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PREFACE

Preface

This thesis has been written to obtain the Master’s degree at the Eindhoven University
of Technology (TU/e) in The Netherlands. It completes the graduation phase of the
condensed version1 of the Computer Science Education. The normal version has a duration
of five years. The duration of the condensed version is about two and a half to three years.
To be admitted to the condensed version, a Bachelors degree in Computer Science –or
equivalent– is required. In my case this is a Bachelors degree in Electrical Engineering,
gained at the University of Professional Education in ’s-Hertogenbosch.

This thesis is the result of the final graduation project, which has the duration of
one academic year. The final graduation project is a continuation of a project initiated by
members of the Software Construction group (SoC). SoC is a part of the Computer Science
group which is a part of the department of Mathematics and Computer Science at the TU/e.
The project belongs to the primary research subproject within SoC, namely TAxonomy-
BAsed Software COnstruction (TABASCO). The aim of TABASCO is to create order in
a specific problem area. In this case it is the area of Lempel-Ziv compression algorithms.

There are two people who I want to thank especially, namely my supervisors Kees
Hemerik and Rik van Geldrop-van Eijk. They gave many helpful comments. One of
the things they did was acting as ”guard-dogs” for the clarity and simplicity of the text.
Take for example a large formal proof. With some other definitions the proof reduced
considerable. They also suggested many alternative – simpler – explanations of things.

Furthermore, I want to thank the people who gave their comments on the drafts of this
thesis.

As last I want to thank all the other people who gave any kind of support during this
final graduation project.

1”verkorte opleiding” or ”VKO” in Dutch
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SUMMARY

Summary

This thesis is about the construction of a taxonomy of a family of Lempel-Ziv data com-
pression algorithms. We shall explain each of these terms in turn.

Data compression is used to reduce the size of data whilst maintaining (most of) the
information content. Data compression has many diverse applications.

A particular method of data compression has been introduced by Abraham Lempel and
Jacob Ziv in [ZL77] and [ZL78]. Some important characteristics of their method are, that
it is lossless (i.e. the compressed data can be reconstructed exactly) and universal (i.e.
applicable to any kind of data). Some well-known applications of the Lempel-Ziv method
are WinZip and .gif image compression.

Since the original publications [ZL77, ZL78] by Lempel and Ziv, many variants of their
methods have been published and implemented (see Appendix A for an overview), partly to
improve the quality of data compression, but partly also to get around patent restrictions
by making the new algorithm ”sufficiently different”. As a result, one can now speak
of family of Lempel-Ziv data compression algorithms, which differ in many aspects, but
which also have some important characteristics in common. As the various algorithms have
been described in very different styles, at different levels of abstraction, and using different
nomenclature, it is difficult to get an overview or understanding of the field, the more so
since none of these descriptions contain formal proofs of correctness properties.

This thesis attempts to remedy the situation by constructing a taxonomy of the field. In
general, a taxonomy is a classification of a collection of elements, based on their properties.
Here we use the term in a more technical sense. An algorithm taxonomy is a directed
acyclic graph, where each vertex corresponds to an algorithm and each edge corresponds
to a discriminator (i.e. an essential detail of an algorithm). The root path of an algorithm
node contains all its essential discriminators. This makes it easy to compare algorithms.
Correctness of an algorithm follows from the (trivial) correctness of the root algorithm
and the fact that each discriminator is added in a correctness preserving way. Some good
examples of taxonomies in this sense - and in fact the main sources of inspiration for the
present work - are the taxonomies constructed by Jonkers [Jon82] and Watson [Wat95].

This thesis is structured as follows: Chapters 1, 2 and 3 are introductory in nature,
dealing with Lempel-Ziv data compression, mathematical preliminaries, and taxonomy
construction respectively. Chapter 4 is the core of this thesis: it presents the entire taxon-
omy and has a substructure that closely matches that of the taxonomy itself. Chapter 5

vii



SUMMARY

contains conclusions and directions for future work. Appendix A is an inventory of Lempel-
Ziv variants known from the literature. Appendix B contains selected descriptions of the
main vertices of the taxonomy. Appendix C provides some personal background of Jacob
Ziv and Abraham Lempel.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This chapter first gives a small introduction to compression algorithms in general. Secondly,
it gives more specific information about the Lempel-Ziv compression algorithms, including
a general textual description. Thirdly, it gives a motivation for making a taxonomy of the
Lempel-Ziv compression algorithms. The main structure of the remaining chapters will be
presented last.

1.1 Compression algorithms in general

Compression algorithms are all about reducing the size of data. If data has to be transferred
–to another place or in time–, then it is desired that the transfer uses as few resources as
possible. When data has to be transferred to another place, then the resource is bandwidth,
if it has to be transferred in time, then the resource is storage space.

There are many compression algorithms, all with their own specific properties. A brief
description of some properties is given next.

• The compression ratio is one property. It relates the size of the uncompressed data
to size of the compressed data. There are many possibilities to express this ratio.
One possibility is to express the size of the compressed data as a percentage of the
size of the uncompressed data.

• The compress and decompress algorithm both have their own time efficiency. One
algorithm may process its input very fast, another may process it slow. The time
efficiency of the compress and decompress algorithm are not related. There can for
example exist an algorithm that needs much time to compress and needs not much
time to decompress.

• The lossless and lossy properties express to what extent the original data can be
reconstructed from the compressed data. Lossless indicates that the reconstructed
data is exactly the original. Lossy indicates that the reconstructed data is not exactly
the original.

1



1.2. LEMPEL-ZIV COMPRESSION ALGORITHMS

• Non-universal and universal indicate which kinds of data can be compressed.

A non-universal algorithm can not compress all kinds of data. It needs some kind
of a priori knowledge of the data to compress the data. This a priori knowledge is
based on a single kind of data. Compression can only be achieved for that single
kind of data.

A universal algorithm can compress all kinds of data. It adapts to the data and
it does not need a priori knowledge of the data. There are two kinds of universal
algorithms, namely the semi-adaptive and the adaptive. A semi-adaptive algorithm
first collects knowledge about the data. This knowledge will be used for compression,
just like a priori knowledge is. An adaptive algorithm adapts on the fly, while the
data is being compressed.

1.2 Lempel-Ziv compression algorithms

First, this section provides a general textual description of the Lempel-Ziv compression
algorithms. Next, some reasons will be given why these algorithms are used. Finally, there
is an indication of the applications that use these algorithms.

1.2.1 Description

Lempel-Ziv1 compression algorithms have been named after two persons, Jacob Ziv and
Abraham Lempel. They developed the algorithms[ZL77, ZL78] that are the base of all the
Lempel-Ziv compression algorithms. Appendix C gives a general background of them.

All Lempel-Ziv algorithms have the following properties

• They are lossless.

• They use universal textual substitution with only references to the left.

• They process the input sequentially.

These properties will be clarified next.

• Lossless compression –also named exact or textual compression– can reconstruct the
original data exactly. Lossless compression can only achieve compression if the data
contains redundancy. If redundancy has been removed, then the size of the data
reduces. Consequently, lossless compression is the process of removing redundancy.
If more redundancy has to be removed, then more effort has to be made to do so.
If the data has no redundancy, then no redundancy can be removed, regardless of

1Ziv-Lempel is actually a better name, because Jacob Ziv is mentioned first in the articles that Ziv and
Lempel wrote together[ZL77, ZL78]. But this will not be used, because Lempel-Ziv is being used almost
everywhere.

2



CHAPTER 1. INTRODUCTION

how much effort will be made. There is always a trade-off between the amount of
redundancy to be removed and the effort to be made.

Lossy compression is the opposite of lossless compression. It is not able to recon-
struct the original data exactly, but the reconstructed data is an approximation of
the original data. Lossy compression can always achieve compression, even if the
data contains no redundancy. This is possible because approximation is used. In
theory, everything can be compressed in one single bit with lossy compression. This
is possible if it is allowed that the reconstructed data is an extreme approximation of
the original data. In practice it is not desirable to use this kind of extreme approx-
imation. Lossy compression is for example applied to digital represented analogue
data, which is already an approximation of the original analogue data. Examples of
lossy compression are JPEG(pictures) and MPEG(video).

• Textual substitution is a method to represent data more compact. It replaces a part
of data with a reference. The reference refers to another part of the data, which is
the referent.

Take for example lossless lossy. This can be represented more compact as lossless
[reference to loss]y or [reference to loss]less lossy. In both cases the referent is loss.

There are different kinds of textual substitution [SS82]. Each kind has its own prop-
erties. Two properties are mentioned here explicit.

– A reference can refer to the left or to the right. If only left references are used,
then the referent will occur before the reference occurs. If only right references
are used, then the referent will occur after the reference occurs. In the above
example the first solution uses a reference to the left. The second uses a reference
to the right.

– Additional references can be used or not. An additional reference does not
refer to the data itself, but to some additional predetermined data. Additional
references can be seen as references to the left, but also as references to the
right.

As an example assume that ode is an additional predetermined referent. en-
coder decoder can be compressed as enc[reference to ode]r dec[reference to ode]r
or even enc[reference to ode]r de[reference to coder].

Lempel-Ziv variants only use references to the left and additional references. Because
references to the left are used, textual substitution adapts to the symbols on the left.
This means that it is universal.

• Sequential input processing means that the input is processed once from front to end.
It is achieved by repeatedly removing a prefix of the remaining input. Each prefix
that is removed results in one output symbol. In this way the output is constructed
in such a way that the first n symbols from the input correspond with the first m
symbols from the output.

3



1.3. PROBLEM STATEMENT

1.2.2 Advantages

Lempel-Ziv compression algorithms have several advantages.
One advantage is that the algorithms are universal. In other words, the algorithms can

be used for any kind of data. Other algorithms exist that can not be used on any kind of
data.

The good speed/compression ratio is another advantage of Lempel-Ziv variants. They
provide ”good” compression in a ”reasonable amount of time”. There are algorithms that
can achieve better compression, but they require more time.

A third advantage is that some variants only require a small amount of memory. This
is beneficial when the algorithm has to be implemented in hardware. Even if only a small
amount of memory is used –say in the order of some kilobytes–, then the compression
achieved can still be profitable.

1.2.3 Applications

Many applications make use of Lempel-Ziv compression algorithms. They are being used
in both software and hardware. Some applications are:

• WinZip

• WinRAR

• ARJ

• gzip

• PKZIP

• Windows .cab-file compression

• .gif and .png image compression

• V.42bis modem standard

1.3 Problem statement

A problem with the Lempel-Ziv algorithms is that it is difficult to gain a good overview of
all the variants.

The description of the Lempel-Ziv algorithms indicates that it is only a small part of the
whole area of compression algorithms. Although it is a small part of the whole compression
area, there are many Lempel-Ziv algorithms.

One reason why there are so many variants is related to patents. Some algorithms have
been patented and may not be used freely. If this is the case, then new – unpatented –
variants will be developed. It is possible that the new variant only differs in minor aspects

4



CHAPTER 1. INTRODUCTION

from the patented version, but it differs so much that it is not considered the same as the
patented version. Take for example images in the Graphics Interchange Format(.gif). The
algorithm for this image-format has been based on LZW, which is a patented Lempel-Ziv
algorithm. A new algorithm with another format has been developed, namely Portable
Network Graphics(.png). The new algorithm has been based on LZ77, which is an un-
patented Lempel-Ziv algorithm.

Because there are so many Lempel-Ziv algorithms, the overview is lost easily. There
are overviews by means of lists – see for example appendix A – but these lists do not give
a good overview. That is to say, they are not structured, it are just enumerations of the
variants. If there is some kind of structure in the list, then it will be a better overview.
Take for example a super market. What if all articles were located at a random place in the
super market. It would be very hard to find an article, for example a tomato. Fortunately,
the articles have been ordered, there is structure. If you want tomatoes, then you go to
the vegetable department. This narrows the search for tomatoes very much.

It is also difficult to gain overview, because the descriptions of the variants are difficult
to access. All use different presentation styles and different terminologies. If the description
of one variant has been read, then the same amount of time has to be spend on reading
another description of another variant. This should not be the case, because the variants
have several common properties.

To create a good overview of the Lempel-Ziv algorithms, a taxonomy of the algorithms
has been created. The taxonomy gives a structured overview of the algorithms, by indi-
cating the relations between the algorithms. At the top is one algorithm that contains
the elementary properties of the Lempel-Ziv algorithms. Different properties can be added
to create different groups. Even more properties can be added to these groups to create
subgroups. This can be repeated until each group contains only one –or a few– variants.

The construction of the taxonomy for Lempel-Ziv algorithms belongs to one big project,
namely the TAxonomy-BAsed Software COnstruction (TABASCO) project. This project is
the primary research subproject within the Software Construction group at the Eindhoven
University of Technology. The aim of TABASCO is to create order in a specific problem
area. In this particular case it is the area of Lempel-Ziv algorithms.

The variants to be included have been limited in advance, because there are very much
variants.

One limitation is that the variants with postprocessing have not been included. Each
variant with postprocessing is a variation on another variant that uses no postprocessing.
The only difference is that a special postprocessing step is being used, with the goal to
compress the output of the non-postprocessing variant even more. This postprocessing can
even be based on the knowledge of the output of the non-postprocessing variant.

Another limitation is that only abstract descriptions of the algorithms have been used
in the taxonomy. This hides certain details, such as natural number representation. In fact,
there are many methods to represent natural number on the bit-level[BCW90, appendix
A]. This could form a taxonomy on itself. The use of the abstract descriptions makes it

5



1.4. DOCUMENT STRUCTURE

possible to give very compact algorithms. The abstract descriptions also allow the use of
non-deterministic statements.

1.4 Document structure

The general structure for the remaining chapters will be clarified in this section.
The second chapter contains mathematical and notational preliminaries. The chapter

consists out of two parts. The fist part contains the elementary concepts and notations.
The second part contains additional concepts and notations. This chapter only gives
notations and definitions that can be used in a general way. Definitions only related to the
Lempel-Ziv class are not included in this chapter.

Chapter three explains how a taxonomy can be constructed. It explains that the tax-
onomy is constructed bottom-up. It also explains that it is presented top-down.

The resulting taxonomy of Lempel-Ziv compression algorithms will be presented in
chapter four. It first gives a general specification. Secondly, it gives more detailed speci-
fications, which eventually leads to the abstract representations of the actual Lempel-Ziv
variants.

The last chapter –chapter five– contains conclusions and directions for further work.

6



CHAPTER 2. PRELIMINARIES

Chapter 2

Preliminaries

This chapter specifies the general notations and definitions that are used in subsequent
chapters. Definitions which are only related to the Lempel-Ziv algorithms are not included.

The first section mainly introduces notational matters for elementary concepts, includ-
ing the notation used for algorithms. The second section defines additional concepts and
notations.

2.1 Elementary concepts and notations

This section contains the elementary concepts and their notation. It includes the nomen-
clature and the notation for algorithms. Not many definitions are given in this section.
The main goal is to introduce the notation used.

Notation 2.1 (Nomenclature)
The nomenclature is listed in table 2.1 and 2.2. These tables list the nomenclature for the
constants and variables respectively. The symbols f, g and h indicate functions. Proposi-
tions are indicated with the symbols P, Q and R.

Definition 2.2 (Alphabet)
An alphabet is a nonempty finite set. Elements of an alphabet are also called characters
or symbols.

Definition 2.3 (Countable set)
A countable set is an infinite set for which each element can be placed in a one-to-one
relation with an element of N. In other words, the elements of the set can be written in
some order a0, a1, a2, ... in such a way that each element of the set has a finite index.

