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Abstract

In order to study spin polarization via the phenomenon of Andreev Reflection at a
normal-metal /superconductor (N/S) interface, current-voltage measurements have been
performed on ballistic N/S point contacts. A piezo system realizes the contact formation
by approaching a superconducting tip onto a sample. This report focuses only on those
results that resemble the modified Blonder-Tinkham-Klapwijk model, valid for ballistic
contacts. By fitting the measurements with this model, one can extract the superconduc-
ting bandgap A, the parameter Z which incorporates interfacial scattering, and the degree
of spin polarization P.

Measurements on Co/Nb and Co/Pb contacts yield P ~ 45% (as observed by other
groups) for contacts with low Z. However, the measured P decreases for contacts with
higher Z, which can be attributed to enhanced spin-flip scattering in this regime.

Furthermore, a measurement series on a single Co/Nb contact shows an exponential
decay in the bandgap as a function of contact resistance. This effect is confirmed by an
intuitive model, based on the idea that the superconducting Cooper pairs are confined by
tip geometry with a sharpness on the scale of the coherence length.

Measurements on Au/Pb show that the current through the contact is able to generate
fields larger than this critical value. The observations are consistent with the model pro-
posed by Westbrook and Javan, allowing to obtain an estimate for H., which is about 30
times smaller than the bulk value.
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1 General introduction

1.1 Magnetic nanostructures

The main subject discussed in this report is part of a large and growing field of research,
namely the physics of magnetic nanostructures. Over the past two decades new develop-
ments in deposition technology made this field of research attractive for further investiga-
tion [Strij99].

The giant and tunneling magnetoresistance effect

Two major breakthroughs in the field were the discovery in 1988 of the giant magnetoresis-
tance (GMR) effect and the first demonstration in 1995 of the tunneling magnetoresistance
(TMR) effect. The basics of the GMR effect [Bai88] are shown in Figure 1. A current,
consisting of spin-up and spin-down electrons, enters a system of two magnetic layers se-
parated by a non-magnetic layer. The relative orientation of the electron’s spin with respect
to the magnetization plays a crucial role in determining the resistance of the structure. If
this spin/magnetization orientation is parallel, few scattering events will occur, resulting
in a low resistance. A high resistance is the result of an anti-parallel spin/magnetization
orientation, since at this orientation many scattering events occur.

A second crucial part for existence of the GMR effect is the orientation of the magne-
tizations of the two magnetic layers. If the directions of magnetization are anti-parallel,
the total resistance will end up higher than in the parallel case. This can been seen if one
calculates the equivalent resistance for the two schemes in Figure 1. For the equivalent resis-
tance in the parallel magnetization scheme, one can deduce Rp = (2RsmauRiarge)/ (Rsmau +
Riarge). In the anti-parallel case, this corresponds to Rap = (Rsmau + Riarge)/2. Simple
calculations can prove that R4p > Rp (one channel is shorted in the parallel case). The
existence of this resistance difference is referred to as the GMR effect, and the convention
for its magnitude reads GM R(%) = (Rap — Rp)/(Rp) - 100.

Anti-parallel Magnetization Parallel Magnetization
high equivalent resistance low equivalent resistance

o
-
\,
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jl

Figure 1: Illustration of spin-dependent scattering and its consequence (GMR ef-
fect). Spin-up and spin-down electrons traverse two magnetic materials separated
by a non-magnetic layer. The amount of collisions determines the magnitude of the
resistance in the two resistance schemes (the magnitude is represented by size).
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Figure 2: Illustration of the origin of the TMR effect. Two magnetic materials (the
distribution of majority and minority spins is 75%-25%) are separated by an insulator.
A parallel orientation of the two magnetizations results in a higher conductance than
an anti-parallel orientation.

The demonstration of the TMR effect [M0095] shows two magnetic materials, separated
by an insulating layer (Figure 2). As is valid for all magnetic materials, the electrons that
contribute to the current are not equally distributed over the two spin orientations (the
number of spin-up electrons N; is not equal to the number of spin-down electrons N|). In
the example of Figure 2, the spin orientation parallel to the magnetic field has a majority
population of 75%.

In spite of the existence of an insulating barrier in the system in Figure 2, a current
can flow due to electron tunneling. Following the simplified approach by Julliere [Jul75],
the chance that an electron with spin ¢ can tunnel through the barrier is referred to as the
tunneling probability T, and is given by T, ~ NZLe/t . NRight Therefore, the conductance
contribution G, = % of a certain spin orientation reads G, ~ fof t. Gright Calculating
the total conductance G = G1+G|, one will find a higher value in the parallel orientation of
the two magnetic layers than in the anti-parallel orientation. Therefore, the resistance Rp
in the parallel orientation is lower than the resistance R4p in the anti-parallel orientation.
This difference is referred to as the TMR effect and a magnitude for the effect is given by

TMR(%) = £ae=Ee . 100,

Rp

Application of the effects

The ability to externally switch the orientation of the two magnetic layers (in both the
GMR and TMR effect), is crucial for various attractive industrial applications [Pri95]. The
switching simply alters the resistance of the structure. Roughly spoken, one can use the
dependency of the resistance to the relative magnetic orientation as an effect to read or
write bits (a high or low resistance can symbolize a 0 or 1).

GMR structures are used in the newest generation of hard-disk read heads, and the
TMR structures are currently being developed for the non-volatile storage of information
in a so-called magnetic RAM. The term 'non-volatile’ indicates the conservation of infor-
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mation, even if no power is supplied to the system.

1.2 Spin Polarization
Spin polarization in the GMR and TMR effect

The previous section introduced two interesting effects, both concerning electron movement
in magnetic structures. The physics behind the effects is far more complex, and for a great
deal not understood yet. One subject that is of importance is the so-called spin polarization
of the magnetic materials. A material is spin polarized if the number of spin-up electrons
N; that contribute to the current is not equal to the number of contributing spin-down
electrons N|. As will be discussed in the next paragraph, only electrons with energy equal
to the Fermi energy Ep contribute to the current. A frequently used formula for the
magnitude of spin polarization (or the degree of spin polarization) Py is given by

_ Ny(Er) — N((EF)

PN = N(Br) T N,(Br) @

All known magnetic materials have a degree of spin polarization Py # 0. An upper-
bound for | Py| is realized in a magnetic material in which all electrons have the same spin
orientation, and is given by |Py| = 1.

Spin polarization at the Fermi level

One might wonder why the electrons with Fermi energy play the crucial part in the defi-
nition for Py, and not electrons with lower (other) energies. The following approach gives
insight to the answer. Electrons in a metal are distributed over all energies £ according
to the Fermi-Dirac distribution f(FE), plotted in Figure 3. The interval over which the
function f(F) drops from 1 to 0 zero is characterized by a width kT, with k=86 pueV/K
and T the temperature. The transport of the electrons through the material (i.e. the
current) is dependent on (a) the energy of the electron, (b) the chance f(E) this energy
state is occupied and (c) the chance 1-f(E) a similar state is empty. The previous results
in the equation: I(E) ~ f(E)-[1 — f(E)].

The function f(E) - [1 — f(F)] is plotted in Figure 3 (T'=293 K and Er=5 eV). The
curve shows that only electrons with energy |E — Ep| < kT contribute to the current.
Since even at room temperature kT/Er<1, one can replace the condition |F — Er| < kT
by E ~ Ep. Therefore the degree of spin polarization (DSP) at this energy level is of key
importance.

Direct methods for probing the spin polarization

Application of spin polarized materials automatically leads to the need of being able to
directly measure its magnitude. In this respect, techniques relying on magnetic switching
(as discussed previous) are examples of indirect probing methods and do not satisfy this
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Figure 3: Construction of the function f(E) -[1 — f(E)] at room temperature, with
f(E) the Fermi-Dirac distribution. Even at room temperature (kT'~25 meV), only
electrons with energy approximately equal to the Fermi energy (typical Er =5 eV)
contribute to the current.

need. Furthermore, these techniques involve two magnetic materials with all additional
problems associated (physics not well understood).

For the direct measurement of the spin polarization, three methods are used, namely
Spin-polarized Tunneling, Andreev Reflection and Electron Photo-emission (Figure 4).

With the latter technique, electrons with energies within a tunable energy range are
scattered out of the metal. A Mott detector (named after Sir N.F. Mott) counts the number
of spin-up and spin-down electrons separately. A disadvantage of this technique is the poor
(with respect to the two other techniques) energy resolution that is obtained. Furthermore,
the setup for the Mott detector is large and complex.

The two other techniques are based on conductance measurements. In such exper-
iments, the conductance dI/dV through a system is measured as a function of applied
voltage V. Comparing the measured data with theory, one can extract the degree of spin
polarization. Spin-polarized Tunneling requires a magnetic field of several Tesla, pumped
liquid *He-temperature (typically 0.3 K) and "high quality’ tunnel junctions [Mes94]. The
values for the field B and temperature 7' are the consequence of measuring the Zeeman

Spin-polarized Tunneling Andreev Reflection Electron Photo-emission
' ' Polarized Metal
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Figure 4: Three methods for probing spin polarization in a normal metal.



splitting B, which is experimentally only possible if uB > kT (u=60 peV/Tesla and
k=86 peV /Kelvin).

The contents of this report discusses Andreev Reflection. With this method one mea-
sures the conductance through a point contact between a superconducting metal and a
normal metal. A point contact is defined as a contact with a small radius a compared to
the electron’s mean free path | (a < [). Determining the DSP from conductance curves
requires kT < A (see Section 3.4), with A the superconducting bandgap, to be introduced
in Section 2.3 (typically A~1 meV). Liquid *He-temperatures (typically 1.2-4.2 K) satisfy
this demand. A restriction to this technique is the fact that only the magnitude of the spin
polarization can be determined and not its sign (one can not determine if the majority
spin has orientation spin-down or spin-up).

