EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Finite state analysis of the CAN bus protocol "what CAN can and can not do"

van Osch, M.P.W.J.

Award date:
2003

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners

and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain


https://research.tue.nl/en/studentTheses/70187e7a-de8c-4b82-bc3e-17e2fcb3361a

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computing Science

MASTER’S THESIS
Finite State Analysis of the CAN bus Protocol
“What CAN Can and Can Not do”

by
M.P.W.J. van Osch

Supervisors: Prof. Dr. J.C.M. Baeten (TU/e)
Prof. S. A. Smolka (SUNY SB)

April 2001




Abstract

In this thesis I formally specify and verify the data link layer of the Controller Area Network (CAN).
CAN is a high speed real time serial bus network widely used in embedded systems. CAN was primarily
designed for the automotive industry as the Local Area Network for passenger cars. Nowadays most
European passenger cars are equipped with this network. Over the years a lot of other applications have
been found like industrial machinery and medical equipment. The CAN data link layer and physical layer
are subject of the ISO 11898 international standard. I have made specifications for most protocols of
the CAN data link layer and checked these specifications against 12 important properties. Eight of these
properties were derived directly from the ISO 11898 standard. Moreover I have executed my specifications
(9 in total) to see for an increasing amount of controllers and messages in the systems how the size of
the state space increases for different specifications.



Contents

1 Introduction 1
2 An Overview of the CAN Bus 3
2.1 Basic Principles of CAN . . . . . L L e 3
2.2 Message Formats . . . . . . . .. .. e 4
2.3 Different Kinds of CAN Controllers. . . . . . . . .. .. .. .. o 5
2.3.1 Basic CAN . . . . . e e 5

2.3.2 Imtermediate CAN . . . . . . . . . e e e 5

233 Full CAN . . . . e e 6

2.4 Separation Between Different Parts of the Specification. . . . . . .. ... ... ..., . 7
2.4.1 The Arbitration Protocol . . .. .. .. . .. .. ... 7

2.4.2 The Data Request Protocol . . . . . .. . ... . . o oo oL 7

2.4.3 The Error Handling Protocol . . . . .. ... ... ... ... ... .. ... ..., 8

2.4.4 The Fault Confinement Protocol . . . . .. ... .. ... ... .. .. ... ... 8

3 The Mury Verification System 9
4 A Basic CAN Specification in Muryp 11
4.1 TheData Types . . . . o i i i i i e e e e e e e e e e e e e e 11
4.2 Functions and Procedures . . . . . . . .« . . .. e e e 12
43 TheRules . . . . . . . . e e e e e e 12
4.4 The Start State . . . . . . . . . . e e e e 14

5 Extensions of the Basic Specification 15
51 Requests - . . . . . . . . e e e e e e e e e e e e e e e e 15



52 Error Handling . . . . . . . . . o i e 16

5.3 Fault Confinement . . . . . . . . v i i e e e e e e e e e e e e e e e e e e e e 18
54 Nodes with More Than One Write Buffer . . . . ... ... ... .. ... ... ..... 20
5.5 An Optimization . .. ... .. ....... S 21
Verification 23
6.1 Properties Verified . . . . . . . . . . .. e e 23
6.2 Fairness and CAN . . . . L e e e e e e e e e e e 25
State Space Generation 27
7.1 Results . . . o o o e e e e e e e e e e e e e e e e e e e e e e e e e 27
7.2 Verification Overhead . . . . . . . . . . i e e e e e e e e e e e e e e e 28
Conclusions ’ 29

tate Space Tables 33
Specifications 43
B.1 Basic CAN . . . . . e e e 43

B.1.1 Arbitration . . . ... ... ...l e 43
B.1.2 Requestsand Errors . . . . . . . . . . o o i 47
B.1.3 Fault Confinement . . . . .. . . .. . .. . e 52
B.2 Imtermediate CAN . . . . . . . . . e e e e e 59
B.2.1 Arbitration . . . . . . . . e e e e 59
B.22 Requestsand Errors . . .. . ... . . ... ..o 64
B.2.3 Fault Confinement . . . . . . . . . . . . i i e 71
B.3 Full CAN . . . e e e e e 79
B.3.1 Arbitration . . . . . . ... e 79
B.3.2 Requestsand Errors . . . . . . . . . ... e 84
B.3.3 Fault Confinement . . . . . . . . . . .. . e - 91
Properties verified 101
C.1 Basic CAN . . . . e e e e e 101

ii



C.2 Intermediate CAN . . . . v v e e e e e e e e e e e e e e

C.3 Full CAN

iii



Preface

This thesis is part of my graduation project, completing my study at Eindhoven Un1vers1ty of Technology,
Department of Mathematics and Computing Science, Formal Methods group.

Because I wanted to take this chance to go somewhere else for a while after 4 years as a student in
Eindhoven I conducted my research in the United States at the State University of New York at Stony
Brook, Computing Science Department. I especially would like to thank Professor S. A. Smolka for giving
me the opportunity to work with him and being my supervisor for this research project. I also would
like to thank Professor J.C.M Baeten for being my supervisor at Eindhoven University and contacting
Professor Smolka about a possible internship in the first place. Thanks also goes to Dr. H. Zantama and

Dragan Bosnacki for taking part in my graduation committee.

Last but not least T would like to thank my family, friends and colleagues both in The Netherlands and
in the United States for putting up with me and supporting me throughout my study.

Eindhoven, April 2001

Michiel van Osch



Chapter 1

Introduction

The Controller Area Network (CAN) bus [1] [6] is a serial bus network widely used in embedded systems.
It was invented by Robert Bosch GmbH [11] and controller chips have been available since 1989. It was
originally designed for applications in the automotive industry. For instance make communication possible
between different components of the engine control system, power steering and anti lock braking systems.
In 1993 the two lowest layers of the ISO/OSI reference model (the physical layer and the data-link layer)

were standardized by the International Standards Organization (ISO 11898) [4].

Currently there are 15 chip manufacturers around the world who together make more then 50 different
types of CAN protocol controller chips. In June 2000 Philips semiconductors announced it had sold
over 100 million CAN transceivers [8]. A transceiver is the device which connects the controller to the
network bus. The CAN protocol controllers are nowadays used in most European passenger cars, but
the controller is also widely used in industrial machinery, medical equipment and even in some domestic
appliances like television sets

CAN is a synchronous serial bus system with multi-master capabilities, that is, all CAN controllers are
able to transmit data and several CAN controllers can request the bus simultaneously. All controllers also
read values from the bus at the simultaneously. In CAN networks there is no addressing of controllers in
the conventional sense, but instead, prioritized messages are transmitted. A transmitter sends a message
to every controller. Each message has an identifier value. Each node decides on the basis of the identifier
of the received message whether it is interested in the message or not.

The most important feature of the CAN bus is the way it resolves the problem of collisions that occur
when more then one controller wants to write a message to the bus. Instead of assigning an arbitrary
delay time to every controller that wants to write a message to the bus (the Ethernet protocol), the
identifiers of the messages are compared bitwise. The highest priority message wins the arbitration and
the controller continues the sending of the message. This form of arbitration is called Carrier Sense
Multiple Access with Collision Detection and Arbitration on Message Priority (CSMA/CD + AMP).
The controllers which have lost the arbitration can try to write their message to the bus when the bus
has become idle again.

In this thesis I will describe the formal specification of the arbitration procedure, requests, error handling
and fault confinement protocols for the Controller Area Network using the Mury verification system (2]
[3]. Furthermore I will describe the specification of these four aspects of the CAN bus for three different
kinds of CAN controllers: basic, intermediate and full CAN controllers. These three controllers differ
in the amount of buffer space to store messages that still have to be transmitted over the network. For
these specifications I will describe the verification of twelve important properties. Eight of which are
directly found in the ISO standard. The other four are desired properties not directly mentioned in the
standard but obviously desired. I will also analyze the resulting state spaces when the number of nodes,
the number of message types, and other parameters are increased and the specifications become more

complex.



Our goal is to make an accurate specification of the CAN bus which could serve as an interesting case
study for the model checking community and a usable guide to future CAN implementors.

In the second chapter I describe the aspects of the CAN bus protocol more thoroughly. After that I
informally describe the Mury language which I used to specify the protocol. Then I describe how I made
the specification for the basic arbitration protocol. In chapter 5 I give descriptions for the extensions
of the basic CAN specification just described in chapter 4 and in chapter 6 I describe the verification
of some properties. In chapter 7 I describe the results from executing the specifications for a varying
amount of nodes and identifier values. After that I summarize my conclusions of this specification work.

The first appendix contains a collection of tables in which the results for the executions of all specifications
using a varying amount of nodes and values. Appendix B contains all specifications. And appendix C
Contains all properties verified for the different specifications.



Chapter 2

An Overview of the CAN Bus

2.1 Basic Principles of CAN

The CAN serial bus network is a network that consists of several controllers (in theory this could be an
infinite number) plus a serial bus. Each controller is directly connected to the bus. When the bus is idle
a controller may start to write a message to the bus. The message will always be broadcast to every
controller in the network (including itself). When every controller has received the message successfully
every controller decides on its own if it wants to keep the message or disregard it.

In figure 2.1 the third controller is broadcasting a message to all other controllers. Only the second
controller disregards the message because it has no interest in it.

CAN CAN CAN CAN

Controller 1 Controller 2 Controller 3 Controller 4

(Receiver) (Receiver) (Transmitter) (Receiver)

CPU CPU CPU CPU
A A A
\
Filter Filter Msg || Filter Filter
4 ]
Y
- >
Bus

Figure 2.1: CAN Architecture

The CAN bus is synchronous. Which means during a network time cycle there is one point on which one
or more nodes write a value to the bus and one point on which every node reads the value from the bus.

It is possible that more than one controller starts to write a message to the bus at the same time. This
is called a collision between two or more messages. Then a arbitration procedure has to take place to
determine which controller is granted access to the bus. Every message has an unique identifier that tells
what kind of data it contains (e.g. in a car a message from the engine control software about the current



speed of the car will have a different identifier than a message from the anti lock braking system about
the temperature of the brakes). This identifier is also used for determining the priority of the message.
Arbitration takes place by comparing these identifiers bit by bit and as soon as a controller detects its
identifier is less than (binary value) the identifier from another controller it drops out of the arbitration.
It may retry to transmit its message to the bus as soon as the bus becomes idle again. The message
with the lowest identifier wins the arbitration procedure and finishes sending the message. The highest
priority message is the one with the lowest identifier value.

The big advantage of this way to resolve collisions is that the message which has won the arbitration
procedure immediately continues the sending of the message. The highest priority message is not delayed.
The other controller(s) will try to send their message to the bus immediately after the bus has become
idle again.

Each controller may only write a unique set of messages (with their own unique identifiers) to the bus.
Otherwise two nodes might win the arbitration procedure and a collision between the contents of the
data fields may take place (see section 2.4).

Also controllers can request certain data from other controllers and because these requests do not contain
any data (see section 2.4) it is possible for more than one node to request for the same data message at
the same time. A request message has basically the same format as the corresponding data message. It
only does not contain any data. The answer to the request is the data message with the same identifier.
If arbitration takes place between a request and the answer of this request, the answer will win the
arbitration procedure.

2.2 Message Formats

A standard CAN message consists of several fields (Fig. 2.2):

SOF Arbitration | Control Data CRC | ACK EOF
Field Field Field Field | Field

1bit 12o0r32bit 6bit Oto8byte 16bit 2bit 7bit 3 bit

source: CAN presentations, CAN data link layer [1]

Figure 2.2: message format

The SOF (Start Of Frame) bit indicates the start of the message. The arbitration field contains an
identifier to indicate the priority of the message and an RTR bit which indicates whether the message is
a request or not. The difference between a request and a normal data message is that in a request the
RTR (Remote Transmission Request) bit is set and that it does not contain any data in the data field.
The answer to the request is the message with the same identifier but with the data.

The standard message Identifier is 11 bits long. Also an extended message format exists in CAN which
allows to send messages to the bus with a longer identifier field and therefore send more types of messages
through the network. This identifier is 29 bits long. An arbitration Field of an extended identifier has
another two extra bits to indicate it is an extended one and to determine the priority between normal
and extended identifiers. In CAN the arbitration between a normal identifier and an extended identifier
is always won by the normal identifier.

The control field contains the data length of the data field in the message. The data field is the actual
content of the message. For instance in a CAN network in a car this may contain the current speed of the
vehicle. “The CRC (Cyclic Redundancy Check) field contains the CRC sequence which is used to check
the correctness of a received message. The Acknowledgment field is used to check whether a message is
successfully received by at least one of the controllers. The EOF (End Of Frame) bit indicates the end



of the message.

The only other type of messages occurring in the CAN network are error and overload messages. If
a controller detects an error in a message it will send an error message. There are two kinds of error
messages: passive error messages consisting of twelve recessive bits and active error messages consisting
of six dominant bits followed by six recessive bits (see section 2.4.3). An overload message is sent to the
bus when a controller wants to postpone the sending of the next message. It could happen that a node
is not ready to receive the next message when the bus has become idle. This node will send an overload
message of exactly the same format as an active error message which postpones the sending of the next
message.

2.3 Different Kinds of CAN Controllers

Over the years different companies have developed different types of controllers which all comply to
the ISO 11898 standard but differ in implementation. In this section I will make a devision between
three kinds of CAN controllers. These differ in the number of buffers to store messages that have to be
transmitted over the network.

2.3.1 Basic CAN

The first CAN controllers only had one buffer to store messages pending to be written to the bus and
one or more receive buffers to store messages read from the bus (Fig. 2.3).

Yot
,,,,,,, = Single Transmit Buffer <:
g
)
O 5
£ N
o] 1
9 ™ Filter > Receive Buffer(s)
= l/

source: CAN presentations, CAN implementations [1]

Figure 2.3: Classic CAN controller

The CPU formats the message and puts it in this buffer. It will remain there until it is broadcast
successfully to all other nodes. If the controller lost the arbitration procedure or an error was detected
while sending this message the write buffer still contains the message. The controller attempts to resend
it as soon as the bus is idle again. However, while the write buffer contains a message no messages can
be stored in this buffer. When in this situation the CPU has received a new message to be written to the
bus this message will be lost. This problem is called inner priority inversion.

2.3.2 Intermediate CAN

To overcome the inner priority inversion problem CAN controllers were developed with more than one
intermediate write buffer (Fig. 2.4). From now on I will call a network with this kind of CAN controllers
intermediate CAN.



Intern. Single Transmit Buffer
et
Arb1trat10n.<___1 Single Transmit Buffer T
j&«— Single Transmit Buffer E
O

1 Filter > Receijve Buffer(s)

Protocol Controller

source: CAN presentations, CAN implementations [1]

Figure 2.4: CAN controller with multiple intermediate buffers

Now it is less likely messages will get lost due to lack available buffer space. The internal arbitration
ensures the highest priority message in the write buffers will be written to the bus first.

But this does not overcome the problem of inner priority inversion. Still all buffer space can get full which
causes messages to get lost in case even more messages have to be written to the bus by that controller.

2.3.3 Full CAN

So CAN controllers with object storage were developed; called Full CAN (Fig. 2.5).

Transmit/Receive Msg 1

CPU

-

Y

>  Filter

Protocol Controller

Transmit/Receive Msg n

source: CAN presentations, CAN implementations [1]

Figure 2.5: Full CAN controller

These controllers are equipped with dual ported RAM and are (in theory) able to store every message
with a different identifier. In Full CAN each identifier is allocated a different memory address in which
a pending message is stored. When a new message has to be written to the bus before the old message
with the same identifier is broadcast the old message will be overwritten by the new one. This is not a
problem because the new message contains more up to date information. Full CAN eliminates the inner
priority inversion problem as well as the problem of older versions of the same messages still being send
over the network.

There are different ways to specify the CAN bus and I have made specifications for each of these con-
trollers. These specifications will be discussed in chapter five.



2.4 Separation Between Different Parts of the Specification

The different parts of the protocol can be separated very well. This allows for a basic specification which
only specifies the arbitration procedure. After that this specification can be extended with the other
parts of the protocol. The most important parts of the protocol are:

arbitration: who wins the access to the bus in case of a collision
remote requests: one or more nodes can ask another node for certain data

error handling: a message can become corrupt due to several reasons. A controller has to detect such
errors and notify the other controllers about the error in order to abort the further sending of the
corrupt message.

textbffault confinement: If a node becomes highly unreliable measures are taken to prevent other reliable
nodes from not receiving any successful transmitted messages.

I will discuss these parts of the CAN protocol more thoroughly in the rest of this section.

2.4.1 The Arbitration Protocol

It is possible that two nodes start to write a message to the bus at exactly the same time. This is called a
collision and an arbitration procedure has to decide which controller is allowed to write his message first.
In CAN a collision is resolved by bitwise comparison of the identifier that is allocated to each message.
The form of arbitration used is called carrier sense multiple access with collision detection and arbitration
on message priority (CSMA/CD + AMP). It means though that every type of message should have its
own unique-identifier and that it should not be possible for more than one controller to write the same
type of message to the bus. Otherwise collisions could occur between the data in two messages with the
same identifier. These identifiers are assigned to each message type during the implementation of the
CAN network. A controller itself can not change the priority of a message because it lost the arbitration
and wants to make sure it will win the arbitration the next time.

During the synchronous writing of the identifiers to the bus all nodes read back from the bus what they
just have written. If this is a different identifier from what the controller has written to the bus it has
lost the arbitration procedure and will stop the transmission of the message until the bus becomes idle
again.

All controllers are basically connected to the bus using AND gates (on the CAN transceivers [8]). This
means only when all controllers write a 1 value to the bus the bus becomes value 1, otherwise the bus will
have value 0. For the arbitration this means that the lowest identifier value (viewed as a binary number)
will win the arbitration procedure. s

2.4.2 The Data Request Protocol

Controllers can also make a request for a message. They do this by broadcasting the identifier of the
message it wants to receive to all other controllers. The controller that can write the corresponding
message will do so as soon as the bus becomes idle by taking part in a normal arbitration procedure.
If there is a collision between a request for a certain message and the answer of that request, then the
answer will win the arbitration procedure. Each message contains a field which indicates whether the
message is a request or contains data.



2.4.3 The Error Handling Protocol

During the transmission of a message a lot of things could happen which could cause a message to be
broadcast faulty to one or more controller (for instance because of magnetic radiation in the environment).
Errors are detected in five ways:

Bit errors: These are errors occurring when a transmitting node wrote a value to the bus but reads a
different value from the bus, which obviously means something has gone wrong. This error can not
occur during the arbitration procedure because then it just means the node has lost the arbitration
procedure.

Stuff errors: In CAN a controller is only allowed to write 5 consecutive bits of the same polarity to
the bus. If a message contains more than 5 consecutive bits of the same polarity an extra bit of the
other polarity is added to the message before sending it. After successful reception of the message
these extra bits are taken out again. This procedure is called bit stuffing. When a node reads more
than 5 consecutive bits of the same polarity from the bus a stuff error is detected.

CRC errors: Each message contains a CRC field. This field contains a value which is computed over
the binary value of the message. The receiving computes this value over the message in the same
way and if this result differs from the value in the CRC field of the message, something has obviously
gone wrong.

Form errors: Some fields in a CAN message are supposed to have a fixed form. If a node detects a
fixed form field has the wrong form a form error is detected.

Acknowledgment errors: This error is detected when there are no controllers which confirm the
successful reception of the message.

Every controller detecting an error will stop what it is doing (receiving or transmitting) and it will send
an error message to the bus to notify the other controllers in the network. If the controller is passive (see
section 2.4.4) it will send a passive error message to the bus. This is not detected by other controllers
but allows the bus to become idle again eventually. An active controller (see section 2.4.4) will send an
active error message to the bus. This error message violates the bit-stuffing rule for the message currently
on the bus. The other controllers detect an error in the message that is still received by them and start
doing the same thing. If all the controllers have detected and reported the error the bus becomes idle
again. After which it is possible to start the sending of a new message. :

2.4.4 The Fault Confinement Protocol

When a controller keeps detecting errors in a message something might be wrong with the controller, not
with sender of the message or the bus. CAN provides a mechanism to shut off unreliable controllers from
the network. Every controller is equipped with two counters which keep track of the errors detected. One
counter for errors during transmission of messages, the other one for errors while receiving a message.
Initially every controller is active, which means it functions normal. If a controller detects an error the
corresponding counter will be increased. If a controller successfully transmits or receives a message the
counter will be decreased. If either one reaches a certain value (256) the controller will be automatically
shut off from the network and can only be reset manually. Such a controller is called bus-off. There
is an intermediate stage (if one of the counters reaches the value 128) in which a controller will only
broadcast passive error messages. These error messages do not influence the value currently on the bus
and therefore other controller do not detect the error in the message detected by the passive controller.
Writing to the bus is only possible if no active controller wants to write a message to the bus. This is

called a passive controller.



Chapter 3

The Mury Verification System

The version of Mury (2.7) I use for my specification work is not the latest version of theMure verification

system. However this version allows for liveness properties to be checked on the specification which is

not possible in the latest version of Mury (3.1). This is because of the incompatibility between liveness
checking and symmetry reduction (which is implemented in Mury 3.1).

The Mury verification system [2] consists of the Mury description language and the Mury compiler.
They were developed by David Dill at Stanford university [3]. The Mury description language is based
on a collection of guarded commands (condition/action rules), rules which are executed repeatedly in an
infinite loop. The Mury compiler generates a special-purpose verifier (a C++ program) from a Mury
description.

The Mury'language consists of declaration of constants, types, global variables, functions and procedures,
a set of condition/action rules, and a start state. Constants, types, global variables, functions and
procedures- are all declared in a Pascal-like manner. It is possible to declare subranges, enumerative
types, arrays and records. :

The specification itself consists of the transition rules. Each rule has a guard and if the guard holds the
rule can be fired. If the guards hold for more than one rule, a rule is fired non deterministically. The
content of a rule may consist of assignments, conditional statements, loops, function calls and procedure
calls just like in Pascal-like programs. After making a specification the Mury description can be compiled
into C++ code which in turn can be compiled into an executable program.

