EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

AHA! goes interbook and beyond

Santic, T.

Award date:
2003

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7184a716-cdf2-4b10-9917-3e9793bd7164

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

MASTER’S THESIS
AHA! goes Interbook and beyond —
by

T. Santic

Supervisors: ~ prof. dr. P. Brusilovsky
prof. dr. PM.E. De Bra

juni 2003

AHA! goes Interbook and beyond

Eindhoven University of Technology

Project : AHA! goes Interbook and beyond
Author : Tomislav Santic
Department : Department of Mathematics and Computer Science
Date : June 2003

Supervisors : Prof. Dr. Peter Brusilovsky
Prof. Dr. Paul De Bra,

TOMISLAV SANTIC

AHA! goes Interbook and beyond

Summary

Adaptive hypermedia is a relatively new area of research that became more popular in the
last ten years when the first Web based adaptive hypermedia systems (AHS) were
developed. Among these Web based adaptive hypermedia systems were Interbook,
developed by Peter Brusilovsky and Adaptive Hypermedia For All developed at the
Eindhoven University of Technology.

The original goal of the project was to extend AHA! to the point to be able to simulate
Interbook’s user interface. During the project, when the primary goal was achieved we
decided to go one step further. The final results can be divided into two main parts:

e Generic user model for AHA!
e Interbook to AHA! Compiler

The first and most important outcome of this project is a new user interface model for
AHA!. We tried to extend a general-purpose adaptive hypermedia (AH) architecture
AHA! with flexible and rich interface by re-using some ideas explored in a more specific
AH system InterBook. To address the lack of user interface possibilities in AHA! we
have developed the Layout model that employs the strong points of Interbook user
interface. The dynamic structures of the Layout model are easily extendible and give the
author the power to adapt the user interface to the nature of the course.

The second outcome of the project is the ‘Interbook to AHA!” compiler. The compiler
was developed to test the Layout model and to achieve total simulation of Interbook
courses. With the new user interface model and the compiler AHA! is able to serve
Interbook courses in Interbook style. The results of this project prove that AHA! indeed
can serve as a generic adaptive hypermedia system not only on the conceptual level but
on the user interface level as well.

TOMISLAV SANTIC 3

AHA! goes Interbook and beyond

Preface

This report is the result of a nine month research project partly completed at the
University of Pittsburgh and party completed at the Eindhoven University of Technology.
The main research area of the project was adaptive hypermedia, more specifically two
adaptive hypermedia systems, Interbook and AHA!.

The great majority of the project was done at the University of Pittsburgh. A debt of
gratitude is owned to my supervisor in Pittsburgh Prof. Dr. Peter Brusilovsky. He has
guided me during this research project and helped me making important decisions. He is
an open minded and very pleasant person to work with. I would also like to thank Prof.
Dr. Paul De Bra for fulfilling my wish of doing my Master’s thesis abroad and making
this project possible. Finally I would like to thank University of Pittsburgh for the
hospitality extended to me during my stay in Pittsburgh and the NLnet Foundation for
financial support.

Eindhoven, June 2003

Tomislav Santic

TOMISLAV SANTIC 4

AHA! goes Interbook and beyond

Contents
SUIMIMATY oottt e bbb n e s bt e sesas 3
PrEface. .. oottt st sttt st 4
COMEEIILS ..eeenvirireitieiirciie ettt ettt s e e s s e s ee st s et e s s e s s sae s st e sanen st et anssasssnanses 5
INEFOAUCHION ..ceeeetienienee et ettt ceece et e et e s se e s e ae st e ete et e s aessasseneenasassansanssansan 6
Hypermedia......coovviiiiiiiieiieeiicctiieee ettt s v e e st snra e 7
Adaptive Hypermediacocueeiiieiiiiieniiiiiieniciteeiecteeeee st e sre s saeesaessste s s s sae s 7
ThE PIOJECE STATTeveeieiieeiietetcntee et ceree st s esecete e s re s s e e s s se e s e e s e e sae s be e s aeasseensennseens 9
The InterBook Interface Paradigm........ccceeveeriiiiineinieniiieieecieccrterre e ee e 10
INTTOUCTION ...eiiviitiiiitcitccrtt ettt e s et e ae s sa s neaas 10
Interbook user interface paradigmccoeeeeeiieeririincnene e 10
The AHA! Interface Paradigmcccoceeeecirieevnniinenienenireecrsieseeseeseesesseesseesessaesassnsnnens 12
INrOUCTION ..ottt s st s bt ae s e et s 12
AHA! User interface paradigimccceceeverieienineinieniieseeicne et seesn e saesaanaas 13
Bringing Interbook and AHA! together........coociiiiiiiiiiiiiicinicicc e 15
AHA! extensions on the conceptual IeVel........cccoovvvueviiiiniiniiiiiniicniccececeeees 15
HICTAICRY . ccueiiieiieittein ettt ettt sttt e s s e e esbe s sesaesreenas 15
THELE ettt sttt sttt e sbe et sae et e neneesbennas 16
COMCEPILYPES ..veeeveererarrensienteeieite st este st e st e esseesasetseastesnsesssnessnesssaessnssssessseesssssnsansasnsaens 16
AHA! user interface extension-first attempt..........ceeuecveeeieruecrenuenienenenenrereeseereesessenee 17
The View-Based Layout MOdel........c.ccoiiiiriiiiieiiiicieeieeee sttt ceceiesae e s e senns 18
VIBWS ittt ettt ettt st st sae et sa e e b e sanesaa e s s e s e s e s aee s e assaaesseessanasensasaranes 18
Viewgroups and Layoutsccceeeeeieririeiremneeeneeneeseeee s eeteses et eee e saesseessessesanes 19
Concept types€ = LaYOUL.....cccoeeririeiieieieirtriesestestestesee et asat e et e saas e sresassnanas 23
Concept types €= Link annotationcccceceecemnieerenreenuerenmeecerenenceeeneecseseseseenens 24
Layout model internallyc.cccoeeeeririinrneireer et 26
LANKING ettt ettt st ae st s ae st st n e s e saennes 29
The Interbook to AHA! COmPIler.......ccveueuiiiniiiiicieieeeee e se e et a e 31
Paradigm translationc..cocoeoieeeincnc ettt 31
Compiler INPUt/OULPUL......c..coieiieeieecccetee et sre st e s ae e e aesaessesseassaessenanns 32
CONCIUSIONS ...ttt ettt st e s et s s e st s seesse e b e s e e ae e e s st ssasbnens 34
RecoOmMmMENdationS........couivuiimiiuiiiiniiiiinieiiercienrescec et st st st e st ae e e s s e e sanes 35
More Standard VIEWScc.cveeriiiirceieirietcent ettt ee e et st s e sae st eatassnerasseeas 35
GIaphiC tOOIS .cuuieiiieriiiiiiiititicc ettt a e re e sn st sr e s s e e e 35
Adaptive USer INterfacecovviviiiviiiiiciiiiiiccct ettt 35
Link annotation mechanism improvementscoceceeeeeneriesirinieninenencsnesseesieneaees 37
More power fOr the AULROTcceviiiiiiicrtctnc et 37
Adding content adaptation to Interbook’s authoring mechanism..........cccceceeverenuenene. 37
EXiSting VIEWS IMPIOVEINENL.ccevuereerririeeeeienteeenrerrtessessessnessasssessesneessessesseessessessens 38
RETEIEINCEScuitiiiiitetece ettt ettt st sa ettt esaesenes 39
Table Of FIGUIEScocuiiiieiieerecierie ettt ettt ettt st et s a e e se e e s s e 41
ADDIEVIALIONS ...ttt sttt ettt s st et ne 42
APPENAIXES ..vovvirinriiiieiiiiicieeete ettt et r e sttt s a e st be e e s e saesse st e e st sentene 43

TOMISLAV SANTIC 5

AHA! goes Interbook and beyond

Introduction

Numerous Web-based adaptive hypermedia systems have been developed within the last
10 years (Brusilovsky, 2001). These systems all have different “look and feel” and offer
different ways of adaptation. Yet, behind this diversity an expert can find a reasonably
limited set of methods and techniques (Brusilovsky, 1996; De Bra, Brusilovsky &
Houben, 1999a). A major motivation behind the AHA! project (De Bra & Calvi, 1998)
was developing a flexible adaptive hypermedia architecture that can be used for
implementing a wide variety of adaptation methods. AHA! was created as an “assembly
language” of adaptive hypermedia in the sense that any higher-level adaptation paradigm
can be expressed in terms of AHA! and simulated by the AHA! engine. The most recent
AHA! version (De Bra et al., 2002) has shown to be very powerful in this respect. As was
recently demonstrated, a reasonably advanced adaptation paradigm implemented in the
InterBook system (Brusilovsky, Eklund & Schwarz, 1998) can be almost completely
simulated by AHA! (De Bra, Houben & Wu, 1999b; Wu, De Kort & De Bra, 2001). Yet,
with all this power, AHA! is not completely ready to serve as a universal simulator for an
arbitrary AH system.

The problem is that each AH system is characterized not only by its unique model of
adaptation, but also by its unique interface. While the current version of AHA! is quite
ready to simulate the adaptation behavior of any AH system, simulating their interface is
a lot more difficult. The AHA! engine operates in a single-window mode - in a good
tradition of classic hypertext systems. In contrast, most of modern adaptive Web-based
hypermedia systems use rich multi-frame and multi-window interfaces. InterBook is a
good example here. It uses several multi-frame windows (textbook, glossary, and table of
contents). An example of InterBook's Textbook and Glossary windows is provided on
Figure 1. Other advanced AH systems also use complex multi-frame windows
(Grigoriadou et al.,, 2001; Henze & Nejdl, 2001; Melis et al., 2001; Weber &
Brusilovsky, 2001). Creating such multi-frame and/or multi-window interfaces in AHA!
requires that the author define the frame structure and use Javascript code to synchronize
the presentation in all the frames.

The goal of the project was to resolve the problem by developing a flexible interface
model for the AHA! engine. Following the idea of AHA! that can be used to describe a
variety adaptation functionalities, we wanted to develop an interface model that is used to
describe a variety of Web adaptive hypermedia interfaces. The primary goal of our
project was reasonably modest: we wanted to extend the AHA! engine to the extent
where it can simulate the InterBook adaptation mechanism and its multi-frame interface.
In doing so, we wanted to avoid narrow-minded solutions and hacks (like the Javascript
hack previously used with AHA!) developing a reasonably universal approach that can be
used to implement the InterBook interface along with many other interfaces.

We will start with an introduction about Hypermedia and Adaptive Hypermedia systems.
After that we will describe the problematic start of the project and introduce the

TOMISLAV SANTIC _ 6

AHA! goes Interbook and beyond

background for our work, we will give a brief introduction of the InterBook and AHA!
interfaces, followed by extensions on the conceptual level and our first attempt for user
interface extensions. After that we present the most important outcome of the project, the
Layout Model that extends AHA! and demonstrate how it can be used to simulate the
InterBook interface in AHA!. Finally we describe the ‘Interbook to AHA!" compiler that
we have developed to test the flexibility of the Layout model and to achieve complete
simulation of Interbook courses.

Hypermedia

Traditional text documents provide a linear organization of information. There is one
particular order in which the information should be retrieved. This kind of information
organization is not sufficient for a great number of applications. It is hard to determine
the best reading order for the information that is not organized in a sequential way.
People have different styles of learning and information gathering. Therefore there is a
great variety of reading orders. This is where hypermedia/hypertext fits in.

Hypermedia is an acronym which combines the words hypertext and multimedia.
Shneiderman (Shneiderman, 1989) defines hypertext/ hypermedia as "a database that has
active cross-references and allows the reader to "jump" to other parts of the database as
desired".

A Hypermedia system (HS) consists of Hyper-documents. Hyper-documents are nodes
that contain embedded links to other documents (De Bra, 1998). The user can use these
embedded links to navigate to other nodes (documents) to retrieve the required
information. This architecture allows the information in the HS to be accessed in a non-
linear way. In the last 40 years number of Hypermedia Systems had been developed
(Xanadu, ZOG, Aspen Movie Map, Hypercard etc.), but the real breakthrough came with
World Wide Web (WWW) which is by far the most popular example of a HS.

Adaptive Hypermedia

One of the biggest problems with Hypermedia Systems is the phenomenon called “Lost
in Hyperspace”. Hypermedia nodes usually contain a number of links to other nodes and
the user can follow any of the presented links. This has a disadvantage that after a while
the user can loose the orientation in Hyperspace and loose confidence in the system.

To address this and other problems in Hypermedia Systems, Adaptive Hypermedia
Systems have been developed. The basis of Adaptive Hypermedia Systems is that the
pages served by the system are adapted to user’s needs.

Brusilovsky (Brusilovsky, 1996) defines Adaptive Hypermedia as:

By adaptive hypermedia systems we mean all hypertext and hypermedia systems which
reflect some features of the user in the user model and apply this model to adapt various
visible aspects of the system to the user.

