), the equality fact(p)” = fact(p") holds for all p € V*. The
equality factoracle(p)” = factoracle(p”) does not hold for all p € V*. An example of a p for
which the equality does not hold is p = baabba. The factor oracles for p and p” are given in
Figure 4.2. It is clear that bab € factoracle(baabba)” but bab ¢ factoracle((baabba)™). O

Due to Property 4.13, it must be possible to characterize a function skip(p) returning a set of
strings such that factoracle(p) = fact(skip(p)). The exact definition of this function skip is
still unclear, but the following two properties give some insight in the language factoracle(p):

69

Figure 4.2: Factor oracles for baabba and abbaab

Property 4.15 (Relationship between non-factor strings and repetitions). If there
are no repetitions of any symbol a in p, factoracle(p) C fact(p). Proof: We prove this
based on an induction hypothesis on the partial factor oracle constructed according to the
algorithm, with the suffixes of p upto p;...pm (i.e. of length > m — i + 1) already added to
the automaton. Our induction hypothesis is that the transitions in this partial factor oracle
are exactly those from j to 7 + 1 on pji; for 0 < j < m and those from 0 to j on p; for
1 < j < i and that the language recognized by this partial factor oracle is a subset of or equal
to fact(p).

In case ¢ = 1, the automaton clearly recognizes pref(p), and pref(p) C fact(p).

Assume that the induction hypothesis holds for 0 < j < 4. The algorithm will construct a
transition from 0 to ¢+ 1 by p;+1 in step 8 due to the absence of repetitions in p. New strings
recognized will be pref(piy1...pm), and pref(p;11...p,) C fact(p). Thus, the language
recognized is a subset of or equal to fact(p) and the transitions are exactly those from j to
7+ 1for 0 <j < m and those from 0 to j for 1 < j <i+1. O

Property 4.16. If there is no state ¢ > 0 in the factor oracle on p with at least 2 outgoing
transitions, factoracle(p) = fact(p).

Proof: In this case every path from state 0 to state m is labeled by a suffix of p. |

4.5 Construction based on trie

There is a close relationship between the data structures Trie(fact(p)) —the trie ([Fre60])
on fact(p)—recognizing exactly fact(p), DAWG(fact(p)) —the directed acyclic word graph
([CR94]) on fact(p)—recognizing exactly fact(p), and Oracle(p)—the factor oracle on p—
which recognizes at least fact(p). It is well known that DAWG(fact(p)) can be constructed
from Trie(fact(p)) by merging states whose right languages are identical (see for example
[CRY4]). The factor oracle as defined by Oracle(p) can also be constructed from Trie(fact(p)),
by merging states whose right languages have identical longest strings (which are suffixes of
p). An example of a trie, DAWG and factor oracle for the factors of abbc can be seen in
Figure 4.3.

Definition 4.17. We define Trie(S) as a 5-tuple <@, V, 6, €, F> where S is a finite set
of strings,) = pref(S) is the set of states, V' is the alphabet, § is the transition function,

70

Figure 4.3: (Left to right, top to bottom) Trie, DAWG and factor oracle recognizing
fact(abbc), fact(abbc) and fact(abbc) U {abc} respectively

defined by

ua if ua € pref(S)

o(u,a) = { L if ua & pref(S) (u € pref(S),a € V),

¢ is the single start state and F' = S is the set of final states. O

Property 4.18. For u,v € fact(p) we have :
wv € fact(p) A (Vw : uw € fact(p) : jw| < |v) = uv € suff(p)

uvy € fact(p) A (Vw : vw € fact(p) : |w| < |un1])
A uvy € fact(p) A (Vw : uw € fact(p) : |w| < |va]) = v1 =9

Property 4.19. For u € fact(p),
(Vw : uw € fact(p) : |w| < C) = (Vw : uvw € suff(p) : jw| < C)

Proof: = trivial. <: Let ux € fact(p), then (Jy : : uxy € suff(p)), hence (Jy : : |zy| < C),
and since |y| >0, |z| < C.

Using Properties 4.18 and 4.19, maxzp(u) can be defined as the unique longest string v such
that uv € suff(p):

Definition 4.20. Define maxzy,(u) = v where v is such that

uv € suff(p) A (Vw : vw € suff(p) : |jw| < |v])

Trie_To_Oracle(p = pips .. .Pm)

1: Construct Trie(fact(p))
2: for ¢ from 2 to m do

71

3: Merge all states u for which mazy,(u) = pi+1 ... pm, into the single state p; ... p;

The order in which the values of ¢ are considered is not important. In addition, note that it is
not necessary to consider the states u for which mazy(u) = p2...pm since there is precisely
one such state u in Trie(fact(p)), u = p1. Due to Property 4.18, it is sufficient to only consider
suffixes of p as longest strings.

Also note that the intermediate automata may be nondeterministic, but the final automaton
will be weakly deterministic (as per Property 4.4).

To prove that algorithm Trie_To_Oracle constructs Oracle(p), we define a partition on the
states of the trie, induced by an equivalence relation on the states.

Definition 4.21. Relation ~, on states of Trie(fact(p)) is defined by

t ~p u = mazy(t) = mazp(u) (t,u € fact(p))
Note that relation ~, is an equivalence relation. 0
We now show that the partitioning into sets of states of Trie(fact(p)) induced by ~y, is

the same as the partitioning of Trie(fact(pa)) induced by ~p,, restricted to the states of
Trie(fact(p)), i.e.

Property 4.22. t~pu=tr~p,u (tu€ fact(p),a V)

Proof:
t~pu

I

{ definition ~, }
mazy(t) = mazry(u)

{}

mazy(t)a = mazy(u)a

{ (%)}

Mape(t) = mazpa(u)

If

If

{ definition ~p, }

t ~po U
where we prove (x) by

V = MaTpa(u)

{ definition mazp, }

uwv € suff(pa) A (Vw : uw € suff(pa) : Jw| < |v])

I

{ u € fact(p), hence (3z : : uza € suff(pa)),
hence |za| > 0 and |v| > 0; suff(pa) = suff(p)aU {¢} }

72

wv € suff(p)a A (Vw : uw € suff(pa) : jw| < |v|)

]

{ |v| > 0, introduction v’ }
wv € suff(pla A (Vw : w # € A uw € suff(pa) : |w| < |v|) Av=1"a
{ suff(pa) = suff(p)a U {e} }

wv € suff(p)a A (Vw : w # e A uw € suff(p)a : |w| < [v]) Av="17"a

I

il

{w=va}

wv € suff(p)a A (Vo' : uw'a € suff(p)a : [w'a|] < [VVa|) Av=12a
{}

w € suff(p)a A (Vo' : uw’ € suff(p) : |v'| < P |) Av="7a
{v="a}

w' € suff(p) A (Vo' : v’ € suff(p) : |w'| < |V|) Av="1a

il

il

il

{ definition maz, }

v =mazp(u) ANv=1a

Ul

{ elimination v' }

v = mazp(u)a

O

Property 4.23. Algorithm Trie_To_Oracle constructs Oracle(p).

