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Chapter 1

Introduction

Modern industry defines new software demands, notably complex functionality,
high degree of correctness and short development time. This requires new ways
of software development. An important approach in this field is component
technology. One of the main ideas of component technology is to provide the
functionality of a piece of software (component) as a well-defined set of inter-
faces where an interface is a set of operations. Components can interact in a
system only through these interfaces. Interfaces abstract from implementation
details of a component and allow selecting a part of the functionality of the com-
ponent. Another advantage of interfaces is that they can be reused on several
components. This means shorter development times, but also the use of stan-
dardised interfaces, resulting in components that are easier to use. Interfaces
also allow for the specification of interactions of (parts of) a system at the early
stage when the components have not been chosen. A collection of interfaces,
called an interface suite, together with a corresponding set of interactions thus
becomes a new building block.

An important issue is consistency. This is the main topic of our investigations.
We assess this issue at various levels. The overall approach is the following:
To precisely define what the consistency requirements are we provide formal
semantic models, one for structure and one for behaviour. From that we argue
what the consistency checks should be. Finally, we assess a tool to see how
consistency checks can be automated. We identify which checks apply and
what the input for such checks is. This is, e.g., relevant for tool development.

In Chapter 2 we consider consistency at the level of the structure descriptions
of interface suites, described by interface role diagrams. We represent these
formally, using sets and relations. We then investigate in this model consistency
of single suites. Furthermore, consistency of inheritance is addressed, to enable
combining, extending and refining interface suites.

In Chapter 3 we turn to behaviour, described by sequence diagrams. Again
we first consider consistency for single suites. For inheritance the situation is



quite open, various notions exist. In a separate Chapter, 4, we discuss some
alternatives and propose a version that we consider practicable. Some examples
illustrate the notion.

In Chapter 5 we assess a tool that is under development (a joint TU/e Computer
Science/Technology Management and Philips effort). It appears that subtle
differences, in the choice of the definition of consistency as well as in the chosen
algorithm for checking, influence the outcome of checks in our example cases.
The examples from Chapter 4 are used to show this.



Chapter 2

Interface Role Diagram(s)

2.1 Introduction

An interface role diagram identifies the interfaces and the roles associated with
them. The interfaces are introduced to provide communication between “com-
ponents”, where these components are called roles in ISpec. When we compare
this to Object Oriented Modelling, the roles can be seen as the object classes
and an interface role diagram can more or less be compared to a (UML) Class
Diagram. [[0O,UML]]

An interface can then be seen as a set of methods of one particular class and
several interfaces will arrange the methods of a role (class) in any desired way.
The roles can also have private methods, being methods not belonging to any
of the interfaces of the role but rather methods of the role itself. These meth-
ods are not meant for external use, communication between the roles, but for
internal use only.

When an interface “belongs” to a role we call it a Provided Interface of that
particular role. The role provides the interface.

On the other side of the communication there can be a roles “using” an inter-
face. We call this a Required Interface of those roles.

Furthermore we can have inheritance relations between roles for reusing or spe-
cialising purposes, like the inheritance relation we know from Object Oriented
Modelling. We'll discuss inheritance further on in this chapter.

2.2 IR-diagram: What’s in the picture?

In this section we discuss the ISpec interface role diagram through three ex-
amples. We start with a simple example,“One suite without inheritance”, to
introduce all the basic information an interface role diagram consists of. We
introduce inheritance in section 2.2.2: “One suite, with inheritance between
roles”. Finally we discuss all aspects of an IR-diagram in section 2.2.3: “Multi-
ple suites, with inheritance between suites and roles”.



2.2.1 One suite without inheritance

An example of an interface role diagram is given in the picture below. It consists
of only one suite and there are no inheritance relations between roles.
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fig. 1: interface suite s1

An interface role diagram without any inheritance relations (like the one in
figure 24) consists of:

Suite : A set of roles, interfaces and methods (and the relations between
them) forms a suite, represented by a large rectangle and identified
by a suitename (s in the picture above).

Roles : The smaller rectangles represent the roles of an interface-role
diagram. They are identified by (unique) rolenames. {ri,rs} is

the set of roles in the picture above.
Provided : The roles are drawn within a suite, meaning that they belong

to that particular suite. A role is therefore provided by a suite, or
a suite provides roles.

Interfaces : Interfaces are depicted by little circles. All interfaces have unique
names. ({i1,i2})

Provided : Each interface has to “belong” to one specific role. The interface

is provided by that role. This relation is depicted by a solid line

- between a role and an interface. . .
Required : A dashed arrow from a role to an interface means that this

interface can be “used” by the role. This interface is called a
Reguired Interface of a role. There may be several roles that
require a certain interface.

Methods : An interface consists of a set of methods. All methods have
unique names. The interface role diagram in the picture above
has the set {my1, M2, M21} of methods.

Provided : Each method “belongs” to a unique interface. The interface
provides the method.

From the above we can conclude that a suite has to contain the follbwing sets
and relations:



Definition 1. One suite without inheritance

1.1 A set of suite identifiers. All suites (in this case only one) have unique
names.

1.2 A set of role identifiers. All roles have unique names.

1.3 A set of interface identifiers.All interfaces have unique names.

1.4 A set of method identifiers.All methods have unique names.

1.5 A relation Provides Role. Each role is related to its suite by this relation,
PR.

1.6 A relation Provides Interface. This relation, PI, relates each interface to its
role.

1.7 A relation Requires Interface. An interface is provided by one role, but can
be used by several ones. The Requires interface relation, RI, between roles and
interfaces is introduced to capture this information.

1.8 A relation Provides Method. Each method belongs to one, unique, interface.
This relation, PM, captures this information and links each method to its in-
terface.

2.2.2 One suite, with inheritance between roles

In this section we introduce inheritance. In ISpec interface role diagrams can
have inheritance relations between two roles. These roles can be of the same
suite or of different suites. The difference between the two cases lies on the
implementation level, where a suite can be seen as a black box. Once a role
inherits from a role of another suite (discussed in the following section) it only
“knows” the specification details of that role, but not the implementation de-
tails. In some cases it can be useful, although not modular, if we do know
implementation details of roles we inherit from. We can use our inheritance
relation within the suite for this purpose, since one suite will be implemented
as a whole.

S2

5o 0% %

s

fig. 2: interface suite s

Suite so provides roles r3, r4 and 5. Methods m3; and mg3s are provided by
interface i3. Interface i3 is provided by r3 and required by r4.
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A triangle head arrow shows the inheritance relation. It points from the role
that is a specialisation to the role that is specialised. We want this relation to
satisfy the following two properties:

- Irreflexivity: We do not want a role to be a specialisation of itself. - Transitiv-
ity: If a role inherits from a parent-role, it also inherits from all grandparent-
roles.

These two properties, or restrictions, also imply that our inheritance relation
will not be cyclic. This is nice, since we don’t want inheritance to be cyclic,
because inheritance means increase of information.

We will now give a definition of a suite including the inheritance relation between
roles, thereby extending the definition of the previous section.

Definition 2. One suite with inheritance between roles.

2.1 A set of suite identifiers, S. {1.1}
2.2 A set of role identifiers, R. {1.2}
2.3 A set of interface identifiers, I. {1.3}
2.4 A set of method identifiers, M. {1.4}

2.5 A relation Provides Role, PR, between a role and its suite. {1.5}

2.6 A relation Provides Interface, PI, between an interface and its role. {1.6}
2.7 A relation Requires Interface, RI, between an interface and one or more
roles. {1.7}

2.8 A relation Provides Method, PM, between a method and its interface. {1.8}

2.9 A relation Specialises Role, SR, to capture the inheritance between two roles.
The first role specialises the second role, like a son inherits from its father.

2.10 Restriction: Relation SR has to be irreflexive.
2.11 Restriction: Relation SR has to be transitive.

2.2.3 Multiple suites, with inheritance between suites and
roles

As we mentioned in the previous section, we can both have inheritance relations
between roles of the same suite and between roles of different suites. The latter
is the more restrictive one in the sense that we only know the specification of the
included, inherited, suite. In this section we introduce the inheritance relation
between suites, used to specify which suite will be included by the other. The
roles of a suite can then inherit from the roles of the included suite. In the
following example the suites of our two previous examples will be combined to
one new interface role diagram.

11
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fig. 3: interface suites s and s2 combined

The IR-diagram of figure 3 describes an extension of suite s1 by suite s3 using
inheritance. Suites s; and ss are the ones described in the previous two sections.
We can now deduce two kinds of inheritance relations, between suites and be-
tween roles:

- suites: The fact that there is a double arrow from ss to si, tells us that suite
so inherits from suite s;. This means that roles of sy can inherit from roles of
81.

- roles: The triangle head arrows identify the inheritance relation between roles.
We see that these arrows can be drawn within a single suite, discussed in the
previous section, as well as between suites.

Restrictions/requirements:

Multiple suites

If a role requires an interface, this interface has to be part of the same suite.
Therefore the role that provides the interface has to be provided by the same
suite as the requiring role. In other words: One suite provides both the providing
role as the requiring role(s) of an interface. Graphically this means that if we
draw a dashed arrow across suite borders, we will not create a valid IR-diagram.
We are then violating the so called closed world assumption.

Inheritance

Both inheritance relations have to be irreflexive and transitive. A suite cannot
be a specialisation of itself (irreflexive) and when a suite (son) inherits from a
suite (father) that in its turn inherits from yet another suite (grandfather) the
son inherits from the grandfather as well (transitive). The same goes for roles.

12



If a role is a specialisation of a role from another suite, then the suites have
to inherit from each other accordingly. In our example this means that role r3
can only inherit from role 71 (from another suite) as long as the suite of role
r3, being s9, inherits from the suite of role r1, being s;. We can see that this
requirement is met because of the double arrow that points from ss to s3.

Our three given examples have discussed all properties and requirements our
ISpec interface role diagrams have. We will summarize these in the following
definition.

Definition 3. Interface Role Diagram.

3.1 A set of suite identifiers, S. {2.1}
3.2 A set of role identifiers, R. {2.2}
3.3 A set of interface identifiers, 1. {2.3}
3.4 A set of method identifiers, M. {2.4}

3.5 A relation Provides Role, PR, between a role and its suite. {2.5}

3.6 A relation Provides Interface, PI, between an interface and its role. {2.6}
3.7 A relation Requires Interface, RI, between an interface and one or more
roles. {2.7}

3.8 A relation Provides Method, PM, between a method and its interface. {2.8}

3.9 A relation Specialises Role, SR, between two roles. {2.9}
3.10 A relation Specialises Suite, SS, to capture the inheritance between two
suites.

3.11 Restriction: Relation SR has to be irreflexive. {2.10}

3.12 Restriction: Relation SR has to be transitive. {2.11}

3.13 Restriction: Relation SS has to be irreflexive. -

3.14 Restriction: Relation SS has to be transitive.

3.15 Restriction: Interfaces are required and provided by the same suite.

3.16 Restriction: Specialisation of roles (SR) of different suites has to imply
that the according suites are also related (SS).

Remark: ISpec visualisation In this paper we use a visualisation of interface

role diagrams with multiple suites, that slightly differs from the usual ISpec
visualisation. The difference is shown beiow.

13
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fig.4: Two identical representations of an interface suite

As we can see there are two different (but equivalent) ways of representing the
inheritance of an interface suite to create a new one. Although the ISpec-way
of drawing corresponds to the uppermost diagram, we prefer the lower one for
two reasons:

- Inheriting an interface suite corresponds with including a software component
in Object Oriented programming. We use the double arrow to explicitly describe
this includes relation, where the box-in-box notation leaves it implicit.

- Multiple inheritance will lead to the drawing of boxes in boxes in boxes using
the ISpec-way. Using the double arrow for suite inheritance will clarify the

14



picture.
Both ways are identical however and have just as much expressive power.

2.3 Formal representation

In this section we discuss a formal representation of interface role diagrams.
First we introduce some formal notation we are going to use.

Notation

We will introduce types S,R,I and M for respectively Suite-, Role-, Interface
and Method-identifiers. All elements of our set of suite identifiers S will have
to be of type S, which means that S has to be an element of the power set of
S: S € p(S).

Regarding relations we introduce following notation:

The type Ar— B consists of all relations whose range is contained in A and
whose domain is contained in B.

The type Ar— B consists of all relations whose range is contained in A and
whose domain is equal to B.

The type A <~ B consists of all relations whose range is contained in A and
whose domain is contained in B and where each input (€ B) is related to at
most one output (€ A).

The type A ¢~ B consists of all relations whose range is contained in A and
whose domain is equal to B and where each input (€ B) is related to exactly
one output (€ A).

R> : The domain of relation R. T R € A<~ B, R>=B.

R<: The range of relation R. f R € A<+ B, R< C A.

If we have a relation R, R € A <+ B means that R is a relation of type 4 <— B.
With regard to a relation we will define the following notation:

{a~b} C R = a{R)b: Output a is linked to input b by relation R. We can
use the notation R.b=a as well, but only in the case of relations that relate
input b to exactly one output a.

An Interface Role diagram, consisting of a set of interface suites, with their in-
heritance relations, is correct in terms of ISpec rules if it is of type PROJ, which
stands for Project. We introduce this project type here to formally specify the
properties and restrictions a set of interface suites has to satisfy.