TOMISLAY SANTIC 7

AHA! goes Interbook and beyond

From this definition we can derive that in order to be an Adaptive Hypermedia System a
Hypermedia System needs to keep the information about the user in some kind of user
model and use this user model to adapt the pages served by the system to the user’s
needs. There are many systems available that can adapt the pages to the user, but not all
of these systems can be called adaptive hypermedia systems. Yahoo for example does not
use a user model to adapt the pages to user’s changing wishes. The user can fill out a
form before using the system which is then used to adapt the pages to his/hers needs, but
the system is not capable of using any data about the user gathered on the fly.
An arbitrary AHS distinguishes three functional parts:
1. Domain model- contains the content of application including concept
relationships
2. User model — contains the data about the user which can be used for page
adaptation
3. Adaptation rules — set of rules that describe how the user model has to updated
based on the user’s actions during the working session

Internally adaptive hypermedia systems can use different architectures but functionally
all AHS can be described using these three functional parts.

Adaptive Hypermedia Systems use a number of different techniques for page adaptation,
however all these techniques can be divided in two main groups (Brusilovsky, 1996):
e Adaptive presentation (conditional including of fragments, fragments sorting,
strechtext, etc.)
e Adaptive navigation (adaptive link annotation, adaptive link sorting, direct
guidance, etc.)

The basis of adaptive presentation is that the actual content of the page is adapted to the
user’s knowledge, interests, goals etc. Pieces of text/media (fragments) are shown or not
shown dependant on the user model. Adaptive navigation is mainly used to solve the
“Lost in Hyperspace” problem. Links are usually annotated by a color or icons to give the
user more information about the documents the links are referring to. There are also other
techniques like link sorting where the most important links are shown at the top, or link
hiding where links that are not recommended to follow at the moment are hidden or
disabled. Adaptive navigation helps the user to navigate through the Domain Hyperspace
in the most efficient way.

TOMISLAV SANTIC 8

AHA! goes Interbook and beyond

The project start

The start of the project was quite slow and problematic. An initial objective was porting
Interbook to the PC. This ‘mini project’ was unrelated to the rest of the project. Interbook
exists for some time but one of the things that is standing in the way of its proliferation is
the fact that Interbook is only available for Macintosh platform. Interbook is
implemented in Lisp and uses the Common LISP Hypermedia Server (CL-HTTP) as a
Web server. In order to run Interbook on a PC two things needed to be done:

1. The CL-HTTP web server should be compiled and run on a PC using one of the
Lisp compilers for the PC.

2. The Interbook source code should be compiled on a PC using one of the Lisp
compilers for the PC.

Two well known Lisp programming environments for the PC are: Allegro Lisp and
LispWorks. The problem was that we had neither of the two and therefore we were
forced to try to do the job by using the free versions of these environments. After some
trouble we finally managed to run CL-HTTP server on a PC.

The second task was more complex. Interbook uses a lot of MCL (Macintosh Lisp
programming environment) specific symbols and functions. These symbols are part of the
CCL package which is the MCL specific package thus not available in other Lisp
implementations (LispWorks, Allegro CL,...). Lisp programs that do not use this MCL
specific package can be more easily ported to PC/Windows. There are however two
problems with porting a MCL program to PC/Windows:

1. Finding equivalents for the CCL symbols and functions in other Lisp
implementations
2. QUI (specific Graphical User Interface code).

Interbook uses CCL specific symbols and functions, which are only available on the
Macintosh, in 190 different places. There are some duplicates but the fact is that
Interbook heavily relies on the CCL package and to port it to PC/Windows all these CCL
symbols should be replaced by their LispWorks/AllegroCL equivalents. There is not
something like a standard list of CCL symbols equivalents for other Lisp
implementations which means that for the CCL symbols used in Interbook equivalents
should be found on the case by case basis. Porting a GUI implemented in MCL to
Windows/PC also seems to be a (standard) problem.

It was obvious that porting Interbook to the PC would be a very time-consuming matter
and that it could endanger the completion of the rest of the project. Therefore we decided
to continue further with the main part of the project which is extending AHA! with
Interbook features.

TOMISLAV SANTIC 9

AHA! goes Interbook and beyond

The InterBook Interface Paradigm

Introduction

InterBook is a tool for authoring and delivering adaptive electronic textbooks (ET) on the
World Wide Web. It has been developed by Peter Brusilovsky and Elmar Schwarz in
1996. Interbook supports adaptive navigation but no adaptive presentation is supported.
The user is being guided through the course domain hyperspace by annotating the links
(using colored icons) to glossary concepts and text pages. Interbook supports a number of
features that can be turned on and off by the user. The system comes in different flavors.
Dependent on the user’s level a simple or more complicated user interface is used.
Interbook supports the “Incremental Interface” technique where new user interface
features are being introduced by the system dependent on the user knowledge. The
internal architecture of Interbook is based on a specific concept-based approach. The
basis of this approach is that the course domain is expressed as a set of concepts where
the user is gathering the knowledge about these concepts by reading text pages served by
the system. Every text page introduces knowledge about certain concepts. In turn the
readiness attribute (whether the user should read the page or not) of text pages is
influenced by the “background concepts”. Background concepts are concepts that need to
be familiar to the user in order to understand the content of the text page.

One of the strong points of Interbook is the authoring process. It is relatively easy to
prepare a course in Interbook. The author designs a course in the form of a specially
structured Word file. This hierarchically structured file is being transformed during a
number of transformation steps into a Interbook format file which is a valid HTML file
with some special Interbook codes. Another strong point of Interbook is its rich user
interface.

Interbook user interface paradigm

InterBook has two main kinds of windows - a Textbook window (left on Figure 1) and a
Glossary Window (right on Figure 1). These windows correspond to two major kinds of
information items supported by InterBook - a book page and a domain knowledge
concept. Each window in InterBook can include multiple links to concepts and pages. A
click on any page link causes the linked page to be loaded in the Textbook window. A
click on any concept link causes the information about the linked concept to be loaded in
the glossary Window.

Despite of its complicated interface, InterBook attempted to support a simple metaphor -
one window shows one and only one information item - i.e., a textbook window shows
exactly one page of a textbook at a time. While each of these two windows includes
several frames, they are considered not as independent windows, but as multiple views on

TOMISLAV SANTIC 10

AHA! goes Interbook and beyond

the same concept or page. For example: the text frame (bottom left) presents the text of
the page; the navigation bar (top) presents the location of the current page among its
ancestors and siblings, and the concept bar (bottom right) presents prerequisite and
outcome concepts for the current page. All four frames of the textbook window are
updated at the same time. Technically, a link to a textbook page is called a whole page
Jrameset to be loaded into the textbook window. This frameset, in turn, pulls several
frames associated with the requested page. The frameset approach is simple to understand
and also works well with most browsers’ standard way of navigation usmg back and

forward buttons and history.

A production» rule is a statement of a particular
contingency that controls behavior. Examples might
be

procedural
blowiedse

IF the goal» is to classity a person
and he is unmerried .
THEN classify him as a bachelor

Production-

Productions are condition-action+ rules which specify

IF the goal is to add two digits d1 and d2 i 1
what to do in a situation.

and di+ d2 = d3
THEN set as a subgoal® to write d3 in the co

The condition~ of a production rule (the IF part)
consists of a specification of a goal and a number of
chunks> while the action~ of a production rule (the
THEN part) basically involves the creation or
modifications of some chunks. The above is an
infortnal English specification of production rules.
Vou will learn the syntax for their precise
specification within the ACT-R system.

moééﬂural .
menory -

production

production
it]

This concept is introduced on these pages:
¥1.1.2 Production Rules in ACT-R
¥1.1.3 Production Rule Format
@Section 1.5: Creating Declarative Structure
@Production

Knowledge about this concept is required for:
Section 1.6: Writing Productions
@Section 2.1: English Rules
@ Se/aciing non-stonu &lémeanis.
@ Run 4reuments

A production rule specifies an fo be taken

when a is met.

Figure 1: InterBook interface

TOMISLAV SANTIC 11

AHA! goes Interbook and beyond

The AHA! Interface Paradigm

Introduction

The first version of the Adaptive Hypermedia Architecture (AHA!) was released in 2000.
AHA! 1.0 differed from other existing AHS because of its simplicity and its generic
approach. Soon AHA! received the name of being an “assembler language” of adaptive
hypermedia. AHA! can be seen as a low level language for developing of all kinds of
adaptive hypermedia applications. In the meantime AHA! evolved from version 1.0 to
version 2.0. Version 3.0 is being developed at the moment. AHA! is partly based on
AHAM (Adaptive Hypermedia Architecture Model) model (De Bra, Houben & Wu,
1999b) which serves as a reference model for the description of AH applications. AHA!
supports only the low level adaptation methods presented in Brusilovsky’s taxonomy
(Brusilovsky, 1996):

e Adaptive hiding or link annotation
¢ Conditional inclusion of fragments

Adaptive link annotation is supported by the AHA! engine in the form of colored links.
The color of a link depends on the user model where a certain color means that it is
recommended for the user to follow the link and some other color means that the user is
still not ready to read the document the link is referring to. Adaptive hiding is
implemented in the same way by using almost the same color for the link as for the
regular text. This makes the link difficult to be noticed. Adaptive presentation is
supported in the form of conditional fragments. The author can attach conditions to
certain fragments of the text page. This enables the AHA! engine to conditionally show
pieces of the page dependent on the user’s knowledge about the domain model.

The basis of AHA!’s internal structure is its concept structure. AHA! ‘sees’ everything as
a concept. Text pages presented to the user are generated using the concept’s resource
element. This element refers to a XHTML (or XML) resource file which is (after
processing by the AHA! engine) presented to the user. The AHA! engine uses the user
model and the internal concept model during the resource processing to adapt the content
of the resource file to the user.

AHAU'’s internal structure makes no real separation of Domain model and Adaptation
rules. Concepts are saved as XML files that describe the concepts behavior and their
relations with other concepts. The AHA! engine can also use a MySQL database to store
the concept information, but XML version of the database is being used by default.
AHAY’s user interface is quite simple.

TOMISLAV SANTIC 12

AHA! goes Interbook and beyond

AHA! User interface paradigm

AHA! was initially created to add adaptation to the course on hypermedia at the
Eindhoven University of Technology (http://wwwis.win.tue.nl/2L690/). This course
predates the general availability of frames in browsers. The course was therefore written
using a single frame layout. The browser showed one course page at a time, with adapted
links and conditionally included fragments. AHA! also added an optional header (with a
progress report) and footer (with copyright statement). Header and footer were created by
the author as html fragments. In Figure 7 a page with header can be seen (albeit
embedded in the new Interbook-like multi-frame environment). Multi-frame applications
are possible in AHA!. Figure 2 shows part of the multi-frame interface paradigm used in
a course on graphical user interfaces.

Mozilla {Build 10: 28003021008}

e ey

i i i T e xS 2
Road Iﬂ"Iﬂp Paul De Bra has read 96 pages and still has 16 pages to read. (these read, these still to de)
T U / e color prefexences - knowledge and settings - change password - message board - log out
top .
introduction K S
Ul design N
ergonomic advice Evaluating User-Interface Design Without Users
evaluation '
without users There are good reasons for performing evaluations without users (in addition to testing with users):
cogn. walkthrough
who ¢ Users have only limited time for taking part in the design and evaluation. Therefore, the user-interface should be free of (trivial)
prepare problems which can be easily foreseen and avoided.
took for + Evaluation with only a few users may not reveal all problems a large number of final end-users will experience, because not all
resiilts possibilities of the application and user-interface will be tried.
action analysis * While the user-interface is being developed the test-users are still learning the interface. They may not encounter the problems
formal experienced users will encounter later.
informal
heugistics There are three popular evaluation techniques which are performed without involving test-users:
W‘?‘ users ¢ cognitive walkfhrough: this technique is especially usefil for task-centered design.
assignment + action analysis: this technique is used to estimate the time an expert user will need to perform a task using the interface.
UL development ¢ hewristic evaluation: using a checklist one may catch a wide variety of problems, but this technique requires evaluators with
Java knowledge of usability problems.
applets
assignments
instructions Copyright © Faul De Ers, 1997, 1998, 1999, 2000.
Allrights reserved.

Figure 2: AHA! multi-frame interface

In order to make this interface work in AHA!, every page must include the following
piece of Javascript code:

<script language="JavaScript">
parent.frames[0].location="content.xml"

TOMISLAV SANTIC 13

AHA! goes Interbook and beyond

</script>

The result is that when a link to a page is followed the leftmost frame is reloaded. It
contains the “content.xml” file, which is a navigation menu in which submenus are
conditionally shown, based on which page is displayed in the rightmost frame. The
access to a page and the subsequent access to the menu are treated separately by AHA!.
Whereas in Interbook following a link requests a complete frameset from the server in
AHA! following a link requests a page, to be shown in a complete browser window or
inside a frame. The AHA! engine does not “know” about a possible use of frames.

TOMISLAV SANTIC 14

AHA! goes Interbook and beyond

Bringing Interbook and AHA! together

The original goal of this project was extending AHA!’s user interface to the point to be
able to simulate Interbook’s user interface paradigm. In order to simulate Interbook’s
user interface AHA!’s user interface needs to support multiple windows and multiple
frames. More specifically AHA! needs to support frames and two kinds of windows used
by Interbook. Interbook uses different frames to represent different aspects of the
concept. We can see these frames that contain some information about concepts as
different views of course domain.

AHA! extensions on the conceptual level

Interbook’ s user interface paradigm and AHA!s user interface paradigm are quite
different. However in order to simulate Interbook not only user interface needed to be
improved but also number of things on the conceptual level.

