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Abstract 

In order to study spin polarization via the phenomenon of Andreev Reflection at a 
normal-metaljsuperconductor (N/S) interface, current-voltage measurements have been 
performed on ballistic N /S point contacts. A piezo system realizes the contact formation 
by approaching a superconducting tip onto a sample. This report focuses only on those 
results that resembie the modified Blonder-Tinkham-Klapwijk model, valid for ballistic 
contacts. By fitting the measurements with this model, one can extract the superconduc­
ting bandgap ~' the parameter Z which incorporates interfacial scattering, and the degree 
of spin polarization P. 

Measurements on Co/Nb and Co/Pb contacts yield P ::: 45% (as observed by other 
groups) for contacts with low Z. However, the measured P decreases for contacts with 
higher Z, which can be attributed to enhanced spin-flip scattering in this regime. 

Furthermore, a measurement series on a single Co /Nb contact shows an exponential 
decay in the bandgap as a function of contact resistance. This effect is confirmed by an 
intuitive model, based on the idea that the superconducting Cooper pairs are confined by 
tip geometry with a sharpness on the scale of the coherence length. 

Measurements on Au/Pb show that the current through the contact is able to generate 
fields larger than this critical value. The observations are consistent with the model pro­
posed by Westbrook and Javan, allowing to obtain an estimate for He, which is about 30 
times smaller than the bulk value. 
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1 General introduetion 

1.1 Magnetic nanostructures 

The main subject discussed in this report is part of a large and growing field of research, 
namely the physics of magnetic nanostructures. Over the past two decades new develcip­
ments in deposition technology made this field of research attractive for further investiga­
tion [Strij99]. 

The giant and tunneling magnetoresistance effect 

Two major breakthroughs in the field were the discoveryin 1988 of the giant magnetoresis­
tance (GMR) effect and the first demonstration in 1995 ofthe tunneling magnetoresistance 
(TMR) effect. The basics of the GMR effect [Bai88] are shown in Figure 1. A current, 
consisting of spin-up and spin-down electrons, enters a system of two magnetic layers se­
parated by a non-magnetic layer. The relative orientation of the electran's spin with respect 
to the magnetization plays a crucial role in determining the resistance of the structure. If 
this spin/magnetization orientation is parallel, few scattering events will occur, resulting 
in a low resistance. A high resistance is the result of an anti-parallel spin/magnetization 
orientation, since at this orientation many scattering events occur. 

A second cru ei al part for existence of the G MR effect is the orientation of the magne­
tizations of the two magnetic layers. If the directions of magnetization are anti-parallel, 
the total resistance will end up higher than in the parallel case. This can been seen if one 
calculates the equivalent resistance for the two schemes in Figure 1. For the equivalent resis­
tance in the parallel magnetization scheme, one can deduce Rp = (2RsmallRtarge) / (Rsmall + 
Rtarge). In the anti-parallel case, this corresponds to RAP = (Rsmall + Rtarge) /2. Simple 
calculations can prove that RAP 2: Rp ( one channel is shorted in the parallel case). The 
existence of this resistance difference is referred to as the GMR effect, and the convention 
for its magnitude reads GMR(%) =(RAP- Rp)j(Rp) ·100. 

Anti-parallel Magnetization 
high equivalent resistance 

Parallel Magnetization 
low equivalent resistance 

-1;---:=J-Ol 

-~~ ~~~ 

___/ 

Figure 1: Illustration of spin-dependent scattering and its consequence (GMR ef­
fect). Spin-up and spin-down electrans traverse two magnetic materials separated 
by a non-magnetic layer. The amount of collisions determines the magnitude of the 
resistance in the two resistance schemes ( the magnitude is represented by size). 
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Figure 2: Illustration of the origin of the TMR effect. Two magnetic materials (the 
distri bution of majority and minority spins is 75%-25%) are separated by an insulator. 
A parallel orientation of the two magnetizations results in a higher conductance than 
an anti-parallel orientation. 

The demonstration of the TMR effect [Moo95] shows two magnetic materials, separated 
by an insulating layer (Figure 2). As is valid for all magnetic materials, the electrans that 
contribute to the current are not equally distributed over the two spin orientations ( the 
number of spin-up electrans N1 is not equal to the number of spin-down electrans N1). In 
the example of Figure 2, the spin orientation parallel to the magnetic field has a majority 
population of 75%. 

In spite of the existence of an insulating harrier in the system in Figure 2, a current 
can flow due to electron tunneling. Following the simplified approach by Julliere [Jul75], 
the chance that an electron with spin a can tunnel through the harrier is referred to as the 
tunneling probability Ta and is given by Ta ,......, N!;eft · Nf:ight. Therefore, the conductance 
contribution Ga = 1Jv of a certain spin orientation reads Ga ,......, G~ft · G~ight. Calculating 
the total conductance G = G1+G1, one will find a higher value in the parallel orientation of 
the two magnetic layers than in the anti-parallel orientation. Therefore, the resistance Rp 
in the parallel orientation is lower than the resistance RAP in the anti-parallel orientation. 
This difference is referred to as the TMR effect and a magnitude for the effect is given by 
TM R(%) = RA~~Rp . 100. 

Application of the effects 

The ability to externally switch the orientation of the two magnetic layers (in both the 
G MR and TMR effect) , is crucial for various attractive in dustrial applications [Pri95]. The 
switching simply alters the resistance of the structure. Roughly spoken, one can use the 
dependency of the resistance to the relative magnetic orientation as an effect to read or 
write bits (a high or low resistance can symbolize a 0 or 1). 

G MR structures are used in the newest generation of hard-disk read heads, and the 
TMR structures are currently being developed for the non-volatile storage of information 
in a so-called magnetic RAM. The term 'non-volatile' indicates the conservation of infor-
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mation, even if no power is supplied to the system. 

1.2 Spin Polarization 

Spin polarization in the GMR and TMR effect 

The previous section introduced two interesting effects, both concerning electron movement 
in magnetic structures. The physics behind the effects is far more complex, and for a great 
deal not understood yet. One subject that is of importanceis the so-called spin polarization 
of the magnetic materials. A material is spin polarized if the number of spin-up electrens 
N1 that contribute to the current is not equal to the number of contributing spin-down 
electrens N1. As will be discussed in the next paragraph, only electrens with energy equal 
to the Fermi energy EF contribute to the current. A frequently used formula for the 
magnitude of spin polarization ( or the degree of spin polarization) PN is given by 

PN = N1(EF)- N1(EF) 
N1(EF) + N1(EF) . 

(1) 

All known magnetic materials have a degree of spin polarization PN I- 0. An upper­
bound for IPNI is realized in a magnetic material in which all electrens have the samespin 
orientation, and is given by IPNI = 1. 

Spin polarization at the Fermi level 

One might wonder why the electrens with Fermi energy play the crucial part in the defi­
nition for PN, and not electrens with lower ( other) energies. The following approach gives 
insight to the answer. Electrens in a metal are distributed over all energies E according 
to the Fermi-Dirac distribution f(E), plotted in Figure 3. The interval over which the 
function f ( E) drops from 1 to 0 zero is characterized by a width kT, with k=86 J.Le V /K 
and T the temperature. The transport of the electrens through the material (i.e. the 
current) is dependent on (a) the energy of the electron, (b) the chance f ( E) this energy 
state is occupied and (c) the chance 1-f(E) a similar state is empty. The previous results 
in the equation: I(E) "'f(E) · [1 - f(E)]. 

The function f(E) · [1- f(E)] is plotted in Figure 3 (T=293 K and EF=5 eV). The 
curve shows that only electrens with energy IE - EFI < kT contribute to the current. 
Since even at room temperature kT/EF«1, one can replace the condition IE- EFI <kT 
by E ~ EF· Therefore the degree of spin polarization (DSP) at this energy level is of key 
importance. 

Direct methods for prohing the spin polarization 

Application of spin polarized materials automatically leads to the need of being able to 
directly measure its magnitude. In this respect, techniques relying on magnetic switching 
(as discussed previous) are examples of indirect prohing methods and do not satisfy this 
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Figure 3: Construction of the function f(E) · [1 - f(E)] at room temperature, with 
f(E) the Fermi-Dirac distribution. Even at room temperature (kT~25 meV), only 
electrous with energy approximately equal to the Fermi energy (typical Ep ~5 eV) 
contribute to the current. 

need. Furthermore, these techniques involve two magnetic materials with all additional 
problems associated (physics not well understood) . 

For the direct measurement of the spin polarization, three methods are used, namely 
Spin-polarized Tunneling, Andreev Reileetion and Electron Photo-emission (Figure 4). 

With the latter technique, electrons with energies within a tunable energy range are 
scattered out ofthe metal. A Mott detector (named after Sir N.F. Mott) counts the number 
of spin-upand spin-down electrons separately. A disadvantage of this technique is the poor 
(with respect to the two other techniques) energy resolution that is obtained. Furthermore, 
the setup for the Mott detector is large and complex. 

The two other techniques are based on conductance measurements. In such exper­
iments, the conductance di/ dV through a system is measured as a function of applied 
voltage V. Gomparing the measured data with theory, one can extract the degree of spin 
polarization. Spin-polarized Tunneling requires a magnetic field of several Tesla, pumped 
liquid 3He-temperature (typically 0.3 K) and 'high quality' tunnel junctions [Mes94]. The 
values for the field B and temperature T are the consequence of measuring the Zeeman 

Polarized Metal ! .B 
T=0.3 K, B=5 Tesla 

Andreev Reileetion 

Superconductor 
... ~ 

"(- Point Contact 

Polarized 
Me tal 

T=4.2 K 

Electron Photo-emission 

Room temperature 

Figure 4: Three methods for prohing spin polarization in a normal metal. 
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splitting p,B, which is experimentally only possible if p,B » kT (p,=60 p,e V /Tesla and 
k=86 p,eV /Kelvin). 

The contents of this report discusses Andreev Reflection. With this method one mea­
sures the conductance through a point contact between a superconducting metal and a 
normal metal. A point contact is defined as a contact with a small radius a compared .to 
the electran's mean free path l (a « l). Determining the DSP from conductance curves 
requires kT«~ (see Section 3.4), with ~ the superconducting bandgap, to be introduced 
inSection 2.3 (typically ~~1 meV) . Liquid 4He-temperatures (typically 1.2-4.2 K) satisfy 
this demand. A restrietion to this technique is the fact that only the magnitude of the spin 
polarization can be determined and not its sign ( one can not determine if the majority 
spin has orientation spin-down or spin-up). 

