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To Desirée 



Abstract 

Since January 1982 the small isochronous cyclotron ILEC is under construction at the 
Eindhoven University of Technology. In this report we describe the numerical calculations 
that have been performed on the internal beam of this cyclotron. 

By linking the energy and radius of an accelerated partiele to it s initial phase, we 
calculated the differential current distri bution of the internal beam. The calculated current 
distribution can immediately be compared with the results we obtain from measurements 
with a moving differential target. By calculating the beam properties at extraction radius, 
we determined the conditions for single-turn extraction, and estimated an upper limit for 
the extraction efficiency. Also an estimation of the energy spread in the extraction region, 
and the effect of an internal aperture on the beam quality becomes possible. Finally, we 
discuss the results of the calculations of the orbit centre motion in ILEC under various 
conditions. 

The results of the calculations indicate that ILEC should be able to produce a fairly 
intense proton beam of high quality. By limiting the initial phase width of the internal 
beam by an appropriately placed aperture, single-turn extraction is feasible, stillleaving 
30 % of the initial source-current. With only second harmonie acceleration, an extraction 
efficiency close to 100 % can be achieved, with an energy spread in the extracted beam of 
about 1 %. By applying the flattop system, this energy spread can be reduced to less than 
0.1 %. 
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Chapter 1 

Introduetion 

1.1 Introduetion 

The lsochronous Low Energy Cyclotron (ILEC) is a small fixed-energy cyclotron for a 
3 MeV proton beam, which has been under construction at the Cyclotron Applications 
Group over the last decade. In fig. 1.1 a layout of the main componentsof ILEC is shown. 
In this chapter we first give a summary of the objectives of the minicyclotron project ILEC, 
and the forthcoming design-characteristics. 

At the moment the cyclotron is fully in operation in 2nd harmonie mode. lnternal 
beam currents up to a modest 10 11A are possible. In the coming time, we expect the 
6th harmonie system to be in operation as well, so it remains to be seen if and when the 
external beam will meet the desired specifications. 

1.2 Objectives of the ILEC project 

The objectives which form the basis for the ILEC project are : 

• the design and construction should require a low financial investment 

• the cyclotron must be fit to produce a 3 MeV proton beam with low energy-spread 
( < 0.1 %) for micro-beam element analysis 

• the possibility to produce high internal beam currents (up to 100 J-LA) for experimental 
study of space-charge effects 

The main difficulty evolving from these three objectives, the construction of a small 
machine that can fulfill these rather stringent demands on beam quality, has ledtoa rather 
complicated design. 
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Figure 1.1: Layout of the main components of !LEG. 
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1.3 Design characteristics 

ILEC is an isochronous cyclotron. In this type of cyclotrons the average angular velocity of 
the accelerated particles remains constant during the accelerating process, so the frequency 
of the RF -signal on the accelerating dee-system can be kept constant. Because of the 
relativistic mass increase of the particles during acceleration, the isochronous magnetic 
field should increase with the radius. In order to obtain good vertical stability of the beam 
in a radially increasing magnetic field, the main magnetic field is modulated azimuthally by 
a proper shape of the pole faces. Therefore this type of cyclotron is also called azimuthally 
varying field (AVF) cyclotron. For ILEC, the design of the main magnet is based on an 
azimuthally varying field with four-fold rotational symmetry: four sector-shaped hills with 
an azimuthal width of 40°, and four valleys with an azimuthal width of 50°. The radial 
growth of the magnetic field is realized by increasing the height of the hills. 
The average magnetic fieldstrengthof approximately 1.42 T is generated by two relatively 
small (hence cheap) main coils of 140 x 192 ampère turns each. This implies the construction 
of a very small gap between the magnet poles, which should provide just enough space for 
the RF accelerating structure and the correction coils. 

The RF accelerating structure used in ILEC consists of two pairs of dees. One pair, 
the seeond harmonie dee system, is placed in two opposite valleys of the poles, to keep the 
magnet gap as smallas possible. Because the azimuthal extent of these dees is limited by 
the width of the valleys, we have two dees with an azimuthal width of 50°, operated in 
second harmonie push-push mode. This means that both dees are excitated in phase, at 
two times the revolution frequency of the accelerated protons. 

In order to achieve the lowest possible energy spread at high beam currents a second pair 
of smaller dees, the sixth harmonie dee system, is placed between the hills of the upper and 
lower magnet poles. When these dees are operated in sixth harmonie mode, with proper 
phase and amplitude in respect to the second harmonie dee voltage, the sinusoidal shape of 
the energy gain as a function of the phase is altered into a more block-shaped fashion [11]. 
This technique is called flat-topping: adding odd higher harmonies to the basic accelerating 
voltage makes the energy gain per turn less dependent of the partiele phase, thus resulting 
in wider phase acceptance and lower energy-spread. 
Because the sixth harmonie dee system only effects beam quality, the basic operation mode 
of ILEC involves only second harmonie acceleration. 

The internal ion souree used in ILEC is positioned near the center, trough a 2 cm hole 
in the yoke. It is a self-heating PIG-source, described by Bennet [2], which has been scaled 
down to the desired proportions. 

After the last revolution (at a radius of approximately 16 cm), the particles are extracted 
from their orbits by an electrastatic deflector, the extraetor. The extractor is constructed 
according to a classica! design [14], already used in former small cyclotrons. 
In ILEC, the narrow magnet gap produces astrong negative gradient of the magnetic field 
towards the edge. This causes the extracted beam to diverge excessively in the horizontal 
direction. To compensate this defocussing influence of the fringing field, a magnetie ehannel 
is fixed between the upper and lower conductors of the second harmonie dees. The magnetic 
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focussing channel used in ILEC was designed by de Regt [16], and is of the passive type. 
The small iron bars of which it is constructed adapt the local main magnetic field such 
that the extracted particles encounter a positive field gradient, providing the necessary 
refocussing. 

1.4 Software for orbit calculations 

In the past, various programs for the calculation of partiele orbits in ILEC [1, 11] have 
been used. To gain insight in the influence of specific parameters on the partiele motion, 
these calculations were principally based on numerical integration of the equations of mo
tion following from application of the Hamilton formalism [6, 11]. In most cases [21, 16] 
integration of the initial value problem involved a classica! fixed-step fourth-order Runge
Kutta method. Combined with the inevitably loss of higher-order termsin the Hamilton 
treatment this limits the precision and efficiency of the calculations. Calculations consicler
ing the current distribution of the internal beam by Theeuwen [23] clearly reveal the poor 
achievements of these codes when calculations demand high accuracy. 

The wish to achieve the desired accuracy resulted in a new code for orbit calculations, 
based on the program CENTRUM [11]. The new program avoids the drawbacks of the 
former, by rigorously integrating the basic equations of motion, not only in the central 
region of the cyclotron, but for the complete orbit from souree to extractor. 
The use of an efficient and robust integration routine, introduced by Shampine and Watts 
[19], turned out to be a great improverneut on both precision and speed. This integration 
routine is basedon a 5th order Runge-Kutta algorithm, developed by Fehlberg. Shampine 
and Watts [20] have moulded this scheme into a well-behaved variable-stepsize integration 
code, using the charaderistic properties of the Fehlberg-algorithm to produce an estimate 
of the global truncation error. 