Verification in Mury is based on explicit-state enumeration. Each state is an assignment of values to all
global variables. Each rule is an atomic transition. So after the firing of a rule you enter a new state in
which some variables have a different value. A Mury verifier performs depth- or breadth-first search in
the state graph determined by a Mury description, storing all the states it encounters in a large hash
table. When a state is generated that is already in the hash table, the search algorithm does not expand
its successor states.

Verification is accomplished by augmenting a Mury description with invariants and liveness formulas
(a subset of LTL formulas). An invariant is a condition that should hold in every state. If during the
generation of the transition system a state is encountered in which the invariant does not hold the state
space generation is stopped and an error is reported. After the state space generation (and successful
verification of the invariants) the liveness properties are checked. If a liveness property does not hold the

verification is stopped and the other liveness properties are not verified anymore.

In all there are 6 different LTL formula which can be checked in the Mury verification system in which
b, by, by and bs are boolean propositions (Fig. 3.1):

Verification in Mury is limited to these exact six LTL formulas. Checking the negation of one of these



LTL Formula Mury rule form

Gb INVARIANT b

Fb LIVENESS EVENTUALLY b

b1 Ub, LIVENESS b; UNTIL b,

GFb LIVENESS ALWAYS EVENTUALLY %
FGb LIVENESS EVENTUALLY ALWAYS b

G(by = F by) | LIVENESS ALWAYS b; — > EVENTUALLY b,
G(b1 = byUbs) | LIVENESS ALWAYS b; — > by UNTIL b3

Figure 3.1: Properties in Murp

formulas simply has to be done by specifying the formula and check if the state space generation is
aborted because the formula does not hold. Therefore, if you have to verify more than one liveness
property that does not hold you have to verify them separately. If you (unexpectedly) find out a formula
does not hold you still have to check the other formulas in a new execution of the specification. This is a
disadvantage from a user point of view because they just want to check all properties once at the same
time and afterwards see which did hold and which did not hold.

For instance if you want to verify that starvation freedom does not hold you can only do this by specifying
a starvation freedom condition and see if the generating of the transition system is halted. If you also
want to check another liveness property you have to first run a specification with the starvation property,
take it out and run the specification again with the other property.

10



Chapter 4

A Basic CAN Specification in Mury

In this section I will give a description of how I specified the arbitration protocol for a basic CAN network.

A basic CAN network is a network in which every node (controller) has one variable to store a value to

DAasll Al IICLWOMR Is & LIBLWOIK 11 i1l

be written to the bus.

4.1 The Data Types

In this specification the network consists of N nodes (ranging from 0 to N-1) and each node is able to
write Max_value+1 different identifier values to the bus.

From the documentation available it is not clear how the identifiers are assigned to the message types
each node can send. This probably depends on the application. So, to easily create a disjunct set of
identifiers for each node an identifier (and so in this case the message) will consist of a MessageID and
a NodeID. In this way each node can only send a disjunct set of identifier values to the bus. A node
can send messages to the bus with every MessageID but only with its own corresponding nodeID. For
instance Node[0] in the array of nodes is able to write identifiers to the bus with a NodeID value of 0.

The initial value of MessageID will be Max_Value+1 and of NodeID will be N. This also represents an idle
bus, or a node that does not want to write or has not read an identifier value from the bus.

TYPE

Valuetype: RECORD
MessageID: 0..Max_Value+l;
NodelID: 0..N;

END;
Messagetype: RECORD
Identifier: Valuetype;

END;

Nodetype: RECORD
Read: Messagetype;
Write: Messagetype;
END;
Phasetype: ENUM {WRITING, READING, PROCESSING};

VAR
Node: ARRAY [0..N-1] OF Nodetype;

11



Bus: Messagetype;
Timephase: Phasetype;

Communication over the network can be divided into three stages. In the writing stage some nodes have
to write something to the bus (in this case this can only be an identifier). In the reading stage all nodes
read the content of the bus (in this case also just the identifier). In the processing stage all nodes may
perform internal actions (for instance checking whether the node has won the arbitration procedure or
not).

The set of nodes is represented by an array in which every node consists of a write variable and a read
variable. In these two variables messages to be written to the bus and read from the bus are stored
respectively. The bus is simple represented with a variable to write the highest priority message on and
read the highest priority message from.

4.2 Functions and Procedures

To make the specification easier to understand it is convenient to specify a set of functions and procedures
to be used in the rules. Functions to check if one identifier is smaller than another, whether two identifiers
are equal to each other, whether a node wants to write, has read, or whether the bus is idle all make the
specification easier to understand. The implementations of these functions are easy to understand and
need no further explanation. They can be found in Appendix B in the complete specification of the basic
arbitration protocol.

4.3 The Rules

In Murg it is possible to use the RULESET statement which quantifies a certain rule (or more then one)
over a set of variables. This allows to randomly assign an identifier to a certain node. The first part of
the rule itself is the guard which enables it. If this guard holds the rule may be fired.

RULESET i: 0..N-1; msg: 0..Max_Value
DO
RULE "Initialization of nodes"
Timephase = PROCESSING &
! Wants_to_Write(Node[i]) & Bus_Is_Idle()
BEGIN
Node[i] .Write.Identifier.MessageID := msg;
Node[i] .Write.Identifier.NodeID := i;
» END; -- of rule
END; -- of ruleset

If at least one node wants to write a value to the bus it is possible (the rule is enabled)

to move to the
next stage of the arbitration in which the highest priority message (smallest) is written to t

he bus.

RULE "timeswitch"
Timephase = PROCESSING &
EXISTS i: 0..N-1 DO Wants_to_Write(Node[i]) END & Bus_Is_Idle()

==>
BEGIN
Timephase := WRITING;
END; -- of rule

12



Determining the winner is done by comparing the Identifiers of the colliding messages. The highest
priority message (the one with the lowest identifier value) wins the arbitration procedure. If the NodeID
part of the message type would be compared first the node with the lowest NodeID would always win
the arbitration procedure (regardless of the rest of the identifier) and the protocol would become one of
arbitration on node priority instead of on message priority like CAN should be. Therefore, the MessageID
values are compared first and only if those are equal the NodeID value is used to decide the winner.

For every node is checked whether the node wants to write a message to the bus. If this is the case and
the identifier is smaller than the one currently on the bus (the lowest identifier value of the nodes already
checked), the bus gets the identifier value . This whole loop is executed in one atomic step (just one rule)
so after this rule has fired, the bus contains the highest priority identifier.

RULE "arbitration procedure"
Timephase = WRITING &
Bus_Is_Idle()

==>
BEGIN

FOR i : 0..N-1 DO
IF Wants to Write(Nodelil) %

1S _L0O _WIAULEND eLxl/) &

Lessthan(Node[i] .Write.Identifier, Bus.Identifier)

THEN
Bus.Identifier := Nodel[i].Write.Identifier;
END; -- of if
END; -- of for

Timephase := READING;
END; -= of rule

After the writing of the identifiers every node must simultaneously read the identifier on the bus. This
is also done in just one rule and leads to a synchronous broadcast to all nodes.

RULE "Broadcast"
Timephase = READING
BEGIN
FOR i:0..N-1 DO
Nodelil.Read.Identifier:=Bus.Identifier;

END; -- of for
Timephase := PROCESSING;
END; -- of rule

After every node has read the value some internal processing takes place. Each node has to determine
if it won the arbitration procedure by comparing the write variable to the read variable. If the node
has won the arbitration it can clear its write variable (set it to the initial value using the procedure
Clear_Node(msg: Messagetype)) so it may be initialized again in the next time cycle. All read variables
are set to the initial value to reduce the state space.

RULE "Determine winner"
Timephase = PROCESSING &
FORALL i:0..N-1 DO Has_Read(Node[i]) END
==>
BEGIN
FOR i:0..N-1 DO
IF Equal(Node[i].Read.Identifier,Node[i].Write.Identifier) THEN
Clear_Node(Node[i].Write);
END; -- of if

13



Clear_Node (Node[i] .Read);

END; -- of for
Clear_Bus();
END; -- of rule

After this rule has fired the “initialization of nodes” rule is enabled again so more nodes can be set to
write an identifier to the bus. Maybe the “timeswitch” rule will also be enabled in case there are still
some nodes that want to write a message to the bus.

4.4 The Start State

Before being able to generate the state space a start state has to be defined. Every global variable has to
be set to an initial value. In this case every node variable and the bus itself is set to the initial identifier
value (MessageID is Max_Value+1 and NodeID is N) and the timephase is set to PROCESSING so that an
arbitrary number of nodes can be set to an arbitrary identifier value in the first stage of the arbitration.

STARTSTATE
BEGIN

Timephase:=PROCESSING;

FOR i:0..N-1 DO
Clear_Node(Node[i].Write);
Clear_Node(Node[i] .Read);

END;

Clear_Bus();

END;

This concludes a simple specification for the arbitration protocol for the CAN bus.

14



Chapter 5

Extensions of the Basic Specification

The arbitration procedure is just a small part of the CAN bus specification. The Muryp specification
Y\A];Y\g and fauh’l Con‘ﬁnﬂmn‘nf In aﬂrﬂfin‘n it

aviandaAd ==y
QQlLiont 1

can be extended with requests for certain messages, error handlin nfinement. In
can be adjusted for other available controllers that have more space to store messages. I will discuss the
changes for all extensions here.

5.1 Requests

As discussed before any node can request data from another node. Basically, the node broadcasts the
identifier of the message requested to all other nodes and the node which can deliver the answer will
try to broadcast the answer across the network as soon as the bus has become idle again. If there is
arbitration between a request and the answer to that request the answer will win the arbitration procedure.
Which node is able to request which messages depends on the application of the CAN network and the
implementation of the higher layers of the network. In this specification every node may request every
message from every other node.

To be able to handle requests for a certain message the Messagetype needs to be extended with a boolean
variable to indicate whether the message is a request or not. Otherwise it is not possible to distinguish
between requests and answers.

Valuetype: RECORD
MessageID: 0..Max_Valueti;

NodelID: 0..N;
Request: Boolean;
END;

During the initialization of nodes to write a message to the bus it can be determined whether the message
is a request or not. Now the NodeID variable of a message can be set to any value between 0 and N-1.
If the NodeID corresponds to the position in the array (of nodes) the message will be a data message.
Otherwise the message will be a request to another node (with the corresponding NodeID for the message).

RULESET i: 0..N-1; j: 0..N-1; msg: O..Max_Value
DD
RULE "Initialization of nodes"
Timephase = PROCESSING &
! Wants_to_Write(Node[i]) & Bus_Is_Idle()
==>

15



BEGIN
Node[i] .Write.Identifier.MessageID := msg;
Node[i] .Write.Identifier.NodelID := j;
IF ! (1 = j) THEN
Node[i] .Write.Identifier.Request := True;
ELSE
Node[i].Write.Identifier.Request := False;
END;
END; -- of rule
END; -- of ruleset

When each node determines the winner the node with corresponding NodeID will set its write variable
to the answer and will try to write the answer to the bus the next available arbitration round. Because
each node only contains one write buffer this is not always possible. An answer to a request is lost if the
node already wanted to write a message to the bus but lost the previous arbitration procedure.

RULE "Determine winner"
Timephase = PROCESSING &
FORALL 1:0..N-1 D0 Has_Read(Node[i]) END
==>
BEGIN
FOR i:0..N-1 DO
IF Equal(Node[il.Read.Identifier,Node[i].Write.Identifier) THEN
Clear_Node(Node[i] .Write);
ELSIF Node[i] .Read.Identifier.NodeID = i &
Node[i] .Read.Identifier.Request = True &
! Wants_to_Write(Node[i]) THEN
Node[i].Write.Identifier := Node[i].Read.Identifier;
Node[i] .Write.Identifier.Request := False;
END; -- of if
Clear_Node(Node[i] .Read);
END; -- of for
Clear_Bus();
END; -- of rule

5.2 Error Handling

When a node detects a message is corrupted during the transmission it aborts the reception immediately
and writes an error message to the bus. This causes the message on the bus to be corrupted. Other nodes
(which did not detect the error yet) will detect this error and will also stop the transmission and start
broadcasting the error message. After a while the bus becomes idle again and the node which was the
transmitter of the corrupted message will try again to successfully broadcast the message to the other
nodes.

It is sufficient to introduce an extra field to indicate whether a message is 0K or CORRUPT. An obvious
abstraction from the errors that might occur in the real protocol. There is no need to specify every type
of error {e.g. CRC errors, bit stuffing errors, etc.), it would only increase the state space even more.

Messagetype: RECORD
Identifier: Valuetype;
Status: ENUM {0OK, CORRUPTY}
END;

A node has to stop the reception of a particular message after it detected an error. Otherwise, it would

16



keep detecting an error and keep transmitting the error message to the other nodes. Therefore, an
extra variable is needed for each node to indicate whether the node is still participating in the current
arbitration procedure.

Nodetype: RECORD
Read: Messagetype;
Write: Messagetype;
Participant: Boolean;
END;

The basic arbitration procedure will then remain exactly the same. It is only required to add extra rules
in the event a node detects an error in the message.

Either the message on the bus is corrupted during the writing phase or the message read from the bus is
corrupted during the reading phase (for one or more nodes).

RULE "corrupt bus"

rmTAT

Timephase = WRITING &

! (Bus.Status = CORRUPT)
==>
BEGIN
Bus.Status := CORRUPT;
END; =-- of rule

RULESET i:0..N-1
DO
RULE "corrupt node"

I (Node[i] .Read.Status = CORRUPT) & Timephase = READING &

! (Node[i].Participant = false)
BEGIN
Node[i] .Read.Status := CORRUPT;
END; -- of rule
END; -- of ruleset

When (after reading the message from the bus) a node detects the message is corrupted it will stop being
a participant of the arbitration procedure. The read variable of the node is cleared of the corrupted
message to reduce the size of the state space.

RULE "Error detection"
Timephase = PROCESSING &
EXISTS i:0..N-1 Do Node[i].Read.Status = CORRUPT END
==>
BEGIN
Timephase := WRITING;
FOR i:0..N-1 DO
IF Node[i] .Read.Status = CORRUPT THEN
Clear_Node(Node[i] .Read);
Node[i] .Participant := false;

END; ~- of if
END; —-- of for
END; -- of rule

If there is a node that has detected an error (and therefore is not participating in the arbitration anymore)
the message on the bus is corrupted. It does not matter which node has detected the error.

17



Rule "Error propagation”
Timephase = WRITING &
EXISTS i:0..N-1 Do Node[i].Participant = false END
BEGIN
Bus.Status:=CORRUPT;
Timephase:=READING;
END;

All nodes that are still participating in the arbitration will again read the message on the bus and will
also detect the message has been corrupted.

If every node has successfully received the message or every node has detected the error in the message
the bus becomes idle. This has happened when every node has cleared it’s read variable (either because
the node disregarded the message because it was corrupt or because it has send the received the message
to the higher layer). When the bus becomes idle again every node becomes participant of the next
arbitration cycle again.

RULE "Bus becomes idle"

Timephase = PROCESSING &

! Bus_Is_Idle() & FORALL i:0..N-1 DO ! Has_Read(Node[i]) END
==>

BEGIN

Clear_Bus();

FOR i:0..N-1 DO Node[i].Participant := true END;

END; -~ of rule

5.3 Fault Confinement

When a node repeatedly detects errors in the messages it sends or receives there could be a problem
in the node. And not just an arbitrary fault in the message caused by external factors like magnetic
radiation. Therefore, CAN has a mechanism to keep the rest of the network in operation when a node
has a problem. This is called fault confinement.

Each node is equipped with two error counters: the Receive Error Counter (REC) and the Transmit
Error Counter (TEC). The first increases if errors are detected while receiving messages, the second
increases if errors are detected while sending messages. The REC or TEC are decreased when a message
is transmitted successfully to that node. A normal operating node is called active. It is able to send
active error messages to the bus (which means it notifies other nodes about the error). If either REC or
TEC becomes a certain value (128), the node becomes passive. This means it can only send passive error
messages to the bus (which do not notify other nodes about the error). If the node functions normally
the REC and TEC decrease and the node becomes active again. When a node keeps detecting errors,
either REC or TEC might reach its maximum value (256) and the node becomes bus-off. This means the
node will not participate in the network anymore (it will not send or receive anymore messages). Such a
node can only be reset manually (when the developer thinks the problem is fixed).

Fault confinement is specified by adding extra counters to each node, the Receive Error Counter (REC)
and the Transmit Error Counter (TEC). Furthermore an extra variable is needed to indicate whether a
node is active, passive or bus-off.

Nodetype: RECORD
Read: Messagetype;
Write: Messagetype;
Participant: Boolean;

18



REC:0..Max_BUSOFF;
TEC:0..Max_BUSOFF;

Status:ENUM {ACTIVE,PASSIVE,BUSOFF};
END;

According to the ISO specification of the CAN bus a node becomes passive if either REC or TEC becomes
128 and bus-off if either one of them becomes 256. In my specifications both counters (REC and TEC) have
value 0 initially, become passive at value 2, and become bus-off at value 4.

CONST
Max_ACTIVE:1;
Max_PASSIVE:3;
Max_BUSOFF:4;

These values are chosen because if you would just allow one error to occur before the nodes status changes
from Active to Passive, a cycle in which a node receives an error but not changes its status would not
occur. How many nodes the detect an error is not important. REC or TEC are only increased by one if

a message is not received correctly by one or more nodes. Therefore the number of nodes in the system
is not important.

In the ISO specification there are eight different rules plus some exception on these rules in which case
and with how many the REC and TEC counters are increased and decreased. There are different rules for
when the error occurs, when a certain bit was detected on the bus when it should not and what kind of
error it causes. For my specification work it is enough to stick to the basic rules.

e If the transmitting node (the one that won the arbitration procedure) detects an error the TEC is
increased by one. If a receiving node detects an error the REC is increased by one.

IF Equal(Node.Read.Identifier,Node.Write.Identifier) &
Node.Write.Identifier.MessageID < Max_Value+l THEN
IF Node.TEC < Max_BUSOFF THEN Node.TEC:=Node.TEC+1 END;

ELSE -- ! Equal(Node[i].Read.Identifier,Node.Write.Identifier)
IF Node.REC < Max_BUSOFF THEN Node.REC:=Node.REC+1 END;
END; .

e If a node has transmitted a message successfully to all other nodes its TEC will be decreased by
one if it had a value greater than zero

IF Node[i] .TEC > O THEN Node[i].TEC:= Node[il.TEC-1 END;

e If a node has received a message successfully its REC will be decreased by one if it had a value
greater than zero Unless the node was passive, then it will be set to Max_ACTIVE.

IF Node[i].Status = ACTIVE & Node[i].REC > O THEN
Node[i] .REC:=Node[i] .REC-1

ELSIF Node[i].Status = PASSIVE & Node[i].REC > O THEN
Node[i] .REC:=Max_ACTIVE;

END;

The rules for switching to another node status are as follows:

¢ Initially each node is active.

o If either the REC or the TEC gets the value Max_ACTIVE + 1 the node becomes passive.

19



e When both REC and TEC get values less than or equal to Max_ACTIVE the node becomes active
again.

e If either REC or TEC gets the value Max_PASSIVE + 1 the node becomes bus-off and is not allowed
to participate in the network anymore.

IF ((Node[i] .REC > Max_ACTIVE & Node[i] .REC <= Max_PASSIVE) |
(Node[i] .TEC > Max_ACTIVE & Node[i] .TEC <= Max_PASSIVE)) &
Node[i] .Status = ACTIVE THEN
Node[i] .Status := PASSIVE;

ELSIF (Node[i].REC > Max_PASSIVE | Node[i].TEC > Max_PASSIVE) &
Node[i] .Status = PASSIVE THEN
Node[i] .Status := BUSOFF;

Clear_Node(Node[i] .Write);

ELSIF (Node[i] .REC <= Max_ACTIVE & Node[i].TEC <= Max_ACTIVE) &
Node[i] .Status = PASSIVE THEN
Node[i] .Status:=ACTIVE

END; -- of if

Then every time an error occurred the counters are increased according to the rules and every time a
message is received correctly the counters are decreased. If necessary the status of the node changes.

The increasing and decreasing of REC and TEC values has to take place upon error detection and
determining the winner (when the message was broadcast successfully), Because it is important to know
which node was the transmitter and which were the receivers of the message. This information is lost
later on because after reception of the message (either 0K or CORRUPT) the read variables are cleared to
specify the disregarding of the corrupted message and to keep the state space small.

However, the change of status can only take place when the bus becomes idle again (at the end of the
arbitration cycle) because otherwise a node that just reached a REC or TEC value of Max_ACTIVE + 1 will
not notify the other nodes about the error in the current arbitration cycle (which it still should do).

For the rest of the specification nothing needs to be changed. There is no need to specify the sending of
passive error messages to the bus because they do not change the value of the bus (see section 2.4.4).

5.4 Nodes with More Than One Write Buffer

To extend the specifications for other types of CAN controllers that provide intermediate buffering for
" write variables mainly the data types need to be changed. The simplest extension is to just change the
type of the write field into an array of identifier values.

Nodetype: RECORD
Read: Messagetype;
Write: ARRAY [0..B-1] OF Messagetype;
END;

Internal arbitration (the highest priority message in the write buffers has to be send to the bus first) is
done by sorting the array every time a change takes place (a message is removed or added to the array).
The first position in the array will always contain the highest priority message after sorting the array.
Sorting will also reduce the size of the state space compared to just searching the array for the highest
priority message which has to be send to the bus.

20



To be able to store every different message in a write buffer for Full CAN (see chapter 2.3.3) a two
dimensional array of length N and depth Max_value is specified. It is then possible to store every message
in its corresponding position in the array (compared to the identifier of the message). The memory usage
can be reduced by not using the old Messagetype anymore (which has a MessageID field and a NodeID
field) but using a boolean variable to indicate whether the buffer contains the value.

TYPE
ValueArray: ARRAY [0..Max_Value] OF Boolean;

Nodetype: RECORD
Read: Messagetype;
Write: ARRAY [0..N-1] OF ValueArray;
END;

The actual identifier can then be constructed from the position of the boolean in the array. The highest
priority can be found by searching through the matrix starting with the highest priority message possible
until a field with value true is found.