1.3 Andreev Refiection 

The idea of using Andreev Reileetion [And64] for prohing spin polarization was first pro­
posed by de Jong and Beenakker [Jong95]. Andreev Reileetion occurs at the boundary 
of a normal metal and a superconducting metal. The origin of the effect can be found in 
the fact that, in a simplified picture, electrans in a superconductor are obliged to form 
pairs, the so-called Cooper pairs. A Cooper pair consists of a spin-up and a spin-down 
electron, both with equal but opposite momenta. What happens to the electrous in a 
normal metal when they reach the boundary with a superconductor is shown in Figure 5. 
Coming from a nonpolarized normal metal (Nr(Ep)=N1(Ep)), a spin-up electron can eas­
ily findaspin-down electron and forma Cooper pair in the superconductor. Consequently, 
a relatively high current can flow . The pair-forming process is called Andreev Reileetion 
sirree the process of combining of the initial and second electron is equivalent to reileetion 

polarized 
normal metal superconductor 

normal reileetion 
"low" current 

nonpolarized 
normal metal superconductor 

Andreev reileetion 
"high" current 

Figure 5: Electrans coming from a 100%-polarized normal metal (left) can not form 
Cooper pairs, which makes Andreev Refl.ection impossible to occur. At the interface 
between the superconductor and a nonpolarized normal metal (right), Andreev Re­
fl.ection has its maximum chance of occurrence and the current fl.owing through this 
system will be relatively high. 
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of the initial electron as a hole. In a nonpolarized-N/S contact it has a maximum chance 
of occurrence. However, the spin-up electrons in a highly polarized normal metal have a 
hard time pairing with a spin-down electron for the simple reason that spin-down electrans 
hold the minority. In this case, Andreev Reileetion has a small chance of occurrence and 
the electrans coming from the polarized normal metal are forced to reileet back. In other 
words: the magnitude for the current though a normal-metal/superconductor contact is 
determined by the DSP. 

1.4 Author's contribution to previous work 

All research described in the following chapters is part of a project initiated in August 
1999. After defining the experimental goals, the first milestone was the realization of the 
experimental setup for measuring the conductance through point cantacts at low tempera­
tmes ( 4.2 K). This phase, prior to the work that is described in this report, was finished by 
reaching a second highlight, namely preliminary measurements consistent with a theore­
tica! model for normal-metal/superconductor nanocontacts. Superconducting properties, 
contact characteristics and the zero-polarization of Au could be determined by comparison 
with the theoretica! model. 

All work clone in this first phase of the project is well described in [KantOO] and forms 
the base for the second phase described in this report. Over a period of time, several 
improvements to the setup have been made. One of them concerns the ability to reach 
temperatures of~ 1.4 K (in stead of 4.2 K) . Operation at such a low temperature reduces 
vibrations, minimizes the effect of thermal smearing on measured conductance curves, and 
permits a wider range of applicable superconductors. Furthermore, several changes in the 
piezo system (the system responsible for contact formation) have improved the reliability 
considerably ( the chance of malfunetion 4as reduced to practically zero). 

In the second phase, successful measurements of the spin polarization of Co have been 
performed. Furthermore, it has successfully been demonstrated that one can measure a 
series of conductance curves on a single stabie contact, while changing the pressure of the 
tip on the sample. 

1.5 Outline 

The outline of this report is as follows. Chapter 2 will give an introduetion to various 
charaeteristics of normal metals ( and their magnetic properties), superconductors, and to 
the physics behind cantacts in generaL Two models for superconducting behaviour in 
N/S contacts are treated in more detail. The Blonder-Tinkham-Klapwijk model, which 
describes the electron transport through a ballistic nonpolarized-N /S contact, is treated in 
Chapter 3. The same chapter introduces a modification to the model, allowing the study 
of conductance through polarized-N /S contacts as well. An overview of the experimental 
setup is given in Chapter 4, in which the piezo system and the cooling procedure are 
described. In addition, attention is given to tip and sample preparation. The results are 
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discussed in Chapter 5, after which Chapter 6 presents the conclusions as wellas suggestions 
for future research. 
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2 An introduetion to normal metals, superconduc­
tors, and point contact properties 

In the first sec ti on of this chapter, properties of electrons in metals are discussed. This will 
lead to a more formal introduetion of spin polarization than the one given in Chapter ·1. 
After this, insight in contact properties is given. Section 2.3 introduces the physics behind 
superconductivity. Since the destruction of superconductivity is observed in the experi­
ments, attention to this subject is given inSection 2.4. The last section focuses on the decay 
of the superconducting bandgap if the contact is small compared to the superconducting 
coherence length. 

2.1 Magnetic properties: magnetization and spin polarization 

Electron distribution over energy 

Various material properties depend on how the electrons are distributed over all allowed 
energies. Electrons prefer to fill up states with low energy but Pauli's exclusion principle 
prohibits the existence of two electrons in the same quanturn state. The distri bution of the 
number of electrons over the energy is governed by two factors: the number of available 
states at a certain energy(band) and the probability that these states will be occupied. 
The first factor is referred to as the density of states N(E) and the second factor is given 
by the Fermi-Dirac distribution 

f(E) = exp [(E- E~ )/(kT)]+ 1' 
(2) 

where EF stands for the Fermi energy, T for the absolute temperature and k for Boltzman's 
constant (k=86 11-eV /K). ForT= 0 K, Equation 2 reduces toa step function, with f(E) = 1 

arbitrary nonmagnetic metal 
A 

E E 

& 

N(E) 0 1 f(E) 

E 
[ oot tilled 

I tilled 

N(E) 

Figure 6: The left image shows an example of the density of states for a nonmagnetic 
normal metal. This plot eau be combined with the Fermi-Dirac distribution f(E) 
( middle image) to farm the right image, predicting the number of electrous at a 
certain energy. 
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for E ~ Ep and f(E) = 0 for E > Ep. For T > 0, states above Ep have a nonzero 
accupation probability. 

In Figure 6, a fictitious DOS (density of states) is shown (left plot) for both spin-up 
and spin-down electrons. It is also shown how the DOS combined with the Fermi-Dirac 
distribution f(E) (middle image) can predict the number of electrons at a certain energy 
( right plot). 

Magnetization 

In a metal, one can simply determine the net magnetization by summing up the magnetic 
moment of each individual electron. The total magnetic moment per unit volume is referred 
to as the magnetization of the materiaL One has to realize that the contribution of a spin­
up electron will cancel out the contribution of a spin-down electron. The magnetization 
M can be calculated through 

M ~ (f f(E)NT(E)dE-r f(E)N!(E)dE)). (3) 

By interpreting Equation 3 it is obvious why a materiallike the one in Figure 6 has a zero 
magnetization: the DOS are equal for spin-up and spin-down electrons. In a magnetic 
metal however, the DOS for spin-up and spin-down electrans are shifted with respect of 
each other. For common magnetic metals, this shift amounts to h and -h for each spin 
orientation, as indicated in Figure 7. For such a metal it is obvious that Equation 3 yields 
a nonzero magnetization. 

arbitrary magnetic metal 
A 

NJ.-(EF) E1' 

& 

<:----~~~N(E) 0 1 f(E) (E) 

J notlilled 

I lilled 

Figure 7: The left image shows an example of the density of states for a magnetic 
metal. The DOS for the two spin orientations are shifted with respect toeach other, 
resulting in a netto magnetization. 
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Spin polarizatio:q 

Another difference between the energy diagrams of Figures 6 and 7 is the density of states 
at the Fermi energy EF . In Figure 6 one can see that N1(EF) = N1(EF), while in Figure 7 
N1(EF) # N1(EF) · A difference in the DOSforspin-up and spin-down electrous at this 
energy level is referred to as spin polarization. Section 1.2 discussed why this particular 
energy level EF is of key importance (it was derived that only electrous with E ~ EF 
contribute to the current) . A common way to express the imbalance in the number of 
spin-upand spin-down electrons, is through the 'N-definition' DSP, given by 

PN = N1(EF)- N1(EF) 
N1(EF) + N1(EF). 

(4) 

Note that JPJ~1, with P=O for nonpolarized materials and JPJ=1 for fully polarized ma­
terials. All known magnetic metals are spin polarized at the Fermi level (PN#O) . 

Mazin [Maz99] shows that the spin-dependent signal in conductance measurements in 
the ballistic regime ( the signal is the current) is not defined by the DOS alone, which makes 
the N-definition for the DSP useless. Since for a ballistic contact Irm rv N Fl(l) V Fl(l) (DOS 
and velocity at Fermi level!), one can derive a second definition for DSP, namely PNv, 
which is given by 

PNv = NFlVFl- NF1VF1 . 
NFrvFl + NF1vF1 

(5) 

To give some examples: bandgap calculations show PN=0.36 for LSMO (La0.7Sr0.3Mn03), 
while conductance measurements on point contacts yield PNv = 0.8 [NadOO]. Metals in 
which the current is (nearly) fully polarized (PNv ~1) are referred to as transport half­
metals. LSMO can be considered as such a metal. Recently, measurements have confirmed 
another such transport half-metal, namely Cr02 ([Ji01] extracted PNv = 0.96) . 

Mazin describes various other definitions for DSP, valid for transport measurements 
in tunnel junctions, diffusive contacts ( contacts with a large dirneusion compared to the 
mean free path) and ballistic contacts with an extremely high chance of reflection at the 
interface. However, no further attention to these definitions will be given here. 

2.2 Contacts in the ballistic and diffusive regime 

The ballistic and diffusive regime 

Contacts between two materials can exist in various different shapes and sizes. To simplify 
the situation, a contact is represented by two reservoirs connected by a short link with 
radius a, as sketched in Figure 8. This a is referred to as the contact radius. Important 
for the transport of electrous through the link is the mean free path l of the electrous ( l 
represents the average distance an electron can travel without colliding) . The ratio ajl 
basically determines the physics behind the transport. Two limits for this ratio are 

diffusive regime: y » 1, ballistic regime: y « 1. (6) 
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Diffusive regime: 

Reservoir 
Material B 

Scaled Meao 
Free Path f = 1-1 

Ballistic regime: 

Reservoir 
Material B 

Figure 8: Schematic representation of cantacts by connecting reservoirs. Thansport 
through a contact can be characterized by the ratio afl. 

Regarding the contact itself, one may note that in the diffusive regime the electron trans­
port is ruled by collisions while these effects are no longer dominating in the ballistic 
regime. For various metals (Nb, Au, Pb and Co), lis on the order of 100 A at liquid 4He­
temperatures and strongly depends on temperature, purity, crystal structure and other 
material properties [Bass82]. 

Generally, it is not straightforward to give an analytica! expression for the resistance 
of a contact. Scattering between electrans rnaving through the contact complicates the 
use of a simplified approach. However, cantacts in the ballistic regime are so small that 
the electron-electron scattering is neglected. In this case, the resistance is given by (pl) 
divided by the contact size, with p representing the electrical resistivity. This approach 
was worked out by Sharvin [Sha65] and therefore its resistance is referred to as the Sharvin 
resistance Rsh, given by 

4 pl 
Rsh = -

3
- 2 . 
7ra 

(7) 

The factor of ~ comes from integration over all angles. Since pl is approximately tempera­
ture independent with pl ~ 1 fO·m2 [Bass82] (or a../R=20 nmVO), the resistance varies 
only with contact radius. Typically, ballistic point cantacts have a (Sharvin) resistance in 
the range of 1 0-50 kO, where the upperbound corresponds roughly to the resistance of a 
single-atom contact (a ~ 1 A). 