Definition 2.4 (String)
A string over Σ is a finite sequence of symbols from an alphabet Σ. Strings can be defined
explicitly by use of symbol juxtaposition. For example, the string xxyxz is the sequence of
the symbols x, x, y, x and z.

7



2.1. ELEMENTARY CONCEPTS AND NOTATIONS

Table 2.1: Constants nomenclature

symbol meaning
Constant sets:
• T ,V ,W general constant set
• N natural domain ({0, 1, 2...})
• B boolean domain ({true, false})
• Σ alphabet
• K,R countable set

Constant elements:
• A, B general constant element (∈ V)
• I, J, K, M, N natural number constant (∈ N)
• S, T string constant (∈ V∗)

Table 2.2: Variables nomenclature

symbol meaning
V, W general set (∈ P .V )
i, j, k, m, n natural number (∈ N)
a, b, c, d single element (∈ V )
α, β, γ, ... string (∈ V ∗)

Notation 2.5 (Elementary logic, set and string symbols)
Table 2.3, 2.4 and 2.5 list the symbols for elementary concepts. The definitions of these
concepts are assumed to be known. The tables list the logic concepts, set concepts and
string concepts respectively.

Notation 2.6 (Quantification)
Quantification is denoted as

〈 ⊕
a : R.a : f.a

〉
. It is a way to express e⊕ ⊕ f.a1 ⊕ f.a2 ⊕

. . .⊕ f.an, if it is assumed R.a is valid for n values of a and each value of a for which R.a
is valid is projected on a unique ai. e⊕ is the unit for operator ⊕ (b⊕ e⊕ = b).

Table 2.6 lists the quantified operators. Operator ⊕ is included for clarity.

Example 2.7 (Quantification)
The sum of all numbers between 1 and 4(including 1 and 4) is

〈 ∑
i : 1 ≤ i ≤ 4 : i

〉
, which

is 0 + 1 + 2 + 3 + 4 = 10.

Example 2.8 (Quantification)
”All squared natural numbers are at least 0” can be formalized as

〈
∀i : i ∈ N : i2 ≥ 0

〉
.

This is equal to true ∧ (02 ≥ 0) ∧ (12 ≥ 0) ∧ (22 ≥ 0) ∧ . . .

8



CHAPTER 2. PRELIMINARIES

Table 2.3: Elementary logic concepts

symbol meaning example
∧ conjunction (and) a ∧ b
∨ disjunction (or) a ∨ b
¬ negation (not) ¬a
⇒ implication (implies) a ⇒ b

Table 2.4: Elementary set concepts

symbol meaning example
ø empty set ø
∪ union V ∪W
∩ intersection V ∩W
\ difference V \W
× Cartesian product V ×W
P powerset P .V
⊆ subset V ⊆ W
⊇ superset V ⊇ W
| | set size |V |
∈ element of a ∈ V
6∈ not an element of a 6∈ V
{...} set definition {1, 2, 3}

Table 2.5: Elementary string concepts

symbol meaning example
λ empty string λ
Σi set with all strings over Σ of length i Σ3

Σ∗ set with all strings over Σ of all lengths Σ∗

〈 〉 singleton string 〈a〉
++ string concatenation α++β
| | string length |α|

9
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Table 2.6: Quantified operators

operator symbol quantified operator symbol unit
⊕

⊕
e⊕

∧ ∀ true
∨ ∃ false
∪

⋃
ø

+
∑

0

Notation 2.9 (Domain and range)
The domain of function f is denoted as dom.f . The range of a function f is denoted as
range.f .

Definition 2.10 (Total function)
A total function f is a function with signature f : V → W , with requirements

• dom.f = V

• range.f ⊆ W

Definition 2.11 (Partial function)
A partial function f is a function with signature f : V 9 W , with requirements

• dom.f ⊆ V

• range.f ⊆ W

Remark 2.12 (Total and partial function)
Every total function can be seen as a partial function, but not every partial function can
be seen as a total function.

Notation 2.13 (Function application)
f.a is the notation for applying argument a to function f . Other literature sometimes uses
f(a). Function application has the highest priority.

Definition 2.14 (Function composition)
The composition of function f and g is denoted as f ◦ g. The ◦-symbol is the ”compose”
symbol. (f ◦ g).a is defined as f.(g.a).

Definition 2.15 (Identity function)
The identity function id is defined as id.a = a. a can be of any type.

10
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Notation 2.16 (Function specification)
From a set theoretic point of view, a function f with domain-type V and range-type W is
a subset of V ×W . Consequently, a function can be specified with a set containing tuples.

Example 2.17 (Function specification)
Let function f : N 9 N be specified with f = {(1, 4), (3, 8), (0, 5)}. This means that –for
instance– f.3 = 8. This specification also provides the domain and range of f , namely
dom.f = {0, 1, 3} and range.f = {4, 5, 8}.

Notation 2.18 (Algorithm notation)
The Guarded Command Language (GCL) –which was first defined by Dijkstra [Dij76]– is
used for the notation of algorithms. There are several reasons to use GCL, such as the
plain and simple notation and the inclusion of nondeterminism. It is extended with let as
described in definition 2.20. Assertions are used to prove properties of an algorithm. An
assertion is denoted as a predicate surrounded with curly braces. Queries –assertions that
are not yet proven– start the predicate with a question mark [FvG99, p. 98].

Example 2.19 (Queried assertions)
Let the following algorithm fragment be given:

{ i = 0 }
i : = i + 1{ ? i ≥ 1 }

This indicates that the assertion i = 0 has already been proven, and that assertion i ≥ 1
has to be proven. The proof of this particular queried assertion can be given with standard
techniques. i ≥ 1 is valid if the assertion i + 1 ≥ 1 is valid just before the assignment,
which is the case because i = 0 is valid.

Definition 2.20 (let-statement)
Let v define a list with fresh variables and let P denote a predicate that depends on v.
The let-statement is defined as〈

∃v : : P.v
〉

let v such that P.v
{ P.v }

All variables in the variable list have to be assigned a value, in such a way that P.v
will be valid. The assignment of the values is nondeterministic, because there can be many
assignments that satisfy P.v.

The precondition guarantees that P.v can be satisfied, which can be seen as a guarantee
that the let-statement ”terminates”.

Notation 2.21 (Alternative let notation)
Because one particular form is used frequently, an alternative –shorter– form is introduced
for that particular form. This alternative notation is given with use of an example. The
alternative notation is

11
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let α :: β++γ such that |β| < |γ|
Which is equal to

let β, γ such that α = β++γ ∧ |β| < |γ|
β and γ are the fresh variables, both with the same type as α.

Example 2.22 (let-statement)
To emphasis that the let-statement is nondeterministic, the following fragment is given:

{ α = abc }
let β, γ such that α = β++γ ∧ |β| < |γ|

This can result in two (β, γ) pairs, namely (λ, abc) and (a, bc).

2.2 Additional concepts and notations

This section gives additional concepts and notations to the elementary ones. Note that
some additions are not visually used in subsequent chapters. They are used here to specify
other additions.

Definition 2.23 (Disjunct sum)
The disjunct sum combines two sets V and W to a new set T . Each element of T contains
an element of V or W . If an element of T is taken, it can be determined whether it is an
element of V or W . It is defined as T = V +W = {in1.v|v ∈ V} ∪ {in1.w|w ∈ W} with
in1 : V → V +W and in2 : W → V +W (in1 and in2 are so called ”injection” functions).

Definition 2.24 (Function-junc ∇)
Let f : V → T , g : W → T . The function-junc then has the signature f∇g : V +W → T .
The function f∇g is defined by:

(f∇g).(in1.a) = f.a a ∈ V
(f∇g).(in2.b) = g.b b ∈ W

Definition 2.25 (Minimum and Maximum)
The functions ↓, ↑: N× N → N are defined as

• minimal-operator ↓ : a ↓ b =

{
a if a ≤ b

b if b ≤ a

• maximal-operator ↑ : a ↑ b =

{
a if b ≤ a

b if a ≤ b

Definition 2.26 (String operators �, �, �, �)
These operators give a portion of the original string. �, �, �, �: Σ∗×N → Σ∗. α � i and α � i
both give a prefix of α. α � i and α � i both give a suffix of α.

12
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• take-left-operator � : α � i denotes the i ↓ |α| leftmost elements of α

• drop-left-operator � : α � i denotes the (|α| − i) ↑ 0 rightmost elements of α

• take-right-operator � : α � i denotes the i ↓ |α| rightmost elements of α

• drop-right-operator � : α � i denotes the (|α| − i) ↑ 0 leftmost elements of α

The priority of these operators is just below the priority of ++. Note that these functions
need an i ∈ N, thus i cannot be negative.

Property 2.27 (String operators �, �, �, �)
• (α � i)++(α � i) = α

• (α � i)++(α � i) = α

Example 2.28 (String operators �, �, �, �)
xxyxz � 2 = xx, xxyxz � 3 = xz, xxyxz � 100 = xxyxz, xxyxz � 23 = λ, xxyxz � 3 = yxz.

Definition 2.29 (Prefix)
α is called a prefix of β, denoted as α 4p β if

〈
∃γ : γ ∈ Σ∗ : α++γ = β

〉
.

Definition 2.30 (Substring)
α is called a substring of β if

〈
∃γ, δ : γ, δ ∈ Σ∗ : γ++α++δ = β

〉
, and is denoted as α 4s β.

Property 2.31 (Substring)
α 4s β =

〈
∃i : : α 4p (β � i)

〉
Definition 2.32 (Prefix closed with base n)
A set of strings V is prefix closed with base n if

•
〈
∀α : α ∈ V : |α| ≥ n

〉
•

〈
∀α : α ∈ V ∧ |α| > n : (α � 1) ∈ V

〉
Definition 2.33 (Prefix closed)
A set of strings is prefix closed if it is prefix closed with base 0.

Definition 2.34 (new)
new : V → V , where V is any type for which the =-operation is defined. The sequence

a0, a1, ..., an (
〈
∀i : 0 ≤ i ≤ n : ai ∈ V

〉
) produced by repeatedly using new.a (a ∈ V) has

two requirements:

•
〈
∀i, j : 0 ≤ i < j ≤ n : ai 6= aj

〉
(all elements in the sequence are unique)

• The sequence produced by new.a is always the same.

Remark 2.35 (new)
One possibility is to combine new with N. This is easy implementable if the sequence
0, 1, 2, ... is chosen.
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Chapter 3

Constructing and presenting
taxonomies

This chapter describes how a taxonomy can be constructed and presented. First the
construction is described, thereafter the presentation is described. Most of the things
described here are also described in other taxonomies[Wat95, chapter 3][Jon82].

3.1 Constructing taxonomies

A taxonomy is constructed bottom-up. The process can be divided in two steps.
The first step collects algorithms that appear in literature for the problem area of

interest. These algorithms – or a selection of them – are rewritten in a uniform way, all
with the same level of abstraction. Several details may even be removed by the abstraction,
such as implementation details.

The next step is the generalization step. Two or more algorithms are generalized to
one new algorithm. The new algorithm preserves the common properties of the generalized
algorithms and it removes the properties that make them different. These properties that
make them different are named discriminators. This process includes rewriting several
algorithms is such a way that they fit in one general algorithm.

These steps may sound very simple, but in practice they are not so simple. One has
to search for the right level of abstraction. Many versions of an algorithm may have to
be made before the right abstraction level is reached. If a too low level of abstraction is
used, then the common properties may not be clear at all. Abstraction makes the essential
things easier recognizable. The rewriting of the algorithms of the second step is also very
difficult. In some cases it takes a very creative and inventive mind.

The result of the generalization process is in general a directed acyclic graph[Wat95].
Each vertex in the graph represents an algorithm. This can be a generalized algorithm or an
algorithm out of literature. Each edge represents a discriminator. The visual presentation
of this graph is given in 3.2.2.
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The construction of the Lempel-Ziv taxonomy started with four well documented vari-
ants, namely LZ77[ZL77], LZ78[ZL78], LZSS[Bel86] and LZW[Wel84]. Rewriting these
algorithms in a uniform way took much effort. Take for example LZ77, it is originally
not even given as an algorithm, it is given in a textual format. Recognizing the common
properties was even harder. Many rewriting steps were made before the algorithms could
be generalized. Many attempts for generalization did not work out. Eventually it resulted
in a taxonomy with a tree-shape.

3.2 Presenting taxonomies

This section describes issues related to presenting taxonomies. Firstly, issues for the pre-
sentation in general are described. Secondly, it is described how a visual summary of a
taxonomy can be given. Thirdly, it is described how a (generalized) algorithm is presented.

3.2.1 Presentation in general

A taxonomy is presented top-down. At the top is an algorithm that contains the ele-
mentary properties of the various algorithms. Distinct discriminators are added to create
different groups. Even more discriminators are added to these groups to create subgroups.
Discriminators are added until the abstract representations of the variants emerge.

Note that it is possible that some discriminators can be added in various orders. The
order that is chosen is a matter of taste. A different order results in another taxonomy
graph. One graph may look more elegant than another.

A reason to use top-down presentation is that a property can be proven for a general
algorithm, somewhere in the top. With that property proven, it is not needed to prove that
property for the descendants, if it is guaranteed that the descendants preserve correctness.

3.2.2 Presenting a visual summary of a taxonomy

A visual summary of a taxonomy can be given by means of a figure that contains the
taxonomy graph. Additional information can be added with labels. A vertex – which
represents an algorithm in the taxonomy – can be labelled with a number that refers to
the actual algorithm. An edge – which represents a discriminator – can be labelled with a
mnemonic to refer to the discriminator.

An example of a visual summary of a taxonomy with a shape of a tree is given in figure
3.1, where ”discr” as an abbreviation for discriminator.

3.2.3 Presenting an algorithm from the taxonomy

In this subsection it is explained how an algorithm from the taxonomy is presented. Because
the algorithms can be incomplete – that is to say, it is not totally specified – a special
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Figure 3.1: Example of a visual summary of a taxonomy

specification format is introduced(Notation 3.1). This format is defined in such a way that
the incomplete algorithm can be refined easily, as clarified in Remark 3.3. An example
of a specification is given in Example 3.4. Remark 3.8 explains why an algorithm is not
suitable for specification.

Notation 3.1 (Specification format)
The notation to give a specification of one or more possibly incomplete algorithms in such
a way that it is easily refinable has the following format:

Specification 3.2 (Format example)

Declarations:

Definitions:

Assumptions:

Lemmas:

Algorithms:

Each part is clarified next:

• Declarations

This part contains the declarations of sets and functions. The definitions of the sets
and functions are given in the definition part.

• Definitions

This part contains definitions for the declarations. It is possible that not all decla-
rations are defined. In that case the specification is said to be incomplete. The not
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defined declarations are the only things that remain to be defined. There are no other
things anywhere else in the specification to be defined.

The definitions may not violate the assumptions. Otherwise an assumption would
be invalid, and false has to be assumed as a precondition. Assuming false means in
essence that the total is nonsense.

• Assumptions

This part contains assumed –thus unproven– predicates. These predicates can contain
undefined sets or functions, consequently it may even occur that they are currently
not provable. If all declarations are defined, then the assumptions must only contain
easily verifiable assumptions.

• Lemmas

This part contains proven predicates. Because assumptions are predicates, it may
also contain proven assumptions. A proven assumption is actually no assumption
any more. Consequently, it becomes a lemma if it is proven. Lemmas may use
assumptions and other lemmas for the proof of their correctness.