Proof: By induction on |p| = m. If m = 0, p = ¢, and Trie(fact(e)) = Oracle(e). f m =1,
p=a (a € V), and Trie(fact(a))=Oracle(a). If m > 1, p=za (zx € V*,a € V), and we may
assume the algorithm to construct part Oracle(x) of Oracle(za) correctly (using fact(ua) =
fact(u) U suff(u)a, Trie(fact(za)) being an extension of Trie(fact(z)), and Oracle(za) being
an extension of Oracle(z) (which is straightforward to see from algorithm Build_Oracle_2 as
well as [ACRO1, page 57, after Corollary 4]), and Property 4.22). Now consider the states of
this partially converted automaton in which suffixes of z are recognized. By construction of
the trie, there are transitions from these states by a. The factor oracle construction according
to algorithm Oracle_Sequential in [ACRO01] creates Oracle(za) from Oracle(z)+a (i.e. the
factor oracle for x extended with a single new state m reachable from state m — 1 by symbol
pm = a) by creating new transitions to state m from those states in which suffixes of = are
recognized and that do not yet have a transition on a. Since Trie_To_Oracle merges all
states t for which maz,(t) = a into the single state m, Oracle(za) is constructed correctly
from Trie(fact(za)). a

4.6 Conclusions and future work

We have presented two alternative construction algorithms for factor oracles and shown
the automata constructed by them to be equivalent to those constructed by the algorithms

73

Figure 4.4: Factor oracle recognizing a superset of fact(p) (including for example cace ¢
fact(p)) and alternative factor oracle with m + 1 states satisyfing Glushkov’s property yet
recognizing a different superset of fact(p) (including for example acacdace ¢ factoracle(p),
but not cace) and having less transitions, for p = abcacdace.

in [ACRO1]. Although both our algorithms are O(m?) and thus practically inefficient com-
pared to the O(m) sequential algorithm given in [ACRO1], they give more insight into factor
oracles.

Our first algorithm is more intuitive to understand and makes it immediately obvious, without
the need for several lemmas, that the factor oracle recognizes at least fact(p) and has m to
2m — 1 transitions.

Our second algorithm gives a clear insight into the relationship between the trie or dawg
recognizing fact(p) and the factor oracle recognizing a superset thereof.

Although an automaton-independent characterization of the language factoracle(p) remains
to be defined, we have given clear proofs that fact(p) C factoracle(p). In addition, we have
shown some sufficient conditions for fact(p) C factoracle(p) to hold.

We are still working on an automaton-independent characterization of the language. Such a
characterization would enable us to calculate how many strings are recognized that are not
factors of the original string. This could be useful in determining whether to use a factor
oracle-based algorithm in pattern matching or not.

As stated in [ACRO1], the factor oracle is not minimal in terms of number of transitions
among the automata with m + 1 states recognizing at least fact(p). We note that it is not
even minimal among the subset of such automata having Glushkov’s property (see Figure 4.4).

74

Part 111

The implementation

75

Chapter 5

From SPARE Parts to SPARE
Time: a new toolkit for String
PAttern REcognition in C++4

In this chapter, the design and implementation of SPARE TIME are discussed. Since the new
toolkit is based on the 1995 SPARE PARTS we will only briefly discuss some issues in library!
design and implementation in C+4. We then consider the 1995 version of SPARE PARTS
and how it was updated to use current C++ and Standard Template Library features. We
discuss the extension—based on the new taxonomy——of this 2003 version of SPARE PARTS
to SPARE TIME, and how to obtain this new toolkit.

As mentioned above, the work described in this chapter builds on previous work in the form
of the design and implementation of SPARE PARTS, which is described in [Wat95, Chapter 8
and 9]. The update of the 1995 version of SPARE PARTS to the 2003 version is also described
in some detail in a paper to be published in Software: Practice and Ezperience ([WCO03]).

5.1 Introduction

According to [GHJV95, p. 26],

A toolkit is a set of related and reusable classes designed to provide useful, general-
purpose functionality. Toolkits don’t impose a particular design on your appli-
cation; they just provide functionality that can help your application do its job.
They are the object-oriented equivalent of subroutine libraries.

Although Gamma et al. used the term reusable in the meaning of reuse in user applications,
the term can be used to refer to the ease with which a toolkit is redesigned or extended as
well. Since we will extend an existing toolkit, this meaning is important as well.

The first meaning of reusable, i.e. that of reuse within user applications, is met by the
original SPARE PARTS by design: the toolkit was designed to provide a collection of classes

'We will use the terms library, class library and toolkit interchangeably.

77

as described in the above definition. [Wat95, Chapter 8 and 9] discusses the design principles
and implementation aspects used to achieve this goal.

Our experience in updating and extending the original SPARE PARTS shows that that toolkit
indeed also satisfies the second meaning of reuse to a large degree. We will discuss this in
somewhat more detail in Sections 5.4 and 5.5.

The 1995 SPARE PARTS toolkit was developed with a number of aspects and design goals in
mind (see [Wat95, p. 217]). As we are not building a new toolkit, we will not repeat all these
here. Instead, we mention the ones that most relate to the update and extension of toolkits:

o The classes in the toolkit must have a coherent design, meaning that they are designed
and coded in the same style. They have a clear relationship and a logical class hierarchy.

e The client interface to the library must be easily understoed, permitting clients to make
use of the library with a minimum of reading.

e The efficiency of using the classes in the toolkit must be comparable to hand-coded
special-purpose routines—the toolkit must be applicable to production quality software.

It is clear that these aspects influence the changes we make in working towards the new
SPARE TIME toolkit. We will point out how we have taken them into account when we
discuss the update of SPARE PARTS and the extension of the 2003 SPARE PARTS in Sec-
tions 5.4 and 5.5 respectively.

5.1.1 Use of C++4

The original SPARE PARTS was implemented in the C++ programming language, due to that
language’s support for object-orientation and generics as well as its widespread availability.
Since effort was made not to use obscure features of C++ or features that were not generally
found in other languages, it would have been possible to use another programming language
for the new SPARE T1IME toolkit. We have refrained from doing this for a number of reasons:

e C++ is one of the few mainstream languages supporting generics; for Java for example,
limited support for generics has been added only in the most recent version of the
language, published in 2003.

e It would have taken quite some extra time to port the existing toolkit to another lan-
guage and then extend it, or to implement a new toolkit—of algorithms from both the
old and the new taxonomy parts—in such a language.?

e C++, although receiving a lot of competition from languages like Java, C# and Delphi,
is still in widespread use.

e C++ compilers are available for numerous platforms, whereas languages like C# and
Delphi are restricted to one or two platforms.

*We note that building a new toolkit from scratch in C-++ itself would surely have taken more time than
the approach of revising and expanding the existing toolkit, which we chose.

78

5.1.2 Useful references
Object orientation and C++

In this chapter, we assume that the reader is familiar with both C++ and object-oriented
terminology. A brief list of some object-oriented terms used in this thesis is given in Ap-
pendix B. [Wat95, Chapter 8] lists various books on object-oriented design and programming
as well as C++ that were available at the time. Based on that list, we give a short list of
books that are particularly useful and/or have become available since 1995:

e [Boo94], [Bud97], and [Mey98a] provide information on object-oriented design and pro-
gramming in general.

e [Lip99] and [Str97] are (basic resp. thorough) introductory books on C+-+.
o [Cop92], [Cop98], [SE90], and [VJ03] discuss various advanced C++ topics.
o [Mey98b], [Mey96], and [Dew02] offer C++ tips, tricks and techniques.