We construct a 10-tuple to represent a project, consisting of:

- 4 sets of identifiers: Suites (S), Roles (R), Interfaces (I) and Methods (M).

- 4 relations not concerning inheritance: Provides Role (PR), Provides Interface
(PI), Requires Interface (RI) and Provides Method (PM).

- 2 relations concerning Inheritance: Specialises Suite (SS) and Specialises Role
(SR).

This leads to a 10-tuple of the form (S,R,I, M, PR, PI,RI,PM,SS, SR). Now
we have to formulate the properties and restrictions our 10-tuple has to obey to
be a correctly defined project. For example we want the relation PI (provides

15



interface) to have as domain all interface identifiers (I ), a range consisting of
role identifiers (R) and we want the relation to be functional. Together this
means that each interface is provided by exactly one role.

We will now introduce the following formal definition of a project (a set of
interface suites):

Definition 4. Formal definition of an Interface Role Diagram (Project).
PROJ ={(S,R,I,M, PR, PI,RI,PM,SS, SR)

| S € p(S)

R € p(R)

I € p(I)

Me p(M)

PR e S<R

Ple R¢—1

RI € Rr—1

PMel—M

88 e Sr—§

SR € R—R

V(z,y,2 |y (SS)z A z(S8) 2| y(55) 2)

V(z,y,z | y (SR)z A z(SR) z | y {SE) 2)

Y(z i} ~(z (SS) 7))

V(z |} ~(z (SR) z))

¥(r,r' | ' {SRYr | PR.r' = PR.r V PR.r' (SS) PR.r)
V(i,r | r (RI)i | PR.r = PR.(PI.i))

}
Meaning:
S € p(S) . set of suite identifiers. All suite identifiers are of type S {3.1}
R € p(R) : set of role identifiers, of type R {3.2}
I e p@) . set of interface identifiers, of type I {3.3}
Me p(M) : set of method identifiers, of type M {3.4}

PR € S < R : provides role. Each role belongs to exactly one suite. {3.5}
PI € R<— I : provides interface. Each interface is provided by exactly one role. {3.6}
RI € R— I :requires interface. An interface is required by 1 or more roles. {3.7}
PM € I < M: provides method. A method is provided by exactly one interface. {3.8}
5SS € S~ S : specialises suite. A suite can use and/or can be used by zero or

more other suites for specialisation purposes. {3.10}
SR € R»— R : specialises role. A role can be a specialisation of zero or more

other roles. {3.9}

16



V(z,y,2 |y (55)z Az (5S5) 2 | y (SS5) 2)

V(z,y,z |y (SR)z A 2 (SR) z | y (SE) 2)

V(z i ~(z (55) z))
V(z || ~(z {(SR) z))

V(r,r' ! 7' {(SR)r | PR.r' = PR.r V PR.r' {5S) PR.r):

Y(i,r | 7 €RI)i | PR.r = PR.(PL.3))

: The relation SS (Specialises Suite) is

transitive. {3.14}

: The relation SR (Specialises Role) is

transitive. {3.12}

: The relation SS is irreflexive. {3.13}
: The relation SR is irreflexive as well.

{3.11}

If a role 7’ specialises a role r, either
roles r and 7’ are from the same suite
or the suite that provides r’ has to be a
specialisation of the suite that provides
r. {3.16}

: If an interface is required by a role, the

interface has to be provided by a role of
the same suite. {3.15}

One of the main reasons we use inheritance is to reuse the interfaces of the
parent roles. If such a parent role provides an interface, we say that a child role
provides that interface as well. The child role may also overwrite (specialise)
the interface, as long as it meets the specification requirements of the interface.
We will not treat the detailed specification of interfaces and its methods in this
paper, for that we refer to [[6]].

From the above we could conclude that an interface can be provided by more
than one role, where in the (formal) definition we explicitly state that an in-
terface has to be provided by exactly one role. When we said that a child role
provides the interface as well, we should have said that a child role inherits
the providing of the interface. A child role has the obligation to “provide” its
parents interfaces as well.

Almost the same holds for the requiring of an interface. The only difference is
that a child role is not obligated to require all interfaces that its parent requires,
but it has the right to do so. One (or several) role(s) of a particular suite will
require an interface, they wil be related by the Requires Interface relation (RI),
and all descendants of the(se) role(s) will have the right to require this interface
as well. The descendants will not be related by the interface directly (i.e. via
the Requires Interface relation), but indirectly. They will be related to the role
that requires the interface via the Specialises Role relation (SR) and therefore
earn the right to the interface as well.

We will now construct two functions obligs and rights that assign to a role of a
project all interfaces that role has to “provide” respectively may “require”.

17



It

obligs € (p(I) «—<R) <= PROJ

r € (obligs.(S,R,I,M, PR, PI, RI,PM,SS, SR))>

reR

(obligs.(S, R, I, M, PR, PI, RI, PM,SS, SR)).r'

{i| v (PDi} U UL | €PD) 5} | 7' ¢SR) 7 | 7}

rights € (p(I) <<« R) <-4 PROJ

r € (rights.(S, R,I, M, PR, PI,RI,PM,SS, SR))>

reR

(rights.(S, R, I, M, PR, PI, RI, PM,SS, SR)).r'

{i | P (RD&} U U{{G [ 7 (RD) 5} | ' €SRy7 | 7}

obligs: A role has to provide its ‘own’ interfaces, but besides that it also has the
obligation to provide the interfaces of its ancestors. T he function obligs returns

the set of interfaces a role (of a certain project) has to provide.
rights: If a role requires an interface, the role has the right to use that interface.

Rights are inherited through specialisation as well, the function rights returns
the interfaces a role may require.

18



2.3.1 Checklist

- All Suite names are disjoint.

- All Role names are disjoint.

- All Interface names are disjoint.
- All Method names are disjoint.

- All roles belong to a suite and to one suite only.
- All interfaces belong to a role and to one role only.
- All methods belong to an interface and to one interface only.

- The suite-inheritance relation is both irreflexive and transitive.
- The role-inheritance relation is both irreflexive and transitive.

- A role may inherit from a role of the same suite, or from a role of another
suite. In the latter case the suites of the roles have to be related by the suite-
inheritance relation accordingly.

- Interfaces are required and provided by roles of the same suite.

2.4 Examples

We will now discuss some examples of projects to illustrate that the complex
looking 10-tuple is actually really straightforward. We will revisit the examples
used in chapter 2.2 and show how a (set of) interface suite(s) will be represented
formally.

2.4.1 One suite without inheritance

We will start again with the simple interface role diagram of chapter 2.2.1 that
consists of one suite only, where there is no inheritance between roles. We will
construct a project, Proji1, and show that our interface role diagram is indeed
correctly defined since all our requirements are met.

s St
1j: My, Mp2

n 9]

fig. 5: interface suite s1

Projy = (S1,R1,11, M1, PRy, PI1, RI;, PM1, 551, SRy)

19



With:

Sl = {81}
Ry = {riyr2}
Iy = {i1, 42}

My = {mi1, mi2, ma1}

PRy = {s1-r1, 5172}

PIy = {ri—i1, mawia}

RIy = {rywig, rowis}

PM 1= {i1w~myq1,i1~mig,iz-~mar}
SS1 =0

SR, =0

fl

As we can see all suite-, role-, interface- and methodnames are automatically
disjoint, since our sets cannot contain two identical elements. Two roles with
the identical names drawn in an interface role diagram, an error, would become
one and the same role in our formal representation.

Furthermore we can see that the relations all satisfy their domain and range

restrictions:
PRy € S1¢—R; PRy =R; and PRyi<C Si. All elements of

R; are mapped to exactly one element of 51,
V(r,s:,8; | 8 €PR1) T A 85 (PR1) T | 8;=5;).
Pl € Ry« 1 :P11>=11,P11<§R1and
v v \7’(7,, T, Ty : T (PR]) AN T3 (PRl) ) : T,;Zf'j).

RI]_ S R]_)—l I1 :RI]_> = I1 and RIl< g Rl. Note: If we hada.n ad-
ditional role r3 here, we would have been allowed to
add {ra—i;} to relation RI; but not to relation PI,.
This because an interface may be required by several
roles, but only provided by one.

PMlellé—iMl :PMyp = Mo, PM<C L4 and
V(m, 5,45 | 4 {PR1)m A i (PR m | i;=i;).

581 € S1—S1 : Since relation SS; is empty, both its domain and its

range are contained in Si.

SR, € Ry —(R; : Analogous.

Since both relations SS1 and SRi are empty, the four restrictions concerning
transitivity and irreflexivity of the inheritance relations are automatically sat-
isfied.
V(i,r | r {RI1)i| PRy.r = PRy.(PI1.4)) : This restriction also holds:

T1 (RIl) ’iz: PRl.T:L:Sl and PRl.(Pll.’iz):PR1.’l'2:81

) (RI1) ’ill PR1.7'2=.31 and PRl.(Pll.il)‘:PRl.lesl

We can conclude dat Proj; is a correctly defined project, Proj; € PROJ, since
all restrictions are met.

Since the inheritance relation SR; is empty, the obligations and rights of the
roles of Proj, can be deduced easily, they will simply be the provided respec-
tively required interfaces of those roles.
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(obligs.Proj1).r1
= {definition of obligs}

{i |r€PIy i} U U{{G | r €PI1) 5} | r1 (SR | 7}
= {SR,=}

{i | r1€PI1) i}
= {{r1-is} C PI1}

{i1}

(obligs.Proj1).ro
= {definition of obligs}

{i lr2(PIy i} U UG | r €PID) 5} | 2 (SRy) 7 | 7}
= {SR,=0}

{i | 72 (PI) §)
= {{ro—is} C PIi}

{i2}

(rights.Projy).r1
= {definition of rights}

{i | ri€RIY i} U US| 7 €RI) j} | rikSRy T | 7}
= {SR.=2}

{i | r1€RI1) 1}
= {{r1wi2} C RI1}

{i2}

(rights.Proj1).ra
= {definition of rights}

{i{r2€RIy i} U UG | r(RID) j} | r2 (SR 7 [ 7}
= (SR,=2}

{i | r2 (RI4) i}
= {{rewi1} C R}

{i1}

2.4.2 One suite, with inheritance between roles

We will construct project Projs, from the example of 2.2.1.
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iz mg;, M3z
I3 O 4

Is

fig. 6: interface suite s2

PTOj2 = (S2a R27[2)M2a PR27 PI2) RI27 PMZa 5521 SR2)

With:
Ss = {s2}
Ry = {rs,r4,75}
I, = {is}

My = {ma1,m32}

PRy = {s9~r3, 89074, 5275}
PIZ = {7’3“@3}

RIz = {T‘4M’i3}

PM o= {ig~ma1,iz~m3a}
552 = @

SR2 = {r5wr3}

_All project restrictions are met for Proj also:

- All suite-, role-, interface- and methodnames are disjoint.

- Relations PRs, PIo, RI, PM 3, 5S5 and SR satisfy the domain and range prop-
erties.

Both 555 and S5 are irreflexive and transitive.

The required and provided interfaces are of the same suite.

The obligs and rights functions of Proja:
(obligs.Proja).T3
{definition of obligs}

{i | rs¢PIo)i} U U{{j |7 €PI) 5} | rs(SRa) 7 | 7}
= {=3(r }i r3(SRo) 7}

{i | rs€PI2) i}
= {{ranis} C PI5}

{is}
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1

(obligs.Projs).r4
{definition of obligs}

{i | ratPI2)i} U UG | 7 (PI2) 5} [ rakSRa) T | 7}
{=3(r §i ra(SRy) v}

{i | ra¢PI5) i}
{=3G 1§} ra (PI5) i}

1]

(o0bligs.Projs).Ts
{definition of obligs}

{i | rs (PI2) i} U U{{J | r (PI2) j} | rs(SRo) [ v}
{rs ¢5R2) 3} .

{i | rstPI)i} U {j | rs tPI3) j}
{{rswis} C PIo}

{isz}

(rights.Projs).r3
{definition of rights} :

{i | ratRI2)i} U U{{j | T (RI2)j} | r3(SRa) T | T}
{~3(r || r3 tSRa) 1)}

{i | r3{RI2) i}
{30 1} rs (RI i)}

%]

(rights.Projs).r4
{definition of rights}

{i | ratRI2) i} UU{{J | 7 (RI2) 5} | ra(SRa) 7 | 7}
{-3(r || T2 ¢SSRy 1)}

{i | raRI3) i}
{{re—is} C RIo}

{is}

(rights.Projs).rs
{definition of rights}

{i | rs€RIz) i} U UL{G | r (RI2) 5} [ rs SRy T | v}
{rs (SR2) r3}

{i | rsCRI2) i} U {j | s (RI2) j}
{=3( { rs {RI2) i V r3 (R 9)}

@
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2.4.3 Multiple suites, with inheritance between suites (spe-
cialisation) and roles

81

ij: my, myz
N h I
FAN \\\\30/ AN
ip: my
Sz
i3: mg;, M3
13 0% T4
Is
fig. 7: s9 inherits from 53
Projs = (Ss, Rs, I3, M3, PR3, PI3, RI3, PM 3, SS3, SR3)
With:
Sz = {s1,82} =5 USs
Ry = {ri,re,r3,74,75} =Ry URy
I3 :{i1>i27i3} :Il ’ UIz
M3 = {mjy1, M1z, Ma1, M31, M32} =M; U M
PR3 = {8171, 5172, S2°T3, $2°T'4, SgT5} = PRy U PR
PI3 = {r1wiy, rowiz, T3i3} = PI; U PI,
RI3 = {r1wia, rowis, rais} = RI, U RI,

PM 3= {iz~myy,i1~mas, ig~may, iz~ma1, iz~maz}= PM1U PM>
553 = {Szwsl}
SR3*= {r3—ry,r4-Te, 7573}

The 10-tuple Projs is not a project. All restrictions are met, except one, tran-
sitivity of relation SR3®. We have r5 {SR3) r3 A r3 (SR3) r1 which should imply
that we have r5 (SR3) r1 as well. If we look at figure 7 we can see that there is
indeed no arrow from role r5 to role 71, but we can also see that 5 does inherit
from r1, because 7 is the grandfather of rs.