The resistance RN for cantacts not in the ballistic regime but in the quasi-ballistic 
regime (a ~ l), is given by the diffusive Maxwell correction to Rsh [Jan89], of which an 
approximation results in 

(8) 

Motivation for measuring in the ballistic regime 

In an attempt to model conductance through contacts, the assumption of a ballistic contact 
allows a relatively simple approach. One reason for this lies is the fact that in the ballistic 
regime, one can assume an abrupt drop in the voltage at the interface while in the diffu­
sive regime one has to calculate the decrease by solving self-consistently the appropriate 

11 



transport equations. 
Additional complications arise in a nonballistic contact between a normal metal and 

a superconductor. Increasing the contact size a will shift the regime from the ballistic 
regime, via the so-called mesoscopic regime towards the diffusive regime a » l. Already in 
this mesoscopic regime complex physical effects enter the picture. Zero-bias and above-gap 
conductance anomalies are examples of measured effects [Xio93, KimOO]. It is believed 
that these effects originate from quanturn interference and other phase-coherent effects 
[Been97]. 

Interfacial scattering in the ballistic regime 

Another insurmountable aspect of a contact is the fact that a perfectly clean contact is 
not achievable. Lattice distortions, oxide layers and surface effects will always be present 
and will infiuence the conductance. One way to take elastic scattering into account is the 
introduetion of a potential harrier in the form of a 6-function. This harrier V(x) is present 
at the interface between the two contacting materials and is formulated as 

V(x) = W · b'(x) . (9) 

The factor W (with dirneusion [J·m]) is referred to as the harrier strength. Standard 
quanturn mechanics can be applied to calculate the probability R(EF) that an electron 
with energy EF is refiected at the harrier, automatically leading to the probability of 
transmission T(EF) since R + T = 1. Calculations [Gri95] show that 

1 
T(EF) = k2 W2' 

1 +Ter 
F 

R= 1-T. (10) 

Since these probabilities play a major role in transport through the contacts, Equation 10 
is written in a more convenient form through normalization of W, given by 

( ) 1 R(E ) = z2 
T E F = 1 + Z2 ' F 1 + Z2 . (11) 

The parameter Z is dimensionless. For nonzero Z-values, a part of incoming electrans will 
refiect back resulting in an increase of the resistance to Rz. It can be shown that, see 
Section 3.2, Rz for a ballistic contact is given by 

(12) 

Even in extremely clean contacts, interfacial scattering can occur due to the mismatch 
of the Fermi veloeities of the two materials A and B. The Fermi mismatch is symbolized 
by the ratio r, given by r = ~;· ;. It can be incorporated into an effective Z ef f , which is 
now a sum of the contribution given by Equation 9 and the Fermi mismatch contribution 
[Blo83]. This results in 

z2 - (1 - r )2 z2 
eff - 4r + . (13) 
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Figure 9: Existence of a Fermi velocity mismatch (r = VF,A/VF,B) results in a higher 
effective scattering parameter Zet 1 . 

The plot in Figure 9 shows the behaviour of Zelf versus Z for various ratio's r. It should 
be noted that the result for Zet 1 is the same if the Fermi veloeities are interchanged. In 
the remaining part of this report the parameter Zelf is shortened to Z. 

2.3 Introduetion to superconductivity 

This section will introduce the basics of various superconducting properties, based on 
the BCS theory [BCS57]. This microscopie theory of superconductivity is an extension to 
earlier work clone by Fröhlich [Frö50] and Cooper [Coo56]. An introduetion on a sophomoric 
level to this work can be found in [Ros78]. 

Figure 10: Schematic representation of electron-electron interaction through suc­
cessive emission and absorption of a phonon. 
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The Cooper pair 

In a normal metal at T=O, all electron states up to EF are filled, and the ensemble of 
these states is referred to as the Fermi sea. In 1956 Cooper presented the basic idea 
that a weak attractive interaction can bind pairs of electrans into a bound state in a 
superconductor. Cooper showed that, regardless of how weak the interaction is (as long·as 
it is attractive), there are always some electrans within this sea that are unstable against 
the formation of at least one bound pair. Fröhlich's phonon-induced electron-electron 
interaction (see Figure 10) is considered to be the responsible interaction. lt is based 
on successive phonon-emission by one electron ( momenturn p1) and phonon-absorption by 
the second one (momentum p2), with q the phonon momentum. One can compare this 
attractive interaction with the attractive Coulomb interaction, realized through successive 
emission and absorption of a photon. 

In Cooper's result, the role of the background of the Fermi sea is crucial. Consicier 
the two electrans that form a bound state. The two electrans interact with each other 
(Fröhlich's interaction) but not with those in the Fermi sea, except via the exclusion prin­
ciple. Fröhlich derived that the state of lowest energy is formed, if the two considered elec­
trans have equal but opposite momenta. In analogy to the hydragen molecule, the strongest 
interaction is obtained with the electron spins opposite. Therefore, the pair can be written 
as a superposition of two-electronic states with equal and opposite momenta. From a tem­
poral viewpoint, this superposition if translated to a continuous changing ( or scat tering) of 
the two-electron momenturn combination (Pil, Pi!) to (Pn, Pi!). Since Fröhlich's interaction 
is attractive, P1 > Pi and/or P1 > PF are energetically allowed, providing that 2(Ej- Ei) 
does not exceed the attractive potential. 

It may also be clear, why the Fermi sea is of crucial importance via the exclusion 
principle: in order to perform continuous scattering to other (p11 , Pi!)-states, these states 
have to be vacant first. 

BCS theory 

Bardeen, Cooper and Schrieffer were the first to treat all electrans from a similar point of 
view. This leadstoa more realistic expression for the superconducting ground state. They 
made use of a representation of the ground state in terms of electron creation operators, 
operating on the vacuum state with no electrons. Again, one makes use of the simplify­
ing assumption that the matrix element Vi'i=(Pi', -Pi'1V1pi, -pi) of the phonon-induced 
electron-electron interaction is given by 

(14) 

with hvL the 'average' phonon energy (hvL « EF) and h Planck's constant. Applying a 
variational method, they obtained a salution for the ground state of the superconductor. 
One of the reimits that one can calculate from this, is the probability Jhi 12 that the single­
electron states (Pil, -Pi!) are occupied at T=O. This function is plotted in Figure 11 and 
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Figure 11: The dashed line represents the probability lhil2 that (at absolute zero) the 
single-electron states (Pii, -Pi!) are occupied in a normal metal. The same probability 
for state-accupation is shown fora superconductor, where even at T = 0 several states 
with !Pil > PF can be occupied. 

is given by 

(15) 

with E = p2 /2m. The quantity .6., which has the dimensions of energy, turns out to be of 
fundamental importance and is given by 

(16) 

with N( EF) the density of states at the Fermi energy. Typical values for .6. and EF are 
1 meV and 5 eV respectively. 

One might wonder why not all electrens form Cooper pairs. In order for a non­
interacting electron pair (Pi, i, -Pi,!) (with Pi < PF) to form a Cooper pair, the individ­
ual energy of each electron must be raised to ::::::: EF in order to experience nonzero at­
tractive Fröhlich interaction (Equation 14). An energy benefit is only realized for those 
non-interacting pairs that satisfy V> 2(EF-Ei), which is similar to the demand Ei > EF-~· 

Excitations and quasi-particles 

An important limitation of the BCS theory is its restrietion to the ground state (also 
referred to as the condensate). Bogoliubov extended the approach in such a way that also 
excited states are described. This theory leads to essentially the same result for the ground 
state as previously derived, however in addition, it leads to the introduetion of the concept 
of quasi particles. The following will clarify this concept. 
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If sufficient energy is imparted to the ground state (by heating, illumination, etc.), 
a Caoper pair may break up into two individual 'partieles', which no langer have equal 
and opposite momenta Pi and Pi· These 'partieles' behave almast like free electrans and 
are therefore referred to as quasi-partieles. If the quasi-partiele accupies a state that 
was previously empty, it is referred to as an electron-like quasi-partiele (ELQ), with base 
state le-like). However, if the quasi-partiele occupies a state that was previously part of 
the Caoper-pair momenturn domain, it is referred to as a hole-like quasi-partiele (HLQ), 
with base state lh-like). The le-like)- and lh-like)-states are two extremities. Generally, 
a quasi-partiele will occupy a state that previously had a chance hi (see Equation 11) of 
being occupied, and the quasi-partiele state is a superposition of the le-like)-state and the 
lh-like)-state. The wavefunction of a quasi-partiele can be described by the wavefunction 

w(x, t) = f(x, t)le-like) + g(x, t)lh-like), (
f(x, t)) 

or w(x, t) = g(x, t) . 

The le-like) quasi-partiele obeys the Schrödinger equation, 

ih
0

f =Hf 
8t 

n,2 d2 
where H = ---- Ep + V(x) , 

2mdx2 

while an lh-like) quasi-partiele obeys the the time-reversed Schrödinger equation, 

·tc..fJg H 
ZIL Ot = - g. 

The base states are coupled by the energy ~(x) so that the wave-function w obeys 

. 8w (H ~) 
zhat = ~ -H W, 

(17) 

(18) 

(19) 

(20) 

which is the Bogoliubov-de Gennes equation. Since the hamiltonian matrix is independent 
of time, the substitution w(x, t) = '1/J(x )e-iwt, where E = hw, reduces equation (20) to 

(21) 

A first assumption is made by setting V(x) = 0. A second assumption is that ~is inde­
pendent of position x. These two assumptions allow analytica! evaluation of Equation 21. 
This approximation is referred to as the 'free quasi-partiele approximation' . For the trial 
salution 

(22) 

one finds that 

(23) 
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Figure 12: (a) Excitation energy of the quasi-particles as a function of k. (b) At 
T >0, the quasi-particles have a nonzero accupation probability, as displayed in the 
superconducting energy diagram. 

Since one must impart energy to break up a Caoper pair, the quasi-partiele energy E must 
have a positive value. Therefore, only the positive root of Equation 23 is taken. Due to the 
offset - E F, the energy is measured from the Fermi-level and is therefore referred to as the 
excitation energy of the quasi-particle. Figure 12-(a) shows E as a function of k, where it 
is indicated (dashed lines) how the curve is composed of the two functions which represent 
the positive and negative root of E 2 (Equation 23) at ~=0. To illuminate the parameters 
u and v, their values are given at various marked spots on the E- k curve. The minimal 
energy required to break up a pair is given by 2~, with ~ introduced by Equation 16. The 
quantity ~ is also referred to as the superconducting bandgap. The energy diagram for 
the superconductor at tem perature T > 0 is represented by Figure 12-(b). 

As the temperature is raised, more and more Caoper pairs are split up, accompanied 
by a lowering of ~ (see Figure 13). Eventually at a critica! temperature Tc, no Caoper 
pairs have remained, ~ has reduced to zero, and the quasi-partiele states are identical to 
electron states in a normal metal. 