Hierarchy

Interbook has a hierarchical concept structure. A number of views that are used in
Interbook use this hierarchy to present some information to the user. The table of
contents is probably the best example. It shows the whole hierarchy as a tree of annotated
links to text pages. Another example is the Navigation bar where the path from root node
to current node is shown also as a tree of annotated links to text pages. In contrast,
AHAU!’s internal concept structure is not hierarchical. Therefore before extending AHA!’s
user interface with views(frames) that use internal concept hierarchy first we needed to
introduce hierarchy to AHA! on the conceptual level. Using the following structure for
each concept in hierarchy tree we introduced relations between concepts that enable the
AHA! engine to construct an internal concept hierarchy:

<hierarchy>
<firstchild> </firstchild>
<nextsib> </nextsib>
<parent> </parent>
</hierarchy>

There are three kinds of hierarchical relations between concepts: firstchild, nextsib and
parent. The hierarchy tree can also be constructed with only two relations (firstchild and
nextsib), but using one extra relation makes the job much easier for the views that use the
hierarchy. Figure 3 is showing graphically the hierarchy relations between concepts.

TOMISLAV SANTIC 15

AHA! goes Interbook and beyond

Node1

!

Parent—— Node2

’—First chid—s| Noded

Next sibling

|

Node3

Figure 3: Hierarchy structure

Title

Another extension on the conceptual level is the introduction of titles. Old AHA! courses
use the concept name field to identify concept. This field is also used for showing links to
concepts. This system is rather inconvenient when Interbook courses, or courses of any
other system, have to be served by the AHA! engine (see chapter 'Interbook to AHA!
compiler’). Most of these systems use a computer generated concept ID that is not
suitable for displaying to the user. Another advantage of separating concept title and
concept id is that this system reduces chances for making mistakes.

Concepitypes

The last extension we made on the conceptual level is the introduction of concept types.
In AHA! everything is a concept and all concepts are the same. There is no way of
making a distinction between concepts. Every concept is treated in the same way. This is
not the case in all adaptive hypermedia systems. Some systems treat different types of
concepts in a different way. Interbook is a good example of such a system. Therefore we
added a simple but powerful mechanism to the AHA! engine. By introducing the
‘Conceptiype’ field to the concept structure we enabled the AHA! engine to distinguish
any number of different kinds of concepts. There are however no predefined concept
types. The author of the course can define any desired number of concept types and the
engine can treat these concepts in a different way. Chapter ‘The View-Based Layout
Model’ gives an example how concept types are used in the Layout model.

TOMISLAV SANTIC 16

AHA! goes Interbook and beyond

AHA! user interface extension-first attempt

After extensions made on the conceptual level the introductory work for the extension of
AHA!s user interface was completed. We could start with the introduction of
Interbook’s frames and windows to AHA!. We started with the implementation of the
Table of Contents view. The AHA! engine was already extended with hierarchy
structures so what we needed to do is to add a frame within the AHA! window which
would show the whole hierarchy structure. At first we did the job in a hard coded way,
but soon we realized that this kind of narrow minded solutions would stand in a way for
the future developments of AHA!. We decided to develop a more generic solution where
it would be possible to rearrange views within the window and also place some views in
separate windows. Our first solution was somewhere between hard coded and generic.
The author was able to configure and rearrange the views in an XML configuration file,
but there were still too many hard coded things in views. It was not possible to define any
number of window divided in any number of frames. Views still contained too much
logic and too much programming was needed to introduce views and to make everything
work. While introducing new Interbook views to AHA! we were confronted with number
of practical problems. At that moment we decided to go all the way and develop a real
generic user interface that could simulate the user interface of any existing Web-based
adaptive hypermedia system. Views would be simple objects with one task: displaying
data from underlying data structures. Introduction of new views should be quite simple. It
should also be possible to define any number of windows divided into any number of
frames and linking, view updating and all other logic should be part of the AHA! engine.
Finally-we came up with the View-Based Layout Model which is described in the next
chapter;.

TOMISLAYV SANTIC 17

AHA! goes Interbook and beyond

The View-Based Layout Model

The View-Based Layout Model is the new way in AHA! to present concepts (pages) to
the user that was developed to address the lack of user interface possibilities in the earlier
versions of the architecture. The Layout model combines the strong points of InterBook’s
rich user interface with the flexibility and customization style that are typical for the
AHA!-architecture. This model allows every AH system developer to adapt the user
interface to the course nature (without the need for the above mentioned Javascript hack).

To provide a high level of flexibility, the Layout Model was designed as a three-level
interface model that is based on the concepts views, viewgroups and layouts. In brief,
. views are considered as atomic interface elements. Views can be grouped in viewgroups.
One or more viewgroups form a layout. These concepts are presented in more detail
below.

Views

Views are pieces of information about the
course domain. They usually represent
some relevant information about the active
concept (the concept the user is viewing at
the moment). A view can also represent
some static information about the course
domain. Views are used as pre-fabricated
building blocks to construct the user
interface for some specific course.
Internally views are simply Java classes
that generate HTML pages using
underlying AHA! data structures. To
present a concept to the user the system
uses a set of predefined views. These predefined views can be further customized by the
author of the course to develop an interface that meets the needs of the course. The author
defines and customizes a view using an XML-based description language like the
following: ’

<view name="v5" type="ToolboxView" title="Toolbox"
© background="IBookbluesqg.bmp" params="leftspace=70">
<secwnds>
<secwnd 1link="TOC" viewgroup="TOC" img="ContentBtn.bmp"/>
<secwnd link="Glossary" viewgroup="Glossary"
img="GlossaryBtn.bmp"/>
</secwnds>
</view>

TOMISLAV SANTIC 18

AHA! goes Interbook and beyond

At the moment we have already implemented a number of relatively simple basic views.
The configuration of these views consists of setting the background picture, the title or
changing the page margin to make the view more readable. It is possible however to
implement much more complex views that will offer much more tuning possibilities to
the author. We are considering parameters that will influence the content of the view
page and not only the shape of it.

A view usually displays some information about the active concept including links to
other relevant concepts. However a view can also contain links to other views which will
offer more information to the user about the active concept. Following one of these links
will result in displaying a new set of views. Views that are used directly to represent
different aspects of a concept are called primary views. Views that present some
supplementary information are called secondary views. These views are not visible until
they are triggered by a link in one of the primary views. The author of the course will
usually choose the most important views as primary views and less important views as
secondary views. The connection between primary and secondary views can be specified
by the author of the course in the XML view structures presented above. In the presented
example ToolboxView can trigger two secondary viewgroups: Table of Content and
Glossary

Viewgroups and Layouts

As explained above views are the building blocks for constructing a concept
representation. Views can be grouped in viewgroups. In HTML terms a viewgroup
corresponds to an independent window and a view corresponds to a page that can be
shown in a separate window or in an HTML frame. A set of viewgroups forms a concept
layout,"Which is used to present a concept. Practically, it means that different aspects of a
concept can be presented in several synchronized windows.

Viewgroup 4

Viewgroup 2 . Viewgroup 3

Layout { Layout 2

Figure 4: View-Viewgroup-Layout relation

TOMISLAV SANTIC 19

AHA! goes Interbook and beyond

Figure 4 shows examples of two different layouts. The first layout, Layout 1, contains
two viewgroups(windows), Viewgroup 1 and Viewgroup 2, which use four and two
views respectively. Layout 2 contains two Viewgroups, Viewgroup 3 and Viewgroup4,
which use two and one views respectively.

For our simulation of Interbook courses we use three different layouts. Figure 5 shows
views used for representation of text pages in Interbook courses. The views are grouped
into three Viewgroups of which one Viewgroup with primary views and two Viewgroups
with secondary views. The Viewgroup with primary views contains four views:
Navigation bar view, Text view, Concept bar view and Toolbox view. Toolbox view can
trigger Viewgroups with secondary views. Secondary Viewgroups contain each one view,
Table of Contents and Glossary.

’

- WA R . . W W W WA e e e e W

Fnste

Primary views

TR . e e e e e WS RS W WA W W A AW W W o e e e e

T W

Vieworoup

i
3
i
3
i
H
H
£
)
i
i
£
£
i
i
£
¥
H
§
F
i
H
3
3
]
3
3
i
H
£
£

Secondary views

Layout1l e ———

Figure 5: Interbook views of ‘page_c_layout’layout

The following XML structure is an example of a layout definition for three layouts that
we use to simulate an InterBook style user interface

<layoutlist> _
<layout name="page_c_layout” trigger="MAIN">
<viewgroup name="MAIN" >
<compound framestruct="cols=80,*" >
<viewref name="v6" />
<compound framestruct="rows=50%,*" >
<viewref name="v3" />
<viewref name="v8" />
</compound>
</compound>

TOMISLAV SANTIC 20

AHA! goes Interbook and beyond

</viewgroup>

<viewgroup name="TOC" >
<compound framestruct="rows=*,300" border="5">
<viewref name="v1l" />
<viewref name="v2" />
</compound>
</viewgroup>

</layout>

<layout name="leaf_c_layout" trigger="MAIN">
<viewgroup name="MAIN" >
<compound framestruct="cols=80,*" border="0">
<viewref name="vé6" />
<viewref name="v3" />
</compound>
</viewgroup>
<viewgroup name="TOC" >
<compound framestruct="rows=*,300" border="5">
<viewref name="vl" />
<viewref name="v2" />
</compound>
. </viewgroup>
</layout>

<layout name="abst_c_layout" trigger="Glossary" >
<viewgroup name="Glossary" >
<viewref name="v4"/>
</viewgroup>
</layout>

</layoutlist>

We have defined three layouts each associated with one of the three concept types that
we use for the simulation of Interbook courses. As can be seen in the example above each
layout consists of a set of viewgroups which contain pointers to predefined views.
Viewgroups use compound elements to define the place of each of the views within the
window. For each viewgroup the author of the course can also define window options for
the window in which the viewgroup is placed. The layout structure of layout
‘leaf_c_layout’ (without secondary views) above corresponds to the screen presented in
Figure 6. It consists of five primary views grouped into one viewgroup, which is shown
in the figure, and two secondary views (Glossary and Table of Content) which can be

triggered by the buttons in the ToolboxView (upper right corner).

TOMISLAV SANTIC

AHA! goes Interbook and beyond

] - rosoft Internet F
Fle Edit view = Favorites Tools

@ Back ~

Address % http:fflocalhost:8080/ahajGet?concept=cNisaKorfhage.sectionS54

Chapter 6: User Profiles and
their Use Outcome:

@5.1 Simple Profiles
@ 6.2 Extended Profiles

@6 3 Current Awareness Systems

@ 6.4 Retrospective Search Systems

@ 6.5 Modifying the Query by the Profile

@6 6 The Query and Profile as Separate Reference Points
@6 7 The Ethics of a User Profile

Local intranet

Figure 6: InterBook style concept layout for ‘leaf” concepts

Changing the XML configuration structures will change the layout associated with a
certain concept type. The following example of an XML configuration structure defines
different layout using basically the same views:

<layout name="page_c_layout" trigger="MAIN">
<viewgroup name="MAIN" >
<compound framestruct="cols=200,*" >
<compound framestruct="rows=*,85" >
<viewref name="vl" />
<viewref name="v5" />
</compound>
<viewref name="v3" />

</compound>
</viewgroup>
<viewgroup name="Conceptbar" >
<viewref name="v2"/>
</viewgroup>
<viewgroup name="Glossary" secondary="true" >
<viewref name="v4"/>
</viewgroup>
</layout>

TOMISLAV SANTIC 22

AHA! goes Interbook and beyond

The corresponding screen layout for the XML configuration structure above is shown in
figure 7.

73 MBI Microsoft ,!memét Explarer i
o Edt. ylew Favorkes Jook * Help

B

~ Guided Tours

B ing through a hyperd may easily lead to disorientation. When reading about
a certain topic you would like to follow links that are relevant to that topic only. Also,
when reading a hyperdocument more like a book, you would like to be able to find a
“logical" order in which to view the nodes.

guidedtours

The “trails®, suggested by Bush, can be viewed as some kind of "superlink”, connecting a
whole series of nodes, rather than only two nodes. As long as you stay on such a guided
tour, you can simply click on a "next node” anchor to move along the tour.

Guided tours are most useful for systems that provide infosmation on different subjects, or
that must guide the user through an information base, without too much initiative from the
user's part. A system that contains information for museum visitors for instance should
provide guided tours about different aspects of the museum's exhibitions. Hammond and
Allinson coined the term "Travel Metaphor® {FLA&7], another term related to tourism.

Trigg [Trigz-88} extended the idea of guided tours for the NoteCards system by making
cach “stop” on the tour a set of cards, rather than a single node. An accompanying
Tabletop tool allowed authors to create these stops on the tour.

Guided tours are difficult to maintain in a changing hyperdocument. Also, when the user
wishes to follow a tour about a topic that is relevant but for which the author hasn’t created
a tour, the problem of finding a sensible path through the hyperdocument becomes very

4 G S L N Local intranet i

Figure 7: An example of different layout

In this-layout there are two primary viewgroups (MAIN and Conceptbar) and one
secondary viewgroup (Glossary). Viewgroup MAIN consists of three views (MainView,
Table of Content and Toolbox) and the Conceptbar viewgroup contains one view
(ConceptbarView). Button ‘Glossary’ in the Toolbox view triggers the display of the
secondary viewgroup Glossary.