Function Get_Write(Node: Nodetype): Valuetype;

VAR Value: Valuetype;
bool: boolean;

BEGIN
bool:=false;
Value.MessagelID:= Max_Value + 1;
Value.NodeID:=N;
FOR val:0..Max_Value DO
FOR n: 0..N-1 DO
IF (Node.Write[n][val] = True) & (bool=false)
THEN
Value.MessageID:= val;
Value.NodeID:= n;
bool:=true;
END; -- of if
END; -- of for
END; -- of for
return Value;
END; -- of function

Adding or removing a specific value into the array is very simple. You just need to set the boolean field
at this specific location to the correct value (true or false respectively).

5.5 An Optimization

I made use of functions for computing whether a node wants to write an identifier to the bus, has read
an identifier from the bus, or whether the bus is idle or not the amount of memory needed is as small
as possible. Every time I need to know this I have to call these functions which takes time. Introducing
(redundant) variables that indicate whether a node wants to write, has read, or whether the bus is idle
speeds up the generation of the state space and the verification. This changes the specification described
in chapter 4 in the following way:

Messagetype: RECORD

21



Identifier: Valuetype;
Content: ENUM {EMPTY,ARBITRATIONFIELD};
END;

And for instance the initialization rule changes into:

RULESET i: O0..N-1; j: 0..N-1; msg: 0..Max_Value
DO
RULE "Initialization of nodes"
Timephase = PROCESSING
Node[i] .Write.Content = EMPTY & Bus.Content = EMPTY
BEGIN
Node[i] .Write.Identifier .MessagelD := msg;
Node[i] .Write.Identifier.NodeID := j;
Node[i] .Write.Content := ARBITRATIONFIELD;
END; -- of rule
END; -- of ruleset

This will not increase the state space because every Identifier except when MessagelID is Max_Value+1
and the NodeID is N will have Content value ARBITRATIONFIELD all the time. Only if the identifier has
the initial value the Content value is EMPTY.

The state space generation becomes considerably quicker by doing this. For instance a basic CAN
specification that first took 650 seconds to generate now only takes 530 seconds. However introducing
the extra variables increases the amount of memory needed for the state space. The former specification
only needed 18 Mb of memory but the new one needed 22 Mb.

22



Chapter 6

Verification

6.1 Properties Verified

In this section I will describe the properties verified for my specifications and the results. First I will give
a list of properties which were listed in the ISO standard. I also specified some other properties which
could not be found explicitly in the standard. All the property specifications can be found in appendix
B of this document.

Bus Access Method (BAM) : The highest priority message always gains access to the bus. (ISO
11898, section 4.2).

Data Constancy (DC) : A frame is always simultaneously accepted either by all nodes or by no node
at all (ISO 11898, section 4.5).

Remote data Request (RDR) : If a node sends a request message always another node answers with
the corresponding data frame (ISO 11898, section 4.6).

Error Signaling part 1 (ES1) : Corrupted messages are always detected by the transmitting node
(ISO 11898, section 4.8).

Error Signaling part 2 (ES2) : Corrupted messages are always detected by all active nodes (ISO
11898, section 4.8).

Automatic Retransmission part 1 (AR1) : If a node lost the arbitration it will always try to re-
transmit the message (ISO 11898, section 4.10).

Automatic Retransmission part 2 (AR2) : If a message was corrupted (detected by the transmit-
ting node) the node will always try to retransmit it (ISO 11898, section 4.10).

Bus Off (BO) : When a node is bus-off it will never participate in the arbitration anymore (ISO 11898,
section 4.14) .

There were also other properties that were interesting to check but which not specifically appear in the
ISO standard or related to my specification (IC).

Starvation Freedom (SF) : Every node must always be able to write a message to the bus.

Synchronous Broadcast (SB) : All reading of the bus is always synchronous. This means all read
variables (from all participating nodes) have the same value at all times.

Identifier Consistency (IC) : A valid identifier value always consists of a MessageID less than Max_Value+1
and a NodeID less than N.

23



Identifier Disjointness (ID) : It is never possible that an arbitration takes place between two identical
data messages

All of these properties are either invariants (BAM, BO, SB,IC and ID) or liveness properties (DC,
RDR, ES1, ES2, AR1, AR2, and SF) of the form ALWAYS - EVENTUALLY.

Checking these properties for the different specifications leads to the following results (Fig. 6.1). An entry
of “Yes” indicates that the given property did indeed hold of the given specification while a “No” entry
indicates otherwise. An entry of “N/A” indicates that the property was not relevant for the specification.
For instance it is not possible to check whether requests are answered in a specification that only deals
with the arbitration procedure.

basic basic basic interm. interm. interm. full full full
arbitr. + request | -+ confine arbitr. + request | -+ confine arbitr. | + request | + confine
+ error + error + error

BAM Yes Yes Yes Yes Yes Yes Yes Yes Yes
DC N/A Yes No N/A Yes No N/A Yes No
RDR N/A No No N/A No No N/A No No
ES1 N/A Yes Yes N/A Yes Yes N/A Yes Yes
ES2 N/A N/A Yes N/A N/A Yes N/A N/A Yes
AR1 Yes Yes No No No No No No No
AR2 N/A Yes No N/A No No N/A No No
BO N/A N/A Yes N/A N/A Yes N/A N/A Yes
SF No No No No No No No No No
SB Yes Yes Yes Yes Yes Yes Yes Yes Yes
ic Yes Yes Yes Yes Yes Yes Yes Yes Yes
ID Yes Yes Yes Yes Yes Yes Yes Yes Yes

Figure 6.1: Verification table
For most of the properties that do not hold it can be easily explained why they do not hold:

e DC does not hold for the fault confinement versions because if only the passive receivers detect
the error none of them will report the error to the bus. Other error active or passive nodes will not
detect the error and accept the message as successfully transmitted.

» RDR does not hold for any of the specification (if applicable) because of two reasons:

1. The answers are lost when there are no available write buffers. This may only happen in basic
and intermediate CAN.

2. The answer never wins the arbitration. This happens when there is another node who keeps
sending a higher priority message.

¢ AR1 and AR2 donot hold for Intermediate CAN and Full CAN because of the internal arbitration.
If a buffer contains more than one value the highest priority message is written to the bus. Therefore,
as long as there is a higher priority message in the buffers a lower one never gets a turn.

e AR1 and AR2 do not hold for confinement versions either because it might happen that a node

detects the message is corrupt or lost the arbitration in an arbitration cycle but if this node becomes

bus off at the end of the cycle all message buffers are cleared.
e SF never holds because it is possible one node keeps writing a high priority message to the bus.

Another node who wants to write a lower priority message to the bus might never get a turn to do
s0.

In the fault confinement versions a deadlock situation occurs. In my specifications I never reset a node
that became bus-off so when every node has reached the state in which they are bus-off the system halts.

24



In my case this deadlock does not interfere with my verification purposes because in Mury I can generate
the complete state space without halting state space generation on this deadlock situation. To avoid this
deadlock state extra rules can be added to the specification to simulate resetting one or more bus-off
nodes from the environment. For instance adding a rule which is enabled to fire if a node is bus-off
and resets this node to the initial state. Or by adding a rule which resets the complete system to the
initial state whenever every node has become bus-off. These solutions will not change the results of the
verification of my properties because no properties do not hold because of the deadlock situation.

6.2 Fairness and CAN

It is easy to see that the CAN data link layer does not provide fair arbitration between nodes. Because
of the event triggered communication and arbitration mechanism in CAN the highest priority message
in the system will win the arbitration. This means in busy traffic a node that wishes to write a low
priority message to the bus never gets a turn. The consequence being that other properties do not hold
either. For instance a request can not always be answered because the node that has to provide the
answer will never get a chance to broadcast the message over the network in busy traffic. Apparently
when the ISO standard was developed CAN engineers were not interested in this property. In order to
avoid trouble due to busy traffic on the bus CAN implementors made restrictions to the amount of data
an application could send to a controller in the higher layer protocols if they needed it. These higher
layer CAN protocols were never standardized so these restriction protocols were not standardized either.

But finally the CAN community has come to realize that it is important to have such properties to be
able to implement safety critical networks like x-by-wire systems (even in cars). The forthcoming revision
of the ISO standard will have a new protocol which provides a scheduling mechanism for the nodes in
the network: Time Triggered CAN (TTCAN) [5].

In the new TTCAN protocol specification every node is assigned time windows in which the node is
allowed to write a message to the bus. This allows to assign certain time windows exclusively to one
safety critical node which guarantees messages from that node will be written to the bus. It is also
possible to assign the same time window to more than one node or assign time windows in which every
node may write messages to the bus. In these time windows normal arbitration takes place. If every
node is at least assigned one exclusive time window or a time window in which it will guaranteed win
any arbitration procedure the starvation freedom problem is solved.

To be able to do this a time master is needed which periodically sends a message to all nodes. This
allows the introduction of global time in the network and based on this time the nodes are assigned their
specific time windows within a basic time cycle. The TTCAN protocol is a higher-layer protocol above
the data link layer of the (for the rest unchanged) CAN protocol. It is the subject of the forthcoming
ISO 11898-4 specification by the ISO TC22/5C3/WG1/TF6 task force group.

25



26



Chapter 7

State Space (GGeneration

7.1 Results

The Muryp specifications were executed on a Sun Ultra Sparc II-i at SUNY Stony Brook. This machine
is equipped with two 336 Mhz. processors. It has a total of three gigabytes of Memory. All these state
spaces were generated without the verification of any properties. Those where verified separately.

For two nodes the state space remains small but for just the arbitration procedure specified in basic CAN
with 6 nodes and 9 values per node the state space already consists of four million states and it takes
more than half an hour to generate. This one also requires more than 80 Mb of memory to generate (Fig.
7.1).

nodes | msgid’s | states rules fired | time (sec) memory
6 1 253 444 0.10 | 441 Kb
2 2913 5828 0.71 | 62.65 Kb
3 16381 34812 4.49 | 352.3 Kb
4 62497 137496 19.77 | 1.32 Mb
5 186621 | 419900 64.75 | 3.74 Mb
6 470593 | 1075644 172.76 | 9.43 Mb
7 1048573 | 2424828 430.50 | 21.00 Mb
8 2125761 | 4960112 962.73 | 42.58 Mb
9 3999997 | 9399996 1887.71 | 80.11 Mb

Figure 7.1: state spaces for basic CAN with 6 nodes

The size of the state space and the time needed to generate it also increases rapidly when the complexity
of the specification increases (Fig 7.2).

And of course between the basic, intermediate and full CAN specifications the sizes of the state spaces
increase (Fig. 7.3)

For a Full CAN specification with arbitration, error handling and fault confinement and for a system
with three nodes and two data messages per node to be written to the bus it took 5 hours and thirty
eight minutes to generate. Which resulted in a state space of more than 71 million states and with more
than 120 million rules fired.

All state space tables can be found in appendix A.

27



basic CAN with arbitration

]

nodes | msgid’s | states | rules fired | time (sec) | memory
2 4 97 136 0.10 | 1.30Kb
5 141 200 0.10 | 1.88Kb
6 193 276 0.10 | 2.57Kb

| plus requests and error handling J
nodes | msgid’s | states | rules fired | time (sec) | memory
2 4 2481 3744 0.52 | 43.19 Kb
5 3721 5620 0.83 | 54.77 Kb
6 5209 7872 1.27 | 90.67 Kb

| plus fault confinement |
nodes | msgid’s | states | rules fired | time (sec) | memory
2 4 373495 | 556352 77.58 | 6.06 Mb
5 560431 | 836100 127.75 | 9.09 Mb
6 784815 | 1172112 191.76 | 12.73 Mb

Figure 7.2: state spaces for different versions of basic CAN

‘ basic CAN |
nodes | msgid’s | states rules fired | time (sec) memory
2 2 745 1120 0.15 | 1297 Kb

3 1489 2244 0.31 25.92 Kb
4 2481 3744 0.52 | 43.19 Kb

] intermediate CAN with three write buffers |
nodes | msgid’s | states rules fired | time (sec) memory
2 2 37945 59280 9.18 | 660.5 Kb

3 218706 | 345699 61.61 3.55 Mb
4 843945 | 1343880 290.75 | 16.91 Mb

| full CAN |
nodes | msgid’s | states rules fired | time (sec) memory
2 2 7906 12499 1.33 | 137.62 Kb

3 126946 | 208851 25.41 2.06 Mb
4 2031586 | 3473363 514.98 | 32.94 Mb

Figure 7.3: state spaces with arbitration, error handling and fault confinement

7.2

Invariant checking does not introduce any time or memory overhead. If during the state space generation
a state is encountered in which an invariant does not hold the state space generation is halted. But
checking of liveness properties does take a long time. Especially for large state spaces and for properties
that are supposed to hold because all reachable states from each state have to be checked. To check
one ALWAYS - EVENTUALLY rule takes exactly as long as the state space generation itself.. If a liveness

Verification Overhead

property does not hold Mury will find a counter example in a couple of seconds.

28



Chapter 8

Conclusions

In this document I have presented a formal specification for the CAN bus in the Mury description
language. And as far as I know I was the first to formally specify this protocol. I made specifications
for the arbitration procedure which is different from other serial bus network protocols (for instance
Ethernet) in the sense that it is event triggered (the highest priority message gains access to the bus and
not the highest priority node). Furthermore it is a non destructive form of arbitration which means the
message that wins the arbitration immediately continues broadcasting the remainder of the message to
the other nodes. I also presented specifications for the error handling mechanism in CAN, the possibility
for nodes to request certain messages and the fault confinement mechanism which is a safety mechanism
to allow the network to operate even when there are faulty nodes in the network.

The final specifications presented in this thesis might not reflect correctly all the work it takes before
finding the best way to specify the protocols. Model checking is a process of trial and error before
translating a textual specification into a formal one. At first I only had the information available on the
official CAN home page [1]. I had to extract the way the protocol works from the documents available
on this site. And only with the help of online CAN presentations available on other (company) sites
" (Robert Bosch GmbH [11] and Siemens Infineon [12]) I was able get all the information on the CAN
bus protocols (some things were not clear to me just from the informal specifications on the official CAN
site). Later, when I finally got my hands on the official ISO specification, it turned out that there were
no extra aspects of the CAN protocols that were not described in at least one of these online documents.

It also took time to find the best model checking tool for this protocol. But after making a first attempt
using the concurrency workbench, another model checking tool developed at SUNY Stony Brook, Profes-
sor Smolka and I soon agreed Mury would be better suitable for this protocol because of the synchronous
behavior of the CAN bus. Still during my specification work I had to make decisions on several issues
which were not described in any specification simply because they are up to implementation choice. For
instance questions like: which identifiers to choose and how to make them unique, and which nodes can
request which messages from other nodes, had to be solved. Besides that I had to make abstractions
from the original specification on several occasions to keep the state space as small as possible and still
maintaining the behavior described in the original specification. Most noticeable in specifying fault con-
finement because maintaining a maximum REC or TEC value of 256 is not a good idea. It will result in
a state space explosion which makes the specification useless for verification purposes. It already would
take forever to generate a state space for such a specification let alone check properties. Also specifying
every rule for increasing and decreasing REC or TEC will make the specification unnecessary complex.

There are two (smaller) parts of the protocol I did not specify at all: acknowledgment and overloading of
messages. Basically because early on I decided they did not belong to the main part of the specification.
They are both protocols which come in play after a message is broadcast over the bus and not very
difficult to add. Later on I did not have enough time to add them to my specifications. After a message
is broadcast successfully an acknowledgment has to be written to the bus and read by all the nodes. After
that an overload message might be written to the bus which also simply has to be read by every node.

29



And only after that the next arbitration procedure can start.

The Mury specification system is very suitable for this protocol because in Mur it is relatively straight-
forward to model a system of concurrent processes communicating via shared variables. Modeling a.
serial bus as a shared variable is most likely the simplest and most natural way to do it. Furthermore a
Mury specification is very readable and fairly easy to understand for people outside the model checking
community. However Mury has its verification limits because it is only possible to check a subset of LTL
formulas. Also the fact that state space generation or verification is aborted whenever a property does
not hold makes verification difficult because every time this happens the specification has to be adjusted
(the property has to be removed) and state space generation has to be done all over again to check the
remaining properties.

Increasing the parameters (number of nodes, number of message types, etc.) showed a rapid increase in
state space sizes. Also expanding the specifications with extra features of the CAN bus increases the state
space rapidly. Introducing fault confinement increases the state space much more than adding requests
and errors. In a specification with only a couple of nodes and message types but a lot of features added
it will take a long time to generate this state space.

In total I checked twelve properties for the CAN bus, eight of which were directly derived from section
4 of the ISO 11898 standard. The other four properties are not as explicitly mentioned in the CAN
standard but interesting to check. All the verification results were consistent with the way the CAN
bus is specified in the international standard and not caused by any mistakes in my Mury specifications.
Why certain properties do not hold in CAN is caused by the arbitration on message priority which on a
high traffic bus could cause lower priority messages (and the nodes which want to broadcast them) never
to get a chance to win the arbitration. And the same thing may even occur inside one controller when in
intermediate or full CAN the highest priority message currently in the buffers is written to the bus first.

For safety critical systems a time triggered scheduling algorithm that guarantees the fairness of the
network is needed. Currently an ISO Task Force (TC 22 SC 3 WG 1 TF 6) is working on a new version
of the ISO standard in which a scheduling algorithm is provided. This new version of the CAN protocol
is called time triggered CAN (TTCAN) in which time windows to access the bus are assigned to each
controller. For this purpose a new network layer is introduced: The session layer (ISO 11898.4) which
allows the introduction of global network time. This is especially important for x-by-wire systems in
which certain messages have to be broadcast within a certain amount of time.

As future research work we can extend our verification efforts to the session layer protocol. Another useful

direction for future work would be to verify the properties on parameterized versions of the specifications,
without resorting to instantiation of the number of nodes and number of messages in the network.

30



Appendix A

State Space Tables

nodes | msgid’s | states | rules fired | time (sec) | memory
2 1 13 16 0.10 | 0.18Kb
2 33 44 0.10 | 0.44 Kb
3 61 84 0.10 | 0.82Kb
4 97 136 0.10 | 1.30Kb
5 141 200 0.10 1.88 Kb
6 193 276 0.10 | 2.57 Kb
7 253 364 0.10 | 3.37Kb
8 321 464 0.1 4.28 Kb
9 397 576 0.10 | 5.29Kb
10 481 700 0.10 | 6.41 Kb
3 1 29 40 0.10 | 0.38Kb
2 105 158 0.10 | 1.40Kb
3 253 396 0.10 | 3.37Kb
4 497 796 0.12 | 8.66 Kb
5 861 1400 0.17 | 14.99 Kb
6 1369 | 2250 0.30 | 23.83 Kb
7 2045 | 3388 0.42 | 35.60 Kb
8 2913 | 4856 0.66 | 50.71 Kb
9 3397 | 6696 0.97 | 59.13 Kb
10 5321 | 8950 1.33 | 92.62 Kb
4 1 61 92 0.10 | 1.07Kb
2 321 536 0.10 { 5.59 Kb
3 1021 | 1788 0.21 | 17.78 Kb
4 2497 | 4496 0.54 | 43.47 Kb
5 5181 | 9500 1.25 | 90.19 Kb
6 9601 | 17832 2.36 | 167.2 Kb
7 16381 | 30716 4.34 | 285.2 Kb
8 26241 | 49568 7.85 | 564.3 Kb
9 39997 | 75996 12.14 | 860.1 Kb
10 58561 | 111800 19.53 | 1.23 Mb

Figure A.1: state spaces for basic CAN

33




nodes | msgid’s | states rules fired | time (min:sec) | Memory
5 1 125 204 0.10 2.18 Kb
2 969 1778 0.21 | 17.87 Kb
3 4093 7932 094 | 71.24 Kb
4 12497 24996 3.32 | 268.8 Kb
5 31101 63500 8.82 | 668.8 Kb
6 67225 139254 20.63 | 1.42 Mb
7 131096 274428 42.79 | 2.63 Mb
8 236193 | 498623 88.51 | 4.74 Mb
9 399997 | 849996 155.70 | 8.02 Mb
10 644201 | 1376250 264.36 | 12.91 Mb
6 1 253 444 0.10 4.41 Kb
2 2913 5828 0.71 | 62.65 Kb
3 16381 34812 4.49 | 352.3 Kb
4 62497 137496 19.77 | 1.32 Mb
5 186621 | 419900 64.75 | 3.74 Mb
6 470593 | 1075644 172.76 | 9.43 Mb
7 1048573 | 2424828 430.50 | 21.00 Mb
8 2125761 | 4960112 962.73 | 42.58 Mb
9 3599957 | 9359996 1887.71 | 80.11 Mb

Figure A.2: state spaces for basic CAN

34




nodes | msgid’s | states rules fired | time (sec) | memory
2 1 249 372 0.10 3.32 Kb
2 745 1120 0.15 | 12,97 Kb
3 1489 2244 0.31 | 25.92 Kb
4 2481 3744 0.52 | 43.19 Kb
5 3721 5620 0.83 | 54.77 Kb
6 5209 7872 1.27 | 90.67 Kb
7 6945 10500 1.87 | 120.9 Kb
8 8929 13504 2.56 | 155.5 Kb
9 11161 16884 3.53 | 194.3 Kb
10 13541 20640 4.46 | 235.7 Kb
3 1 4336 7440 0.84 | 75.48 Kb
2 23557 40512 5.74 | 410.1 Kb
3 68842 118494 21.29 | 1.17 Mb
4 151369 | 260664 51.67 | 2.45 Mb
5 282316 | 486300 112.01 | 4.58 Mb
6 472861 | 814680 205.90 | 7.67 Mb
7 734182 1265082 354.24 | 11.91 Mb
8 1077457 | 186784 578.80 | 17.47 Mb
S 1513864 | 2609064 893.13 | 24.55 Mb
10 2054581 | 3541200 1329.47 | 33.31 Mb

Figure A.3: state spaces for basic CAN with error handling

3

nodes | msgid’s | states rules fired | time (sec) | memory
2 1 37375 54692 5.29 | 650.6 Kb
2 111967 | 165648 18.82 | 1.91 Mb
3 224007 | 332868 42.07 | 3.64 Mb
4 373495 | 556352 7758 | 6.06 Mb
) 560431 | 836100 127.75 | 9.09 Mb
6 784815 | 1172112 191.76 | 12.73 Mb
7 1046647 | 1564388 267.64 | 16.97 Mb
8 1345927 | 2012928 380.56 | 21.83 Mb
9 1682655 | 2517732 506.37 | 27.28 Mb
10 2056831 | 3078800 669.67 | 33.35 Mb