A thorough revision of the original program to further enhance the efficiency, and the 
fast floating-point arithmetic of the new ALP HA workstations in our group, have drastically 
decreased the execution time. 
We now have the possibility to simulate the influence of various parameters on the be
haviour of the beam almost interactively. In the new program also the newly designed 
central region geometry is implemented. An additional program IDIF is written, to calcu
late the differential current distribution, as measured with a moving differential target. 
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Representation of the magnetic and 
electric fields 

2.1 Intro cl uction 

In the following sections we will discuss how the electric and magnetic fields in ILEC are 
represented in the numerical program. The electric field is evaluated in two different ways. 
For the central region, where the electric field structure is quite complex, we use a field 
map based upon the potential distribution calculated with RELAX3D. Outside the central 
region the field components in the accelerating gaps are calculated from an analytica! ex
pression known as the Hazewindus approach. From the measured main magnetic field a set 
of Fourier coefficients were calculated, which are evaluated with cubic-spline interpolation. 
This enables us to add lower harmonies to the (ideal) symmetrical field, and examine their 
specific influence on the internal beam. The magnetic field caused by the various correction 
coils and the magnetic focussing channel are treated as perturbations of the main field, 
acting in certain areas of the 'magnetic field map'. Eventually we derive the equations of 
motion we use in the computer program to calculate the orbit of an accelerated partiele in 
ILEC. 

2.2 The electric field 

As a consequence of the numerical representation of the electric fields in ILEC, the RF 
accelerating structure can be divided in two areas: the central region and the deejdummy
dee gaps. In the central region the field is calculated numerically, in the vicinity of the 
accelerating gaps we use the Hazewindus approach. A schematic overview of these regions 
is exhibited in figure 2.1. The field from the electrastatic deilector is incorporated as a 
perturbation of the magnetic field. We will therefore describe it in 2.3.4. 
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Figuur 2.1: Geometrical representation of the two regions of the electric field in !LEG. In 
the rectangular area the field is calculated with RELAX3D. We can distinguish the center
part connecting the two 2nd harmonie dees (which contains the puller), and the circular 
hole for the ion source. The shaded areas are part of the dummy-dee structure, which is 
kept at ground potential. The drawn lines represent the symmetry lines of the 2nd and 6th 

harmonie gaps, used in the Hazewindus approach. The 2nd harmonie gaps are numbered 
from 1 to 4- For completeness, the position of the lower 6th and 2nd harmonie dees are 
indicated by the dotted lines. 
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2.2.1 The electric field in the central region 

In the central region a detailed knowledge of the electric field is necessary to calculate 
the important first few turns with the desired accuracy. In the past the ILEC central 
electric field has been determined both by measurements on a 2:1 scale magnet ie analogue 
model of the central region [7, 9] and numerical calculations with the program RELAX3D 
[11]. In 1993 a newly designed central region geometry was installed, which should possess 
better focussing properties, and a somewhat wider phase acceptance than the original. 
For this new central region geometry, the electric field was calculated with RELAX3D 
too. RELAX3D is a FORTRAN code from TRIUMF, which numerically evaluates the 
Poisson equation in three dimensions for a user-defined set of boundary conditions. The 
program is basedon a finite-element scheme applied on a regular three-dimensional mesh, 
using successive over-relaxation to increase the speed. The boundary conditions have to 
he specified by a user-defined subroutine [12]. A fine grid with dimensions nx x ny x nz = 
160 x 240 x 20 is used with a grid spacing of 0.5 mm. Inside this region of 8 x 12 x 1 
cm3 the electric field is calculated directly from the potentials at the grid points with a 
three-point differentiation routine. The electric field between grid points is found by linear 
interpolation between adjacent grid points. 

2.2.2 The electric field in the gaps 

Outside the central region, electric fields are only present in the vicinity of the dee/ dummy
dee gaps. The shape of the electric field at the 2nd and 6th harmonie gap-crossing can he 
approximated by the Gaussian distribution function shown in figure 2.2, as proposed by 
Hazewindus et.al. [7]. The Hazewindus approach represents the distribution of the field 
component Ey' perpendicular to the gap in a straight dee/dummy-dee system as a Gaussian 
distri bution 

( ')2 _l 1L 

Ey' = Eoe 2 u (2.1) 

with the standard deviation a related to the gap width W 9 ap and the dee-aperture Hgap 

according to the empirica! relation 

(2.2) 

The value E0 follows from the normalisation 

00 ( ')2 -t ~ 1 1 Vdee J Eoe dy = Vdee => Eo = ;o=-
Y 27r a 

(2.3) 
-oo 

For 0.3 ::::; Wj H ::::; 3 expression (2.1) is very accurate. Within the standard deviation 
(!Y'I ::::; a) the fit with numerically calculated field distributions is nearly perfect. For 
!Y'I > a the deviation is less than 10%. 
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Figuur 2.2: Representation of the eleetrie field at a dee/dummy-dee gap. In !LEG we have 
o-1 = 6.2 mm for the 2nd harmonie, and o-3 = 5.4 mm for the 6th harmonie gaps. 

2.3 The magnetic field 

In the orbit calculations the magnetic field in the median plane is regarcled as a superpo
sition of contributions from specific magnetic elements on the main magnetic field. The 
sphere of infiuence of these elements is restricted to a certain area on the field map, as is 
depicted in fig. 2.3. 

2.3.1 Main magnetic field 

ILEC is an isochronous cyclotron. In this type of cyclotrons the main magnetic field 
is modulated azimuthally by a proper shape of the pole faces. Therefore this type of 
cyclotron is also called azimuthally varying field (AVF) cyclotron. Because the average 
angular velocity of the accelerated particles in an AVF cyclotron remains constant during 
the accelerating process, the frequency of the RF -signal on the accelerating dee-system can 
be kept constant. Another advantage of the AVF field is that a good vertical stability of 
the beam can be obtained. For ILEC a four-fold symmetrie AVF has been chosen: four 
sector-shaped hills with an azimuthal width of 40°, and four valleys with an azimuthal 
width of 50°. Between the hills the magnet gap decreases towards larger radii from 36 to 
33 mm. The valleys are fiat, and leave a gap width of 50 mm, which results in a field 
modulation of approximately 20 %. 