Concept types <> Layout

Some adaptive hypermedia systems may have more than one #ype of concepts (pages).
For example, InterBook has a texthook page and a glossary concept that are both
concepts in terms of the AHA! architecture. We also assume that an author of an adaptive
course may want different types of concepts to be presented differently (this is what
happens in InterBook). To support this possibility, the Layout model allows an author to
define several layouts. Each concept type has to be associated with one of the layouts.
Presenting concepts of the same type always in the same way (using the same layout)
contributes to the user confidence in the system and avoids confusion. AHA! doesn’t
have any predefined concept types. The author of the course can define any number of
layouts and associate each of these layouts with a different layout. Figure 8 shows what
happens when the user follows a link to some concept. The concept type of the desired
concept is being checked any dependant on this check the associated layout is being used
to present the concept to the user. If the concept type of the desired concept is the same as

TOMISLAV SANTIC 23

AHA! goes Interbook and beyond

the concept type of the previous concept than the layout views are being updated and no
new layout is being used. Following a concept link also updates the ‘active concept’ field
which is used by the AHA! engine to keep up the concept the user is interested in.

Figure 8: Following a concept link

Concept types <> Link annotation

As already said concepts of the same type are always represented in the same way. In
order not to get the user too confused every concept type is also associated with link
annotation structure. This means that concepts of the same type are always represented in
the same way and also that links to concepts of this type are always annotated in the same
way. This makes it easer for the user to predict what is going to happen and therefore
contributes to user’s confidence into the system.

Figure 9: Concept type-
Concept Layout/Annotation

Concept type

{, Layout }- » Annotation

TOMISLAV SANTIC 24

AHA! goes Interbook and beyond

It is possible for the author of the course to define the annotation of the links for each
concept type of the course. A concept link in AHA! is annotated in three parts: front icon,
link text and list of icons that follow the link text.

Front icon Link text Back icons |
Interbock example: color annofaticn,... interbook example:
o 29 4 v

Figure 10: Link annotation structure

The Front icon mechanism uses the standard AHA! engine annotation function to
determine which icon will be shown in- front of the link text. The AHA! engine link
annotation function results in one of four possible values: good (recommended to follow),
bad (not recommended to follow), neutral (no advice) and unconditional (external link).
For every resulting value of the AHA! engine link annotation function the author of the
course can define an icon that will be used for the annotation. This is done by using XML
structures like the following:

<fronticon>
<good>GreenBall .gif</good>
<bad>RedBall.gif</bad>
<neutral>WhiteBall.gif</neutral>
<unconditional></unconditional>
</fronticon>

The link text is also annotated by the standard AHA! engine annotation function. The
color of the link text changes dependant on user’s the knowledge about the concept. The
author of the course can turn this feature on and off. .
The third part of the link annotation is a list of icons behind the link text. This part is
added to AHA! to simulate Interbook’s link annotation mechanism. Interbook uses
checkmarks to annotate links to domain knowledge concepts. Dependant on the user’s
knowledge about a certain concept a big, small, medium or no checkmark is shown
behind the link to that concept. We have used this idea, adapted to AHA!’s internal
concept structure, to develop a generic and configurable mechanism for this kind of link
annotation. Following XML structure which can be used for configuration of ‘Back
icons’ part of link annotation:

<iconanno>
<attribute>
<name>knowledge</name>
<distribution>
<boundary>0</boundary>
<boundary>33</boundary>

TOMISLAV SANTIC 25

AHA! goes Interbook and beyond

<boundary>55</boundary>
<boundary>76</boundary>
<boundary>101</boundary>

</distribution>

<results>
<result>NoCheckM.gif</result>
<result>SmallCheckM.gif</result>
<result>MedCheckM.gif</result>
<result>BigCheckM.gif</result>

</results>

</attribute>
</iconanno>

AHA! courses can use more than one concept attribute to describe concept behavior. One
can be interested in users knowledge about concepts, interests, goals, etc. Besides the
‘knowledge’ attribute which is the only concept attribute used by Interbook courses,
AHA'! courses can use any number of concept attributes and for each of these attributes
different annotation can be used. The author can associate a range of values for each
concept attribute with a different icon. In the example above the following associations
are being made: values between 0-33 (No checkmark), values between 33-55 (Small
checkmark), values between 55-76 (Medium checkmark), values between 76-101 (Big
checkmark). For each used concept attribute different ranges and icons can be used and
all these icons can be used to annotate concept links and give the user more information
about the concept.

Usually the author will not choose all three parts of the annotation mechanism for link
annotation of concept types. For our Interbook example we use Front icon and Link text
annotation for annotation of Text page links and for the annotation of Irem links we use
only Back icons.

For some views the use of some parts of annotation can be undesirable. Therefore it is
possible for the views to ‘overrule’ the configured annotation and turn parts of annotation
off. In our Interbook example the Front icon annotation is turned off in the text view and
Link text annotation is turned off in all other views.

Layout model internally

The internal structure of the Layout model resembles the Layout structure presented at
the beginning of this chapter. There is an internal list of Layour objects where each of
these object coritains a list of Viewgroup objects. Every Viewgroup object consists of a
number of View objects that correspond to views represented to the user. Data read from
XML configuration files is used to fill the in-memory representation of the Layout model.
This in-memory Layout representation is used every time the user makes a request for
some concept. Dependent on the requested concept, the right Layout object is used for
showing the right windows and frames which represent the concept to the user.

TOMISLAV SANTIC 26

AHA! goes Interbook and beyond

The internal implementation of the Layout model follows the Model View Controller
(MVC) architecture. MVC is a well known architecture used in a number of software
packages specialized in different aspects of data presentation. The basis of MVC is the
separation of data and presentation. The code is divided into data structures representing
the user's data ("the model"), the objects that display the data and interact with the user
("the view"), and some logic to connect data and its representation ("the controller").

The Layout model is implemented as a separate Java package within AHA!. It can be
seen as an additional layer on top of the AHA! engine which is responsible for data
representation (see Figure 11). Objects in the Layout model extract data from underlying
high level data structures which contain structured data gathered from the AHA! database
during the initialization process. These high level data structures, which were not part of
old versions of AHA!, contain easy accessible data. AHA! 2.0, the version of AHA! that
was used as a basis for this project, used the XML concept database to store the concept
data. Some of the views use data from different parts of the database and collecting this
data on the fly is a rather expensive task. Therefore we have introduced a data layer
between the database and the Layout model. This new layer consists of high level data
structures that contain preprocessed data used to speed up the process of gathering data
and representing it to the user. The layered architecture enables view designers to keep
views simple ‘one-task’ objects without any complicated higher logic. A clear separation
between the layers has number of advantages:

e Itkeeps view objects simple
It enables a separate layer implementation
It simplifies future improvements
It simplifies version integration
It speeds up the process of data gathering

Layout layer

User roﬁle

High level dala structures

AHA! DB AHA! engine

Figure 11: Layered implementation structure

TOMISLAV SANTIC 27

AHA! goes Interbook and beyond

A layout consists of a number of Viewgroups (windows) which are used to represent a
concept to the user. However one of these windows is special because it is used as a
trigger window. This window is responsible for showing of all other windows that are
part of the same layout. When the user follows a link to a concept the ‘Trigger window’
of the concepts layout is opened. This window contains JavaScript code that triggers
opening the other Layout windows (see Figure 12). The Frameset structures and
JavaScript trigger code are generated from the Viewgroup and Layout objects and the
actual content of the frames is produced by the view objects.

Window 2 Window 3

4 DperjUpdate OpenfUpdate

Trigger window

Open window

[Concept link]

Figure 12: Layout windows construction

Two basic objects for request handling are the ViewGet servlet and the Ger serviet (see
Figure 13). Get servlet handles all the requests for window code either made by the user
or by the system. Every time the user follows a concept link the Ger servlet receives the
request with a parameter concept ID. Dependent on the concept type the trigger window
of the right layout is selected which in turn produces the response code (the frameset
structure and possibly JavaScript trigger code) for the requested window. The frameset
code produced by the windows of the selected layout contains calls to the ViewGet servlet
which is responsible for filling the frames within the generated frameset structure. For
every frame within the frameset structure the corresponding view is used to generate the
browser code for that frame. Based on the view name the ViewGer servlet selects the right
view from the viewlist which generates the browser code for that view.

TOMISLAV SANTIC 28

AHA! goes Interbook and beyond

Wiew1 WView2 Vi3
View list
&
View name Browser code
\Qi:wrig;?:; Browser code Layout 1
Layout 2
Layout list
Request
(Concept 10} Browser code

Figure 13: Layout request handling

Linking

Concept links embedded in browser code produced by the views are actually generated
by HTMLanchor objects that are part of the AHA! Layout model. When a view ‘wants’
to represent a concept link it uses the HTMLanchor object to construct a HTML Anchor
tag with attached JavaScript code. The HTMLanchor object receives a concept ID as
parameter which is used to determine the trigger window of the right layout and the right
annotation style. This information is further used to produce a HTML anchor element
which contains all the information needed for link annotation and concept representation
when the user follows the link. Separating link generation from views has number of
advantages:

s It keeps views simple java objects where the programmer does not have to think
about the details.

TOMISLAV SANTIC 29

AHA! goes Interbook and beyond

o It simplifies the process of adding new views
It makes the linking process a mechanism instead of a hack where every view
would have it’s own, in many cases probably slightly different, link
implementation

e [t reduces mistakes

e Keeping link implementation logic centralized simplifies future improvements in
the linking mechanism

Arnotation style Annotation

Trigger window Layout

Browser code
[(HTML)

Figure 14: Link generation

TOMISLAV SANTIC 30

AHA! goes Interbook and beyond

The Interbook to AHA! Compiler

The final step in our attempt of bringing AHA! and Interbook together is the
implementation of Interbook to AHA! compiler. There are several reasons that make this
step extremely important:

e Testing the flexibility of our layout model by simulating real courses already
offered by other Adaptive Hypermedia systems (in this case Interbook);

e Testing the correctness of data extracted by views. We can compare the course
data served by Interbook with data served by AHA!;

e Achieving of total simulation of Interbook by AHA! AHA! can serve real
Interbook courses that also look like Interbook;

e Authoring of Interbook courses is much easer than authoring of AHA! courses.
Implementation of a bridge between these two systems can simplify the AHA!
authoring mechanism. The author can use the Interbook authoring mechanism
(using Microsoft Word and tools to generate HTML from that) to implement a
course and then use the Interbook to AHA! compiler to convert the course to
AHA! format. We must note that this authoring process does not use the full
power of AHA!. In particular it only uses link adaptation, not content adaptation
in the form of the conditional inclusion of fragments. (But that can be added
later.)

Paradigm translation

The most important part of the Interbook to AHA! compiler is the translation of the
Interbook concept paradigm to the AHA! concept paradigm. These two paradigms differ
in some basic aspects which make it difficult to serve Interbook courses using the AHA!
engine. The Interbook paradigm consists of text pages, also called sections, and glossary -
concepts. Text pages are presented in a Text Window and glossary concepts are presented
in a Glossary Window. AHA! on the other hand sees everything as a “concept”. We
introduced concept types to the AHA! concept paradigm. This turned to be a very simple
and versatile solution for our problem. Each concept is of some type and each concept
type is associated with different layout. This means that each concept type can be
represented in a different way, depending on the associated layout, which is exactly what
we need to simulate Interbook courses. AHA! does not have a predefined set of concept
types. The author of a course can define any desirable number of concept types and
represent every concept type using different layout. The connection between concept
types and the layout model, which can be established using small XML configuration
files, offers great flexibility and possibility to simulate the user interface of almost every
existing Adaptive Hypermedia system.

To get back to the Interbook concept paradigm, our Interbook to AHA! compiler
generates three kinds of concepts to simulate Interbook courses:

TOMISLAV SANTIC 31

AHA! goes Interbook and beyond

1. Items (simulation of Interbook concepts presented in a Glossary Window)

2. Sections (simulation of Interbook text pages presented in a Text Window having
child nodes)

3. Leafs (simulation of Interbook text pages presented in a Text Window without
child nodes)

All these concept types are associated with different layouts. The difference between
Sections and Leafs is very small. They use layouts that are almost the same with the
difference that the Sections layout shows the child nodes of the active concept and the
Leafs layout does not.

Compiler Input/Output

The Interbook to AHA! compiler uses special Interbook files as input and produces
AHA! formatted XML files as output. Interbook course files are valid HTML documents
that contain Interbook specific codes. These codes are used to connect sections (text
pages) and glossary concepts. Every section has a set of prerequisite concepts (concepts
that are required to be known before reading the section) and a set of outcome concepts
(concepts that are introduces by the section).