If we change SR3® into SRg = {ra«ri,74-T2, r5-73,T5T1 }, all restrictions are
met and Projs is a well defined project.

The obligs and rights functions of Projs:
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(obligs.Projs).r
= {definition of obligs}

{i | ri€PIs)i} U UL | r €PIs) j} | ra¢SRay | 7}
= {=3(r i r1(SR3) 1)}

{i | r1 €PI3) 3}
= {{r1-i1} € PI3}

{i1}

(obligs.Projs).re
= {definition of obligs}

{i|r2€PIgyi} UU{{s | r€PIs)j} [ r2(SRa) T | T}
= {-3(r i r2(SR3) )}

{i | r2€PI3) 1}
= {{ra—ia} C PI3}

{i2}

(obligs.Projs).r3
= {definition of obligs}

{i | rs€PIz)i} U U{{j | r €PIs) j} | ra(SRa) 7 | r}
= {rs(SR3) r1}

{i | rs€¢PIs)i} U {j | r1 ¢PI3) j}
= {{rawis} C PI3; {r1~i:} C PI3}

{i3,81}

(obligs.Projs).rs
= {definition of obligs}

{i 1 rakPI3)i} U U{{j | r (PIs)j} | r4a(SR3) 7 | 7}
= {ra(SR3) 2}

{i | ratPIg)i} U {j | r2(PI3) 5}
= {{ra—iz} C PI5}

D U {is} = {iz}

(obligs.Projs).rs
= {definition of obligs}
{i | rs€PIz)i} U U{{j | r (PI3) j} | rs (SRs) T | v}
= {rs(SR3) r3 A 75 (SR3} 1}
{i | rs€PI3)i} U {j | r3(PI3)j} U {k | r1(PI3) k}
{{rswis} C PI3; {r1~i1} C Pl3}

@ U {is} U {ir} = {is,ia}

As we can see role rs should indeed have interface 71 in it’s obligation-set,
because (grandfather) role r; provides this interface.
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(rights.Projs).r1
{definition of rights}

{i | r1RIz)i} U U{{j | r (RI3) 5} | r(SRs)r | v}
{-3(r }| r1 (SR3) 1)}

{i | r1(RI5) i}
{{r1+i2} C RI3}

{i2}

(rights.Projs).ro
{definition of rights}

{i| ra€RIg)i} U U{{j | r (RI3) j} | r2(SR3) T | 7}
{=3(r {i r2(SR3) 1)}

{i | ro€RI3) i}
{{ro—i;} C RI3}

{i1}

(rights.Projs).r3
{definition of r’igﬁts}

{i | ratRIs)i} U U{{j | 7 (RI3)j} | rs{SRg)7 | 7}
{rs(SR3)r1}

{i | r3(RI3)i} U {j [ r1(RI3)j}
{{r1~is} C RIs}

DU {iz} = {ia}

(rights.Projs).ra
{definition of rights}

{i | ratRIz)i} U U{{j | r (RI3) j} | r4(SRg)r |}
{r4 (SR3) r2}

{i| r4(RI3)i} U {j | r2 (RI3) 5}
{{ra—iz} C RI3; {rz—i1} C RI3}

{iz} U {i1} = {ir, i3}

(rights.Projs).rs
{definition of rights}

{i|rs(RIs)i} UU{{j | r(RI3)j} [ rs(SRa)r | 7}
{rs (SR3)r3 A r5 (SR3)r1}

{i | rs(RIs)i} U {j | r3(RI3) j} U {k | r1(RI3) k}
{{riniz} C RI5}

DU DU {is} = {iz}
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2.4.4 An erroneous example

So far we have only seen interface role diagrams that are well defined. We
have discussed a number of restrictions that have to be satisfied on creation
of an interface role diagram. Now we will discuss an example where we have
deliberately made a number of mistakes to show that our restrictions can be
violated. We will show what these mistakes are and explain why they will lead
to a faulty interface role diagram.

- . $1
132 my), My
e
~—
N Iy o)
~~s\‘ /
~
AN = A
e
12: Moy
52
i3 Mgy, M3z
I3 O T4
A /7
’
’
4
B T /
’
’
7
!
Is 7
1)
I/C
PN /
7
7
ﬂ /
/
’
7
/
/
7
S:
’I F 2
/& ~\~~‘
2 Mg RN
D e
:D Ts Is
P Feae E
-~
Se,
ig0 mgz
G

I3

fig. 8: An interface role diagram containing some errors.

There are eight errors in the picture above, A-H.

A: The suite inheritance relation is cyclic. Since we demand our inheritance
relations to be both transitive and irreflexive, an interface role diagram contain-
ing such a cycle will not be a correctly defined project.

B: The role inheritance relation is cyclic and therefore cannot be both transitive
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and irreflexive.

C: Role r4 requires an interface that is provided by a role of a different suite.
Note that both the suite and the interface have names that are not unique.

D: There are two interfaces called ip. All interfaces should have disjoint names.
E: Two roles r5. Rolenames should be disjoint.

F: Two suites s3. Suitenames should be disjoint.

G: Two methods m3;. Methodnames should be disjoint.

H: Role rg does not belong to a suite. It should belong to exactly one suite.

We will now represent all information we get from figure 8 formally. in terms of
sets and relations and verify our project restrictions.

Projerr = (Se; Rey ey My PRe, PIc, RIo, PM ¢, 5SS, SRe)

With:
Se = {51732, 32} = {31132}
Re = {Tl, T2,73,T4,T5,T6, TB}
Ie - {ih 12, 7:37 14}

M, = {mi1,m13, Mao, Ma1, M31, M32}

PR, = {8171, 81573, 82°T'3, S2°T'4, S3-T5, S2°T'6 }

PI, = {riwiy, rowia, rais, reiz, T5via)

RI, = {r1wig, Toniy, Tavnis, Tania, Terig, Tsin)

PM = {iy~ma1,i1~mag, ta~Ma1, i3°Ma1, i3~M32, 1220, 431}

58¢* = {8981, 52-°52, 5182}

58 = {32”51, 891859, 5182, 31"‘51}

SRe*= {ranr1,TanTs,T5T3, 6 Ts, T1T6, T5 T8}

SRe = {rs=ri,r4re,T5T3, 765, 1176, T5TS,

TEATL, T T1, T1°T1, T6 T3, T19°T3, T3°T3, T1°T'5, T'3°T5, T5°T'5, T3~ T8, T5°T6, 7'6“’“"'6}

*Inheritance relations without the inclusion of transitivity.

We will now verify our project restrictions, Proj e € PROJ?

Disjoint names:

As we can see we still have sets of (automatically disjoint) Suite-, Role-, Interface-
and Methodnames. Our set of suites however consists of only two elements,
where we should have three, since we have named two suites the same. This
means we should be very careful with the disjointness of the names, since a
union of two identical names will not automatically lead to a violation of a
restriction.

Domain and range restrictions:

PR, € Se ¢ R, : The domain restriction of the relation PR, is not met. Role
rg is an element of the set of roles Re, but is not related to a suite by the
Provides Role relation PR. Error H.

PI. € R, < I, : This restriction is not met either. Interface is is related to
both ro and rg. Each interface has to be provided by exactly one role. We can
see that this error is a result of the fact that two interfaces are called 49, error
D.
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RI. € R.r—i I, : This restriction is met. Each interface is required by at least
one role.

PM, € I, <+ M,: Method mgz; is provided by both i3 and 74. Error G indirectly
falsifies this restriction.

S8e € S¢S, : Both the domain and the range of relation SSe consist of
suites, i.e. elements of S.. Therefore this restriction is met.

SRe € Re— R, : Both the domain and the range of relation SR, consist of
roles. The restriction is met.

Transitivity and irreflexivity restrictions:

V(z,y,2 | y €SSz Az (SSe) z | y €5S.) 2) : The Suite inheritance relation SSe
is transitive. If we just use our suite inheritance arrows from the picture to form
our suite inheritance relation, we would have the relation SS.*. The relation
SS.* is not transitive. We’ve seen this occur in the last section as well. For
now, we’ll just add transitivity to this relation by hand, we will look into this
when we discuss the extension of a project in chapter 2.7.

V(z,y,2 | yESRe) x A T (SRe) z | y (SR,) z) : Role inheritance encounters ex-
actly the same problem as suite inheritance. When we take all role inheritance
arrows we acquire relation SR.*, which is not transitive. We constructed the
transitive relation SR, on behalf of testing irreflexivity.

V(z Il =(z €55¢) z)) : The suite inheritance relation SS, is not irreflexive. Our
suite inheritance is cyclic, error A, as can be seen easily in the picture. When
we add our transitivity to this, we’ll have each suite within the cycle also inher-
iting from itself and therefore being reflexive. In fact, the relation SS¢* (where
transitivity was not incorporated) is not irreflexive either. The reason for this
is simply because we have two suites named sy inheriting from each other.

V(z |} =(z ¢SR.) z)) : Role inheritance is not irreflexive either. Again we have
a cycle (error B) and all four roles in the cycle inherit from all their ancestors,
which includes themselves. We can see that when we omit the inherent tran-
sitivity of the inheritance, relation SR.*, we will not detect reflexivity. This is
quite obvious, because we don’t see any inheritance arrows pointing from a role
to itself.

The two remaining restrictions: '

V(r,r' | r' {5Re)r | PRe.r’ = PRer V PRe.r’ {55¢) PRe.r) : All except one of
our inheritance relations between roles are either within the same suite, or be-
tween suites that inherit from each other by suite inheritance and in the same
direction. The same direction means that when suite s; inherits from suite s,
a role of s; may inherit from a role of suite sg, but not the other way round.
The one inheritance relation that falsifies this restriction is the one involving role
rg, since PR..rg does not exist. Y{(i,r | r {RI¢)i | PRe.r = PR..(PI..3)) : Error
C should directly violate this restriction, because role r4 requires an interface
that is provided by a role from a different suite. However, this suite was not
named properly and was also called s. Furthermore the interface that role 4
wrongly requires, interface s, was also named incorrectly, since it also occurs in
suite s7. This will lead to a violation of this restriction, since Plc.ia = {r¢, 72}
and {re, 72} is not an element of the domain of PR..
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What we can conclude from this erroneous example is that we especially have
to be very careful with the names or our suites, roles, interfaces and methods.
Furthermore the transitivity of our inheritance relations does not explicitly fol-
low from our interface role diagram.

2.5 Constructing a well defined project

When we create interface role diagrams, we frequently make use of one or more
existing interface suites to inherit from. New roles are created to possibly inherit
from old roles. Additional interfaces with new methods are created to provide
new functionality. In the previous sections we concluded that we encountered
problems trying to formalise interface role diagrams consisting of multiple suites.
We want to construct our projects through composition and extension of single
suites, as the following figure shows:

A/]e PROJ ? (2.3)

Cpﬁi poseProj (2.6)

— ExtendProj (2.7)

e PROJ? (2.3)

—

fig. 9: Constructing larger projects.

2.6 Composing projects

In this section we are going to describe the composition of two independent in-
terface role diagrams. Composition of two interface role diagrams, i.e. projects,
means merging them together with as result having one larger interface role
diagram containing both of them. By independent we mean that there are no
relations between the two projects, which in our case means no inheritance rela-
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tions. The reason for making this composition will become more clear when we
do allow using inheritance relations in the next section, where we will discuss
the extension of a project.

/oG Tl
. Ao/
e PROJ 4 H
i | . € PROJ
O ]
V-
e PROJ ?

fig. 10: Composition of two projects.

Composition of two projects seems to boil down to a simple union of the two,
which is actually almost the case. We do not introduce new inheritance relations,
neither do we introduce new roles, interfaces or methods. We only join existing
and well defined sets of Suites, Roles, Interfaces and Methods as well as the
relations between them together. Well defined means that we have two projects
(¢ PROJ) where all our previously stated restrictions are met.

A simple union of the two without adding anything new will automatically
mean that all restrictions are still met, or not? This is almost true, except
for the disjointness restriction of Suitenames, Rolenames, Interfacenames and
Methodnames. :

We will introduce a function ComposeProj to formally state these restrictions
as well as the result of composing two projects, which indeed will be “simple”
union.
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ComposeProj € PROJ ¢~ PROJxPROJ

((Sl, Ry, ..., SRl), (52, Rs, ..., SR2)) € ComposeProj>

Si1NS, =0
RiNRy, =0
ILNnl=0
MiNnMy=0

(S, R, ceey SR) = C’omposeProj.((Sl, Rl, cvey SR]_), (52, Rz, vany SRz))

i

S =85 USs

R =Ry URs

I =1 U,

M =M; UM,
PR = PR; U PR»
PI =PIy U PI,
RI = RI; U RI,
PM= PM; U PM,
SS =857 U SS,
SR = SRy, U SRs

2.7 Extending a project

When we create interface role diagrams, we frequently make use of one or more
existing interface suites to inherit from. These interface suites can be success-
fully described individually as projects. In the previous section we discussed
the composition of two projects to form a correctly defined project consisting
of both of them. In this section we will discuss what restrictions are to be met
when we are making an extension of a project (possibly a composition of several
ones), to again construct a correctly defined project.
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e 30/ e PROJ

N\ 7 € PROJ ?