An energy representation for all unpaired electrans 

Consider a normal metal at T = 0, see Figures 14-(a) and 14-(b). In the electron band, all 
states up toEp are filled (represented by •), while the statesE > Ep are not occupied, 
leaving a hole behind ( represented by o). By consiclering the hole as a partiele obeying 
Equation 19, one has defined the 'hole-like particle'. The middle image shows the energy 
band for such particles as wellas its occupied states at T=O, where • represents an occupied 
hole-like state and o a vacant hole-like state. From this point of view, the occupied X -state 
in 14-(a) is equivalent to the vacant Y-state in 14-(b) (with Ex = -Ey and kx = -ky ). 

A similar approach can be made for all unpaired electrans in the superconductor. Since 
at T = 0 all quasi-partiele states are vacant, the energy states at - E must be occupied. 
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Figure 13: Temperature dependenee of the superconducting bandgap b.. At T > Tc 
all Caoper pairs are split up and superconductivity no langer exists. 

Such an argument results in the two mirrored E- k curves in Figure 14. It is emphasized 
one more time, that the states at E < 0 do not represent quasi-partiele states. The 
'particles' with E < 0 behave as normal electrans for lkl « kp, while for lkl » kp they 
act as hole-like particles. One could have derived the same diagram in the figure at once, 
if also the negative root of equation 23 was considered. 

The superconducting density of states 

Equation 23 can also be used to determine the superconducting density of states N(E) , 
defined as N ( E) = dN /dE. N ote that N ( E) also considers electron states wi th E < 0. 
One can derive that N(E) = cLJ: ;~ with ~~ given by 

E 

(a) 

electron band 

dE 
dE: 

E 
E 

hole-like band 

(b) (c) 

Figure 14: For a normal metal at T=O, the occupied states ( •) in the electron and 
hole-like band are shown in (a) and (b). The accupation of the E- k bands for a 
superconductor at T = 0 is plotted in (c). 
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P(r) 

r 

Figure 15: The probability P(r )dT1 dT2 of finding an electron Pi in a volume element 
dT2 at a distance r from a volume element dT1 which contains an electron -p1. 

and E defined as n;!2 
- EF. Note that dJ: is the DOS for electrans in a normal metal. By 

assuming a constant value for ~ = N0 , which is valid for small E, one can retrieve 

{ 
0 for IEl<~ 

N(E) = N, IEl for IEl >_ ~-
o~ 

(25) 

Space correlations: the coherence length 

After evaluating the Caoper pair from an energy-point of view, one might wonder how one 
can spatially characterize the Caoper pair. One way to express the spatial behaviour is 
by calculating the probability P(r)dT1dT2 of finding an electron Pi in a volume element 
dT2 at a distance r from a volume element dT1 which contains an electron -p 1. If there 
are no correlations (e.g. in a normal metal) this probability is given by ~n2dT1 dT2 , with 
n the total number of electrons. Detailed calculations for a superconductor show that the 
continuously mixing of the momenturn states results in a raising of the chance P(r)dT1dT2 

for small values of r. This is indicated in Figure 15. The lengthof the raised-P(r) region 
is referred to as the (Pippard) coherence length E,. The coherence length represent the 
dimension of one Caoper pair, which is on the order of 10-1000 nm. Notice that the 
volume e contains the centers of mass of about 107 other pairs, so that the pair wave 
functions overlap considerably. 

The critica! temperature and field 

Figure 13 shows how an increase in temperature can eventually destray superconductivity. 
The value forT at which this occurs is referred to as the critical temperature Tc. Supercon­
ductivity can also be destroyed if a sufficiently high magnetic field is applied , referred to 
as the critical field He. Generally, He will decrease as a function of increasing temperature 
to eventually He = 0 at T = Tc. 

The previous is true for type-I superconductors. Type-II superconductors are generally 
characterized by two critical fields, namely Hc1(T) and Hc2 (T) (Hel< Hc2 ) . Ifthe field 
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Hel is applied toa type-H superconductor, the destruction of superconductivity is initiated 
but only completed at an applied field He2 • In the following, the critica! field Hel for a 
type-H superconductor is represented by He. 

2.4 Destruction of superconductivity in conductance measure­
ments 

A current I through the superconducting tip will generate a magnetic field. If the current 
reaches the critica! value Ie, the generated field equals He and superconductivity is (par­
tially) destroyed. The voltage at which the critica! current Ie is generated is referred to as 
V';;. 

Consider a superconducting wire of radius a, carrying the current I . The field H 
generated at the perimeter of the wire is given by 

H= __!_. 
21ra 

(26) 

One can, in good approximation, use Equation 26 to calculate the magnetic field present 
at the perimeter of the sample/tip contact. The question now is, whether the radius a of 
the contact is of a sufficiently small order of magnitude to yield H c:::; He. 

The typical resistance of a contact is 10 n, see Section 2.2. For such a contact one can 
expect a contact size of circa 10 nm. The applied voltage will be on the same order of 
magnitude as the superconducting bandgap, which is ~1 me V, resulting in a current on the 
order of 0.1 mA. Use of Equation 26 gives a generated field of several kA/m. Although the 
critical field for small specimens in proximity of a normal metal is not known, bulk values 
for various superconductors are of comparable magnitude. Therefore, it may be possible 
that a conductance measurement indicates partial destruction of superconductivity, as 
explained below. 

The Westbrook-Javan model 

A model posed by Westbrook and Javan [West99] prediets the voltage Vc at which one can 
observe partial destruction of superconductivity. 

Figure 16 shows typical current I- and conductance G = dl/dV-curves for (a) an N/N 
contact, (b) an N/S contact and (c) an N/S contact with destruction of superconductivity 
at lVI > Ve . The current INs(V) through an N/S contact can be described by INs = 
INN+lexe(V) , that is, when one switches from the N/S state to the N/S state the current is 
raised by Iexc(V) due to Andreev Reflection. The current Iexc(V) is referred to as the excess 
current. In Figure 16, the function Iexe has a constant value Iexc(ó.) for!:.. < lVI < V';; . At 
Vc superconductivity is partially destroyed and Iexc will drop to a lower value. For clarity, 
in the figure the superconductivity is completely destroyed at V';;. The drop of Iexc is seen as 
a peak in the conductance curve depending of the 'sharpness' of the transition. Westbrook 
and Ja van we re able to measure such peaks, of which several ( differential resistance) dV /dl­
curves are shown in Figure 17 (Ie ft). 
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Figure 16: The I- V curves and G- V curves for (a) an N/N contact, (b) an N/S 
contact and (c) an N/S contact with destruction of superconductivity at lVI > Vc. 

From now on, only voltages V > .6 are considered. The current I through an N /S 
contact consists of the two contributions 

V 
I(V > .6) = RN + Iexc(.6), (27) 

with RN the constant resistance of the contact at V > .6. In (BTK82] it is shown that 
Iexc(ó.) rv .6 and Iexc(.6) rv 1/ RN, for constant z. At I=Ic, Equation 27 reads Ie = 

1t; + Iexc(.6). Combining this expression with Equation 26 one finds 

(28) 

It has previously been discussed (Equation 7) that a..Jl[;;, is a constant (20 nmvTI), with 
Rsh the Sharvin resistance in the ballistic regime. Therefore, in the ballistic limit (RN = 
Rsh), Equation 28 can be rewritten as 

Vc = kvfji; + Vo, with k = 21fHcVRsha2 and Vo = -Iexc(.6)RN. (29) 

In this formula Vo has a negative value. However, the measurements which will be intro­
duced in Section 5.5, as wellas those performed by Westbrook and Javan, show a positive 
Vo. An extension of the model to the quasi-ballistic regime will account for this, as will be 
derived here. For such contacts, the diffusive Maxwell correction can be applied, as intro­
duced by Equation 8. This expression is used to rewrite the term aJI[;; in Equation 28, 
resul ting in 

(30) 

Also in this quasi-ballistic diffusive regime one can rewrite Equation 28 into the form 
Vc =kJ[[;;+ Vo . Equation 30 is used todetermine the constant k and V0 , now defined as 

~ Vr = 1f Hc(Rsha2) -I ( ")R (31) k=21fHcvRsha- and o l exc L.l N· 
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Figure 17: Measurements performed by Westbrook and Javan, showing peaks in the 
dV /dl - V curves (left). The voltage Vc at which superconductivity is destroyed is 
linearly dependent on the square root of the resistance. 

In the derivation of V0 in Equation 31, the assumption (1-~)~1 has been made. The values 
for Vc, measured by Westbrook and Javan, are plotted versus ..fR in Figure 17 (right), 
confirming the linear dependency. More attention to both plots is given in Section 5.5. 

2.5 Contacts on the order of the coherence length 

So far, superconductivity was discussed for objects that are large compared to the coherence 
length (Ç ~10-1000 nm). However, since this report describes cantacts in the ballistic or 
quasi-ballistic regime, the contact radius is on the order of Ç and locally (at the interface) 
one might expect a change in various superconducting properties. 

One can represent the tip in the form of a cone, which is truncated at the position of 
the sample, see Figure 18. Following a 'geometrical' intuitive model, one can imagine that 
the Cooper pairs ( characterized by the coherence length Ç) are hindered in entering the end 
of the tip and a position of maximal penetration exists. One can compare such a system to 
a superconductor in contact with a normal metal, where Levi et al [Levi98] observed that 
due to proximity effects, a nonzero value for the bandgap in the N-side was observed. They 
showed that this value decreases as a function of position from the interface, to eventually 
zero at a distance comparable to the superconducting coherence length. In analogy totheir 
observations, the local bandgap at the end of a cone-shaped tip (position x) is also assumed 
to decay over a length scale of Ç. As a first guess, the following relation is assumed 

(32) 

with ~o the superconducting bandgap at x < 0. It should be noted that this particular 
tip geometry can result in a ~0 different from the bulk value ~bulk· 

The contact is positioned at x, see Figure 18. With increasing x one can see that the 
contact radius decreases, until eventually the end of the tip is reached. To express x as 
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Figure 18: Representation of a Cooper pair (with characteristic length Ç), blocked 
by the geometry of the tip so that the tip's end is positioned 'outside' the pair. The 
bandgap ~ is assumed to decay exponentially. 

function of a, Ç and (J, the dependencies 

a 
tanO = Ç , 

z- -x 
and 

ç 
z=--

sin (J 

lead to 
Ç a 

x = sin (J - Ç - tan (J · 

By substituting expression 34 for x, one can transfarm Equation 32 into 

~(a) ( 1 ) a 
~ = exp 1 - --:---

0 
exp c 

0
. 

u 0 sm ." tan 

(33) 

(34) 

(35) 

By assuming a constant for aVR, which is valid in the ballistic regime (see Section 2.2), 
~ as function of R can be formulated as 

1 
~(R) =PI exp In' 

P2vR 

with 

PI = ~o exp ( 1 - si~ (J) , and 
Ç tan (J 

P2 = a../R · 

(36) 

(37) 

In conclusion, this geometrical intuitive model results in an expression for the decay of 
the local bandgap versus resistance. The decay is influenced by the tip geometry (J, and 
by the superconducting properties Ç and ~0 . 
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3 The original and modified Blonder-Tinkham-Klapwijk 
model 

This chapter roughly follows the same outline as the theory described in [KantOO]. However, 
some subjects are discussed more extensively. First an intuitive model is given that can 
predict the basic characteristics of conductance curves for N /S contacts. The Blonder­
Tinkham-Klawpijk model, which will be introduced in Section 3.2, treats the transport 
through an interface in more detail. It is based on the solutions to the BdG-equation 
( derived in the previous chapter) and is restricted to nonpolarized-N /S contacts. Therefore, 
also a modification to the BTK model is presented which does include spin polarization. 
The last section gives comments on N/S contacts with ~ ;::::j kT and with high-Z. 