• Algorithms

This part contains special definitions. It contains algorithms that are used to define
declarations.

This part is not placed directly after the definition-part, but at the end of the speci-
fication. This is done because the algorithm-part can be viewed as the ”goal”. The
algorithm-part contains the algorithms that will be implemented.

If this part is not placed at the end, then the algorithms will be encountered some-
where in the middle of the specification. But if the algorithms are read, why should
you read any further? The algorithms do lead to the implementation. They can be
viewed as the reason to read the specification. In fact, that is not totally true, the
other parts are as important as the algorithms. Take for example the lemmas. The
lemmas will probably give the properties that hold for the algorithms. This assures
that the algorithms are correct, which is quite important.

To prohibit that the reading of the specification is stopped after the algorithms are
encountered, the algorithms are placed at the end.

Note that the algorithms are only implementable if all the declarations are defined.

All the parts have the same appearance. Each part starts with an appropriate heading
and is followed by the items belonging to that part. Each item –except the algorithms–
also has the same appearance. Each item contains

• Item name.

• Item ”freshness”. The ”+” sign indicates that this item is fresh, it is new in com-
parison with the former specification.
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• Item content. This contains the actual content. For example, this could be a defini-
tion.

• Item reference. This contains a reference to a further explanation in the text. For
example, if the item is a lemma, then this contains a reference to the proof of the
lemma.

The specification is given in such a way that it can be read top down. Each item only
uses items that are listed earlier.

Remark 3.3 (Adding refinements to specifications)
Refinements can be added to a specification by giving new definitions and proving assump-
tions.

The addition of refinements can be described for only definitions, because there is a
similarity between the assumption/lemma parts and the declaration/definition parts. The
assumption/lemma parts contain respectively unproven and proven predicates. Declara-
tions can be viewed as unproven, because the actual definition has not yet been given. The
definition is the ”proof”.

A refinement of a declaration is a definition. A definition can be given with use of
declared – and possibly undefined – sets or functions. These declarations can even be
introduced especially for this definition. This enables stepwise refinement, which is a
useful property when constructing a taxonomy. With stepwise refinement it is possible to
give a difficult definition, using other declarations, which are possible not defined. Stepwise
refinement is successful if the possible not defined declarations are easier definable. One
difficult definition is given, and some less difficult definitions have to be given.

Example 3.4 (Specification)
Take a function that splits a string in two parts. It is not yet know how the string has to
be split exactly, it is only known that it has to be split.

A specification of this looks like:

Specification 3.5 (Specification example; Step 1)

Declarations:
Split Split : Σ∗ → Σ∗ × Σ∗

Definitions:

Assumptions:
ProperSplit

〈
∀α, β, γ : (β, γ) = Split.α : β++γ = α

〉
Lemmas:

Algorithms:

A definition for Split can be given now1. With this definition, the proof for the as-

1Many correct definitions exist, one is chosen here. In a taxonomy this would be a discriminator.
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sumption can be given. The new specification becomes:

Specification 3.6 (Specification example; Step 2)

Declarations:
Split Split : Σ∗ → Σ∗ × Σ∗

Definitions:
+ Split.α = (α � 1, α � 1)

Assumptions:

Lemmas:
ProperSplit +

〈
∀α, β, γ : (β, γ) = Split.α : β++γ = α

〉
(3.7)

Algorithms:

Proof 3.7 (ProperSplit)
For all α, β and γ with (β, γ) = Split.α holds that

β++γ

≡ {(β, γ) = Split.α, thus (β, γ) = (α � 1, α � 1)}

α � 1++α � 1

≡ {property �, � (2.27)}

α

Remark 3.8 (Specification vs algorithm)
An algorithm in isolation is not suitable for the notation of incomplete algorithm. Exam-
ple 3.4 illustrates an incomplete algorithm. That is to say, the definition of P is not given,
only the declaration.

Assume that only the algorithm is given. There are two possibilities:

• Because P is not declared, it can not be used. Consequently, P.β has to be replaced
with something like ”...” or some pure text. This mixes formal and informal, which
is not desirable.
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• To allow the usage of P.β, the declaration can be given in the text. But if the
algorithm is repeated some pages later, then reader has to search for the declaration,
which is not desirable.

In conclusion, the declaration has to be given, and it has to be given each time. This is
precisely what the specification does.
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Chapter 4

Taxonomy

This chapter presents a taxonomy of Lempel-Ziv compression algorithms. An overview of
the total taxonomy is presented first. The detailed presentation starts with the specification
of the root, which includes the encode and decode algorithm. It is followed with more
detailed specifications. These specifications lead to the abstract representations of the
actual Lempel-Ziv variants.

Note that the encode and decode algorithm are also called encoder and decoder respec-
tively.

4.1 Overview

An overview of the taxonomy of the Lempel-Ziv compression algorithms is given in figure
4.1 on page 24. This figure could be used as an alternative table of contents of sections 4.3
and 4.4.

Each vertex in the figure corresponds to an algorithm. If the vertex is labelled with
a number, then that number refers to an algorithm given in this chapter. A vertex with
the label at the bottom indicates an algorithm that appears in the literature. The label
gives the acronym for that algorithm as found in literature. The acronyms of all algorithms
found in literature are listed in A. Each edge in the figure corresponds with a discriminator.
The labels of the edges are mnemonics that refer to the discriminators. These mnemonics
are clarified in table 4.1 on page 24.

4.2 Root specification

This section contains the specification for the root. The specification will be given in
three steps. Firstly, an initial root specification is constructed on basis of the textual
specification in §4.2.1. Secondly, the initial specification is adapted in §4.2.2. This is done
to make further specification easier. Thirdly, the adapted specification is transformed in
the final root specification in §4.2.3.
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Figure 4.1: Visual summary of the taxonomy of Lempel-Ziv Compression Algorithms

Mnemonic Explanation
hpp The encoder processes its input by repeatedly removing a prefix of the remaining

input. The function hpp indicates a set containing all the so called ”proper prefix”.
That are prefixes that can be processed. The discriminator hpp gives a possible
definition for this function.

E E stands for the abstract data type environment. This environment is a method
to handle referents and references. Referents and references will be heavily used,
because they are the base of textual substitution.

K = ... K is the output type of the encoder. These discriminators gives a definition of
that type in terms of the reference type R and Σ.

`r The encoder has to select one of the proper prefixes given by set hpp. This
discriminator narrows this set down. It eliminates all the prefixes that are based
on referents, except one. The prefix that contains the longest referent – that is to
say, the longest referent present in the set – is not eliminated.

> J Just like `r, this discriminator narrows the set hpp down. It eliminates all the
prefixes that are based on referents, except those with a length longer than J .

E = ... These discriminators give an implementation for the abstract data type E . Two
main implementations are used, the dictionary D and the search buffer B.

+, − These discriminators indicate how the environment has to be changed. The en-
vironment has to be changed, because it contains the referents and references,
which change while the input is being processed. The + and − indicate respec-
tively addition and removal.

δi = ... These discriminators indicate how the environment is initialized.

Table 4.1: Mnemonics for the discriminators
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4.2.1 Initial root specification

The initial root specification is constructed step-by-step on basis of the textual specifica-
tion. The textual specification – as given in §1.2.1 – is restated here for ease of reading:

All Lempel-Ziv algorithms have the following properties

• They are lossless.

• They use universal textual substitution with only references to the left.

• They process the input sequentially.

Each step of the construction introduces one of the properties of the textual specifica-
tion. The last step – which is located in §4.2.1.3 – gives the initial root specification.

The construction steps are the subject of the next subsubsections.

4.2.1.1 Introducing lossless

This first construction step introduces the lossless property. This specification is one of
the simplest possible, because no definition of the encoder and decoder is needed, only the
declarations are needed.

The encoder has to be a total function, because it has to be able to encode every possible
string. The decoder can be a partial function. The reason why it can be partial consists
out of two parts. Firstly, the decoder only has to decode something that is produced by
an encoder. It is not logical to decode something that is not produced by an encoder.
Secondly, it is possible that the encoder can not produce all output strings, which means
that the range of the encoder is limited. The combination of these two parts implies that
the domain of the decoder can be limited, which means that the decoder can be a partial
function.

Specification 4.1 (Construction step 1)

Declarations:
Input Σ ∈ Alphabet
Output K ∈ Countable Set

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

Definitions:

Assumptions:
Lossless decode ◦ encode = id

Lemmas:
Lossless decode ◦ encode = id (4.2)
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Algorithms:

Proof 4.2 (Lossless)
Because Lossless is assumed, it can be concluded as a lemma.

Remark 4.3 (Lossless)
Assuming Lossless to conclude Lossless as a lemma may seem silly. But this is the only
possibility at the moment to conclude the lemma, there is nothing else available where the
proof can be based on. Another proof – which does does not assume Lossless – is given in
§4.2.3. It is possible to give another proof there, because the specification included there
contains a definition of the encoder and decoder.

4.2.1.2 Introducing sequential input processing

This second construction step introduces sequential input processing. Sequential input
processing – in the form of repeatedly removing a prefix of the remaining input – requires
that the body of the encoder and the decoder have a particular form. This form is given
by the following algorithm fragment, where α is the input and β is the output.

do α 6= λ →
let γ such that γ 4p α ∧ γ 6= λ ;
β : = β++”encoding/decoding of γ”;
α : = α � |γ|

od

Because it is not yet known how ”encoding/decoding of γ” is stated formally, no formal
specification of the encoder/decoder can be given.

4.2.1.3 Introducing textual substitution

This third construction step introduces textual substitution, with only references to the
left. It introduces one function for the encoder and one function for the decoder. These
two functions are the formal version of ”encoding/decoding of γ” from the previous step.

The function f : Σ∗ → Σ∗ 9 K is introduced for the encoder1. The function incorpo-
rates textual substitution with references to the left. References to the left can refer to the
processed part of the input. This processed part of the input –which will be named σ in
the algorithm– will be an argument of f . f.σ is used to encode a prefix of the remaining
input.

The type for references – R – is somehow embedded in K. The exact embedment does
not matter yet, it will be given later.

1A function with signature Σ∗ 9 K could be used as a first specification, but it does not allow adaption.
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With the inclusion of textual substitution it can be explained why f.σ is not a total
function. The domain of f.σ is namely in some way based on the referents. But not every
string is a referent. Consequently, the domain of f.σ can be limited and f.σ has to be a
partial function.

The function g : Σ∗ → K 9 Σ∗ is introduced for the decoder. The first argument is
needed to decode references, which are embedded in K. To decode a reference, the decoded
string before that reference – named σ in the algorithm – is enough to decode the reference.
It is enough to known only σ, because only references to the left are used. g.σ is used to
decode the first symbol of the remaining input. Only one symbol at a time is decoded,
because the whole decoded string before a reference is needed for decoding.

g.σ is not a total function, because references are included in K. It is possible that the
reference can not be decoded, because it refers to a referent that does not exist.

The specification becomes

Specification 4.4 (Construction step 3; Initial Root)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

Substitute + f : Σ∗ → Σ∗ 9 K
DeSubstitute + g : Σ∗ → K 9 Σ∗

Definitions:

Assumptions:

Lossless decode ◦ encode = id

Lemmas:

Lossless decode ◦ encode = id (4.2)
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Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗

| σ′, κ, σ : = σ0, λ, λ;
do σ′ 6= λ →

let η such that η 4p σ′ ∧ η 6= λ ;
κ : = κ++〈f.σ.η〉;
σ, σ′ : = σ++η, σ′ � |η|

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗

| κ′, σ : = κ0, λ;
do κ′ 6= λ →

let κ′ :: 〈c〉++ρ′ ;
σ : = σ++g.σ.c;
κ′ : = ρ′

od;
return σ

]|

4.2.2 Adapted initial root specification

The initial root specification is adapted here to make further specifications easier.
The only statement that is actually adapted is the let-statement in the encode algo-

rithm of the initial root. It is one statement, but in fact it solves two subproblems.

• The first subproblem is the determination of ”proper” η’s. All these η’s will be
determined with the function hpp : Σ∗ × Σ∗ → P .Σ∗. This function results in a set
containing all proper η’s. Two arguments are needed to construct the set, this will
be σ and σ′.

At the moment it has already been specified that a proper η is not the empty string
and that η is a prefix of σ′. This results is two assumptions for the function.

– Progress:
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
– IsPrefix:

〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
The function is called hpp because it will only contain Proper Prefixes of σ′.

• The second subproblem is the actual selecting of a proper η. This will be done with
a function hsel : P .Σ∗ × Σ∗ × Σ∗ 9 Σ∗. The first argument contains a set with all
the proper η’s. The next two arguments – which will be σ and σ′ – are information
on which the selection will be made. The function is partial, because the set for
selection can be empty.

One assumption has to be made for the function. If the set for selection is nonempty,
then the function has to result in an element of the set. This is formally stated as
ProperSelect :

〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P .Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
An adaption of the let-statement will make it possible to address these two subproblems
separately.

The adapted specification becomes
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Specification 4.5 (Adapted Initial Root)

Declarations:
Input Σ ∈ Alphabet
Output K ∈ Countable Set

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix + hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix + hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
DeSubstitute g : Σ∗ → K 9 Σ∗

Definitions:

Assumptions:
Lossless decode ◦ encode = id
Progress +

〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
IsPrefix +

〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
ProperSelect +

〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
Lemmas:
Lossless decode ◦ encode = id (4.2)

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗

| σ′, κ, σ : = σ0, λ, λ;
do σ′ 6= λ →

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′ : = σ++η, σ′ � |η|

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗

| κ′, σ : = κ0, λ;
do κ′ 6= λ →

let κ′ :: 〈c〉++ρ′ ;
σ : = σ++g.σ.c;
κ′ : = ρ′

od;
return σ

]|

4.2.3 Final root specification

The final root specification is constructed with the adapted initial root specification.
It is called the final root specification, because it is the first specification that does not
assume Lossless to conclude Lossless.

The Lossless assumption is proven in Proof 4.7. This proof needs several new assump-
tions. Two are related to the progress of the encoder, namely the Substitutable and the
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ProperPrefixExists assumption. The only other assumption needed for the proof is the
SubstituteId assumption.

After the proof there are some remarks. The remarks are about the selection of η
(Remark 4.8), the encode algorithm being a total function(Remark 4.9) and the relation
between f.σ and g.σ(Remark 4.10).

Specification 4.6 (Final Root)

Declarations:
Input Σ ∈ Alphabet
Output K ∈ Countable Set

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
DeSubstitute g : Σ∗ → K 9 Σ∗

Definitions:

Assumptions:
SubstituteId +

〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
Substitutable +

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
ProperPrefixExists +

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
Progress

〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
IsPrefix

〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
ProperSelect

〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
Lemmas:
Lossless + decode ◦ encode = id (4.7)

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗

| σ′, κ, σ : = σ0, λ, λ;
do σ′ 6= λ →

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′ : = σ++η, σ′ � |η|

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗

| κ′, σ : = κ0, λ;
do κ′ 6= λ →

let κ′ :: 〈c〉++ρ′ ;
σ : = σ++g.σ.c;
κ′ : = ρ′

od;
return σ

]|
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Proof 4.7 (Lossless)
The Lossless assumption can be proven by interweaving the encoder and decoder. But this
proof would require much textual explanation. A much more elegant proof can be given if
the imperative algorithms are first transformed into functional versions.