The ILEC magnetic field has been measured with a Hall-probe, in a fully computerized 
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Figuur 2.3: The orientation of the various elements that determine the magnetic field in 
!LEG. The azimuthal modulation of the main magnetic field is achieved by Jour sector
shaped hills with an azimuthal width of 40°, and Jour valleys with an azimuthal width of 
50°. The valleys along the x axis contain two concentric pairs of correction coils: 21

•
2 and 

3A,B. The correction coil 2A,B is placed between the hills. The magnetic focussing channel 
and the dummy channel are fixed inside the 2nd harmonie dees, which Zie in the valleys 
along the y axis. 
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measuring machine [17, 21]. The z-component Bz of the magnetic induction in the median 
plane was mapped along concentric circles about the geometrical cyclotron centre. The 
accuracy in the position was 0.01 mm, the accuracy in the measured induction should be 
better than 0.05%. From symmetry considerations it follows that in the median plane 
(z = 0) Br(r, 0) = Bo(r, 0) = 0, hence B(r, 0) = Bz(r, 0). Therefore from now on B(r, 0) 
denotes the z-component of the magnetic induction in the median plane. 

The measured AVF can he expressed in terms of an average field B(r) and a flutter 
profile F(r, 0) 

B(r) __!___ f B(r, O)dO 
27r 

(2.4) 

F(r,O) 
B(r, 0) _ 

1 
B(r) 

(2.5) 

which we can expand in a Fourier series 

F(r, 0) = L [An(r) cos nO + Bn(r) sin nO] (2.6) 
n 

For the calculations we used the (smoothed) Fourier coefficients available from [21]. Since 
the AVF has fourfold symmetry, the coefficients with n = 4k for k = 1, 2, ... will be strongly 
dominant. Because the x-axis is also a symmetry-line, only eosine terms will be present. 
In the cyclotron centre the symmetry is disturbed by the eccentric placement of the 22 mm 
hole for the ion source. Therefore we used bath the sine and eosine coe:fficients An ( r) and 
Bn(r) for n = 1, 2, 3, and only eosine coe:fficients An(r) for n = 4, 8, 12, 16. In the program 
the values for An(r), Bn(r) and B(r) at radial steps of 5 mmserve as internal nocles for the 
standard NAG-routine E02BAF, which determines a set of cubic-spline coefficients from 
a least-squares fit. The val u es for An ( r), Bn ( r) and B( r) are found by evaluating these 
splines with routines E02BBF or E02BCF (E02BCF also gives the first three derivatives 
in radial direction). Subsequently the magnetic induction in a point (r, 0) is calculated 
from (2.4) and (2.6). Figures 2.4 and 2.5 show the average field and the Fourier coe:fficients 
A4k(r) of the symmetrical field. We can use the analytica! relations deduced in [6] for 
non-accelerated particles to calculate the radial and axial asciilating frequency Vr and Vz 

from the Fourier terms A4k(r) (see figures 2.6, 2.7). Further we can split the average 
induction B(r) in a constant part B0 and a radius dependent part JL(r) 

B(r) = B0 [1 + JL(r )] (2.7) 

Wedefine the central field B0 as the (non-relativistic) homogeneaus field belonging to the 
RF frequency WRF· 

Bo = Wo mo = WRF mo (2.8) 
q h q 

where WRF is the frequency of the RF-oscillator, and h the harmonie number of the accel
eration. From [6] also an expression for JL(r) under the condition of isochronism is found. 
Figure 2.8 shows the deviation of the measured field B(r) from the isochronous field Biso 

under slight variation of w0 • 
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2.3.2 Correction coils 

To enable trimming of the magnetic field and to compensate small unwanted first and 
second harmonie field components, three pairs of radially opposite correction coils are 
mounted at different radii between the pole facesof the main magnet, as depicted in figure 
2.3. A first-harmonic field component is produced when the current trough two opposite 
coils is reversed in direction. We obtain a second harmonie when the currents trough each 
pair have the same direction. The small first and second harmonie perturbations caused 
by these correction coils are incorporated in exactly the same way as the various harmonie 
componentsof the main field. The radial dependenee of the harmonies Ce(r) are supposed 
to have a Gaussian profile 

(2.9) 

with re the radius of the coil centre and Ue the charaderistic coil width. For the resulting 
first and second harmonie field we then find 

Bt,e(r, 0) 

B2,e(r, 0) 

Êt,eCe(r) cos(()- Be) 

Ê2,eCe(r) COS 2(0- Be) 

(2.10) 

(2.11) 

where Be is the azimuthal position of the coil centre. Both Êe and Ue depend on the 
dimensions of the considered pair of coils and the gapheight. The maximum Êc is also 
determined by the number of ampère turns of the considered coils. Figure 2.3 shows the 
position and dimensions of the correction coils in ILEC. 
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2.3.3 Passive magnetic focussing channel 

The magnetic focussing channel used in ILEC was designed by de Regt [16], who also 
implemented a routine for the calculation of the field perturbation the channel brings about. 
In ILEC, the narrow magnet gap produces astrong negative gradient of the magnetic field 
towards the edge. This causes the extracted beam to diverge excessively in the horizontal 
direction. To compensate this defocussing influence of the fringing field, a gradient of 
approximately 60 Tm-1 over a path length of 10 cm is necessary. Because the focussing 
field should best become effective directly behind the extrador exit, the magnetic channel 
is placed between the upper and lower conductors which form the second harmonie dees. 
As a consequence of the restricted physical dimensions (the dee aperture is only 15 mm), 
the channel used in ILEC is of the passive type. Due to the gradient in the main magnetic 
field, a mechanica! force towards the cyclotron centre will act on the magnetic channel, 
and on the dee-structure to which it is fixed. To counteract this force and to avoid the 
introduetion of a first harmonie perturbation, an identical dummy channel has been placed 
in the opposite dee. 

2.3.4 The extractor 

The electric field inside the extradorfora partiele with velocityvis represented by lowering 
the main magnetic field with an amount Eextr/v, with 

E (()) 
"Vextr 

extr = (()) 
Wextr 

(2.12) 

Wextr is the radial distance between electrode and septurn at an azimuth (). 

2.3.5 The fringe field 

The main magnetic field behind the extrador (without the magnetic focussing channel) has 
been measured in a rectangular area (see fig 2.3) with a grid spacing of 3 mm. The magnetic 
field in a particular point is calculated by linear interpolation between four surrounding 
gridpoints. 

2.4 Equations of motion 

To find the equations of motion we write dowr: the Lorentz force actin_E; on a partiele with 
charge q, which is rnaving in an electric field E and a magnetic field B: 

(2.13) 

Because of the cross product iJ x B we have in general coupling between vertical and radial 
motion, which leads to rather complex equations of motion. Since the electric and magnetic 
fields are symmetrie with respect to the median plane, we have for z = 0 Bx = By = 0. 
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This means that if we only consider the partiele motion in the median plane, and neglect 
any influence from the vertical motion by putting Vz = 0, we find: 

For a partiele with positive charge q these equations represent a counterelockwise rotation 
when viewed in the direction of Ë. For ILEC this means that the induction of the main 
magnetic field is pointing in the direction of the negative z axis. When we introduce the 
dimensionless independent variabie T = wat we get 

ds ds dT . 
-=--=was 
dt dT dt 

(2.14) 

Combining this with the central field B0 defined in (2.8) yields 

x mo { ~ E ( ) _ . Bz (x, y)} 
B2 x x,y y B 

m q 0 o 

mo{~E( ) .Bz(x,y)} 
B2 Y x,y +x B 

m q o o 
y 

Now the derivatives to the independent variabieT all have the dimension of length, where 
the independent variabie itself can he regarcled as an angle. When we finally insert the 
time-dependent electrical field, resulting from the 2nd and 6th harmonie acceleration, the 
complete equations are 

x '::: { ~Ri E ••• (x, y) sin [h( r- r!)]- ~mË.,3( x, y) sin [3h( r - r3 )] -YB,~: Y)} 

Y : { ~Ri Ë,,1 (x, y) sin [h( T- Tt )]- ~R~E,,3(x, y) sin [3h( T- r3)] +:i; B,~: y)} 
(2.15) 

In these equations all parameters concerning the main (2nd harmonie) dee system are 
provided with an index 1, the parameters concerning the flat top (6th harmonie) dee system 
have index 3. 