Toolkit design

Since we are not designing a library from scratch, we do not discuss the general process of
toolkit design here. We refer the reader to a number of relevant books instead, some of which
are mentioned in [Wat95] as well:

e [CE95], [Str97], and [Str94, Chapter 8] discuss general C++ library design.

[GHJIV95] and [BMR196] discuss design patterns (not related to pattern matching as
we discuss it), which play an important role in toolkit design.

[Aus99], [Jos99], and [Bre00] provide in-depth treatment of both generic programming
and the application and implementation of the Standard Template Library.

e [Ale01] combines the use of generic programming and design patterns to implement
generic components in C++. :

[Fow96] discusses best practices and guidelines for improving the design of existing code,
particularly when extending such code.

5.2 Code structure and class presentation

C++ source code is often split between a class declaration in a .hpp file and a class definition
in a .cpp file. We use a more fine-grained form of splitting classes. We separate the public
and private parts of the declaration, and the code of out-of-line member functions from those
that can be inlined, in order to make the code easier to access and understand:

e The public part of class class’s declaration will be in file class.hpp.

e The private portion of the class’s declaration will be in class_p.hpp.

79

e The class.cpp file contains all out-of-line member function definitions.

e The class_i.hpp file contains member functions which can be inlined for increased
performance.

The latter file is conditionally included into the class. hpp or the class. cpp file, depending on
whether the macro INLINING is defined or not. Inlining should be disabled during debugging,
or if the resulting executables would otherwise be too large.

Almost every class (of the two SPARE PARTS toolkit versions and SPARE TIME) has a class
invariant member function called c_inv which returns true if the class satisfies its structural
invariant and false otherwise. These invariants have been particularly useful in debugging
and extending the code, both because they often give insight into a class’s structure and
because when bugs arise, these are often detected by the class invariant function. Although
the c_inv member functions have therefore been left in the released code, they are only used
within assertions. They can be disabled by disabling assertions (which is done by defining
macro NDEBUG and/or by not defining macro DEBUG, depending on the C++ compiler used).

In Section 5.5, we will describe any new or expanded classes in a common format. The class
descriptions (similar to those in [Wat95, Chapter 9]) consist of:

1. The class name, and whether it is a User class or an Implementation class (see Ap-
pendix B).

2. A Files clause listing the base file name (which is followed by .hpp, -p.hpp, -i.hpp or
.cpp as described before).

3. A Description clause giving a description of the class’s purpose.
4. An optional Implementation clause describing implementation details of the class.

5. An optional Performance clause describing performance details of the class.

5.3 The design and implementation of SPARE Parts

The original, 1995 version of SPARE PARTS was the second generation string pattern match-
ing toolkit from the Technische Universiteit Eindhoven. The first toolkit, the EINDHOVEN
PATTERN KIT, had been a procedural C library, based on an earlier version of the original
pattern matching taxonomy ([WZ92]). Experience with this toolkit led to the development
of SPARE PARTS in C++ in order to overcome some deficiencies, mainly due to C’s memory
management and the difficulty in understanding the toolkit’s interface.

SPARE PARTs follows the structure of (a newer version of) the taxonomy more closely, makes
use of C++’s better memory management facilities, uses an easier interface and supports
multi-threaded use of a single pattern matching object.

We briefly describe the most important aspects of the original SPARE PARTS to give the
reader an idea of its design and implementation, before moving on to the 2003 version of
SPARE PARTS and SPARE TIME.

80

e In order to prevent the overhead of virtual function calls, a shallow inheritance hierarchy
was used (template classes were used instead, see below). The inheritance hierarchy thus
consists of:

— An empty class PM at the top of the pattern matcher hierarchy.

— Abstract classes PMMulti and PMSingle derived from PM. Each provides a mem-
ber function match, but their signature is different.

— Actual single keyword pattern matchers derived from PMSingle include PMKMP
(Knuth-Morris-Pratt), PMBM (Boyer-Moore) and PMBFSingle (a brute force pat-
tern matcher).

— Actual multiple keyword pattern matchers derived from PMMulti include PMAC
(for Aho-Corasick), PMCW (Commentz-Walter) and PMBFMulti (a brute force
pattern matcher).

e Template classes were used for the various automaton, shifter and skip loop classes used
by the pattern matchers:

— Machines ACMachineOpt, ACMachineFail and ACMachineKMPFail for PMAC.
— Match orders STravFWD, STravREV, STravOM and STravRAN for PMBM.

— Skip loops SLNone, SLSFC, SLFast! and SLFast2 for PMBM.

— Shifters BMShiftNaive, BMShift11 and BMShift12 for PMBM.

— Shifters CWShiftNaive, CWShift NLA, CWShift WBM, CWShiftNorm, CWShiftOpt
and CWShiftRLA for PMCW.

Although inheritance was not used here, inside each such category of classes the same
interface was used.

o Foundation classes, such as states, strings, containers, maps, tries and failure functions:

— Often these are not classes but primitive datatypes, to save overhead (State is
typedef’d to be an integer for example)

— No use of STL was made, since it had not been standardized and was not generally
supported at the time. Instead, proprietary classes String, Set and Array were
used, and no use of STL iterators was made.

e A call-back interface is used for the pattern matchers: the user of a particular pattern
matcher supplies both a text string and a pointer to a client-defined function to member
function match. Whenever a match is detected, this client-defined function is called
to handle the match(es) ending at a particular position. The advantage of the call-
back interface is its support for multi-threaded pattern matching using a single pattern
matching object. (See [WCO03, Subsection 3.1] for information on alternative interfaces.)

e By default, the entire ASCII character set is used as the alphabet (i.e. the alphabet
is represented by type char). This can be inefficient (in terms of the size of automata
and other data structures) when smaller alphabets are used, such as in the case of
DNA (where the alphabet consists of a, ¢, g and t). Therefore, SPARE PARTS has
rudimentary support for other alphabets: a different alphabet size and implementations

81

of functions alphabetNormalize and alphabetDenormalize can be defined (by default
these are the identity functions).?

For more detailed information on the original SPARE PARTS we refer the reader to [Wat95,
Chapter 9]. In particular, descriptions of all classes and data structures used in the original
toolkit can be found in [Wat95, Sections 9.3-9.5].

From the above description, it should be clear that the original SPARE PARTS toolkit was
well-structured. The use of primitive datatypes for many foundation classes, combined with
high-performance implementations of classes such as String, Set and Array, results in the
toolkit offering efficiency comparable to that of hand-coded special purpose routines.

5.4 Bringing SPARE Parts up-to-date

The original SPARE PARTS toolkit was developed in the early nineties and reached its final
form in 1995. At that time, the C++ programming language and the standard library—
including the Standard Template Library which had recently been developed—were still being
standardized. '

Because of the first reason, “every effort was made to use only those language features which
are well-understood, implemented by most compilers and almost certain to remain in the
final language.” This led for example to the call-back functions having to return a value of
type integer. The boolean type had only recently been added to the draft C+-+ standard and
was not yet supported by the compilers used to compile SPARE PARTS (versions of Borland
C++ and Watcom C++, see [Wat95, page 251]).