Figure A.4: state spaces for basic CAN with fault confinement

35




nodes | msgid’s | states rules fired | time (sec) memory
2 1 33 44 0.10 0.44 Kb
2 141 212 0.10 1.88 Kb
3 397 636 0.10 5.29 Kb
4 897 1496 0.21 | 15.62Kb
5 1761 3020 0.43 | 30.66 Kb
6 3133 5484 0.73 | 54.54 Kb
7 5181 9212 1.30 | 90.19 Kb
8 8097 14576 2.22 | 140.94 Kb
9 12097 21996 3.52 | 210.57 Kb
10 17421 31940 5.34 | 303.24 Kb
3 1 105 158 0.10 1.40 Kb
2 861 1508 0.20 14.99 Kb
3 3997 7596 0.96 | 69.58 Kb
4 13497 26446 3.74 | 234.94 Kb
5 37041 76730 12.17 | 6448 Kb
6 87805 186588 30.41 1.50 Mb
7 186621 | 404348 68.00 3.03 Mb
8 364497 | 801896 143.33 5.91 Mb
9 665497 | 1482246 299.54 | 10.79 Mb
10 1149981 | 2587460 520.58 | 18.65 Mb

Figure A.5: state spaces for intermediate CAN with two write buffers

nodes | msgid’s | states rules fired | time (sec) memory
2 1 61 84 0.10 0.82 Kb
2 397 636 0.10 6.92 Kb
3 1597 2796 0.35 | 27.80 Kb
4 4897 9096 1.15 | 85.24 Kb
5 12541 24300 3.26 | 2183 Kb
6 28221 56444 8.65 | 491.3 Kb
7 57597 118076 17.00 0.98 Mb
8 108897 | 227695 37.37 1.86 Mb
9 193597 | 411396 71.66 3.14 Mb
10 327181 | 704700 118.51 5.31 Mb
3 1 253 396 0.10 4.41 Kb
2 3997 7596 099 | 69.58 Kb
3 31997 67996 9.06 | 556.95 Kb
4 171497 | 391996 61.15 3.43 Mb
5 702461 | 1690300 280.24 | 14.07 Mb
6 3233482 | 5927036 1022.45 | 64.76 Mb

Figure A.6: state spaces for intermediate CAN with three write buffers

36




nodes | msgid’s | states rules fired | time (sec) | memory
2 1 1086 1647 0.23 | 1891 Kb
2 6945 10680 148 | 120.9 Kb
3 24274 37587 5.84 | 422.6 Kb
4 62745 97560 17.60 | 1.07 Mb
5 135006 | 210495 42.62 | 2.19 Mb
6 256681 | 400992 90.08 | 4.17 Mb
7 446370 | 698355 178.73 | 7.24 Mb
8 725649 | 1136592 309.03 | 11.77 Mb
9 1119070 | 1754415 512.19 | 18.15 Mb
10 1654161 | 2595240 820.76 | 26.82 Mb

Figure A.7: state spaces for intermediate CAN with two write buffers and error handling

nodes | msgid’s | states rules fired | time (sec) | memory
2 1 3070 4695 5.29 | 53.44 Kb
2 37945 59280 9.18 | 660.5 Kb
3 218706 | 345699 61.61 | 3.55 Mb
4 843945 | 1343880 290.75 | 16.91 Mb
5 2535646 | 4058295 957.17 | 50.78 Mb

Figure A.8: state spaces for intermediate CAN with three write buffers and error handling

nodes | msgid’s | states rules fired | time (sec) | memory

2 1 163306 | 245791 32.19 | 2.65Mb
2 1046647 | 1607144 259.86 | 16.97 Mb
3 3661350 | 5674995 977.72

Figure A.9: state spaces for intermediate CAN with two write buffers and fault confinement

37




nodes | msgid’s | states rules fired | time (sec) memory
2 1 13 16 0.10 0.18 Kb
2 61 92 0.10 0.82 Kb
3 253 444 0.10 3.37 Kb
4 1021 2044 0.22 | 17.78 Kb
5 4093 9212 093 | 71.25 Kb
6 16381 40956 3.85 | 285.14 Kb
7 65533 180220 18.01 1.12 Mb
8 262141 7864282 106.88 4.25 Mb
9 1048573 | 3407868 844.27 | 17.00 Mb
10 4194301 | 14680060 2373.95 | 68.00 Mb
3 1 29 40 0.10 0.39 Kb
2 253 444 0.16 4.41 Kb
3 2045 4348 0.54 | 35.60 Kb
4 16381 40956 493 | 285.2Kb
5 131069 | 376828 49.63 2.63 Mb
6 1048573 | 3407868 630.28 | 21.00 Mb
Figure A.10: state spaces for full CAN
nodes | msgid’s | states rules fired | time (sec) memory
2 1 466 707 0.10 6.21 Kb
2 7906 12499 1.33 | 137.62 Kb
3 126946 | 208851 25.41 2.06 Mb
4 2031586 | 3473363 514.98 | 32.94 Mb

Figure A.11: state spaces for full CAN with error handling

38




nodes | msgid’s | states rules fired | time (sec) memory
2 1 13 16 0.10 0.18 Kb
3 29 40 0.10 0.51 Kb
4 61 92 0.10 1.07 Kb
5 125 204 0.10 2.18 Kb
6 253 444 0.10 4.41 Kb
7 509 956 0.14 8.86 Kb
8 1021 2044 0.31 21.96 Kb
9 2045 4348 0.65 | 52.34 Kb
10 4093 9212 1.42 | 104.76 Kb
2 2 33 44 0.10 0.44 Kb
3 105 158 0.10 1.83 Kb
4 321 536 0.10 5.59 Kb
5 969 1778 0.21 | 16.87Kb
6 2913 5828 0.71 | 50.71 Kb
7 8745 18950 2.59 | 152.3 Kb
8 26241 61232 9.10 | 671.6 Kb
9 78729 196826 31.15 1.97 Mb
10 236193 | 629825 109.41 5.64 Mb
2 3 61 84 0.1 0.82 Kb
3 253 396 0.10 4.41 Kb
4 1021 1788 0.21| 17.78 Kb
5 4093 7932 0.94 | 71.25Kb
6 16381 34812 449 | 3523 Kb
7 65533 151548 20.64 1.38 Mb
8 262141 | 655356 101.89 6.25 Mb
9 1048573 | 2818044 484.47 | 25.00 Mb
10 4194301 | 12058620 2164.47 | 100.0 Mb

Figure A.12: state spaces for basic CAN

39




nodes | msgid’s | states rules fired | time (sec) | memory
2 1 61 84 0.10 0.82 Kb
3 253 396 0.10 | 4.41Kb
4 321 536 0.10 | 5.59 Kb
5 969 1778 0.30 | 20.84 Kb
6 2913 5828 0.96 | 62.65 Kb
7 8745 18950 3.21 | 188.1 Kb
8 26241 61232 12.33 | 671.6 Kb
9 78729 196826 42.41 | 2.18 Mb
10 236193 | 629852 144.20 | 6.54 Mb
2 2 141 212 0.10 2.46 Kb
3 861 1508 0.99 | 14.99 Kb
4 5181 10364 1.51 | 111.5Kb
5 31101 69980 11.17 | 668.8 Kb
6 186621 | 466556 79.61 | 4.45Mb
7 1119741 | 3079292 609.92 | 26.70 Mb
2 3 397 636 0.10 | 5.29 Kb
3 3997 7596 0.96 | 69.58 Kb
4 39997 87996 13.12 | 860.1 Kb
5 399997 | 999996 177.89 | 8.02 Mb
6 3999997 | 11199996 2108.29 | 95.37 Mb

Figure A.13: state spaces for intermediate CAN

40




nodes | msgid’s | states rules fired | time (sec) | memory
2 1 13 16 0.10 0.18 Kb
3 29 40 0.10 0.39 Kb
4 61 92 0.10 1.07 kb
5 125 204 0.10 | 2.18Kb
6 253 444 0.10 | 5.45 Kb
7 509 956 0.22 | 10.95 Kb
8 1021 2044 0.57 | 26.14 Kb
9 2045 4348 1.31 | 60.71 Kb
10 4093 9212 3.26 | 121.5 Kb
2 2 61 92 0.10| 082Kb
3 253 444 0.16 | 441 Kb
4 1021 2044 0.31 | 17.78 Kb
5 4093 9212 1.68 | 88.02 Kb
6 16381 40956 - 8.81 | 419.3Kb
7 65533 180220 47.82 | 1.90 Mb
8 262141 | 786428 285.70 | 8.25 Mb
2 3 253 444 0.10 3.37TKb
3 2045 4348 0.54 | 35.60 Kb
4 16381 40956 6.26 | 486.3 Kb
5 131069 | 376828 7423 | 3.13 Mb
6 1048573 | 3407868 811.38 | 29.00 Mb

Figure A.14: state spaces for full CAN

41




42



Appendix B

Specifications

B.1 Basic CAN

B.1.1 Arbitration

~-- File: basic_can.m
--- Content: This is a specification of the arbitration protocol for -—-
- basic CAN (with just one write buffer). --

--- Version: Murphi 2.70L

--- Author: Michiel van Osch, September, 2000 —-—-
CONST
Max_Value:3; -- Maximum MessageID to be written to the bus
N: 4; —— Number of Nodes in the system
TYPE
Valuetype: RECORD
MessageID: 0..Max_Value+l; -- Values to be written to the bus.
NodeID: 0..N; -- So that every node is able to

-- write a disjunct set of
-- values to the bus.

END;
Messagetype: RECORD
Identifier: Valuetype; ~-- the unique message identifier

END;

Nodetype: RECORD

Read: Messagetype; -- the value read from the bus
Write: Messagetype; -- the value to be writtem to the bus
END;

Phasetype: ENUM {WRITING, READING, PROCESSING};
—- whether nodes are writing to the bus, reading from the bus or

-- doing some internal actioms

43



VAR
Node: ARRAY [0..N-1] OF Nodetype;
Bus: Messagetype;
Timephase: Phasetype;

-~ To check which mesage has the lowest id value (= has the highest priority)
FUNCTION Lessthan(Valuel:Valuetype; Value2:Valuetype):boolean;

BEGIN
return ( Valuel.MessageID < Value2.MessageID ) |
( (Valuel.MessageID = Value2.MessagelD) &
(Valuel.NodeID < Value2.NodeID) )
END;

-- To check whether two id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2:Valuetype) :boolean;
BEGIN
return ( Valuel.MessageID = Value2.MessageID ) &
( Valuel.NodelID = Value2.NodelID )
END;
-- To set a variable to the initial value
PROCEDURE Clear_Node(VAR Message:Messagetype);
BEGIN
Message.Identifier.MessageID := Max_Value+i;
Message.Identifier.NodeID := N;
END;
PROCEDURE Clear _Bus();
BEGIN

Bus.Identifier .MessageID := Max_Value+i;
Bus.Identifier .NodeID := N;

DUs ivaiil

END;
-—- To check whether a node wants to write a certain value to the bus
FUNCTION Wants_to_Write(Node:Nodetype) :boolean;
BEGIN
return (Node.Write.ldentifier.MessageID < Max_Value+1) &
(Node.Write.Identifier.NodeID < N)
END;
-- To check whether a node has read a certain value from the bus

FUNCTION Has_Read(Node:Nodetype):boolean;

BEGIN

44



return (Node.Read.Identifier.MessageID < Max_Value+l) &
(Node.Read.Identifier.NodeID < N)
END;

-- To check whether the bus is idle
FUNCTION Bus_Is_Idle() :boolean;
BEGIN
return (Bus.Identifier.MessageID = Max_Valuet+l) &

(Bus.Identifier.NodeID = N)
END;

-- Set some nodes to participate in the arbitration.

RULESET i: 0..N-1; msg: O..Max_Value
DO
RULE "Initialization of nodes"
! Wants_to_Write(Nodelil) & Bus_Is_Idle() &
Timephase = PROCESSING
==> »
BEGIN
Node[i].Write.Identifier.MessagelID := msg;
Node[i] .Write.Identifier.NodelD := i;
END; -- of rule
END; -- of ruleset

RULE "timeswitch"
Timephase = PROCESSING &
EXISTS i: 0..N-1 DO Wants_to_Write(Node[i]) END & Bus_Is_Idle()

BEGIN
Timephase := WRITING;
END; ~- of rule

-- The highest priority message is written to the bus.

RULE "arbitration procedure"
Bus_Is_Idle() & Timephase = WRITING
==>
BEGIN
FOR i : 0..N-1 DO
IF Wants_to_Write(Node[il) &
Lessthan(Node[i].Write.Identifier, Bus.Identifier) THEN
Bus.Identifier := Node[i].Write.Identifier;
END; -- of if
END; -- of for
Timephase := READING;
END; -- of rule

-~ The message is broadcast to all nodes.
RULE "Broadcast"

Timephase = READING

45



BEGIN
FOR i:0..N-1 DO
Node[i] .Read.Identifier:=Bus.Identifier;

END; -~ of for
Timephase := PROCESSING;
END; -- of rule

—-— The winner is determined and he has succesfully broadcast a message

RULE "Determine winner"
FORALL i:0..N-1 DO Has_Read(Node[i]) END & Timephase = PROCESSING
==>
BEGIN
FOR i1:0..N-1 DO )
IF Equal(Node[i].Read.Identifier,Node[i].Write.Identifier) THEN
Clear_Node(Node[il.Write);
END; -~ of if
Clear_Node(Node[i] .Read);
END; -- of for
Clear_Bus();
END; -- of rule

STARTSTATE

BEGIN
Timephase :=PROCESSING;
FOR i:0..N-1 DO
Clear_Node(Node[i] .Write);
Clear_Node(Node[i] .Read);

END; -- of for
Clear_Bus();
END; -- of startstate

46



B.1.2 Requests and Errors

--- File: error_basic_can.m -—-
-—- Content: This is a specification of the arbitration protocol, -
-—= remote requests, and error handling for basic CAN --=
-— (with just one write buffer) -—

--~ Version: Murphi 2.70L -

—--- Author: Michiel van 0Osch, September, 2000 —_——
CONST
Max_Value:3; -- Maximum MessageID to be written to the bus
N: 4; -~ Number of Nodes in the system
TYPE
Valuetype: RECORD
MessageID: 0..Max_Value+l; -- Values to be written to the bus.
NodeID: O..N; -- So that every node is able to

-- write a disjunct set of
-- values to the bus.
Request: Boolean; -- To distinguish between messages
-- and requests.
o END;

Messagetype: RECORD

e Identifier: Valuetype; -- the unique message identifier
Status: ENUM {0K, CORRUPT}; -- whether the message contains
—-- an error '
END;

Nodetype: RECORD

Read: Messagetype; -- the value read from the bus
Write: Messagetype; -- the value to be written to the bus
Participant: Boolean; =-- whether the node participates in

-- the arbitration procedure
END;

Phasetype: ENUM {WRITING, READING, PROCESSING};
-- whether nodes are writing to the bus, reading from the bus or
-- doing some internal actions

VAR
Node: ARRAY [0..N-1] OF Nodetype;
Bus: Messagetype;
Timephase: Phasetype;

-- To check which mesage has the lowest id value (= has the highest priority)
FUNCTION Lessthan(Valuel:Valuetype; Value2:Valuetype) :boolean;

BEGIN
return ( Valuel.MessageID < Value2.MessageID ) |

47



( (Valuel.MessageID = Value2.MessagelD) &
(Valuel.NodeID < Value2.NodeID) ) |
( (Valuel.MessageID = Value2.MessageID) &
(Valuel.NodeID = Value2.NodeID) & (Valuel.Request = false) )

END;
-- To check whether two id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2: Valuetype):boolean;
BEGIN
return ( Valuel.MessageID = Value2.MessageID ) &
( Valuel.NodeID = Value2.NodeID ) &

( Valuel.Request = Value2.Request )
END;

-- To set a variable to the initial value

PROCEDURE Clear_Node(VAR Message:Messagetype);

BEGIN
Message.Identifier.MessageID := Max_Value+l;
Message.Identifier.NodeID := N;
Message.ldentifier.Request := False;
Message.Status := 0K;

END;

PROCEDURE Clear_Bus();

BEGIN
Bus.Identifier.MessageID := Max_Value+l;
Bus.Identifier .NodeID := N;
Bus.Identifier.Request := False;
Bus.Status := 0K;

END;

-~ To check whether a node wants to write a certain value to the bus
FUNCTION Wants_to_Write(Node:Nodetype) :boolean;
BEGIN
return (Node.Write.Identifier.MessageID < Max_Value+1) &
(Node.Write.Identifier.NodeID < N)
END;
-- To check whether a node has read a certain value from the bus
FUNCTION Has_Read(Node:Nodetype) :boolean;
BEGIN
return (Node.Read.Identifier.MessageID < Max_Value+1l) &

(Node.Read.Identifier.NodeID < N)
END;

-- To check whether the bus is idle

FUNCTION Bus_Is_Idle():boolean;

48



BEGIN
return (Bus.Identifier.MessagelD = Max_Value+l) &
(Bus.Identifier.NodeID = N)
END;

-- Set some nodes to participate in the arbitration

RULESET i: 0..N-1; j: 0..N-1; msg: 0..Max_Value
Do
RULE "Initialization of nodes"
! Wants_to_Write(Node[i]) & Timephase
==>
BEGIN
Node[i] .Write.Identifier.MessagelD :
Node[i] .Write.Identifier.NodeID := j;
IF ! (i = j) THEN
Node[il.Write.Identifier.Request := True;
ELSE
Node[i] .Write.Identifier .Request :
END; -- of if
END; -- of rule
END; -- of ruleset

i

PROCESSING & Bus_Is_Idle()

msg;

i

False;

RULE "timeswitch"
Timephase = PROCESSING &
EXISTS i: 0..N-1 DO Wants_to_Write(Node[i]) END & Bus_Is_Idle()
==>
BEGIN
Timephase := WRITING;
END; -- of rule

-- The highest priority message is written to the bus.

RULE "arbitration procedure”
Bus_Is_Idle() & Timephase = WRITING
==
BEGIN
FOR i : 0..N-1 D0
IF Wants_to_Write(Nodel[il) &
Lessthan(Node[i] .Write.Identifier, Bus.Identifier) THEN
Bus.Identifier := Nodel[il].Write.Identifier;
END; -- of if
END; -- of for
Timephase := READING;
END; -- of rule

-- The message is broadcast to all nodes.

RULE "Broadcast"
Timephase = READING
==>
BEGIN
FOR i:0..N-1 DO
IF Node[i] .Participant = true THEN

49



IF ! Has_Read(Node[i]) THEN
Node[i] .Read.Identifier:=Bus.Identifier;
END; -- of if
IF Bus.Status = CORRUPT THEN
Node[i] .Read.Status:=CORRUPT;
END; -~ of if
END; -- of if
END; -- of for
Timephase := PROCESSING;
END; -- of rule

-~ The winner is determined and he has succesfully broadcast a message

RULE "Determine winner"
FORALL i:0..N-1 DO Has_Read(Nodelil) &
Node[i] .Read.Status = 0K END & Timephase = PROCESSING
==>
BEGIN
FOR i:0..N-1 DO
IF Equal(Node{i].Read.Identifier,Node[i].Write.Identifier) THEN
Clear_Node(Node[i].Write);
ELSIF Node[i].Read.Identifier.NodeID = i &
Node[i].Read.Identifier.Request = True &
! Wants_to_Write(Node[i]) THEN
Node[i] .Write.Identifier := Node[i] .Read.Identifier;
Node[i] .Write.Identifier.Request := False;
END; -- of if
Clear_Node(Node[i] .Read);
END; -- of for
END; -- of rule

-- A message may be made corrupt

RULESET 1i:0..N-1
DO
RULE "corrupt node"
! (Node[i] .Read.Status
! (Node[i] .Participant
==>
BEGIN
Node[i] .Read.Status :
END; -~ of rule
END; -- of ruleset

CORRUPT) & Timephase = READING &
false)

"

1

CORRUPT;

RULE
! (Bus.Status
==>
BEGIN
Bus.Status :
END; -- of rule

CORRUPT) & Timephase = WRITING

CORRUPT ;

-- The node detects te error

RULE "Exrror detection"
Timephase = PROCESSING &
EXISTS i:0..N-1 Do Nodeli].Read.Status = CORRUPT END

BEGIN

50



Timephase := WRITING;
FOR i:0..N-1 DO
IF Nodel[i].Read.Status = CORRUPT THEN
Clear_Node (Node[i] .Read);
Node[i] .Participant := false;

END; -- of if
END; -- of for
END; -= of rule

-- The error(message) is written to the bus

Rule "Error propagation"
Timephase = WRITING &

EXISTS i:0..N-1 Do Node[i].Participant = false END

==>
BEGIN
Bus.Status :=CORRUPT;
Timephase:=READING;
END;

-- The bus becomes idle and every node is allowed to participate in the next

-- arbitration cycle

RULE "Bus becomes idle"

Timephase = PROCESSING & ! Bus_Is_Idle() &
FORALL i:0..N-1 DO ! Has_Read(Node[il) END

==>
BEGIN
Clear_Bus();
FOR i:0..N-1 DO
Node[i].Participant := true
END; -- of for
END; -- of rule

STARTSTATE

BEGIN

Timephase:=PROCESSING;

FOR i:0..N-1 DO
Clear_Node(Node[i] .Write);
Clear_Node(Nodelil .Read);
Node[i] .Participant:=true;

END; -~ of for
Clear_Bus();
END; -- of startstate

51



B.1.3 Fault Confinement

--- File: confine basic_can.m -
--— Content: This is a specification of the arbitration protocol, -
-—- remote requests, error handling and fault confinement -—=
—-— for basic CAN (with just one write buffer) -