AHA! courses are saved in a different way. AHA! uses XML structures to save concept
data and separate XHTML files are used for the resources. AHA! XML concept
structures are much more complex than Interbook concept relations. Interbook uses two
kinds of relations between Sections and Glossary concepts: ‘is prerequisite’ and ‘is
outcome’. AHA! on the other hand uses expressions to implement different kinds of
relationships. These expressions can be of any form as long as they are syntactically
valid. We use the following expressions to simulate Interbook concept relationships and
Interbook behavior:

¢ For each prerequisite concept of each section:
‘Conceptname.knowledge>=(1/3*100)’ for AHA requirement relationship
which simulates Interbook ‘is prerequisite’ relationship
¢ For each outcome concept of each section:
‘if (required) Conceptname.knowledge+1/3*(100-Conceptname. knowledge)
else Conceptname.knowledge+1/6*(100-Conceptname.knowledge) ¢
for AHA Condition-Action rules which simulate Interbook ‘is outcome’
relationship

The following figure shows the course data transformation from Interbook format to
AHA! format.

TOMISLAV SANTIC 32

AHA! goes Interbook and beyond

Prerequisites: P1, P2,...

'

Section/Glassary concept
{HTML page)

v

Outcomes: 0%, 02,03,,.,

Interbook fo

AHA! Compiler

interbook Concept data format

Figure 15: Interbook to AHA! concept data

REQUIREMENT RELATION:
For ali P in Prerequisites:
P.knowledge>=(313*100)

CONDITION ACTION RULES:
For ali O in Cuicomes:

if (required)
O.bnowledge+13*(100-O Lnowledgey

eise
O.knowledge+1/6%(100-Okuowledyey

l Concept type: [Section | Leaf | tem]} [

I Resoucs glement [

Cancept XML file

Resource {Section/Glossary
concept HTML code in XHTML
file)

AHALI Concept data format

At this moment we have used ‘Interbook to AHA!” to compile two Interbook courses to

AHA! format. Figure 16. shows a screen from Interbook’s ‘Korfhage: Information

Storage and Retrieval’ course served by AHA!.

T MAIN - MicrosoftInterniet Explorers

Korfhage: Information Storage
and Retrieval

@Chapter 1. Overview

2 Chapter 2. Document and Query Forms

@ Chapter 3: Query Structures

@ Chapter 4: The Matching Process

@ Chapter S5: Text Analysis

%@ Chapter 6: User Profiles and their Use

@ Chapter 7: Multiple Reference Point Systems
@Chapter 8: Retrieval Effectiveness Measures

@Chapter 9: Effectiveness Improvement Technigues

Figure 16: NisaKorfhage course screen example

TOMISLAV SANTIC

33

AHA! goes Interbook and beyond

Conclusions

The results of this project exceed by far our original expectations and goals. After the
slow and problematic beginning where some importation decisions had to be made about
the further continuation of the project, we have found a way to improve AHA! in terms of
methodology instead of using narrow minded solutions. We have introduced Interbook
features to AHA! engine, but we did not stop there. We went one step further and gave
AHA! a generic user interface mechanism.

The final results of the project are the following:

On the conceptual level we have introduced new elements: hierarchy, concept
types and titles. This extension was required in order to simulate Interbook’s user
interface paradigm at first, but finally concept types served as an important part of
our Layout model.

We have added different Interbook features to AHA!: Navigation bar, Concept
bar, Glossary, Child-nodes bar, Toolbox and Table of Contents.

We have developed a flexible and highly configurable layout model that can
simulate user interface of almost any existing Web based adaptive hypermedia
system. The new AHA! layout model offers versatile user interface possibilities
and brings the AHA! one step closer to its main goal of being a generic AH
environment for all kinds of AH applications. View based concept presentation is
extremely flexible and gives a course author the power to adapt the user interface
to the needs of the course.

We have developed number mechanisms to support the layout model: link
annotation mechanism, concepttype-layout mechanism and linking mechanism.

The last step of our project was developing a compiler for translating Interbook
courses to AHA! format. This final step enabled us to serve Interbook courses in
Interbook style, using Interbook user interface, with AHA! engine.

We published two papers about the project results. The first paper was presented
during the AH2003 workshop of the 12" WWW conference in Budapest,
Hungary and the second one will be presented during the ELearn conference in
Phoenix, Arizona.

TOMISLAV SANTIC 34

AHA! goes Interbook and beyond

Recommendations

More standard views

The course user interface is dependent on the set of already existing views. Greater
variety of views means more possibilities for the author to construct a good user
interface. The views that we have developed so far are copies of Interbook’s views. One
can think however of more useful views that can be included into this set of standard
views. One of the views used by many (adaptive) hypermedia systems is History view.
This view shows the history of the users movements in hyperspace. It would be very
useful to develop a view that shows a list of links to the last 10 or 15 (or any number the
author wishes) concepts the user has visited.

Graphic tools

Development of graphic tools could make the authoring of course user interface much
easier and much more efficient. In current situation the author specifies the course user
interface by implementing user interface configuration files which can be done using any
existing XML editor and any existing text editing tool. This gives the author a lot of
power and flexibility to build up the course user interface however during the
configuration process the author is ‘blind’ and in order to get the desired effect the author
had to do a lot of switching between the XML editor and the AHA! application has to be
done. Starting the AHA! application is the only way to see what the layout specified in
the configuration files actually looks like. It is obvious that this layout authoring process
can be greatly improved by giving the author ‘eyes’ during the layout configuration
process. Graphic tools are the solution. One can think of introducing a graphic tool which
would enable the author to graphically build up the layout and the tool would generate
the XML configuration file needed by the AHA! engine.

Adaptive user interface

An improvement would be making the user interface adaptive. Dependant on the user
model different layout could be used to represent the same concept type. This sounds in
contrast with the basic idea of the Layout model introduced by this report where the
concepts of the same concept type are always represented in the same way by using the
same layout. However defining more layouts per concept type and making this dependant
on the user model could make the Layout model an adaptive user interface model.

For example one could make concept representation dependant on the device the user is
using. Somewhere in the user model name/value pair ‘device’ could be stored. For
smaller devices simple layouts could be defined containing only really important views.

TOMISLAV SANTIC 35

AHA! goes Interbook and beyond

For bigger screens more complex layouts could be defined with more views which also
need more space. So the concept representation could be adapted to the size of users
screen.

Another example of usefulness of defining more layouts per concept type would be the
implementation of some kind of ‘incremental interface’. Dependant on the user’s level of
knowledge or some other criteria which would define user’s familiarity with adaptive
hypermedia systems and their user interfaces simple or more complex concept
representations could be used to represent concepts. One can think of using simple
concept representations in the beginning when the user doesn’t have much knowledge.
After some time when the user gets more familiar with the user interface more complex
concept representations could be used.

We must stress that using more layouts per concept type can also have certain
disadvantages. The user can loose self confidence and trust into the system if the user
interface is too unpredictable. Therefore differences between the layouts of the same
concept type should not be too big (this doesn’t count for the example of adaptation of
user interface to user’s device). System must give user the feeling that he/she has some
degree of control over the system.

Layout1 | Layout 2 Layout 3
(simple) {more complex) (complex)
* Fy +
Concept type
Concept Rfff'g:g?;

(User model

Figure 17: Adaptive user interface

TOMISLAV SANTIC 36

AHA! goes Interbook and beyond

Link annotation mechanism improvements

The motto of this project was ‘mechanism instead of hack’. We have developed a
mechanism for the user interface construction which enables the author of the course to
build up the course user interface using XML configuration files. We have developed a
linking mechanism for concept links generation which simplifies view development. And
we made our first attempt to develop a link annotation mechanism. The author can use a
XML configuration file to specify a link annotation style for each concept type used by a
course. This mechanism is a combination of the AHA!’s link annotation and Interbook’s
link annotation mechanism. However it is not quite ready yet to serve as a generic link
annotation mechanism. It needs to give more power to the author to adapt link annotation
of different concept types to his/hers wishes and course characteristics.

More power for the author

Another very important improvement would be extending the user interface adaptation
possibilities by introducing the total data-presentation separation. One can think of giving
the author the opportunity of implementing his/hers own views, in addition to using a set
of predefined views. If the internal static AHA! data structures would be saved as XML
files the author could use any standard XSLT editor to implement views as XSLT files
which could extract data from XML formatted data structures. This model would give the
author the possibility to represent the data in any desirable way without being dependent
on already implemented views.

Adding content adaptation to Interbook’s authoring mechanism

The development of the ‘Interbook to AHA!” compiler has introduced a new direction in
AHA!’s authoring process. It is possible to develop a course using Interbook’s authoring
process and then use the ‘Interbook to AHA!” compiler to convert the course to the AHA!
format. The advantage of this two-step process is that Interbook’s authoring mechanism
is much easier and faster than AHA!’s authoring mechanism. However this new
authoring process does not use the full power of AHA!. Interbook’s authoring process
has been developed for Interbook courses which only make use of link annotation
technique. AHA! courses however use besides link adaptation also content adaptation in
the form of the conditional inclusion of fragments. In order use the full power of AHA!
content adaptation should be added to the new authoring mechanism.

TOMISLAV SANTIC 37

AHA! goes Interbook and beyond

Existing views improvement

The views we have implemented so far are copies of Interbook’s views and therefore
totally adapted to Interbook’s internal structure. These views reflect Interbook’s internal
concept relations. The internal structure of AHA! differs however from Interbook in
many ways. AHA! supports different kinds of concept relations. The Concept bar view
and the Glossary view are used for showing concept relations in Interbook style. These
views could be improved to reflect different kinds of AHA! concept relations.

TOMISLAV SANTIC 38

AHA! goes Interbook and beyond

References

Brusilovsky, P. (1996) Methods and techniques of adaptive hypermedia. In P.
Brusilovsky and J. Vassileva (eds.), User Modeling and User-Adapted Interaction
6 (2-3), Special Issue on Adaptive Hypertext and Hypermedia, 87-129.

Brusilovsky, P. (2001) Adaptive hypermedia. User Modeling and User Adapted
Interaction 11 (1/2), 87-110, also available at
http://www.wkap.nl/oasis.htm/270983.

Brusilovsky, P., Eklund, J., and Schwarz, E. (1998) Web-based education for all: A
tool for developing adaptive courseware. Computer Networks and ISDN Systems
(Proceedings of Seventh International World Wide Web Conference, 14-18 April
1998) 30 (1-7), 291-300.

De Bra, P. (1998) Definition of hypertext and hyupermedia, http://wwwis.win.tue.nl/ah/

De Bra, P., Aerts, A., Smits, D., and Stash, N. (2002) AHA! Version 2.0: More
Adaptation Flexibility for Authors. In: M. Driscoll and T. C. Reeves (eds.)
Proceedings of World Conference on E-Learning, E-Learn 2002, Montreal,
Canada, October 15-19, 2002, AACE, pp. 240-246.

De Bra, P., Brusilovsky, P., and Houben, G.-J. (1999a) Adaptive Hypermedia: From
Systems to Framework. ACM Computing Surveys 31 (4es), also available at
http://www .cs.brown.edu/memex/ACM_HypertextTestbed/papers/25.html.

De Bra, P. and Calvi, L. (1998) AHA! An open Adaptive Hypermedia Architecture. In
P. Brusilovsky and M. Milosavljevic (eds.), The New Review of Hypermedia and
Multimedia 4, Special Issue on Adaptivity and user modeling in hypermedia
systems, 115-139. '

De Bra, P., Houben, G. J., and Wu, H. (1999b) AHAM: A Dexter-based Reference
Model for Adaptive Hypermedia. In: Proceedings of 10th ACM Conference on
Hypertext and hypermedia (Hypertext'99), Darmstadt, Germany, February 21 -
25,1999, ACM Press, pp. 147-156.

Grigoriadou, M., Papanikolaou, K., Kornilakis, H., and Magoulas, G. (2001)
INSPIRE: An Intelligent System for Personalized Instruction in a Remote
Environment. In: P. D. Bra, P. Brusilovsky and A. Kobsa (eds.) Proceedings of
Third workshop on Adaptive Hypertext and Hypermedia, Sonthofen, Germany,
July 14, 2001, Technical University Eindhoven, pp. 13-24.

Henze, N. and Nejdl, W. (2001) Adaptation in open corpus hypermedia. In P.
Brusilovsky and C. Peylo (eds.), International Journal of Artificial Intelligence in
Education 12 (4), Special Issue on Special Issue on Adaptive and Intelligent
Web-based Educational Systems, 325-350, also available at
http://cbl.leeds.ac.uk/ijaied/abstracts/Vol_12/henze.html.

Melis, E., Andreés, E., Biidenbender, J., Frishauf, A., Goguadse, G., Libbrecht, P.,
Pollet, M., and Ullrich, C. (2001) ActiveMath: A web-based learning
environment. In P. Brusilovsky and C. Peylo (eds.), International Journal of
Artificial Intelligence in Education 12 (4), Special Issue on Special Issue on
Adaptive and Intelligent Web-based Educational Systems, 385-407.

TOMISLAV SANTIC 39

AHA! goes Interbook and beyond

Shneiderman, B., Kearsley G., Hypertext Hands-On!: An Introduction to a New Way of
Organizing and Accessing Information, Addison Wesley, 1989.

Weber, G. and Brusilovsky, P. (2001) ELM-ART: An adaptive versatile system for
Web-based instruction. In P. Brusilovsky and C. Peylo (eds.), International
Journal of Artificial Intelligence in Education 12 (4), Special Issue on Adaptive
and Intelligent Web-based Educational Systems, 351-384, also available at
http://cbl.leeds.ac.uk/ijaied/abstracts/Vol_12/weber.html.