“Likewise, the use of classes from the proposed standard library, or from the Standard Tem-
plate Library, was greatly restricted.” ([Wat95, page 221]). As we saw in the previous section,
classes such as String, Array and Set were therefore implemented from scratch. The intention
in doing so was that they could later be replaced by standard library classes relatively easy.
In addition, no use of iterators was made, but proprietary traverser classes were used instead.

Finally, it is clear that SPARE PARTS makes extensive use of templates, which was a delib-
erate choice (as discussed in the previous section and—in more detail-—in [Wat95, Subsection
8.2.1] and [WC03]). The exact definition of templates in the C++ standard and implementa-
tion of template support in various compilers have not been totally stable in the past however,
which leads to some problems with current compilers, as we will see.

5.4.1 Using the Standard Template Library

The Standard Template Library has been standardized for a number of years now, and is
supported to a high level by most compilers. The implementations offer good performance
as well, and most C++ programmers are familiar with its structure and working. We think
that the use of STL classes improves understandability of the toolkit’s client interface, and
does not compromise efficiency. We therefore decided to replace the classes String, Array
and Set by their STL equivalents std::string, std::vector and std::set. Due to the coherent

3In fact, only alphabet sizes of at most 256 characters are currently supported, since the alphabet is
represented by type char.

82

design and clear structure of the original toolkit, it was relatively straightforward to replace
the proprietary classes.

For the string class, this could basically be achieved by typedef’ing String as std::string,
since the interfaces were (mostly) the same.

For the other two classes, more work was required: the interfaces of the original classes were
somewhat different from those of the STL classes. A number of options was available to deal
with this problem:

o Create a wrapper class around the existing classes, using the Adapter and/or Composite
design pattern ([GHJV95]). This class then translates the calls from one interface to
the other.

e Replace every reference to the classes directly, and update calls to the class’s interface
within the classes that used Array and Set.

Although the second choice meant more work (every call to a member function in the interface
of Array or Set that has a different name or signature in the interface of std::vector or std::set
has to be replaced), we opted for it nonetheless. The first choice would have led to an added
level of indirection, as each call to a member function of the wrapper class would lead to
a call to a member function of the wrapped class. Since classes Array and Set were used
throughout the toolkit, this would have had an impact on performance.

All in all, the impact of and effort involved in replacing the above proprietary classes by
appropriate STL counterparts was relatively small. This was due for a large part to the
consistent design and structure of the original toolkit. Effort was also made in the design
of the original toolkit to facilitate future replacement of these classes by STL components,
based on the version of STL available at that time (see [Wat95, Subsection 8.3].

5.4.2 C++ Language Issues

The C++ language itself has changed little based on the version of the language that was
in widespread use by 1995. As we mentioned, the boolean type was not used in the original
SPARE PARTS since it had only been recently added to the draft standard for the language.
We have replaced all use of integers as booleans by genuine booleans in the 2003 version. This
mainly meant changing the signatures of the c_inv member functions (checking the structural
invariant of a class) as well as the signatures of the call-back functions used in the example
applications provided with SPARE PARTS (test, kmpgrep, acgrep, bmgrep and cwgrep).

In addition to the introduction of the boolean type, some definitions and implementations
of template functionality have also changed in recent years. This resulted in some of the
template code no longer compiling under modern compilers. In the original toolkit, a num-
ber of template classes had operator<< declared as friend inside their class declaration,
without explicitly templatizing that function declaration itself (i.e. the compilers at the time
apparently used the explicit templatization of the whole class declaration for friend functions
declared inside the class as well):

83

template<class T>
class SomeClass {
public:

friend std::ostream& operator<<(std::ostream& os,
const SomeClass<T>& t);

};

This is no longer valid C++ according to the standard and does not work with current
compilers. We solved this in the new version by explicitly templatizing the declaration of the
friend function:

template<class T>
class SomeClass {
public:

template<class T2>

friend std::ostream& operator<<<>(std::ostream& os,
const SomeClass<T2>& t);

};

5.5 New or changed classes in SPARE Time

As we saw in Chapter 3, the most important changes to the taxonomy compared to the
original taxonomy are the generalization of Commentz-Walter suffix-based pattern matching
(including the introduction of different automata than just the trie recognizing suff(P)), the
introduction of new shift functions (mostly for the multiple-keyword generalized Commentz-
Walter algorithm, but including one for the single-keyword Boyer-Moore algorithm) and the
introduction of bit-parallel prefix-based pattern matching algorithms. The single-keyword
Boyer-Moore-Horspool shifter and the bit-parallel algorithms have not yet been implemented.

In this section, we first discuss how the Commentz-Walter pattern matcher in SPARE PARTS,
class PMCW, was generalized to support different automata. We then turn to the Commentz-
Walter shifter classes. We discuss the new shifter classes CWShiftBMH, CWShift NFS and
CWShiftMax that have been added to the toolkit, and how the signature of each of the
Commentz-Walter shifters’ shift function had to be changed. We also note how the actual
precomputation of the shift function values has not yet been generalized. Finally, we discuss
the use of automata classes other than class Trie with the PMCW class, for example class
Factoracle.

In creating the SPARE TIME toolkit from the SPARE PARTS toolkit by including the
above new or revised classes, it has been our goal to adhere to the design goals mentioned in

84

Section 5.1 on page 70. The three new shifter classes and the new automaton class Factoracle,
and the corresponding existing classes (i.e. the various CWShift... classes and the Trie class)
all have the same interface?. As a result, the coherency of the design of and clearness of the
relationship between classes of the toolkit is still the same. The client interface to the library
has not even changed, and in writing the new code, we have tried to achieve the same level
of efficiency as in the SPARE PARTS code.

5.5.1 The Commentz-Walter pattern matcher

We showed in Section 3.6 that it is possible to generalize Commentz-Walter suffix-based
pattern matching by using functions other than suff(P) for strengthening the guard of the
backward matching. In SPARE TIME, the PMCW class has therefore been adapted to
support automata other than the reverse trie on suff(P) (implemented using class Trie).
The PMCW class in SPARE PARTS had one template parameter, to indicate the particular
shifter class to be used. The new version takes a second template parameter, indicating the
type of automaton to use. The description of class PMCW, given below, is based on that
in [Wat95, Subsection 9.4.4].

It is important to note that, although the PMCW class has been generalized to support other
automata, the actual precomputation of various Commentz-Walter shifter classes has not.
Those shift functions that depend on the automaton itself will therefore currently not work
correctly with automata other than the reverse trie. To use the PMCW pattern matcher with
for example a reverse factor oracle or reverse DAWGS?, only shift functions whose preprocessing
do not depend on the automaton should therefore be used. These include CWShiftNaive,
CWShiftNFS and CWShiftMazx.