3.1 Andreev Reflection in clean contacts 

One can understand the essence of the conductance behaviour through an N /S contact by 
comparing it to the constant conductance GNN through an N/N contact. 

Conductance through a nonpolarized-N /S contact 

In the following intuitive approach, a perfectly clean interface (Z=O, see Section 2.2) is 
assumed. Consider the situation of a small applied voltage eV « ~' raising the energy 
of the electrons that contribute to the current to Ep + eV . The possibilities for such 
an electron are limited. It can not reflect back (since Z=O) and it can not enter the 
superconductor as a quasi-particle. Therefore, it is forced to take along a second electron 
and forma Cooper pair, resulting in a conductance that is twice as high as a fora contact 
consisting of two normal metals. 

1 

nonpolarized 
N/S contact 

1 

polarized 
GN/GNN N/S contact 

eV//1 1 eV//1 

Figure 19: The normalized cond uctance ( G N s / G N N) plotted for a clean 
nonpolarized-normal-metal/superconductor and for a clean polarized-normal­
metal/superconductor contact. At V = 0, the normalized conductance is given by 
2(1- P). 
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At voltages eV » L.\, the electron has the possibility to enter the superconductor as 
a quasi-particle. lts energy is so large compared to the bandgap, that the influence of 
L.\ is negligible in that the available quasi-partiele state does not differ from the electron 
state. In other words, there is no reason for the electron to combine with a second electron 
and form a Cooper pair. Therefore, the conductance at high voltages is the same as the 
conductance through an N/N contact. The behaviour of GNs versus eV is sketched in the 
left image of Figure 19. 

Conductance through a polarized-N/S contact 

Consider a polarized metal of which its current I is carried by spin-up electrons (fr) 
and spin-down electrons (!!) · The spin polarization of this current is defined as P = 

llr- Itlf(Ir +ft), and for simplicity, Ir >ft is defined. The behaviour of the electrons at 
eV » L.\ is identical to the situation of a nonpolarized-N/S contact. However, at eV « ~ 
the chance for Cooper-pair formation is reduced by a factor (1-P), since only ft can be 
doubled through Cooper-pair formation, preventing Ir - ft = PI from further current 
contribution. The resulting normalized conductance is now given by 

GNs = 2(1- P), 
GNN 

at eV « ~. (38) 

This reduction of the conductance is plotted in the right image of Figure 19. 

3.2 The BTK model excluding spin polarization 

The BTK model, named after Blonder, Tinkham and Klapwijk [BTK82], calculates the 
current ( and conductance) through a ballistic contact between a nonpolarized normal metal 
N and a superconductor S. The principles of the model can be better understood if one 
places the energy diagrams of a normal metal and a superconductor (introduced in Sec­
tion 2.3) next to each other, as done in Figure 20. Also for the normal metal, both the 
bands for the electrons and hole-like particles are displayed. A note should be placed at 
the fact that the BTK model assumes an abrupt increase of the bandgap from 0 in N to 
~inS. 

Scattering probabilities for an electron at the N /S interface 

Consider an electron, moving to the right in the normal metal, that has reached the 
interface. The electron has energy ( E F + E), wavevector ( k F + k N), and is pointed out in the 
figure by '1 '. At the interface, the electron can reflect as a hole (in order to from a Cooper 
pair in S) on the other side of the Fermi surface ( -kF + kN) with probability amplitude a, 
reflect back into the normal metal-(kF+kN) with probability amplitude b, and transmit as 
a quasi-partiele in the superconductor in two ways (kF+ks and -kF+ks) , with probability 
amplitudes c and d. As discussed in Section 2.3, the reflected hole (amplitude a, energy 
- E and k = -kF + kN) can also be displayed as an occupied hole-like state (amplitude a, 
energy E and k = kF- kN ). 
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Figure 20: Energy diagram for (a) a normal metal (with ~ = 0) and for (b) a 
superconductor with a finite ~' showing the allowed horizontal transitions for an 
incoming electron, marked '1'0 

In the normal metal, the solution of Equation 20 will have the form 

In the superconductor, the solution of Equation 20 will be of the form 

( 40) 

Since both kN as ks are small compared to kF, allpowersof e in equations 39 and 40 can be 
replaced by eikFx o At this point the mechanism for reflection enters the picture (introduced 
in Section 202) 0 In this section, an interfacial harrier was defined in the form of a delta­
Eunetion V(x) = W b"(x), with the dimensionless normalized strength Z = ~};~ 0 The 
interfacial scattering enters the BdG-equation via the boundary conditionso As required 
by standard boundary conditions [Gri95] , the wavefunction is continuous 

and its derivative obeys 

1/JN (O) = 1/Js (O) - 1/J (O) 

1/J~(O) -1/J~(O) = w2~ 1/J(O), n 

( 41) 

(42) 

as is appropriate fora 6-function potential with strength Wo Equation 21 and the boundary 
conditions allow to solve for a, b, c and do 

The probability A for Andreev reflection and the probability B for normal reflection 
are equal to lal 2 and lbl 2 respectivelyo The probability C + D for transmission as a quasi­
partiele equals 1 - (A+ B) since A+ B + C + D=l. Figure 21 displays the probabilities 
A and B for different Z-values, for which the formulas are given in Table 1. 

26 



A(E) B(E) 
General form 

E<t:.. 
,6_2 

1- A(E) E2+(Ll2-E2)(1+2Z2)2 

E>t:.. uijv6 (u~-v5)2 z2(1+Z2) 
12 1 2 

St rong harrier ( Z » 1) 
E<t:.. 

,6_2 
1- A(E) 4Z4(,6_LE2) 

E>t:.. u~v5 1- z2( L 2) Z4 (u~-v5)2 uo vo 

N/N-contact (6 = 0) 
0 z2 

l+Z2 

Table 1: Calculated probabilities A(E) and B(E) for an N/S contact in general, an 
N /S contact with high Z and an N /N contact. 

Calculation of the normalized conductance 

The current through the N /S contact can be calculated either in the normal metal or in 
the superconductor. The first option is chosen for convenience. Figure 22 summarizes the 
energetically allowed scattering processes for an incoming electron. The factor X represents 
the contribution of scattering processes in the superconductor. 

First the situation is considered at which no voltage difference over the contact is 
applied. Focusing only at the electron movement on the N-side, one can conclude that 
the current contribution diN,N-s of electrans with energy [E, E +dE], rnaving from the 
normal metalto the superconductor, is equal to 

diN,N-s = eAv(E)N(E)[1 + A(E)- B(E)]f(E)dE, (43) 

with e the electron charge, v(E) the electron velocity, N(E) the density of states, A the 
contact area and f(E) the Fermi-Dirac distribution. Note that the Andreev-refiected hole 
has a positive contribution to the current. 

Electrans which performed a transition from the superconductor into the normal metal 
also contribute to the N-current. Their contribution is 

diN,N+-S = -eAv(E)N(E)X(E)dE. (44) 

Since the net current diN(E) = diN,N-s(E) + diN,N+-S(E) equals zero if no voltage is 
applied, one can derive that X(E) = [1 + A(E)- B(E)]. 
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Figure 21: Probability for Andreev reflection (top) and for normal reflection (bot­
torn) for various values of the elastic scattering parameter Z. 
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Figure 22: Illustration of the currents flowing in the normal-metal side of the con­
tact. 

In case of a finite voltage eV, a net current will flow. Suppose that the normal metal 
is raised in energy by eV. Section 2.2 discussed that, assuming a ballistic contact, one can 
simply replace f(E) in Equation 43 by f(E- eV). The net current in the N-side is now 
given by 

IN,N-.s(E) + IN,s-.N(E) = 

eAv(E)N(E) [1 + A(E)- B(E)][J(E- eV)- f(E)]dE . ( 45) 

The total current is obtained by integrating diN(E) over all energies, resulting in 

IN= eA l v(E)N(E)[1 + A(E)- B(E)][J(E- eV) - f(E)]dE. (46) 

Since the function [f(E - eV) - f(E)] is nonzero only in a small region around Ep , in 
which the velocity and density of states can be regarcled as constants, one can extract 
N(EF) = N0 and v(EF) = Vp out of the integral. 

The conductance G N s = dl/ dV is given by 

GNs = - e2 AvpN0 l[1 + A(E)- B(E)]j'(E- eV)dE. (47) 

One can evaluate the same expression in case of a contact between two normal metals 
(N/N-contact). In this case ~=0 and Table 1 shows that A(E)=O and B(E) = 1/(1 + Z 2

). 

Equation 47 now reduces to 

( 48) 

It is popular to normalize the conductance GNs by the constant GNN· GNN can exper­
imentally be deduced from measurements on N/S cantacts since GNN = GNs(V » ~) . 
The formula for the normalized conductance is given by 

GNs(V) = GNs(V) = -(1 + Z2 ) r [1 + A(E)- B(E)]j'(E- eV)dE. (49) 
GNN GNs(V » ~) JE 

One can interpret the formula for the normalized conductance as that the function [1 + 
A(E) - B(E)] is probed at E = eV by the 8-function-like f', with varying eV . This is 
sketched in Figure 23. 

29 



2.0 

1.5 

1.0 

0.5 

0.0 

0 2 3 4 

E/t:. 

Figure 23: Illustration of the functions [1 + A(E) - B{E)] {with Z=0.25) and 
f'(E- eV) (normalized by factor -4) at T=l K and V=0.8D.. 

Various conductance-versus-voltage curves are displayed in Figure 24, at the two tem­
peratures 4.2 K and 1.5 K. Features around V ::::: .6. are, as expected, thermally smeared 
at 4.2 K with respect to the samefeatures at 1.4 K. The introduetion of Z seems to only 
decrease the normalized conductance at V < .6., and not at the regions V::::: .6. (this is most 
clearly visible at 1.4 K). This results in the creation of two maximaand one minimum. 