J

fig. 11: Extending a project by a single suite.

We will now introduce a function EztendProj that constructs a new project
(correctly defined interface role diagram) on basis of an old project and a newly
added suite. This added suite is also a 10-tuple of sets and relations, but we
don’t know if any of our restrictions are met yet (especially the ones concerning
inheritance).
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SUITE = p(8)x p(R) x (L) x p(M) x
(S—R) x (R—T) x (R—T) x (I—M) x (S—S) x (R—R)

ExtendProj € PROJ <~ PROJxSUITE

((Solth Roidy s SRold); (Snewa Roew; s SRnew)) € ExtendProj>

il

#Snew =1

Snew N Sold =0

Rpew N Ry = %]

Trew N Iog = %)

Mopew N Mo = %]

PRpew € Snew < Roew

Pl ew € Rpew < Inew

Rlpew € Rpew ™ Inew

PM new € Inew ¢~ Mpew

SSnew € Snew — Sold

SRnew € R'new — (Rold U Rnew)
v(r ” _1(7' (SRnew+) T))

V(r,r' |7 € Roa A" {SRpew) T | PRpew.m’ €SSnew) PRota-T)

(S, R’ sevy SR) = Eztendej.((Sold, Rold, ey SRold)a (Snew, Rnew: eery SRnew))

il

S = Sold U Snew

R =Rus U Ruew

I =1, U Inew

M =Mus U Mpey

PR = PR,g U PRpew

PI = Plyg U Plyey

RI = RI g U Rl ey

PM= PM g U PM 0y

SS = 8Spa U SSpew U {s"~s | 3(s' | 8" €SSnew) s’ N &' €SS oa) 8)}

SR = SRpig U SRpey U {r"~r | 3(r" | 7" (SRpew ™) A (7' €SRog) 7 V 7' {SRpew) )}

Explanation:

domain restrictions:

- Only one new suite is added (at a time).

- All suite-, role-, interface- and methodnames have to be disjoint.

- The 4 Provides and Requires relations have to meet their domain and range
properties.

- New suite inheritance is possible between the new suite and one or several old
suites.

- New role inheritance is possible between a new role and an old role or between
new roles.

- New role inheritance will have to be a-cyclic. The * in SRpew’ denotes the
transitive closure of the role inheritance relation.
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- Role inheritance between a new role and an old role has to imply that there
is also a suite relation between those two roles.

result of ErtendProj function:

When all domain restrictions are met, extending a project almost boils down
t6 a simple union of the old project and the new suite. Only the inheritance
relations need some additional attention to apply to our transitivity demands.
A new suite inheriting from an old suite means the new suite also inherits from
all the ancestors of the old suite. The same goes for roles, although roles can also
inherit from roles of the same suite. This means we have to make inheritance
between new roles transitive as well as inheriting from the ancestors of possible
old roles.

2.8 Behaviour

Now we want to specify possible behaviour of a set of IR-diagrams (i.e. a
project). In the next chapter we are going to discuss sequence diagrams to
specify the exact behaviour of our projects, or that part of behaviour we find
relevant. In this section we will discuss what all possible behaviour of a project
consists of only having the information of our interface role diagram.

All possible sequences of method-calls and -returns are now possible, as long
as these methods are called on the right interface by the right role. We are
only discussing single-threaded behaviour here. The behaviour can be seen as
a tree-structure, where the first method-call is made from the root. This root
can be seen as the user of the system and may call each single method of an
interface of a role. The next action can then be either of the folowing:

- The role makes an internal action. We will neglect this, since we are only
concerned in interface-calls and -returns.

- The method-call is returned.

- Another method (of an interface of a role) is called.

When a method-call is returned, the role that called the method has to take the
next action. When a method is called on an interface of a(nother) role, that
role has to take the next action.
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it

C = TxRxIxM
T = seq.C

B = p(C)

mainBehaviour € B < PROJ
(t,r,i,m) = mainBehaviour.proj
{proj = (S,R,1, M, PR, PI,RI, PM, 55, SR)}

re€R

iel

meM

i € (obligs.proj).r

i {PM)m

V(¢! cint!c € subBehaviour.(r, proj))

subBehaviour € B «~«RxPROJ

(cr, (S, R, I, M, PR, PI, RI, PM,SS, SR)) € subBehaviour> = cr € R

(t,rr,i,m) = subBehaviour.(cr,(S,R,I, M, PR, PI, RI, PM,SS, SR))
{(S,R,I, M, PR, PI,RI,PM, 55, SR) = proj}

mE€R

iel

méeM

i € (rights.proj).cr

i € (obligs.proj).rr

i EPMYm

V(¢! cin t!c € subBehaviour.(rr, proj))
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Chapter 3

Sequence Diagrams

3.1 Introduction

Sequence diagrams are a means to describe behaviour. One sequence diagram,
like the name says, describes one possible sequence of actions. The actions
we consider are method-calls and -returns on the interfaces. One role calls a
method on an interface of a(nother) role. That role may return this call, or call
a method on some other interface of some role. The communication we describe
with sequence diagrams is therefore the communication between roles, through
methods of interfaces. We'll only discuss single-threaded behaviour here, mean-
ing that there is only one point of execution at any time, not several ones in
parallel. There is one flow of control within our sequences.

As mentioned before, a sequence diagram describes one possible sequence of
actions. Of one particular interface role diagram that is. We can use several
sequence diagrams to describe more possible sequences of actions that can oc-
cur, given a single interface role diagram. This way we could be able to give
the complete behaviour of a certain project (described by the interface role di-
agram). In practise this is generally impossible, since most of the time there
will be a huge amount of possible sequences of actions and drawing a sequence
diagram for each and every one of them, would be impracticable.

Therefore we use our sequence diagrams to describe a certain, important, part
of the behaviour. Especially those parts of the behaviour that are important
for inheritance. Our goal is namely not only to verify correct inheritance on the
static level (interface role diagrams), but also on the dynamic level (sequence
diagrams).

3.2 Sequence diagram representation (Option 1)

At first we try to keep our sequence diagrams and also our formal represen-
tation of those sequence diagrams as simple as possible. We want to describe
a sequence of method-calls and returns. These method-calls and -returns take
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place between two roles using an interfaces’ method. From this information we
can make the following formal representation:

SD = seq.A
A = CRxRxRxIxM
CR = {call , return} .

A sequence diagram will be of type SD, which is a sequence of actions (€ A).
These actions are 5-tuples: The first element of this tuple can be either call
or return. The second element states the role that originates the action, the
third the role that receives the action. The fourth and fifth are the action itself,
namely an interface method combination.

T Iz n I
1p: My b g
i]t my; i]I m;o
i]l my i:my,
iy Moy il: my
i;: my,
ip: My

fig. 12: Two sequence diagrams describing behaviour of Proj;

The picture above shows two possible sequences of actions that could belong to
the interface role diagram we showed in 5, consisting of only one suite.

We can see the roles that are involved in the communication at the top of a
sequence diagram, depicted by boxes with role-identifiers we also saw in our
interface role diagrams. The dashed vertical lines represent time, passing from
top to bottom. A method-call is depicted by a solid arrow, from the role that
originates the call to the role that receives the call. A return-action is depicted
by a dashed arrow towards to role that receives the return. This should be the
role that originated the accompanying call-action.

Both calls and returns include their method name as well as the name of the
methods’ interface. We note that in our case the interface names could be
omitted, since all our methods have different names and belong to exactly one
interface.

The sequences of figure 12 can be formalised as follows, with SD;, representing
the left sequence and SDj; the right.
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S.Dla = [(call, 71,72, ’l:z, m21), (call, 9,71, 1:1, mu), (retum, 1,72, i1, mu),
(return,r2,71,12, M21)]

SD1p = [(call, 71,79, 92,m21), (call, r2,71,%1, M12), (return, 71,72, i1, maz),

(call,r2,71,%1,M11), (return, 1, 72,11, my1), (return, o, 71, i2, Ma21)]

We now give some sequences belonging to an interface role diagram containing
inheritance, we discussed in 7.

I3 Iy T3 Ta

in! M) iz My
i3: D3 igrmys
is: My iy myy
i my; iz m3»
iy igi M3
in: Moy ijimyy

i myy

iy

fig. 13: Sequences of Projs

Roles r3 and r4 inherit from 71 and 72 respectively, of the previous example. A
formal representation of these sequences:-

SD2a = [(call, T3,T4, i2a m21)7 (ca.ll, T4,T3, i3a m31)a (return, T3, T4, 7:37 m31)1
(call, T4, 73,41, m11), (return, r3, 74,41, M11), (return, 74,73, i2, ma1))

SDap = [(call, 3,74, 42, m21), (call, T4, 73,41, M12), (return, 73, 74,11, M12),
(call, 4,73, 3, Mm32), (return,r3, T4, i3, M32), (call, 74, 73,41, m11),
(retum, 73, T4, i1, 1), (Teturn: 74,73, 7:27 mZI)]

Verification of the correctness of a sequence diagram has to be with respect to
interface role diagram it belongs to. This means that the methods are indeed
provided by the interfaces and the interfaces are provided and required by the
right roles. We also have to verify that all call-actions are followed by an ap-
propriate return and we have to make sure that our sequence diagrams describe
single-threaded behaviour. We now introduce a function checkSD to verify a
sequence diagram (€ SD) in accordance with its project (€ PROJ, the formal
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representation of its interface role diagram).

checkSD € B <— SDxPROJ
checkSD.(SD, proj)
= {proj = (S,R,1, M, PR, PI,RI, PM, SS, SR)}
Y(rs,re,m | (call,rz,r4,4,m) in SD |
i {PM)m A i € (obligs.proj).ry A i € (rights.proj).ry)

V(rg,re,8,m | (return,rg, 74,4, m) in SD |
(call,rs,75,%,m) € preCalls.((return, s, 14,4, m), SD))

Y(rs,re,4,m | (call,rg,r4,9,m) in SD |
(return,ry, 75,9, m) in SD)

There are three conjuncts in the definition of checkSD:

Y(rs,re,i,m | (call,rg,74,%,m) in SD |
i {PM)m A i € (obligs.proj).r¢ A i € (rights.proj).ry)

A call-action of method m on interface ¢ from role 77 to role r; has to meet the
following restrictions:

-4 {PM) m: The method has to be provided by the interface.

-i € (obligs.proj).rs: The role that receives the call must have the obligation
to provide the interface, either provide it himself or through one of its ancestors.

-i € (rights.proj).r): The role that invokes the call-action must have the right
to use the interface.

V(rs,re,i,m | (return,rg, 4,4, m) in SD |
) (call,r¢,77,%,m) € preCalls.((return, ¢, 74,1, m), SD))
For each return-action (return,ry,74,%,m) in the sequence there has to be call-
action of the same method (and interface) with the roles in opposite direction.
Moreover, this call-action has to be prior to the return-action. We introduce a
function preCalls for this below.

-V(rg,ryi,m | (call,rg,1e,4,m) in SD | (return,ry,7¢,i,m) in SD)

Besides the fact that all returns-actions have an appropriate call-action prior to
them, all calls also have to be returned correctly.
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preCalls € p(A) < AxSD

preCalls.(a,[])

[]

preCalls.( (cra, 1fa; Ttasta, Ma) 5 [(€T6; T b TEos Ty mp)|++seq )

Zf (CT‘a, Tfa, 1"ta, ia: ma) = (CT’b, T'fb, Ttb; ib, mb) -
(]

[ (cra,fa Ttas tasMa) # (€Tb, 7 b; Ttos b, mp) N cry = return —
preCalls((cra, 7f o Ttas la; Ma), S€4)

0 (cra> 7fas Ttas bas Ma) # (crs, Tfo, Ttos 55, Mp) A cTp = call  —
{(crp, Tf by Tty i, M) } U preCalls.((cra, 7fas Ttas tas myg), seq)

fi

The preCalls function checks a given sequence from the beginning to the end
(empty sequence) until it encounters the given action. All call-actions found on
this path are united.

Now we encounter a difficulty when we have two identical call-actions and only
one return-action. We will not find an error when we check this. We could
change our checkSD function to verify the number of calls and returns to solve
this problem. There is however another problem we found using our current
representation of sequence diagrams. Being a single-threaded sequence, we will
have to make sure that every return belongs to the last unreturned call. There-
fore we opt to leave this representation and use a slightly more comprehensive
one.

3.3 Sequencé diagram representation (Option 2)

A problem that arises when we use the representation described in the previ-
ous section is that we cannot detect which return-action belongs to which call.
Once we have two identical calls (and returns) in a certain sequence, there are
two possible interpretations and we cannot distinguish them. The figure below
illustrates this problem.