T 

h 

mo 

m 

wat 

the independent variabie 

harmonie number 
2 

1 - wo (x2 + ??) 
c2 
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Bo 

Et(x, y) 
E3(x, y) 

A 

Vdee,l 

Vdee,3 

Tt 

relativistic mass correction 

2
mo Vdee,l 

qB6 
A 

2
mo Vdee,3 

qB6 
m 0w0 moWRF 

q hq 
homogeneous field belonging to w0 

scaled electric field for Vdee,l = 1 V 

scaled electric field for Vdee,3 = 1 V 

amplitude 2nd harmonie accelerating voltage 

amplitude 6th harmonie accelerating voltage 

azimuth of 2nd harmonie dee-system 

azimuth of 6th harmonie dee-system 

The Physical interpretation of cm:stants Rj and R~ is that they represent the squared radii 
of particles with kinetic energy q Vi and q V3 in the central field B0 . 

The equations of motion form a set of two coupled ordinary differential equations 
(ODE's) which we shall try to solve numerically. Because most numerical methods can 
only solve first order ODE's, we must reduce the order. This will result in the simultane
ous integration of an array of four coupled equations x(1) to x( 4), of which there are two 
trivial: 

x(1) =x =? x(1) =x 
x(2) =x =? x(2) =x from eq. (2.15) 
x(3) = y =? x(3) =iJ 
x(4)=iJ =? x ( 4) = ii also from eq. ( 2.15) 

The use of the independent variabie T instead of the time t enables the definition of the 
high frequency phase of a particle: 

'-Ph!= h(T- O(T)) (2.16) 

In figure 2.9 [B] we see that '-Phf gives the phase slip between the independent variabie T 

and the actual azimuthal position of the partiele in terms of the accelerating voltage. For 
the second harmonie accelerating voltage Vdee,l as a function of T we have 

Vdee,l Vdee,l sin [h(T- Tt)] 

Vdee,l sin ['-Phf + h(O- Tt)] 

(2.17) 

(2.18) 
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B 

Figuur 2.9: [A} Particles with i.phf = 0 will cross the dee-center when Vdee = 01 resulting in 
maximum energy gain per turn. The numbers 1 to 4 correspond with the numbering of the 
gaps in fig. 2.1. [B} The relation between the independent variabie T 1 the actual azimuthal 
position of the partiele () 1 and the high frequency phase i.phf. The independent variabie can 
be regardedas a phasor1 rotating with angular velocity w0 • 

which means that Vdee,l = 0 when a partiele with i.phJ = 0 is at azimuthal position T1 • The 
azimuth T1 ( see figure 2.1) coincides width the mid-dee line. This implies that a partiele 
with i.phf = 0 will experience maximum energy gain per turn (see figure 2.9). 

The definition of the high frequency phase also links the inital conditions for the equa
tions of motion to the initial azimuth ()in at which the partiele leaves the ion source, and 
the value !.pin of the high frequency phase at the start : 

!.pin () 
Tin= h + in 
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Chapter 3 

The numerical solution of ordinary 
differential equations 

3.1 Introduetion 

In this chapter we :first treat some mathematica! aspects and general properties of discrete 
methods, from which we derive a method to estimate the error in the calculated solution. 
Our goal was to solve the equations of motion with an accuracy that was high enough to 
simulate the radial current distribution, as measured in practice with a moving differen
tial probe. In order to investigate the effect of various parameters on the internal beam 
structure in a comfortable way, the efficiency of the calculation must be high. 

In the past, numerically solving the equations of motion which are derived using the 
Hamilton formalism has proved to be very efficient [18, 11], but is not the best salution to 
gain high accuracy. The equations of motion following from application of the Hamilton 
formalism on accelerated particles in an AVF [18] turn out to become quite complicated. 
Moreover, in the derivation of these Hamilton functions higher-ordertermsin various power 
series expansions and cross-products have been neglected to keep the results comprehen
sible. Especially in the central region of the cyclotron, where the electric field shape is 
quite complicated, we may not expect to achieve high enough accuracy for the detailed 
numerical analysis we want to perfarm on the calculated orbits. Therefore we choose to 
directly solve the basic equations of motion in cartesian coordinates. Both the desired 
efficiency and error control of the orbit integration are achieved by the use of a powerful 
variabie-step algorithm. The influence of discontinuities on convergence and error control 
is treated more elaborately, to point out that reasoning from a pure physical point of view 
can lead to numerical problems. 

On the basis of some common computational problems we encountered, we choose to 
use the code GERK, which is implemented by Shampine and Watts [19]. 
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3.2 The mathematica! problem 

The typical initial value problem fora system of ordinary differential equations is, in vector 
form: 

dx 
dt 

x(to) 

[(t, x) fort E [to, t1] (3.1) 

(3.2) 

Here fis a continuous function for t E [to, t1]. A salution of (3.1) is a vector function 
x(t) defined on the interval [t0 , t1] which has a continuous derivative satisfying (3.1) as an 
identity and which for t = t 0 has the initial value x0 specified by (3.2). Because higher 
order differential equations1 which can he expressed in the form: 

dn.... dn-1 .... dn-2.... d .... x .... x x x .... 
dtn = f(t, dtn-1' dtn-2 ' ... ' dt 'x) (3.3) 

can be converted toa system of first-order ODE's by a standard change of variable, a valid 
theory for the salution of (3.1), (3.2) can also be applied tothese higher-order ODE's. 

It is typically assumed that f satisfies a Lipschitz condition with constant L, which 
means that for all ü, v: 

ll[(t, ü)- [(t, v)ii ::; Liiü- vil fortE [to, t1] (3.4) 

A more comprehensible condition which implies (3.4), is that all the partial derivatives of 
!have an upper bound K: 

(3.5) ~~i. (t, x) ::; K 
J tE[to,ti) 

which implies that there is exactly one salution of (3.1), (3.2) when fis a continuous 
function. When a point of discontinuity in the derivative function is determined solely by 
the independent variabie t, it is possible to divide the interval [t0 , t1] in appropriate pieces 
on which (3.5) still holds. However, if the dependent variabie i defines the discontinuity, 
we can not expect all of the theory to be valid, as is illustrated later in this chapter. Most 
of the theory and the numerical algorithms for a single ODE carry over to a system of 
ODE's. Therefore we will omit the explicit vector notation from here on. 