1.3 Andreev Reflection

The idea of using Andreev Reflection [And64] for probing spin polarization was first pro-
posed by de Jong and Beenakker [Jong95]. Andreev Reflection occurs at the boundary
of a normal metal and a superconducting metal. The origin of the effect can be found in
the fact that, in a simplified picture, electrons in a superconductor are obliged to form
pairs, the so-called Cooper pairs. A Cooper pair consists of a spin-up and a spin-down
electron, both with equal but opposite momenta. What happens to the electrons in a
normal metal when they reach the boundary with a superconductor is shown in Figure 5.
Coming from a nonpolarized normal metal (N;(Er)=N,(EFr)), a spin-up electron can eas-
ily find a spin-down electron and form a Cooper pair in the superconductor. Consequently,
a relatively high current can flow. The pair-forming process is called Andreev Reflection
since the process of combining of the initial and second electron is equivalent to reflection

polarized nonpolarized
normal metal  Superconductor normal metal superconductor

normal reflection Andreev reflection
"low" current "high" current

Figure 5: Electrons coming from a 100%-polarized normal metal (left) can not form
Cooper pairs, which makes Andreev Reflection impossible to occur. At the interface
between the superconductor and a nonpolarized normal metal (right), Andreev Re-
flection has its maximum chance of occurrence and the current flowing through this
system will be relatively high.



of the initial electron as a hole. In a nonpolarized-N/S contact it has a maximum chance
of occurrence. However, the spin-up electrons in a highly polarized normal metal have a
hard time pairing with a spin-down electron for the simple reason that spin-down electrons
hold the minority. In this case, Andreev Reflection has a small chance of occurrence and
the electrons coming from the polarized normal metal are forced to reflect back. In other

words: the magnitude for the current though a normal-metal/superconductor contact is
determined by the DSP.

1.4 Author’s contribution to previous work

All research described in the following chapters is part of a project initiated in August
1999. After defining the experimental goals, the first milestone was the realization of the
experimental setup for measuring the conductance through point contacts at low tempera-
tures (4.2 K). This phase, prior to the work that is described in this report, was finished by
reaching a second highlight, namely preliminary measurements consistent with a theore-
tical model for normal-metal /superconductor nanocontacts. Superconducting properties,
contact characteristics and the zero-polarization of Au could be determined by comparison
with the theoretical model.

All work done in this first phase of the project is well described in [Kant00] and forms
the base for the second phase described in this report. Over a period of time, several
improvements to the setup have been made. One of them concerns the ability to reach
temperatures of ~ 1.4 K (in stead of 4.2 K). Operation at such a low temperature reduces
vibrations, minimizes the effect of thermal smearing on measured conductance curves, and
permits a wider range of applicable superconductors. Furthermore, several changes in the
piezo system (the system responsible for contact formation) have improved the reliability
considerably (the chance of malfunction has reduced to practically zero).

In the second phase, successful measurements of the spin polarization of Co have been
performed. Furthermore, it has successfully been demonstrated that one can measure a
series of conductance curves on a single stable contact, while changing the pressure of the
tip on the sample.

1.5 Outline

The outline of this report is as follows. Chapter 2 will give an introduction to various
characteristics of normal metals (and their magnetic properties), superconductors, and to
the physics behind contacts in general. Two models for superconducting behaviour in
N/S contacts are treated in more detail. The Blonder-Tinkham-Klapwijk model, which
describes the electron transport through a ballistic nonpolarized-N/S contact, is treated in
Chapter 3. The same chapter introduces a modification to the model, allowing the study
of conductance through polarized-N/S contacts as well. An overview of the experimental
setup is given in Chapter 4, in which the piezo system and the cooling procedure are
described. In addition, attention is given to tip and sample preparation. The results are
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discussed in Chapter 5, after which Chapter 6 presents the conclusions as well as suggestions
for future research.



2 An introduction to normal metals, superconduc-
tors, and point contact properties

In the first section of this chapter, properties of electrons in metals are discussed. This will
lead to a more formal introduction of spin polarization than the one given in Chapter-1.
After this, insight in contact properties is given. Section 2.3 introduces the physics behind
superconductivity. Since the destruction of superconductivity is observed in the experi-
ments, attention to this subject is given in Section 2.4. The last section focuses on the decay
of the superconducting bandgap if the contact is small compared to the superconducting
coherence length.

2.1 Magnetic properties: magnetization and spin polarization
Electron distribution over energy

Various material properties depend on how the electrons are distributed over all allowed
energies. Electrons prefer to fill up states with low energy but Pauli’s exclusion principle
prohibits the existence of two electrons in the same quantum state. The distribution of the
number of electrons over the energy is governed by two factors: the number of available
states at a certain energy(band) and the probability that these states will be occupied.
The first factor is referred to as the density of states N(E) and the second factor is given
by the Fermi-Dirac distribution

1
HE) = BB+ 1 ®

where Er stands for the Fermi energy, T for the absolute temperature and k for Boltzman’s
constant (k=86 peV/K). For T' = 0 K, Equation 2 reduces to a step function, with f(E) =1

not filled
E filled

"N(E) 6*? f(E) N(E)

arbitrary nonmagnetic metal

<

Figure 6: The left image shows an example of the density of states for a nonmagnetic
normal metal. This plot can be combined with the Fermi-Dirac distribution f(FE)
(middle image) to form the right image, predicting the number of electrons at a
certain energy.



for E < Erp and f(F) = 0 for E > Er. For T > 0, states above Er have a nonzero
occupation probability.

In Figure 6, a fictitious DOS (density of states) is shown (left plot) for both spin-up
and spin-down electrons. It is also shown how the DOS combined with the Fermi-Dirac
distribution f(F) (middle image) can predict the number of electrons at a certain energy
(right plot).

Magnetization

In a metal, one can simply determine the net magnetization by summing up the magnetic
moment of each individual electron. The total magnetic moment per unit volume is referred
to as the magnetization of the material. One has to realize that the contribution of a spin-
up electron will cancel out the contribution of a spin-down electron. The magnetization
M can be calculated through

v~ ([ e [ iEm@n). )

By interpreting Equation 3 it is obvious why a material like the one in Figure 6 has a zero
magnetization: the DOS are equal for spin-up and spin-down electrons. In a magnetic
metal however, the DOS for spin-up and spin-down electrons are shifted with respect of
each other. For common magnetic metals, this shift amounts to h and —h for each spin
orientation, as indicated in Figure 7. For such a metal it is obvious that Equation 3 yields
a nonzero magnetization.

arbitrary magnetic metal
N T (EF) E

E
‘ ~— not filled

filled

N(E) o 1 f(E)

Figure 7: The left image shows an example of the density of states for a magnetic
metal. The DOS for the two spin orientations are shifted with respect to each other,
resulting in a netto magnetization.



Spin polarization

Another difference between the energy diagrams of Figures 6 and 7 is the density of states
at the Fermi energy Ep. In Figure 6 one can see that Ny(Er) = N|(EF), while in Figure 7
N;(Ep) # N,(EF). A difference in the DOS for spin-up and spin-down electrons at this
energy level is referred to as spin polarization. Section 1.2 discussed why this particular
energy level Er is of key importance (it was derived that only electrons with £ ~ Eg
contribute to the current). A common way to express the imbalance in the number of
spin-up and spin-down electrons, is through the ’N-definition’ DSP, given by

_ Ni(Br) = N,(EF) (4)
Ni(EF) + N\(EF)

Py

Note that |P|<1, with P=0 for nonpolarized materials and |P|=1 for fully polarized ma-
terials. All known magnetic metals are spin polarized at the Fermi level (Py#0).

Mazin [Maz99] shows that the spin-dependent signal in conductance measurements in
the ballistic regime (the signal is the current) is not defined by the DOS alone, which makes
the N-definition for the DSP useless. Since for a ballistic contact Iy ~ Npy()vey() (DOS
and velocity at Fermi level!), one can derive a second definition for DSP, namely Py,
which is given by
_ NFT'UFT — NFL'UFL

NFTUFT + NFLUFL '

P (5)

To give some examples: bandgap calculations show Py=0.36 for LSMO (Lag 7Sty 3MnO3),
while conductance measurements on point contacts yield Py, = 0.8 [Nad00]. Metals in
which the current is (nearly) fully polarized (Py, ~1) are referred to as transport half-
metals. LSMO can be considered as such a metal. Recently, measurements have confirmed
another such transport half-metal, namely CrO, ([Ji01] extracted Py, = 0.96).

Mazin describes various other definitions for DSP, valid for transport measurements
in tunnel junctions, diffusive contacts (contacts with a large dimension compared to the
mean free path) and ballistic contacts with an extremely high chance of reflection at the
interface. However, no further attention to these definitions will be given here.

2.2 Contacts in the ballistic and diffusive regime
The ballistic and diffusive regime

Contacts between two materials can exist in various different shapes and sizes. To simplify
the situation, a contact is represented by two reservoirs connected by a short link with
radius a, as sketched in Figure 8. This a is referred to as the contact radius. Important
for the transport of electrons through the link is the mean free path [ of the electrons (I
represents the average distance an electron can travel without colliding). The ratio a/l
basically determines the physics behind the transport. Two limits for this ratio are

diffusive regime: % > 1, ballistic regime: % < 1. (6)
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Figure 8: Schematic representation of contacts by connecting reservoirs. Transport
through a contact can be characterized by the ratio a/I.

Regarding the contact itself, one may note that in the diffusive regime the electron trans-
port is ruled by collisions while these effects are no longer dominating in the ballistic
regime. For various metals (Nb, Au, Pb and Co), [ is on the order of 100 A at liquid *He-
temperatures and strongly depends on temperature, purity, crystal structure and other
material properties [Bass82].

Generally, it is not straightforward to give an analytical expression for the resistance
of a contact. Scattering between electrons moving through the contact complicates the
use of a simplified approach. However, contacts in the ballistic regime are so small that
the electron-electron scattering is neglected. In this case, the resistance is given by (pl)
divided by the contact size, with p representing the electrical resistivity. This approach
was worked out by Sharvin [Sha65] and therefore its resistance is referred to as the Sharvin

resistance R, given by
4 pl

3ma?’

The factor of % comes from integration over all angles. Since pl is approximately tempera-
ture independent with pl ~ 1 fQ-m? [Bass82] (or av/R=20 nm+/Q), the resistance varies
only with contact radius. Typically, ballistic point contacts have a (Sharvin) resistance in
the range of 1 £2-50 kS2, where the upperbound corresponds roughly to the resistance of a
single-atom contact (a ~ 1 A).