The imperative encode and decode algorithm from Specification 4.6 can be transformed
into functional versions with the help of standard transformations [vGvdW02]. This results
in

encode.σ0 = enc.λ.σ0

enc.σ.λ = λ
enc.σ.σ′ = 〈f.σ.η〉++enc.(σ++η).(σ′ � |η|) where η = hsel.(hpp.(σ, σ′), σ, σ′)

decode.κ0 = dec.λ.κ0

dec.σ.λ = λ
dec.σ.(〈c〉++ρ′) = g.σ.c++dec.(σ++g.σ.c).ρ′

To prove the Lossless assumption, dec.λ.(enc.λ.σ0) = σ0 has to be proven. It is proven
by proving the generalized version, namely dec.σ.(enc.σ.σ0) = σ0. The actual proof is
heavily based on the work of Van Geldrop and Van der Woude [vGvdW02].

The proof is given on the basis of strong induction.

case σ0 = λ

dec.σ.(enc.σ.λ)

≡ {definition enc and dec, both first case}

λ

case σ0 = σ1 (σ1 6= λ)

Induction Hypothesis(IH):
〈
∀α, β : |α| < |σ1| : dec.β.(enc.β.α) = α

〉
dec.σ.(enc.σ.σ1)

≡ {definition enc, second case}

dec.σ.(〈f.σ.η〉++enc.(σ++η).(σ1 � |η|)) where η = hsel.(hpp.(σ, σ1), σ, σ1)

≡
{

ProperPrefixExists and ProperSelect, thus an η exists,
•η = hsel.(hpp.(σ, σ1), σ, σ1) {η ∈ hpp.(σ, σ1)}

}

dec.σ.(〈f.σ.η〉++enc.(σ++η).(σ1 � |η|))
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≡ {definition dec, second case}

(g.σ).((f.σ).η)++dec.(σ++(g.σ).((f.σ).η)).(enc.(σ++η).(σ1 � |η|))

≡ {Substitutable, SubstituteId}

η++dec.(σ++η).(enc.(σ++η).(σ1 � |η|))

≡ {IH, |(σ1 � |η|)| < |σ1|, η 6= λ(Progress)}

η++(σ1 � |η|)

≡ {IsPrefix}

σ1

Remark 4.8 (Selection η)
The determination of η – with function hsel.(V, σ, σ′) – is at the moment non-deterministic.
There can be many proper η’s, but only one will be selected.

The selection of η has effect on the compression ratio. If a string has to be compressed,
then an η has to be selected in each iteration. Consequently, it is possible that a string can
be compressed in various ways. All these compressed strings can have different lengths.
Consequently, the choice to select one particular η can lead to a better compression ratio
than the selection of another η.

Remark 4.9 (ProperPrefixExists, Substitutable and Progress)
The ProperPrefixExists, Substitutable and the Progress assumption reflect that the encode
algorithm is a total function, which must be able to process any string. The assumptions
guarantee that the algorithm can always proceed and that progress is made.

Remark 4.10 (SubstituteId assumption)
The SubstituteId assumption is valid if g.σ were the inverse of f.σ. But this is too strict.
Beside (g.σ).((f.σ).η) = η, it would also require (f.σ).((g.σ).c) = c.
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4.3 Specializing the root

This section specializes the root specification in two steps. The first step – located in §4.3.1
– defines hpp. The second step – located in 4.3.2 – introduces the ”environment” E , which
is closely related to referents and references. Both steps introduce one discriminator that
result in one subgroup. It is possible that multiple subgroups could be indicated, but only
one will be used here2.

The specialization steps are visualized in figure 4.2. In this figure the lines of the steps
that do not belong to the specialization are dashed.

rRoot
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Figure 4.2: Specialization steps in the visual summary of the taxonomy

4.3.1 Defining the ProperPrefix function hpp

In this subsection the definition for the ProperPrefix function hpp is given. This definition
can already be given because the assumptions given so far guarantee that each element
of hpp.(σ, σ′) is a proper prefix. That is to say, whichever element of hpp.(σ, σ′) is chosen,
progress is always made and it is always a prefix of σ′.

The definition of hpp is given 4.11. With this definition, the proofs for assumption
Substitutable(4.13), Progress(4.15) and IsPrefix(4.16) can be given. The ProperPrefixEx-
ists assumption is proven in 4.14. This proof needs the additional assumption MinDomf
assumption.

After the proofs there is a remark about the MinDomf assumption(Remark 4.17).

2If multiple subgroups would be indicated, then the taxonomy would become a multi-dimensional
taxonomy, which makes everything more difficult.
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Discriminator 4.11 (Definition of hpp.(σ, σ′))
There are four assumptions for hpp.(σ, σ′). Namely Substitutable, ProperPrefixExists,
Progress and IsPrefix.

Only the Substitutable, Progress and IsPrefix assumption are used for the definition
of hpp.(σ, σ′). These assumptions assume something about each element of hpp.(σ, σ′),
which can be used for the definition. The ProperPrefixExists assumption does not assume
something about each element of hpp.(σ, σ′), it assumes something for the whole set.

The definition is: hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}.

Specification 4.12 (Root with hpp)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
DeSubstitute g : Σ∗ → K 9 Σ∗

Definitions:

+ hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}

Assumptions:

SubstituteId
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
ProperSelect

〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
MinDomf +

〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
Lemmas:

Lossless decode ◦ encode = id (4.7)
Substitutable +

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists +
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress +
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix +
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)
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Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗

| σ′, κ, σ : = σ0, λ, λ;
do σ′ 6= λ →

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′ : = σ++η, σ′ � |η|

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗

| κ′, σ : = κ0, λ;
do κ′ 6= λ →

let κ′ :: 〈c〉++ρ′ ;
σ : = σ++g.σ.c;
κ′ : = ρ′

od;
return σ

]|

Proof 4.13 (Substitutable)
For all σ, nonempty σ′ and η it holds that

η ∈ hpp.(σ, σ′)

⇒ {definition hpp.(σ, σ′)}

η ∈ dom.(f.σ)

Consequently, hpp.(σ, σ′) ⊆ dom.(f.σ).

Proof 4.14 (ProperPrefixExists)
For all σ and nonempty σ′ it holds that

hpp.(σ, σ′)

≡ {definition hpp.(σ, σ′)}

{η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}

⊇ {σ′ 6= λ, MinDomf}

{σ′ � 1}

Consequently, hpp.(σ, σ′) is not the empty set.

Proof 4.15 (Progress)
For all σ, nonempty σ′ and η it holds that

η ∈ hpp.(σ, σ′)
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⇒ {definition hpp.(σ, σ′)}

η 6= λ

Consequently, λ 6∈ hpp.(σ, σ′).

Proof 4.16 (IsPrefix)
For all σ, nonempty σ′ and η it holds that

η ∈ hpp.(σ, σ′)

⇒ {definition hpp.(σ, σ′)}

η 4p σ′

Remark 4.17 (MinDomf)
The MinDomf assumption is not just an assumption. It is precisely the minimum domain
that is needed to prove that a proper prefix exists. If one element of Σ is left out, then it
is possible that no proper prefix exists.

Take for example a σ′ of length one. Because σ′ can be any symbol, Σ has to be a subset
of dom.(f.σ), otherwise there is no proper prefix. But the domain of f.σ is independent of
σ′. Consequently, Σ always has to be a subset of dom.(f.σ).

4.3.2 Introducing environment E
This subsection introduces the abstract data type environment E . The environment is a
special method to implement fR and gR. These functions will be clarified first in §4.3.2.1.
How these functions relate to the environment is explained secondly. As third, the environ-
ment will be defined. As fourth, the environment will be introduced to the specification.

4.3.2.1 fR and gR

The functions fR and gR are two general functions used to handle referents and references.
They are the core for textual substitution and will be used in all further specifications.
The functions have the signatures

• fR : Σ∗ → Σ∗ 9 R (Refer)

• gR : Σ∗ → R 9 Σ∗ (DeRefer)

Both functions have as a first argument the string where the referents and references are
based on. For both the encoder and decoder this is – not coincidentally – σ.

Because it has to be possible to de-refer a reference –that is the whole idea behind
textual substitution– , it is required that

〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
.
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4.3.2.2 fR and gR related to environment E

The function fR and gR are related to the abstract data type environment E by two loop-
invariants. Let δ be an algorithm variable with type E and let 5 and 4 be operators of
E . The loop-invariants are then

• fR.σ = δ5 (δ5 : Σ∗ 9 R)

• gR.σ = δ4 (δ4 : R 9 Σ∗)

The functions δ5 and δ4 are the ”on the fly” versions of fR.σ and gR.σ. On the fly
construction is a well known method to maintain a function with a variable. It introduces
a variable to replace a function. If the value of an argument of the function changes, then
the value of the variable has to be changed too.

Example 4.18 (On the fly construction)
Let Npwr.i = N i. The following algorithm fragment uses on the fly construction for
Npwr.i.

i, j : = 0, 1;
do j < M → { j = Npwr.i }

i, j : = i + 1, j ∗N
od
The value of Npwr.i and j are related by the loop-invariant j = Npwr.i.

4.3.2.3 Defining environment E

Before the definition of the abstract data type environment is given, its operators are
introduced stepwise. It is used that δ ∈ E .

• operator ∅
This operator gives an ”empty” environment.

• operator ⊕
δ⊕α alters the functions δ5 and δ4. Because δ5 and δ4 are the on the fly versions
of fR.σ and gR.σ, δ has to be altered each time that σ is altered.

• operators 53and 43

The functions δ5 and δ4 are the on the fly versions of fR.σ and gR.σ.

• operator || ||
The environment has some notion of size. This operator is added to give that size.

Definition 4.19 (Abstract data type environment E)
The abstract data type environment E is defines as:

35 and 4 can be ”read” top down. 5 is wide at the top and narrow at the bottom. It gives a smaller
representation. 4 is narrow at the top and wide at the bottom. It gives a larger representation.
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declaration meaning pronunciation
∅ : E empty environment empty
⊕ : E × Σ∗ → E alter environment plussel
5 : E → Σ∗ 9 R get reference for referent ref
4 : E → R 9 Σ∗ get referent for reference de-ref
|| || : E → N size of environment size

With the assumption that

• SubstituteIdE :
〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
Section 4.5 gives several implementations for the environment.

4.3.2.4 Using environment E

The environment is embedded in the specification by Discriminator 4.20. The new speci-
fication is given thereafter. The specification is followed by a proof for the SubstituteIdR
assumption(4.22). After the proof there are some remarks. They are about the justifica-
tion for the introduction of E(4.23), the new function e(4.24) and the correctness of the
loop-invariants in the algorithms in relation to fR and gR(4.25).

Discriminator 4.20 (Environment E)
The abstract data type E is used to to implement fR.σ and gR.σ. The two functions are
needed to handle referents and references.

Specification 4.21 (Root with hpp, E)
Declarations:
Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference + R ∈ Countable Set
Initial E + δinit ∈ E

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer + fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer + gR : Σ∗ → R 9 Σ∗

AdaptEnvironment + e : E × Σ∗ → E

Definitions:
hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}
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Assumptions:
SubstituteId

〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
ProperSelect

〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
MinDomf

〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
SubstituteIdE +

〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
Lemmas:
Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR +
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|

Proof 4.22 (SubstituteIdR)
For all σ and η ∈ dom.(fR.σ) it holds that

(gR.σ) ◦ (fR.σ) = id

≡ {loop-invariants δ5 = fR.σ and δ4 = gR.σ, SubstituteIdE}

true

Remark 4.23 (Justification for introduction of E)
Although there is no actual need to introduce E for handling referents and references, it is
is justified to so. There is no actual need because the role of the referents and references is
not yet exactly known. But because it is known that referents and references will be used,
it is justified to introduce E to handle them. If referents and references are not used, then
no compression can be achieved.
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Remark 4.24 (Function e)
The function e is introduced for the adaption of the environment. It uses the old environ-
ment and the prefix that is currently being processed, which is η. The adaption is limited
by the loop-invariants in the algorithm, see also Remark 4.25.

Remark 4.25 (Correctness of the loop-invariants)
The loop-invariants given in the algorithms are correct. Because the functions fR and gR
have not yet been defined, it is not logic to state that the proof is correct. But there is a
reason why they are stated to be correct.

The functions fR and gR will actually never be defined. Only the initialization and
adaption of the on the fly variable δ will be defined. The definition of the functions fR
and gR could probably be derived from the on the fly variable, but this will not be done,
the function is only used in the annotation of the algorithm.

The functions are maintained because they can be easily used outside the algorithms.
δ is bounded to the algorithm and can not be used outside the algorithm.

Consequently, the on the fly variable δ is not limited by the definition of fR and gR.
It is only limited by the assumptions for the functions fR and gR. As a consequence, the
adaption of δ by means of function e is quite freely to define.

40



CHAPTER 4. TAXONOMY

4.4 Dividing the specialized root in subgroups

In this section the specialized root specification is divided in subgroups on basis of the
embedding of R – the type for references – in K.

Theoretically, it is possible that R is not embedded in K. But if that is the case, then
no references can be used and no compression can be achieved. For practical solutions, R
has to be embedded in K.

There are in general two methods for embedding R in K.

• Only embed R in K, which results in K = R

• Beside R, embed also other types in K. It is here chosen to use the additional
embedment of Σ (see Remark 4.26). Two possibilities to combine R and Σ are

– K = R× Σ, this will result in a strict alternation of R and Σ in K∗.

– K = R+ Σ, this will result in a free alternation of R and Σ in K∗.

Three possibilities for embedding R in K are explicitly given above. These three pos-
sibilities form three subgroups, which are the subject of the next three subsections.

Remark 4.26 (Choosing Σ for alternation)
It is a quite reasonable choice to use Σ for alternation. It gives a prospective to satisfy

the MinDomf assumption (
〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
). It makes it possible to directly

”project” a single symbol of the input on a (part of a) symbol of the output.

Remark 4.27 (Other possibilities for K)
There are many other possibilities for K. In general, any combination of types is possible.
Only a few are included here, namely those that lead to existing Lempel-Ziv algorithms.
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4.4.1 Subgroup K = R

This subgroup is one of the major subgroups in this taxonomy. It is indicated in figure
4.3. In this figure the lines of the other subgroups are dashed.
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Figure 4.3: Subgroup K = R in the visual summary of the taxonomy

Several discriminators are added in this subgroup. Firstly, the main discriminator of
this subgroup – K = R – is introduced. Secondly, the discriminator `r is introduced.
This selects precisely one η. Thirdly, a dictionary is chosen for the environment and the
dictionary is initialized. Fourthly, different kinds for altering the dictionary are introduced.

4.4.1.1 Introducing K = R

This subsubsection introduces K = R by means of discriminator 4.28. Thereafter a new
specification is given. With this discriminator the proof for assumption SubstituteId(4.30)
can be given.

Discriminator 4.28 (K = R)
The embedment of R in K is chosen as K = R. The definition of the functions f and g is
related to this embedment. They are defined as f = fR and g = gR.
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Specification 4.29 (Root with hpp, E, K = R)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:

+ K = R
+ f = fR
+ g = gR

hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}

Assumptions:

ProperSelect
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
MinDomf

〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
SubstituteIdE

〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
Lemmas:

Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId +
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.30)
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Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|

Proof 4.30 (SubstituteId)
For all σ and η ∈ dom.(f.σ) it holds that

(g.σ) ◦ (f.σ) = id

≡ {definition f.σ and g.σ}

(gR.σ) ◦ (fR.σ) = id

≡ {SubstituteIdR, η ∈ dom.(fR.σ)}

true

4.4.1.2 Selecting η (`r)

This subsubsection makes the selection of η deterministic, by introducing the LongestRe-
ferent (`r) assumption in Discriminator 4.31. The definition for hsel.(V, σ, σ′)(4.32) is also
given in this step. With this definition the proof for assumption ProperSelect(4.35) can be
given.