Implementation class PMCW
Files: pm-cw

Description: Class PMCW implements the Commentz-Walter algorithm skeleton. As we
described in Section 5.3, it inherits from PMMultiple and implements that class’s public in-
terface. The first template argument should be one of the CWShift.. shifter classes, providing
a safe shift distance during the text processing. The second argument indicates the type of
automaton to be used in the backward matching of the text, including for example a trie
recognizing suff(P)®, a DAWG recognizing fact(P)® or a factor oracle recognizing at least
fact(P)E.

Implementation: A PMCW contains a shifter object, a reverse automaton RAut, and a
CWOutput function (an output function for detecting a match). The constructor passes the
set of keywords to these subobjects.

Performance: Performance can be improved most easily by improving performance of the
subobjects (i.e. the shifter, the reverse automaton and/or the output function). In addition,

4In fact, the signature of the shifter classes’s shift function had to be slightly modified from the version in
SPARE PARTS, as we will see in Subsection 5.5.2.
5The DAWG is currently not implemented, see Subsection 5.5.3.

85

it might be possible to move the output of matches out of the inner loop of the algorithm, as
suggested in [Wat00].

5.5.2 The Commentz-Walter shifters

As mentioned before, SPARE TIME implements three new shift functions, by means of the
classes CWShiftBMH, CWShift NFS and CWShiftMaz.

In Chapter 3, the shift functions take I, v and r as parameters. Since none of the shift
functions implemented in the original SPARE PARTSs toolkit used the actual string v, the
function shift of each of the CWShift.. classes had the following signature:

int shift(const RTrie& t,
const char 1,
const State v,
const char r) const;

That is, the shift function took a reference to the reverse trie, the character [[1, the state of
the trie automaton reached after reading v, and the character 711. The No-Factor Shift—
implemented by class CWShiftNFS presented below—uses |v| however, while the Boyer-
Moore-Horspool function also needs to know the value v[1 in case |u| = 0. We therefore
needed to extend the function signature. It seemed somewhat inefficient however to keep
track of the complete v in the class PMCW, when only |v| and v]1 are ever used. We have
therefore extended the signature to the following:

int shift(const RTrie& t,
const char 1,
const State v,
const int vlen,
const char vrtakel,
const char r) const;

In SPARE TIME, the values |v| and v|1 are thus available to the shift distance computation
as well.

Implementation class CWShiftBMH
Files: cwshbmh

Description: CWShiftBMH implements the Boyer-Moore-Horspool shift distance of Defini-
tion 3.13.

Implementation: The implementation uses CharBM to give the shift distance.

86

Implementation class CWShift NES

Files: cwshnfs

Description: CWShiftNFS implements the shift distance 1 max(Iminp — |v|) of Algorithm
Detail 3.36. As can be seen from this definition, this shift function may be combined with
other shift functions, using class CWShiftMazx described below.

Implementation: The constructor computes and stores the value lminp as variable IminP
for efficiency reasons. The shift function simply returns maz(1, IminP — vlen).

Implementation class CWShiftMax
Files: cwshmax

Description: CWShiftMax implements a shift function that takes the maximum of two shift

distances. The two shift classes used for these distances are supplied as template arguments
to class CWShiftMaz.

Implementation: The implementation is almost trivial: the shift distance member function
returns the maximum of the return values of the shift distance member functions of the two
template arguments supplied to the constructor.

5.5.3 New automata

As described in Subsection 5.5.1, it is possible to use automata other than the reverse trie
recognizing suff(P) with the Commentz-Walter pattern matcher PMCW. In Chapter 3, the
DAWG recognizing fact(P)f and the factor oracle recognizing a superset thereof are men-
tioned as possibilities. Due to lack of time, these are not currently implemented as part of
SPARE TIME, although a simple version of the single-keyword factor oracle—in the form of
class Factoracle—is part of the toolkit. We plan to add the multiple keyword DAWG and
factor oracle construction algorithms in the future.

Implementation class Factoracle
Files: factoracle, tries

Description: The Factoracle template class implements a (currently single-keyword only)
factor oracle (Chapter 4). The class has a constructor taking a set of strings (of which
currently only the first one is used) which constructs the factor oracle corresponding to the
keywords. The direction in which the strings are traversed is determined by the string traverse
class supplied as the template argument of class Factoracle. Using traverser STravFWD leads
to a forward factor oracle, while STravREV leads to a reverse factor oracle. Both forward
and reverse factor oracles are typedef’d in tries.hpp.

Implementation: Like the Trie ([Wat95, page 248]), this class is implemented using a
StateTo < SymbolTo < State > >. The factor oracle is constructed according to the new
algorithm given in Section 4.2.

87

Performance: Memory space could be conserved by not explicitly storing the transitions
on the path spelling out the whole keyword(s), but this would lead to a loss of efficiency in
taking transitions of the factor oracle during pattern matching.

5.6 Obtaining SPARE Time

Although SPARE TIME is not currently available to the public, it will be made available at
some point in the not too distant future via http://fastar.cs.up.ac.za. More details on
how to use the toolkit will be made available at that time as well®.

The current version of SPARE TIME has been verified to compile succesfully using the
MIicROSOFT VISUAL STuDIO .NET 2002 C++ compiler. Since we have made an effort to
use only standard C++ language constructs and STL features, it should be relatively easy to
get the toolkit working under other recent compilers with good standards support.

®For an idea of the toolkit’s use, see the use of the 2003 version of SPARE PARTS as described in [WC03).

88

Part IV

Epilogue

89

Chapter 6

Conclusions

The work that is reported in this thesis contains a number of significant results, which we
summarize here by chapter.

Chapter 3 - A new taxonomy

In this chapter, we revised and expanded the original taxonomy of [WZ96, Wat95] , deriving
various algorithms and giving them a place in the taxonomy.

e The original taxonomy and the use of formal techniques in constructing it not only
helped in overcoming the three deficiencies mentioned in Section 1.1, but also made it
relatively easy to extend and generalize the taxonomy, as we did in Chapter 3.

e We gave two different derivations of the Boyer-Moore-Horspool algorithm, and showed
that they can both be added as variants of the Commentz-Walter (Section 3.4.2) resp.
Boyer-Moore (Section 3.5) algorithm skeleton.

e In Sections 3.7 and 3.8, we showed that factor- and factor oracle-based pattern matching
can be seen as variants of a generalized Commentz-Walter—just like the original suffix-
based Commentz-Walter pattern matching. Although this had been (implicitly) known,
we have explicitly shown that it also means that all shift functions can be reused.

o As shown in Subsection 3.9.3, there exists a bit-parallel Aho-Corasick algorithm, as
suggested by Bruce W. Watson.

e In Subsection 3.9.2, we succeeded in formally deriving the Shift-And, Shift-Or and
Multiple Shift-And bit-parallel prefix-based pattern matching algorithms and giving
them a place in the taxonomy.

Chapter 4 - Constructing factor oracles

In Chapter 4, we gave two new algorithms for factor oracle construction. In addition, we
mentioned and proved some properties related to the language recognized by a factor oracle.

e Two new algorithms for factor oracle construction (Section 4.2 and 4.5), although not
practically efficient, give more insight into factor oracles and their properties.