The resistance Ry for contacts not in the ballistic regime but in the quasi-ballistic
regime (a = [), is given by the diffusive Maxwell correction to Ry, [Jan89], of which an
approximation results in

Ry = Ry (1 + %) . (8)

Motivation for measuring in the ballistic regime

In an attempt to model conductance through contacts, the assumption of a ballistic contact
allows a relatively simple approach. One reason for this lies is the fact that in the ballistic
regime, one can assume an abrupt drop in the voltage at the interface while in the diffu-
sive regime one has to calculate the decrease by solving self-consistently the appropriate
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transport equations.

Additional complications arise in a nonballistic contact between a normal metal and
a superconductor. Increasing the contact size a will shift the regime from the ballistic
regime, via the so-called mesoscopic regime towards the diffusive regime a > [. Already in
this mesoscopic regime complex physical effects enter the picture. Zero-bias and above-gap
conductance anomalies are examples of measured effects [Xi093, Kim00]. It is believed
that these effects originate from quantum interference and other phase-coherent effects
[Been97].

Interfacial scattering in the ballistic regime

Another insurmountable aspect of a contact is the fact that a perfectly clean contact is
not achievable. Lattice distortions, oxide layers and surface effects will always be present
and will influence the conductance. One way to take elastic scattering into account is the
introduction of a potential barrier in the form of a §-function. This barrier V() is present
at the interface between the two contacting materials and is formulated as

V(g) =W -8(z). 9)

The factor W (with dimension [J-m]) is referred to as the barrier strength. Standard
quantum mechanics can be applied to calculate the probability R(Er) that an electron
with energy Er is reflected at the barrier, automatically leading to the probability of
transmission T(Er) since R+ T = 1. Calculations [Gri95] show that

1

k? w2
F
L+ Fo

T(Ep) = R=1-T. (10)

Since these probabilities play a major role in transport through the contacts, Equation 10
is written in a more convenient form through normalization of W, given by
kpW 1 Z?
- : T(Er) = ——, R(Fp) = ——. 11
Y (Er) 1+ 22’ (Er) 1+ 22 L

Z

The parameter Z is dimensionless. For nonzero Z-values, a part of incoming electrons will
reflect back resulting in an increase of the resistance to Rz. It can be shown that, see
Section 3.2, Rz for a ballistic contact is given by

R; =Ry (1+2%). (12)

Even in extremely clean contacts, interfacial scattering can occur due to the mismatch
of the Fermi velocities of the two materials A and B. The Fermi mismatch is symbolized
by the ratio r, given by r = Zi—g It can be incorporated into an effective Z.¢, which is
now a sum of the contribution given by Equation 9 and the Fermi mismatch contribution
[Blo83]. This results in
(1-r)

4r

Z% = + 22, (13)
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Figure 9: Existence of a Fermi velocity mismatch (r = v 4/vF p) results in a higher
effective scattering parameter Zys .

The plot in Figure 9 shows the behaviour of Z.f; versus Z for various ratio’s r. It should
be noted that the result for Z.ss is the same if the Fermi velocities are interchanged. In
the remaining part of this report the parameter Z.;; is shortened to Z.

2.3 Introduction to superconductivity

This section will introduce the basics of various superconducting properties, based on
the BCS theory [BCS57]. This microscopic theory of superconductivity is an extension to
earlier work done by Frohlich [Fr650] and Cooper [Co056]. An introduction on a sophomoric
level to this work can be found in [Ros78].

Figure 10: Schematic representation of electron-electron interaction through suc-
cessive emission and absorption of a phonon.
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The Cooper pair

In a normal metal at T=0, all electron states up to e are filled, and the ensemble of
these states is referred to as the Fermi sea. In 1956 Cooper presented the basic idea
that a weak attractive interaction can bind pairs of electrons into a bound state in a
superconductor. Cooper showed that, regardless of how weak the interaction is (as long as
it is attractive), there are always some electrons within this sea that are unstable against
the formation of at least one bound pair. Frohlich’s phonon-induced electron-electron
interaction (see Figure 10) is considered to be the responsible interaction. It is based
on successive phonon-emission by one electron (momentum p;) and phonon-absorption by
the second one (momentum p,), with ¢ the phonon momentum. One can compare this
attractive interaction with the attractive Coulomb interaction, realized through successive
emission and absorption of a photon.

In Cooper’s result, the role of the background of the Fermi sea is crucial. Consider
the two electrons that form a bound state. The two electrons interact with each other
(Frohlich’s interaction) but not with those in the Fermi sea, except via the exclusion prin-
ciple. Frohlich derived that the state of lowest energy is formed, if the two considered elec-
trons have equal but opposite momenta. In analogy to the hydrogen molecule, the strongest
interaction is obtained with the electron spins opposite. Therefore, the pair can be written
as a superposition of two-electronic states with equal and opposite momenta. From a tem-
poral viewpoint, this superposition if translated to a continuous changing (or scattering) of
the two-electron momentum combination (ps1, p;;) to (pj1,p;;)- Since Frohlich’s interaction
is attractive, p; > p; and/or p; > pp are energetically allowed, providing that 2(e; — ¢;)
does not exceed the attractive potential.

It may also be clear, why the Fermi sea is of crucial importance via the exclusion
principle: in order to perform continuous scattering to other (p;r, p;;)-states, these states
have to be vacant first.

BCS theory

Bardeen, Cooper and Schrieffer were the first to treat all electrons from a similar point of
view. This leads to a more realistic expression for the superconducting ground state. They
made use of a representation of the ground state in terms of electron creation operators,
operating on the vacuum state with no electrons. Again, one makes use of the simplify-
ing assumption that the matrix element V;=(p;y, —py|V'|p;, —p;) of the phonon-induced
electron-electron interaction is given by

| =V if |eg — ep| < hvug, and |e; — €p| < hug

Vii = { 0  otherwise, (14)

with hvy, the ’average’ phonon energy (hvp < er) and h Planck’s constant. Applying a
variational method, they obtained a solution for the ground state of the superconductor.
One of the results that one can calculate from this, is the probability |h;|?> that the single-
electron states (p;, —p;;) are occupied at T=0. This function is plotted in Figure 11 and
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Figure 11: The dashed line represents the probability |h;|? that (at absolute zero) the
single-electron states (p;1, —p;)) are occupied in a normal metal. The same probability
for state-occupation is shown for a superconductor, where even at 7' = 0 several states
with |p;| > pr can be occupied.

is given by

hi:}' £ — Ep

. [1_ V(e —ep)? + A2

with € = p?/2m. The quantity A, which has the dimensions of energy, turns out to be of
fundamental importance and is given by

: (15)

1
AT:O = 2h'UL exp [—W], (16)

with N(er) the density of states at the Fermi energy. Typical values for A and ep are
1 meV and 5 eV respectively.

One might wonder why not all electrons form Cooper pairs. In order for a non-
interacting electron pair (p;r, —pi) (with p; < pr) to form a Cooper pair, the individ-
ual energy of each electron must be raised to ~ ep in order to experience nonzero at-
tractive Frohlich interaction (Equation 14). An energy benefit is only realized for those

non-interacting pairs that satisfy V' > 2(ep—e¢;), which is similar to the demand ¢; > ep— %

Excitations and quasi-particles

An important limitation of the BCS theory is its restriction to the ground state (also
referred to as the condensate). Bogoliubov extended the approach in such a way that also
excited states are described. This theory leads to essentially the same result for the ground
state as previously derived, however in addition, it leads to the introduction of the concept
of quasi particles. The following will clarify this concept.
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If sufficient energy is imparted to the ground state (by heating, illumination, etc.),
a Cooper pair may break up into two individual ’particles’, which no longer have equal
and opposite momenta p; and p;. These ’particles’ behave almost like free electrons and
are therefore referred to as quasi-particles. If the quasi-particle occupies a state that
was previously empty, it is referred to as an electron-like quasi-particle (ELQ), with base
state |e-like). However, if the quasi-particle occupies a state that was previously part of
the Cooper-pair momentum domain, it is referred to as a hole-like quasi-particle (HLQ),
with base state |h-like). The |e-like)- and |h-like)-states are two extremities. Generally,
a quasi-particle will occupy a state that previously had a chance h; (see Equation 11) of
being occupied, and the quasi-particle state is a superposition of the |e-like)-state and the
|h-like)-state. The wavefunction of a quasi-particle can be described by the wavefunction

U(z,t) = f(z,)|e-like) + g(z, )|n-like), o xp(x,t):@((i:g). (17)

The |e-like) quasi-particle obeys the Schrodinger equation,

L Of R &
zh—a7-—Hf where H——%EE—EF—}-V(QU), (18)

while an |h-like) quasi-particle obeys the the time-reversed Schrédinger equation,

L 09
zha =—-Hg. (19)

The base states are coupled by the energy A(z) so that the wave-function ¥ obeys

L, 0¥ H A

which is the Bogoliubov-de Gennes equation. Since the hamiltonian matrix is independent
of time, the substitution ¥(z,t) = ¢ (z)e !, where E = hw, reduces equation (20) to

(2’ _‘;) ¥ = By. (21)

A first assumption is made by setting V' (z) = 0. A second assumption is that A is inde-
pendent of position z. These two assumptions allow analytical evaluation of Equation 21.
This approximation is referred to as the ’free quasi-particle approximation’. For the trial

solution
_ U ik
i = <v> e (22)

272 2
E? = <h2_:1 — EF) + A% (23)

one finds that
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(a) (b)

Figure 12: (a) Excitation energy of the quasi-particles as a function of k. (b) At
T >0, the quasi-particles have a nonzero occupation probability, as displayed in the
superconducting energy diagram.

Since one must impart energy to break up a Cooper pair, the quasi-particle energy E must
have a positive value. Therefore, only the positive root of Equation 23 is taken. Due to the
offset —E, the energy is measured from the Fermi-level and is therefore referred to as the
excitation energy of the quasi-particle. Figure 12-(a) shows E as a function of k, where it
is indicated (dashed lines) how the curve is composed of the two functions which represent
the positive and negative root of E? (Equation 23) at A=0. To illuminate the parameters
u and v, their values are given at various marked spots on the £ — k curve. The minimal
energy required to break up a pair is given by 2A, with A introduced by Equation 16. The
quantity A is also referred to as the superconducting bandgap. The energy diagram for
the superconductor at temperature T > 0 is represented by Figure 12-(b).

As the temperature is raised, more and more Cooper pairs are split up, accompanied
by a lowering of A (see Figure 13). Eventually at a critical temperature 7., no Cooper
pairs have remained, A has reduced to zero, and the quasi-particle states are identical to
electron states in a normal metal.