--- Version: Murphi 2.70L -

--—- Author: Michiel van Osch, September, 2000 -—-
CONST
Max_Value: 3; -- Maximum MessagelD to be written to the bus
N: 4; —- Number of Nodes in the system
Max_ACTIVE:1; -- Maximum REC or TEC value on which a node remains active
Max_PASSIVE:3; —- Maximum REC or TEC value on which a node remains passive
Max_BUSOFF:4; -- Value on which a node becomes bus-off
TYPE
Valuetype: RECORD
MessageID: 0..Max_Value+l; -- Values to be written to the bus
NodelD: 0..N; -- So that every node is able to

-- write a disjunct set of
-- values to the bus
Request: Boolean; -- To distinguish between messages
-- and requests.
END;

Messagetype: RECORD

Identifier: Valuetype; -- the unique message identifier
Status: ENUM {0K, CORRUPT}; -- whether the message contains
-- an error
END;

Nodetype: RECORD

Read: Messagetype; -- the value read from the bus
Write: Messagetype; -- the value to be written to the bus
Participant: Boolean; -~ whether the message contains

-- an error
REC:0. .Max_BUSOFF; -- Receive Error Counter
TEC:0..Max_BUSOFF; -~ Transmit Error Counter

Status:ENUM {ACTIVE,PASSIVE,BUSOFF};
-~ status of the node
END;

Phasetype: ENUM {WRITING, READING, PROCESSING};
-- whether nodes are writing to the bus, reading from the bus or
-— doing some internal actions

VAR
Node: ARRAY [0..N-1] OF Nodetype;
Bus: Messagetype;
Timephase: Phasetype;

--- Functions & Procedures —

52



-~ To check which mesage has the lowest id (= has the highest priority)
FUNCTION Lessthan(Valuel:Valuetype; Value2:Valuetype):boolean;

BEGIN
return ( Valuel.MessageID < Value2.MessagelD ) |
( (Valuel.MessageID = Value2.MessageID) &
(Valuei.NodeID < Value2.NodeID) ) |
( (Valuel.MessageID = Value2.MessageID) &
(Valuel.NodeID = Value2.NodeID) & (Valuel.Request = false) )
END;

-~ To check whether two id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2:Valuetype):boolean;

BEGIN
return ( Valuel.MessageID = Value2.MessageID ) &
( Valuel.NodeID = Value2.NodeID ) &
( Valuel.Request = Value2.Request )
END;

~- To check whether a node wants to write a certain value to the bus
FUNCTION:Wants_to_Write(Node:Nodetype) :boolean;

BEGIN
return (Node.Write.Identifier.MessageID < Max_Value+l) &
(Node.Write.Identifier.NodeID < N)
END;

-- To chéck whether a node has read a certain value from the bus
FUNCTION Has_Read(Node:Nodetype):boolean;
BEGIN
return (Node.Read.Identifier.MessageID < Max_Value+l) &
(Node.Read.Identifier.NodeID < N)
END;
- =- To check whether the bus is idle
FUNCTION Bus_Is_Idle() :boolean;
BEGIN
return (Bus.Identifier.MessageID = Max_Value+l) &
(Bus.Identifier.NodeID = N)
END;
-- To check whether a node has the answer to a request
FUNCTION Has_Answer(Node: Nodetype; i:0..N-1): boolean;
BEGIN

return (Node.Read.Identifier.Request = true ) &
(Node .Read.Identifier.NodelID = i)

53



END;
-- To set a variable to the initial value

PROCEDURE Clear_Node(VAR Message:Messagetype);

BEGIN
Message.ldentifier.MessageID := Max_Value + 1;
Message.Identifier.NodelD := N;
Message.ldentifier.Request := False;
Message.Status := 0K;

END;

PROCEDURE Clear_Bus();

BEGIN
Bus.Identifier.MessagelD := Max_Value+l;
Bus.Identifier.NodelID := N;
Bus.Identifier.Request := False;
Bus.Status := 0K;

END;

-- To increment the REC and TEC variables in a node
PROCEDURE Inc_RECTEC(VAR Node:Nodetype) ;

BEGIN
IF Equal(Node.Read.Identifier,Node.Write.Identifier) &
Node.Write.Identifier.MessageIlD < Max_Value+1l THEN
IF Node.TEC < Max_BUSOFF THEN
Node.TEC:=Node.TEC+1
END; -- of if
ELSE
IF Node.REC < Max_BUSOFF THEN
Node.REC:=Node.REC+1

END; -- of if
END; -- of if
END;
--- Rules -—-

-- Set some nodes to participate in the arbitration

RULESET i: 0..N-1; j: 0..N-1; msg: 0..Max_Value
DO
RULE "Initialization of nodes"
Timephase = PROCESSING & ! Wants_to_Write(Nodelil) &
Bus_Is_Idle() & ! Node[il.Status = BUSOFF
==>
BEGIN
Node[i] .Write.ldentifier.MessageID := msg;
Node[i] .Write.Identifier.NodelD := j;
IF ! (i = j) THEN
Node[i] .Write.Identifier.Request := True;
ELSE
Node[i] .Write.Identifier.Request :

1]

False;

54



END; -- of if
END; -- of rule
END; -- of ruleset

RULE "phaseswitch"
Timephase = PROCESSING &
EXISTS i: 0..N-1 DO Wants_to_Write(Node[i]) END &
Bus_Is_Idle()

==>
BEGIN
Timephase := WRITING;
END; -- of rule

-- The highest priority message is written to the bus

RULE "arbitration procedure"
Bus_Is_Idle() & Timephase = WRITING
==>
BEGIN
FOR i : 0..N-1 DO
IF Wants_to_Write(Nodeli]) &
Lessthan (Node[i] .Write.Identifier, Bus.Identifier) THEN
Bus.Identifier := Nodel[i].Write.Identifier;
END; -- of if
END; -- of for
Timephase := READING;
END; ~-- of rule

-- The message is broadcast to all nodes

RULE "Broadcast"
Timephase = READING

==>
BEGIN
FOR 1:0..N-1 DO
IF ! Node[i] .Participant = false THEN
IF ! Has_Read(Node[i]) THEN
Node[i] .Read.Identifier:=Bus.Identifier;
END; -- of if
IF Bus.Status = CORRUPT THEN
Nodefi].Read.Status:=CORRUPT;
END; -- of if
END; -- of if
END; -— of for
Timephase := PROCESSING;
END; ~- of rule

-~ The winner is determined and he has succesfully broadcast a message.
-- REC and TEC are decreased.

RULE "Determine winner"
Timephase = PROCESSING &
FORALL i:0..N-1 DO (! Node[il.Status = BUSOFF) ->
(Has_Read (Node[il) & Node[i].Read.Status = 0K ) |
( Node[i].Status=PASSIVE & Node[i] .Participant = false )
END &
EXISTS i:0..N-1 DO Node[il.Participant = true END

55



BEGIN
FOR i:0..N-1 DO
IF Nodelil .Participant = true THEN
IF Equal(Node[i] .Read.Identifier,Node[i].Write.Identifier) THEN
Clear_Node(Node[i] .Write);
IF Node[i].TEC > O THEN
Node[i] .TEC:= Node[i].TEC-1
END; -~ of if
E1SE
IF Has_Answer(Node[i],i) & ! Wants_to_Write(Node[i]) THEN
Node[i] .Write.Identifier := Node[i].Read.Identifier;
Node[i] .Write.Identifier.Request := False;
END; -- of if
IF Node[i].Status = ACTIVE & Node[i].REC > O THEN
Node[i] .REC:=Node[i] .REC-1
ELSIF Node[i].Status = PASSIVE & Node[i].REC > 0 THEN
Node[i] .REC:=Max_ACTIVE;
END; -- of if
END; -- of if
Clear_Node{(Nodel[i] .Read);
END; -- of if
END; -- of for
END; -- of rule

-- a message may be made corrupt

RULESET i:0..N-1
DO
RULE "corrupt node"
! (Node[i].Read.Status = CORRUPT) & Timephase = READING &
Node[i].Participant = true
==>
BEGIN
Node[i] .Read.Status := CORRUPT;
END; -- of rule
END; -- of ruleset

RULE "corrupt bus"
! (Bus.Status = CORRUPT) & Timephase = WRITING

==>
BEGIN
Bus.Status := CORRUPT;
END; -- of rule

-~ The node detects the error

RULE "Error detection"
Timephase = PROCESSING & EXISTS i:0..N-1 Do Node[i].Read.Status = CORRUPT END
==>
BEGIN
FOR 1:0..N-1 DO
IF Node[i].Read.Status = CORRUPT THEN
Inc_RECTEC(Node[il);
Node[i] .Participant :=false;
END;
END;
IF EXISTS i:0..N-1 Do Node[i].Participant = false &
( Node[i].Status = ACTIVE |

56



( Equal(Node[i] .Read.Identifier, Node[i].Write.Identifier) &
Node[i] .Write.Identifier.MessageID < Max_Value+l ) ) END THEN
Timephase := WRITING;
END; -- of if
FOR 1:0..N-1 DO
IF Node[i] .Read.Status = CORRUPT THEN
Clear_Node(Node[il.Read);
END;
END;
END; -- of rule

~- The error(message) is written to the bus

Rule "Error propagation"
Timephase = WRITING &
EXISTS i:0..N-1 Do (Node[i].Participant = false &
! Node[i].Status = BUSOFF)
END
==>
BEGIN
Bus.Status :=CORRUPT;
Timephase :=READING;
END;

-- The bus becomes idle and every node is allowed to participate in the next
-- arbitration cycle. The node status is changed if needed

RULE "Bus becomes idle”
Timephase = PROCESSING & ! Bus_Is_Idle() &
FORALL i:0..N-1 DO ! Has_Read(Node[i]) END
==>
BEGIN
Clear_Bus();
FOR i:0..N-1 DO
IF ((Node[i] .REC > Max_ACTIVE & Node[i] .REC <= Max_PASSIVE) |
(Node[i].TEC > Max_ACTIVE & Node[i].TEC <= Max_PASSIVE)) &
Node[i] .Status = ACTIVE THEN
Node[i].Status := PASSIVE;
ELSIF (Node[il.REC > Max_PASSIVE | Node[il.TEC > Max_PASSIVE) &
Node[i] .Status = PASSIVE THEN
Node[i] .Status := BUSOFF;
Clear_Node(Node[i] .Write);
ELSIF (Node[i].REC <= Max_ACTIVE & Node[i].TEC <= Max_ACTIVE) &
Node[i].Status = PASSIVE THEN
Node[il.Status:=ACTIVE
END; -- of if
IF (! Node[i].Status = BUSOFF) & Node[i].Participant = false THEN
Node[i] .Participant := true
END;
END; -- of for
END; -- of rule

57



--- Start state

STARTSTATE

BEGIN

Timephase:=PROCESSING;

FOR i:0..N-1 DO
Clear_Node(Node[i] .Write);
Clear_Node(Node[i] .Read);
Node[i].Participant:=true;
Node[i] .REC:=0;

Node[i] .TEC:=0;
Node[i].Status :=ACTIVE;

END; -- of for
Clear_Bus();
END; -- of startstate

58




B.2 Intermediate CAN

B.2.1 Arbitration

--- File: basic_interm_can.m -
--- Content: This is a specification of the arbitration protocol for -
- intermediate CAN (with more than one write buffer) -
--— Version: Murphi 2.70L -—-

~—- Author: Michiel van Osch, October, 2000 —-—
CONST

Max_Value:3; -- Maximum MessagelD to be written to the bus

N: 4; -~ Number of Nodes in the system

B: 3; ~- Number of write buffers in a node

2

TYPE
NodeIDtype: 0..N;
MessageIDtype: 0..Max_Value+l;

Valuetype: RECORD
MessageID: MessageIDtype; -- Values to be written to the bus
NodeID: NodeIDtype; -- So that every node is able to
-- write a disjunct set of
-- values to the bus
END;

Messagetype: RECORD

Identifier: Valuetype; -- The unique message identifier
END;
Writetype : ARRAY [0..B-1] OF Messagetype; —- the write buffers

Nodetype: RECORD
Read: Messagetype; -- the value read from the bus
Write: Writetype; -~ the values to be written to the bus
END;

Phasetype: ENUM {WRITING, READING, PROCESSING};
-- whether nodes are writing to the bus, reading from the bus or
-~ doing some internal actioms

VAR
Node: ARRAY [0..N-1] OF Nodetype;
Bus: Messagetype;
Timephase: Phasetype;

-~ To check which mesage has the lowest id (= has the highest priority)

FUNCTION Lessthan(Valuel:Valuetype; Value2:Valuetype) :boolean;

59



BEGIN
return ( Valuel.MessageID < Value2.MessageID ) |
( (Valuel.MessageID = Value2.MessageID) &
(Valuel.NodeID < Value2.NodelID) )
END;

-- To check whether two id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2: Valuetype) :boolean;

BEGIN
return ( Valuel.MessageID = Value2.MessageID ) &
( Valuel.NodeID = Value2.NodeID )
END;

-- To sort the array of write values to be written to the bus
PROCEDURE Sort (VAR buffer:Writetype);

VAR b: boolean;
temp: Messagetype;

BEGIN
b:=true;
WHILE b=true DO
b:= false;
FOR i:0..B-2 DO
If Lessthan(buffer[i+1].Identifier,buffer[i].Identifier) THEN
temp:=buffer(il;
buffer[i] :=buffer[i+1];
buffer[i+1] :=temp;
b:=true;
END; -- of if
END; -- of for
END; -- fo while
END;

-- To check if the array contains no messages
FUNCTION Is_Empty (msg:Messagetype):boolean;
BEGIN

return (msg.Identifier.MessageID = Max_Value+l) &

(msg.Identifier.NodeID = N)

END;
-- To check whether a node wants to write a certain value to the bus
FUNCTION Wants_to_Write(Node:Nodetype) :boolean;
BEGIN

return ! Is_Empty(Node.Write[0])
END;

-- To check whether a node has read a certain value from the bus

FUNCTION Has_Read(Node:Nodetype) :boolean;

60



BEGIN
return (Node.Read.Identifier.MessageID < Max_Value+l) &
(Node.Read.Identifier.NodeID < N)
END;

-— To check whether the bus is idle
FUNCTION Bus_Is_Idle() :boolean;

BEGIN
return (Bus.Identifier.MessagelD = Max_Value+l) &
(Bus.Identifier.NodeID = N) ‘
END;

-- To check whether the array only contains messages
FUNCTION Is_Full(write:Writetype):boolean;

BEGIN
return FORALL b:0..B-1 DO ! Is_Empty(write[bl) END
END;

~- To set a variable to the initial value
PROCEDURE Clear_Node (VAR Message:Messagetype);

BEGIN
Message.Identifier.MessageID := Max_Value + 1;
Message.Identifier.NodeID := N;

END;

PROCEDURE Clear_Bus();

BEGIN
Bus.Identifier.MessageID := Max_Value+l;
Bus.Identifier.NodeID := N;

END;

-- To put an identifier in an empty write buffer
PROCEDURE Set_Write(VAR node:Nodetype; msg:MessageIDtype; n:NodeIDtype);
VAR bool:boolean;

BEGIN
bool:=false;
FOR b:0..B-1 DO
If Is_Empty(node.Write[b]l) & bool=false THEN
node.Write[b].Identifier.MessageID := msg;
node.Write[b].Identifier.NodeID := n;
bool:=true;

END; -- of if
END; -- of for
END;
--- Rules -

61



-- Set some nodes to participate in the arbitration

RULESET i: 0..N-1; msg: O..Max_Value
DO ’
RULE "Initialization of nodes"
! Is_Full(Node[i].Write) & Bus_Is_Idle() &
Timephase = PROCESSING
==>
BEGIN
Set_Write(Nodelil,msg,i);
Sort (Node[i] .Write);
END; -- of rule
END; -- of ruleset

RULE "timeswitch"

Timephase = PROCESSING &

EXISTS i: 0..N-1 DO Wants_to_Write(Node[i]) END & Bus_Is_Idle()
==>

BEGIN
Timephase := WRITING;
END; -- of rule

-~ The highest priority message is written to the bus.

RULE "arbitration procedure"
Bus_Is_Idle() & Timephase = WRITING
BEGIN
FOR i : 0..N-1 DO
IF Wants_to_Write(Node[i]) &
Lessthan (Node[i] .Write[0].Identifier, Bus.Identifier)
THEN
Bus.Identifier := Nodel[i].Write[0].Identifier;
END; -- of if
END; -- of for
Timephase := READING;
END; -- of rule

-- The message is broadcast to all nodes.

RULE "Broadcast"
Timephase = READING
==
BEGIN
FOR i:0..N-1 DO
Node[i] .Read.Identifier:=Bus.Identifier;
END; -- of for
Timephase := PROCESSING;
END; -- of rule

-- The winner is determined and he has succesfully broadcast a message

RULE "Determine winner"
FORALL i:0..N-1 DD Has_Read(Node[il) END &
Timephase = PROCESSING

BEGIN

62



FOR i:0..N-1 DO

IF Equal(Node[i].Read.Identifier,Nodel[i].

Clear_Node(Node[i].Write[0]);
Sort(Node[i] .Write);
END; -- of if
Clear_Node(Node[i] .Read);
END; -- of for
Clear_Bus();
END; -- of rule

STARTSTATE

BEGIN
Timephase:=PROCESSING;
FOR i:0..N-1 DO
FOR b:0..B-1 DO
" Clear_Node(Node[i] .Write[b]);
END; -- of for
Clear_Node(Node[i] .Read);
END; -- of for
Clear_Bus();
END; -- of start state

63

Write[0].Identifier) THEN




B.2.2 Requests and Errors

--- File: error_interm_can.m -
--- Content: This is a specification of the arbitration protocol, -
- remote requests, and error handling for intermediate CAN -—-
-—= (with more than one write buffer) -—=

--- Version:  Murphi 2.70L -

--- Author: Michiel van Osch, October, 2000 -
CONST

Max_Value: 3; -- Maximum MessageID to be written to the bus

N: 4; -- Number of Nodes in the system

B: 3; -- Number of write buffers in a node

TYPE
NodeIDtype: 0..N;
MessageIDtype: 0..Max_Value+l;

Valuetype: RECORD

MessageID: MessagelDtype; --— Values to be written to the bus

NodeID: NodeIDtype; -- So that every node is able to
-- write a disjunct set of
-— values to the bus

Request: Boolean; ~-- To distinguish between messages
~- and requests

END;

Messagetype: RECORD

Identifier: Valuetype; -— The unique message identifier
Status: ENUM {0K, CORRUPT}; -- whether the message contains
-- an error
END;

Writetype : ARRAY [0..B-1] OF Messagetype; ~- the write buffers

Nodetype: RECORD

Read: Messagetype; —-- the value read from the bus

Write: Writetype; -- the values to be written to the bus

Participant: Boolean; -~ whether the node has detected an erroxr
END;

Phasetype: ENUM {WRITING, READING, PROCESSING};
~- whether nodes are writing to the bus, reading from the bus or
-- doing some internal actions

VAR
Node: ARRAY [0..N-1] OF Nodetype;
Bus: Messagetype;
Timephase: Phasetype;

-~ To check which mesage has the lowest id (= has the highest priority)

64



FUNCTION Lessthan(Valuel:Valuetype; Value2:Valuetype) :boolean;

BEGIN
return ( Valuel.MessageID < Value2.MessageID ) |
( (Valuel.MessageID = Value2.MessagelD) &
(Valuel.NodeID < Value2.NodeID) ) |
( (Valuel.MessagelD = Value2.MessageID) &
(Valuel.NodeID = Value2.NodeID) & (Valuel.Request = false) &
(Value2.Request = true) )
END;

-- To check whether two id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2: Valuetype):boolean;

BEGIN
return ( Valuel.MessagelID = Value2.MessagelD ) &
( Valuel.NodeID = Value2.NodeID ) &
( Valuel.Request = Value2.Request )
END;

-- To sort the array of Write values to be written to the bus
PROCEDURE Sort (VAR buffer: Writetype);

VAR b: boolean;
temp: Messagetype;

BEGIN
b:=true;
While b=true DO
b:= false;
FORi:0..B-2 DO
1f Lessthan(buffer[i+1].Identifier,buffer[il.Identifier) THEN
temp:=buffer[i];
buffer[i] :=buffer[i+1i];
buffer[i+1] :=temp;

b:=true;
END; -- of if
END; -- of for
END; -- fo while

END;
-- To check if the array contains no messages
FUNCTION Is_Empty(msg:Messagetype):boolean;
BEGIN
return (msg.Ildentifier.MessageID = Max_Value+l) &
(msg.Identifier.NodeID = N)
END;
-- To check whether a node wants to write a certain value to the bus

FUNCTION Wants_to_Write(Node:Nodetype) :boolean;

BEGIN

65



return ! Is_Empty(Node.Write[0])
END;

-- To check whether an node has read a certain value from the bus
FUNCTION Has_Read(Node:Nodetype) :boolean;
BEGIN
return (Node.Read.Identifier.MessageID < Max_Value+l) &
(Node.Read.Identifier.NodeID < N)
END;
-- To check whether the bus is idle
FUNCTION Bus_Is_Idle() :boolean;
BEGIN
return (Bus.Identifier.MessagelID = Max_Value+l) &
(Bus.Identifier.NodeID = N)
END;
-- To check whether the array only contains messages
FUNCTION Is_Full(write:Writetype):boolean;
BEGIN
" return FORALL b:0..B-1 DO | Is_Empty(write[b]) END
END;

-- To set a variable to the initial value

PROCEDURE Clear_Node(VAR Message:Messagetype);

BEGIN
Message.Identifier.MessageID := Max_Value + 1;
Message.Identifier.NodelID := N;
Message.Identifier.Request := false;
Message.Status: =0K;

END;

PROCEDURE Clear_Bus();

BEGIN
Bus.JIdentifier.MessagelD := Max_Value+l;
Bus.Identifier.NodelID := N;
Bus.Identifiex.Request := false;
Bus.Status:=0K;

END;

-- To put an identifier in an empty write buffer

PROCEDURE Set_Write(VAR node:Nodetype; msg:MessageIDtype; n:NodelIDtype;
i:NodelIDtype);

VAR bool:boolean;
BEGIN

bool:=false;

66



FOR b:0..B-1 DO
If Is_Empty(Node[i].Write[b]) & bool=false THEN
node.Write[b].Identifier.MessagelD := msg;
node.Write[b].Identifier.NodeID := n;
IF ! (i = n) THEN
node.Write[b].Identifier.Request := True
ELSE
node.Write[b].Identifier.Request := False
END;
bool:=true;
END; -- of if
END; -~ of for
END;

-- Set some nodes to participate in the arbitration

RULESET i: 0..N-1; j: 0..N-1; msg: 0..Max_Value
DO
RULE "Initialization of nodes"
! Is_Full(Node[il.Write) & Bus_Is_Idle() &
Timephase = PROCESSING
BEGIN
Set_Write(Node[il,msg,j,1);
Sort (Node[i] .Write);
END; -- of rule
END; -- of ruleset

RULE "timeswitch"
Timephase = PROCESSING &
EXISTS i: 0..N-1 DO Wants_to_Write{(Node[i]) END & Bus_Is_Idle()
==>
BEGIN
Timephase := WRITING;
END; -- of rule

ighest priority message is written to the bus.