42



Iy Iz n T2 n T2

ip: my) iy my; izt My
i my, iy: myy i my;
ip: My ip my; io: Moy

ip: myy (i2: myy) (ipz may)

i: myy (i my) (imy)

izt My (i3 ma1) (io: may)

fig. 14: Two possible interpretations of one sequence

The rightmost picture does not describe single threaded behaviour, where the
picture in the middle does. Our formal representation therefore has to include
a way to identify the vertical boxes, showing the execution of a method. We
will introduce a type X for this.

These boxes automatically connect the call-action that opens the box to the
return-action that closes it. It can also show the execution time of a method,
but we are not interested in that here.

We are now able to omit the interface and method parameters of a return-action,
since they are already given by the connected call-action.

We now give a formal representation of a sequence of actions including boxes
and omitting interface- and methodnames on return actions. Note that we will
give a definition of any (sub)sequence of call- and return-actions, not necessarily
a complete sequence described by a sequence diagram. We mention this because
the name, SD, might suspect otherwise.

SD = seq.A
A = RxRxIxMxX + RxRxX

An action (€ A) can either be a call-action (consisting of two role-identifiers, one
interface-, one method- and one box-identifier) or a return-action (consisting of
two role-identifiers and one box-identifier). The + denotes that an action can
either be of the first form («~(®) or of the second («~@®).

We introduce the following call- and return-functions to clarify and simplify
notation.

call € A ¢4 RxRxIxMxX

call (r,r,i,m,z) = {(r,7,i,m, )@}

return € A ¢+ RxRxX
return.(r,r,z) = {(r,7,2)~@}

43



Example
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fig. 15: An interface role diagram and three sequence diagrams

T1 = [call.(rl, T, 7:1, msi, .’El), Call.(’l‘z, T3, iz, ma, 2}2), CGH.(T,?,, T9, il, ma, .’173),
return.(rg, 3, €3), call.(r3, T3, i2, Mo, T4), return.(r3, 73, T4),
return.(rs, T2, T2), return.(rz, 71, 1))

Tz = [call.(rl, 7o, il, my, 41:1), call.(rz, 73, iz, ma, :272), Cazl.(?",?,, T2, il, g, .733),
return.(ro, v3, T3), return.(rs, re, Ta), return.(rz, r1, 1),

Call.(’:"]_, 73,%2, M2, $4)’ return.(:";;, T1 $4)]
Ts = [call.(r1, 79, 1,1, T1), call.(r2, T3, i3, M2, T2), call.(r3, 72,11, M, z3),

return.(ra, 71, T3), call.(r1, 73, i2, Mo, T4), return.(r3, T2, T4),
return.(ra, T3, T1), return.(rs, r1, Ta))
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3.4 Sequence Diagram Verification
In the previous chapter we showed the verifications we need to make to construct

well defined projects. Now we want to verify well defined sequence diagrams
that are based on a project.

€ PROJ ? (2.3) € pSD)? (3.3
g Pl

Cpf"nposeProj (26

CheckSdProj (3.4)

Inheritance of

— ExtendProj (2.7) Behaviour (4)

CheckSdProj (3.4)

&

N ?
< PROJ? (23) € p(SD)? @.3)

fig. 16: An overview of all the our verifications.

The picture above puts together the verifications we made in the previous chap-
ter, with the ones we are going to make in this and the next chapter. A basic
formalisation of sequences was introduced in section 3.3. In this section we will
verify correctness of a sequence by two checks:

- CheckSdProj: Checks if a sequence correctly belongs to a project, i.e. the
right methods are called on the right interfaces of the right roles.

- ThreadSd: Checks a sequence for single-threadedness.

After that we are going to verify inheritance of behaviour by comparing a set of
sequence diagrams of one project to a set of sequence diagrams of an extension
(by inheritance) of that project. This will be the topic of the following chapter.

CheckSdProj € B <— SDxPROJ
CheckSdProj.(SD, proj)

{proj = (S,R,I, M, PR, PI, RI, PM, SS, SR)}

V(rs,re,i,m,z, Ap, Ag | Ap, Ag € SD A SD = Apt+[call (15, r4,5,m, )[4+ Aq |
i (PMYm A i € (obligs.proj).rs A i € (rights.proj).rs)

For each call-action in the sequence the following three properties must hold:
- ¢ {PM) m: The method will have to be provided by the interface.

45



- i € (obligs.proj).ry: The role receiving the call must have the obligation to
“provide” the interface.
-1 € (rights.proj).ry: The calling role must have the right to use that interface.

ThreadSd € B <— SD

ThreadSd.(SD)

= {1
Y(rs, 74,3, m, T, Ap, Ag | Ap, Aa €SD A SD = Apt+[call.(rg, 14,5, m, T)]4++Aqg |
H(Abz, A : Apo, Ago € SD { A, = A;,g—l—i—[retum.(rt,rf, JJ)]-‘I—{-AGQ))

Y(rs,re, T, Ap, A | A Ag € SD A SD = Ayt+[return.(rg,re, )] 4++Aq |
3(i,m || LastCall.(Ap) = call.(r4,75,i,m,7)))

FlowOfControlSD.(SD)

For each call-action in the sequence:

- I(Aps, Aaz | A2, Aa2 € SD | As = Abz—H-[retum.(rt, Tf,x)}HAag):
A return-action has to follow the call-action. This return has to be:
- from the role that received the call (7).

- to the role that send the call (7).
- closing the right box ().

For each return-action in the sequence:

- 3(,m ! LastCall(Ap) = call.(rg,74,4,m,T))

A return-action has to close the box that was opened by the last unreturned
call, prior to that return-action. We will show the details of the introduced
function LastCall below.

FlowOfControlSD.(SD):

Since we want our sequences to be single-threaded, we need more than just
requiring that each return belongs to the last unreturned call. We also want
each action to be initiated by the receiving role of the previous action. We will
introduce the boolean function FlowOfControlSD for this. '
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LastCall € A <~ SD

LastCall.[]

&

LastCall.(SD;++[a])

if 3(r1,72,1,m,z | a = call.(r1,72,i,m,2)) = a
I 3(r1,7r2,z ! a = return.(r1,72,)) — - LastCall.(RemoveBoz.(z, SD;))
fi
The function LastCall takes the last action of a sequence (returning nothing
when encountering an empty sequence), and immediately returns it if that last
action is a call. If that last action is a return however (the only other possible
action), we want to have the last call prior to the box that this return-action
closes. This is because the call that opens this box, will be a returned call, while

we are looking for the last unreturned one.
We are now left with defining the RemoveBoz function.

RemoveBozr € SD <~ XxSD

RemoveBoz.(z,[])

(]
RemoveBoz.(z, (SD;++[a]))

Zf 3(7'177"277:a777/7 o : a"l;é‘z : a = Call.(Tl,Tz,?:,m,Zl)) — []
0 3(r1,7e,i,m,zq | z1=2 | a = call.(r1,72,%,m,21)) = SD;

[ 3(r1,r2,z1 | T3#z | a = return.(r1,72, 1)) -
RemoveBoz.(z, (RemoveBoz .(z1, SD;))

[l 3(7”1)7'273:1 ; T1=T : a = Tet'll.m.(’l"l,?2,$1)) - []

fi

The RemoveBoz function is given a box identifier and a sequence prior to the
return action of that box. The last action of this sequence can either be a
call-action with the same box identifier, or another return with (another) box
identifier. It cannot be a call with another box, because then we would not be
returning the last unreturned call. It is an obvious error to encounter another
return-action with the same box identifier
When the right call is encountered, we return the sequence prior to that (we’ve
A 5 e

succesfully removed the box). When another return is encountered, we hav
y ) 5
remove its box as well.
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The third conjunct of our ThreadSd function uses a boolean function FlowOfConirol
to verify, like the name says, the flow of control of a sequence of actions. It is
formally defined as follows:

FlowOfControlSD € B <— SD

FlowOfConitrolSD.[]

true

FlowOfControlSD .([a]++5D;)

if Ary,ro,i,m,z |} a = call.(ry,72,4,m,T)) = FlowRoleSD.(rq, SD;)
n 3(7'. ro. x|}
8] \risr 4 ]

fi

The first action of an (unempty) sequence can be from any role to any role,
where the second action has to originate from the receiving role of the first.
FlowRole is introduced.

!
I

FlowRoleSD € B <~ RxSD

FlowRoleSD.(r,[])

true

FlowRoleSD .(r;, [a++5Dj])

if Ary,re,6,myz ! a = call.(r1,72,i,m,z) A r=r1) = FlowRole.(rs, SD;)
[ 3(ri,re,i,m,z |} a = call.(r1,72,i,m,z) A riFr1) - false ’

[ 3(r1,r2,z |} a = return.(r1,72,7) A 7;="1) —  FlowRole.(r2, SD;)
[ 3(ri,r2,z |} a = return.(ry,r2,z) A T:#71) —  false
fi

The first action of the sequence has to be from the same role as the given action
and furthermore the receiving role of that first action now is the “flowing” role.

We will now verify the correctness of the three sequences of figure 15.
At first we need to formalise the project, also given by the interface role diagram
in figure 15, we will call this Proja.

Projs = (S4, Ra, I4, M4, PRy, PI4, RI4, PM 4, 5S4, SR4)

With:
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Ss ={s1} note: There should have been a suite in the picture!
Ry = {ry,ra,r3}

I, = {i,is}

My = {mi,mz}

PRy = {5111, 8179, 5773}

Pl = {rowiy, rawia}

RI4 = {ri1wiy, r1vnia, rovniy, Tovnig, Tain }

PM 4= {iy~mq,ig~ma}

SS4 = @

SRs =0

It is left to the reader to verify that Proj, is a correctly defined project, € PRQOJ.
Sequences 71 and T'; are correct, although we will not show their verification
details here. :

We will show the incorrectness the sequences T's due to incorrectly returning
call-actions. T3 is correct with respect to its interface role diagram (Projs).
We’ll show this first.

T3 = [call.(’rl, T2, il, ma, .’1,‘1), Call.(Tz, T3, ’iz, ma, .’1?2), CG.H.(T;J,, 79, il, may, :L'3),
return.(rg, 71, 23), call.(r1, T3, i2, Mo, 4), return.(rs, ra, T4),
return.(rg, r3, 1), return.(rs, r1, z2))

CheckSdProj.(T's, Proj4)
{definition of CheckSdProj}
Y(rys,re,5,m, T, Ap, Ag | Ap, Ag € SD A T3 = Apt+call.(rs, 74,5, m, )| ++4, |
i {PM4) m A i € (obligs.Projs).ry A i € (rights.Projs).ry)

I

We have four call-actions in our sequence T's, call.(r1, 72,11, M1, 21), call.(re, T3, iz, M2, T2),
call.(r3,ro,11, M1, 23) and call.(ry, 73,12, s, z4). This will lead to the following
obligations: :

- 7:1 (PM4) ma and i2 (PM4) ma. Both ok.

- i1 € (obligs.Proj4).ro and i € (obligs.Projs).r3. Since we have no inheri-
tance here, the obligs function boils down to provides interface relation PIy.
r9 €PI4) i1 and 73 € P14) i, Both ok.

- iy € (rights.Projs).r1, is € (rights.Projs).re, i1 € (rights.Proj,).rs and
ig € (rights.Projs).r1. All ok, see required interface relation RI4.

The sequence is correct as far as our project is concerned: No incorrect calls of
methods on interfaces.
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ThreadSd.(T'3)
= {definition of ThreadSd}

V(rs,re,i,m, 2, Ap, Aa | Abs Ay € SD A T3 = Apt+[call.(rg, 4,0, m, x)4++Aq |
H(Abg,Aaz : Ap, Agz € SD { A, = A;,g—{—l—[retum.(rt,rf,x)]—l—-}-Aag))

V(Tf,'f't,il:,Ab, Aa { Ab7 Aa S SD A T3 = AbH[retum'(rfa Tt z)]—HAa :
3(i,m ! LastCall(A4p) = call.(rs,75,i,m,)))

FlowOfControlSD .(T's)

We now have three conjuncts. We’ll discuss them one by one.

Y(rs,re,5,m, T, Apy Ag | Aby Aa € SD A Ty = Apt+[call (rg, 74,5, m, z)H+Aq |
3(Ab2, Ago : Apa, A2 € SD : A, = Abz-}—k[return.(rt,rf,:c)]~}+Aa2))

- For the first call of the sequence, call.(ry,72,%1, M1, Z1), this means:

(Apz, Aaz | Ab2, Az € SD | [call.(r2, 73,12, M2, z), call.(r3,T2,11, M1, Z3),
return.(rg, r1, T3), call.(T1, 73, iz, M, T4), return.(rs, T2, x4), return.(r2,73, 1),
return.(rs,r1, T2)] = Apott[return.(ra, r1, 1)+ Aq2))

NOT ok, we have return.(re,7s,z1), which means the call is returned to the

wrong role. We can see in the picture that this is indeed the case.

- For the second call, call.(r2, r3, 2, M2, Z2):

I(Apz, Aaz | Ab2, A2 € SD | [call.('rg,r2,i1,m1,:c3),'retum.(m,rl,zg,),

call.(ry,73, 42, M2, Ta), return.(r3, r2, T4), return.(r2, 73, z1), return.(r3, 71, o))
= Apg+t[return.(r3, T2, 22)]++Aq2))

Also NOT ok. The second call of the sequence T'3 is also returned to the wrong

role.