After the proofs there are some remarks. The remarks are about the selection of η(4.36)
and the LongestReferent assumption(4.37).

Discriminator 4.31 (LongestReferent (`r))
If hpp.(σ, σ′) has more than one element, then one of the longest is selected. This is
introduced in the specification as the LongestReferent assumption. It is formally given by:
hsel.(V, σ, σ′) = η ⇒

〈
∀α : α ∈ V : |η| ≥ |α|

〉
Discriminator 4.32 (Definition of hsel.(V, σ, σ′))
There are two assumptions for hsel.(V, σ, σ′). Namely ProperSelect and the new LongestRe-
ferent. Because hsel.(V, σ, σ′) is always used in combination with hpp.(σ, σ′) – which does
not contains two strings of the same length –, these assumptions select precisely one element
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from V . More assumptions will not change this selection. Consequently, the definition can
be given now.

The definition is: hsel.(V, σ, σ′) = η such that η ∈ V ∧
〈
∀α : α ∈ V : |η| ≥ |α|

〉
.

Specification 4.33 (Root with hpp, E, K = R, `r)

Declarations:
Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:
K = R
f = fR
g = gR
hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}

+ hsel.(V, σ, σ′) = η such that η ∈ V ∧
〈
∀α : α ∈ V : |η| ≥ |α|

〉
Assumptions:
MinDomf

〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
SubstituteIdE

〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
Lemmas:
Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.30)

LongestReferent +
〈
∀V, σ, σ′, η : σ′ 6= λ ∧ V ∈ P.Σ∗ :
hsel.(V.σ, σ′) = η ⇒

〈
∀α : α ∈ V : |η| ≥ |α|

〉 〉 (4.34)

ProperSelect +
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ :
V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉 (4.35)
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Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|

Proof 4.34 (LongestReferent)
For all V , σ, nonempty σ′ and η it holds that

hsel.(V, σ, σ′) = η

⇒ {definition hsel.(V, σ, σ′)}〈
∀α : α ∈ V : |η| ≥ |α|

〉
Proof 4.35 (ProperSelect)
For all nonempty V , σ and nonempty σ′ it holds that

hsel.(V, σ, σ′) ∈ V

≡ {hsel.(V, σ, σ′) must have some value to be an element of V }〈
∃η : : hsel.(V, σ, σ′) = η ∧ η ∈ V

〉
≡ {definition hsel.(V, σ, σ′), idempotence ∧}〈

∃η : : η ∈ V ∧
〈
∀α : α ∈ V : |η| ≥ |α|

〉 〉
≡ {V 6= ø, a longest exists}

true

Remark 4.36 (Greedy parsing)
The selection of the longest element of hpp.(σ, σ′) is called ”greedy parsing”[Wel84]. It is
called greedy because the longest proper prefix of σ′ is used.
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Remark 4.37 (LongestReferent)
The LongestReferent assumption can be simplified if V has two properties:

• V only contains prefixes of σ′

• V is prefix closed with some base M

The selection of the longest now means selecting the longest prefix of σ′ in V . Because it
is prefix closed, this means that the longest prefix is the only prefix in V for which a prefix
of one symbol longer is not in V . There is one exception, namely the prefix that is σ′. For
this prefix there is no longer prefix.

The simplified assumption is
hsel.(V, σ, σ′) = η ⇒ (η ∈ V ∧ η 6= σ′ ⇒ σ′ � (|η|+ 1) 6∈ V ).

Take for example σ′ = abcdefg. Assume that V = {abc, abcd, abcde}. V contains only
prefixes of σ′ and it is prefix closed with base 3. abcde is the only string in V for which a
prefix of one symbol longer – abcdef in this case – is not in V .

hsel.(V, σ, σ′) is always used in combination with hpp.(σ, σ′). hpp.(σ, σ′) does only contain
prefixes. It is not necessarily prefix closed with some base M . But if dom.(f.σ) is prefix
closed, then hpp.(σ, σ′) is prefix closed too.

4.4.1.3 E = Dvu and definition of δinit

This subsubsection introduces a virtual unlimited dictionary – see §4.5.1.2.2 – and it defines
δinit. Because the changes are so little, no new specification is given. No additional proofs
can be given.

Discriminator 4.38 (E = Dvu)
A virtually unlimited dictionary Dvu is used as an implementation for the abstract data
type E .

Discriminator 4.39 (δinit)
Initialize the dictionary with all elements of Σ to satisfy MinDomf initially. This can be
done with

δinit : = ∅;
for all α ∈ Σ do δinit : = δinit ⊕ α od

4.4.1.4 Altering the dictionary

A dictionary can be altered by adding and removing referents and references. The alteration
of the dictionary is managed by the function e. But because a virtual unlimited dictionary
is used, removal is no concern. Consequently, e manages the addition for the dictionary.
Several possibilities for addition appear in literature

• η + 1-addition
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• (previousη)++η-addition

• (previousη)++(all prefixes η)-addition

• ”Y ”-addition

These methods for addition are will be addressed next.

Remark 4.40 (Removal used by virtually unlimited dictionaries)
Some virtual unlimited dictionaries automatically remove a tuple from the dictionary if
an addition is made to a full dictionary. Because the MinDomf assumption has to be
satisfied, not just any tuple can be removed.

4.4.1.4.1 η + 1-addition

Discriminator 4.41 (η + 1-addition)
The goal of this discriminator is to add η concatenated with the symbol that follows η.
For the encoder this is quite simple, because the next symbol is known. For the decoder
it is not so easy, the next symbol is part of the next element of κ′. To keep the addition
identical for the encoder and decoder at this point, it is not used that the encoder knows
its next symbol.

The string that will be added conditional is η++(η � 1). If the next symbol gets known,
then the conditional addition is removed and the actual addition is made.

In terms of the function e this is

e.(δ, η) = δ 	 δ.LA⊕ (δ.LA � 1++η � 1)⊕ (η++η � 1).

Operator LA stands for the ”Last Added”.

There are still some possibilities for the virtual unlimited dictionary. Each kind of
virtual unlimited dictionary reacts differently on addition to a full dictionary.

• Dvu = Dfrz

Discriminator 4.42 (Dvu = Dfrz)
Use a freeze dictionaryDfrz as an implementation for the virtual unlimited dictionary.
The freeze dictionary ignores addition to a full dictionary. If the dictionary is full,
then it freezes.

Proof 4.43 (SubstituteIdE)
The data type Dfrz assures that SubstituteIdE is valid.

F
[[

This is LZW[Wel84] in its abstract representation.

• Dvu = DCRD
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Discriminator 4.44 (Dvu = DCRD)
Use a ”Compression Rate Drop” dictionary DCRD as an implementation for the
virtual unlimited dictionary. This dictionary type clears the dictionary if something
is added to a full dictionary, but only if the compression ratio has dropped below
some value.

Proof 4.45 (SubstituteIdE)
The data type DCRD assures that SubstituteIdE is valid.

F
[[

This is LZC[BCW90] in its abstract representation.

• Dvu = DLRU

Discriminator 4.46 (Dvu = DLRU)
Use a ”Least Recently Used” dictionary DLRU as an implementation for the virtual
unlimited dictionary. This dictionary type removes the least recently used tuple
before something is added to a full dictionary.

Proof 4.47 (SubstituteIdE)
The data type DLRU assures that SubstituteIdE is valid.

F
[[

This is LZT[BCW90] in its abstract representation.

4.4.1.4.2 (previous η)++η-addition

Discriminator 4.48 ((previous η)++η-addition)
Use the previous η concatenated with the current η for adaption. The function e.(δ, η) can
be specified with δ ⊕ (ηprev++η).

Discriminator 4.49 (Dvu = DLRU)
Use a ”Least Recently Used” dictionary DLRU as an implementation for the virtual unlim-
ited dictionary. This dictionary removes the least recently used tuple before something is
added to a full dictionary.

Proof 4.50 (SubstituteIdE)
The data type DLRU assures that SubstituteIdE is valid.

F
[[

This is LZMW[MW85] in its abstract representation.

Remark 4.51
LZMW does not construct a prefix closed dom.(f.σ). This is done because it is reasoned
that the additions that make it prefix closed are not used[MW85]. Take for example the
pervious η equal to juggling and the current η equal to ball. juggling b is not likely to be
used, only juggling ball is likely to be used in the future.
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4.4.1.4.3 (previous η)++(all prefixes η)-addition

Discriminator 4.52 ((previous η)++(all prefixes η)-addition)
This method adds several strings. For each nonempty prefix of the current η, add the
previous η concatenated with the prefix. The function e.(δ, η) can be specified with

for i : = 1 to |η| do δ : = δ ⊕ (ηprev++η � i) od

Discriminator 4.53 (Dvu = DLFU)
Use a ”Least Frequently Used” dictionaryDLFU as an implementation for the virtual unlim-
ited dictionary. This dictionary removes the least frequently used tuple before something
is added to a full dictionary.

Proof 4.54 (SubstituteIdE)
The data type DLFU assures that SubstituteIdE is valid.

F
[[

This is LZAP[Ern92, Ber91] in its abstract representation.

4.4.1.4.4 ”Y ”-addition

Discriminator 4.55 (”Y ”-addition)
This method adds several strings. It is describes by:
For each symbol a in η, add all possibilities for α++〈a〉 with

• α is a string which ends at the symbol before a.

• α is in δ−1

• α++〈a〉 is not in δ−1

δ−1 is the dictionary without the additions made for the previous a.
These additions can be specified with an algorithm[Ber91]4. This algorithm needs an

additional variable ϕ, which is initial empty.

do η 6= λ →
do ϕ++η � 1 6∈ δ →

δ : = δ ⊕ (ϕ++η � 1);
ϕ : = ϕ � 1

od;
ϕ, η : = ϕ++η � 1, η � 1

od

The function e.(δ, η) is specified with the above algorithm.

4The algorithm is not formally derived, but a brief textual explantation is given.
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Discriminator 4.56 (Dvu =?)
Which kind of virtual unlimited dictionary has to be used is not precisely specified. Several
are mentioned, but it is not clearly stated which is used. It will probably depend on the
implementator which kind will be used.

F
[[

This is LZY[Ber91] in its abstract representation.
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4.4.2 Subgroup K = R× Σ

This subgroup is one of the major subgroups in this taxonomy. It is indicated in figure
4.4. In this figure the lines of the other subgroups are dashed.
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Figure 4.4: Subgroup K = R× Σ in the visual summary of the taxonomy

Several discriminators are added in this subgroup. Firstly, the main discriminator of
this subgroup – K = R× Σ – is introduced. Secondly, the discriminator `r is introduced.
This selects precisely one η. Thirdly, two different implementations for the environment
are given.

4.4.2.1 Introducing K = R× Σ

This subsubsection introduces K = R× Σ by means of discriminator 4.57. Thereafter
a new specification is given. With this discriminator the proof for assumption Substi-
tuteId(4.59) can be given. The proof for MinDomf(4.60) can also be given, if MinDomfR
is additionally assumed.

Discriminator 4.57 (K = R× Σ)
The embedment of R in K is chosen as K = R×Σ. The definition of the functions f and
g is related to this embedment. They are defined as

• f.σ.(η1++〈a〉) = (fR.σ.η1, a)

• g.σ.(r, a) = gR.σ.r++〈a〉
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Specification 4.58 (Root with hpp, E, K = R× Σ)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:

+ K = R× Σ
+ f.σ.η = f.σ.(η1++〈a〉) = (fR.σ.η1, a)
+ g.σ.(r, a) = gR.σ.r++〈a〉

hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}

Assumptions:

ProperSelect
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
SubstituteIdE

〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
MinDomfR +

〈
∀σ : : λ ∈ dom.(fR.σ)

〉
Lemmas:

Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId +
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.59)

MinDomf +
〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
(4.60)
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Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|

Proof 4.59 (SubstituteId)
For all σ and η ∈ dom.(f.σ) it holds that

g.σ.(f.σ.η)

≡ {definition f.σ}

g.σ.(fR.σ.(η � 1), η � 1)

≡ {definition g.σ}

gR.σ.(fR.σ.(η � 1))++η � 1

≡ {SubstituteIdR}

η

Proof 4.60 (MinDomf)
For all σ it holds that

dom.(f.σ)

≡ {definition f.σ}

{α++〈a〉|α ∈ dom.(fR.σ) ∧ a ∈ Σ}

⊇ {MinDomfR}

Σ
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4.4.2.2 Selecting η (`r)

This subsubsection is analog to 4.4.1.2, which also selects η. The discriminators, proofs
and remarks are not given again. Only a new specification will be given.

For clarity it is summarized which things were mentioned in 4.4.1.2

• LongestReferent (`r) in Discriminator 4.31

• definition of hsel.(V, σ, σ′) in Discriminator 4.32

• proof for LongestReferent in Proof 4.34

• proof for ProperSelect in Proof 4.35

• remarks 4.36 and 4.37

All these points are applicable here too.

Specification 4.61 (Root with hpp, E, K = R× Σ, `r)

Declarations:
Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:
K = R× Σ
f.σ.η = f.σ.(η1++〈a〉) = (fR.σ.η1, a)
g.σ.(r, a) = gR.σ.r++〈a〉
hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}

+ hsel.(V, σ, σ′) = η such that η ∈ V ∧
〈
∀α : α ∈ V : |η| ≥ |α|

〉
Assumptions:
SubstituteIdE

〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
MinDomfR

〈
∀σ : : λ ∈ dom.(fR.σ)

〉
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Lemmas:
Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.59)

MinDomf
〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
(4.60)

LongestReferent +
〈
∀V, σ, σ′, η : σ′ 6= λ ∧ V ∈ P.Σ∗ :
hsel.(V.σ, σ′) = η ⇒

〈
∀α : α ∈ V : |η| ≥ |α|

〉 〉 (4.34)

ProperSelect +
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ :
V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉 (4.35)

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|

4.4.2.3 Implementing E

In this subsubsection two implementations for the environment E are given. They will be
addressed next.

4.4.2.3.1 E = Dul

Several discriminators will be introduced next. First the environment is refined to an
unlimited dictionary. The dictionary is initialized next. This proofs the SubstituteIdE
assumption(4.63) and the MinDomfR assumption(4.65). There are no assumption left
then any more. The function e for addition is defined last.

Discriminator 4.62 (E = Dul)
An unlimited dictionary Dul is used as an implementation for the abstract data type E .

Proof 4.63 (SubstituteIdE)
The data type Dul assures that SubstituteIdE is valid.
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Discriminator 4.64 (δinit)
Initialize with λ to satisfy MinDomf initially. δinit := ∅⊕ λ

Proof 4.65 (MinDomfR)
For all σ it holds that

λ ∈ dom.(fR.σ)

≡ {λ is initial in the dictionary, nothing is removed}

true

Discriminator 4.66 (Addition)
Use η for addition. e.(δ, η) = δ ⊕ η.

F
[[

This is the core of LZ78[ZL78] in its abstract representation.

Remark 4.67 (Shell for LZ78)
The actual LZ78 algorithm has a shell around the algorithm given here. Take for example
the encoder. The shell splits the actual input of arbitrary length in blocks of some length L.
Each block is the input for the core algorithm given here. This blocking strategy prevents
that the unlimited dictionary becomes too large.