RULE "arbitration procedure"
Bus_Is_Idle() & Timephase = WRITING
==>
BEGIN
FOR i : 0..N-1 DO
IF Wants_to_Write(Node[il) &
Lessthan(Node[i].Write[0].Identifier, Bus.Identifier)
THEN
‘Bus.Identifier := Nodel[i].Write[0].Identifier;
END; -- of if
END; -- of for
Timephase := READING;
END; -- of rule

-~ The message is broadcast to all nodes.

67



RULE "Broadcast"”
Timephase = READING
==>
BEGIN
FOR i:0..N-1 DO
IF Node[i] .Participant = true THEN
IF ! Has_Read(Node[i]) THEN
Node[i] .Read.Identifier:=Bus.Identifier;
END; -~ of if
IF Bus.Status = CORRUPT THEN
Node([i] .Read.Status:=CORRUPT;
END; -- of if
END; —-- of if
END; -- of for
Timephase := PROCESSING;
END; -- of rule

~- The winner is determined and he has succesfully broadcast a message

RULE "Determine winner"
FORALL i:0..N-1 DO Has_Read(Node[i]) &
Node[i] .Read.Status = OK END &
Timephase = PROCESSING
==>
BEGIN
FOR i:0..N-1 DO
IF Equal(Node[i].Read.Identifier,Node[i].Write[0].Identifier) THEN
Clear_Node(Node[i].Write[0]);
Sort(Node[i] .Write);
ELSIF Node[i].Read.Identifier.NodeID = i &
Node[i].Read.Identifier.Request = True &
! Is_Full(Nodel[il].Write) THEN
Set_Write(Node[i],
Node[i] .Read.Identifier.MessagelD,
Node[i] .Read.Identifier.NodeID,i);
Sort(Node[i] .Write);
END; -- of if
Clear_Node{Node[i] .Read);
END; -- of for
END; -- of rule

-- A message may be made corrupt

RULESET i:0..N-1
DO
RULE "corrupt node"
! (Node[i].Read.Status = CORRUPT) & Timephase = READING &
! (Node[i].Participant = false)

==>
BEGIN
Node[i] .Read.Status := CORRUPT;
END; -- of rule
END; -- of ruleset
RULE
! (Bus.Status = CORRUPT) & Timephase = WRITING
==>
BEGIN

68



Bus.Status := CORRUPT;
END; -- of rule

-- The node detects te error

RULE "Error detection"
Timephase = PROCESSING & EXISTS i:0..N-1 Do Node[i].Read.Status = CORRUPT END
==>
BEGIN
Timephase := WRITING;
FOR i:0..N-1 DO
IF Node[i].Read.Status = CORRUPT THEN
Clear_Node(Node[i] .Read);
Node[i] .Participant := false;
END;
END;
END; —-- of rule

-~ The error(message) is written to the bus

Rule "Error propagation"
Timephase = WRITING &
EXISTS i:0..N-1 Do Node[i].Participant = false END
==>
BEGIN
Bus.Status:=CORRUPT;
Timephase:=READING;
END;

-- The bus becomes idle and every mnode is allowed to participate in the next
—-- arbitration cycle

RULE "Bus becomes idle"
Timephase = PROCESSING & ! Bus_Is_Idle() &
FORALL i:0..N-1 DO ! Has_Read(Node[i]) END
BEGIN
Clear_Bus();
FOR 1:0..N-1 DO Node[i].Participant := true END;
END; -- of rule

STARTSTATE

BEGIN
Timephase:=PROCESSING;
FOR i:0..N-1 DO
FOR b:0..B-1 DO
Clear_Node(Node[i] .Write[b]);
END; -- of for

69



Clear_Node(Node[i] .Read);
Nodefi] .Participant:=true;

END; -- of for
Clear_Bus();
END; -- of start state

70



B.2.3 Fault Confinement

File: confine_interm_can.m
Content: This is a specification of the arbitration protocol, -
remote requests, error handling and fault confinement —-—-
for intermediate CAN (with more than one write buffer) —

Version:  Murphi 2.70L —_—

-—- Author: Michiel van Osch, October, 2000 -—
CONST
Max_Value:3 ; -- Maximum MessageID to be written to the bus
N: 4; -- Number of Nodes in the system
B: 3; —- Number of write buffers in a node
Max_ACTIVE:1; -- Maximum REC or TEC value on which a node remains active
Max_PASSIVE:3; -- Maximum REC or TEC value on which a node remains passive
Max_BUSOFF:4; -- Value on which a node becomes bus-off
TYPE

NodeIDtype: 0..N;
MessageIDtype: 0..Max_Value+l;

Valuetype: RECORD
MessageID: MessageIDtype; -- Values to be written to the bus
NodeID: NodelIDtype; -- So that every node is able to
-~ write a disjunct set of
-- values to the bus
Request: Boolean; -- To distinguish between
-- messages and requests

END;

Messagetype: RECORD

Identifier: Valuetype; -- The unique message identifier
Status: ENUM {0K, CORRUPT} -- whether the message contains
-- an error
END;
Writetype : ARRAY [0..B-1] OF Messagetype; —- the write buffers

Nodetype: RECORD

Read: Messagetype; -- the value read from the bus

Write: Writetype; -- the values to be written to the bus
Participant: Boolean; -- whether the node has detected an error
REC:0. .Max_BUSOFF; -- Receive Error Counter

TEC:0. .Max_BUSOFF; -- Transmit Error Counter

Status:ENUM {ACTIVE,PASSIVE,BUSOFF};
-- status of the node

END;

Phasetype: ENUM {WRITING, READING, PROCESSING};
-— whether nodes are writing to the bus, reading from the bus or
-- doing some internal actions

VAR

Node: ARRAY [0..N-1] OF Nodetype;

71



Bus: Messagetype;
Timephase: Phasetype;

-- To check which mesage has the lowest id (= has the highest priority)
FUNCTION Lessthan(Valuel:Valuetype; Value2: Valuetype):boolean;

BEGIN
return ( Valuel.MessageID < Value2.MessageID ) |
( (Valuel .MessageID = Value2.MessagelD) &
(Valuel .NodeID < Value2.NodeID) ) |
( (Valuel.MessageID = Value2.MessagelD) &
(Valuel .NodeID = Value2.NodeID) & (Valuel.Request = false) &
(Value2.Request = true) )
END;

-— To check whether to id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2: Valuetype) :boolean;
BEGIN
return ( Valuel.MessagelD = Value2.MessageID ) &
( Valuel.NodeID = Value2.NodeID ) &
( Valuel.Request = Value2.Request )
END;
~—- To sort the array of Write values to be written to the bus

PROCEDURE Sort (VAR buffer: Writetype);

VAR b: boolean;
temp: Messagetype;

BEGIN
b:=true;
WHILE b = true DO
b:= false;

FOR i:0..B-2 DO
If Lessthan(buffer[i+1].Identifier,buffer[i].Identifier) THEN
temp:=buffer[i];
buffer[i] :=buffer[i+1];
buffer[i+1] :=temp;
b:=true;
END; -- of if
END; -- of for
END; ~-- of while
END;

-— To check if the array contains no messages
FUNCTION Is_Empty(msg:Messagetype) :boolean;
BEGIN

return (msg.Identifier.MessageID = Max_Value+l) &

72



(msg.Identifier.NodeID = N)
END;

-- To check whether a node wants to write a certain value to the bus
FUNCTION Wants_to_Write(Node:Nodetype) :boolean;
BEGIN
return ! Is_Empty(Node.Write[0])
END;
-~ To check whether an node has read a certain value from the bus
FUNCTION Has_Read(Node:Nodetype) :boolean;
BEGIN
return (Node.Read.Identifier.MessageID < Max_Value+l) &

(Node .Read.Identifier.NodeID < N)
END;

-- To check whether the bus is idle
FUNCTION Bus_Is_Idle() :boolean;
BEGIN
return (Bus.Identifier.MessageID = Max_Value+l) &
(Bus.Identifier.NodeID = N)
END;
-- To check whether a node has the answer to a request
FUNCTION Has_Answer (node:Nodetype;i:NodeIDtype) :boolean;
BEGIN
return node.Read.Identifier.NodeID = i &
node.Read.Identifier.Request = True
END;
-- To check whether the array only contains messages
FUNCTION Is_Full{(write:Writetype):boolean;
BEGIN
return FORALL b:0..B-1 DO ! Is_Empty(write[b]) END
END;
-- To set a variable to the initial value
PROCEDURE Clear_Node (VAR Message:Messagetype);
BEGIN
Message.Identifier.MessagelD := Max_Value + 1;
Message.Identifier.NodelD := N;
Message.Identifier.Request := false;
Message.Status:=0K;

END;

PROCEDURE Clear_Bus();

73



BEGIN

Bus.Identifier.MessagelD := Max_Value+i;
Bus.Identifier.NodeID := N;
Bus.Identifier.Request := false;
Bus.Status:=0K;

END;

-~ To put an identifier in an empty write buffer

PROCEDURE Set_Write (VAR node:Nodetype; msg:MessageIDtype; n:NodeIDtype;
i:NodeIDtype);

~ VAR bool:boolean;

BEGIN
bool:=false;
FOR b:0..B-1 DO
If Is_Empty(Node[i].Write[b]) & bool=false THEN
node.Write[b] .Identifier.MessageID := msg;
node.Write[b].Identifier.NodeID := n;
IF ! (i = n) THEN
node.Write[b].Identifier.Request := True
ELSE
node.Write[b].Identifier.Request :
END;
bool:=true;
END; -- of if
END; -- of for
END;

False

-— To increment the REC and TEC variables in a node
PROCEDURE Inc_RECTEC(VAR Node:Nodetype);

BEGIN
IF Equal(Node.Read.Identifier,Node.Write[0].Identifier) THEN
IF Node.TEC < Max_BUSOFF THEN ,
Node.TEC:=Node.TEC+1
END; -- of if
ELSE
IF Node.REC < Max_BUSOFF THEN
Node .REC:=Node.REC+1

END; —-- of if
END; -- of if
END;
--- Rules —-——

-- Set some nodes to participate in the arbitration

RULESET i: 0..N-1; j: 0..N-1; msg: 0..Max_Value
DO
RULE "Initialization of nodes"
! Is_Full(Node[i].Write) & Bus_Is_Idle() &
Timephase = PROCESSING & ! Node[i].Status = BUSOFF

74



==>
BEGIN
Set_Write(Node[i] ,msg,j,1);
Sort (Node[i] .Write);
END; -- of rule
END; =-- of ruleset

RULE "phaseswitch"

Timephase = PROCESSING &

EXISTS i: 0..N-1 DO Wants_to_Write(Node[il]) END & Bus_Is_Idle()
==

BEGIN
Timephase := WRITING;
END; -- of rule

-- The highest priority message is writtemn to the bus.

RULE "arbitration procedure"
Bus_Is_Idle() & Timephase = WRITING
==>
BEGIN
FOR i : 0..N-1 DO
IF Wants_to_Write(Node[il) &
Lessthan(Node[i].Write[0].Identifier, Bus.Identifier)
THEN
Bus.Identifier := Node[i].Write[0].Identifier;
END; =-- of if
END; -- of for
Timephase := READING;
END; -- of rule

-- The message is broadcast to all nodes.

RULE "Broadcast"
Timephase = READING
==>
BEGIN
FOR i:0..N-1 DO
IF Node[il.Participant = true THEN
IF ! Has_Read(Node[i]) THEN
Node[il .Read.Identifier:=Bus.Identifier;
END; -- of if
IF Bus.Status = CORRUPT THEN
Node[i] .Read.Status:=CORRUPT;
END; -- of if
END; -- of if
END; -- of for
Timephase := PROCESSING;
END; -- of rule

-- The winner is determined and he has succesfully broadcast a message.
-- REC and TEC are decreased.

RULE "Determine winner"
Timephase = PROCESSING &
FORALL i:0..N-1 DO (! Node[i].Status = BUSOFF) ->
( Has_Read(Node[i]) & Node[il] .Read.Status = 0K ) |
( Node[i].Status=PASSIVE & Node[i].Participant = false )

75



END &
EXISTS i:0..N-1 DO Node[i].Participant = true END
==>
BEGIN
FOR i:0..N-1 DO
IF Node[i].Participant = true THEN
IF Equal(Node[i] .Read.Identifier,Node[i].Write[0].Identifier) THEN
Clear_Node(Node[i] .Write[0]);
Sort (Nodel[i] .Write);
IF Node[i].TEC > O THEN
Node[i].TEC:= Node[i] .TEC-1
END;
E1SE
IF Has_Answer{(Node[i],i) & ! Is_Full(Node[i].Write) THEN
Set_Write(Node[i] ,Node[i].Read.Identifier.MessagelD,
Node[i] .Read.Identifier.NodeID,i);
Sort(Node[i] .Write);
END; -- of if
IF Node[i].Status = ACTIVE & Node[i].REC > O THEN
Node[i] .REC:=Node[i].REC-1
ELSIF Nodeli].Status = PASSIVE & Node[i] .REC > O THEN
Nodel[i] .REC:=Max_ACTIVE;
END;
END;
IF (Node[i].REC <= Max_ACTIVE & Node[i].TEC <= Max_ACTIVE) &
Node[i] .Status = PASSIVE THEN
Node[i] .Status:=ACTIVE
END;
Clear_Node (Node[i] .Read);
END; -- of if
END; -- of for
END; -- of rule

-- a message may be made corrupt

RULESET i:0..N-1
DO
RULE "corrupt node"
! (Node[i].Read.Status
! (Node[i] .Participant

CORRUPT) & Timephase = READING &
false)

==>
BEGIN
Node[i] .Read.Status := CORRUPT;
END; -- of rule

END; -- of ruleset
RULE
! (Bus.Status = CORRUPT) & Timephase = WRITING
==
BEGIN
Bus.Status := CORRUPT;

END; —-- of rule
-- The node detects the error
RULE "Error detection"

Timephase = PROCESSING & EXISTS i:0..N-1 Do Node[i].Read.Status = CORRUPT END

76



BEGIN
FOR i:0..N-1 DO
IF Node[i] .Read.Status

CORRUPT THEN

Node[i] .Participant := false;
END; -- of if
END; -- of for

IF EXISTS i:0..N-1 Do Node[i].Participant = false &
( Node[i].Status = ACTIVE |
Equal(Node[i] .Read.Identifier, Node[i] .Write[0] .Identifier) ) END

THEN
Timephase := WRITING;
END; -- of if

FOR 1:0..N-1 DO
IF Nodel[i] .Read.Status = CORRUPT THEN
Inc_RECTEC(Nodelil);
Clear_Node(Node[i] .Read);

END; -- of if
END; -- of for
END; -- of rule

~- The error(message) is written to the bus

Rule "Error propagation"
Timephase = WRITING &
EXISTS i:0..N-1 Do (Nodel[i].Participant = false &
! Node[i].Status = BUSOFF)
END ’
==>
BEGIN
Bus.Status:=CORRUPT;
Timephase:=READING;
END;

—- The bus becomes idle and every node is allowed to participate in the next
-~ arbitration cycle. The node status is changed if needed

RULE "Bus becomes idle"
Timephase = PROCESSING & ! Bus_Is_Idle() &
FORALL 1:0..N-1 DO ! Has_Read(Node[il) END
==
BEGIN
Clear_Bus();
FOR i:0..N-1 DO
IF ( (Node[il] .REC > Max_ACTIVE & Node[i].REC <= Max_PASSIVE) |
( Node[i].TEC > Max_ACTIVE & Node[i] .TEC <= Max_PASSIVE)) &
Node[i] .Status = ACTIVE THEN
Node[i].Status := PASSIVE;
ELSIF (Node[i].REC > Max_PASSIVE | Nodel[i].TEC > Max_PASSIVE) &
Node[i] .Status = PASSIVE THEN
Node[i] .Status := BUSOFF;
FOR b:0..B-1 DO
Clear_Node(Node[i].Write[b])
END; -- of for
ELSIF (Node[i].REC <= Max_ACTIVE & Node[i].TEC <= Max_ACTIVE) &
Node[i] .Status = PASSIVE THEN
Node[i] .Status:=ACTIVE
END; -- of if

7



IF (! Nodel[i].Status = BUSOFF) & Node[i].Participant = false THEN
Node[i].Participant := true
END; -- of if
END; -- of for
END; -- of rule

--- Properties -—-
--- Start state -
STARTSTATE

BEGIN

Timephase:=PROCESSING;

FOR i:0..N-1 DO
FOR b:0..B-1 DO

Clear_Node (Node[i].Write[bl);

END; -- of for
Clear_Node(Node[i] .Read);
Node[i].Participant:=true;
Node[i].REC:=0;
Node[i].TEC:=0;
Node[il.Status:=ACTIVE;

END; -- of for

Clear_Bus();

END; -- of start state

78



B.3 Full CAN

B.3.1 Arbitration

--- File: basic_full_can.m -—=
--- Content: This is a specification of the arbitration protocol for -
- full CAN -—=

--- Version: Murphi 2.70L -—=

--- Author: Michiel van 0sch, October, 2000 -
CONST

Max_Value: 3; -- Maximum MessagelID to be written to the bus

N: 4; ~- Number of Nodes in the system
TYPE

NodeIDtype: O..N;
MessageIDtype: 0..Max_Value+l;

. Valuetype: RECORD
MessagelD: MessageIDtype; -- Values to be written to the bus
NodeID: NodeIDtype; -- So that every node is able to
-- write a disjunct set of
~-- values to the bus
END;

ValueArray: ARRAY [0..Max_Value] OF Boolean;

Messagetype: RECORD
Identifier:Valuetype; -- The unique message identifier
END;

Nodetype: RECORD
Read: Messagetype; -- the value read from the bus
Write: ARRAY [0..N-1] OF ValueArray;
-- the values to be written to the bus
END;

Phasétype: ENUM {WRITING, READING, PROCESSING};
-- whether nodes are writing to the bus, reading from the bus or
~- doing some internal actions

VAR
Node: ARRAY [0..N-1] OF Nodetype;
Bus: Messagetype;
Timephase: Phasetype;

-- To check which mesage has the lowest id (= has the highest priority)

FUNCTION Lessthan(Valuel:Valuetype; Value2:Valuetype) :boolean;

79



BEGIN
return ( Valuel.MessageID < Value2.MessageID ) |
( (Valuel.MessageID = Value2.MessagelD) &
(Valuel.NodeID < Value2.NodeID) )
END;

-~ To check whether to id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2: Valuetype) :boolean;

BEGIN
return ( Valuel.MessageID = Value2.MessageID ) &
( Valuel.NodeID = Value2.NodeID )
END;

-- TO check whether the write buffers are not empty
FUNCTION Not_Empty(node:Nodetype) :boolean;

BEGIN
return EXISTS i:0..N-1 DO
EXISTS j:0..Max_Value DO
node.Write[i] [j] = True
END
END;
END; -- of function

-- To check whether a node wants to write a value to the bus
FUNCTION Wants_to_Write(node:Nodetype): boolean;
BEGIN
return Not_Empty(node)

END; -- of function
-— To check whether an node has read a certain value from the bus
FUNCTION Has_Read(Node:Nodetype) :boolean;
BEGIN

return (Node.Read.Identifier.MessageID < Max_Value+l) &

(Node.Read.Identifier.NodeID < N)
END;

-- To check whether the bus is idle
FUNCTION Bus_Is_Idle():boolean;
/
BEGIN
return (Bus.Identifier.MessagelD = Max_Value+l) &
(Bus.Identifier.NodeID = N)
END;

-— To set a variable to the initial value

PROCEDURE Clear_Write(Var node:Nodetype;value:Valuetype);

80



BEGIN
node.Write[value.NodeID] [value.MessagelID]:=False;
END;

PROCEDURE Clear_Read (VAR node:Nodetype) ;

BEGIN
node.Read.Identifier.MessageID := Max_Value + 1;
node.Read.Identifier.NodeID := N;

END;

PROCEDURE Clear_Bus();

BEGIN
Bus.Identifier.MessageID := Max_Value+i;
Bus.Identifier.NodelID := N;

END;

~- Return the highest priority message in a node
Function Get_Write(Node:Nodetype): Valuetype;

VAR Value: Valuetype;
bool: boolean;

BEGIN
bool:=false;
Value.MessagelD:= Max_Value + 1;
Value.NodeID:=N;
FOR val:0..Max_Value DO
FOR n: 0..N-1 DO
IF (Node.Write[n][vall = True) & (bool=false) THEN
Value.MessagelD:= val;
Value.NodeID:= n;
bool:=true;
END; -- of if
END; -- of for
END; -- of for
return Value;
END;

-- return the highest priority NodelD
FUNCTION Get_NodeID(Node: Nodetype):NodeIDtype;
VAR Value:Valuetype;
BEGIN
Value:=Get_Write (Node);
return Value.NodelID
END;
-- return the highest priority MessageID

FUNCTION Get_MessageID(Node: Nodetype) :MessageIDtype;

VAR Value:Valuetype;

81



BEGIN
Value:=Get_Write(Node);
return Value.MessagelD;

END;

-- Set some nodes to participate in the arbitration

RULESET i: 0..N-1; msg: 0..Max _Value
DO
RULE "Initialization of nodes"
(Node[i].Write[i] [msg] = False) & Bus_Is_Idle() &
Timephase = PROCESSING
==>
BEGIN
Node[i] .Write[i] [msg] :=True;
END; -- of rule
END; -- of ruleset

RULE "timeswitch"
Timephase = PROCESSING &
EXISTS i: 0..N-1 DO Wants_to_Write(Node[i]) END & Bus_Is_Idle()

==

BEGIN
Timephase := WRITING;
END; -- of rule

-- The highest priority message is written to the bus.