Wu, H., De Kort, E., and De Bra, P. (2001) Design Issues for General Purpose
Adaptive Hypermedia Systems. In: Proceedings of Twelfth ACM Conference on
Hypertext and Hypermedia (Hypertext 2001), Aarhus, Denmark, August 14-18,
2001, ACM Press, pp. 141-150.

TOMISLAV SANTIC 40

AHA! goes Interbook and beyond

Table of Figures

Figure 1: InterBooK INterface.........cocuevveriiviiiinnirneiiiiniicetiecircercncicseceesiesse s 11
Figure 2: AHA! multi-frame Interface.........cccoevviiviininnininnininiiiiecnnne 13
Figure 3: Hierarchy StrUCHUTEccccevmiiivieninininiiinticiescss s 16
Figure 4: View-Viewgroup-Layout relationcc.ccvveeeeivincnennnnincencnnnineenriceeenns 19
Figure 5: Interbook views of ‘page_c_layout’layout........ccccoenvrveininininnnninnecnniinnnne. 20
Figure 6: InterBook style concept layout for ‘leaf’ conceptsccccovvvvinriininiinnnnnnne. 22
Figure 7: An example of different 1ayoutccceccreeericiniiiiinniniinin e 23
Figure 8: Following a concept linkccccvcevviinininiinniiniiineiiiinineneniccncee e 24
Figure 9: Concept type-Layout/ANNOtation.cccceeucevieriiivenienineninsinniesieseeesnesrecensesnes 24
Figure 10: Link annotation SIrUCLUIEccoceeririeiiinieisueeniennecieneesncsnessnssiessneeee e 25
Figure 11: Layered implementation StrUCLUTE..........covvivvuiinriniuiniiniiinriniccrnie s 27
Figure 12: Layout windows CONSIIUCHIONccueuviviiiiiiiniiicritcicnseeniereneseneeseenneneenn 28
Figure 13: Layout request handling........cc.cceoevvieniieieiniincenniinieceenececcncneceneene 29
Figure 14: Link enerationc..c.cceviiviiiniininniniiiicnnciccnesnncnses e 30
Figure 15: Interbook to AHA! concept data.........ccccuevvieviiniininirnnininiiincsieneccncenen 33
Figure 16: NisaKorfhage course screen exampleccocceverievecrnennnncnenncnineessnneneene 33
Figure 17: Adaptive USer interface........ccoveerirrrerrereereerienieneeieresie et eressae et ese e 36

TOMISLAV SANTIC : 41

AHA! goes Interbook and beyond

Abbreviations

AHA Adaptive Hypermedia Architecture
AHA! Adaptive Hypermedia for All!
AHS Adaptive Hypermedia System
CL-HTTP Common LISP Hypermedia Server
EB Electronic Textbook

HS Hypermedia System

HTML HyperText Markup Language
MVC Model View Controller

Ul User Interface

UM User Model

WwWw World Wide Web

XHTML eXtensible HyperText Markup Language
XML eXtensible Markup Language
TOMISLAV SANTIC

42

AHA! goes Interbook and beyond

Appendixes

Adaptive Textbooks on the World Wide Web

(paper about Interbook)

AHA'! The Next Generation
(paper about AHA!)

TOMISLAV SANTIC

43

AHA! goes Interbook and beyond

Adaptive Textbooks on the World Wide Web

John Eklund, Faculty of Education, The University of Technology, Sydney, PO Box 222
Lindfield NSW 2070, Australia. Phone +61 2 95145613 Fax: +61 2 9514 5666
j.eklund@uts.edu.au

Peter Brusilovsky, Human-Computer Interaction Institute, School of Computer Science,
Carnegie Mellon University Pittsburgh, PA 15213, USA plb@cs.cmu.edu

Elmar Schwarz, Department of Psychology, Carnegie Mellon University Pittsburgh, PA
15213, USA eschwarz@andrew.cmu.edu

Keywords

adaptive, authoring, hypermedia, navigation, textbook, user-model, WWW

Abstract

This paper examines some recent research in the area of adaptive navigation support, a
class of adaptation in user-model based interfaces, and specifically discusses the
authoring and delivery tool for adaptive electronic textbooks (ETs) called Interbook
[HREF2], implemented on the WWW. Interbook uses history-based, knowledge-based
and prerequisite-based adaptive annotation of links to suggest to the individual user an
appropriate path through a learning space. We describe the authoring environment and
the principles upon which it is based, and discuss our efforts to experiment with, and to
evaluate, this tool.

Introduction

In the domain of educational hypermedia on the WWW, instructional material may be
linked in an organised fashion, the aim being to sequence the learning materials to
achieve a specific educational objective. The author has sequenced the curriculum to
provide an optimal learning path for the average learner (Weber & Specht, 1997). In this
case the knowledge implicit in the hypermedia is well defined and carefully structured,
similar to that found in a textbook.

For a moment, consider a textbook such as one of the many "visual quickstart” guides

that may help a novice or intermediate user of software such as Clarisworks, or Word for
Windows. These textbooks are typically structured through the use of chapters, sections,

TOMISLAV SANTIC 44

AHA! goes Interbook and beyond

headings and subheadings, and the material is sequenced from "begin here" to "more
advanced". It has an implied set of prerequisites so that it is intended to be read, overall,
from beginning to end. There are also navigational devices in this textbook: A Table of
contents at the start, an index at the back, and throughout the book there are pointers to
other places in the text that may be relevant to what is being discussed. This textbook
may also have a "test yourself" section at each chapter, so that readers may find out how
much of the material they have understood before proceeding to the next chapter. In all
these features of the textbook, the expert has placed their understanding of the content,
and their understanding of how novices might best learn from it, into the book, and thus
onto the knowledge contained within it. The pages provide a sequence to the knowledge
in the book, but there is also the opportunity to move around it. Similarly if this book
were put in the form of a hypertext document, it could read in a linear manner, or
traversed very easily using the hyperlinks.

Two problems with this common form of textbook present themselves: The textbook,
whether in print or on the WWW is the same for all users - it has no understanding of
who is using it, and cannot change it's behaviour in terms of what it presents on that
basis. This is a problem because readers have different knowledge, goals, computer
experience and will learn the material at different rates. Secondly, providing the readers
(or users) with navigation aides assumes that they can make sensible decisions about
when to use them, and about where to proceed in the body of knowledge. However, there
is some evidence (eg Hammond, 1989) which tends to suggest that they do not always
make well informed and careful decisions. Once again some readers will be able to
handle certain navigation features - others not: So perhaps the book should be structured
and indexed differently for different classes of readers/learners/users?

We contend that the often cited problem of "becoming lost in hyperspace" is really one of
loosing sight of objectives, of being unable to make sense of the new material, and in
terms of learning, there is no distinction between this problem in paper-based text or in
hypertext, or from a book and a hypertext document.

Given that the hypertext version of the textbook will allow greater possibilities to
implement individualised support, the question posed is: How can we design a Web-
delivered learning environment in the form of a textbook which goes some way toward
addressing these problems?

Adaptive Hypermedia Systems and adaptive navigation support

Adaptive hypermedia systems are capable of altering the content or appearance of the
hypermedia on the basis of a dynamic understanding of the individual user. Information
about a particular user can be represented in a user model to alter the information
presented. We define these systems as"...all hypertext and hypermedia systems which
reflect some features of the user in the user model and apply this model to adapt various
visible and functional aspects of the system to the user." [HREF7]. More specifically,
Adaptive Navigation Support (ANS) is a generic name for a group of techniques used in
adaptive hypermedia systems (Brusilovsky, 1996) which use this model to provide

TOMISLAV SANTIC : 45

AHA! goes Interbook and beyond

directional assistance to the user. For example, suggesting where the user should proceed,
or annotating what is learned and what is ready to be learned.

This paper is specifically concerned with adaptive navigation support on the Web, and we
describe some ANS methods for the WWW (see also Eklund & Zeiliger, 1996). Using a
Web-based adaptive educational system which uses ANS, namely InterBook ({[HREF2],
Brusilovsky, Schwarz, and Weber, 1996), we offer one possible solution to the problems
of the passive nature of the media (its inability to alter itself to meet the needs of the
individual user), without limiting the free-browsing, learner-controlled nature of
hypermedia and more generally that of the WWW.

Adaptive navigation support techniques can be classified in several groups according to
the way they adapt presentation of links (Brusilovsky, 1996): direct guidance, sorting,
hiding, and annotation. These will be briefly described.

Direct guidance can be applied in any system which can decide what is the next "best”
node for the user to visit according user's goal and other parameters represented in the
user model. ELM-ART (Schwarz, Brusilovsky, and Weber, 1996) is an example of an
adaptive system implemented on the WWW that uses this technique. ELM-ART
[HREF6] generates an additional dynamic link (called "next") connected to the next most
relevant node to visit. Direct guidance has been criticised for being "too directive" as it
provides almost no support for users who would like make their own choice rather than
follow the system's suggestion.

In adaptive ordering technology all the links of a particular page are sorted according to
the user-model using some easily recognisable means of conveying this to the user, such
as having the more relevant links closer to the top (Hohl, Bocker, and Gunzenhauser,
1996). This technology exists within ELM-ART and Interbook. Adaptive ordering has a
limited applicability: it can be used with non-contextual links, but it cannot be used for
indexes and content pages (which usually have a stable order of links), and can never be
used with contextual links and maps.

Hiding is an annotation technology which restricts the navigation space by hiding links to
irrelevant pages. A page can be considered as irrelevant for several reasons: for example,
if it is not related to the user's current goal (Brusilovsky, and Pesin, 1994; Vassileva,
1996) or if it presents materials which the user is not yet prepared to understand
(Brusilovsky and Pesin, 1994; Perez, Gutierrez, and Lopisteguy, 1995).

Adaptive annotation technology augments the links with a comment which informs the
user about the current state of the nodes behind the annotated links (Brusilovsky, Pesin,
and Zyryanov, 1993; de La Passardiere, and Dufresne, 1992; Hohl, Becker, and
Gunzenhauser, 1996; Schwarz, Brusilovsky, and Weber, 1996). Link annotations can be
provided in textual form or in the form of visual cues, for example, using different icons,
or colours, font sizes, or font types. Typically the annotation in traditional hypermedia is
static, that is independent of the individual user. Adaptive navigation support can be

TOMISLAV SANTIC 46

AHA! goes Interbook and beyond

provided by dynamic user model-driven annotation. Adaptive annotation in its simplest
history-based form (outlining the links to previously visited nodes) has been applied in
some hypermedia systems (for example, TopClass [HREF8], which shows a folder as
unread with a "U" until all of the items within that folder have been visited), including
several World-Wide Web browsers. Even the form adaptive annotation which
distinguishes two states of links is quite useful.

Adaptive annotation for WWW

History-based adaptive annotation is familiar to WWW users because any WWW
browser allows them to distinguish visited and unvisited nodes, showing these nodes in
different colours. We offer more advanced methods of adaptive annotation which could
be also very helpful for WWW users. All adaptive navigation support methods are based
on three main decisions about representing the knowledge about the domain, the course,
and the student.

The knowledge about the domain is represented in the form of a concept-based domain
model. The simplest form of domain model is just a set of domain concepts. These
concepts can be named differently in different systems - topics, attributes, knowledge
elements, objects, learning outcomes, but in all the cases they are just elementary pieces
of knowledge for the given domain. Depending on the domain and the application area,
the concepts can represent larger or smaller pieces of domain knowledge. A more
advanced form of the domain model is a network with nodes corresponding to domain
concepts (and with links reflecting several kinds of relationships between concepts). This
network represents the structure of the domain in a hypermedia system.

The domain model provides a structure for the representation of the user's knowledge of
the subject. For each domain model concept, an individual user knowledge model stores
some value which is an estimation of the user knowledge level of this concept. This can
be a binary value (known P not known), a qualitative value (good-average-poor), or a
quantitative value, such as the probability that the user knows the concept. The individual
user-knowledge model, which is called an overlay model, is most often used in adaptive
hypermedia systems. An overlay model of user knowledge can be represented as a set of
pairs "concept - value", one pair for each domain concept. The overlay model is powerful
and flexible, it can measure independently the user's knowledge of different topics.

The knowledge about the course is represented by indexing hypermedia nodes containing
various units of learning material (presentations, tests, examples, problems) with domain
model concepts which are related to the content of the unit. This is a relatively popular
direction for the development of education-oriented hypermedia systems. There are two
major types of indexing: content-based indexing and prerequisite-based indexing. With
content-based indexing, a concept is included in a page index if some part of this page
presents the piece of knowledge designated by the concept (Brusilovsky and Pesin, 1994;
Schwarz, Brusilovsky, and Weber, 1996; Zeiliger, 1993). With prerequisite-based
indexing, a concept is included in a page index if a student has to know this concept to
understand the content of the page (Schwarz, Brusilovsky, and Weber, 1996).