In fact, all return-actions of this sequence are returned incorrectly. We will still

verify the other two conjuncts of the ThreadSd function, although we already

know that the sequence is incorrect.

V(rs,re, T, Av, Aa | Ap, Aa €SD A T3 = Aptt[return.(rg, re, )]+ Aq |
3(s,m | LastCall(4p) = call.(rs,r7,1,m, T))).

Each return-action in the sequence has to close the box that was opened by the
last unreturned call. We'll show the verification of the third return-action of
T's, being return.(rs, s, 1) only:

B(i, m H LastC’all.([call.(rl, T2, 1:1, mi, ml), call.(rz,‘rg, 7:2, ma, 372), Ca”.(’f‘g,, T2, il, mi, .’Eg)
return.(ro, 1, 3), call.(T1,73, in, Ma, T4), return.(r3, r2, T4)]) = call .(r3,T2,4,m,21)))

We will first work out the LastCall function, with SD1=[call.(r1, T2, 1, M1, T1),

call.(rg, T3, 42, M2, T2), call.(r3, T2, 11, M1, z3), return.(rg, 1, £3), call.(r1, 73,12, M2, z4)]-

This leaves LastCall.(SDy++[return.(r3, r2, 4)], giving:
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if I(ri,rj,6,m, |} [return.(rs, ro,z4)] = call.(ri, 5,4, m,2)) — [return.(rs, r2, 4)]
[ 3(ri,rj, zx |} [return.(rs, T2, 24)] = return.(rs,75,2x)) — LastCall.(RemoveBoz.(zk, SD1))

fi

The second guard is met, the last action, before the return we wanted to verify,
is also a return. This return closes a box that was opened by a, now returned,
call. We’ll have to remove this box, because we want to find the last unreturned
call. RemoveBoz.(z4, SD1) will remove the call that opens box z4, although it
is called by (or returned to) the wrong role. We would have noticed this error
on checking the second return of the sequence.

The second invocation of the LastCall function will again encounter a return,
this time of box z3. The previous action is also a call on z3, that will be
removed. Then LastCall will be invoked for the third time, this time with the
following sequence: [call.(r1,72,i1, M1, 1), call.(ra, 3,12, M2, 22)]. The LastCall
of this sequence is obviously not equal to call.(rs, r2, 42, m?, z1), for any interface-
method combination.

So we found another flaw in our sequence, although this one was to be expected

from the previous verifications.

FlowOfControlSD.(T's)

The flow of control checks out positively, which can be verified very easily. It is
left for the reader to do so.
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Chapter 4

Inheritance of behaviour

4.1 Introduction

In chapter 2 we’ve seen a notion of inheritance on the ISpec interface role dia-
grams. We were dealing with static inheritance there, inheritance on the struc-
ture of a system. This form of inheritance is well known and widely used.

In this chapter we want to formulate a notion of inheritance that adresses be-
haviour, making use of ISpec sequence diagrams. This form of inheritance,
dynamic inheritance, is not conclusively formalised. Research has been done in
this area however, like in [2], [3], [4], [7], [9], [10] and [11].

We give some definitions of inheritance of behaviour:

Protocol Inheritance, from [4]

If it is not possible to distinguish the external behaviour of son and father when
only methods of son that are also present in father ‘are executed, then son is a
subclass of father.

In essence, this form of inheritance boils down to blocking the actions that are
new to the son, resulting in equal behaviour with the father.

Projection Inheritance, from [4]

Tf it is not possible to distinguish the external behaviour of son and father when
arbitrary methods of son are executed, but only the effects of methods that are
also present in father are considered, then son is a subclass of father.

This means, that instead of blocking new actions, we are now hiding them,
silently ignoring them in our behavioural description. After hiding the actions,

parent and child behaviour have to be exactly the same again.

Life-cycle Inheritance, from [4]
First some set of actions is blocked, then some disjoint set of actions is hidden.
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The result has to equal parent behaviour.

Both projection and protocol inheritance are contained by Life-cycle inheritance,
by hiding all new actions (and blocking none) respectively blocking all new
actions (and hiding none).

Consistent Inheritance, from [11]
Cousistent inheritance requires that each possible sequence of a son, disregard-
ing newly added activities and states, must also be a sequence of the father.
Or in other words, consistent inheritance requires that a sequence of the father
reflects in each sequence of the son.

This is almost the same definition as the projection inheritance from [4], it only
allows the son to inherit a part of the fathers’ behaviour, instead of requiring it
to inherit all of the fathers behaviour.

Below we introduce a notion of inheritance of behaviour of an ISpec model,
consisting of a static part, an interface role diagram, and a dynamic part, a
set of sequence diagrams. As mentioned before, a set of sequence diagrams
only describes some (important) subset of all possible behaviour. When we are
verifying a set of sequence diagrams of a son to that of a father, we do not
require the sons behaviour to be equal, but we do want the fathers behaviour
to reflect the sons, like the consistent inheritance above. This will become quite
obvious when we think about inheriting from a composition of projects. We
should be able to inherit a part of both composed projects, instead of having to
inherit all possible behaviour.

Therefore we adopt the definition of consistent inheritance, with only a small
modification, or better, extension. We also want our son to be allowed to have
sequences consisting of new actions only. This leads to the following definition:

Sequence Inheritance

Sequence inheritance requires that each possible sequence of a son, disregarding
newly added actions, must be either a sequence of the father or an empty
sequence.

In the next section we will formalise this notion of inheritance of behaviour.
Afterwards, we’ll discuss some test cases. In the following chapter we will use
101

the same test cases to analyse an ISpec based tool [12] that tries to verify life-
cycle inheritance in accordance to the definition of [4].

4.2 The formal verifications

We will introduce a boolean function InhOfBeh to verify sequence inheritance.
We have to compare one set of sequence diagrams to another set of sequence
diagrams. Both sets of sequence diagrams have to be correct: belong to the right
project and describe a correct thread, which we can verify using the CheckSdProj
respectively ThreadSd functions of the former chapter. One of these projects
(the childs) has to be the result of extending the other one (the parents). We
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can verify this by using the EztendProj function of chapter 2.7.
We’ll use abbreviations for our 10-tuple projects below, assuming Projx to be
(Sx,Rx,Ix,Mx, PRx,PIx,RIx, PM x,55x, SRx).

InhOfBeh € B <~ PROIx p(SD)x PROIx p(SD)

(Proj oia, SDSoids Projnew; SDsnew) € InhOfBeh>

It

I(Suitenew | Suitenew € SUITE | Projpew = EztendProj .(Proj o1a, Suitenew)
V(SD; | SD; € SDsgiq | CheckSdProj.(SD;, Proj 513) N ThreadSd.Sd;)
Y(SD; | SD; € SDspew | CheckSdProj.(SD j, Projnew) A ThreadSd.Sd;)

InhOfBeh.(Proj 12, SDs oia, Pr0j new> SDS new)

Y(SD; | SD; € SDspey | Filter.(SD;, Proj new, Proj oids @) =1] v 3(SD; | SD; € SDsou
! Filter.(SD;, Proj new, Proj o, D) = Rename.(SDj, SD;, Proj new, 3, 0)))

The domain restrictions of the InhOfBeh function are already discussed above.
The result of the inheritance verification boils down to checking all new (child)
sequences individually. The following will be checked:

Filter.(SD;, Projpew, Projoq, ©): A new sequence (5D;) may contain new ac-
tions that weren’t available to the old roles. These actions have to be disre-
garded, filtered. If this filtering leads to an empty sequence, we are dealing with
a sequence that only contains new actions. Inheritance will be automatically
correct, since there are no inherited actions in the sequence. If the filtering
does not result in an emtpy sequence, the remaining actions will have to be in
accordance with one of the parent sequences.

Rename.(SD;, SD;i, Projpew, @, @): A sequence SD; (old sequence) will be
renamed, such that rolenames and boxnames will become equal to that of the
other (new) sequence SD;. This renaming takes place only when these new roles
inherit from the old roles and for actions that coincide (same method-calls or
-returns). The result will be an old sequence, having the rolenames and box-
names of the new one, that needs to be checked for inheritance.

All nonempty filtered child sequences should be equal to one of the renamed
parent sequences to derive correct inheritance.

We discuss the Filter function first, the Rename function afterwards.
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Filter € SD <~ SDxPROJxPROJ X p(X)

Filter.([], Projpn, Proj e, Xs)

(]

Filter.([a}4++SD;, Proj, Proj s, Xs)

if 3(r1,72,%,m,x |} a=call:(r1,72,%,m,z) A i€1,) = [a]l++Filter.(SD;, Projn, Projo, Xs)
[ 3(ri,7r2,%,m,z || a=call.(r1,72,1,m,z) A i ¢1,) = Filter.(SD;, Projn, Proj,,{XsUz})

[l 3(r1,79,z |} a=return.(r1,72,2) A z ¢ Xs) ~ [a]++Filter.(SD;, Projn, Proj,, Xs)
[l 3(r1,7e,z |} a=return.(ri,72,2) A z € Xs) — Filter.(SD;, Proj,, Projo, {Xs\z})
fi

This function takes the first action of a sequence. If it’s a call of a method of
an old interface it remains, new interface-calls are left out. We save the box-
identifiers of those calls that filtered out, since we’ll have to remove the returns
of these calls as well.

Rename € SD ¢~ SDxSDXxPROJx p(X) x p(X)

Rename.([], 8Dy, Projp, X ¢, X r)

[]

Rename.([a]++SD;, SDp, Projp, X e, Xr)

if 3(7'01,"'02: Tni, T'r2s & M, Toy Tn, Ap, Ag : Iy ¢ Xe : a:call.(ro1,ro2,i,m, -750)
A a1 SR To1 A Tna ESRy) Toa A SDp=[Ap++[call.(Tp1,Tna, 1, m, Z5)]++Ag)
A "‘H(Abba AsarTnn : Tnn ¢ X Abz[Abb'H'[calL(Tnl: Tn2, %, mawnn)]"_f'Aaa]))
ﬁ
[call.(Tn1, Tn2, &, M, Tn)]++Rename.(SD;, SDy, Proj,, {X Mzn}, { X, Uz,})
[] 3(7'01, T02, Tnls Tn2; Tos Tny Aby Aa : T, € X, : azretum-(roly"'o%wo)
A Tp1 €SRpY To1 A Toa €SRL) To2 A SDp=[Apt++[return.(rn1, T2, Tn) |+ Aq)
A _‘H(AbbaAa.m Ton } Ton € X, : Ab:[Abb'H'Tetum~(Tn1> Tn2, xnn)HAaa]))
ﬁ.
[return.(Tpn1, Tn2, Tn)]++Rename.(SD;, SDp, Projp, X o, { X ~\2zn})
[] else
_.).
[a]++Rename.(SD;, SDyp, Projp, X ¢, X,)
fi

All actions of a parent sequence should have their role- and box-identifiers re-
named, to be able to correspond to the (filtered) new sequence. An old call-
action also occuring in the new sequence, with the new roles inheriting correctly
from the old roles, should be renamed.
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Achieved by: a=call.(ro1, 72,8, M, Zo) A Tp1 £SRz) To1 A Tn2 {SR,) To2

Problems arise when there are several instances of the same method-call in one
or both (should be both, if they are to be correctly inheriting) sequences. We
want to rename the first call of the old sequence so that the box-identifier coin-
cides with the first call of the new sequence.

Hence: '—'B(AbbaAaaaxnn : Zan ¢ Xec : Ab:[Abb'i_}'[call-(Tnla Tn2s i) m, xnn)]'*_"AaaD
Furthermore we want a second (or third, etc:) instance of a call in an old se-
quence to be renamed to the second one of the new sequence, which is the first
one we haven’t got already. Therefore we're keeping a set of boxes, X, and
require: =, ¢ X, and Tp, ¢ X

The same box-identifiers are also stored in another set, X,. When we encounter
a return-action in the old sequence it should be renamed to the first correspond-
ing return-action of the new sequence. After that, we remove its box-identifier
from the set X, so that the second the possible second identical return-action
will also be renamed to the second one of the new sequence.

If we encounter an action in the old sequence that does not correspond with an
action of the new sequence, we cannot rename this action. We'll leave it as it
is, and rename the rest of the sequence, although we already know this will not
be the sequence we’re looking for.

4.3 Testing

In this section we do some testing on our notion of inheritance of behaviour.
The same tests are executed using a ISpec related tool in the next chapter.
We use some simple examples to examplify the differences in our approaches to
handle inheritance of behaviour, using sequence diagrams.

We will first give our parent interface role diagram and its behaviour in terms
of two sequence diagrams.

8

fig. 17: interface role diagram of the parent project.

56



n 2 ] T2

By i

i m,

fig. 18: The parent behaviour in terms of sequence diagrams.

Our formal representation of the parent project now becomes:

Projp = (Sp,Rp,Ip, Mp, PRp, PIp,RIp, PM p, S5p, SRp)

With:
Sp = {s1}
Rp = {ri,ra}
Ip = {i1, iz}
MP = {mtm mMp, M, md}

PRP = {51\/\7'1, 81V"I'2}

PIp = {rowiy,rovis}

RIp = {riwiy,rivis}

PMP = {’l:]_V"ma, ilwmba 7:2"’"7’”@7 iZMmd}
SSp =0

SRP = @

The parent behaviour:

Sdpy = [call (r1,72,11, Ma, TP1a), TEtUTN.(T2,T1, TP1a), Coll.(T1, 72,12, Mg, TP12),
return.(re, r1, Zp1p)) ‘

Sdps = [call.(r1, 72,11, Ma, TPaa), return.(ra, r1, Tp2g), call.(r1, 72,41, M, Tpas),
return.(ra, 11, Tp2p), call.(r1, v2, 2, Me, Tpae), return.(ra, 1, Tpac)]

We also give the interface role diagram of the child, since we use this for all

the tests to come. With each test the chid will have a different set of sequence
diagrams, but the’re all based on the following interface role diagram.
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fig. 19: interface role diagram of the child project.