An energy representation for all unpaired electrons

Consider a normal metal at T = 0, see Figures 14-(a) and 14-(b). In the electron band, all
states up to Ef are filled (represented by e), while the states E > Ep are not occupied,
leaving a hole behind (represented by o). By considering the hole as a particle obeying
Equation 19, one has defined the ’hole-like particle’. The middle image shows the energy
band for such particles as well as its occupied states at 7'=0, where e represents an occupied
hole-like state and o a vacant hole-like state. From this point of view, the occupied X-state
in 14-(a) is equivalent to the vacant Y-state in 14-(b) (with Ex = —Fy and kx = —ky).
A similar approach can be made for all unpaired electrons in the superconductor. Since
at T = 0 all quasi-particle states are vacant, the energy states at —F must be occupied.
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Figure 13: Temperature dependence of the superconducting bandgap A. At T' > T,
all Cooper pairs are split up and superconductivity no longer exists.

Such an argument results in the two mirrored E — k curves in Figure 14. It is emphasized
one more time, that the states at £ < 0 do not represent quasi-particle states. The
'particles’ with £ < 0 behave as normal electrons for |k| < kg, while for |k| > kp they
act as hole-like particles. One could have derived the same diagram in the figure at once,
if also the negative root of equation 23 was considered.

The superconducting density of states

Equation 23 can also be used to determine the superconducting density of states N(E),

defined as N(E) = dN/dE. Note that N(E) also considers electron states with £ < 0.

One can derive that N(E) = 4¥ 4 with <& given by

dE £ VvE?2 — A2

ak _ - , 24
de  \/e2 + A2 |E| (24)

>

E
\ electron band hole-like band gl

/
VAR
Tk
Iy /kF

(@) ) (©)

Figure 14: For a normal metal at T=0, the occupied states (e) in the electron and
hole-like band are shown in (a) and (b). The occupation of the E — k bands for a
superconductor at T = 0 is plotted in (c).
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P(r)

n%4

Figure 15: The probability P(r)dr dr, of finding an electron p; in a volume element
dry at a distance r from a volume element dr; which contains an electron —p,.

and ¢ defined as n;_:: — Er. Note that % is the DOS for electrons in a normal metal. By
assuming a constant value for ’fi—f = Ny, which is valid for small F, one can retrieve

0 for |E| < A
N(E) ‘{ Norlfley for |E| > A, (25)

Space correlations: the coherence length

After evaluating the Cooper pair from an energy-point of view, one might wonder how one
can spatially characterize the Cooper pair. One way to express the spatial behaviour is
by calculating the probability P(r)dmdr, of finding an electron p; in a volume element
dr, at a distance r from a volume element dr; which contains an electron —p,;. If there
are no correlations (e.g. in a normal metal) this probability is given by jn’dridr, with
n the total number of electrons. Detailed calculations for a superconductor show that the
continuously mixing of the momentum states results in a raising of the chance P(r)drdr
for small values of r. This is indicated in Figure 15. The length of the raised-P(r) region
is referred to as the (Pippard) coherence length £&. The coherence length represent the
dimension of one Cooper pair, which is on the order of 10-1000 nm. Notice that the
volume &% contains the centers of mass of about 107 other pairs, so that the pair wave
functions overlap considerably.

The critical temperature and field

Figure 13 shows how an increase in temperature can eventually destroy superconductivity.
The value for T" at which this occurs is referred to as the critical temperature 7. Supercon-
ductivity can also be destroyed if a sufficiently high magnetic field is applied, referred to
as the critical field H.. Generally, H, will decrease as a function of increasing temperature
to eventually H. =0 at T =T,.

The previous is true for type-I superconductors. Type-II superconductors are generally
characterized by two critical fields, namely H.(T) and Ho(T) (He < Hy). If the field
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H,, is applied to a type-1I superconductor, the destruction of superconductivity is initiated
but only completed at an applied field H,. In the following, the critical field H,; for a
type-1I superconductor is represented by H..

2.4 Destruction of superconductivity in conductance measure-
ments

A current I through the superconducting tip will generate a magnetic field. If the current
reaches the critical value I, the generated field equals H, and superconductivity is (par-
tially) destroyed. The voltage at which the critical current I, is generated is referred to as
Ve

Consider a superconducting wire of radius a, carrying the current I. The field H
generated at the perimeter of the wire is given by

I
H= o (26)
One can, in good approximation, use Equation 26 to calculate the magnetic field present
at the perimeter of the sample/tip contact. The question now is, whether the radius a of
the contact is of a sufficiently small order of magnitude to yield H ~ H.,.

The typical resistance of a contact is 10 2, see Section 2.2. For such a contact one can
expect a contact size of circa 10 nm. The applied voltage will be on the same order of
magnitude as the superconducting bandgap, which is ~1 meV, resulting in a current on the
order of 0.1 mA. Use of Equation 26 gives a generated field of several kA/m. Although the
critical field for small specimens in proximity of a normal metal is not known, bulk values
for various superconductors are of comparable magnitude. Therefore, it may be possible
that a conductance measurement indicates partial destruction of superconductivity, as
explained below.

The Westbrook-Javan model

A model posed by Westbrook and Javan [West99] predicts the voltage V, at which one can
observe partial destruction of superconductivity.

Figure 16 shows typical current /- and conductance G = dI/dV-curves for (a) an N/N
contact, (b) an N/S contact and (c) an N/S contact with destruction of superconductivity
at |V| > V.. The current Iyg(V) through an N/S contact can be described by Ins =
Inn+ITez(V), that is, when one switches from the N/S state to the N/S state the current is
raised by I.;.(V) due to Andreev Reflection. The current I,,.(V) is referred to as the excess
current. In Figure 16, the function I.;. has a constant value I ,.(A) for A < |[V| < V.. At
V. superconductivity is partially destroyed and I.,. will drop to a lower value. For clarity,
in the figure the superconductivity is completely destroyed at V.. The drop of I, is seen as
a peak in the conductance curve depending of the ’sharpness’ of the transition. Westbrook
and Javan were able to measure such peaks, of which several (differential resistance) dV/dI-
curves are shown in Figure 17 (left).
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Figure 16: The I — V curves and G — V curves for (a) an N/N contact, (b) an N/S
contact and (c) an N/S contact with destruction of superconductivity at |V| > V..

From now on, only voltages V' > A are considered. The current I through an N/S
contact consists of the two contributions

v
IV >A)= — + L;.(4), (27)

Ry
with Ry the constant resistance of the contact at V' > A. In [BTK82] it is shown that
Ipe(A) ~ A and I;.(A) ~ 1/Ry, for constant Z. At I=I., Equation 27 reads I, =

ﬁV; + Iezc(A). Combining this expression with Equation 26 one finds
V.= (2maH.)Rn — I.zc(A)Ry. (28)

It has previously been discussed (Equation 7) that ay/Ry, is a constant (20 nm+/Q), with
Ry, the Sharvin resistance in the ballistic regime. Therefore, in the ballistic limit (Ry =
R;1), Equation 28 can be rewritten as

V,=ky/Ry+Vy, with k=21H.\/Rspa? and Vy = —I.(A)Ry. (29)

In this formula V{ has a negative value. However, the measurements which will be intro-
duced in Section 5.5, as well as those performed by Westbrook and Javan, show a positive
Vo. An extension of the model to the quasi-ballistic regime will account for this, as will be
derived here. For such contacts, the diffusive Maxwell correction can be applied, as intro-
duced by Equation 8. This expression is used to rewrite the term ay/Ry in Equation 28,
resulting in

2
aV/R = oy Ru1 +9) = ay/F + VQZRS". (30)

Also in this quasi-ballistic diffusive regime one can rewrite Equation 28 into the form
V. = kv/Ry+V;. Equation 30 is used to determine the constant k£ and V4, now defined as

2
k = 2nH,\/Ropa? and Vj = ﬂ%ﬁ—) — L (A} B (31)
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Figure 17: Measurements performed by Westbrook and Javan, showing peaks in the
dV/dI — V curves (left). The voltage V. at which superconductivity is destroyed is
linearly dependent on the square root of the resistance.

In the derivation of V; in Equation 31, the assumption (1-3;)~1 has been made. The values

for V., measured by Westbrook and Javan, are plotted versus v R in Figure 17 (right),
confirming the linear dependency. More attention to both plots is given in Section 5.5.

2.5 Contacts on the order of the coherence length

So far, superconductivity was discussed for objects that are large compared to the coherence
length (£ ~10-1000 nm). However, since this report describes contacts in the ballistic or
quasi-ballistic regime, the contact radius is on the order of ¢ and locally (at the interface)
one might expect a change in various superconducting properties.

One can represent the tip in the form of a cone, which is truncated at the position of
the sample, see Figure 18. Following a 'geometrical’ intuitive model, one can imagine that
the Cooper pairs (characterized by the coherence length ) are hindered in entering the end
of the tip and a position of maximal penetration exists. One can compare such a system to
a superconductor in contact with a normal metal, where Levi et al [Levi98] observed that
due to proximity effects, a nonzero value for the bandgap in the N-side was observed. They
showed that this value decreases as a function of position from the interface, to eventually
zero at a distance comparable to the superconducting coherence length. In analogy to their
observations, the local bandgap at the end of a cone-shaped tip (position z) is also assumed
to decay over a length scale of £. As a first guess, the following relation is assumed

Alz) T
A_o = exp —27 (32)

with A, the superconducting bandgap at x < 0. It should be noted that this particular
tip geometry can result in a Ay different from the bulk value Ayyy.