TOMISLAV SANTIC 47

AHA! goes Interbook and beyond

We identify two further methods for ANS on WWW: knowledge-based annotation and
prerequisite-based annotation. The idea of the "knowledge-based" method is to
distinguish different levels of the user's knowledge of the node. We suggest the use of
three graduations: not-known, in-work (partially known) and well-learned, and annotate
differently the links to the nodes of these three classes as in (Brusilovsky, Pesin, and
Zyryanov, 1993; de La Passardiere and Dufresne, 1992). Here by "not-known" we mean
that the user has never heard about some of the concepts from the node's outcome. "In-
work" means that the user has acquired some information about all the concepts
presented in this node (it does not necessarily imply that the user has just visited this
node!). "Well-known" means that the user confirmed his or her knowledge of all the
concepts presented in this node by answering tests or solving problems. This method
requires a user model which can distinguish three levels of user knowledge of the
concept: the user has never heard about a concept, the users has read some information
about a concept, and finally that the user has correctly answered a test or solved a
problem which requires this concept. It also requires the embedding of tests into the
courseware, which has not yet been implemented in the version of Interbook described in
this paper.

In the "prerequisite-based" method we distinguish nodes which are ready and not-ready
to be learned as in (Brusilovsky and Pesin, 1994). The node is considered as not-ready-to-
be-learned in two cases: first if any of the concepts in the prerequisite section of node
index is not-known and second if any concept from the outcome section of node index
has a not-known prerequisite concept. This method could be implemented with the
simplest form of overlay model which only distinguishes known from not-known. Pre-
requisite based adaptive annotation is a feature of Interbook.

Adaptive Navigation Support in InterBook

InterBook (Brusilovsky, Schwarz, and Weber, 1996) is a system for authoring and
delivering adaptive electronic textbooks on WWW. All InterBook-served electronic
textbooks have generated table of content, a glossary, and a search interface. In
InterBook, the structure of the glossary resembles the pedagogic structure of the domain
knowledge. Each node of the domain network is represented by a glossary entry.
Likewise each glossary entry corresponds to one of the domain concepts.

TOMISLAV SANTIC 48

AHA! goes Interbook and beyond

e

w

File Edit Ulew Bo Bookmarks Dptluns Dlrectorg Window

4.2 Textbook window

The Texthook window~ is the most important window in
InterBook+ interface. This window is designed 10 view the
main content of & texthook+, section by section. &
Textbook window~ is divided into four subwindows
{frames) performing different functions: navigation bar ,
tool box -+, text window-> and concept bar . If you view
seversl interbooks at the same time, each textbook will be
showm in a separate Textbook window=~ .

@4 2.1 Text window
@ 78 Compt S

@ 423 Murgmesn sy
@ 73 Tood Sox

Outcome:

back link

eontinue
link

Textbook
window

Flgure 1. Adaptlve nav1gat10n support in InterBook. Green bullet means recommended

red bullet means "not ready to be learned", white bullet means "nothing new"

All sections of an electronic textbook are indexed with domain model concepts. For each

section, a list of concepts related with this section is provided (we call this list the
spectrum of the section). The spectrum of the section can represent also the role of a
concept in the section (each concept can be either an outcome concept or a background

concept).

The knowledge about the domain and about the textbook content is used by InterBook to

serve a well-structured hyperspace. In particular, InterBook generates links between the
glossary and the textbook. Links are provided from each textbook section to
corresponding glossary entries for each involved background or outcome concept.
Slmﬂarly from each glossary entry describing a concept InterBook provides links to all

extbook unit

mtegrates features of an index and a glossary. These links are not stored in an external
format but generated on the fly by a special module that takes into account the student's

that can be used to learn this concept. It means that an InterBook glossary

current state of knowledge represented by the user model.

InterBook uses coloured bullets and different fonts to provide adaptive navigation
support (Figure 1). Wherever a link appears on InterBook pages: in the table of content,

TOMISLAV SANTIC

49

AHA! goes Interbook and beyond

in the glossary or on a regular page, its font and colour of its bullet will inform the user
about the status of the node behind the link. InterBook integrates all three methods of
annotation: history-based, knowledge-based and prerequisite-based. Currently four
colours and three fonts are used. Green bullet and bold font means 'ready and
recommended), ie., the node is ready-to-be-learned but still not learned and contains some
new material. A red bullet and an italic font warns about a not-ready-to-be-learned node,
while white means 'clear, nothing new!, ie., all concepts presented on a node are known to
the user. Violet is used to mark nodes which have not been annotated by an author. A
check mark is added for already visited nodes. Currently, InterBook does not support
tests and can not provide "well-learned" annotation. This is currently under development.

The user model in Interbook is initialised from the registration page via a stereotype
model, and is modified as the user moves through the information space. New work on
Interbook includes the provision of an "interview" to further specify the user model, and
embedded testing for knowledge-based navigation support. The user model for each user
is stored in a file on the server in a Lisp format.

Authoring

Authoring an adaptive electronic textbook can be divided into 5 steps which are
described in detail below (see Figure 2). In brief, an Electronic Textbook is prepared as a
specially structured Word file and the task is to convert this file into InterBook format.
The result of this process is a file with the Textbook in InterBook format which can be
served on WWW by the InterBook system.

TOMISILAV SANTIC 50

AHA! goes Interbook and beyond

Microsoft Word fite

Microsoft Word

Microsoft Word
12

RTE file

A

RTFEHTML converder

HTML file {himl HTML File Cindery Texts (InterBook folder)

Figure 2. Adaptive Electronic Textbook on the WWW in 5 steps.

InterBook recognizes the structure of the document through the use of headers. It means
that the titles of the highest level sections should have a pre-defined text style "Header 1",
the titles of its subsections should have a pre-defined paragraph style "Header 2", and so
forth. The title of the textbook should have paragraph style "Title". The result of this step
will be a properly structured MS Word file.

The second step in the authoring process then involves concept-based annotation of the
Electronic Textbook (ET) to let InterBook know which concepts stand behind each
section. This knowledge allows InterBook to help the reader of the ET in several ways,
and the result of this step is an annotated (and structured) MS Word file.

An annotation is a piece of text of special style and format inserted at the beginning of
each section (between the section header and the first paragraph). Annotations have
special character style (hidden + shadowed) which are not visible in the text window to
the reader of the ET. For each unit the author provides a set of outcome and background
concepts. In this way, each section is annotated with a set of prerequisite concepts (or
terms which exist in other sections which should be read before the current section), and
a set of outcome concepts (terms which will be assumed known once the reader has

TOMISLAV SANTIC 51

AHA! goes Interbook and beyond

visited the section). The format for the outcome annotation is: (out: concept-namel,
concept-name2, etc.) and the format for the background annotation is: (pre: concept-
namel, concept-name2, etc.).

Once the annotations are complete the file is saved in RTF format. The RTFtoHTML
program [HREF5] with some special settings is used to convert the ET into HTML
format. Then the .html extension on the file is manually altered to .inter so that it can be
recognised by the Interbook system.

Lastly, when the InterBook server starts, it parses all interbook files in its "Texts" folder
(i.e. all files with extension .inter) and translates it into the list of section frames. Each
unit frame contains the name and type of the unit, its spectrum, and its position in the
original HTML file. The obtained LISP structure is used by InterBook to serve all the
available textbooks on WWW providing the advanced navigation and adaptation features.
The content which is presented to the user is generated on-the-fly using the knowledge
about the textbook, the user model, and HTML fragments extracted from the original
HTML file. These features of InterBook are based on the functionality of the Common
Lisp Hypermedia Server.

Evaluating Interbook

The results of some evaluations studies of adaptive hypermedia systems have already
been reported. Brusilovsky and Pesin (1995, [HREF4]) conducted an experiment with the
ISIS adaptive tutor with twenty-six subjects and used the overall number of navigation
steps, the number of repetitions of previously studied concepts, the number of transitions
from concept to concept and transitions from index to concept. They found that the
number of movements were significantly less for students with the adaptive tutor, and
concluded that adaptive annotation made learners more purposeful, completing the work
with less navigation steps.

While Interbook undergoes development at Carnegie Mellon University, we are currently
experimenting with the Interbook tool at the University of Technology, Sydney [HREF1].
An Interbook server has been established and we have been granted permission by
Peachpit Press to use sections of Charles Rubin's book "MacBible Guide to
Clarisworks4" (Rubin, 1996) as content for an adaptive ET. The database and spreadsheet
sections of the textbook are being set up as Interbooks on the server through the
authoring process described above. Second year students in an educational computing
elective, which has a focus on the use of Clarisworks Database and Spreadsheet modules
for information handling, will be using the ETs: One group with and a group without the
adaptive annotation. We are attempting to measure both comprehension (via a multi-
choice test administered after the sessions) and their navigation traits (via the use of audit
trails).

Our hypothesis is that students using the ET with adaptive link annotation (ie using the

adaptive version of the ET) will show paths which are "more purposeful” (less nodes
visited, greater average time spent on each node, less movements to unrelated nodes),

TOMISLAV SANTIC 52

AHA! goes Interbook and beyond

with increased comprehension (better results on tests), than those using the same ET
without the adaptive link annotation.

Hook [HREF3] draws attention to the fact that the interface design is often inextricably
linked to the adaptive component in an adaptive system. Removing adaptivity may
remove a natural part of the system and its intended use. Other studies (Boyle and
Encarnacion, 1994; Kaplan et al., 1993) have also centred on "with and without
adaptivity". These experiments have offered some straightforward, if oversimplified,
results in favour of adaptivity, but have not convincingly separated a range of
confounding variables, such as those for which Hook argues. These can be deceptively
simple. For instance, if we ask a student why they followed the annotated links, we may
find that it is because they thought it would be the easiest way to get through the session!
There is a clear need to integrate the results of a questionnaire, along with the hard
numerical data from the audit trails, to make sense of experimental outcomes. Just as the
evaluation of the tool cannot be separated from its development, measuring the
effectiveness of its components cannot be successfully achieved in isolation from broader
human factors.

In terms of these considerations for Interbook, the interface is reasonably complex
although it does provide an easy entry level, as learners may use the hyperlinks like a
book index, of which they will be reasonably familiar, or just click the "continue link" to
read in a linear way. Fortunately also, the visible adaptive component of Interbook,
namely the simple coloured bullets next to the links, is a straightforward addition to the
interface and should not confuse the fact that we are measuring the addition or exclusion
of adaptive navigation support with a measurement of the effects of changes in the
interface. We also intend a number of sessions before the trial where students may
familiarise themselves with the interface to minimise this affect.

Some early results will hopefully be available at the time of the presentation of this
conference paper.

Conclusion

In this paper we have specifically discussed adaptive navigation support (ANS) on the
Web, describing some reasonably simple yet effective ANS methods. InterBook provides
an authoring and delivery mechanism into which the content of a book may be structured
through the identification of key domain concepts to create an adaptive electronic
textbook (Schwarz, Brusilovsky, and Weber, 1996). Based on the user's path through the
structured hyperspace using a domain model and a user model, InterBook annotates links
as visited, learned, ready-to-be learned and not ready-to-be learned, integrating the
history-based, knowledge-based and prerequisite-based methods of ANS. We have
outlined the authoring process with Interbook and our plans for an evaluation study.
Interbook is based on the principle of adaptive navigation support, that is, individual
navigation advice provided to the student, without removing or limiting their freedom to
browse, on the basis of where they have been, where they are now, and what is to be
learned.

TOMISLAV SANTIC 53

AHA! goes Interbook and beyond

References

Boyle, C. & Encarnacion, A. O. (1994). MetaDoc: an adaptive hypertextreading system.
User Models and User Adapted Interaction, 4(1),1-19.

Brusilovsky, P. (1996) Methods and techniques of adaptive hypermedia. User Modeling
and User-Adapted Interaction 6 (2-3), 87-129.

Brusilovsky, P. and Pesin, L. (1994) ISIS-Tutor: An adaptive hypertext learning
environment. Proceedings of JCKBSE'94, Japanese-CIS Symposium on knowledge-based
software engineering. Edited by H. Ueno and V. Stefanuk. Pereslavl-Zalesski, Russia,
May 10-13, 1994, pp. 83-87.

Brusilovsky, P. and Pesin, L. (1995) Visual annotation of links in adaptive hypermedia.
Proceedings of CHI'95 (Conference Companion). Edited by 1. Katz, R. Mack and L.
Marks. Denver, May 7-11, 1995, pp. 222-223.

Brusilovsky, P., Pesin, L., and Zyryanov, M. (1993) Towards an adaptive hypermedia
component for an intelligent learning environment. In Human-Computer Interaction,
Lecture Notes in Computer Science, Vol. 753, L. J. Bass, J. Gornostaev and C. Unger
(eds), Springer-Verlag, Berlin. pp. 348-358.

Brusilovsky, P., Schwarz, E., and Weber, G. (1996) A tool for developing adaptive
electronic textbooks on WWW. Proceedings of WebNet'96, World Conference of the Web
Society. San Francisco, CA, October 15-19, 1996, pp. 64-69,
http://www.contrib.andrew.cmu.edu/~plb/WebNet96.html.

Kaplan, C., Fenwick, J., & Chen, J. (1993). Adaptive hypertext navigationbased on user
goals and context. User Models and User AdaptedInteraction, 3(3), 193-220.

de La Passardiere, B. and Dufresne, A. (1992) Adaptive navigational tools for
educational hypermedia. In Computer Assisted Learning, 1. Tomek (ed) Springer-Verlag,
Berlin. pp. 555-567.

Eklund, J. and Zeiliger, R. (1996) Navigating the Web: Possibilities and practicalities for
adaptive navigational support. Proceedings of Ausweb96: The Second Australian World-
Wide Web Conference. , pp. 73-80.