91

e We gave a new, clearer proof in Section 4.4 that the language recognized by a factor
oracle on a string is a superset of the set of factors of the string.

e In Section 4.6, we showed that the factor oracle is not even the smallest acyclic automa-
ton with Glushkov’s property recognizing the set of factors of the string.

Chapter 5 - From SPARE Parts to SPARE Time

In this chapter, we briefly discussed toolkit design. We then discussed the structure of the
original toolkit SPARE PARTS, and showed how we revised it to arrive at its 2003 version,
and then expanded it to get to the new toolkit, SPARE TIME.

e It was easy to revise and expand the original SPARE PARTS toolkit to SPARE TIME,
as the existing toolkit was very reusable (see Chapter 5).

e The use of STL instead of proprietary foundation classes in SPARE TIME was relatively
straightforward, as discussed in Section 5.4.1.

e Generalizing the Commentz-Walter pattern matcher and adding the new shift functions
was relatively easy (Section 5.5), although the actual generalization of shift function
precomputations to be compatible with automata other than a reverse trie has not yet
been implemented.

e The pattern matching algorithms should be implemented (for those algorithms for which
this has not already been done), benchmarked and compared, especially those algorithms
(such as the bit-parallel Aho-Corasick in Subsection 3.9.3) for which there are many
different and possibly interrelated aspects influencing performance.

92

Chapter 7

Future work

Although we have extended the original taxonomy and toolkit of keyword pattern matching
algorithms by adding numerous algorithms and algorithm variants, there are still many key-
word pattern matching algorithms that we have not considered. Possible future work on the
taxonomy and toolkit includes:

1. Implementing the bit-parallel prefix-based algorithms such as Shift-And and a bit-
parallel Aho-Corasick variant, derived in Section 3.9.

2. Deriving and implementing the (Multi-) BNDM algorithm ([NROO]), a bit-parallel factor-
based pattern matching algorithm.

3. Deriving and implementing the Wu-Manber algorithm ([WM94]), a block (instead of
single character) suffix-based pattern matching algorithm that is often efficient in prac-
tice for multiple keyword pattern matching (see [NR02, p. 74-76]).

4. Deriving and implementing Sunday’s variant of Boyer-Moore-Horspool ([Sun90}) to see
if it is indeed less efficient than Boyer-Moore-Horspool due to decreased locality of
reference (as mentioned in [NRO2, p. 26)).

5. Reconstructing the toolkit such that the suffix-based shift functions are precomputed
correctly for factor- and factor oracle-based Commentz-Walter pattern matching and
may thus be used for those as well.! From the literature it appears that for such
algorithms the no-factor shift (NFS) is often larger, and that therefore such suffix-based
shift functions are not used at all. It would still be interesting to see whether benchmark
results do indeed confirm this, or whether the small gains in shifts that can occur in
certain cases do outweigh precomputation times.

6. Looking into the possibility of a bit-parallel suffix-based pattern matching algorithm, i.e.
a bit-parallel version of (suffix-based) Commentz-Walter, and comparing its performance
to that of the (Multi-)BNDM algorithm.

INote that it is conceivable that there exist suffix-based shift functions for which such a generalization is
not possible, since they could use specific properties of a suffix automaton. This is related to how the shift
function discusses in Subsection 3.7.2 could only be used efficiently in combination with a DAWG used as a
factor automaton.

93

7. Deriving and implementing the algorithms discussed in [KST03]. This paper discusses
tuning string matching for pattern sets of 1000-100000 patterns. The algorithms pre-
sented combine bit-parallel algorithms—such as Shift-And, a bit-parallel Set Horspool
and MultiBNDM—with the Karp-Rabin filtering approach ([KR87)).

8. Improving the efficiency of multiple keyword suffix-based (Commentz-Walter) algo-
rithms (and possibly of factor- and factor oracle-based algorithms as well) by moving
the update of the set of matches out of the inner repetition ([Wat00]).

The current version of SPARE TIME has been verified to compile succesfully using the
MICROSOFT VISUAL STUDIO .NET 2002 C++ compiler. Since we have made every effort to
use only standard C++ language constructs and STL features, it should be relatively easy to
get the toolkit working under other recent compilers with good standards support. We plan
to create makefiles and test the toolkit under GCC 3.x ourselves in the near future (both on
the Intel/AMD platform as well as on the PowerPC/Apple G4 platform?).

In addition to this, we plan to incorporate the toolkit into FIRE STATION, an application
intended as a finite automata and regular expression “playground”. This application is cur-
rently under development as part of the master’s thesis of Michiel Frishert ([Fri}).

The algorithms that are in the SPARE TIME toolkit—and any new algorithms added to
it—should be benchmarked using various sets of input data. This would enable comparison
of the real-time efficiency of the algorithms discussed. The benchmarks results could also be
compared with other benchmarking data (such as that reported in [NR02]) to see whether
the results correspond with each other or not.

It would also be useful to develop a small configuration language (also know as little language
or Domain Specific Language (DSL)) to support use of the toolkit. In such a language, a user
who has little experience in or knowledge of pattern matching should be able to describe what
information he has on the size and composition of his text and pattern set, as well as what—if
any—restrictions there are on memory usage and preprocessing time. This description should
then lead to a particular algorithm from the toolkit being selected. Such a DSL could also
be developed for a larger field than just keyword pattern matching, including for example
support for regular expression and/or approximate pattern matching.

Similar taxonomies to that discussed in this thesis could also be constructed for a number
of related pattern matching problems. A toolkit could then be constructed for each of those
taxonomies, or the algorithms could be combined in a single toolkit to take advantage of
component reuse. The related fields include:

e Approximate pattern matching

o Regular expression pattern matching
e Multi-dimensional pattern matching
e Tree pattern matching

e Graph pattern matching

*Initial work indicates that it compiles and seems to function correctly under GCC on the PowerPC/Apple
G4 platform, with only a relatively small number of changes.

94

e Pattern matching on compressed text

Finally, as discussed in Section 4.6, an automaton-independent characterization of the lan-
guage recognized by a factor oracle is still an open question. In addition, it would be inter-
esting to formalize the algorithm that was used to come up with the alternative Glushkov
automaton with less transitions than the factor oracle, shown in Figure 4.4.

95

Appendix A

Algorithm and problem details

In this appendix we list the algorithm and problem details together with a short description.

P Examine prefixes of a given string in any order.

Py Examine prefixes of a given string in order of increasing length.

S Examine suffixes of a given string in any order.

S+ Examine suffixes of a given string in order of increasing length.

GS=8 Use guard strengthening to increment the length of a suffix only for as long

as a string which is a suffix of some keyword, preceded by a symbol is again
a suffix of some keyword.

GS=F Use guard strengthening to increment the length of a suffix only for as long
as a string which is a factor of some keyword, preceded by a symbol is again
a factor of some keyword.

GS=FO Use guard strengthening to increment the length of a suffix only for as long
as a string whose reverse is part of the language of the factor oracle on the
reverse of the set of keywords, preceded by a symbol is again part of that
language.

GS=S80 Use guard strengthening to increment the length of a suffix only for as long
as a string whose reverse is part of the language of the suffix oracle on the
reverse of the set of keywords, preceded by a symbol is again part of that
language.