3.3 Properties of discrete methods for ODE's 

All numerical methods for solving ODE's have in common that they discretize the problem. 
The typical code steps trough the interval [t0 , t1] producing approximate solutions at certain 

1Some authorities [3] have developed methods for the direct integration of equations of higher order, 
arguing that reduction to a first order system increases both the error and the necessary number of 
operations. The treatment of these matters by Henriebi [8] clearly indicates that the truncation error is 
generally not increased and the round-off error is frequently substantially decreased when an equation of 
higher order is first reduced to a first order system, and solved by an equivalent metbod for such systems. 
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mesh points. Proceeding from an approximation Xn to the true solution x(tn) at the 
meshpoint tn, we try to compute an approximation Xn+I at the next mesh point tn+l = 
tn + hn+l· The increase hn+l of the independent variabie is called the stepsize. Often the 
stepsize is chosen to have a constant value h over the entire interval. We define the local 
solution un(t) as the solution of 

(3.6) 

(3.7) 

which is the exact solution of the ODE, with the last computed value Xn as its initial 
value. Now we try to approximate this local solution over the step hn+l· To do this, most 
numerical methods use no other information except for tn, hn+l, Xn, and the ability to 
evaluate f(t,x). The error of this approximation is called the local error 

(3.8) 

The most common situation in practice, especially for physical systems, is that the solution 
curves of (3.1) are more or less parallel. When alocal error is committed, the code moves 
from one solution to a solution with a different initial condition. Because the curves do 
not diverge strongly, the effect of repeated local errors will be that the calculated solution 
slowly drifts away from the true solution, with initial condition (3.2). 

An other way of looking at local errors is in terms of a truncated Taylor series. If we 
expand both the exact local solution un(tn+I) and its approximation Xn+l over a step with 
length h in a Taylor series based on the point tn 

we can find a last term whose coefficient is the same in both series, and remains constant 
over the step. The corresponding exponent of the stepsize h is called the order k of the 
method; 

which means that 
(3.9) 

For a method of kth order we can now refer to the local error as the local truncation error 
being O(hk+l ). 
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This means that when we evaluate the solution twice, either with a different stepsize or 
with a method of different order, it is possible to estimate the local truncation error over a 
single step, as described in [15, 10, 19]. By relating the stepsize to the estimated error, it is 
possible to keep the truncation error within a specified tolerance. This technique is called 
local stepsize adjustment or adaptive stepsize control. The gains in efficiency resulting from 
local stepsize adjustment can be tremendous. Another benefit of local error control is that 
the beginning of numerical instability also results in a growing local error, so the stepsize 
will be automatically reduced to keep the calculation stable. 

What we are really interested in is the true or global error, which is 

x(tn+l)- Xn+l 

tr(tn+l) + { x(tn+I)- Un(tn+l)} 

(3.10) 

(3.11) 

The second term in braces in equation (3.11) depends on the stability of the differential 
equation: the degree of divergence the family of solutions exhibits, and thus the way errors 
propagate. For a small stepsize hn+l this term can be expressed in termsof the Jacobian 
Jn in (tn, x(tn) of the ODE, which leads to the relation 

(3.12) 

The global error at tn is multiplied by {1 + Jn}, which is called the amplification factor. 
The stability of a system turns out to be related to the eigenvalues of the Jacobian. In 
general, these eigenvalues are complex numbers, wose values are not constant but depend 
on t. It can be shown that stability is gouverned by the eigenvalue with the largest real 
part. For most problems a stabie solution corresponds withall eigenvalues having negative 
real parts. 

Because the stability of the ODE is determined by the eigenvalues of Jn+b and thus is 
likely to change as the evaluation of the solution proceeds, it is not generally possible to 
control the global error by local stepsize adjustment alone. However, if the ODE satisfies 
certain conditions, for a fixed order, one-step code it is possible to calculate a reliable 
estimate of the global error by means of global extrapolation. This method involves parallel 
integration, one carried out with half the step size of the other, using the same basic 
method. By using global extrapolation on the parallel solutions we can estimate the global 
error of the more accurate result, as is justified in [8]. 

3.4 Global error estimation 

Let xn(tb h) denote an approximate solution obtained at the point t 1 using a variabie 
step size h with h = ((t)H for H constant and 0 < ((t) ~ 1. Let x2n(tb h/2) be the 
approximate solution at t1 , calculated with step size ((t)H/2. Then the global errorsfora 
method of order k are 

Xn(tb h)- x(ti) (H)k p(t1) + 0 (Hk+l) 

X2n(tb h/2) - x(tl) - (H/2)k p(t1) + 0 ( Hk+l) 
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where p(t1 ) denotes the magnified error function, which in itself is the solution of an 
initia! value problem, defined by the ODE and the method. If the solution has continuous 
derivatives of order ~ k + 1, global extrapolation becomes valid and for sufficiently small 
values of H we get 

(3.13) 

which yields for the estimate of the global error in x2n(t1 , h/2) 2 

(3.14) 

3.5 Convergence and stability 

When the processof step halvingor step doubling is proceeded, we obtain from eq. (3.14) 
an expression which is of basic importance for the validity of the solution we obtain: 

(3.15) 

The calculation of Cn during the integration process enables us to monitor if the conditions 
for the global error estimation via eq. (3.14) are met. When we use an integration method 
of order k, and find the value of Cn to be 2k, we can be certain that the equation we integrate 
is convergent, and that we have numerical stability. Hence global extrapolation is allowed, 
and the global error estimate will be reliable. When on the other hand Cn is considerable 
lower than 2k over a particular integration interval, there are several possibilities: 

1. The ODE, or system of ODE's is mathematically unstable and it is possible we can 
not solve the problem by numerical integration on this interval. 

2. The ODE itself is mathematically stable, but the stepsize is chosen too large, resulting 
in numerical instability. Reducing the stepsize ( or decreasing the local error toleranee 
for variable step codes) will solve the problem. 

3. When the derivative function contains discontinuities, we can be sure that it does not 
satisfy (3.5), and the theory will simply not be valid. An example of the misleading 
results we obtained when trying to integrate over discontinuities will be given in the 
next section. 

In either of these three cases, we havenoother choice than to reject both the estimated error 
and the outcome of the integration, and investigate the reason for the lack of convergence. 