The contact is positioned at z, see Figure 18. With increasing = one can see that the
contact radius decreases, until eventually the end of the tip is reached. To express z as
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Figure 18: Representation of a Cooper pair (with characteristic length £), blocked
by the geometry of the tip so that the tip’s end is positioned ’outside’ the pair. The
bandgap A is assumed to decay exponentially.

function of a, £ and 6, the dependencies

a §
tanf = —— = i
an P and 2 oy (33)
lead to ¢
a
x_sinﬁ_é_tanﬁ' (3]
By substituting expression 34 for z, one can transform Equation 32 into
A(a) 1 a
= 1-— ;
Ay i ( sin 9) =p Etand (35)

By assuming a constant for av/R, which is valid in the ballistic regime (see Section 2.2),
A as function of R can be formulated as

1
A(R) = p exp , 36
) 1 p2\/ﬁ ( )
with i £ tang
tan
p1 = Ag exp (1 - m), and p, = = (37)

In conclusion, this geometrical intuitive model results in an expression for the decay of
the local bandgap versus resistance. The decay is influenced by the tip geometry 6, and
by the superconducting properties £ and A,.
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3 The original and modified Blonder-Tinkham-Klapwijk
model

This chapter roughly follows the same outline as the theory described in [Kant00]. However,
some subjects are discussed more extensively. First an intuitive model is given that can
predict the basic characteristics of conductance curves for N/S contacts. The Blonder-
Tinkham-Klawpijk model, which will be introduced in Section 3.2, treats the transport
through an interface in more detail. It is based on the solutions to the BdG-equation
(derived in the previous chapter) and is restricted to nonpolarized-N/S contacts. Therefore,
also a modification to the BTK model is presented which does include spin polarization.
The last section gives comments on N/S contacts with A ~ kT and with high-Z.

3.1 Andreev Reflection in clean contacts

One can understand the essence of the conductance behaviour through an N/S contact by
comparing it to the constant conductance Gy through an N/N contact.

Conductance through a nonpolarized-N /S contact

In the following intuitive approach, a perfectly clean interface (Z=0, see Section 2.2) is
assumed. Consider the situation of a small applied voltage eV < A, raising the energy
of the electrons that contribute to the current to Er + eV. The possibilities for such
an electron are limited. It can not reflect back (since Z=0) and it can not enter the
superconductor as a quasi-particle. Therefore, it is forced to take along a second electron
and form a Cooper pair, resulting in a conductance that is twice as high as a for a contact
consisting of two normal metals.

nonpolarized polarized
Gys/G G/ GNAN N/S contact

NN N/S contact

24

Figure 19: The normalized conductance (Gys/Gnn) plotted for a clean
nonpolarized-normal-metal/superconductor and for a clean polarized-normal-

metal/superconductor contact. At V' = 0, the normalized conductance is given by
2(1 - P).

24



At voltages eV > A, the electron has the possibility to enter the superconductor as
a quasi-particle. Its energy is so large compared to the bandgap, that the influence of
A is negligible in that the available quasi-particle state does not differ from the electron
state. In other words, there is no reason for the electron to combine with a second electron
and form a Cooper pair. Therefore, the conductance at high voltages is the same as the
conductance through an N/N contact. The behaviour of Gyg versus eV is sketched in the
left image of Figure 19.

Conductance through a polarized-N/S contact

Consider a polarized metal of which its current I is carried by spin-up electrons (/;)
and spin-down electrons (I}). The spin polarization of this current is defined as P =
|I1 — I;|/(I; + 1)), and for simplicity, I; > I| is defined. The behaviour of the electrons at
eV > A is identical to the situation of a nonpolarized-N/S contact. However, at eV < A
the chance for Cooper-pair formation is reduced by a factor (1-P), since only I, can be
doubled through Cooper-pair formation, preventing Ity — I} = PI from further current
contribution. The resulting normalized conductance is now given by

Gns
GnN

=2(1-P), at eV < A. (38)

This reduction of the conductance is plotted in the right image of Figure 19.

3.2 The BTK model excluding spin polarization

The BTK model, named after Blonder, Tinkham and Klapwijk [BTK82], calculates the
current (and conductance) through a ballistic contact between a nonpolarized normal metal
N and a superconductor S. The principles of the model can be better understood if one
places the energy diagrams of a normal metal and a superconductor (introduced in Sec-
tion 2.3) next to each other, as done in Figure 20. Also for the normal metal, both the
bands for the electrons and hole-like particles are displayed. A note should be placed at

the fact that the BTK model assumes an abrupt increase of the bandgap from 0 in N to
A in S.

Scattering probabilities for an electron at the N/S interface

Consider an electron, moving to the right in the normal metal, that has reached the
interface. The electron has energy (Er+F), wavevector (kp+ky), and is pointed out in the
figure by ’1’. At the interface, the electron can reflect as a hole (in order to from a Cooper
pair in S) on the other side of the Fermi surface (—kp + kx) with probability amplitude a,
reflect back into the normal metal -(kr+ky) with probability amplitude b, and transmit as
a quasi-particle in the superconductor in two ways (kp+ks and —kr+ks), with probability
amplitudes ¢ and d. As discussed in Section 2.3, the reflected hole (amplitude a, energy
—FE and k = —kp + ky) can also be displayed as an occupied hole-like state (amplitude a,
energy E and k = kr — ky).
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Figure 20: Energy diagram for (a) a normal metal (with A = 0) and for (b) a
superconductor with a finite A, showing the allowed horizontal transitions for an
incoming electron, marked '1’.

In the normal metal, the solution of Equation 20 will have the form

'QZ)N(-'L‘) =1 (é) ei(kF-HCN):c +a (2) ei(kF—kN)m +b (g—)) e—i(kp—%kN)z' (39)

In the superconductor, the solution of Equation 20 will be of the form

ws(x) —_ (Z) ei(kF+kS)Z +d (Z) ei(—kF‘HCs)z, (40)

Since both ky as kg are small compared to kr, all powers of e in equations 39 and 40 can be
replaced by e*F2. At this point the mechanism for reflection enters the picture (introduced
in Section 2.2). In this section, an interfacial barrier was defined in the form of a delta-
function V(z) = Wé(z), with the dimensionless normalized strength Z = %1;3—‘:- The
interfacial scattering enters the BdG-equation via the boundary conditions. As required

by standard boundary conditions [Gri95], the wavefunction is continuous

¥ (0) = ¥s(0) = ¥(0) (41)
and its derivative obeys )
¥5(0) = iy (0) = Wz 9(0), (42)

as is appropriate for a d-function potential with strength W. Equation 21 and the boundary
conditions allow to solve for a, b, ¢ and d.

The probability A for Andreev reflection and the probability B for normal reflection
are equal to |a|? and |b|? respectively. The probability C' + D for transmission as a quasi-
particle equals 1 — (A + B) since A + B + C + D=1. Figure 21 displays the probabilities
A and B for different Z-values, for which the formulas are given in Table 1.
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72 = [ug + Z%(ug — w)]”
3=1—u0 s[1+/(E? - A?)/F?)

A(E) B(E)
General form
A2
E<A E?+(A2-E?)(1+22?)2 1— A(E)
E>A uiih (hoaf)* 22012
Strong barrier (Z > 1)
E<A T 1— A(E)
u;'llgz
E>A Z4(ug—v5)? 1- ZQ(ui—Uo)
N/N-contact (A = 0)
72
¢ Tz

Table 1: Calculated probabilities A(E) and B(E) for an N/S contact in general, an
N/S contact with high Z and an N/N contact.

Calculation of the normalized conductance

The current through the N/S contact can be calculated either in the normal metal or in
the superconductor. The first option is chosen for convenience. Figure 22 summarizes the
energetically allowed scattering processes for an incoming electron. The factor X represents
the contribution of scattering processes in the superconductor.

First the situation is considered at which no voltage difference over the contact is
applied. Focusing only at the electron movement on the N-side, one can conclude that
the current contribution dIy y_.s of electrons with energy [E, E + dE], moving from the
normal metal to the superconductor, is equal to

dIy s = eAv(E)N(E)[1 + A(E) - B(E)|f(E)dE (43)

with e the electron charge, v(FE) the electron velocity, N(FE) the density of states, A the
contact area and f(E) the Fermi-Dirac distribution. Note that the Andreev-reflected hole
has a positive contribution to the current.

Electrons which performed a transition from the superconductor into the normal metal
also contribute to the N-current. Their contribution is

dIy v s = —eAv(E)N(E)X (E)dE. (44)

Since the net current dIy(E) = dIyn-s(E) + dInn—s(E) equals zero if no voltage is
applied, one can derive that X (F) = [1 + A(F) — B(E)).

27



1.0 ; .

Figure 21: Probability for Andreev reflection (top) and for normal reflection (bot-
tom) for various values of the elastic scattering parameter Z.
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Figure 22: Illustration of the currents flowing in the normal-metal side of the con-
tact.

In case of a finite voltage eV, a net current will flow. Suppose that the normal metal
is raised in energy by eV. Section 2.2 discussed that, assuming a ballistic contact, one can
simply replace f(E) in Equation 43 by f(E — eV). The net current in the N-side is now
given by

dIy = Iyn_s(E)+ Iys_.n(E)=

= eAv(E)N(E)[1+ A(E) — B(E)|[f(E —eV) — f(E)|dE. (45)

The total current is obtained by integrating d/y(E) over all energies, resulting in
In = cA [ o(BN(B)1+AB) ~ BENHE - V) - {(BJE.  (40)
Since the function [f(E — eV) — f(F)] is nonzero only in a small region around EF, in

which the velocity and density of states can be regarded as constants, one can extract
N(EFr) = Ny and v(EF) = vp out of the integral.
The conductance Gyg = dI/dV is given by

Gys = —2Avp Ny / 1+ A(E) — B(E)|f'(E - eV)dE. (47)

One can evaluate the same expression in case of a contact between two normal metals
(N/N-contact). In this case A=0 and Table 1 shows that A(E)=0 and B(E) = 1/(1+ Z?).
Equation 47 now reduces to

1
1+ 2%
It is popular to normalize the conductance G g by the constant Gyy. Gyy can exper-

imentally be deduced from measurements on N/S contacts since Gyy = Gyg(V > A).
The formula for the normalized conductance is given by

Gns(V) _ Gns(V)
Grw Grs(V>A)

GNN = —GQAUFNO (48)

_(1+22) /[1+A (E) - B(E)|f'(E — eV)dE.  (49)
One can interpret the formula for the normalized conductance as that the function [1 +

A(E) — B(E)] is probed at E = eV by the é-function-like f’, with varying eV. This is
sketched in Figure 23.

29



2.0- —Z=0.25

1.5-
— 1+A(E)-B(E)
1.04 ‘\
0.5- T=1K
f'(E-eV)/(-4)
0.04
0 1 3 4

2
E/A

Figure 23: Illustration of the functions [1 + A(E) — B(E)] (with Z=0.25) and
f'(E — eV) (normalized by factor -4) at T=1 K and V=0.8A.