EGC=RSA Usage of automaton recognizing the reverse of the set of suffixes of the key-
words to check whether a string which is a suffix of some keyword, preceded
by a symbol is again a suffix of some keyword.

97

RT

EGC=RFA

EGC=RFO

LMIN

SSD

ONE

LSKP

NLAU

OoPT

NLA

BMCW

BMH

NFS

OKW

The original name (in [WZ96]) of what we refer to by the combination of
details (Gs=s) and (EGC=RSA).

Usage of an automaton recognizing the reverse of the set of factors of the key-
words to check whether a string which is a factor of some keyword, preceded
by a symbol is again a factor of some keyword.

Usage of a factor oracle on the reverse of the keywords, to check whether
a string which is part of the language of the factor oracle, preceded by a
symbol is again part of the language of that factor oracle.

When using an automaton in one of the (EGC) details, construct this au-
tomaton on the prefixes of length equal to the length of the shortest keyword

instead of on the complete keywords.

Consider any shift distance that does not lead to the missing of any matches.
Such shift distances are called safe.

Use a safe shift distance of 1.
Use a property of the DAWG to maintain a variable representing the longest
suffix (of the recognized factor) that is a prefix of some keyword, and use

this variable as the basis for the safe shift distance.

No lookahead at the symbols of the unscanned part of the input string when
computing a safe shift distance.

When computing a safe shift distance use the recognized suffix and only the
immediately preceding (mismatching) symbol, strictly coupled.

When computing a safe shift distance do not look at the symbols preceding
the recognized suffix.

When computing a safe shift distance on the one hand use the recognized
suffix and the fact that the symbol preceding it is mismatching, and on the

other hand, but strictly independent, the identity of that symbol.

When computing a safe shift distance, use the first symbol compared against,
whether it is matching or not.

When computing a safe shift distance, use the fact that the recognized factor
preceded by the symbol preceding it is not a factor of any keyword.

(problem detail) The set of keywords contains only one keyword.

98

OBM

INDICES

MO

SL

MI

Introduce a particular algorithm skeleton as a starting point for the deriva-
tion of the different Boyer-Moore variants.

Represent substrings by indices into the complete strings, converting a
string-based algorithm into an indexing-based algorithm.

A match order is used to determine the order in which symbols of a potential
match are compared against the keyword. This is only done for the one-
keyword case (OKW). Particular instances of match orders are:

FWD

REV

oM

The forward match order is used to compare the (single) keyword
against a potential match in a left to right direction.

The reverse match order is used to compare the (single) keyword
against a potential match in a right to left direction. This is the
original Boyer-Moore match order.

The symbols of the (single) keyword are compared in order of as-
cending probability of occurrence in the input string. In this way,
mismatches will generally be discovered as early as possible.

Before an attempt to match a candidate string and the key-

word,

a ‘skip loop’ is used to skip portions of the input string

that cannot possibly lead to a match. Particular ‘skip loops’ are:

NONE

SFC

FAST

SLFC

No ‘skip loop’ is used.

The ‘skip loop’ compares the first symbol of the match candidate
and the keyword; as long as they do not match, the candidate string
is shifted one symbol to the right.

As with (SFC), but the last symbol of the candidate and the key-
word are compared and possibly a larger shift distance (than with
(SFC)) is used.

As with (FAST), but a low frequency symbol of the keyword is first
compared.

The information gathered during an attempted match is used (along with
the particular match order used during the attempted match) to determine
a safe shift distance.

Matches are registered by their endpoints.

99

SP

BPSP

INV

AC

AC-OPT

LS

AC-FAIL

KMP-FAIL

BPAC

Maintain the set of suffixes of the currently attempted match that are pre-
fixes of a keyword, in order to easily compute new matches.

Use bit-parallellism to maintain the set described in detail (sp).

Inversion of the bits used in detail (BPsP), leading to the removal of a par-
ticular bitvector and less bit-operations, if detail (OKW) has been applied.

Maintain a variable, which is the longest suffix of the current prefix of the
input string, which is still a prefix of a keyword.

A single ‘optimized’ transition function is used to update the state variable
in the Aho-Corasick algorithm.

Use linear search to update the state variable in the Aho-Corasick algorithm.

Implement the linear search using the transition function of the extended
forward trie and the failure function.

Implement the linear search using the extended failure function.

Use bit-parallelism to encode the automaton used in detail (Ac-OPT).

100

Appendix B

Object-oriented terminology

In this appendix we introduce the most important object-oriented terms used in Part III of
this thesis. These terms include those used in [Wat95].

User: A class intended for use by a client program.
Client: A class defined in the client program.

Implementation: A class defined in the toolkit for exclusive use by the toolkit. The class
is used to support the implementation of the client classes.

Foundation: Those implementation classes which are simple enough to be reused in other
(perhaps unrelated) class libraries.

Abstract: A class of which no instances can be created.

Interface: An abstract (pure virtual) class which is declared to force a particular public
interface upon its inheritance descendants.

Base: An inheritance ancestor of a particular class.

Derived: An inheritance descendant of a particular class.

101

Bibliography

[ACTS]

[ACRO1]

[Ale01]
[AR99]
[Aus99)
[BM77]

[BMR196]

[Boo94]
[Bre00]
[Bud97]

[BYG89)]

[CCG94]

AV. Aho and M.J. Corasick. Efficient string matching: an aid to bibliographic
search. Communications of the ACM, 18:333-340, 1975.

Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Efficient Experi-
mental String Matching by Weak Factor Recognition. In Proceedings of the 12th
conference on Combinatorial Pattern Matching, volume 2089 of LNCS, pages 51—
72, 2001.

Andrei Alexandrescu. Modern C++ Design. Addison-Wesley, 2001.

Cyril Allauzen and Mathieu Raffinot. Oracle des facteurs d’un ensemble de mots.
Technical Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée,
June 1999.

Matthew H. Austern. Generic Programming and the STL: Using and Extending
the C++ Standard Templates Library. Addison-Wesley, 1999.

R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications
of the ACM, 20, 1977.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture. A System of Patterns. John Wiley & Sons Ltd.,
1996.

Grady Booch. Object oriented analysis and design, with applications. Ben-
jamin/Cummings, 2nd edition, 1994.

Ulrich Breymann. Designing Components with the C++ STL: A New Approach
to Programming. Addison-Wesley, 2000.

Timothy A. Budd. An introduction to object-oriented programming. Addison-
Wesley, 2nd edition, 1997.

R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. In N. J.
Belkin and C. J. van Rijsbergen, editors, Proceedings of the 12th International
Conference on Research and Development in Information Retrieval, pages 168-
175. ACM Press, 1989.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string matching algorithms.
Algorithmica, 12(4/5):247-267, 1994.

103

[CE95]

[CH97)

[Cop92]

[Cop98]
[CRO4]

[CW79a]

[CW79b]

[CZW03a]

[CZWO03b]

[Dew(2]

[DF83]

[Dij76]
[DS90]

[Fow96]

[Fre60]
[Fi]

[GHJIV95]

[Hor80]

M.D. Carroll and M.A. Ellis. Designing and coding reusable C++. Addison-
Wesley, 1995.