High-Z cond u etanee curves 

Table 1 displays the probabilities A(E) and B(E) for an N/S contact for high Z » 1. 
It follows that for such contacts, the electrons have a probability of almost 1 to reileet 
back into the metal, as expected. However, still a nonzero factor [1 + A(E) - B(E)] will 
contribute to a net current towards the superconductor. At IEl < .6., [1 +A- B]=O, but 
at IEl > .6. this factor is given by 

1 1 1 IEl 
1 + A ( E) - B ( E) ::::: Z2 2 2 = Z2 V . u0 - v0 E2 _ .6. 2 

(50) 

One can see that the obtained formula for [1 +A-B] is proportional to the superconducting 
density of states Ns(E), since the latter is given by Equation 25, namely 

N (E) IEl 
s "' V E2 - .6. 2 ' 

(51) 

and Ns(E) = 0 for IEl < .6.. Therefore, in the high-Z regime, Equation 47 can be rewritten 
as 

GNs "'L Ns(E)j'(E- eV)dE. (52) 

This result is identical to conductance curves through an N /I/S tunnel junction, for 
which a phenomenological theory [Bar61] derives the same conductance behaviour as Equa­
tion 52. Therefore, one can also use the term 'tunnel regime' for a point contact with high 
z. 
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Figure 24: Normalized conductance according to the BTK model at temperatures 
4.2 K (top) and 1.5 K (bottom) for various values of Z . 
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Andreev reflection Normal reflection 
Nonpolarized N /S contact 

E<!:::. A(E) B(E) 
100%-polarized N /S contact 

E<!:::. Ä(E)=O Ë(E)=1 

E>!:::. Ä(E)=O Ë(E) = l-l(E)B(E) 

Table 2: Probabilities A(E) and B{E) fora fully-polarized N/S contact, with A(E) 
and B(E) defined in Table 1 . 

3.3 The modified BTK model including spin polarization 

InSection 3.1, concerning the current through a polarized-normal-metal, the situation was 
approached by splitting up the current I in a current Ir carried by the spin-up electrons 
and a current I! carried by the spin-down electrons. In calculating the current through a 
polarized-N /S contact, the modified BTK model uses the same type of approach: the total 
current through the contact I consists for a fraction (1 - P) of a (nonpolarized) current 
carried by an equal number of spin-up and spin-down electrons, and for a fraction Pof a 
(fully polarized) current carried by electrons with only one spin orientation: 

I= (1 - P) · Iunpol + P · Ipol· (53) 

Determination of Iunpol and Gunpol versus V is discussed in the previous section. However, 
since Andreev reflection is impossible (A(E) = 0) for the electrons contributing to the 
polarized current, the probabilities B(E), C(E), and D(E) have to be renormalized by the 
factor 1/(1- A(E)). This results in a new set of probabilities, given by (see also Table 2) 

- - 1 0- = _1_0 - 1 
A=O, B=-AB, and D=-AD. 

1- 1-A 1-
(54) 

The two contributions to the current (Equation 53) result in a similar way in two 
contribution to the normalized conductance. Given a the degree of spin polarization P, 
this reads 

(
GNs) = p (GNs(A,Ë)) + (1 - P) (GNs(A,B)). 
GNN p GNN GNN 

(55) 

Figure 25 displays the influence of P on the conductance curves at two temperatures 
with Z=O. As P increases, the zero-conductance GNs(V = 0)/GNN decreases linearly by 
2(1 - P) (as explained by Equation 38). For P = 1, only normal reflection is possible 
at leV I < !:::., resulting in G Ns=O. Similar curves at T=4.2 K are plotted in Figure 26, 
however with Z-0.25 and Z=0.5. 

32 



CD 
(J 
c: 

2.0 

! 1.6 
(J 
::::s 
"C 
c: 

T = 4.2 K 
L1 = 1.5 meV 

z =0 

.. -··· ····· . ' 

--P = 0.0 
---------- p = 0.2 
........... ...... p = 0.4 

····--·--···· p = 0. 6 
···· ----- p = 0.8 
--·----- p = 1 . 0 

0 1.2 
0 ·· ..... 
"C 
CD 

~ 0.8 
m 
E 
11.. 
0 z 0.4 

0.0 

-6 -4 -2 0 2 4 
Bias Voltage [mV] 

2.0 --P = 0.0 
------ p = 0.2 T = 1.5 K 

..... .... . p = 0.4 

-·-·----- p = 0.6 
-··-··--·-- p = 0.8 

CD L1 = 1.5 meV 

~ 1.6 z = 0 ------------ , - \ (J \ 

------------· p = 1 . 0 ::::s I 

"C \ 
c 1.2 /.··· .... ..... ....... .... .. -··- \ 

6 

0 , . . ' 

0 J--ll:lliZI~~;;f:~&f~~t::~\ /<-:.:~:~~\iftb":llil-i t'ilt ~---1 
"C \ \ \ .'i/ 

·; 0.8 ~:~---_-::·_-A 
~ 0.4 \ / 

0.0 "-~------------------·' 

-6 -4 -2 0 2 4 6 
Bias Voltage [mV] 

Figure 25: Normalized conductance according to the modified BTK model at tem­
peratures 4.2 K (top) and 1.5 K (bottom) for Z=O and increasing P. 
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Figure 26: Normalized conductance according to the modified BTK model at 4.2 K 
and increasing P, for Z=0.25 (top) and Z=0.5 (bottom). 
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3.4 Fitting of measurements with the modified BTK model 

The entire measured conductance curve (not only (dl/dV)v=o) is fitted with the modified 
BTK model in order to extract values for the parameters ~' Z, P, and T. However, 
due to limited resolution in the measurements and a theory based on various simplifying 
assumptions, data will never perfectly overlap a theoretica} curve. Therefore, there is rio 
unique set of extracted parameters. In other words, there is a finite uncertainty volume in 
the parameter space. 

Analysis reveals that there are two regimes in which a small deviation between theory 
and measurements will result in an unacceptably large uncertainty volume in the parameter 
space. The first regime concerns measurements on contacts with ~ ~ kT. The second 
regime concerns contacts with high-Z (Z approximately larger than 1). This can beseen as 
follows. In case of~~ kT, the conductance maxima at V=±~ are severely broadened. 
Consequently, the difference in dependenee on P and Z is less clear. In case of Z » 1, the 
normalized conductance at zero bias is almost zero, regardless of P. Therefore, varying P 
will have negligible effect. 
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4 Experimental 

Over the past years, various techniques have been used to create a point contact. Figure 27 
summarizes the three most common contact schemes. The left image indicates how two 
materials can he deposited on a substrate (lithographic procedure) while forming a (point) 
contact [JacOO]. The second image shows two materials separated by an insuiting layer 
containing a nano-hole [Upad98]. A straightforward method to create a point contact is 
illustrated in the third image. Basically,- the contact is achieved by mechanically lowering 
a tip onto a sample. Mechanica! movement can he controlled by a micrometer mechanism 
[Blo83, Sou98, StrijOl] or by a piezo ceramic element. In the system described in this 
report the last option is chosen. This guarantees tip control on the Angstr0m scale, which 
is 1000 times smaller than the controlability obtained with the micrometer. 

Details concerning the piezo control electranies in the system, the contacting proce­
dure and the measurement electranies are well described in [KantOO]. The basics of the 
experimental setup and the contacting procedure will he shortly revisited in this chapter. 
Additional information on the piezo system, the cooling procedure and the preparation of 
the tip and sample will he given. 

4.1 Overview of the setup 

The main goal of the set up is to measure the current I through a contact as a function of an 
applied DC voltage V (four-probe measurement). However, more physical detailscan he 
extracted if not the I-V curve but the conductance curve dl/ dV-V is analyzed. A standard 
LOCK-IN technique enables direct measurement of the conductance curve. This is done by 
superposing an AC voltage signal over the DC voltage. The AC signal can he regarcled as 
a distartion dV (dV = csinwt) . The current as a function of the applied voltage (DC plus 
AC component) can, via a Taylor expansion, he written as I(V + dV)=I(V)+ :~dV + ..... 

Sample 

(a) (b) (c) 

Figure 27: Point cantacts realized by means of lithographic procedures (a), depo­
sition onto bath sicles of an insulating membrane containing a nanohole (b) and by 
mechanically lowering a tip onto a sample ( c). 
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Figure 28: Schematic overview of the cryogenic part with the vibration insulation. 

By neglecting higher-order terms one can retrieve 

I(V + csinwt) ~ I(V) + :~vsinwt. (56) 

The LOCK-IN amplifier is sensitive for the AC signalat frequency w only. Therefore, the 
LOCK-IN's output is proportional to dl/ dV. 

The setup is represented in Figure 28. The point contact is formed through the piezo 
system. This system, suspended by a rnass-spring system to reduce vibrations, is located 
in a vacuum chamber which is part of the insert. The chamber is emerged in a liquid 4He­
bath and filled with the exchange gas for thermal contact between piezo system and the 
liquid He. A superconducting coil can generate a magnetic field up to 3 Tesla. However, 
during the present experiments no field is applied. The cryostat itself is also isolated from 
vibrations due to attached springs. 

4.2 Contact formation by the piezo system 

One unique characteristic of the setup is the precise controllability of the tip and sample, 
made possible by the piezo system showed with more detail in Figure 29. A piezo element 
has the characteristic that if a voltage is applied, the element will expand or shrink. The 
piezo elementsin this setup give a change in lengthof several J-Lm u pon applying 500 V. This 
gives a controlled movement on the order of several Angstr0ms. This, and the vibration 
insulation, allows gentie formation of the contacts. 
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Figure 29: Schematic cross-section of the piezo system. 

Stick-slip mechanism 

The so-called stick-slip mechanism allows the sample holder to move over an unlimited 
range. Basically, one stick-slip action consists of the following two steps. 1) The coarse 
piezo is fully retracted, bringing the sample several J-lm closer to the tip. 2) The voltage 
over the coarse piezo is suddenly reduced to zero so that the piezo expands back to its 
originallength. However, this time interval is too short for the sample holder to follow the 
withdrawing movement. A slip is initiated, resulting in a coarse piezo back in its original 
position and a sample holder several 11m more close towards the tip. 

Important for reliable sample holder movement is the 'low friction' sapphire/quartz 
contact between the sample holder and the table. In the first design of the piezo system, 
there was a direct contact between the copper sample holder and quartz table. Due to 
insufficiently low friction, the stick-slip mechanism was unreliable. The modification of 
adding sapphire spheres seems to be crucial. 

Contacting procedure 

At the beginning of the experiment, the sample and tip are separated several mm, and a 
'coarse approach' procedure is initiated, which consists of the following three actions: 

1. The fine piezo is expanded until a tunnel current of 80 pA is measured or until 
maximum expansion is realized. 

2. If the fine piezo reaches its maximum expansion without sensing any tunnel current, 
the fine piezo is retracted to its original position. 

3. The discussed stick-slip mechanism takes place. This subroutine consists of slow 
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1 

Initial position 

step 1: Fine piezo expands 
until tunnel current is sensed 
or maximal expansion is achieved 

step 2: If no tunnel current is 
sensed, the fine piezo retracts 

step 3: A stick-slip action for the 
coarse piezo is initiated 

Figure 30: The three sketched steps indicate the actions taken during one 'coarse 
approach' procedure. The procedure is repeated until a tunnel current is sensed. 

retraction and quick expansion of the coarse piezo and results in a net movement of 
the sample towards the tip. 