4.4.2.3.2 E = B

Several discriminators will be introduced next. First the environment is refined to a search
buffer. This proofs the MinDomfR assumption(4.69). The function e for addition is defined
after the proof. The choices for B with initializations are mentioned thereafter. After a
choice is made for B the SubstituteIdE can be proven. There are no assumptions left then
any more.

Discriminator 4.68 (E = B)
A search buffer B is used as an implementation for the abstract data type E .

Proof 4.69 (MinDomfR)
For all σ it holds that

λ ∈ dom.(fR.σ)

≡ {a substring in the buffer can have length 0}

true

57



4.4. DIVIDING THE SPECIALIZED ROOT IN SUBGROUPS

Discriminator 4.70 (Addition)
Use η for addition. e.(δ, η) = δ ⊕ η.

Choices for B are

• Limited search buffer with lookahead

Discriminator 4.71 (B = Bliml)
A limited search buffer with lookahead Bliml is used as an implementation for the
abstract data type B.

Proof 4.72 (SubstituteIdE)
The data type Bliml assures that SubstituteIdE is valid.

Discriminator 4.73 (δinit)
Initialize with 0N . δinit := ∅⊕ 0N

F
[[

This is LZ77[ZL77] in its abstract representation.

• Unlimited search buffer with lookahead

Discriminator 4.74 (B = Bull)
An unlimited search buffer with lookahead Bull is used as an implementation for the
abstract data type B.

Proof 4.75 (SubstituteIdE)
The data type Bull assures that SubstituteIdE is valid.

Discriminator 4.76 (δinit)
Initialize with λ. δinit := ∅⊕ λ.

F
[[

This is LZR[RPE81] in its abstract representation.
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4.4.3 Subgroup K = R+ Σ

This subgroup is one of the major subgroups in this taxonomy. It is indicated in figure
4.5. In this figure the lines of the other subgroups are dashed.

rRoot
(4.6) r hpp

(4.12)

r E(4.21)

r
K = R

(4.29)

r `r(4.33) r E=Dvu

r δi =”Σ”

r+r−
LZW

r
LZC

r
LZT

rr
LZMW

rr
LZAP

r+

r −
LZY

rK = R× Σ

(4.58)

r `r(4.61)

rE=B

r +

rB=Bliml

rδi =0N

LZ77

rB=Bull

r δi =λ

LZR

rE=Dul

r δi =λ

r +

LZ78

rXXXXXXXXXXXXXXXXXX

K = R+ Σ
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r δi = N
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LZSS

Figure 4.5: Subgroup K = R+ Σ in the visual summary of the taxonomy

Several discriminators are added in this subgroup. Firstly, the main discriminator of
this subgroup – K = R + Σ – is introduced. Secondly, the discriminators `r and > J
are introduced. This selects precisely one η. Thirdly, a search buffer is chosen for the
environment, it is initialized and the method for addition is chosen.

4.4.3.1 Introducing K = R+ Σ

This subsubsection introduces K = R + Σ by means of discriminator 4.77. Thereafter
a new specification is given. With this discriminator the proofs for assumptions Substi-
tuteId(4.79) and MinDomf(4.80) can be given.

Discriminator 4.77 (K = R+ Σ)
The embedment of R in K is chosen as K = R+ Σ. The definition of the functions f and
g is related to this embedment. They are defined as

• f.σ.η =

{
in1.(fR.σ.η) if η ∈ dom.(fR.σ)

in2.η if η ∈ Σ

• g.σ = (gR.σ)∇id
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Specification 4.78 (Root with hpp, E, K = R+ Σ)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:

+ K = R+ Σ

+ f.σ.η =

{
in1.(fR.σ.η) if η ∈ dom.(fR.σ)
in2.η if η ∈ Σ

+ g.σ = (gR.σ)∇id
hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}

Assumptions:

ProperSelect
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
SubstituteIdE

〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
Lemmas:

Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId +
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.79)

MinDomf +
〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
(4.80)

60



CHAPTER 4. TAXONOMY

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|

Proof 4.79 (SubstituteId)
For all σ and η ∈ dom.(f.σ) it holds that

g.σ.(f.σ.η)

≡ {definition f.σ}

g.σ.c where c =

{
in1.(fR.σ.η) if η ∈ dom.(fR.σ)

in2.η if η ∈ Σ

≡ {definition g.σ and property of ∇}{
(gR.σ).(fR.σ.η) if η ∈ dom.(fR.σ)

id.η if η ∈ Σ

≡ {SubstituteIdR, η ∈ dom.(fR.σ)}

η

Proof 4.80 (MinDomf)
For all σ it holds that

dom.(f.σ)

≡ {definition f.σ}

{α|α ∈ dom.(fR.σ) ∨ α ∈ Σ}

⊇ {all α ∈ Σ are in the set}

Σ
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4.4.3.2 Selecting η (`r and > J)

This subsubsection makes the selection of η deterministic. hsel.(V, σ, σ′) is defined in
such a way that only one element of V is selected(4.81). The definition uses the new
function hselRΣ

, which is defined in 4.82. The definitions are respectively ”signed” by `r
and > J .

With these definitions the proof for assumption ProperSelect(4.84) can be given. After
the proof the name LongestReferent (`r) is clarified in Remark 4.85.

Discriminator 4.81 (LongestReferent (`r))
In this discriminator, the set V form the function hsel is ”filtered”. Two elements are
filtered out of the set, the shortest and the longest. The selection of one of the two filtered
elements will be done with a new function, hselRΣ

: Σ∗ × Σ∗ × Σ∗ × Σ∗ → Σ∗.

The definition for hsel.(V, σ, σ′) is now given directly, without introducing assumptions
first:

hsel.(V, σ, σ′) = hselRΣ
.(α, β, σ, σ′) where

α such that α ∈ V ∧
〈
∀γ : γ ∈ V : |α| ≥ |γ|

〉
β such that β ∈ V ∧

〈
∀γ : γ ∈ V : |β| ≤ |γ|

〉

Discriminator 4.82 (Choosing R or Σ (> J))
hselRΣ

chooses only the first string if it is long enough5. No assumption is introduced for
this, the definition is given directly:

hselRΣ
.(α, β, σ, σ′) =

{
α if |α| > J

β if |α| ≤ J

5This is a choice that originates from the implementation of R. If a reference needs two bytes, but
the referent is one symbol, then it is more efficient to use the symbol, because a symbol needs one byte.
Even if the referent is two symbols long, it is more efficient to use two separate symbols. This is not more
efficient in space, but in time. No time is needed to de-refer.
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Specification 4.83 (Root with hpp, E, K = R+ Σ, `r, > J)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E
J + J ∈ N

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

hselRΣ
+ hselRΣ

: Σ∗ × Σ∗ × Σ∗ × Σ∗ → Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:

K = R+ Σ

f.σ.η =

{
in1.(fR.σ.η) if η ∈ dom.(fR.σ)
in2.η if η ∈ Σ

g.σ = (gR.σ)∇id
hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}

+
hsel.(V, σ, σ′) = hselRΣ

.(α, β, σ, σ′) where
α such that α ∈ V ∧

〈
∀γ : γ ∈ V : |α| ≥ |γ|

〉
β such that β ∈ V ∧

〈
∀γ : γ ∈ V : |β| ≤ |γ|

〉
+ hselRΣ

.(α, β, σ, σ′) =

{
α if |α| > J

β if |α| ≤ J

Assumptions:

SubstituteIdE
〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
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Lemmas:
Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.79)

MinDomf
〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
(4.80)

ProperSelect +
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ :
V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉 (4.84)

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|

Proof 4.84 (ProperSelect)
For all nonempty V , σ and nonempty σ′ it holds that

hsel.(V, σ, σ′) ∈ V

≡ {hsel.(V, σ, σ′) must have some value to be an element of V }〈
∃η : : hsel.(V, σ, σ′) = η ∧ η ∈ V

〉
≡ {V 6= ø, a shortest and a longest exists, hselRΣ

.(α, β, σ, σ′) always selects one}

true

Remark 4.85 (Name of LongestReferent (`r))
The name LongestReferent (`r) may seem strange, because the shortest and the longest
are filtered out. But hsel is always combined with hpp. With this combination something
more can be said than just ”shortest and longest”.

First, –for clarity– the definition of hpp.(σ, σ′) is rewritten with use of the definition for
f.σ. This results in {α|α ∈ dom.(fR.σ) ∧ α 4p σ′ ∧ α 6= λ} ∪ {σ′ � 1}.
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The elements that are filtered out of hpp.(σ, σ′) are:

• The shortest element always is σ′ � 1, this element is always in the set and there is
no shorter one possible.

• There are two possibilities for the longest

– If the set contains any referents, then the longest one of the set is a referent.
This is valid to say, because all referents in the set have at least length 1 and
the non-referent has precisely length 1.

– If the set contains no referents, the longest element of the set is σ′ � 1.

If now a selection is made between the shortest and the longest, then this can result
in σ′ � 1 or in the longest referent. Consequently, if a referent is eventually selected, then
this can only be the longest referent.

4.4.3.3 E = Blim, definition of δinit and addition

This subsubsection introduces a search buffer – see §4.5.2 – , it defines δinit and it chooses
the addition method. Because the changes are so little, no new specification is given.

The proofs for the SubstituteIdE(4.87) assumption and MinDomfR(4.88) assumption
can be given on basis of the choice of the search buffer. There are no assumption left then
any more.

Discriminator 4.86 (E = Bliml)
A limited search buffer with lookahead Bliml is used as an implementation for the abstract
data type E .

Proof 4.87 (SubstituteIdE)
The data type Bliml assures that SubstituteIdE is valid.

Proof 4.88 (MinDomfR)
For all σ it holds that

λ ∈ dom.(fR.σ)

≡ {a substring in the buffer can have length 0}

true

Discriminator 4.89 (δinit)
It is not precisely stated how the buffer has to be initiated. In examples it is used to fill
the buffer initially with all blanks. δinit := ∅⊕ N
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Discriminator 4.90 (Addition)
Use η for addition. e.(δ, η) = δ ⊕ η.

F
[[

This is LZSS[Bel86] in its abstract representation.

Remark 4.91 (Appearance of algorithm)
The appearance of the algorithm given here is bit different to the abstract version of LZSS.
Although they look different, they are equivalent.

As explained in 4.85, hsel.(hpp.(σ, σ′), σ, σ′) can only result in the longest referent or in
the single symbol σ′ � 1. LZSS first determines this longest referent. It also allows λ as a
referent to guarantee that a longest referent exists. Thereafter, the length of the longest
referent is evaluated. If it is too short – for example if the ”fail-safe”-referent λ is the
longest one –, then the symbol σ′ � 1 has to be taken.

The total let-statement of the algorithm given here can be rewritten as:
let η such that η ∈ dom.(fR.σ) ∧ η 4p σ ∧〈

∀α : α ∈ dom.(fR.σ) ∧ α 4p σ : |η| ≥ |α|
〉

;
{ η is the longest prefix of σ′ that is in dom.(fR.σ) }
if |η| > J → skip
[] |η| ≤ J → η : = σ′ � 1
f i

For this alternative, it is additionally needed that λ is a referent (λ ∈ dom.(fR.σ)).
Because a search buffer is used, it is known that λ is a referent. Although λ has to be
present for progress, it is never selected, because |λ| ≤ J (J ∈ N, thus 0 ≤ J)
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4.5 Concrete data types for environment E
The environment E is an abstract data type, which is defined in Definition 4.19 on page
37. Two concrete data types for E can be extracted from the literature, the dictionary and
the search buffer. They are the subject of the next subsections.

Remark 4.92 (Multiple implementations for a concrete data type)
It can be profitable to make two implementations for one concrete data type. One im-
plementation can be made that performs good for the operators that are mainly used by
the encoder, namely the operators 5 and ⊕. Another implementation can be made that
performs good for the operators that are mainly used by the decoder, namely 4 and ⊕.

4.5.1 Dictionary

A dictionary is a concrete data type for the abstract environment data type. It is in essence
an element of P(Σ∗ ×R), which is a set of tuples. Each tuple contains a left and a right
member. The left member is a string, which contains the referent. The reference is the
right member. The reference is the key for the tuple. It is unique for each tuple. The key
is here defined as a natural number, which means that R = N.

Example 4.93 (Dictionary)
Let the tuples in the dictionary be given by the following table

referent(string) reference(key)

a 90
abc 14
b 3

This specifies that the reference for abc is 14, and the referent for 90 is a. The size of this
dictionary is 3.

All dictionaries are based on the abstract data type D.

Definition 4.94 (Abstract data type dictionary D)
The abstract data type dictionary D is given by:

D = (P(Σ∗ ×R)|∅,⊕,5,4, || ||)
with operators-definitions (δ ∈ D)

declaration definition precondition
∅ : D ∅ = ø
5 : D → Σ∗ 9 R δ 5 α = i such that (α, i) ∈ δ α ∈ dom.(δ5)
4 : D → R 9 Σ∗ δ 4 i = α such that (α, i) ∈ δ i ∈ dom.(δ4)
|| || : D → N ||δ|| = |δ|

With the assumption that
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• SubstituteIdE :
〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
All the dictionary data types can be divided in two groups, the unlimited and the

limited dictionary data types.

4.5.1.1 Unlimited dictionary

The unlimited dictionary has the property that its size is unlimited. It can contain an
unlimited number of tuples.

Definition 4.95 (Unlimited dictionary data type)
The unlimited dictionary data type Dul is a data type that is given by

Dul = (P(Σ∗ ×R)|∅,⊕,5,4, || ||)
with operators-definitions (δ ∈ Dul)

declaration definition precondition
∅ : Dul ∅ = ø
⊕ : Dul × Σ∗ → Dul δ ⊕ α = δ ∪ {(α,new.i)}
5 : Dul → Σ∗ 9 R δ 5 α = i such that (α, i) ∈ δ α ∈ dom.(δ5)
4 : Dul → R 9 Σ∗ δ 4 i = α such that (α, i) ∈ δ i ∈ dom.(δ4)
|| || : Dul → N ||δ|| = |δ|

The proof for SubstituteIdE is given in 4.96.

Proof 4.96 (SubstituteIdE)
For all δ and η ∈ dom.(δ5) it holds that

δ 4 (δ 5 η)

≡
{

definition 5, η ∈ dom.(δ5)
• i such that (η, i) ∈ δ

}
δ 4 i

≡ {definition 4, i ∈ dom.(δ4)}

α such that (α, i) ∈ δ

≡ {i is unique, only one tuple has i as right-member}

η

Remark 4.97 (Minimal domain requirement)
If a dictionary has a minimal domain requirement

〈
∀δ, α : α ∈ W : α ∈ dom.(δ5)

〉
, then

it can be satisfied by initiating the dictionary with all the elements of W . Because nothing
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is removed from the unlimited dictionary, every element of W will always stay in the
dictionary.

Remark 4.98 (Alternatives for α ∈ dom.(δ5) and i ∈ dom.(δ4))
• α ∈ dom.(δ5) ≡

〈
∃i : : (α, i) ∈ δ

〉
• i ∈ dom.(δ4) ≡

〈
∃α : : (α, i) ∈ δ

〉
4.5.1.2 Limited dictionary

There are several limited dictionaries. They have the common property that their size
is limited to some number N . Two limited kind of dictionaries will be given next, the
standard limited dictionary and the virtually unlimited dictionary.

4.5.1.2.1 Standard limited dictionary

The standard limited dictionary is almost the same as a unlimited dictionary. Because
the limited dictionary is full after N additions, the operator 	 is introduced to make it
possible to remove a tuple from the dictionary. It does the opposite of ⊕.