2The relation (3.14) can also be obtained via a less strict argumentation [4], known as Richardson's 
deferred approach to the limit. 
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3.6 Some computational problems 

The discretization error, which (theoretically) is a property of the method we use to solve 
an ODE, is not the only souree of error in the numerical solution. The approximation of 
real numbers using floating-point numbers with finite word-lengths will generally lead to 
roundoff error. Roundoff error is a typical property of the computer and the program we 
use. An obvious requirement resulting from limited machine word-length is, that when 
the code tries to proceed the solution from tn to tn+I, opera ti ons must result in different 
machine numbers, or the possibility exist that the endpoint of the integration interval will 
never be reached. It is usually not the case that codes indicate the request of impossible 
accuracies [20]. A low order method is either incapable of achieving accuracies near the 
unit roundoff level of long word lengths, or becomes very ineffi.cient, which means that we 
must select an appropriate code for the desired accuracy. 

The use of pure relative error control on a solution that becomes zero can also cause 
serious trouble, and elearly the global error estimates calculated with eq. (3.14) becomes 
unreliable when we approach the limits of precision. The accuracy of floating-point arith
metic can he characterized by machine epsilon, the smallest floating-point number f such 
that 1 ffi f > 1. A convenient algorithm to estimate the available precision for a program 
at execution time3 is given in [5], which enables automatic adjustment of the lower bounds 
for the absolute and relative local error on different machines. In GERK the impact of 
roundoff error on the calculation is effectively suppressed by an appropriate sealing of the 
variables in the integration algorithm for each integration step, according to the value of 
t, and the demanded relative local truncation error fl. 

3. 7 The impact of discontinuities on error estimates 

To get an idea whether the global error estimate according to equation (3.14) is correct for 
our orbit calculations, we developed a simpletest case that allows us to compare the real 
global error eg with the estimated value fg. 

We integrate the equations of motion for a partiele with an initial kinetic energy Eko in 
a homogeneous magnetic field B0 • The partiele is alternately accelerated and decelerated 
by a constant electrical field, which is generated by two (somewhat artificially placed) 
parallel gaps. The non-relativistic equations of motion for this partiele are 

x 

y 

3 The difference in t we find when running the same FORTRAN code on different machines, with 
different compilers is striking. For instanee on a DEC ALPHA system t(REAL * 8) ~ 6.10-17, on a 
common PC, with the Salford FTN77 compiler t(REAL * 8) ~ 5.10- 20 • 
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10 20 
x/cr~ 

-0.5 

-1 

Figuur 3.1: The electric field from equation (3.16). In our test case we have a = 6.2 mm 
and x0 = 5 cm. Because the direction of the electric field in the two gaps is opposite, there 
will be no change of the kinetic energy over one half revolution. This enables us to compare 
the real error in the calculated energy to the error estimation we get from applying (3.14). 

Because the electrical field is time-independent, we can start the integration at r = 0 with 
initial conditions 

Xo ro 
Xo 0 

Yo 0 

Yo ro 
J2mEko ro 

qBo 

We take B 0 = 1.4 T and Eko = 2 MeV, which in our case are realistic 'average' values. 
The partiele then will start at the x-axis, at radius r0 ~ 14.6 cm. For the scaled electric 
field Ex(x,y) we have 

Ex(x,y) 

Ey(x, y) 

X 1 lzl-zo 
( )

2 

Eo-1 1e - 2 
a for llxl- xol < ~ 

x 
0 otherwize 

(3.16) 

In figure 3.1 we show the electric field according to eq. (3.16). The electric field is limited 
to a region with width ~ around x0 • In our test case wetook V = 30 kV, Xo = 5 cm 
and a= 6.2 mm, which are typical values for the ILEC 2nd harmonie system. Because the 
polarity of the (constant) accelerating voltage V is reversed according to the sign of the x 
coordinate, the kinetic energy of the partiele will not be changed after each half revolution. 
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Figuur 3.2: The quotient Eg/ eg along one turn of the partiele orbit in the test program 
gives an immediate impression of the accuracy of the estimated error. The inlegration was 
performed with the code GERK, which is also used in the actual program. 

This means that for lxl > x 0 + ~ the kinetic energy must he Eko, so in this area we can 
compare the estimated global error in the energy Eg, calculated according to eq. (3.14), 
with the real error eg. Figure 3.2 displays the quotient Eg/ eg for ~ = 40" over one turn. 
We find no agreement between the realand the estimated error. From a physical point of 
view, limiting the extend of the field to ~ = 40" gives at each gap crossing an error in the 
energy increase of 

00 

dEk 2 j Ex(x- xo)dx 
40" 

A 

V -s --e 
V2i 

For V= 30 kV this comes down to an error lower than 4 eV, which is negligible. Moreover, 
because the reversed polarity of the gaps in our test case, the error in the energy gain per 
turn must he zero, so there must he another reason for the error in Eg· 
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Figuur 3.3: Convergence factor over one complete turn, calculated with a fixed-step, fourth 
order Runge-K utta method. Wh en the inlegration passes a discontinuity in the electric field 
which is too big, the convergence is lost, and error estimation based on global extrapolation 
will be no longer valid. 

In figure 3.3 we show the convergence factor C over one complete turn. We applied 
eq. (3.15) on a fixed-step 4th order Runge-Kutta method. Clearly we can see the sudden 
loss of convergence which occurs at {) = 60°, where x = x 0 + ~- The reason why the 
estimated error does not follow the real error is, that we introduced small discontinuities in 
the electric field at llxl- x01 = ~- However small these discontinuities may he, they ruin 
the convergence of the integration, resulting in wrong error estimates. When we expand the 
field region to ~ = 10a we see that the calculation remains convergent over the complete 
turn, and the estimated error is in good agreement with the real error. 

Figure 3.3 also demonstrates the effects of numerical instahility. For ~ = 10a we see 
that if we enlarge the stepsize h from 0.1° to 0.5° the convergence in the regions where 
the partiele is accelerated is lost. The integration code GERK, which applies local stepsize 
adjustment, does not exhihit this prohlem. 

3.8 Estimation of the true error 

In the previous section we saw the influence of discontinuities in the electrical field on the 
estimated glohal error. If the electrical field is not continuous, the estimated error will in 
general he lower than the true error. The reason for this is, that if we want to apply glohal 
extrapolation on a given ODE, solved with a method of order k, at least the derivatives 
of order ::::; k must he continuous over the considered integration interval. In other words, 
if we integrate a function for which the derivatives of order ::::; n are continuous, we must 
estimate the glohal error as if we applied an integration method of order n, even when we 
use a method of much higher order. This means that we must adapt our error estimate to 
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Figuur 3.4: The estimated global error Eg along a partiele orbit as a function of the radius, 
monitored at a fixed azimuthal position () = -20°. In figure [A] we calculated the error 
according to a first-order method, until the partiele was well out of the central region (turn 
number 1-7). Figure [B] gives the global errorfora partiele which has been started outside 
the central region {turn number 7), where the method really is of fifth order. The legend 
at the right gives the upper limit for the relative local error EL we demanded during the 
calculation. 

the representation of the electric and magnetic fields we use in the orbit calculations: 

• The main magnetic field and the field resulting from the correction coils are con
structed from (smoothed) Fourier coe:fficients. Because this will always result m 
continuous derivatives, we don't expect di:fficulties from the magnetic field. 