The coarse approach continues until the tunnel current of 80 pA is measured and is 
automated and controlled by computer. There are several moments at which this procedure 
is initiated. At room temperature, in open air, this procedure will test the approach and 
bring the tip towards the sample. After succeeding in this, the sample is withdrawn 
from the tip (circa 500 reversed stick-slip actions). This is necessary due to accidental 
displacement of the sample during installat ion of the insert in the cryostat. This instanation 
is foliowed by the second 'coarse approach' procedure (now in vacuum). After reaching 
the tunnel regime the sample is withdrawn only a few steps to anticipate vibrations and to 
prevent the premature formation of a point contact. The cooling process is now started. 
If no further testing would be performed, tens of thousands of stick-slip steps are needed, 
resulting in a time consuming coarse approach procedure for joining sample and tip at low 
temperature. This is a direct result of temperature dependent expansion and retraction of 
the piezo elements. To evereome this problem the coarse approach procedure is initiated 
for the third time at an intermediate temperature T :::::::100 K. 

In order to make the contact as gentie as possible, tunnel regime is used as a reference 
position. If a 80 pA tunnel current is measured at a 800 m V-bias voltage (R=lO GO), it 
is known that, for clean oxide-free surfaces, the tip is separated from the sample several 
AngstnZlms. For such surfaces, expansion of the fine piezo will bring the tip and sample 
closer together, resulting in a smooth increase in current. However, discrete jumps are 
observed. This can be explained through the existence of an oxide layer between tip and 
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sample. If the resistance has dropped to 1-1000 n, it is believed that the tip has penetrated 
the oxide layer and that the metallic contact is formed. 

By pushing the tip through the oxide, the tip will be plastically deformed. It can 
become blunt and therefore the probability to obtain contacts which have a radius smaller 
or comparable to the mean free path is reduced by the preserree of the oxide. This probal::>ly 
explains why circa 75% of the measurements produce conductance curves that do not 
resembie curves predicted by the modified BTK-model, which is valid for ballistic contacts 
only. 

4.3 System cooling 

After the insert is lowered into the cryostat, the vacuum chamber is pumped down to 
remove all air, foliowed by injecting exchange gas. This gas realized the thermal contact 
between the piezo system and the helium bath. Liquid 4He can be transported from a 
storage dewar into the cryostat. The temperature in the vacuum chamber will reach 4.2 K 
(the boiling temperature for liquid 4He). 

There are several reasons why measuring at 1.4 Kis preferred. 1) The liquid 4He at 4.2 
K, surrounding the vacuum chamber, has a relatively low thermal conductivity, resulting in 
vibrations due to boiling. At 1.4 K, the liquid 4He is superfluid (À-temperature T>. = 2.18 
K) and boiling occurs without bubbles due to relatively high thermal conductivity and 
vibrations are reduced. 2) At a lower temperature, the thermal smearing will become less. 
This is accompanied by 'sharper' measured conductance curves so that fitting will yield 
more accurate fitting parameters. Below it is classified how this lower temperature can be 
realized. 

Consider the liquid/vapor 4He-bath. Removal of 4He-vapor by means of pumping will 
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Figure 31: Pressure of the vapor in a vapor /liquid system for 4He, taken from 
[Pob96] (note the T=4.2 Kat p=l bar). 
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Pb Nb 
type I II 

~ [meVJ 1.37 1.53 
Tc [KJ 7.19 9.50 

Hc(l) [kA/m] 63.9 128 
Ç [nm] 83 38 

Table 3: Bulk properties of the superconductors Pb and Nb, taken from [Kit96]. 

result in a reduction of the vapor pressure with a corresponding reduction of overall tem­
perature. After a while, an equilibrium vapor pressure has established because the same 
amount of vapor that is pumped away is supplied through evaporation. Due to the presence 
of the contact gas in the closed chamber, the temperature inside the chamber will drop 
as well and the original gaseaus contact gas will condensate: a new closed liquid/vapor 
system is formed . Measurements done on a comparable closed 4He liquid/vapor system 
result in the curve in Figure 31. The setup uses a rotary pump with a pumping capacity 
of 200 m3 /hour that can reduce the vapor pressure to circa 4 mbar which corresponds to 
a temperature of 1.41 K. 

4.4 Tip and sample preparation 

In all experiments described in this report, lead (Pb) or niobium (Nb) tips are used. The 
bulk values for the superconducting bandgap ~' coherence length Ç, critical temperature 
Tc, and the critical field H c(l) are displayed in Table 3. 

In order to form a point contact, a tip has to be prepared with a sufficiently small 
radius of curvature (see Section 2.2). Three different methods for realizing this sharpness 
are mechanically polishing, cut-and-pull, and a 'tilted-sample' tip. These methods are 
described below. 

A mechanically polished tip is prepared by damping a 1-mm wire into a drill. The 
rotating wire is then softly pressed to a fine structured piece of sandpaper ( ~1 grain/ pm2) . 

Subsequently, the tip is examined under a microscope to check that the radius of curvature 

Tilted-sample tip Substrate 

J 

Sample 

Figure 32: Schematic representation of a 'tilted-sample' tip. 
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Figure 33: Four SEM-irnages taken on the same tip (prepared by cut-and-pull), 
with increasing magnification. 

is less than 1 J-lffi. Some measurements using tips prepared in this way have been successful, 
meaning that the obtained dl /dV-V curves are consistent with the modified BTK model 
(Chapter 3) which is only valid for contactsin the ballistic regime. The tips obtained with 
this method are well defined (sharp polished end) but, since the tip is polished against 
structured surfaces, it is not perfectly clean. 

A similar tip contiguration (however faster and easier to prepare) is obtained through 
the so-called cut-and-pull method. A 1-mm wire is simple cut by a pair of scissors. A 
pull is enforced just before the wire is split in order to create a clean surface. Although 
the tip is not well defined, small 'mini-tips' on the surface are always present and provide 
the demanded radius of curvature. SEM-irnages confirm the presence of 'mini tips' with a 
curvature a :::;100 nm (Figure 33). Also attempts with such tips have been successful. 

A third attempt for sharp-tip configurations consists of evaporating a thin (100-1000 
Á) Pb-layer on top of a substrate. By tilting the film, (Figure 32), the radius of curvature 
must be lower than the Pb-layer thickness, at least in two dimensions. Such tips are both 
well defined and clean. However, measurements do not resembie the theoretica! predicted 
curves in the ballistic regime (BTK model). Microscope images taken before and after 
measurements reveal that the Pb-layer has crumbled off, probable due to bad adhesion 
of Pb to the substrate. This can result in a contact between the substrate part of the 
'tilted-sample' tip and the sample. To date, tips of these kind have not been successful. 

Samples prepared by various techniques have been used. One technique concerns the 
use of a bulk metal, that has been chemically treated in an attempt to obtain a smooth 
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surface. Other samples are prepared by sputtering the metal onto a substrate, and (in 
some cases) an additional capping layer of Au was deposited since. Au is believed not to 
oxidize. Since no correlation between sample preparation and the chance of a successful 
measurement is found, no further attention to sample preparation is given. 
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5 Results 

This section will only focus on those cantacts that resembie curves in agreement with the 
modified BTK model (valid in the ballistic regime). The first two sections give a general 
overview of the experiments. Section 5.3 discusses the relation of the spin polarization 
on the interfacial scattering. Also the superconducting bandgap seems to depend on the 
contact properties, which will be treated in Section 5.4. The (partial) destruction of su­
perconductivity is shown for a series of measurements in the last section. 

5.1 General measurement phenomena 

Section 4.2 argued that the presence of an oxide layer complicates the formation of bal­
listic or quasi-ballistic contacts. This section focuses only on those measurements that do 
resembie the modified BTK-model (Chapter 3) , which is valid only in the ballistic regime. 

All conductance curves are normalized with respect to the constant conductance mea­
sured at leV! » .6.. The fits are carried out while allowing variation of all parameters 
{T, .6., Z, P}. Generally, the temperature T obtained from the fit is higher than the experi­
mental temperature (4.2 Kor 1.4 K), as is shown in two typical measurement in Figure 34. 
In [KantOO], the following explanation for this effect is proposed. The bandgap is modeled 
to increase abruptly from 0 in N to .6. in S. However, in reality the interface is smeared 
and its effect can lead toanapparent T higher than the experimental T. Another possible 
explanation is the effect of local heating due to the current through the contact. In the 
coming sections, no further notion is given to the deviation between fitted and experimental 
temperature. 

Figure 34 also indicates the presence of excess conductance with respect to the BTK 
model, starting at leV I/ .6. ~ 1 - 2 and ending at Ie VI/ .6. ~ 4 - 5. Several possible 
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Figure 34: Two representative curves for a Cu/Nb and Au/Pb contact , measured 
at 4.2 K and 1.4 K respectively. The solid line through the data points is a fit with 
the modified BTK model. The fits do not use the complete measured curve, as shown 
in the insets . 
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Figure 35: Measurements on two Co/Nb cantacts and (for reference) on a Au/Nb 
contact. The reduction in normalized conductance for Co/Nb is a consequence of its 
nonzero spin polarization. The solid curves represent the fits with the modified BTK 
model 

explanations for this effect can be given. First of all, the formed contact can have a radius 
a comparable to the mean free path l, while the modified BTK model assumes a « l. 
Furthermore, the BTK-model includes only elastic scattering and no inelastic processes. 

5.2 An overview of measured and fitted conductance curves 

Measurements on nonpolarized- and polarized-N /S contacts 

Measurements on cantacts Co/Nb and Co/Pb cantacts (ferromagnetic Co is known to 
have a nonzero spin polarization) show curves like the ones plotted in Figure 35. The fits 
with the modified BTK model indicate a difference in P for the two Co contacts. This 
phenomenon will be discussed in Section 5.3. To highlight the infiuence of the polarization 
on the normalized conductance, a measurement of Nb on Au is shown also. As expected, 
the fit for the Au/Nb contact yields P = 0.00. Note that the value P = 0.000 .. is frequently 
extracted from fits, since it represents the lower boundary of the P-domain (0 :SP :S 1). 

Measurements in the high-Z regime 

Several measurement have shown conductance curves as in Figure 36, with a relatively 
high resistance (70 H2) and a relatively high extracted value for Z (Z = 2) . It is believed 
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Figure 36: Conductance curvefora Au/Pb contact (note the high resistance!) with 
probably a thin oxide layer at the interface (N/1/S contact). Such a contact can be 
also represented as an N/S contact with high Z, as is confirmed by the BTK fit (solid 
line). 

that for such contacts, a thin oxide layer still exists between tip and sample. Since the 
conductance at V =0 has a nonzero value, one can not compare this contact regime with a 
high-quality tunnel junction, where the conductance is zero at subgap voltages. 