Definition 4.99 (Standard limited dictionary data type)
The standard limited dictionary data type Dlim is a data type that is given by

Dlim = (P(Σ∗ ×R)|∅,⊕,	,5,4, || ||)
with operators-definitions (δ ∈ Dlim)

declaration definition precondition
∅ : Dlim ∅ = ø
⊕ : Dlim × Σ∗ → Dlim δ ⊕ α = δ ∪ {(α,new.i)} ||δ|| < N
	 : Dlim × Σ∗ → Dlim δ 	 α = δ\(α, δ 5 α) (α, δ 5 α) ∈ δ
5 : Dlim → Σ∗ 9 R δ 5 α = i such that (α, i) ∈ δ α ∈ dom.(δ5)
4 : Dlim → R 9 Σ∗ δ 4 i = α such that (α, i) ∈ δ i ∈ dom.(δ4)
|| || : Dlim → N ||δ|| = |δ|

The proof for SubstituteIdE is analog to Proof 4.96. The size limitation has no influence
on the proof.

Remark 4.100 (Minimal domain requirement)
A minimal domain requirement stated by

〈
∀δ, α : α ∈ W : α ∈ dom.(δ5)

〉
can be satisfied.

It can be satisfied by initiating the dictionary with all the elements of W , and intro-
ducing the precondition α 6∈ W for the operator 	.

4.5.1.2.2 Virtually unlimited dictionary

A virtual unlimited dictionary is a limited dictionary that looks unlimited. It allows
addition to a full dictionary. What will be done with the addition if the dictionary is full
depends on the kind of virtual unlimited dictionary.
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Definition 4.101 (Virtual unlimited dictionary abstract data type)
The virtual unlimited dictionary Dvu is an abstract data type. The definition is almost the
same as the standard limited dictionary, except that the operator ⊕ is changed to

δ ⊕ α =

{
δ ∪ {(α,new.i)} if ||δ|| < N

h.(δ, α) if ||δ|| = N

The assumption SubstituteIdE still has to be proven:

• SubstituteIdE :
〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
There are several concrete implementations for the abstract virtual unlimited dictio-

nary. The proofs for the SubstituteIdE assumption are analog to Proof 4.96.

• Freeze dictionary Dfrz

h.(δ, α) = δ

• Clear dictionary Dclr

h.(δ, α) = ∅⊕ α

• LRU (Least Recently Used) dictionary DLRU
6

h.(δ, α) = δ 	 δ.LRU ⊕ α
This introduces a new operator LRU , which indicates the least recently used tuple.

• LFU (Least Frequently Used) dictionary DLFU

h.(δ, α) = δ 	 δ.LFU ⊕ α
This introduces a new operator LFU , which indicates the least frequently used tuple.

• Compression Ratio Drop dictionary DCRD

h.(δ, α) =

{
δ if δ.CR > X

∅⊕ α if δ.CR ≤ X

This introduces a new operator CR, which gives the compression ratio. One method
to determine the compression ratio is to accumulate the length of the referents of the
last few used tuples.

Remark 4.102 (Minimal domain requirement)
As stated in Remark 4.100, a minimal domain requirement can be satisfied. The require-
ment for removal has some impact on virtually unlimited dictionaries. The LRU and LFU
operators may not result in an element of W . If a dictionary is cleaned, then not all tuples
may be removed, only those that do not contain an element of W may be removed.

6all reasonable ways of interpreting LRU will work[MW85]
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4.5.2 Search buffer

The search buffer7 is a concrete data type for the abstract environment data type. The
search buffer is in essence a string. A referent is a substring of the buffer-string. A reference
is a tuple of two naturals (R = N × N). The first natural gives the offset of the referent
in the buffer-string. The offset can be measured form various positions. Here it is chosen
to use the offset from the left, with the first symbol of a string having offset 0. Other
offset-measurements can also be used. The second natural is the length of the referent.

Example 4.103 (Search buffer)
Assume the buffer-string is abc. This results in the following referents and references

referent reference

λ (0,0)
a (0,1)
ab (0,2)
abc (0,3)
λ (1,0)
b (1,1)
bc (1,2)
λ (2,0)
c (2,1)

This specifies that the reference for abc is (0, 3), and the referent for (0, 1) is a. The
size of this buffer is the length of the buffer-string, which is 3.

All search buffers are based on the abstract data type B.

Definition 4.104 (Abstract data type buffer B)
The abstract data type buffer B is given by:

B = (Σ∗|∅,⊕,5,4, || ||)
with operators-definitions (δ ∈ B)

declaration definition precondition
∅ : B ∅ = λ
|| || : B → N ||δ|| = |δ|

With the assumption that

• SubstituteIdE :
〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
All the search buffer data types can be divided in two groups, the unlimited and the

limited search buffer data types.

7A search buffer is sometimes called an implicit dictionary. The opposite – an explicit dictionary – is
the dictionary here.
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4.5.2.1 Unlimited search buffer

The unlimited buffer has the property that its size is unlimited. The buffer string can have
an unlimited length. All substrings are possible as referent. Two unlimited search buffers
are included here. The standard unlimited search buffer and the unlimited search buffer
with lookahead.

4.5.2.1.1 Standard unlimited search buffer

The standard unlimited search buffer is based on substrings, therefor a definition to deter-
mine a substring is given first.

Definition 4.105 (Substring)
The function that determines a substring of a string α on basis of an offset i and a length
j is defined as8

SS.(α, i, j) = α � i � j pre: 0 ≤ i ≤ |α| ∧ 0 ≤ j ≤ |α � i|

Definition 4.106 (Standard unlimited search buffer data type)
The standard unlimited search buffer data type Bul is a data type that is given by

Bul = (Σ∗|∅,⊕,5,4, || ||)
with operators-definitions (δ ∈ Bul)

declaration definition precondition
∅ : Bul ∅ = λ
⊕ : Bul × Σ∗ → Bul δ ⊕ α = δ++α
5 : Bul → Σ∗ 9 R δ 5 α = (i, j) such that SS.(δ, i, j) = α α ∈ dom.(δ5)
4 : Bul → R 9 Σ∗ δ 4 (i, j) = SS.(δ, i, j) (i, j) ∈ dom.(δ4)
|| || : Bul → N ||δ|| = |δ|

The proof for SubstituteIdE is given in 4.107.

Proof 4.107 (SubstituteIdE)
For all δ and η ∈ dom.(δ5) it holds that

δ 4 (δ 5 η)

≡
{

definition 5, η ∈ dom.(δ5)
•(i, j) such that SS.(δ, i, j) = η

}
δ 4 (i, j)

≡ {definition 4, i ∈ dom.(δ4)}

8This definition uses the offset from the left, starting at 0. The offset from the right, starting at 0, can
also be used. This would be defined as SS.(α, i, j) = α � i � j pre: 0 ≤ i ≤ |α| ∧ 0 ≤ j ≤ |α � i|.
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SS.(δ, i, j)

≡ {SS.(δ, i, j) is deterministic, one substring starts at offset i and has length j}

η

Remark 4.108 (Alternatives for α ∈ dom.(δ5) and i ∈ dom.(δ4))
• α ∈ dom.(δ5) ≡ α 4s δ

• (i, j) ∈ dom.(δ4) ≡ 0 ≤ i ≤ |δ| ∧ 0 ≤ j ≤ |δ � i|

Remark 4.109 (Multiple solutions for δ 5 α)
It is possible that there are multiple solutions for δ 5 α. That is to say, α may occur on
multiple offsets in δ. If this is the case, one has to be selected. For example, it could be
chosen to select the one with the smallest offset.

4.5.2.1.2 Unlimited search buffer with lookahead

The unlimited search buffer with lookahead expands the substring-idea of the standard
unlimited search buffer. Except the substrings, there are other strings that can be used as
referent, see Example 4.112.

Definition 4.110 (Lookahead Substring)
The function that determines a substring of a string α++β on basis of an offset i and a
length j is defined as

SSLA.(α, β, i, j) = (α++β) � i � j pre: 0 ≤ i < |α| ∧ 0 ≤ j ≤ |(α++β) � i|
This definition requires that the substring starts in α.

Definition 4.111 (Unlimited search buffer with lookahead data type)
The unlimited search buffer with lookahead data type Bull is a data type that is given by

Bull = (Σ∗|∅,⊕,5,4, || ||)
with operators-definitions (δ ∈ Bull)

declaration definition precondition
∅ : Bull ∅ = λ
⊕ : Bull × Σ∗ → Bull δ ⊕ α = δ++α
5 : Bull → Σ∗ 9 R δ 5 α = (i, j) such that SSLA.(δ, α, i, j) = α α ∈ dom.(δ5)
4 : Bull → R 9 Σ∗ δ 4 (i, j) = α such that SSLA.(δ, α, i, j) = α (i, j) ∈ dom.(δ4)
|| || : Bull → N ||δ|| = |δ|

The proof for SubstituteIdE is analog to Proof 4.107.
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Example 4.112 (Lookahead)
Let the buffer-string be ban. Without lookahead only the substrings of ban are usable.
Lookahead adds several strings. It adds for example ana, because SSLA.(ban, ana, 1, 3) =
ana is valid.

Remark 4.113 (Practical definition for δ 4 (i, j))
The definition for δ 4 (i, j) looks different to calculate. But it is not so hard as it seems.

Because i < |δ| the first element of α can be determined. Let this element be a. It is
now known what δ++〈a〉 is. Consequently, the second element of α can be determined too,
because i + 1 < |δ++〈a〉|. This process can be repeated until α is totally known.

It can be stated more formally as

α such that SSLA.(δ, α, i, j) = α

≡ {i < |δ|, let α = 〈a〉++β}

〈a〉++β such that SSLA.(δ++〈a〉, β, i + 1, j − 1) = β

4.5.2.2 Limited search buffer

A limited search buffer is limited in two ways. One limitation is the length of the buffer
string, it is limited to length N . The second limitation is the length of the substrings, they
are is limited to length M .

Both unlimited search buffers can be limited. The following changes have to be made

• δ ⊕ α = (δ++α) � N

• Limit the substring function, by adding an additional precondition 0 ≤ j ≤ M to
the definition of the substring function.

The SubstituteIdE proofs are analog to the proofs of the unlimited versions.
This gives two new search buffers, namely Blim and Bliml.
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Chapter 5

Conclusions and directions for
further work

5.1 Conclusions

The main result of this thesis is a taxonomy of several Lempel-Ziv variants. In the taxon-
omy, all the included variants have been based on one general specification, which means
that all variants share a common skeleton. The presentation of the variants in a taxonomy
has several advantages:

• The accessibility of the included variants improves because all variants have been
given in one presentation style with one nomenclature. Originally, all variants were
presented in different styles, at different levels of abstraction, and using different
terminologies.

• A structured overview of the variants has been given. All differences and similarities
between the variants have been indicated.

• Formal proofs have been given for each variant included. These proofs include, for
instance, that the algorithms make progress and that the compression is lossless. In
the literature, not a single algorithm description has been found that includes formal
proofs of the correctness of encoder and decoder.

• Some possibilities for new Lempel-Ziv variants are indicated by the taxonomy. If in
one point in the taxonomy a certain solution has been chosen for a problem, and if
in another point another solution has been chosen for the same problem, then the
solutions can be swapped, leading to two new variants. There are several places in
the taxonomy where solutions can be swapped. Because the problems have been
identified precisely, it is also possible to create a totally new solution for a problem.

• It reveals that the adjustments to the environment – the base for referents and
references – are almost free to define. In some cases there is no requirement for
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the adjustment at all. The importance of the adjustment will become clear if the
compression ratios are determined. But for the correctness the environments can be
altered almost freely.

Although the taxonomy has been presented as a one-dimensional taxonomy in this thesis,
it is actually a multi-dimensional taxonomy. It is multi-dimensional because some sub-
problems can be solved independently. Examples of this are the selection of the prefix that
will be processed next, and the method to handle referents and references.

The taxonomy has not been presented as a multidimensional one because there is no
actual need to do so. In this limited taxonomy, only one or a few possible solutions have
been used for each independently solvable subproblem. The addition of the extra dimension
would probably only make it harder to understand the taxonomy. The visual summary of
an one-dimensional taxonomy is a two-dimensional figure, which easy to visualize. If more
dimensions would be added, then the visual summary would be a figure with more than
two dimensions, which is not easy to visualize, or can not be visualized at all.

If the taxonomy will be expanded rigorously, then it can probably not be avoided to
add one or more dimensions.

The construction of the taxonomy took much effort. There are several reasons for this:

• The original descriptions of the variants are not always as accessible as one would
like. Each variant is presented in its own style with its own terminology. Some are
presented in a more text like style, some are presented in some meta-notation. To
make it possible to compare – and thus structure – the variants, all the descriptions
had to be transformed to a common presentation style. To do so, the articles in which
the variants have been described had to be read very thoroughly and the essential
information had to be extracted. The presentation-style-transformation took much
time, especially for the text like descriptions of LZ77[ZL77] and [ZL78].

Note that all this work is not visible in the taxonomy.

• The similarities between two algorithms are very hard to identify if an algorithm uses
a trick for computation that is not directly recognizable as such. The description of
LZW[Wel84] contained such a hard to recognize computation trick.

• If the differences and similarities between two algorithms can be indicated, then it
does not automatically result in an elegant generalization. A generalization removes
some details; consequently, the generalized version ought to look simpler. Some
generalizations that were made looked very complicated, even more complicated than
the non-generalized algorithms. Such a ”generalized” version was actually more a
unification.

A method that makes it possible to refine an incomplete algorithm has been constructed.
This method with its notation evolved from nothing to the current version. It enables the
refinement of an algorithm in several steps. This is useful because this is precisely what is
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done in a taxonomy. The notation makes it possible to read successive specifications of an
incomplete algorithm independently. All parts of the specification – the declarations, defi-
nitions, assumptions, lemmas and algorithms – have been given in each specification. This
prevents for example that the reader has to search backwards in the text for a declaration
of a certain function.

5.2 Directions for further work

Although a taxonomy has been presented, a lot of further work can be done.

• Making a toolkit – also called class library – is a next step after constructing a
taxonomy[Wat95]. It is an implementation of the algorithms derived in the taxonomy.
Besides writing the toolkit, it also has to be benchmarked. The benchmarks will have
to evaluate the compression ratios and the time complexity. It has to be examined if
the implementations in the toolkit will perform as good as already existing separately
developed implementations, which have been hand-fine-tuned in most cases.

• Several Lempel-Ziv variants have been included now, but there are a lot more vari-
ants:

– There are several other well known variants, all with their own acronym, see for
example appendix A.

– In the literature, several ideas have been described that may lead to new vari-
ants. For example, for some of the ”greedy” variants a non-greedy variant could
also be imagined.

– The taxonomy indicates several new variants. These variants also have to be
included in the taxonomy. Some variations are:

∗ LZSS with a dictionary

∗ Use a new kind of search buffer in the subgroup K = R. To assure progress,
the actual buffer part of this new search buffer has to be prefixed with a
string containing all symbols of the alphabet.

∗ New types of adjustment can be developed for the environment. From the
correctness point of view, the adjustments are in all cases almost totally
free to choose. But the compression ratio is greatly influenced by the ad-
justments. Experimental results have to determine that other adjustments
are useful.

• The method with its notation used to refine an incomplete algorithm needs further
attention. Take for example the notation, it seems to work quite well for this tax-
onomy. But it already needs almost one and a half page for the algorithms located
almost at the bottom of the taxonomy. If a small thing is added, then the whole
specification has to be given again, which is not very practical.