RULE "arbitration procedure"
Bus_Is_Idle() & Timephase = WRITING
==>
VAR tempvalue:Valuetype;

BEGIN
FOR i : 0..N-1 DO
tempvalue:=Get_Write(Nodel[i]);
IF Wants_to_Write(Nodeli]) &
Lessthan (tempvalue, Bus.Identifier) THEN

BusiIdentifier := tempvalue;
END; -- of if
END; -- of for

Timephase := READING;
END; -- of rule

-- The message is broadcast to all nodes.

RULE "Broadcast"
Timephase = READING
==>
BEGIN
FOR i1:0..N-1 DO
Node[il] .Read.Identifier:=Bus.Identifier;
END; -- of for
Timephase := PROCESSING;

82



END; -- of rule

-- The winner is determined and he has succesfully broadcast a message

RULE "Determine winner"
FORALL i:0..N-1 DO Has_Read(Node[i]) END &
Timephase = PROCESSING

==
VAR tempvalue:Valuetype;

BEGIN
FOR i:0..N-1 DO
tempvalue:= Get_Write(Node[il);
IF Equal(Node[i].Read.Identifier,tempvalue) THEN
Clear_Write{(Node[il,tempvalue);
END; -- of if
Clear_Read(Node[il);
END; -- of for
Clear_Bus();
END; -- of rule

STARTSTATE

BEGIN
Timephase:=PROCESSING;
FOR n:0..N-1 DO
FOR i: 0..N-1 DO
FOR j: 0..Max_Value DO
Nodel[n].Write[i] [j]:=False;
END; -- of for
END; -- of for
Clear_Read(Node[nl);

END;
Clear_Bus();
END; -- of startstate

83



B.3.2 Requests and Errors

--= File: error_full_can.m
--- Content: This is a specification of the arbitration protocol, -
- remote requests, and error handling for full CAN -—-

--- Version: Murphi 2.70L -

~-- Author: Michiel van Osch, October, 2000 —-—=
CONST

Max_Value: 3 ; -- Maximum MessageID that can be written to the bus

N: 4; —- Number of Nodes in the system
TYPE

NodeIDtype: 0..N;
MessageIDtype: O..Max_Value+l;

Valuetype: RECORD

MessagelID: MessageIDtype; ~- Values to be written to the bus

NodeID: NodeIDtype; -- So that every node is able to
~- write a disjunct set of
-- values to the bus

Request: Boolean; -=- To distinguish between messages
-- and requests

END;

MessageKind: ENUM {EMPTY, DATA, REQUEST}; -- whether the write buffer
-- contains a message and
-- of what kind

Writetype: ARRAY [0..Max_Value] OF MessageKind;

Messagetype: RECORD

Identifier:Valuetype; -— The unique message identifier
Status: ENUM {0K, CORRUPT}; -- whether the message contains
-- an error
END;

Nodetype: RECORD
Read: Messagetype; -- the value read from the bus

Write: ARRAY [0..N-1] OF Writetype;
-~ the values to be written to the bus
Participant: Boolean; -- whether the node has detected an error

END;

Phasetype: ENUM {WRITING, READING, PROCESSING};
-- whether nodes are writing to the bus, reading from the bus or
~-- doing some internal actions

VAR
Node: ARRAY [0..N-1] OF Nodetype;
Bus: Messagetype;
Timephase: Phasetype;




--— Functions & Procedures -—-

-- To check which mesage has the lowest id (= has the highest priority)
FUNCTION Lessthan(Valuel:Valuetype; Value2:Valuetype):boolean;

BEGIN
return ( Valuel.MessagelD < Value2.MessagelD ) |
( (Valuel.MessageID = Value2.MessageID) &
(Valuei.NodeID < Value2.NodeID) ) |
( (Valuel.MessageID = Value2.MessagelD) &
(Valuel.NodeID = Value2.NodeID) & (Valuel.Request = false) &
(Value2.Request = true) )
END; -- of function

-- To check whether two id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2:Valuetype):boolean;
BEGIN
return ( Valuel.MessagelD = Value2.MessagelD ) &
( Valuel.NodeID = Value2.NodeID ) &

( Valuel.Request = Value2.Request )
END;

-- TO check whether the write buffers are not empty
FUNCTION Not_Empty(node:Nodetype):boolean;
BEGIN
return EXISTS i:0..N-1 DO
EXISTS j:0..Max_Value DO
! node.Writel[il[j] = EMPTY
END
END;
END; -- of function
-- To check whether a node wants to write a value to the bus
FUNCTION Wants_to_Write(node:Nodetype): boolean;
BEGIN
return Not_Empty{(node)
END; -~ of function
-- To check whether an node has read a certain value from the bus
FUNCTION Has_Read(Node:Nodetype) :boolean;
BEGIN
return (Node.Read.Identifier.MessageID < Max_Value+l) &

(Node.Read.Identifier .NodeID < N)
END;
-- To check whether the bus is idle

FUNCTION Bus_Is_Idle():boolean;

85



BEGIN
return (Bus.Identifier.MessageID = Max_Value+l) &
(Bus.Identifier.NodeID = N)
END;

-- To set a variable to the initial value
PROCEDURE Clear_Write(Var node:Nodetype;value:Valuetype);

BEGIN
node.Write[value.NodeID] [value.MessageID] :=EMPTY;
END;

PROCEDURE Clear_Read(VAR node:Nodetype) ;

BEGIN
node.Read.Identifier .MessageID := Max_Value + 1;
node.Read.Identifier.NodelID := N;
node.Read.Identifier.Request := false;
node.Read.Status:=0K;

END;

PROCEDURE Clear_Bus();
BEGIN

Bus.Identifier.MessageID := Max_Value+i;
Bus.Identifier.NodeID := N;

Bus.Identifier.Request := false;
Bus.Status:=0K;
END;

-- Return the highest priority value in a Node
Function Get_Write(Node:Nodetype): Valuetype;

VAR Value: Valuetype;
bool: boolean;

BEGIN
bool:=false;
Value.MessageID:= Max_Value + 1;
Value.NodeID:=N;
Value.Requeét:=falsé;
FOR val:0..Max_Value DO
FOR n: 0..N-1 DO
IF (! Node.Write[n][val] = EMPTY) & (bool=false) THEN
Value.MessagelD:= val;
Value.NodelD:= n;
IF Node.Write[n][vall = DATA THEN
Value.Request:=false
ELSIF Node.Write[n] [val]l] = REQUEST THEN
Value.Request:=True
END; -~ of if
bool:=true;
END; -- of if
END; -- of for
END; -- of for

86



return Value;
END; -- of function

-- return the highest priority NodelID
FUNCTION Get_NodeID(Node: Nodetype):NodeIDtype;
VAR Value:Valuetype;
BEGIN

Value:=Get_Write(Node);

return Value.NodeID
END;
-- return the highest priority MessagelD
FUNCTION Get_MessageID(Node: Nodetype) :MessageIDtype;
VAR Value:Valuetype;
BEGIN

Value:=Get_Write (Node);

return Value.MessagelD;
END;

-— Set some nodes to participate in the arbitration

RULESET i: 0..N-1; j: 0..N-1; msg: 0..Max_Value
DO ‘

RULE "Initialization of nodes”
(Node[i].Write[j][msg] = EMPTY) & Bus_Is_Idle() &
Timephase = PROCESSING

==>
BEGIN

IF ' (1 = j) THEN
Node[i] .Write[j] [msg] : =REQUEST
ELSE
Node[il .Write[j] [msg] :=DATA
END; -- o if
~ END; -- of rule
END; -- of ruleset

RULE "timeswitch"

Timephase = PROCESSING &

EXISTS i: 0..N-1 DO Wants_to_Write(Node[i]) END & Bus_Is_Idle()
==

BEGIN
Timephase := WRITING;
END; -- of rule

-- The highest priority message is written to the bus.

RULE "arbitration procedure"
Bus_Is_Idle() & Timephase = WRITING

87



==
VAR tempvalue:Valuetype;

BEGIN
FOR 1 : 0..N-1 DO
tempvalue:=Get_Write(Node[i]);
IF Wants_to_Write(Node[i]) & Lessthan(tempvalue, Bus.Identifier) THEN
Bus.Identifier := tempvalue;
END; -- of if
END; -~ of for
Timephase := READING;
END; -- of rule

—-- The message is broadcast to all nodes.

RULE "Broadcast"
Timephase = READING

==>
BEGIN
FOR i:0..N-1 DO
IF Node[i] .Participant = true THEN
IF ! Has_Read(Node[i]) THEN
Node[il .Read.Identifier:=Bus.Identifier;
END;
IF Bus.Status = CORRUPT THEN
Node[i] .Read.Status:=CORRUPT;
END;
END; )
END; -- of for
Timephase := PROCESSING;
END; -- of rule

-- The winner is determined and he has succesfully broadcast a message

RULE "Determine winner"
FORALL i:0..N-1 D0 Has_Read(Node[il) &
Node[i] .Read.Status = OK END &
Timephase = PROCESSING
==>
VAR tempvalue:Valuetype;

BEGIN
FOR i:0..N-1 DO
tempvalue:= Get_Write(Node[i]);
IF Equal(Node[i] .Read.Identifier,tempvalue) THEN
Clear_Write(Node[i],tempvalue);
ELSIF Node[i].Read.Identifier.NodeID = i &
Node[i] .Read.Identifier.Request = True THEN
Node[i] .Write[Node[i] .Read.Identifier.NodeID]
[Node[i] .Read.Identifier .MessageID]:=DATA
END; -- of if
Clear_Read (Node[il);
END; -- of for
END; -- of rule

-- A message may be made corrupt

RULESET i:0..N-1

88



DO
RULE "corrupt node"
! (Node[i] .Read.Status = CORRUPT) & Timephase = READING &
! (Nodel[i].Participant = false)
==>
BEGIN
Node[i] .Read.Status :
END; -- of rule
END; -- of ruleset

CORRUPT;

RULE
! (Bus.Status
==>
BEGIN
Bus.Status :
END; -- of rule

CORRUPT) & Timephase = WRITING

[

CORRUPT;

~— The node detects te error

RULE "Error detection”
Timephase = PROCESSING & EXISTS i:0..N-1 Do Node[i].Read.Status = CORRUPT END
==>
BEGIN
Timephase := WRITING;
FOR i:0..N-1 DO
IF Node[i].Read.Status
Clear_Read (Node[il);
Node[il .Participant := false;
END;
END;
END; -- of rule

CORRUPT THEN

~--:The error(message) is written to the bus

Rule "Error propagation"
Timephase = WRITING &
EXISTS i:0..N-1 Do Node[i].Participant = false END

==>
BEGIN
Bus.Status :=CORRUPT;
Timephase:=READING;
END;

-- The bus becomes idle and every node is allowed to participate in the next
-- arbitration cycle

RULE "Bus becomes idle"

Timephase = PROCESSING & ! Bus_Is_Idle() &
FORALL i:0..N-1 DO ! Has_Read(Node[i]) END
BEGIN

Clear_Bus();

FOR i:0..N-1 DO

Node[i] .Participant := true

END;

END; -- of rule

89



—-—= Properties

STARTSTATE

BEGIN
Timephase:=PROCESSING;
FOR n:0..N-1 DO
FOR i: 0..N-1 DO
FOR j: O..Max_Value DO
Node[n] .Write[il [j] :=EMPTY;
END; -~ of for
END; -- of for
Clear_Read(Nodeln]});
Node[n] .Participant:=true;
END;
Clear_Bus();
END; -- of start state

90




B.3.3 Fault Confinement

--- File: confnie_full_can.m -—
--- Content: This is a specification of the arbitration protocol, -
- remote requests, error handling and fault confinement ——=
- for full CAN -

-- Version: Murphi 2.70L

-- Author: Michiel van Osch, October, 2000 —_—
CONST
Max_Value:3 ; -- Maximum MessagelD to be written to the bus
N: 4; ~-- Number of Nodes in the system
Max_ACTIVE:1; -- Maximum REC or TEC value on which a node remains active
Max_PASSIVE:3; -— Maximum REC or TEC value on which a node remains passive
Max_BUSOFF:4; -- Value on which a node becomes bus-off
TYPE

NodelIDtype: O..N;
MessageIDtype: O..Max_Value+l;

Valuetype: RECORD
MessageID: MessageIDtype; -- Values to be written to the bus
NodeID: NodeIDtype; -- So that every node is able to
-- write a disjunct set of
~-- values to the bus
Request: Boolean; -- To distinguish between (data)
-- values and requests

END;
MessageKind: ENUM {EMPTY, DATA, REQUEST}; -- whether the write buffer

-~ contains a message and
-- of what kind

Writetype: ARRAY [0..Max_Value] OF MessageKind;

Messagetype: RECORD

“Identifier:Valuetype; -- The uniqie message identifier
Status: ENUM {0K, CORRUPT}; -- whether the message contains
-- an error
END;

Nodetype: RECORD
Read: Messagetype; -- the value read from the bus
Write: ARRAY [0..N-1] OF Writetype;
~-- the values to be written to the bus

Participant: Boolean; -- whether the node has detected an error
REC:0..Max_BUSOFF; ~~ Receive Error Counter
TEC:0..Max_BUSOFF; -- Transmit Error Counter

Status:ENUM {ACTIVE,PASSIVE,BUSOFF};
-— status of the node

END;

91



Phasetype: ENUM {WRITING, READING, PROCESSING};
-— whether nodes are writing to the bus, reading from the bus or
-- doing some internal actions

VAR
Node: ARRAY [0..N-1] OF Nodetype;
Bus: Messagetype;
Timephase: Phasetype;

-- To check which mesage has the lowest id (= has the highest priority)
FUNCTION Lessthan(Valuel:Valuetype; Value2:Valuetype) :boolean;

BEGIN
return ( Valuel.MessageID < Value2.MessagelD ) |
( (Valuel.MessageID = Value2.MessageID) &
(Valuel.NodeID < Value2.NodeID) ) |
( (Valuel.MessageID = Value2.MessagelD) &
(Valuel.NodeID = Value2.NodeID) & (Valuel.Request = false) &
(Value2.Request = true) )
END;

-- To check whether to id’s are equal
FUNCTION Equal(Valuel:Valuetype; Value2: Valuetype):boolean;

BEGIN
return ( Valuel.MessagelID = Value2.MessageID ) &
( Valuel.NodeID = Value2.NodeID ) &
( Valuel.Request = Value2.Request )
END;

-- TO check whether the write buffers are not empty
FUNCTION Not_Empty(node:Nodetype) :boolean;

BEGIN
return EXISTS 1:0..N-1 DO
'EXISTS j:0..Max_Value DO
! node.Writel[i][j] = EMPTY
END
END;
END; -- of function

-- To check whether a node wants to write a value to the bus

FUNCTION Wants_to_Write(node:Nodetype): boolean;

BEGIN
return Not_Empty(node)
END; -- of function

-~ To check whether an node has read a certain value from the bus

92



FUNCTION Has_Read(Node:Nodetype) :boolean;

BEGIN
return (Node.Read.Identifier.MessageID < Max_Value+l) &
(Node .Read.Identifier.NodeID < N)
END;

-~ To check whether the bus is idle
FUNCTION Bus_Is_Idle() :boolean;

BEGIN
return (Bus.Identifier.MessageID = Max_Value+l) &
(Bus.Identifier.NodeID = N)
END;

-- To set a variable to the initial value
PROCEDURE Clear_Write(Var node:Nodetype;value:Valuetype);

BEGIN
node.Write[value.NodeID] [value.MessageID] :=EMPTY;

END;
PROCEDURE Clear_Read (VAR node:Nodetype) ;

BEGIN
node.Read.Identifier.MessageID := Max_Value + 1;
node.Read.Identifier.NodelID := N;
node.Read.Identifier .Request := false;
node.Read.Status:=0K;

END;

PROCEDURE Clear_Bus();

BEGIN
Bus.Identifier.MessageID := Max_Value+l;
Bus.Identifier.NodelID := N;
Bus.Identifier.Request := false;
Bus.Status:=0K;

END;

-- Return the highest priority value in a Node
Function Get_Write(Node:Nodetype): Valuetype;

VAR Value: Valuetype;
bool: boolean;

BEGIN
bool:=false;
Value.MessagelID:= Max_Value + 1;
Value.NodelID:=N;
Value.Request:=false;
FOR val:0..Max_Value DO
FOR n: 0..N-1 DO
IF (! Node.Write[n][val] = EMPTY) & (bool=false) THEN
Value.MessagelID:= val;

93



Value.NodeID:= n;
IF Node.Write[n] [val] = DATA THEN
Value.Request:=false ,
ELSIF Node.Write[n] [val] = REQUEST THEN
Value.Request:=True
END;
bool:=true;
END; -- of if
END; -- of for
END; -- of for
return Value;
END; -- of function

-- To increment the REC and TEC variables in a node
PROCEDURE Inc_RECTEC(VAR Node:Nodetype);
VAR Value:Valuetype;

BEGIN
Value:=Get_Write(Node) ;
IF Equal(Node.Read.Identifier,Value) THEN
IF Node.TEC < Max_BUSOFF THEN
Node.TEC:=Node.TEC+1
END;
ELSE
IF Node.REC < Max_BUSOFF THEN
Node.REC:=Node.REC+1
END;
END;
END;

—-- return the highest priority NodelD
FUNCTION Get_NodeID(Node:Nodetype) :NodeIDtype;
VAR Value:Valuetype;
BEGIN

Value:=Get_Write (Node);

return Value.NodelD
END;
-- return the highest priority MessageID
FUNCTION Get_MessageID(Node:Nodetype) :MessageIDtype;
VAR Value:Valuetype;
BEGIN

Value:=Get_Write (Node) ;

return Value.MessageID;
END;

-— return whether the messsage is a request or not

FUNCTION Get_Request(Node: Nodetype) :Boolean;

94



VAR Value:Valuetype;

BEGIN
Value:=Get_Write(Node) ;
return Value.Request;

END;

-- Set some nodes to participate in the arbitration

RULESET i: 0..N-1; j: O..N-1; msg: 0..Max_Value
DO
RULE "Initialization of nodes”
(Node[i] .Write[j] [msgl = EMPTY) & Bus_Is_Idle() &
Timephase = PROCESSING & ! Node[i] .Status = BUSOFF
BEGIN
IF ! (i = j) THEN
Node[i] .Write[j] [msg] :=REQUEST
ELSE
Node[i] .Write[j] [msg] :=DATA
END; -- of if
END; -- of rule
END; -- of ruleset

RULE "timeswitch"
Timephase = PROCESSING &
EXISTS i: O..N-1 DO Wants_to_Write(Node[i]) END & Bus_Is_Idle()
==>
BEGIN
Timephase := WRITING;
END; -- of rule

-- The highest priority message is written to the bus.

RULE "arbitration procedure"
Bus_Is_Idle() & Timephase = WRITING
==

VAR tempvalue:Valuetype;

BEGIN
FOR i : 0..N-1 DO
tempvalue:=Get_Write(Node[i]);
IF Wants_to_Write(Node[i]) & Lessthan(tempvalue, Bus.Identifier) THEN
Bus.Identifier := tempvalue;
END; -- of if
END; -- of for
Timephase := READING;
END; -- of rule

-- The message is broadcast to all nodes.
RULE "Broadcast"

Timephase = READING
==>

95



BEGIN
FOR i:0..N-1 DO
IF Node[i].Participant = true THEN
IF ! Has_Read(Node[i]) THEN
Node[i] .Read.Identifier:=Bus.Identifier;
END; -- of if
IF Bus.Status = CORRUPT THEN
Node[i] .Read.Status:=CORRUPT;
END; -- of if
END; -- of if
END; -- of for
Timephase := PROCESSING;
END; -- of rule

-- The winner is determined and he has succesfully broadcast a message.
~-- REC and TEC are decreased.