A measurement series on one stabie contact 

Several series of conductance curves on the same stable contact have been measured. One 
series of experiments that this was possible, concerned measurements on Co/Nb contacts. 
By varying the tip pressure, circa 15 curves were obtained. Four of those curves are 
displayed in Figure 37. Their fits show a change in values for R, L}., Z and P, which will 
be part of the discussion in the coming sections. 

5.3 Dependency of interfacial scattering on the DSP 

The four curves plotted in Figure 37 suggest that there is a correlation between P, R, 
and Z. According to R = R0 (1 + Z 2 ) (Equation 12) for 0.4 < Z < 0.5, a change in R 
of several percent is expected. However, a change of 100-400% is observed, see Figure 38. 
Apparently, for the series of measurements performed on this contact, the infiuence of Z 
on R is negligible and the differences in R are probably a result of the changing contact 
radius a. The question now is , does P depend on Z, on R (and thus a), or on a combination 
of both? 

The values for P extracted from the previously mentioned Co/Nb series, as well as 
the values obtained from all other measurements on Co, are plotted as a function of R 
and Z in Figure 39. It seems that there is no correlation between P and the resistance 
(left plot). However, as a function of increasing Z , the spin polarization tends to decrease 
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Figure 37: Four conductance curves, part of a series of measurements performed on 
one stabie contact (Co/Nb). The solid lines represent the fits with the modified BTK 
model. 

to zero, as is illuminated by a guide to the eye. Strijkers [StrijOl] observed the same 
phenomenon (see Figure 40. He suggested that the interfacial scattering is accompanied 
by an increase in spin-flip scattering. Although so far no theoretica! base has been given, 
one can expect that, since spin-flip scattering tends to balance the number of spin-up and 
spin-down electrons, a lower P should be measured. To Figure 40, the 'guide to the eye' 
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Figure 38: The series of curves on the stabie Co/Nb contact yieid the piotted R-Z 
correiation. 
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Figure 39: If one plots P versus R (left), no correlation can be found. However, P 
versus Z (right) shows a decrease of spin polarization at higher harrier strengths Z. 

from Figure 39 is appended. 
In order to give the intrinsic spin polarization of Co, one should use the value dosest 

to Z = 0. Since it is not completely sure that the contacts are in the ballistic regime, one 
can not say that this spin polarization is purely the PNv, as defined in Equation 5. 

5.4 Observation of decayin the superconducting bandgap 

The four representative curves in Figure 37, part of a measurement series on Co/Nb, 
indicate a decay in the bandgap as a function of resistance R. The intuitive model presented 
in Section 2.5 attributes such behaviour to the fact that the contact radius a is smaller 
than the coherence length Ç. In Figure 41, the extracted values for .6. are plotted as a 
function of R. 

The solid line in Figure 41 is a fit with Equation 36. The parameters p1 and p2 are 
defined in Equation 37 and their extracted values are 0.86±0.03 meV and 0.8±0.1 n-112 

Figure 40: Relation between P and Z as observed by Strijkers et al [Strijül], indi­
cating a decrease in P with interfacial scattering Z. The 'guide to the eye' , drawn in 
Figure 39, is appended as reference. 
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Figure 41: Illustration of the decay of the bandgap b.. as a function of resistance, 
for a Nb tip on Co. The solid line is a fit with the geometrical intuitive model. 

respectively. 
It is impossible to solve ~0 , Ç and () from the two extracted values for p1 and p2 . How­

ever, one can give an estimation for 0. For 30° < () < 60° one obtains 1.0 < ~0 < 2.3 meV 
and, by using the ballistic approach aVR=20 nmvfn, 9 < Ç < 27 nm. The extracted values 
are in reasonable agreement with the bulk values ~=1.5 meV and Ç=38 nm, certainly in 
view of the simplicity of the model. 

5.5 Destruction of superconductivity due to generated fields higher 
than the critica! field 

It was introduced inSection 2.4 that the current , at voltage Vc, through a superconducting 
tip can generate a field H > He. One series of measurements (Pb on Au) shows the 
existence of the voltage peaks and is plotted in Figure 42. The curves are measured with 
the same tip and the tip-pressure is varied to realize cantacts with various resistances. In 
other words, the series is not the result of a continuously increasing tip-pressure. 

The figure clearly shows a decrease in Vc for decreasing resistances. The 350 0-contact 
has a resistance that is too high for observation of Vc within the 5 meV-voltage range. lf 
one disregards the critical peaks, the conductance curves can be reasonably fitted with the 
modified BTK model (solid lines). This suggests that the cantacts are ballistic (a « l) or 
quasi-ballistic (a~ l). 

The model proposed in Section 2.4 prediets that for the position of the voltage peaks 
obey the correlation Vc = kv'R + V0 . The measured values for Vc and v'R are plotted in 
Figure 43. The linear fit yields k = 0.21 ± 0.04 me V /0112 and V0 = 0.9 ± 0.2 me V. 

From the slope k, the critical field can be calculated using Equation 31 and 
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Figure 42: A series of conductance curves measured on one Au/Pb contact, showing 
the destruction of superconductivity at ± Ve. As the resistance decreases, the position 
of Ve shifts towards V = 0. The solid lines represent the fits with the modified BTK 
theory. 

aVfi c:::::20 nmv'n, resulting in He=l.7 kA/m. The bulk value for Pb is given by 64 kA/m, 
which is factor of 30 higher than the observed He. A possible explanation for this is 
influence of the tip geometry on He. Westbrook and Javan measured with a normal tip 
(W) on a superconductor (Ta) a reduction of 2 for the He. One must realize that the 
influence of the geometry on He for an S-tip on an N-sample can be completely different 
than for an N-tip on an 8-sample. 

As a check of consistency, one can extract the mean free path from the measured value 
V0 , providing that an estimation of Iexe(ll)R can be given. Figure 44-(a) and (b) shows 
the extracted values for èl and Z as a function of R. One can roughly conclude that èl and 
Z are constant, resulting in the condusion that also Iexe(ll)R can be regarcled constant 
in all curves. lts value is extracted from I- V data and gives Iexe(ll)R ~ 0.1 meV. This 
value and the extracted He can give an rough estimation for l, namely l=2-3 nm. This 
value is consistent with the assumption of a quasi-ballistic contact, since the values of RN 
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Figure 43: The plot displays the values of Vc versus VR, to which a linear fit is 
applied. 

correspond to contact radii on the order of several nm. 
Not all cantacts show similar critical peaks. One explanation for this is that for most 

contacts, the He is too high for the peaks to lie within the measurable range. Probably, the 
shape of the Pb-tip used forthese specific measurements has a rare and 'special' geometry. 
This can also explain why for this contact a decay in bandgap versus R is not observed, 
since probably the geometry differs too much form the cone-shaped tip used in the intuitive 
model presented in Section 2.5. 
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Figure 44: The extracted parameters ~ (left) and Z (right) as a function of the 
Au/Pb contact resistance R. In a rough approach, ~ and Z can be considered 
constant. 
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6 Conclusions and Suggestions 

The most important condusion that can be drawn from all performed measurements, is 
that the realization of (quasi-) ballistic N /S cantacts is not a controlled process and is 
accompanied by a small chance of success. Since tip and sample are prepared in open air, 
the presence of an oxide layer is unavoidable. The superconducting tip has to penetrate 
this layer be means of severe increase of tip-pressure, which is accompanied by deformation 
of its end and/or the creation of a blunt tip. The majority of the measured conductance 
curves does notresembie the modified Blonder-Tinkham-Klapwijk (BTK) model (valid in 
the ballistic regime), but shows features probably related to transport phenomena in the 
so-called mesoscopic regime (a> l, with a the contact radius and l the electron mean free 
path). Since both tip and sample are believed to be deformed in the contact formation, 
studies on thin (10-100 A) metallic films seem not possible. Also, the idea of capping 
the metallic layer by Au (Au is believed to contain no oxide layer) , does not improve the 
succes in formation of a (quasi-) ballistic contact. This suggests that tip preparation is 
more important than important than sample preparation. 

However, still a number of N/S point cantacts have successfully been realized, both 
on nonpolarized as well as on polarized normal metals. The obtained results are in the 
ballistic (a « l) or quasi-ballistic (a ~ l) regime. 

The measurements show that the extracted degree of spin polarization (P) on Co 
cantacts decreases as a function of the elastic scattering parameter Z, from P ~ 0.40 at 
Z = 0.2 to P ~ 0.15 at Z = 0.5. This can be understood if one relates an increase in Z 
to an increase in spin-flip scattering, which levels out a difference in the number of spin­
up and spin-down electrons. More insight in this behaviour can be acquired if one could 
extract values for P at Z < 0.2 and Z > 0.5. Another chaUenge is the understanding of 
the physics behind spin-flip scattering and its influence on P. 

Another result is obtained on various measurements on a single stabie Co/Nb contact, 
while increasing the tip-pressure (and therefore increasing the contact size). Am exponen­
tial decay in the extracted superconducting bandgap b. is observed if one plots b. versus 
1/ VR, with R the contact resistance which is directly related to the contact radius. This 
exponential decay reasonably matches an geometrical intuitive model , based on the fact 
that the Cooper pairs (with characteristic length Ç) do not fit inside the sharp end of 
the tip. In fact, a fit with this model extract parameters for .0.0 and Ç, which have com­
parable magnitude to bulk values. This interesting result has not been reproduced yet. 
Furthermore, future research can focus on a more profound theoretica! basis. 

If the tip has a sufficiently low critica! field He, the destruction of superconductivity is 
observed at voltages ± Vc within the measurable voltage range. Conform the Westbrook­
Javan model, measurements on Au/Pb cantacts showthereis a linear dependency between 
Vc and VR. The slope yields information about He, while the offset at R = 0 can give an 
estimation for l. Westbrook and Javan founded their model to measurements of an N-tip 
on an S-sample! They extracted a He that is twice as smallas the bulk value. However, an 
S-tip on an N-sample is probably accompanied by a larger reduction of the critica! field. 
This, combined with a possible 'special' tip geometry, can explain why the extracted He, 
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for the measurements described in this report, is 30 times smaller than the bulk value. The 
reason why the tip geometry is believed to play a role, is because other N /S centacts (even 
low-Ohmic contacts) do not show the destructien of superconductivity. Apparently, the 
He ( and therefore Vc) is too high to be realized within the measurable regime. Studying 
the critica! field of a superconductor in proximity with a normal metal with this method 
deserves more attention, specially because in the last couple of years proximity effects have 
gained significant interest. 

In order to increase the chance of succes for formation of (quasi-) ballistic contacts, and 
to minimize tip and sample deformation in the process, still the correct method for tip 
preparatien has to be found and accordingly a better yield of succes can be expected in 
the future . One idea is giving an additional chemica! treatment to the tip after it has 
mechanically been polished, resulting both a well defined and clean tip. 

Needless to say, the ideal experimental setup for this type of measurements would be 
in-situ Low temperature STM, capable of performing four-probe measurements, which is 
necessary for centacts in the range 1-1000 n. 
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