• The electrical field in the central region is found by linear interpolation between mesh 
points in a rectangular grid. Therefore we calculate the global error in this area as if 
using a first-order method. 

• By extending the effective gap width we use in the Hazewindus approximation of 
the electric field, we can estimate the global error as it is originally implemented in 
GERK, which uses a fifth-order Runge-Kutta scheme. 

In figure 3.4 we show the growth of the estimated global error during acceleration in 
the central region [A], and for a partiele which has been started at turn number seven 
[B]. We see, that if we assume the integration in the central region to collapse into first 
order, further acceleration of the partiele out si de the central region does not contribute 
substantially to the total error. By calculating how a small deviation from a centralorbit 
propagates through the further solution, we can also estimate the growth of the global 
error which originates in the central region. Figure 3.5 shows how a small deviation Drin 
from the central orbit at the beginning of the seventh turn develops as a function of the 
radius. As long as the partiele does not enter the fringe field, we see that the global error 
behaves quite regular, and does not exceed twice it's initia! value. From the calculated 



3.8. ESTIMATION OF THE TRUE ERROR 

3 .-----------------------~ ---------, i 
------' \ i 

2 .. --------- \ i _"--------·- \ i i 

1 .. ---··-··-··------··-··-··----··-·-------------··-··-·------··-··,,.,;_\././ 
--------------- ',\/,' 

Or---------------~ 
""' I I'' c,o ____________ , .... ;; i\\ 

-1 ---------------------------...... _ /i i\ 

10 

------------------------------.. ___ ,./ i \\ 
I I\ 

12 14 

r [cm] 

i i 
i i 

/ \ 

16 18 

B rin [cm] 

±10-2 

±4.10-2 

±8.10-2 

±16.10-2 

29 

Figuur 3.5: The deviation br from the centralorbit for various values of the initia[ deviation 
brin, as a function of the radius. The partiele was started at the beginning of the seventh 
turn. We see that an error which originates at a radius of 8 cm propagates symmetrical 
and regular, until the partiele reaches the fringe field, at a radius of approximately 16 cm. 

error at a radius of 8 cm in figure 3.4 [A] we can now estimate, that if we calculate the 
complete orbit with a relative local error of 10-6 , the global error will he lower than 2-10-2 

mm, which is accurate enough to perform calculate the differential current distribution for 
a differential target of width 0.1 mm. 
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Chapter 4 

Differential current calculation 

4.1 Introduetion 

In this chapter the calculation of the differential current, which follows from the numerical 
orbit calculations is discussed. The differential current is the radial current distribution in 
the median plane, as measured with a target with width ~r, moving in radial direction 
at a fixed azimuth. Naturally, the demand for sufficient resolution gives that the width 
of the target ~r must be much smaller than the beam width. The calculated differential 
current distribution can immediately be compared with the results we obtain from the 
measurements with a moving differential target. This enables us to get a good impression 
of the correctnessof the outcomes of the orbit calculations. By calculating the differential 
current distri bution in the extraction region, we can see if single-turn extraction is possible, 
and determine an upper limit for the extraction efficiency. Also an estimation of the energy 
spread in the extraction region, and the effect of an aperture on the beam quality at 
extraction radius becomes possible. 

4.2 Differential current 

To he able to simulate differential current measurements from the numerically calculated 
orbits, we first must understand what exactly we measure if a differential probe, consisting 
of a thin vertical wire, is moved in radial direction through the cyclotron at a fixed azimuth. 

Consicier a bunch of particles with charge q, departing from the ion souree at initial 
azimuth ()in, over the interval [r0 , r1]. The innermostand outermost orbits over the first five 
revolutions are drawn in fig. 4.1. Because the particles departed over a small time interval, 
during acceleration their orbits tend to diverge in radial direction. If we look at a particular 
azimuth (), we see that at the nth revolution the bunch crosses this azimuth at a radius 
rn, and has spread out over width ~rn. All partiele trajectories will only depend on the 
accelerating voltage at the start. Because the accelerating voltage is periodic with period 
21rjhwo (see eq. (2.18)), this means that all particles leaving at time intervals 21rjh will 
encounter exactly the same initial conditions, and thus propagate along the same orbits. 
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Figuur 4.1: Orbit spread over the first jive turns for a bunch of particles departing from 
the souree over the interval [ro, TI]· 

Hence, if we want to calculate the time-average current we measure with a differential 
target with width .Ó.rn at position rn, we only have to consider one period of the dee 
voltage, because the current will also be periodic with period p: 

q 

p 
h 'Tl 

27rjis( T )dr 
TQ 

( 4.1) 

Writing the souree current Is as a function of the initia! phase 'Pin = h( T - (Jin), we find 
for the bunch current 

( 4.2) 
'PO 

For the calculations, we presurne the souree current to he limited by the space-charge 
effects which occur between ion souree and puller. According to [22) the souree current as 
a function of the puller voltage Vp is for positively charged particles: 

Is =A l"vl312 for Vp < 0 (4.3) 

with A a constant. When we want to write Is as a function of 'Pin, we have to take into 
account the azimuth (Jin at which the particles leave the source, and the definition of V( T) 
in eq. (2.18). The theoretica! interval for the initial phase 'Pin follows from the demand that 
the puller voltage Vp must be negative in order to extract the positively charged protons 
from the ion source, which is at ground potential. 

( 4.4) 
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Figuur 4.2: The pulter voltage Vp and the souree eurrent Is as a function of l.pin, for ()in = 
42.4 °. Early particles represent low val u es of the souree eurrent, whereas late partiel es, 
whieh yield higher eurrent values, have lower energy gain. 

The azimuth ()in is the angular position of the hole through which the particles are extracted 
from the ion source, and is 42.4 o. For harmonie number h = 2, and T1 = 90°, this gives 
a theoretica! initia! phase interval -84.8° < l.pin < 95.2°. In figure 4.2 we show the puller 
voltage Vp and the souree current Is as a function of l.pin· 

The complete radial distribution of the internal current is determined by extending the 
interval [<po, <p1] to the full half-period in which the souree emits particles, and calculate the 
partiele orbits for every initia! phase. In order to find the stationary distribution over the 
full radius of the cyclotron, every partiele orbit should be carried through until the partiele 
is either lost in the fringe field, or intercepted by an obstacle. The differential current at a 
target with width ó.r at radius r is then found to be the summation of the currents from 
every initia! phase interval for which particles impinge on the target: 

'Pin(r+tAr) 

Idiff = 2~ ~ J Is(i.pin)d<pin 

'Pin(r-tAr) 

( 4.5) 

Because the particles with high initia! phase represent a relatively large part of the 
internal beam current, the width of the total initia! phase region we consider is an important 
parameter. In the next section we shall discuss how we estimate the boundaries for the 
initia! phase region. 
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Figuur 4. 3: IJ 'Pin is too high (the partiele starts 'too late'), particles will be intercepted 
by the right side of the puller, and do not contribute to the internal beam current. The 
resulting initia[ phase interval depends on the dee voltage. 