Maxime Crochemore and Cristophe Hancart. Automata for Matching Patterns. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 2.
Springer, 1997.

James O. Coplien. Advanced C++: programming styles and idioms. Addison-
Wesley, 1992.

James O. Coplien. Multi-Paradigm DESIGN for C++. Addison-Wesley, 1998.

Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University
Press, 1994.

B. Commentz-Walter. A string matching algorithm fast on the average. In H.A.
Maurer, editor, Proceedings of the 6th International Colloguium on Automata,
Languages and Programming, pages 118-132. Springer Verlag, 1979.

B. Commentz-Walter. A string matching algorithm fast on the average. Technical
Report TR 79.09.007, IBM Germany, Heidelberg Scientific Center, 1979.

Loek Cleophas, Gerard Zwaan, and Bruce W. Watson. Constructing Factor Ora-
cles. In Proceedings of the Prague Stringology Conference 2008, 2003.

Loek Cleophas, Gerard Zwaan, and Bruce W. Watson. Constructing Factor Ora-
cles. Computing Science Report 03/?7? Technische Universiteit Eindhoven, 2003.

Stephen C. Dewhurst. C++ Gotchas: Avoiding Common Problems in Coding and
Design. Addison-Wesley, 2002.

Edsger W. Dijkstra and W.H.J. Feijen. A Method of Programming. Addison
Wesley, 1988.

Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Se-
mantics. Springer-Verlag, 1990.

Martin Fowler. Refactoring: Improving the Design of Ezisting Code. Addison-
Wesley, 1996.

E. Fredkin. Trie memory. Communications of the ACM, 3(10):490-499, 1960.

Michiel Frishert. FIRE Station: a FInite automata & Regular Expression play-
ground. MSc thesis, Technische Universiteit Eindhoven, to be published.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

R. Nigel Horspool. Practical fast searching in strings. Software Practice and
Ezperience, 10(6):501-506, 1980.

104

[Jon83]

[Jos99]

[Kal90]

[KMP77]

[KR87]

[KSTO3]

[Lip99]

[LLOO]

[LL02]

[LLAOZ]

[Mar90]

[Mey96]

[Mey98a]

[Mey98b]
[NROO]

[NRO2]

H.B.M. Jonkers. Abstraction, specification and implementation techniques, with
an application to garbage collection. Mathematical Centre Tracts, 166, 1983.

Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference.
Addison-Wesley, 1999.

Anne Kaldewaij. Programming: The Derivation of Algorithms. Prentice Hall,
1990.

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM
Journal of Computing, 6:323-350, 1977.

R. Karp and M. Rabin. Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development, 31:249-260, 1987.

Jari Kytojoki, Leena Salmela, and Jorma Tarhio. Tuning String Matching for Huge
Pattern Sets. In R. Baeza-Yates et al., editor, Proceedings of the 1/th conference
on Combinatorial Pattern Matching Conference, volume 2676 of LNCS, pages
211-224, 2003.

Stanley B. Lippman. Essential C++. Addison-Wesley, 1999.

Arnaud Lefebvre and Thierry Lecroq. Computing repeated factors with a factor
oracle. In L. Brankovic and J. Ryan, editors, Proceedings of the 11th Australasian
Workshop on Combinatorial Algorithms, pages 145-158, 2000.

Arnaud Lefebvre and Thierry Lecroq. Compror: on-line losless data compression
with a factor oracle. Inf. Process. Lett., 83(1):1-6, 2002.

Arnaud Lefebvre, Thierry Lecroq, and J. Alexandre. Drastic improvements over
repeats found with a factor oracle. In E. Billington, D. Donovan, and A. Khod-
kar, editors, Proceedings of the 13th Australasian Workshop on Combinatorial
Algorithms, pages 253-265, 2002.

A.J.J.M. Marcelis. On the classification of attribute evaluation algorithms. Science
of Computer Programming, 14:1-24, 1990.

Scott Meyers. More Effective C++. Addison-Wesley, 1996.

Bertrand Meyer. Object-Oriented Software Construction. Addison-Wesley, 2nd
edition, 1998.

Scott Meyers. Effective C++. Addison-Wesley, 2nd edition, 1998.

Gonzalo Navarro and Mathieu Raffinot. Fast and flexible string matching by
combining bit-parallelism and suffix automata. ACM Journal of Experimental
Algorithmics, 5(4), 2000. http://www.jea.acm.org.

Gonzalo Navarro and Mathieu Raffinot. Flexible pattern matching in strings:
practical on-line search algorithms for texts and biological sequences. Cambridge
University Press, 2002.

105

[SE90]

[Str94]
[Str97]

[Sun90]

[vdE92]

[VJ03]

[Wat95]

[Wat00]

[WC03]

[WMO92]

[WM94]

[WZ92]

[WZ96]

Bjarne Stroustrup and M. Ellis. The annotated C++ reference manual. Addison-
Wesley, 1990.

Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edi-
tion, 1997.

D. M. Sunday. A very fast substring search algorithm. Communications of the
ACM, 33(8):132-142, 1990.

J.P.H.W. van den Eijnde. Program derivation in acyclic graphs and related prob-
lems. Computing Science Report 92/04. Technische Universiteit Eindhoven, 1992.

David Vandevoorde and Nicolai M. Josuttis. C++ Templates: The Complete
Guide. Addison-Wesley, 2003.

Bruce W. Watson. Tazonomies and Toolkits of Regular Language Algorithms.
PhD thesis, Technische Universiteit Eindhoven, 1995.

Bruce W. Watson. A new family of Commentz-Walter-style multiple-keyword pat-
tern matching algorithms. In Proceedings of the Prague Stringology Club Workshop
2000, pages 71-76, 2000.

Bruce W. Watson and Loek Cleophas. SPARE Parts: A C+-+ toolkit for String
PAttern REcognition. Software: Practice and Experience, 2003. To be published.

S. Wu and U. Manber. Fast text searching allowing errors. Communications of
the ACM, 35(10):83-91, 1992.

S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Technical Re-
port TR-94-17, Department of Computer Science, University of Arizona, Tucson,
AZ,1994.

B. W. Watson and G. Zwaan. A taxonomy of keyword pattern matching algo-
rithms. Computing Science Report 92/27. Technische Universiteit Eindhoven,
1992.

B. W. Watson and G. Zwaan. A taxonomy of sublinear multiple keyword pattern
matching algorithms. Science of Computer Programming, 27(2):85-118, Septem-
ber 1996.

106

	Abstract
	Samenvatting
	Contents
	List of Figures
	Preface
	Part I Preliminaries
	Chapter 1 Introduction
	Chapter 2 Notation and definitions
	Part II The taxonomy
	Chapter 3 A new taxonomy of keyword pattern matching algorithms
	Chapter 4 Construction factor oracles
	Part III The Implementation
	Chapter 5 From SPARE Parts to SPARE Time: a new toolkit for String PAttern REcognition in C++
	Part IV Epilogue
	Chapter 6 Conclusions
	Chapter 7 Future work
	Appendix A Algorithm and problem details
	Appendix B Object-oriented terminology
	Bibliography