We’ve added one suite to the project of the parent, being:

Suitec = ({52}, {r10, 720}, {iz}s {Mmaz}, {82710, S2°720}, {T20iz}s {T104a}, {izmma},
. {r10wr1, T20 T2}, {52°51})

The project of the child is an extension of the project of the parent by this suite

Suitec. The project of the child thus becomes:

ijc = (SC7RC7IC’MC’PRC>P107RIC') PMC7 SSC:‘ch)
= ExtendProj.(Proj p, Suitec)
This yields:

S¢ = {31,82}

Rc = {ry,r2,710,720}

Ic = {i,iz iz}

MC = {ma; mp, Me, Md, m.'zr}

PRc = {s1-r1, 817282 T10, S2-°T20}
PIg = {rawiy, rovia, r2ois}

RIg = {rywi1,rivig, riowiz}

PM ¢ = {i1~mg, i1-Mp, g, i9~Mg, iz~ Mz}
S§8¢ = {710“7‘1,7‘20“7‘2}

SRc = {s2s1}

4.3.1 Deliberately making a mistake

We are now going to test child behaviour with respect to the parent behaviour,
using our formal definition of inheritance of behaviour. We’ll have two sequences
inheriting from parent sequence Sdps, both also including call- and return-
actions of the new method m; on the new interface i;. Only difference will
be the moment of execution of these new actions. One of these two sequences
however, is incomplete. We intentionally leave out, or forget to draw, the last
call- and return-actions, calling a method that we inherited from our parent.

Finally we’ll also have a sequence inheriting from parent sequence Sd p, without
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even including a new action. Child behaviour becomes the following:

Iio TI2p 1o o o Tz
i m, i m, i m,
1
s my i m, iz Mg
| )
icm, ipmy
1 1
iz me
,]

fig. 20: The child behaviour including one inconsistent sequence.

The child behaviour of this test case can be formally represented by following
set of sequences: Sd¢i, Sdeo, Sdcs, with
Sdcy = [call.(r10, 720, i1, Ma; TC1a), TEtUTN.(T20, 710, TC14a), Call-(T10, 720, 11, M, TC10),
return.(r20, 710, £o1b), €ll. (710, 720, iz Mz, Te1c), TtUN.(T20, 710, TC10),
call.(r10,720, %2, Me, To1d), rEturn.(T20, 710, TC14))

Sdca = [call.(r10,720, i1, Ma, TC2a), Teturn.(ra0, 710, Zo2a), €all.(T10, 720, iz, Mz, To2b),
return.(ra0, 710, Tc2s), call.(r10, 720, 1, M, To2c), return.(ro0, 710, Tooc)]

Sdes = [call.(r10, 720, %1, Mas TC3a), TELUrN.(T20, T10, TC3a), €all.(T10, 720, 12, M, TC3p),
return.(T20, 710, TC3p))]

Our inheritance check now becomes:
InhOfBeh.(Projp, {Sdpl, Sdpz}, PTOjc, {Sdcq, Sdcz, Sdc3})

The domain restrictions of the InhOfBeh function are met, so there will be a
result. This result is false, which means we have not derived correct inheri-
tance. We will not give a complete derivation of all three child sequences, only
the faulty sequence Sdgo.

The following should hold: (for the other two sequences it does)

Filter.(Sdcse, Projc, Projp, @) =[] V 3(SD; | SD; € {Sdp1, Sdp2}
| Filter.(Sde2, Projc, Projp, @) = Rename.(SDj;, Sdce, Projc, &, 9))

The sequence does include method calls of old interfaces, so filtering will not
result in an empty sequence. Now we have two possible parent sequences that
can be renamed, Sdp; and Sdps. At least one of their renamings should be
equal to the result of filtering Sdeoo.
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SDj:SdPli

Filter.(Sdca, Projc, Projp, @) = [call.(r10,720, i1, Ma, ZTC2a), Teturn. (oo, 710, £024),
call.(r10, 720, i1, M, TC2¢) TEEUTN.(T'20, 10, TC2c))]

Rename.(SDp1, Sdga, Projo, @, D) = [call.(r10,720, 11, Ma, TC24), Teturn.(r20, 710, £c2a)
call.(ry, T2, 9, Mg, Tp1p), T€tUTN.(T2, 71, TP13))

SD;=Sd py:

Filter.(Sdca, Projc, Projp, @) = [call.(r10,720,%1, Ma, TC2a), Teturn.(r20, 710, TC2a);
call.(r10, 720, i1, M, TC2¢), TebUTN.(T20, T10 TC2¢)]

£

Rename.(SDpa, Sdgs, Projo, @, @) = [call.(r10, 720, i1, Ma, T024), Teturn.(r20, 710, TC24),
call.(r10, 720, %1, M, TC2c) TELUN-(T20, 10, TC2c)
call.(r1, 73, b2, Me, TP2c), TELUTN. (12,71, TP2c)]

We have derived incorrect inheritance, because the child sequence Sdca does
not correspond to any of the parent sequences. The child is able to forget to
call method m, after calling (and returning) m, and ms, whereas the parent is
not.

4.3.2 Fixing the mistake

With this example we try to derive correct inheritance, by fixing the mistake
we made in the previous example. We now have the following child sequences:

Iio T20 Tio Tz Tio Ty
im, i:m, _ipm,
I
iom, iemyg . ipzmg
l 1 ]
Iom, iy m,
] l
iy me ipt e
[ I

fig. 21: The child sequences, correctly inheriting the parent behaviour.

We’ve already seen both the leftmost and the rightmost sequence, we called

them Sdg1 and Sdcs respectively. The sequence in the middle is new, we'll call
it Sdoa.

Sdes = [call.(r10, 720,11, Ma, TC24), T€tUrn. (r20, 710, LC24)5 €. (110,720, iz, Mz, To28),
return.(ra0, 710, To2b), call.(r10, 720, 11, My, To2e), return.(rao, 710, To2e),
call.(T10, T20, i2, Me, To1rd) s TELUTT.(T20, T10, £C1d))
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Child behaviour is now represented by the set of sequence diagrams
{8dc1, Sdcs, Sdca}

InhOfBeh.(Projp, {Sdpl, Sdpz}, Proje, {Sdcu, Sdcs, Sdc4}) = true

Sequence Sd oy inherits (like Sdey) from parent sequence Sd p, since:
Rename.(SDps, Sdcs, Projc, @, @) = [call.(r10, 20, 11, Ma, TC24), TeLUrn.(T20, 10, TC24)s
call.(r10, 720, %1, M, TC2¢), TELUTN.(T20, 710, TC26)
call.(r10, 720, %2, Me, TC14), return.(rao, 10, To1d)]
Filter.(Sdga, Projc, Projp, @) = [call.(T10, 720, %1, Ma, To2a), TEtUrn.(rag, 710, LC24),
call (10,720, %1, M, To2c), TEturn.(T20, 710, TC26)
call .(r10, 720, 12, Me, Te1d), Teturn.(rao, 710, To1d)]

Proving correct inheritance of Sd¢; is similar and that of Sd¢s is trivial (it
mimics parent behaviour Sdp1).
We’ve indeed derived correct inheritance.

4.3.3 Including a sequence with only new actions

In this test case our child behaviour includes a sequence that only contains new
actions, i.e. calling and returning methods of interfaces that are new to the
child only. This sequence doesn’t mimic any parent sequence, but it doesn’t
“destroy” parent behaviour either. In our opinion, a sequence with only new
actions will not lead to incorrect inheritance, while using consistent inheritance
or projection inheritance would.

We have the following child sequences:
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fig. 22: The child behaviour.

Child behaviour is now represented by the set of sequence diagrams
{Sd01, Sdc4, Sdcs, Sdc5}, where
Sdcs = [call (110,720, iz, Mz, TC5a), TELUTR.(T20, T10, TC5a)]

InhOfBeh.(Proj p, {Sdp1, Sdpa}, Projc, {Sdc1, Sdcs, Sdca, Sdcs}) = true

Sequences Sd¢1, Sdes and Sdcy were proven to be correctly inheriting parent
behaviour in the previous test case, correctness of Sdcs remains. Filter.(SD¢s, Projc, Projp,d) = [],
proves this.

4.3.4 Only inheriting a part of the parent behaviour

As we’ve mentioned in the beginning of this chapter, we do not require our child
project to inherit the complete parent behaviour. Our parent project may for
instance be a composition of a couple of projects, consisting of a large number
of roles. QOur child project only extends this project by a couple of roles that
inherit from the parent project. This makes it impossible to inherit all parent
behaviour:
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Tio T20

ip: My

fig. 23: The child sequence.

This time the childs behaviour can be represented by the singleton set {Sdcs}.

We have: ) ' )
Filter.(Sdcs, Projc, Projp, @) = [call.(r10,720,%1, Ma, TC3a), return.(r20, 710, TC3a)>

call.(r10, 720, t2, ™M, Te3s), return.(rao, 710, To3b))

Rename.(SDpy, Sdcs, Projc, @, &) = [call.(r10,720, %1, Ma; TC3a), r€turn.(r20, 710, TC3a),
call.(r10, 720, i2, Ma, Te3p), Teturn.(roo, 710, To3b))

Which means that InhOfBeh.(Projp, {Sdp1, Sdps2}, Projc, {Sdcs}) = true

4.4 A flexible representation

Our intuition has led to the definition of sequence inheritance, which allows a
child to inherit only a part of the parent behaviour. Some of the other definitions
demand the child to inherit all of the parents behaviour. We will show the
flexibility of our formal representation by introducing function TotallnhOfBeh,
that also restricts the child to inherit all behaviour.

TotallnhOfBeh € B <~ PROJIx p(SD) x PROTx p(SD)

(Proj otas SDsoigs Projnews SDSpew) € TotallnhOfBeh>

I

I(Suitenew | Suitenew € SUITE | Projpen = ExtendProj.(Proj o, Suitepey)
V(SD; | SD; € SDs 4 | CheckSdProj.(SD;, Projoia) A ThreadSd.Sd;)
V(SD; | SD; € SD$pey | CheckSdProj.(SDj, Projnew) A ThreadSd.Sd ;)

TotalInhOfBeh.(Proj o1a, SDs o1a;, Proj news SDSnew)

V(SD, l SD; € SDspew | Filter.(SDi, Proj new, Proj oua, @) = [] \ B(SDj ! SDj € SDs g4
! Filter .(SD;, Proj new, Proj oia, @) = Rename.(SD;, SD;, Proj new, D, D)))

V(SD] : SD]' € SDs1a : E(SDZ : SD; € SDSpew
| Filter.(SD;, Proj new, Proj oia, @) = Rename.(SD;, SD;, Proj new, D, D)))
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TotalInhOfBeh is just an extension of the InhOfBeh function with the second
conjunct of the definition. We also want all parent sequences (old) to have at
least one child sequence (new) inheriting its behaviour.
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Chapter 5

Using a tool

5.1 Introduction

In this chapter we perform the same test cases as we did in the previous chapter.
We're going to use a software tool that is still under development. This tool is
built as a plugin for Rational Rose, sharing the same goal we have: constructing
ISpec interface role and sequence diagrams and verify inheritance.

We’ll shortly describe the representation of interface role diagrams and sequence
diargams that are the basis of this tool, as well as the intended effect. For more
information the reader is referred to [2] and [3].

An interface role diagram is a graph with two kinds of nodes and three kinds of
relations:
IR = (R,I,PI,RI,RR)
- Nodes:
e R is a set of roles. Each role r € R has a set of players PL,.
o ] is a set of interfaces. Each interface ¢ € I has a set of results Res; of the
inteface. ‘

Relations:
e PI = {(r,i) | r € R, i € I}, provided interfaces.
e RI = {(r',(r,i)) | 7,7 € R, i € I, (r,i) € PI}, required interfaces.
e RR = {(r,r") | ,v' € R}, inheritance relation between roles.

A sequence diagram is a tuple:
s = (RxPL, Ag):
e Rx PL is a set of players of roles. A player of a role is represented by a box
with a line drawn from the box.
° As = {(T‘p) 7, (v,w,l)) ! ™= {wt'St’év fi}a n = 1:27'"3N 3 ('anyz) €
(Rx PL)x (RxPL)x(IxRes)}

— rp is a repetition symbol, used for repeated subsequences of actions. st; and
fi denote the beginning and end of a repeated subsequence i.

— n is used to distinguish several instances of identical actions.
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— (v, w,!) corresponds to elements of the required interface set RI from the
interface role diagram.

We can see that this representation differs from the one we use. Main differences
are the use of instances of roles, i.e. players, and the use of one interface as a
method having several possible return values, instead of using an interface to
be a collection of methods.