RULE "Determine winner"
Timephase = PROCESSING &
FORALL i:0..N-1 DO (! Nodel[i].Status = BUSOFF) ->
( Has_Read(Node[i]) & Node[i].Read.Status = 0K ) |
( Node[i].Status=PASSIVE & Node[i].Participant = false )
END &
EXISTS i:0..N-1 DO Node[i] .Participant = true END
==>
VAR tempvalue:Valuetype;

BEGIN
FOR i:0..N-1 DO
IF Node[i].Participant = true THEN
tempvalue:= Get_Write(Node[i]);
IF Equal(Node[i] .Read.Identifier,tempvalue) THEN
Clear_Write(Node[i],tempvalue);
IF Node[i].TEC > O THEN
Node[i] .TEC:= Node[il].TEC-1
END; -- of if
ELSE
IF Node[i].Read.Ildentifier.NodeID = i &
Node[i].Read.Identifier.Request = True THEN
Node[i] .Write[Node[i] .Read.Identifier.NodeID]
[Node[i] .Read.Identifier.MessageID] :=DATA
END; -- of if
IF Node[i].Status = ACTIVE & Node[i] .REC > 0 THEN
~ Node[i].REC:=Node[i].REC-1
ELSIF Nodel[i].Status = PASSIVE & Node[i].REC > O THEN
Node[i] .REC:=Max_ACTIVE;
END; -- of if
END; -- of if
Clear_Read (Node[i]);
END; ~- of if
END; -- of for
END; -- of rule

-- a message may be made corrupt
RULESET i:0..N-1

Do
RULE "corrupt node"

96



CORRUPT) & Timephase = READING &
false)

! (Node[i] .Read.Status
! (Node[i] .Participant
==>
BEGIN
Node[i] .Read.Status :
END; -- of rule
END; -- of ruleset

CORRUPT;

RULE
! (Bus.Status
==>
BEGIN
Bus.Status :
END; —-- of rule

I

CORRUPT) & Timephase = WRITING

CORRUPT;

—- The node detects the error

RULE "Error detection”
Timephase = PROCESSING & EXISTS i:0..N-1 Do Node[i].Read.Status = CORRUPT END
==>
BEGIN
FOR i:0..N-1 DO
IF Node[i] .Read.Status = CORRUPT THEN
Node[i] .Participant := false;
END; -- of if
END; =-- of for
IF EXISTS i:0..N-1 Do Node[i].Participant = false &
( Node[i].Status = ACTIVE |
( Get_NodeID(Node[i]) = Node[i] .Read.Identifier.NodelID &
Get_MessageID(Node[i]) = Node[i].Read.Identifier.MessagelD &
Get_Request(Node[i]) = Node[il .Read.Identifier.Request ) )
END THEN
Timephase := WRITING;
END; -- of if
FOR i:0..N-1 DO
IF Node[i] .Read.Status = CORRUPT THEN
Inc_RECTEC(Node[il);
Clear_Read (Node[il);

END; -- of if
END; -- of for
END; -- of rule

~ -- The error(message) is written to the bus

Rule "Error propagation"
Timephase = WRITING &
EXISTS i:0..N-1 Do (Node[i].Participant = false &
! Node[i].Status = BUSOFF)
END
==
BEGIN
Bus.Status :=CORRUPT;
Timephase :=READING;
END;

—- The bus becomes idle and every node is allowed to participate in the next
-- arbitration cycle

97



RULE "Bus becomes idle"
Timephase = PROCESSING & ! Bus_Is_Idle() &
FORALL i:0..N-1 DO ! Has_Read(Node[il) END
BEGIN
Clear_Bus();
FOR i:0..N-1 DO

IF ((Node[i] .REC > Max_ACTIVE & Node[i] .REC <= Max_PASSIVE) |
(Node[i] .TEC > Max_ACTIVE & Node[i].TEC <= Max_PASSIVE)) &

Nodel[il.Status = ACTIVE THEN
Node[i].Status := PASSIVE;

ELSIF (Node[il.REC > Max_PASSIVE | Node[i].TEC > Max_PASSIVE) &

Node[i].Status = PASSIVE THEN
Node[i].Status := BUSOFF;
FOR n: 0..N-1 DO
FOR j: 0O..Max_Value DO
Nede[i].Write[n][j]:=EMPTY;
END; -- of for
END; -- of for

ELSIF (Node[i].REC <= Max_ACTIVE & Node[i].TEC <= Max_ACTIVE) &

Node[i] .Status = PASSIVE THEN
Node[i] .Status:=ACTIVE
END; -- of if

IF (! Node[i].Status = BUSOFF) & Nodel[i].Participant = false THEN

Node[i] .Participant := true
END; -- of if
END; -- of for
END; ~- of rule

STARTSTATE

BEGIN
Timephase:=PROCESSING;
FOR n:0..N-1 DO
~ FOR i: 0..N-1 DO
FOR j: O0..Max_Value DO
Node[n].Write[i] [j]:=EMPTY;
END; -- of for
END; -- of for
Clear_Read(Node[nl);
Node[n].Participant:=true;
Node[n] .REC:=0;
Node[n] .TEC:=0;
Node[n].Status:=ACTIVE;

END;
Clear_Bus();
END; -- of start state

98



Appendix C

Properties verified

C.1 Basic CAN

INVARIANT "Bus Access Method"
Bus_Is_Idle() |
FORALL i:0..N-1 DO Wants_to_Write(Node[i]) ->
(Bus.Identifier.MessagelID < Node[i].Write.Identifier.MessagelD) |
( (Bus.Identifier.NodeID <= Node[i] .Write.Identifier.NodeID) &
(Bus.Identifier.MessageID = Node[i].Write.Identifier.MessagelD) )

END;

LIVENESS "Data Consistancy"
ALWAYS EXISTS i: 0..N-1 DO Node[i].Read.Status = CORRUPT END ->
EVENTUALLY EXISTS i:0..N-1 DO Has_Read(Node[i]) END &
FORALL i: 0..N-1 DO Has_Read(Node[i]) ->
Node[i] .Read.Status = CORRUPT END;

RULESET msg: O..Max_Value; n: 0..N-1; i:0..N-1
DO
LIVENESS "Remote Data Request"
ALWAYS (Nodeli].Write.Identifier.MessageID = msg) &
(Node[i] .Write.Identifier.NodeID = n) &
(Node[i] .Write.Identifier.Request = true) ->
EVENTUALLY (Node[i].Read.Identifier.MessageID = msg) &
T T T 7T 7T 777 (Nodelil.Read.Identifier.NodeID = n) & -
(Node[i] .Read.Identifier.Request = false) &
(FORALL j:0..N-1 DO Nodel[j].Read.Status = OK END)
END;

LIVENESS "Error Signaling (Part 1)"
ALWAYS EXISTS i:0..N-1 DO
Equal(Node[i] .Read.Identifier,Node[i] .Write.Identifier) &
Node[i] .Read.Status = CORRUPT &
Node[i] .Write.Identifier.MessageID < Max_Value+l END ->
EVENTUALLY Bus.Status=CORRUPT;

LIVENESS “"Error Signaling (Part 2)"
ALWAYS EXISTS i:0..N-1 DO Node[i].Status=ACTIVE &
Node[i].Read.Status=CORRUPT END

101



->
EVENTUALLY Bus.Status=CORRUPT;

RULESET msgid:0..Max_Value; nid:0..N-1; 1:0..N~-1
DO
LIVENESS "Automatic Retransmission (Part 1)"

ALWAYS ! Equal(Node[i].Read.Identifier,Node[i].Write.Identifier) &
Node[i].Write.Identifier.MessageID = msgid &
Node[i].Write.Identifier.NodeID = nid &

Node[i] .Read.Identifier.MessageID < Max_Value+l ->

EVENTUALLY Node[i].Read.Identifier.MessageID = Max_Value+i &

Node[i] .Write.Identifier.MessageID = msgid &
Nodeli].Write.Identifier.NodeID = nid &
Bus_Is_Idle()

END;

RULESET msgid:0..Max_Value; nid:0..N-1; i:0..N-1
D0
LIVENESS "Automatic Retransmission (Part 2)"

ALWAYS Equal(Nodeli] .Read.Identifier,Node[i].Write.Identifier) &
Node[il.Write.Identifier .MessageID = msgid &
Node[i].Write.Identifier.NodeID = nid &

Node[i] .Read.Status = CORRUPT ->
EVENTUALLY Node[i]l.Read.Identifier.MessageID = Max_Value+l &
- Nodeli] .Write.Identifier.MessageID = msgid &
Node[i].Write.Identifier.NodeID = nid &
Bus_Is_Idle()
END;

RULESET i:0..N-1
DO
INVARIANT "Bus off"

Node[i].Status = BUSOFF -> Node[i].Participant = false &
Node[i].Write.Identifier.MessageID = Max_Value+l &
Node[i] .Write.Identifier.NodeID = N &
Node[i].Read.Identifier.MessageID = Max_Value+l &
Node[i] .Read.Identifier.NodeID = N

END;

RULESET i: 0..N-1
DO ’
LIVENESS "Starvation freedom”
ALWAYS Wants_to_Write(Node[i]) ->
- EVENTUALLY (Bus.Identifier.MessagelD =
Node[i] .Write.Identifier.MessagelD) &
(Bus.Identifier.NodeID = Node[i].Write.Identifier.NodeID)

END;

INVARIANT "Synchronous Broadcast"
FORALL i:0..N-1 DO ! Has_Read(Node[il) END |
FORALL i:0..N-1 DO Node[i].Participant = True -> Has_Read(Node[i]) END;

RULESET i:0..N-1
DO
INVARIANT "Identifier Consistancy"
( Bus.Identifier.MessageID < Max_Value+l -> Bus.Identifier.NodeID < N ) &
( Bus.Identifier.NodeID < N -> Bus.Identifier.MessageID < Max_Value+l) &
( Node[i].Write.Identifier.MessageID < Max_Value+i ->

102



Nodeli] .Write.Identifier.NodeID < N ) &
( Nodel[i] .Write.Identifier.NodeID < N ->
Node[i] .Write.Identifier.MessageID < Max_Value+l) &
( Node[i] .Read.Identifier.MessageID < Max_Value+l ->
Node[i] .Read.Identifier.NodeID < N ) &
( Node[i] .Read.Identifier.NodeID < N ->
Node[i] .Read.Identifier.MessageID < Max_Value+1)
END; -- of ruleset

RULESET msgid:0..Max_Value; nodid:0..N-1
DO
INVARIANT "Identifier Disjunctness"
EXISTS i:0..N-1 DO ( Node[i].Write.Identifier.MessageID = msgid &
Node[i] .Write.Identifier .NodeID = nodid &
Node[i] .Write.Identifier.Request = false ) ->
FORALL j:0..N-1 DO
! ( Node[j].Write.Identifier.MessageID = msgid &
Node[j].Write.Identifier.NodeID = nodid &
Node[j].Write.Identifier.Request = false ) |
j=1
END -- forall
END; -- exists
END; -~ ruleset

103



C.2 Intermediate CAN

INVARIANT "Bus Access Method"
Bus_Is_Idle() |
FORALL i:0..N-1 DO Wants_to_Write(Node[i]) ->
(Bus.Identifier.MessagelD < Node[i] .Write[0].Identifier.MessageID) |
( (Bus.Identifier.NodeID <= Node[i].Write[0].Identifier.NodeID) &
(Bus.Identifier.MessageID = Node[il.Write[0].Identifier.MessagelD) )
END;

LIVENESS "Data Consistancy"
ALWAYS EXISTS i: 0..N-1 DO Node[il.Read.Status = CORRUPT END ->
EVENTUALLY EXISTS i:0..N-1 DO Has_Read(Node[i]) END &
FORALL i: 0..N-1 DO Has_Read(Node[il) -—>
Node[i].Read.Status = CORRUPT END;

RULESET msg: 0..Max_Value; n: 0..N-1; i:0..N-1
DO
LIVENESS "Remote Data Request"
ALWAYS (Node[i].Write[0].Identifier.MessageID = msg) &
(Node[i] .Write[0].Identifier.NodeID = n) &
(Node[i] .Write[0].Identifier.Request = true) ->
EVENTUALLY (Node[i].Read.Identifier.MessageID = msg) &
(Node[i] .Read.Identifier.NodeID = n) &
(Node[i] .Read.Identifier.Request = false) &
(FORALL j:0..N-1 DO Node[j].Read.Status = OK END)
END;

LIVENESS "Error Signaling (Part 1)"

ALWAYS EXISTS i:0..N-1 DO
Equal(Node[i].Read.Identifier,Node[i] .Write[0].Identifier) &
Node[i] .Read.Status = CORRUPT &
Node[i].Write[0].Identifier.MessageID < Max_Value+1 END ->

EVENTUALLY Bus.Status=CORRUPT;

LIVENESS "Error Signaling (Part 2)"
ALWAYS EXISTS i:0..N-1 DO Nodel[il.Status=ACTIVE &
Node[i] .Read.Status=CORRUPT END
->
EVENTUALLY Bus.Status=CORRUPT;

RULESET msgid:0..Max_Value; nid:0..N-1; i:0..N-1
DO
LIVENESS "Automatic Retransmission (Part 1)"
ALWAYS ! Equal(Node[i] .Read.Identifier,Node[i].Write[0].Identifier) &
Node[il.Write[0].Identifier.MessageID = msgid &
Node[i] .Write[O].Identifier.NodeID = nid &
Node[i] .Read.Identifier.MessageID < Max_Value+l ~->
EVENTUALLY Node[i] .Read.Identifier.MessageID = Max_Value+i &
Node[i].Write[0].Identifier.MessageID = msgid &
Node[i].Write[0].Identifier.NodeID = nid &
Bus_TIs_Idle()
END;

RULESET msgid:0..Max_Value; nid:0..N-1; i:0..N-1
DO

104



LIVENESS "Automatic Retransmission (Part 2)"
ALWAYS Equal(Node[i].Read.Identifier,Node[i].Write[O].Identifier) &
Node[i] .Write[0].Identifier.MessageID = msgid &
Node[i] .Write[0].Identifier.NodelID = nid &
Node[i] .Read.Status = CORRUPT ->
EVENTUALLY Node[i] .Read.Identifier.MessageID = Max_Value+l &
Node[i] .Write[0].Identifier.MessageID = msgid &
Node[i] .Write[0].Identifier.NodeID = nid &
Bus_Is_Idle()
END;

RULESET i:0..N-1
DO
INVARIANT "Bus off"

Node[i].Status = BUSOFF -> Node[i].Participant = false &
Node[i] .Write[0].Identifier .MessageID = Max_Value+l &
Node[i] .Write[0].Identifier.NodeID = N &
Node[i] .Read.Identifier .MessageID = Max _Value+l &
Node[i] .Read.Identifier .NodeID = N

END;

RULESET i: 0..N-1
DO
LIVENESS "Starvation freedom”
ALWAYS Wants_to_Write(Node[i]) ->
EVENTUALLY (Bus.Identifier.MessagelD =
Node[i] .Write[0] .Identifier.MessagelD) &
(Bus.Identifier.NodeID = Node[i].Write[0].Identifier.NodeID)

END;

INVARIANT "Synchronous Broadcast™
FORALL i:0..N~1 DO ! Has_Read(Node[i]) END |
FORALL.i:0..N-1 DO Node[i] .Participant = True -> Has_Read(Node[i]) END;

RULESET i:0..N-1
Do
INVARIANT "Identifier Consistancy"
( Bus.Identifier.MessageID < Max_Value+l -> Bus.Identifier.NodeID < N ) &
( Bus.Identifier.NodeID < N -> Bus.Identifier.MessageID < Max_Value+l) &
( Node[i] .Write[0].Identifier.MessageID < Max_Value+l ->
Node[i].Write[0].Identifier.NodeID < N ) &
( Nodeli].Write[0].Identifier.NodeID < N ->
___Node[i].Write[0].Identifier.MessageID < Max_Valuetl) &
( Node[i] .Read.Identifier.MessageID < Max_Value+li ->
Node[i] .Read.Identifier.NodeID < N ) &
( Node[i] .Read.Identifier.NodeID < N ->
Node[i] .Read.Identifier.MessageID < Max_Value+1)
END; -- of ruleset

RULESET msgid:0..Max_Value; nodid:0..N-1
DO
INVARIANT "Identifier Disjunctness”
EXISTS 1:0..N-1 DO ( Node[il.Write[0].Identifier.MessageID = msgid &
Node[i] .Write[0] .Identifier.NodeID = nodid &
Node[i] .Write[0].Identifier.Request = false ) ->
FORALL j:0..N-1 DO
! ( Nodel[jl.Write[0].Identifier.MessageID = msgid &
Node[j].Write[0].Identifier.NodeID = nodid &

105



Node[j].Write[0].Identifier.Request = false ) |
j=i
END -- forall
END; -- exists
END; -- ruleset

106



C.3 Full CAN

INVARIANT "Bus Access Method”
Bus_Is_Idle() |
FORALL i:0..N-1 DO Wants_to_Write(Node[i]) ->
(Bus.Identifier.MessageID < Get_MessageID(Node[il)) !
( (Bus.Identifier.NodeID <= Get_NodeID(Node[il)) &
(Bus.Identifier.MessageID = Get_MessageID(Node[il)) )

END;

LIVENESS "Data Consistancy”
ALWAYS EXISTS i: 0..N-1 DO Node[il.Read.Status = CORRUPT END ->
EVENTUALLY EXISTS i:0..N-1 DO Has_Read(Node[i]) END &
FORALL i: O0..N-1 DO Has_Read(Node[i]) ->
Node[i] .Read.Status = CORRUPT END;

RULESET msg: 0..Max_Value; n: 0..N-1; i:0..N-1
bo
LIVENESS "Remote Data Request"
ALWAYS (Get_MessageID(Node[i]) = msg) &
(Get_NodeID(Node[il) = n) &
(Get_Request (Node[il) = true) ->
EVENTUALLY (Node[i].Read.Identifier.MessageID = msg) &
(Node[i] .Read.Identifier.NodeID = n) &
(Node[i] .Read.Identifier.Request = false) &
(FORALL j:0..N-1 DO Node[j].Read.Status = OK END)

END;

LIVENESS "Error Signaling (Part "
ALWAYS EXISTS i:0..N-1 DO
Equal(Node[i] .Read.Identifier,Get_Write(Node[il)) &
Node[i] .Read.Status = CORRUPT &
Get_MessageID(Node[il) < Max_Value+i END ->
EVENTUALLY Bus.Status=CORRUPT;

LIVENESS "Error Signaling (Part 2)"
ALWAYS EXISTS i:0..N-1 DO Node[i].Status=ACTIVE &
Node[i] .Read.Status=CORRUPT END
->
EVENTUALLY Bus.Status=CORRUPT;

RULESET msgid:0..Max_Value; nid:0..N-1; i:0..N-1
DO
LIVENESS "Automatic Retransmission (Part 1)"
ALWAYS ! Equal(Node[i].Read.Identifier,Get_Write(Node[i])) &
Get_MessageID(Node[i]) = msgid &
Get_NodeID(Node[i]) = nid &
Node[i] .Read.Identifier.MessageID < Max_Value+l ->
EVENTUALLY Node[i].Read.Identifier.MessagelD = Max_Value+l &
Get_MessageID(Node[il) = msgid &
Get_NodeID(Node[i]) = nid &
Bus_Is_Idle()
END;

RULESET msgid:0..Max_Value; nid:0..N-1; i:0..N-1
DO

107



LIVENESS "Automatic Retransmission (Part 2)"
ALWAYS Equal(Node[i].Read.Identifier,Get_Write(Node[il)) &
Get_MessageID(Node[i]) = msgid &
Get_NodeID(Nodel[i]) = nid &
Node[i] .Read.Status = CORRUPT ->
EVENTUALLY Node[i] .Read.Identifier.MessageID = Max_Value+l &
Get_MessageID(Node[i]) = msgid &
Get_NodeID(Nodel[il) = nid &
Bus_Is_Idle()
END;

RULESET 1:0..N-1
DO
INVARIANT "Bus off"

Node[i].Status = BUSOFF -> Node[i] .Participant = false &
Get_MessageID(Node[i]) = Max_Value+l &
Get_NodeID(Nodelil) = N &
Node[i] .Read.Identifier.MessageID = Max_Value+l &
Node[i] .Read.Identifier.NodeID = N

END;

RULESET i: 0..N-1
DO
LIVENESS "Starvation freedom"
ALWAYS Wants_to_Write(Node[i]) ->
EVENTUALLY (Bus.Identifier.MessagelID =
Get_MessageID(Node[il)) &
(Bus.Identifier.NodeID = Get_NodeID(Node[il))

END;

INVARIANT "Synchronous Broadcast"
FORALL i:0..N-1 DO ! Has_Read(Node[i]) END |
FORALL i:0..N-1 DO Nodeli].Participant = True -> Has_Read(Node[i]) END;

RULESET i:0..N-1
DO
INVARIANT "Identifier Comnsistancy"

( Bus.Identifier.MessagelID < Max_Value+l -> Bus.Identifier.NodeID < N ) &
Bus.Identifier.NodeID < N -> Bus.Identifier.MessagelD < Max_Value+l) &
Get_MessageID(Node[i]) < Max_Value+i ->
Get_NodeID(Node[il) < N ) &

( Get_NodeID(Node[i]) < N ->

NN

Get_MessageID(Node[i]) < Max_Value+l) & o
( Node[i] .Read.Identifier.MessageID < Max_Value+l ->
Node[i] .Read.Identifier.NodeID < N ) &
( Node[i].Read.Identifier.NodeID < N ->
Node[i) .Read.Identifier.MessageID < Max_Value+l)
END; -~ of ruleset

RULESET msgid:0..Max_Value; nodid:0..N-1
DO
INVARIANT "Identifier Disjunctness”
EXISTS 1:0..N-1 D0 ( Get_MessageID(Node[il) = msgid &
Get_NodeID(Nodelil) = nodid &
Get_Request (Node[i]) = false ) ->
FORALL j:0..N-1 DO
! ( Get_MessageID(Node[jl) = msgid &
Get_NodeID(Node[jl) = nodid &

108



Get_Request (Node[jl) = false ) |
j=i
END -- forall
END; -- exists
END; -- ruleset

109



Bibliography

[1] CAN in Automation (CiA), http://www.can-cia.de

[2] D. L. Dill. The Mury verification system. In R. Alur and T.A. Henzinger, editors, Computer Aided
Verification (CAV ’96), volume 1102 of Lecture Notes in Computer Science, pages 390-393, New
Brunswick, New Jersey, July 1996. Springer-Verlag.

[3] D.L.Dill, Mury description language and verifier, http://sprout.stanford.edu/dill/murphi.html

[4] International Organization for Standardization, Road Vehicles - Interchange of digital information -
Controller area network (CAN) for high-speed communication, ISO 11898, 1993

[5] Th. Fuhrer, B Muller, W. Dieterle, F.Hartwich, R. Hugel, M. Walther, Robert Bosch GmbH, Time
Triggered Communication on CAN, In Proceedings of the 7th International CAN Conference, 2000.

[6] W. Lawrenz. CAN System Engineering - From Theory to Practical Applications. Springer-Verlag, New
York, 1997.

[7] M. van Osch. http://wuw.win.tue.nl/ mvosch/CAN/,2001.
(8] Philips sells 100 million CAN transceivers. http://www.semiconductors.philips.com/CAN,2000
[9] R. Seifert, Gigabit Ethernet, Addison Wesley, 1998. '

[10] Robert Bosch GmbH, CAN - das Netzwerk fir die Elektronik im Kraftfahrzeug,
http://www.bosch.de/de_e/productworld/k/products/prod/can/docu/can.pdf

[11] Robert Bosch GmbH, http://www.bosch.de/de_e/productworld/k/products/prod/can

[12] Siemens Infineon, http://wuw.infineon.com

111



	Abstract
	Contents
	Preface
	Chapter 1 Introduction
	Chapter 2 An Overview of the CAN Bus
	Chapter 3 The Mur- rho Verification System
	Chapter 4 A Basic CAN Specification in Mur- rho
	Chapter 5 Extensions of the Basic Specification
	Chapter 6 Verification
	Chapter 7 State Space Generation
	Chapter 8 Conclusions
	Appendix A State Space Tables
	Appendix B Specifications
	Appendix C Properties verified
	Bibliography