The taxonomy that has been given here is probably be a good basis for the further work.
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Comment: Earlier version of [SS82].

[SS82] Jams A. Storer and Thomas G. Szymanski. Data compression via textual sub-
stitution. Journal of the ACM, 29(4):928–951, October 1982. ISSN 0004-5411.
http://doi.acm.org/10.1145/322344.322346. Revised version of [SS78],

Abstract: Defines several methods of textual substitution.
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APPENDIX A. INVENTORY OF LEMPEL-ZIV VARIANTS

Appendix A

Inventory of Lempel-Ziv variants

Table A.1 on page 84 gives an inventory of all variants found, in alphabetical order. It also
includes variants that are not in the taxonomy. The table has several columns, namely:

I : ”X” indicates that this variant is included in the taxonomy
variant : name of the variant
year : year of –probably first– publication

This is included to indicate a general time line.
appear : place where the variant appears, with or without any specifi-

cation
specification : reference to specification

The first indicates the original specification. This can be [],
which indicates that the original specification could not be
determined with certainty. Note that it is possible that only
the code has been found, without any explanation at all. This
is not seen as the original specification.
The next references are additional references which give an
alternative specification or references to relevant articles.

remark : remarks about the variant
If the variant is not contained in the taxonomy and if a short
description could be determined clearly, then a description is
also included.

G : ”grade” for the found specification; varying from ++ to −−

Note that the names LZ1 and LZ2 are not uniformly defined, but are document depen-
dant. Take for example LZ1. In some documents this indicates LZ76. In other documents
this indicates LZ77.

There are several other inventories [Sal98, BCW90]. These inventories are listings which
contain one-line summaries. Each listing is followed with more detailed descriptions, which
are mostly textual.
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Table A.1: Inventory of Lempel-Ziv variants

I variant year appear specification remark G
LZ76 1976 [Bel86, RPE81] [ZL76] implemented as LZR +/−

X LZ77 1977 [Sal98, BCW90] [ZL77] ”mother-algorithm” for
buffer based variants

+

X LZ78 1978 [Sal98, BCW90] [ZL78] ”mother-algorithm” for
dictionary based variants

+

LZA 1997 [Jen97] [Jen97] animation file format; not an
Lempel-Ziv variant. LZA
stands for ”LZO compressed
animation”.

+/−

LZA newsgroup
comp.compression

[] Stacker LZA −−

X LZAP 1987 [Sal98] [] , [Ern92, Ber91] −

LZARI 1988 [Oku98] [] , [Oku98] LZSS with arithmic coding −

LZB 1987 [BCW90] [] , [BCW90] LZSS with infinite
lookahead; probably original
specification in [Bel87]

−

X LZC 1985 [BCW90] [] , [BCW90] −

LZCB 1995 www.cbloom.com [] ,
www.cbloom.com

LZCB11-14 are better known
as LZP1-4(only these are
well documented)

−

LZF 2000 liblzf.plan9.de [] ,
liblzf.plan9.de

reimplementation of LZV −−

LZFG 1989 [Sal98, BCW90] [FG89] some resemblance with
LZSS; uses references and
uncompressed strings

+

LZH 1987 [Sal98, BCW90] [] , [Sal98] LZSS with Huffman coding −

LZJ 1985 [BCW90] [Jak85] +

LZJH 2000 www.lzjh.com [] , www.lzjh.com used in V.44 modem
protocol.
Lempel-Ziv-Jeff-Heath

−−

X LZMW 1984 [Sal98, BCW90] [MW85] +

LZO 1996 newsgroup
comp.compression

[Obe02] buffer based −

LZP 1996 [Sal98] [Blo96a] ,
[Blo96b]

4 variants: LZP1-4; also
known as LZCB11-14; buffer
based; reference without
offset, only lenght

++

X LZR 1981 [BCW90] [RPE81] , [ZL76] +

Continued on next page
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APPENDIX A. INVENTORY OF LEMPEL-ZIV VARIANTS

Table A.1: Inventory of Lempel-Ziv variants –continued–

I variant year appear specification remark G
LZRW 1991 [Sal98] ,

www.ross.net/
compression

[] , www.ross.
net/compression

5 variants: LZRW1-5 +/−

LZRW-1 1991 [Sal98] [Wil91] buffer based; reference or
symbol; not necessary the
longest prefix

+

LZS internet [] −−

X LZSS 1986 [Sal98, BCW90] [Bel86] , [SS82] ++

X LZT 1987 [BCW90] [] , [BCW90] −

LZV 2000 [Obe02] [] Lev-Zimpel-Vogt
(miss-spelled!); Herman Vogt

−−

X LZW 1984 [Sal98, BCW90] [Wel84] , [Nel89] +

LZX 1997 newsgroup
comp.compression

[Mic97] Used for Windows CAB-files;
some resemblance with LZSS
with Huffman coding

+

X LZY 1991 [Sal98] [Ber91] +
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APPENDIX B. LIST OF SELECTED SPECIFICATIONS

Appendix B

List of selected specifications

This appendix lists several specifications that are located in the main text. The reason to
give the specifications again is clarity. The specification can be better compared, because
each specification will start on a new page and because they are listed successively.

The specifications that are selected are

• the specification at the top, which is the root specification (Specification 4.6 from
chapter 4)

• the specifications at the bottom (Specifications 4.33, 4.61, 4.83 from chapter 4)

The listing of the specifications is related to the structure of the taxonomy. First the
root is listed. Thereafter the specifications at the bottom are listed. The listing of the
bottom specifications starts at the left of the taxonomy, and it ends at the right of the
taxonomy.

Each specification will start on the left-hand side of a page. This achieves that both
pages of a two-paged specification are visible at one time. One page is visible at the
left-hand side, one at the right-hand side.
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Specification B.1 (Root)

Declarations:
Input Σ ∈ Alphabet
Output K ∈ Countable Set

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
DeSubstitute g : Σ∗ → K 9 Σ∗

Definitions:

Assumptions:
SubstituteId

〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
ProperPrefixExists

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
Progress

〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
IsPrefix

〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
ProperSelect

〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ : V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉
Lemmas:
Lossless decode ◦ encode = id (4.7)

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗

| σ′, κ, σ : = σ0, λ, λ;
do σ′ 6= λ →

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′ : = σ++η, σ′ � |η|

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗

| κ′, σ : = κ0, λ;
do κ′ 6= λ →

let κ′ :: 〈c〉++ρ′ ;
σ : = σ++g.σ.c;
κ′ : = ρ′

od;
return σ

]|
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Specification B.2 (Root with hpp, E, K = R, `r)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:

K = R
f = fR
g = gR
hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}
hsel.(V, σ, σ′) = η such that η ∈ V ∧

〈
∀α : α ∈ V : |η| ≥ |α|

〉
Assumptions:

MinDomf
〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
SubstituteIdE

〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
Lemmas:

Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.30)

LongestReferent
〈
∀V, σ, σ′, η : σ′ 6= λ ∧ V ∈ P.Σ∗ :
hsel.(V.σ, σ′) = η ⇒

〈
∀α : α ∈ V : |η| ≥ |α|

〉 〉 (4.34)

ProperSelect
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ :
V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉 (4.35)
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Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|
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Specification B.3 (Root with hpp, E, K = R× Σ, `r)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:

K = R× Σ
f.σ.η = f.σ.(η1++〈a〉) = (fR.σ.η1, a)
g.σ.(r, a) = gR.σ.r++〈a〉
hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}
hsel.(V, σ, σ′) = η such that η ∈ V ∧

〈
∀α : α ∈ V : |η| ≥ |α|

〉
Assumptions:

SubstituteIdE
〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
MinDomfR

〈
∀σ : : λ ∈ dom.(fR.σ)

〉
Lemmas:

Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.59)

MinDomf
〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
(4.60)

LongestReferent
〈
∀V, σ, σ′, η : σ′ 6= λ ∧ V ∈ P.Σ∗ :
hsel.(V.σ, σ′) = η ⇒

〈
∀α : α ∈ V : |η| ≥ |α|

〉 〉 (4.34)

ProperSelect
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ :
V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉 (4.35)

92



APPENDIX B. LIST OF SELECTED SPECIFICATIONS

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|
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Specification B.4 (Root with hpp, E, K = R+ Σ, `r, > J)

Declarations:

Input Σ ∈ Alphabet
Output K ∈ Countable Set
Reference R ∈ Countable Set
Initial E δinit ∈ E
J J ∈ N

Encode encode : Σ∗ → K∗
Decode decode : K∗ 9 Σ∗

ProperPrefix hpp : Σ∗ × Σ∗ → P.Σ∗

SelectPrefix hsel : P.Σ∗ × Σ∗ × Σ∗ 9 Σ∗

hselRΣ
hselRΣ

: Σ∗ × Σ∗ × Σ∗ × Σ∗ → Σ∗

Substitute f : Σ∗ → Σ∗ 9 K
Refer fR : Σ∗ → Σ∗ 9 R
DeSubstitute g : Σ∗ → K 9 Σ∗

DeRefer gR : Σ∗ → R 9 Σ∗

AdaptEnvironment e : E × Σ∗ → E

Definitions:

K = R+ Σ

f.σ.η =

{
in1.(fR.σ.η) if η ∈ dom.(fR.σ)
in2.η if η ∈ Σ

g.σ = (gR.σ)∇id
hpp.(σ, σ′) = {η|η ∈ dom.(f.σ) ∧ η 4p σ′ ∧ η 6= λ}
hsel.(V, σ, σ′) = hselRΣ

.(α, β, σ, σ′) where
α such that α ∈ V ∧

〈
∀γ : γ ∈ V : |α| ≥ |γ|

〉
β such that β ∈ V ∧

〈
∀γ : γ ∈ V : |β| ≤ |γ|

〉
hselRΣ

.(α, β, σ, σ′) =

{
α if |α| > J

β if |α| ≤ J

Assumptions:

SubstituteIdE
〈
∀δ, η : η ∈ dom.(δ5) : (δ4) ◦ (δ5) = id

〉
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Lemmas:
Lossless decode ◦ encode = id (4.7)
Substitutable

〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) ⊆ dom.(f.σ)

〉
(4.13)

ProperPrefixExists
〈
∀σ, σ′ : σ′ 6= λ : hpp.(σ, σ′) 6= ø

〉
(4.14)

Progress
〈
∀σ, σ′ : σ′ 6= λ : λ 6∈ hpp.(σ, σ′)

〉
(4.15)

IsPrefix
〈
∀σ, σ′, η : σ′ 6= λ : η ∈ hpp.(σ, σ′) ⇒ η 4p σ′

〉
(4.16)

SubstituteIdR
〈
∀σ, η : η ∈ dom.(fR.σ) : (gR.σ) ◦ (fR.σ) = id

〉
(4.22)

SubstituteId
〈
∀σ, η : η ∈ dom.(f.σ) : (g.σ) ◦ (f.σ) = id

〉
(4.79)

MinDomf
〈
∀σ : : Σ ⊆ dom.(f.σ)

〉
(4.80)

ProperSelect
〈
∀V, σ, σ′ : σ′ 6= λ ∧ V ∈ P.Σ∗ :
V 6= ø ⇒ hsel.(V, σ, σ′) ∈ V

〉 (4.84)

Algorithms:
encode.σ0 =
|[ var σ, σ′ : Σ∗; κ : K∗; δ : E
| σ′, κ, σ, δ : = σ0, λ, λ, δinit;
do σ′ 6= λ → { δ5 = fR.σ }

let η such that η = hsel.(V, σ, σ′)
where V = hpp.(σ, σ′) ;

κ : = κ++〈f.σ.η〉;
σ, σ′, δ : = σ++η, σ′ � |η|, e.(δ, η)

od;
return κ

]|

decode.κ0 =
{ pre:

〈
∃σ0 : : κ0 = encode.σ0

〉
}

|[ var σ : Σ∗; κ′ : K∗; δ : E
| κ′, σ, δ : = κ0, λ, δinit;
do κ′ 6= λ → { δ4 = gR.σ }

let κ′ :: 〈c〉++ρ′ ;
σ, δ : = σ++g.σ.c, e.(δ, g.σ.c);
κ′ : = ρ′

od;
return σ

]|
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APPENDIX C. BACKGROUNDS OF ZIV AND LEMPEL

Appendix C

Backgrounds of Ziv and Lempel

This appendix gives a general background of Jacob Ziv and Abraham Lempel. The infor-
mation is quoted from two articles [IEE81][IEE96]. The articles are out-dated, but they
are good enough to give a general background.

C.1 Jacob Ziv

Jacob Ziv was born in Tiberias, Israel, on November 27, 1931. He
received the B.Sc., Dipl. Eng., and M.Sc. degrees, all in Elec-
trical Engineering, from the Technion—Israel Institute of Tech-
nology, Haifa, Israel, in 1954, 1955 and 1957, respectively, and
the D.Sc. degree from the Massachusetts Institute of Technology,
Cambridge, U.S.A., in 1962.

From 1955 to 1959, he was a Senior Research Engineer in the
Scientific Department of the Israel Ministry of Defense, and was as-
signed to the research and development of communication systems.
From 1961 to 1962, while studying for his doctorate at M.I.T., he
joined the Applied Science Division of Melpar, Inc., Watertown,
MA, where he was a Senior Research Engineer doing research in

communication theory. In 1962 he returned to the Scientific Department, Israel Ministry of
Defense, as Head of the Communications Division and was also an Adjunct of the Faculty
of Electrical Engineering, Technion—Israel Institute of Technology. From 1968 to 1970 he
was a Member of the Technical Staff of Bell Laboratories, Inc., Murray Hill, NJ. He joined
the Technion in 1970 and is Herman Gross Professor of Electrical Engineering.

He was Dean of the Faculty of Electrical Engineering from 1974 to 1976 and Vice
President for Academic Affairs from 1978 to 1982. In 1982 he was elected Member of the
Israeli Academy of Science, and was appointed as a Technion Distinguished Professor. He
is a Fellow of the IEEE. In 1988 he was elected as a Foreign Associate of the US National
Academy of Engineering. In 1993 he was awarded the Israel Prize in Exact Sciences
(Engineering and Technology). He has twice been the recipient of the IEEE—Information
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C.2. ABRAHAM LEMPEL

Theory Best Paper Award (for 1977 and 1979). He is the recipient of the 1995 International
Marconi Award and the 1995 IEEE Richard W. Hamming Medal.

From 1977 to 1978, 1983 to 1984, and 1991 to 1992 he was on Sabbatical leave at Bell
Laboratories. He has been the Chairman of the Israeli Universities Planning and Grants
Committee from 1985 to 1991

C.2 Abraham Lempel

Abraham Lempel was born in Lvov, Poland, on February 10, 1936.
He received the B.Sc., M.Sc., and D.Sc. degrees from the Tech-
nionIsrael Institute of Technology, Haifa, Israel, in 1963, 1965, and
1967, respectively.

From 1963 to 1968 he was with the Department of Electrical
Engineering, Technion—Israel Institute of Technology. During the
academic year 1968-1969 he was a Visiting Research Associate at
the University of Southern California, Los Angeles. From 1969 to
1971 he was a Research Staff Member at the Sperry Rand Research
Center, Sudbury, MA. In 1971 he rejoined the Technion, where he
is currently a Professor in the Department of Computer Science.

During the academic year 1975-1976 he was on sabbatical leave with the Department of
Mathematical Sciences, IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
and during the 1976-1977 academic year he was on leave with the Sperry Research Center
as a full-time consultant.
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