Various conductance-versus-voltage curves are displayed in Figure 24, at the two tem-
peratures 4.2 K and 1.5 K. Features around V ~ A are, as expected, thermally smeared
at 4.2 K with respect to the same features at 1.4 K. The introduction of Z seems to only
decrease the normalized conductance at V' < A, and not at the regions V' =~ A (this is most
clearly visible at 1.4 K). This results in the creation of two maxima and one minimum.

High-Z conductance curves

Table 1 displays the probabilities A(E) and B(FE) for an N/S contact for high Z > 1.
It follows that for such contacts, the electrons have a probability of almost 1 to reflect
back into the metal, as expected. However, still a nonzero factor [1 + A(E) — B(E)] will
contribute to a net current towards the superconductor. At |E| < A, [1+ A — B]=0, but
at |E| > A this factor is given by

L1 1 _1 B
T 722Ut 22\ ET AT
One can see that the obtained formula for [1+A— B] is proportional to the superconducting
density of states Ng(F), since the latter is given by Equation 25, namely

Ns(B)~ 2, |2 A ay

VE - AT =%

and Ng(FE) = 0 for |E| < A. Therefore, in the high-Z regime, Equation 47 can be rewritten
as

1+ A(E) — B(E)

(50)

Gys ~ /E Ng(E)f'(E — eV)dE. (52)

This result is identical to conductance curves through an N/I/S tunnel junction, for
which a phenomenological theory [Bar61] derives the same conductance behaviour as Equa-

tion 52. Therefore, one can also use the term ’tunnel regime’ for a point contact with high
Z.
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Figure 24: Normalized conductance according to the BTK model at temperatures
4.2 K (top) and 1.5 K (bottom) for various values of Z.
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Andreev reflection | Normal reflection
Nonpolarized N/S contact
E<A A(E) B(E)
100%-polarized N/S contact
E<A A(E)=0 B(E)=1
E>A A(E)=0 B(E) = =z B(E)

Table 2: Probabilities A(E) and B(E) for a fully-polarized N/S contact, with A(E)
and B(F) defined in Table 1 .

3.3 The modified BTK model including spin polarization

In Section 3.1, concerning the current through a polarized-normal-metal, the situation was
approached by splitting up the current I in a current I; carried by the spin-up electrons
and a current I| carried by the spin-down electrons. In calculating the current through a
polarized-N/S contact, the modified BTK model uses the same type of approach: the total
current through the contact I consists for a fraction (1 — P) of a (nonpolarized) current
carried by an equal number of spin-up and spin-down electrons, and for a fraction P of a
(fully polarized) current carried by electrons with only one spin orientation:

I= (1 = P) . Iunpol + P- -[pol- (53)

Determination of Iynpo and Gunpot versus V' is discussed in the previous section. However,
since Andreev reflection is impossible (A(E) = 0) for the electrons contributing to the
polarized current, the probabilities B(E), C(F), and D(E) have to be renormalized by the
factor 1/(1 — A(F)). This results in a new set of probabilities, given by (see also Table 2)

_ _ 1 ) 1
A=0, B=——B, C=1=5C and D=——D (54)

The two contributions to the current (Equation 53) result in a similar way in two
contribution to the normalized conductance. Given a the degree of spin polarization P,

this reads B
(Ges) -p(CuAD) oop ()

Figure 25 displays the influence of P on the conductance curves at two temperatures
with Z=0. As P increases, the zero-conductance Gyg(V = 0)/Gyn decreases linearly by
2(1 — P) (as explained by Equation 38). For P = 1, only normal reflection is possible
at |eV| < A, resulting in Gyg=0. Similar curves at T=4.2 K are plotted in Figure 26,
however with Z=0.25 and Z=0.5.
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Figure 25: Normalized conductance according to the modified BTK model at tem-
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peratures 4.2 K (top) and 1.5 K (bottom) for Z=0 and increasing P.
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Figure 26: Normalized conductance according to the modified BTK model at 4.2 K
and increasing P, for Z=0.25 (top) and Z=0.5 (bottom).
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3.4 Fitting of measurements with the modified BTK model

The entire measured conductance curve (not only (dI/dV )y o) is fitted with the modified
BTK model in order to extract values for the parameters A, Z, P, and T. However,
due to limited resolution in the measurements and a theory based on various simplifying
assumptions, data will never perfectly overlap a theoretical curve. Therefore, there is no
unique set of extracted parameters. In other words, there is a finite uncertainty volume in
the parameter space.

Analysis reveals that there are two regimes in which a small deviation between theory
and measurements will result in an unacceptably large uncertainty volume in the parameter
space. The first regime concerns measurements on contacts with A ~ kT. The second
regime concerns contacts with high-Z (Z approximately larger than 1). This can be seen as
follows. In case of A ~ kT, the conductance maxima at V = +A are severely broadened.
Consequently, the difference in dependence on P and Z is less clear. In case of Z > 1, the
normalized conductance at zero bias is almost zero, regardless of P. Therefore, varying P
will have negligible effect.
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4 Experimental

Over the past years, various techniques have been used to create a point contact. Figure 27
summarizes the three most common contact schemes. The left image indicates how two
materials can be deposited on a substrate (lithographic procedure) while forming a (point)
contact [Jac00]. The second image shows two materials separated by an insulting layer
containing a nano-hole [Upad98|. A straightforward method to create a point contact is
illustrated in the third image. Basically, the contact is achieved by mechanically lowering
a tip onto a sample. Mechanical movement can be controlled by a micrometer mechanism
[Blo83, Sou98, Strij0l] or by a piezo ceramic element. In the system described in this
report the last option is chosen. This guarantees tip control on the Angstrgm scale, which
is 1000 times smaller than the controlability obtained with the micrometer.

Details concerning the piezo control electronics in the system, the contacting proce-
dure and the measurement electronics are well described in [Kant00]. The basics of the
experimental setup and the contacting procedure will be shortly revisited in this chapter.
Additional information on the piezo system, the cooling procedure and the preparation of
the tip and sample will be given.

4.1 Overview of the setup

The main goal of the setup is to measure the current I through a contact as a function of an
applied DC voltage V (four-probe measurement). However, more physical details can be
extracted if not the I-V curve but the conductance curve dI/dV-V is analyzed. A standard
LOCK-IN technique enables direct measurement of the conductance curve. This is done by
superposing an AC voltage signal over the DC voltage. The AC signal can be regarded as
a distortion dV' (dV = csinwt). The current as a function of the applied voltage (DC plus
AC component) can, via a Taylor expansion, be written as I(V + dV)=I(V)+4dV+.....

Tip

Si;N,
membrane

|

| Substrate

Sample

(a) (b) (©)

Figure 27: Point contacts realized by means of lithographic procedures (a), depo-
sition onto both sides of an insulating membrane containing a nanohole (b) and by
mechanically lowering a tip onto a sample (c).
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Figure 28: Schematic overview of the cryogenic part with the vibration insulation.

By neglecting higher-order terms one can retrieve

I(V + csinwt) = I(V) + %v sin wt. (56)
The LOCK-IN amplifier is sensitive for the AC signal at frequency w only. Therefore, the
LOCK-IN’s output is proportional to dI/dV .

The setup is represented in Figure 28. The point contact is formed through the piezo
system. This system, suspended by a mass-spring system to reduce vibrations, is located
in a vacuum chamber which is part of the insert. The chamber is emerged in a liquid *He-
bath and filled with the exchange gas for thermal contact between piezo system and the
liquid He. A superconducting coil can generate a magnetic field up to 3 Tesla. However,
during the present experiments no field is applied. The cryostat itself is also isolated from
vibrations due to attached springs.

4.2 Contact formation by the piezo system

One unique characteristic of the setup is the precise controllability of the tip and sample,
made possible by the piezo system showed with more detail in Figure 29. A piezo element
has the characteristic that if a voltage is applied, the element will expand or shrink. The
piezo elements in this setup give a change in length of several ym upon applying 500 V. This
gives a controlled movement on the order of several Angstrgms. This, and the vibration
insulation, allows gentle formation of the contacts.
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Figure 29: Schematic cross-section of the piezo system.

Stick-slip mechanism

The so-called stick-slip mechanism allows the sample holder to move over an unlimited
range. Basically, one stick-slip action consists of the following two steps. 1) The coarse
piezo is fully retracted, bringing the sample several um closer to the tip. 2) The voltage
over the coarse piezo is suddenly reduced to zero so that the piezo expands back to its
original length. However, this time interval is too short for the sample holder to follow the
withdrawing movement. A slip is initiated, resulting in a coarse piezo back in its original
position and a sample holder several pm more close towards the tip.

Important for reliable sample holder movement is the ’'low friction’ sapphire/quartz
contact between the sample holder and the table. In the first design of the piezo system,
there was a direct contact between the copper sample holder and quartz table. Due to
insufficiently low friction, the stick-slip mechanism was unreliable. The modification of
adding sapphire spheres seems to be crucial.

Contacting procedure

At the beginning of the experiment, the sample and tip are separated several mm, and a
‘coarse approach’ procedure is initiated, which consists of the following three actions:

1. The fine piezo is expanded until a tunnel current of 80 pA is measured or until
maximum expansion is realized.

2. If the fine piezo reaches its maximum expansion without sensing any tunnel current,
the fine piezo is retracted to its original position.

3. The discussed stick-slip mechanism takes place. This subroutine consists of slow
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step 1: Fine piezo expands
until tunnel current is sensed
or maximal expansion is achieved

step 2: If no tunnel current is
sensed, the fine piezo retracts

step 3: A stick-slip action for the
coarse piezo is initiated

.

Figure 30: The three sketched steps indicate the actions taken during one ’coarse
approach’ procedure. The procedure is repeated until a tunnel current is sensed.

retraction and quick expansion of the coarse piezo and results in a net movement of
the sample towards the tip.

The coarse approach continues until the tunnel current of 80 pA is measured and is
automated and controlled by computer. There are several moments at which this procedure
is initiated. At room temperature, in open air, this procedure will test the approach and
bring the tip towards the sample. After succeeding in this, the sample is withdrawn
from the tip (circa 500 reversed stick-slip actions). This is necessary due to accidental
displacement of the sample during installation of the insert in the cryostat. This installation
is followed by the second ’coarse approach’ procedure (now in vacuum). After reaching
the tunnel regime the sample is withdrawn only a few steps to anticipate vibrations and to
prevent the premature formation of a point contact. The cooling process is now started.
If no further testing would be performed, tens of thousands of stick-slip steps are needed,
resulting in a time consuming coarse approach procedure for joining sample and tip at low
temperature. This is a direct result of temperature dependent expansion and retraction of
the piezo elements. To overcome this problem the coarse approach procedure is initiated
for the third time at an intermediate temperature 7' ~100 K.