Hammond, N. (1989). Hypermedia and learning: Who guides whom? In H. Maurer(Ed.),
2-nd International Conference on Computer Assisted Learning,ICCAL'89 (Vol. 360, pp.
167-181). Berlin: Springer-Verlag.

Hohl, H., Bicker, H.-D., and GunzenhSuser, R. (1996) Hypadapter: An adaptive

hypertext system for exploratory learning and programming. User Modeling and User-
Adapted Interaction 6 (2-3), 131-156.

TOMISLAYV SANTIC 54

AHA! goes Interbook and beyond

Ibrahim, B. and Franklin, S. D. (1995) Advanced educational uses of the World-Wide
Web. Computer Networks and ISDN Systems 27 (6), 871-877.

Perez, T., Gutierrez, J., and Lopisteguy, P. (1995) An adaptive hypermedia system.
Proceedings of AI-ED'95, 7th World Conference on Artificial Intelligence in Education.
Edited by J. Greer. Washington, DC, 16-19 August 1995, pp. 351-358.

Rubin, C (1996) The Macbible Guide to Clarisworks 4. Peachpit Press. California.

Schwarz, E., Brusilovsky, P., and Weber, G. (1996) World-wide intelligent textbooks.
Proceedings of ED-TELECOM'96 - World Conference on Educational
Telecommunications. Boston, MA, June 1-22, 1996, pp. 302-307,

http://www .contrib.andrew.cmu.edu/~plb/ED-MEDIA-96.html.

Vassileva, J. (1996) A task-centered approach for user modeling in a hypermedia office
documentation system. User Modeling and User-Adapted Interaction 6 (2-3), 185-224.

Weber, G. & Specht, M. (1997, in press). User modeling and Adaptive Navigation
Support in WWW-based Tutoring Systems. Paper to be presented at UM97, The Sixth
International Conference on User Modeling, Chia Laguna, Sardinia , Italy, June 2-5
1997.

Zeiliger, R. (1993) Adaptive testing: contribution of the SHIVA model. In Item banking:
Interactive testing and self-assessment, NATO ASI Serie F, Vol. 112, D. Leclercq and J.
Bruno (eds), Springer-Verlag, Berlin. pp. 54-65.

Hypertext References

HREF1
The project home page for the evaluation of Interbook
http://www .education.uts.edu.au/projects/interbook
HREF2
Interbook Home Page
http://www.contrib.andrew.cmu.edu/~plb/InterBook.html
HREF3
Hook K. Evaluating Adaptive Systems: Some Problems
http://www.sics.se/~kia/evaluating_adaptive_systems.html
HREF4
' Visual annotation of links in adaptive hypermedia
http://www.acm.org/sigchi/chi95/Electronic/documnts/shortppr/plb_bdy.htm
HREFS5
RTFtoHTML
http://www.sunpack.com/RTF/alpha3.htm
HREF6
ELM-ART
http://www.psychologie.uni-trier.de:8000/projects/ELM/elmart.html

TOMISLAV SANTIC 55

AHA! goes Interbook and beyond

HREF7
Adaptive Hypertext and Hypermedia Publications
http://www.education.uts.edu.au/projects/ah/publications.html
HREF8
Wbt Systems Home Page
http://www.wbtsystems.com/

Copyright

John Eklund, Peter Brusilovsky and Elmar Schwarz ©, 1997. The authors assign to
Southern Cross University and other educational and non-profit institutions a non-
exclusive licence to use this document for personal use and in courses of instruction
provided that the article is used in full and this copyright statement is reproduced. The
authors also grant a non-exclusive licence to Southern Cross University to publish this
document in full on the World Wide Web and on CD-ROM and in printed form with the
conference papers, andfor the document to be published on mirrors on the World Wide
Web. Any other usage is prohibited without the express permission of the authors.

TOMISLAV SANTIC 56

AHA! goes Interbook and beyond

AHA! The Next Generation

Paul De Bra, Ad Aerts, David Smits, Natalia Stash
Department of Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
+31 40 2472733

debra@win.tue.nl

ABSTRACT

AHA! is a simple Web-based adaptive engine, that was originally developed to support
an on-line course. This paper describes AHA! version 2.0, a new major release that aims
to significantly increase the adaptive versatility of AHA! without sacrificing AHA!’s
simplicity that makes it easy to use. The new features in AHA! are inspired by AHAM
[4], a Dexter [6] based reference model for adaptive hypermedia systems.

ACM Categories
H5.2 (user interfaces), H5.4 (hypertext/hypermedia)

General Terms: Design, Experimentation, Human Factors

Keywords: Adaptive hypermedia, condition-action rules,
adaptation engine.

1. INTRODUCTION

In 1994 we started a course on Hypertext, consisting of lectures and a Web-based course
text. From 1996 on the lectures were discontinued and the course text was augmented
with adaptive content and linking. Our adaptive software later became the AHA! system
[3, 5], for Adaptive Hypermedia Architecture. AHA! was made available as Open
Source. Its simple architecture (based on Java Servlets, and XML and HTML for the
pages) made it possible to add adaptation to very different applications. AHA! has been
studied and used independently by several researchers/

educators from different parts of the world.In 1999 we developed a reference model for
adaptive hypermedia,

~called AHAM (Adaptive Hypermedia Application Model) [4,7]. Based on the formal
Dexter model for hypermedia [6] AHAM provides a framework to express the
functionality of most adaptive hypermedia systems (or ahs). See [3] for a recent overview
of existing ahs and adaptive features. AHAM provided most of the inspiration for the
~additions to AHA! that have resulted in version 2.0, described in this paper.

In this paper we shall only describe AHA! 2.0 features and properties. Information on
older versions can be found in previous papers about AHA!, including [5]. Different
versions of AHA! and documentation about them can be found at the Website
http://aha.win.tue.nl/.

TOMISLAV SANTIC _ 57

AHA! goes Interbook and beyond

2. BRIEF OVERVIEW OF AHA!

AHA! is a typical adaptive Web-based system, in the sense that each time the user
requests a page (by following a link) some server-side software is activated that performs
the following steps:

1. The requested page is retrieved from the local file system or from a remote source.
(AHA! can load pages from other web servers through HTTP and adapt them just like
local pages.)

2. The system loads a domain model of the application (or has it in memory already).
This model reveals how the requested page relates to other pages or to higher level
concepts.

3. The system loads a user model (or has it in memory). This model contains some of the
user’s aspects such as preferences, and an overlay model that shows how the user relates
to the pages and concepts of the domain model. In AHA! the user model consists of a set
of attribute/value pairs for each concept or page. The author can define and name
arbitrarily many attributes (of type string, integer or Boolean).

4. The system loads an adaptation model (or has it in memory). It contains rules that are
used to update the user model based on the access to the requested page, and rules to
adapt the presentation of the page to the individual user. The rules are explained in
Section 3.

5. The system executes the rules, and thus updates the user model and presents the
adapted page. The rule execution is explained in Section 4.

The AHA! system deviates from this general scheme (dictated by the AHAM model) in
one detail: the domain model and adaptation model are stored together. According to
Brusilovsky [3] there are two types of adaptation in ahs: adaptive presentation and
adaptive navigation support. In AHA! these are implemented as follows:

Fragments in a page can be conditionally included. This is most useful to add (short)
extra explanations for users who need them, or to remove unwanted elements from lists.

Links (actually, link anchors) can be shown in different colors. AHA! uses three colors,
called good, neutral and bad. The color of a link anchor depends on the desirability of the
link, which in turn represents the desirability of the destination (page) of the link. This
desirability is expressed using the same kind of condition as used for the conditional
inclusion of fragments. The good links, leading to desired pages, are shown in blue by
default. The neutral color, purple by default, is used for links to desired pages that were
visited before. The bad color, black by default, is used for links to undesired pages.
AHA! disables the underlining of links, so link anchors with the same color as normal
text are effectively hidden. The color scheme can be changed by the end-user, to make
the bad links visible if the user wants this.

3. THE DOMAIN/ADAPTATION MODEL

Concepts and pages and their associated adaptation rules are represented using an XML
file (stand-alone version) or a mySQL database table (server version). We give a part of a
tiny imaginary example, in which a system has information about chocolate and beer. We
use an alternative syntax (more compact than AHA!):

TOMISLAV SANTIC 58

AHA! goes Interbook and beyond

<concept>

<name>de-koninck</name>

<desc>Beer from Antwerp</desc>
<requirement>beer.interest > 20</requirement>
<attribute name="access” type="bool” isPersistent="false”>
<desc>standard atir: true when page accessed</desc>
<generate>

<requirement>beer.interest < 100</requirement>
<trueAction>beer.interest += 10</trueAction>
</generate> '

<generate>

<requirement>chocolate.interest >= 5 and
chocolate.interest < 50</requirement>
<trueAction>chocolate.interest -= 5</trueAction>
</generate>

</attribute>

<attribute name="interest” type="int" isPersistent="true”>

</concept>

The concept “de-koninck” corresponds to a page about the first author’s favorite beer.
This page is only desirable if the user’s interest in beer is already greater than 20. (Links
to the page will be bad if the interest is too low and good or neutral otherwise.) Each
page has a volatile attribute, called “access” that is false by default and becomes true
temporarily when the page is accessed. Within certain limits ready about de-konink raises
the interest:in beer and decreases the interest in chocolate. The “interest” of dekoninck is
a persistent attribute, meaning that it is permanently stored in the user model. It too can
have conditional actions to update attributes of other concepts. Updates can be based on
constants (as in the example) or on the update to the rule’s attribute. (Instead of the
constant amount 10, a part of a change ininterest in de-koninck can be propagated to
beer.interest.)

4. THE AHA! ADAPTATION ENGINE

The adaptation rules in AHA! are condition-action rules, like rules studied in the field of
active databases [1]. The adaptation engine maintains a queue of pending rule
instantiations. Whenever an attribute value of some concept is modified the adaptation
rules for which the requirement (condition) is true (at that time) are added to the queue.
When a user accesses a page (by following a link) the “access” attribute for that page
becomes true. The adaptation rules associated with this attribute are the first ones
examined and put in the queue (if their condition is true). The process of rule executions
(and adding more rules to the queue) continues until the queue is empty and thus there are
no more rules to execute. From research in active databases [1] we know that the rule
execution process is not guaranteed to ferminate. In [7] we showed how such problems
can be detected at authoring time. (AHA! currently does not yet warn authors about this.)

TOMISLAV SANTIC 59

AHA! goes Interbook and beyond

5. CONCLUSIONS / FUTURE RESEARCH
The “new” AHA! user model and adaptation engine greatly improve the versatility of
AHA!. Especially arbitrary adaptation rules (unlike simple propagation of knowledge in
educational applications) are easier to express, as the example in section 3 has shown.
The extensions are based on the rule system presented in [7] for the AHAM reference
model. In the future we want to extend AHA! by borrowing more ideasfrom the AHAM:
links to concepts (not just pages), and a method to “select” the best page to present
when following such a link;
a way to express generic rules, so that rules don’t need to be replicated for every page
or concept they apply to.

6. ACKNOWLEDGEMENT
The development of the AHA! system is supported by a grant of the NLnet Foundation,
through the “Adaptive Hypermedia for All!” project (conveniently abbreviated to AHA!).

7. REFERENCES

[1] E. Baralis, and J. Widom. An algebraic approach to static analysis of active database
rules. ACM Transactions on Database Systems, Vol. 25, nr. 3, pp. 269-332, 2000.

[2] Brusilovsky, P. Adaptive Hypermedia, User Modeling and User-Adapted Interaction,
Vol. 11, nr. 1-2, pp. 87-110, Kluwer academic publishers, 2001.

[3] De Bra, P., A. Aerts, G.J. Houben, and H. Wu. Making General-Purpose Adaptive
Hypermedia Work. Proceedings of the AACE WebNet Conference, pp. 117123, San
Antonio, Texas, 2000.

[4] De Bra, P., G.J. Houben, and H. Wu. AHAM: A Dexterbased Reference Model for
Adaptive Hypermedia. Proceedings of the ACM Conference on Hypertext and
Hypermedia, pp. 147-156, Darmstadt, Germany, 1999.

[5] De Bra, P. and Calvi, L., AHA! An open Adaptive Hypermedia Architecture. The
New Review of Hypermedia and Multimedia, vol. 4, pp. 115-139, Taylor Graham
Publishers, 1998.

[6] Halasz, F., and M. Schwartz. The Dexter Hypertext Reference Model.
Communications of the ACM, Vol. 37, nr. 2, pp. 30-39, 1994.

[7]1 Wu, H., E. De Kort, and P. De Bra. Design Issues for General-Purpose Adaptive
Hypermedia Systems. Proceedings of the ACM Conference on Hypertext and
Hypermedia, pp. 141-150, Arhus, Denmark, 2001.

TOMISLAV SANTIC 60

	Summary
	Preface
	Contents
	Introduction
	The project start
	The InterBook Interface Paradigm
	The AHA! Interface Paradigm
	Bringing Interbook and AHA! together
	The View-Based Layout Model
	The Interbook to AHA! Compiler
	Conclusions
	Recommendations
	References
	Table of Figures
	Abbreviations
	Appendixes
	Adaptive Textbooks on the World Wide Web
	References
	AHA! The Next Generation