The basic idea behind developing this tool was to automatically verify inheri-
tance of behaviour, comparing one set of sequence diagrams to another. Some
theory on this subject had already been developed, studying inheritance of be-
haviour using process algebra. )

To verify inheritance of sets of sequence diagrams the tool essentially had to do
two things: '
- Construct process algebra terms from sets of sequences diagrams (the parents
and the childs). An algorithm was developed for this, described in [3].

- Use the definition of life-cycle inheritance (from [4]), based on process algebra
terms, to verify inheritance.

Developing the tool it became clear, that implementing life-cycle inheritance
was not straightforward. Some set of actions has to be blocked, while some
(other) set of actions has to be hidden, but it remains unclear which actions
belong to which set. Furthermore, it was also the developers intuition, that a
child had to be able to inherit only a part of the parent behaviour, instead of
being equal (after blocking and hiding).

Instead of having the option to automatically verify inheritance, the developer
created the option to hide and block actions manually, as well as the ability to
hide and block (uninherited) parent actions.

5.2 Testing

We'll go through the same tests we did in de previous chapter, using the tool
described above. A screenshot of the parent interface role diagram is shown
below.

-4 & -
<<Roles] .- 1A, {void} e~ <<Rale>>
S S ("] B2

‘ - IB {void}

L IC woid)
S

RS

€]
ID {void}
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fig. 24: The parent interface role diagram.

As we can see, this interface role diagram is slightly different from the one we
used in the previous chapter. This model does not allow to have several meth-
ods belonging to one interface, but instead one interface is one method, and its
parameters are the possible return-values. We are not interested in the value of
returns, only in the order of the subsequent call- and return-actions. Therefore
we leave all return-parameters empty, void.

Nevertheless, we can reach the same behavioural pattern as we did in the pre-
vious chapter, illustrated by the sequence diagrams of the parent below.

1D :void

fig. 25: The parent sequences

The tool will convert this set of sequence diagrams of the parent into one, so
called, process tree, renaming the actions to small identifiers.

—
b a2
I

b 85 .
L aB

foeal

fig. 26: The Process tree of the parent.
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with:
al = IA, or call. A v
a2 = IA wvoid, or return.A

a3 = call. B
a4 = return.B
ab = call.C
ab = return.C'
a? = call.D

a8 = return.D

Because both sequences start with the same two actions, call.A and return.A,
the tool will unite the first two actions of both sequences, postponing the mo-
ment of choice (splitting the branches of the tree) after these two actions.

, O
Py -
pem LT
e 1A {woid} RNy :

<<Role>> T |<<Role>>:
L (from Koos) i ¥
Rl __,..,__.--—..__--v»—~vr'~>4/.) R2

Loe o ”
{fiom Koos) . (from.Koos)

IB {void} g
Zx_\’ i »\N\\ “““‘mn“‘ (from Koos)////‘// f}“
. . o
N IC {void}
. ‘\ (frem Koos)

s

o
1D {void}
<<Role>>] {from Koos) <<Rale>>

ORI e z
— 90

X {void}

R20.5

fig. 27: The child interface role diagram, after specialisation.

The parent interface role diagram was called “Koos”. We can see that we
extended this interface role diagram in the same way we did in the previous
chapter, introducing one additional interface (and method) X. We will go over
the test cases again, discovering the notion of “inheritance of behaviour” this
tool uses.
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fig. 28: The child sequences

,,,,,,,,, bl
b B2
b3
........ b4
BB
b BB
b7
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bB
fomnb3
E—t
B3
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fig. 29: The Process tree of the child.

The following name substitutions took place:
call A, return.A .= bl, b2

call.B, return.B := b3, b4

call X, return.X := b5, b6

call.C, return.C := b7, b8

call.D, return.D := b9, b10

On the basis of both the parent process tree and the child process tree, the tool
is able to verify inheritance in a couple of steps. We show and explain these

steps by screenshots.
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31"82" 23" 24" e5"ab+a7"a8}

fig. 30: Tool status at the beginning of a proof.

The picture above shows the process tree of the parent on the left and that
of the child on the right (called Process-inheritor). We can also see that the
tool “knows”, from the interface role diagrams and sequence diagrams, that the
actions concerning new method X (b5 and b6 are indeed new actions.

The first step of verifying inheritance is renaming parent actions to comply with
child actions. This is comparable to the renaming function we introduced in our
formal approach.

BELEBRS

@
3

Vi -
fig. 31: The view after renaming actions.
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Parent actions are correctly renamed.
The next step is the blocking and hiding of new (child) actions. The next
screenshot illustrates the result.

b152+{b3"b4"b7"bB+bS"b10)

-
.

fig. 32: Encapsulating (blocking) and Projecting (making silent) actions.

We can see (if it’s still readable) that action b6 was made silent twice, whereas
action b5 was made blocked once and made silent once. Encapsulation (blocking)
of b5 takes place, because it is the first action of a subsequence. The other
instance of action b5 has preceding actions in its subsequence, and is therefore
hidden.

A block action at the beginning of a branch (of the process tree) will lead to
blocking the entire branch. An entirely blocked branch can be left out of the
tree. Silent actions that are preceded by another action in the same branch can
also be left out. The result of this can be seen in the following picture.
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fig. 33: The result after projection and encapsulation.

We now have two identical process trees. The following (and final) step will be
the “check inheritance” step, which we were actually doing all along.

fig. 34: The result after checking inheritance.

As we can see at the top of the screenshot, our inheritance derivation is success-
ful. The same example in the previous chapter resulted differently.
Although there are different notions of inheritance of behaviour, we think this is
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a mistake, not just another point of view. We have the following argumentation
for this:

The sequence where we omitted, or forgot, the call (and return) of method C was
the one that got encapsulated, because of the presence of a new action (call.X).
We could have any sequence of actions following this new action, since the entire
branch of the tree is always encapsulated. Another sequence also contained this
same new action, but there it was hidden instead of encapsulated. The reason
for this is the decision to postpone the moment of choice when constructing the
process tree (process algebra term). All three child sequences start with the
same two actions and therefore the process tree starts with these two actions,
before splitting into branches (moment of choice). That made the difference of
the new-action being at the beginning of a branche once, while having preceding
old-actions on the other occasion.

5.2.2 Fixing the mistake
We include the call and return of interface C in the sequence we believed was

wrong. The behaviour of the child is now formed by the following sequence
diagrams:

= - H I :void

T
I
.
"

T IB :void :

LI | S——
/]
- e
o %
o,
=N
v
........D. -nwe
7
3] @
h 4

L

J

IC :void

i

fig. 35: The new child sequences.
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fig. 36: The new process tree of the child.

We use the tool to proof inheritance again, starting with renaming the parent
actions.

1"b2 b7 b8 h10+b3b4)

fig. 37: The result after renaming actions.

The new actions that are called b5 and 6, are representing the call and return
of interface X. We can see that again, not surprising, one of the two instances
of b5 is at the start of a subsequence. Encapsulation and abstraction of new

rtiana [ Hanmnder ailan aolingo? o e
actions ( a,pyl_y silent & luCkLuE, ), leads to:
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The included actions (calling and returning C) that were ment to fix the mistake
of the previous test, being 59 and 510, now also follow the blocked action (b5).
Next step is checking inheritance. '

b1*b2b7"b8*b3b10
b1"b2:63b4

fig. 39: The result after checking inheritance.

We’ve derived successful inheritance again, but not because of fixing the mistake.
It’s because of the first (leftmost in figure 35) sequence that we are successful
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here. However, if we would have omitted this sequence, setting the childs be-
haviour to the other two sequence diagrams, we would not derive successful
inheritance, where it should have been the case. Unfortunately, we have no
screenshots of this test case available.

5.2.3 Including a sequence with only new actions

fig. 40: A sequence with only new actions.

This sequence is added to the child sequences of the previous test.

This will result in a process tree expanding figure 36 with an additional branch
from the root, consisting of two actions that represent the call and return of
interface X.

After blocking and silencing the actions, this process tree will be the one in the
figure below:

b1

L b10

fig. 41: Process tree including blocked and silenced actions.

The sequence containing only new actions is blocked out, with a positive inher-
itance derivation as a result. Although this result is correct for a sequence with
only new actions, we can see again that any sequence starting with a new action,
possibly followed by all sorts of inherited actions in any order, will always be

blocked. Inheritance of such a sequence will not be verified.
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5.2.4 Only inheriting a part of the parent behaviour

When we are specialising parent behaviour we can select to inherit only a part
of the functionality and therefore only a part of the accompanying behaviour
of our parent role(s). We will test this scenario here with again a very simple
example. We will only inherit one of the sequences of our parent in this test
case.

A

D :void
T

fig.42: Child behaviour consisting of only one sequence.

fig. 43: Process tree including blocked and silenced actions.

We can see that the tool now also blocks and silences actions of our parent
process tree, namely those actions that are not inherited. At first glance this
seems like the right thing to do if we want the tool to support the possibility to
inherit only part of the parent behaviour. We have to note that this functionality
of the tool is only at the beginning of its development. It also does not comply

it 4la s
Witil T

h tion of life-cycle inheritance we saw in ”**]].

3
1ULL 1178-CYCTIC 1T uvaulT ¥ RUSH
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5.2.5 Testing one sequence at a time

The previous example showed us that we can check inheritance of our child
sequences individually. When we have a set of sequences and we test them all
individually, we should derive correct inheritance with all of them to make sure
we have correct inheritance of the set. This way we can use the tool to verify
sequences without having any branches in our process trees. Therefore we have
no new actions at the start of branches that become blocked. Sequences starting
with a new action (the very first action of the sequence) will still encounter this
blocking-problem.

We now use this method of testing on our first test, and try to capture the
mistake we made.

‘We start by checking the second correct sequence:

X woid :

IC

[
SO s M s

5 IC void

fig. 44: The second correct sequence and its resulting process tree.

The child leaves out the actions involving new interface X, and the parent disre-
gards sequence [call. A, return.A, call.D, return.D], which was not inherited.
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So far so good.
The third (and final) sequence we have to verify is the one that did not include

the call- and return-actions of inherited interface C. This is a mistake in our
point of view and should not be correctly inheriting a parent sequence that does

include these actions.

i BRI S S EaaNE

fig. 45: The erroneous sequence and its resulting process tree.

We can see that b3 and b4 represent call.X and return.X respectively. ad,a6
represents interface C and a7, a8 represents interface D. The omission of an
action in a child sequence will lead to the projection of that action in our parent
process tree, because the tool “thinks” its an uninherited action. Again we do
not agree with this.

In our opinion a child is allowed to inherit part of the parent behaviour by not
inheriting all of its parent sequences. We do not allow a child to inherit only
part of one particular parent sequence. We feel that would be too unrestrictive.
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5.3 Concluding

We can conclude that intuition plays a big role, when discussing inheritance
of behaviour. There are different notions of inheritance, as there are different
intuitions. Creating a tool to automatically verify inheritance can only adress
one notion of inheritance at a time.

It will be very useful to implement different notions of inheritance in one single
tool. We could for instance implement both projection inheritance and protocol
inheritance quite easily: hiding all new actions, blocking none (projection) or
blocking all new actions, hiding none (protocol).

We could also try to implement a different approach on constructing the process
trees from a set of sequence diagrams. We believe that, since we cannot indicate
moments of choice in sequence diagrams, we should move this moment of choice
back to the root of the process tree.
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Chapter 6

Conclusion

When we started working on this thesis our main goal was to investigate and
formalise inheritance of behaviour using sequence diagrams. To formalise these
sequence diagrams, that describe the dynamic part of an ISpec model, we first
need a decent formal representation of the static part of the model, described
by an interface role diagram. We introduce sets and relations representing the
suites, roles, interfaces and methods of an interface role diagram. We use these
sets and relations to formally define the restrictions an interface role diagram has
to meet. We also introduce formal notions of both composition and extension
of our interface role diagrams to be able to assess inheritance on the struc-
tural level. Behavioural inheritance needs to be consistent with the inheritance
defined on the structural level.

One sequence diagram describes one possible behavioural pattern of a model.
The behaviour described by a sequence diagram has to be conform the struc-
ture of the model, which means that the right methods are called on the right
interfaces of the right roles.

A set of sequence diagrams describes several possible behavioural patterns and
therefore a (part of) the behaviour of a model. We could even describe the total
behaviour of a model by a set of sequence diagrams. It is however not realistic to
presume this, since even a simple model can have a very large, possibly infinite,
set of sequence diagrams.

To investigate behavioural inheritance we need to compare a set of sequence
diagrams of one model, which we call the parent model, to a set of sequence
diagrams of another model, the child model. The child model has to inherit
correctly from the parent model using our definition of structural inheritance
and all sequence diagrams have to be conform their accompanying model.
Furthermore we need a notion of inheritance of behaviour to be able to formalise
our demands. Several notions already exist in scientific literature, from which
we deducted our notion of inheritance of behaviour. Intuition plays a role here,
but we also showed that our representation has the flexibility to formalise other
notions of inheritance as well.
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We showed some examples to clarify our notion of inheritance and we used
the same examples on a tool under development that uses a different notion of
inheritance. From this we can conclude that automatically verifying inheritance
can only adress one notion of inheritance at a time. Having different notions of
inheritance could be the basis of constructing a tool that will be able to verify
these different notions of inheritance seperately. Then we would be able to
compare the different notions of inheritance more easily to guide our intuitions
to possibly defining one, definitive, notion of inheritance of behaviour.
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