In order to make the contact as gentle as possible, tunnel regime is used as a reference
position. If a 80 pA tunnel current is measured at a 800 mV-bias voltage (R=10 GQ), it
is known that, for clean oxide-free surfaces, the tip is separated from the sample several
Angstrgms. For such surfaces, expansion of the fine piezo will bring the tip and sample
closer together, resulting in a smooth increase in current. However, discrete jumps are
observed. This can be explained through the existence of an oxide layer between tip and
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sample. If the resistance has dropped to 1-1000 €2, it is believed that the tip has penetrated
the oxide layer and that the metallic contact is formed.

By pushing the tip through the oxide, the tip will be plastically deformed. It can
become blunt and therefore the probability to obtain contacts which have a radius smaller
or comparable to the mean free path is reduced by the presence of the oxide. This probably
explains why circa 75% of the measurements produce conductance curves that do not
resemble curves predicted by the modified BTK-model, which is valid for ballistic contacts
only.

4.3 System cooling

After the insert is lowered into the cryostat, the vacuum chamber is pumped down to
remove all air, followed by injecting exchange gas. This gas realized the thermal contact
between the piezo system and the helium bath. Liquid *He can be transported from a
storage dewar into the cryostat. The temperature in the vacuum chamber will reach 4.2 K
(the boiling temperature for liquid *He).

There are several reasons why measuring at 1.4 K is preferred. 1) The liquid *He at 4.2
K, surrounding the vacuum chamber, has a relatively low thermal conductivity, resulting in
vibrations due to boiling. At 1.4 K, the liquid *He is superfluid (\-temperature Ty = 2.18
K) and boiling occurs without bubbles due to relatively high thermal conductivity and
vibrations are reduced. 2) At a lower temperature, the thermal smearing will become less.
This is accompanied by ’sharper’ measured conductance curves so that fitting will yield
more accurate fitting parameters. Below it is classified how this lower temperature can be
realized.

Consider the liquid/vapor *He-bath. Removal of *He-vapor by means of pumping will

2500

2000 -
1500 -
1000 4

500 4

Pressure [mbar]

15 20 25 30 35 40 45 50
Temperature [K]

Figure 31: Pressure of the vapor in a vapor/liquid system for “He, taken from
[Pob96] (note the T=4.2 K at p=1 bar).

40



Pb | Nb
type I II

A [meV] 1.37 ] 1.53

T, K] 7.19 | 9.50
Hc(l) [kA/m] 63.9 | 128
¢ [nm)] 83 | 38

Table 3: Bulk properties of the superconductors Pb and Nb, taken from [Kit96].

result in a reduction of the vapor pressure with a corresponding reduction of overall tem-
perature. After a while, an equilibrium vapor pressure has established because the same
amount of vapor that is pumped away is supplied through evaporation. Due to the presence
of the contact gas in the closed chamber, the temperature inside the chamber will drop
as well and the original gaseous contact gas will condensate: a new closed liquid/vapor
system is formed. Measurements done on a comparable closed *He liquid /vapor system
result in the curve in Figure 31. The setup uses a rotary pump with a pumping capacity
of 200 m?/hour that can reduce the vapor pressure to circa 4 mbar which corresponds to
a temperature of 1.41 K.

4.4 Tip and sample preparation

In all experiments described in this report, lead (Pb) or niobium (Nb) tips are used. The
bulk values for the superconducting bandgap A, coherence length &, critical temperature
T, and the critical field H,) are displayed in Table 3.

In order to form a point contact, a tip has to be prepared with a sufficiently small
radius of curvature (see Section 2.2). Three different methods for realizing this sharpness
are mechanically polishing, cut-and-pull, and a ’tilted-sample’ tip. These methods are
described below.

A mechanically polished tip is prepared by clamping a 1-mm wire into a drill. The
rotating wire is then softly pressed to a fine structured piece of sandpaper (=1 grain/um?).
Subsequently, the tip is examined under a microscope to check that the radius of curvature

Tilted-sample tip Substrate

J

/'
Pb-layer

o

Figure 32: Schematic representation of a ’tilted-sample’ tip.
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Figure 33: Four SEM-images taken on the same tip (prepared by cut-and-pull),
with increasing magnification.

is less than 1 um. Some measurements using tips prepared in this way have been successful,
meaning that the obtained dI/dV-V curves are consistent with the modified BTK model
(Chapter 3) which is only valid for contacts in the ballistic regime. The tips obtained with
this method are well defined (sharp polished end) but, since the tip is polished against
structured surfaces, it is not perfectly clean.

A similar tip configuration (however faster and easier to prepare) is obtained through
the so-called cut-and-pull method. A 1-mm wire is simple cut by a pair of scissors. A
pull is enforced just before the wire is split in order to create a clean surface. Although
the tip is not well defined, small 'mini-tips’ on the surface are always present and provide
the demanded radius of curvature. SEM-images confirm the presence of 'mini tips’ with a
curvature a <100 nm (Figure 33). Also attempts with such tips have been successful.

A third attempt for sharp-tip configurations consists of evaporating a thin (100-1000
A) Pb-layer on top of a substrate. By tilting the film, (Figure 32), the radius of curvature
must be lower than the Pb-layer thickness, at least in two dimensions. Such tips are both
well defined and clean. However, measurements do not resemble the theoretical predicted
curves in the ballistic regime (BTK model). Microscope images taken before and after
measurements reveal that the Pb-layer has crumbled off, probable due to bad adhesion
of Pb to the substrate. This can result in a contact between the substrate part of the
‘tilted-sample’ tip and the sample. To date, tips of these kind have not been successful.

Samples prepared by various techniques have been used. One technique concerns the
use of a bulk metal, that has been chemically treated in an attempt to obtain a smooth
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surface. Other samples are prepared by sputtering the metal onto a substrate, and (in
some cases) an additional capping layer of Au was deposited since. Au is believed not to
oxidize. Since no correlation between sample preparation and the chance of a successful
measurement is found, no further attention to sample preparation is given.
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5 Results

This section will only focus on those contacts that resemble curves in agreement with the
modified BTK model (valid in the ballistic regime). The first two sections give a general
overview of the experiments. Section 5.3 discusses the relation of the spin polarization
on the interfacial scattering. Also the superconducting bandgap seems to depend on the
contact properties, which will be treated in Section 5.4. The (partial) destruction of su-
perconductivity is shown for a series of measurements in the last section.

5.1 General measurement phenomena

Section 4.2 argued that the presence of an oxide layer complicates the formation of bal-
listic or quasi-ballistic contacts. This section focuses only on those measurements that do
resemble the modified BTK-model (Chapter 3), which is valid only in the ballistic regime.

All conductance curves are normalized with respect to the constant conductance mea-
sured at |eV| > A. The fits are carried out while allowing variation of all parameters
{T, A, Z, P}. Generally, the temperature T obtained from the fit is higher than the experi-
mental temperature (4.2 K or 1.4 K), as is shown in two typical measurement in Figure 34.
In [Kant00], the following explanation for this effect is proposed. The bandgap is modeled
to increase abruptly from 0 in N to A in S. However, in reality the interface is smeared
and its effect can lead to an apparent 7" higher than the experimental T. Another possible
explanation is the effect of local heating due to the current through the contact. In the
coming sections, no further notion is given to the deviation between fitted and experimental
temperature.

Figure 34 also indicates the presence of excess conductance with respect to the BTK
model, starting at |eV|/A ~ 1 — 2 and ending at |eV|/A =~ 4 — 5. Several possible
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Figure 34: Two representative curves for a Cu/Nb and Au/Pb contact, measured
at 4.2 K and 1.4 K respectively. The solid line through the data points is a fit with
the modified BTK model. The fits do not use the complete measured curve, as shown
in the insets.
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Figure 35: Measurements on two Co/Nb contacts and (for reference) on a Au/Nb
contact. The reduction in normalized conductance for Co/Nb is a consequence of its
nonzero spin polarization. The solid curves represent the fits with the modified BTK
model

explanations for this effect can be given. First of all, the formed contact can have a radius
a comparable to the mean free path [, while the modified BTK model assumes a < I.
Furthermore, the BTK-model includes only elastic scattering and no inelastic processes.

5.2 An overview of measured and fitted conductance curves
Measurements on nonpolarized- and polarized-N/S contacts

Measurements on contacts Co/Nb and Co/Pb contacts (ferromagnetic Co is known to
have a nonzero spin polarization) show curves like the ones plotted in Figure 35. The fits
with the modified BTK model indicate a difference in P for the two Co contacts. This
phenomenon will be discussed in Section 5.3. To highlight the influence of the polarization
on the normalized conductance, a measurement of Nb on Au is shown also. As expected,
the fit for the Au/Nb contact yields P = 0.00. Note that the value P = 0.000.. is frequently
extracted from fits, since it represents the lower boundary of the P-domain (0 < P < 1).

Measurements in the high-Z regime

Several measurement have shown conductance curves as in Figure 36, with a relatively
high resistance (70 kQ2) and a relatively high extracted value for Z (Z = 2). It is believed
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Figure 36: Conductance curve for a Au/Pb contact (note the high resistance!) with
probably a thin oxide layer at the interface (N/I/S contact). Such a contact can be
also represented as an N/S contact with high Z, as is confirmed by the BTK fit (solid
line).

that for such contacts, a thin oxide layer still exists between tip and sample. Since the
conductance at V=0 has a nonzero value, one can not compare this contact regime with a
high-quality tunnel junction, where the conductance is zero at subgap voltages.

A measurement series on one stable contact

Several series of conductance curves on the same stable contact have been measured. One
series of experiments that this was possible, concerned measurements on Co/Nb contacts.
By varying the tip pressure, circa 15 curves were obtained. Four of those curves are
displayed in Figure 37. Their fits show a change in values for R, A, Z and P, which will
be part of the discussion in the coming sections.

5.3 Dependency of interfacial scattering on the DSP

The four curves plotted in Figure 37 suggest that there is a correlation between P, R,
and Z. According to R = Ry(1 + Z?) (Equation 12) for 0.4 < Z < 0.5, a change in R
of several percent is expected. However, a change of 100-400% is observed, see Figure 38.
Apparently, for the series of measurements performed on this contact, the influence of Z
on R is negligible and the differences in R are probably a result of the changing contact
radius a. The question now is, does P depend on Z, on R (and thus a), or on a combination
of both?

The values for P extracted from the previously mentioned Co/Nb series, as well as
the values obtained from all other measurements on Co, are plotted as a function of R
and Z in Figure 39. It seems that there is no correlation between P and the resistance
(left plot). However, as a function of increasing Z, the spin polarization tends to decrease
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Figure 37: Four conductance curves, part of a series of measurements performed on
one stable contact (Co/Nb). The solid lines represent the fits with the modified BTK
model.

to zero, as is illuminated by a guide to the eye. Strijkers [Strij01] observed the same
phenomenon (see Figure 40. He suggested that the interfacial scattering is accompanied
by an increase in spin-flip scattering. Although so far no theoretical base has been given,
one can expect that, since spin-flip scattering tends to balance the number of spin-up and
spin-down electrons, a lower P should be measured. To Figure 40, the ’guide to the eye’
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Figure 38: The series of curves on the stable Co/Nb contact yield the plotted R-Z
correlation.
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Figure 39: If one plots P versus R (left), no correlation can be found. However, P
versus Z (right) shows a decrease of spin polarization at higher barrier strengths Z.

from Figure 39 is appended.

In order to give the intrinsic spin polarization of Co, one should use the value closest
to Z = 0. Since it is not completely sure that the contacts are in the ballistic regime, one
can not say that this spin polarization is purely the Py,, as defined in Equation 5.

5.4 Observation of decay in the superconducting bandgap

The four representative curves in Figure 37, part of a measurement series on Co/Nb,
indicate a decay in the bandgap as a function of resistance R. The intuitive model presented
in Section 2.5 attributes such behaviour to the fact that the contact radius a is smaller
than the coherence length £. In Figure 41, the extracted values for A are plotted as a
function of R.

The solid line in Figure 41 is a fit with Equation 36. The parameters p; and p, are
defined in Equation 37 and their extracted values are 0.86+0.03 meV and 0.84+0.1 Q~1/2

10

Co
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| P=045+0.02
0.6}

o.4j-
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Reference guide to the eye! ——-/ )
0.0 -

00 01 02 03 04 05
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Figure 40: Relation between P and Z as observed by Strijkers et al [Strij01], indi-
cating a decrease in P with interfacial scattering Z. The ’guide to the eye’, drawn in
Figure 39, is appended as reference.
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Figure 41: Illustration of the decay of the bandgap A as a function of resistance,
for a Nb tip on Co. The solid line is a fit with the geometrical intuitive model.

respectively.

It is impossible to solve Ay, £ and 6 from the two extracted values for p; and p,. How-
ever, one can give an estimation for . For 30° < § < 60° one obtains 1.0 < Ay < 2.3 meV
and, by using the ballistic approach avR=20 nmv/, 9 < £ < 27 nm. The extracted values
are in reasonable agreement with the bulk values A=1.5 meV and £=38 nm, certainly in
view of the simplicity of the model.

5.5 Destruction of superconductivity due to generated fields higher
than the critical field

It was introduced in Section 2.4 that the current, at voltage V., through a superconducting
tip can generate a field H > H. One series of measurements (Pb on Au) shows the
existence of the voltage peaks and is plotted in Figure 42. The curves are measured with
the same tip and the tip-pressure is varied to realize contacts with various resistances. In
other words, the series is not the result of a continuously increasing tip-pressure.

The figure clearly shows a decrease in V, for decreasing resistances. The 350 Q2-contact
has a resistance that is too high for observation of V, within the 5 meV-voltage range. If
one disregards the critical peaks, the conductance curves can be reasonably fitted with the
modified BTK model (solid lines). This suggests that the contacts are ballistic (a < [) or
quasi-ballistic (a =~ [).

The model proposed in Section 2.4 predicts that for the position of the voltage peaks
obey the correlation V, = kvV/R + Vp. The measured values for V, and VR are plotted in
Figure 43. The linear fit yields k¥ = 0.21 4 0.04 meV/QY/? and V; = 0.9 + 0.2 meV.

From the slope k, the critical field can be calculated using Equation 31 and
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Figure 42: A series of conductance curves measured on one Au/Pb contact, showing
the destruction of superconductivity at +V,. As the resistance decreases, the position
of V, shifts towards V = 0. The solid lines represent the fits with the modified BTK

theory.

av/R ~20 nmv/Q, resulting in H,=1.7 kA/m. The bulk value for Pb is given by 64 kA /m,
which is factor of 30 higher than the observed H.. A possible explanation for this is
influence of the tip geometry on H.. Westbrook and Javan measured with a normal tip
(W) on a superconductor (Ta) a reduction of 2 for the H,. One must realize that the
influence of the geometry on H, for an S-tip on an N-sample can be completely different
than for an N-tip on an S-sample.

As a check of consistency, one can extract the mean free path from the measured value
Vo, providing that an estimation of I.,.(A)R can be given. Figure 44-(a) and (b) shows
the extracted values for A and Z as a function of R. One can roughly conclude that A and
Z are constant, resulting in the conclusion that also I.,.(A)R can be regarded constant
in all curves. Its value is extracted from I — V data and gives Io;.(A)R =~ 0.1 meV. This
value and the extracted H. can give an rough estimation for /, namely [=2-3 nm. This
value is consistent with the assumption of a quasi-ballistic contact, since the values of Ry
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Figure 43: The plot displays the values of V. versus VR, to which a linear fit is
applied.

correspond to contact radii on the order of several nm.

Not all contacts show similar critical peaks. One explanation for this is that for most
contacts, the H, is too high for the peaks to lie within the measurable range. Probably, the
shape of the Pb-tip used for these specific measurements has a rare and ’special’ geometry.
This can also explain why for this contact a decay in bandgap versus R is not observed,
since probably the geometry differs too much form the cone-shaped tip used in the intuitive
model presented in Section 2.5.
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Figure 44: The extracted parameters A (left) and Z (right) as a function of the
In a rough approach, A and Z can be considered

Au/Pb contact resistance R.

constant.
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6 Conclusions and Suggestions

The most important conclusion that can be drawn from all performed measurements, is
that the realization of (quasi-)ballistic N/S contacts is not a controlled process and is
accompanied by a small chance of success. Since tip and sample are prepared in open air,
the presence of an oxide layer is unavoidable. The superconducting tip has to penetrate
this layer be means of severe increase of tip-pressure, which is accompanied by deformation
of its end and/or the creation of a blunt tip. The majority of the measured conductance
curves does not resemble the modified Blonder-Tinkham-Klapwijk (BTK) model (valid in
the ballistic regime), but shows features probably related to transport phenomena in the
so-called mesoscopic regime (a > [, with a the contact radius and [ the electron mean free
path). Since both tip and sample are believed to be deformed in the contact formation,
studies on thin (10-100 A) metallic films seem not possible. Also, the idea of capping
the metallic layer by Au (Au is believed to contain no oxide layer), does not improve the
succes in formation of a (quasi-)ballistic contact. This suggests that tip preparation is
more important than important than sample preparation.

However, still a number of N/S point contacts have successfully been realized, both
on nonpolarized as well as on polarized normal metals. The obtained results are in the
ballistic (a < 1) or quasi-ballistic (a ~ [) regime.

The measurements show that the extracted degree of spin polarization (P) on Co
contacts decreases as a function of the elastic scattering parameter Z, from P ~ 0.40 at
Z =0.2to P ~0.15at Z = 0.5. This can be understood if one relates an increase in Z
to an increase in spin-flip scattering, which levels out a difference in the number of spin-
up and spin-down electrons. More insight in this behaviour can be acquired if one could
extract values for P at Z < 0.2 and Z > 0.5. Another challenge is the understanding of
the physics behind spin-flip scattering and its influence on P.

Another result is obtained on various measurements on a single stable Co/Nb contact,
while increasing the tip-pressure (and therefore increasing the contact size). Am exponen-
tial decay in the extracted superconducting bandgap A is observed if one plots A versus
1/ \/ﬁ, with R the contact resistance which is directly related to the contact radius. This
exponential decay reasonably matches an geometrical intuitive model, based on the fact
that the Cooper pairs (with characteristic length &) do not fit inside the sharp end of
the tip. In fact, a fit with this model extract parameters for Ay and &, which have com-
parable magnitude to bulk values. This interesting result has not been reproduced yet.
Furthermore, future research can focus on a more profound theoretical basis.

If the tip has a sufficiently low critical field H., the destruction of superconductivity is
observed at voltages £V, within the measurable voltage range. Conform the Westbrook-
Javan model, measurements on Au/Pb contacts show there is a linear dependency between
V. and v R. The slope yields information about H,, while the offset at R = 0 can give an
estimation for [. Westbrook and Javan founded their model to measurements of an N-tip
on an S-sample! They extracted a H, that is twice as small as the bulk value. However, an
S-tip on an N-sample is probably accompanied by a larger reduction of the critical field.
This, combined with a possible ’special’ tip geometry, can explain why the extracted H.,

92



for the measurements described in this report, is 30 times smaller than the bulk value. The
reason why the tip geometry is believed to play a role, is because other N/S contacts (even
low-Ohmic contacts) do not show the destruction of superconductivity. Apparently, the
H, (and therefore V;) is too high to be realized within the measurable regime. Studying
the critical field of a superconductor in proximity with a normal metal with this method
deserves more attention, specially because in the last couple of years proximity effects have
gained significant interest. .

In order to increase the chance of succes for formation of (quasi-)ballistic contacts, and
to minimize tip and sample deformation in the process, still the correct method for tip
preparation has to be found and accordingly a better yield of succes can be expected in
the future. One idea is giving an additional chemical treatment to the tip after it has
mechanically been polished, resulting both a well defined and clean tip.

Needless to say, the ideal experimental setup for this type of measurements would be
in-situ Low temperature STM, capable of performing four-probe measurements, which is
necessary for contacts in the range 1-1000 £2.
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