4.3 Estimation of the dee voltage 

If we want the calculation of the differential beam current to be realistic, the dee voltage 
Vdee has to be estimated from measurements. The exact dee voltage is an important 
parameter for the numerical calculations, not only because it affects orbit separation and 
centre motion, but also the phase-acceptance of the center geometry. 

Particles with different initial phase 'Pin will traverse the central region along different 
trajectories. If 'Pin is too high, the acceleration between souree and puller will be poor, and 
chances arise that the particles will he intercepted by obstacles in the central region during 
the first or second revolution. This implies that the initial phase interval for particles 
that can contribute to the internal beam current has a fixed upper bound, which varies 
with the dee voltage. From figure 4.3 it shows for instance, that when Vdee = 30 kV only 
particles with 'Pin < -33° should be considered. Figure 4.4 depiets a typical measurement 
of differential beam current versus radius in ILEC. Every peak corresponds with one turn 
number of the internal beam; the most left-hand peak corresponds with turn number 5. 
From this measurement we will try to estimate a typical value for Vdee· 

A partiele which is rotating at radius r about the origin in a magnetic field with 
cylindrical symmetry has kinetic energy 

(4.6) 

If we determine the radius f( n) at which the maximum differential current in each turn 
number n occurs, we can expect this radius to correspond with a partiele which has an 
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Figuur 4.4: Internal beam current measured with a moving differential probe of 0.1 mm. 
The dip between 12 and 14 cm is due to vertical defocussing of the beam. After turn 26 
the beam was intercepted by a fixed target. 

average energy for that turn: 

E(n) = q2r2(n)B2(r(n)) 
2mo 

( 4.7) 

with B2(r(n)) the average magnetic induction at f(n). Because we do not aim at a precision 
better than 1 %, the relativistic mass-increase of the particles can be neglected for our 
purpose. 

In applying ( 4. 7), we presurne that beam shift resulting from drift of the orbit centre is 
negligible. If the kinetic energy of a partiele is high enough, we can also neglect the variation 
of the accelerating voltage during the gap crossing, and relate the energy increase of the 
partiele to the amplitude of the accelerating voltage at the moment the partiele arrives at 
the gap. 

( 4.8) 

with Tg the moment the partiele arrives at the gap. If we define the gap number g as 
depicted in fig. 2.1, we find for the energy increase of protons in e V 

(4.9) 

where a denotes the half dee-angle (which is 25° for the ILEC second harmonie dees), and 
cp9 has the value of 'Ph! at the moment of gapcrossing. For a complete turn, in which four 
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Figuur 4.5: Average kinetic energy beZonging to the maximum differential current for each 
turn n. With a linear fit we determine the average energy increase per turn. 

gapcrossings occur, we can write for the energy increase in eV 

4 

l:l.En = L Vdee sin[2a + ( -1)9 cp9 ] (4.10) 
g=l 

which leads to 
l:l.En = 4 Vdee sin 2a cos <p9 ( 4.11) 

for cp9 constant at all four gapcrossings. 
From the slope of the linear fit of E(n) totheturn number in fig. 4.5 we can derive 

the average energy increase per turn for turn 5 to turn 26 

l:l.E(n = 5--+ 26) = 84.46 keV ( 4.12) 

1f we assume cp9 = 0 we find for the dee voltage 

l%ee = M(n ~ 5--+ 26) = 27.56 kV 
4sm2a 

(4.13) 

However, from fig. 4.6 1 which shows the course of the HF-phase for an accelerated partiele 
at each gap crossing, it is clear that we cannot expect cp9 to be constant for consecutive 
turns. So the value for Ydee in ( 4.13), is likely to be an underestimation of the real dee 
voltage. 
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Figuur 4.6: Behaviour of the HF-phase at the jour 2nd harmonie gaps. Clearly we observe 
the phase shift during the first turns, and the slow coherent oscillation resulting from the 
centre motion. 

To get a more realistic estimate for Vdee, we may introduce an efficiency factor fa for 
the acceleration of a particle. The factor fa gives the real energy increase over a number 
of turns in proportion to the maximum achievable energy increase 

(4.14) 

For a given magnetic field fa( 'Pin, n = n1 -+ n 2 ) will depend on the initial phase of the 
partiele and the considered turn numbers. Figure 4. 7 presents the results for fa( 'Pin, n = 
5 -+ 26) for three different values of Vdee. The kinetic energy at turns 5 and 26 are found 
from numerical orbit calculations. If we combine la - averaged over 'Pin and Vdee - with 
the measured average energy increase (4.12), we find Vdee = 30 kV, which seems to be a 
realistic value. The numerical calculation of the differential current with Vdee = 30 kV 
in fig. 4.8 is in good agreement with the measurement for turns 5 - 17. At higher turn 
numbers we see a gradually increasing deviation in the position of the current maxima. 
This is aresult of centre drift of the measured beam due toa first-harmonic component in 
the magnetic field, which was not present in the numerical calculation. 
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Figuur 4. 7: The accelerating factor fa( 'Pin, n = 5 ---+ 26) for Vdee = 27, 30 and 33 kV. 

4.4 The program IDIF 

From numerical orbit calculations we can obtain the radius and energy of a partiele at a 
certain azimuth as a function of the initial phase. In figure 4.9 [B] and [D], we show the 
radius and energy of a partiele as a function of the initial phase for turns 25 to 28. For 
the azimuth we took the azimuthal position Bex of the extractor entrance, which is -20° 
(see figure 2.3). The step in the initial phase /j.'Pin is 1°, which means that for each integer 
number of 'Pin between -27° and -84° we calculated the complete orbit to find the radius 
and energy each time the partiele crosses the azimuth Bex = -20°. On the basis of figure 
4.9 we shall describe the algorithm weusein the program IDIF to calculate the differential 
current distribution and the energy-current distribution. 

Suppose we want to calculate the differential current distribution for turn numbers 25 
to 28, for a differential target with a width /j.r. First, we split up the radial interval over 
which the particles cross Bex in intervals with length /j.r. Then we scan each separate 
phase interval /j.'Pin with a small step dep. For each initial phase value 'Pi we find the 
radius for the considered turns by linear interpolation between two calculated values. In 
this way we determine to which interval ~r the souree current Is( 'Pi)d<p will contribute. 
The integration step dep in a phase interval is limited by two demands: for each turn the 
radial step dr(dc.p) may not exceed a preset radial resolution 8r, with br ~ /j.r, and dep 
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Figuur 4.8: Calculated differential beam current at the azimuth of the differential probe 
in the fourfold-symmetrical field. In this case the RF frequency Jo was 43.34 MHz; the 
frequency for which the measured magnetic field is closest to the isochronous field. Later 
on we shall see that a small deviation from Jo can increase the turn separation at higher 
radii, and thus reduce the 'background' in the differential current. 
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according to equations (4.3} and (4.4). 
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Figuur 4.10: Calculation of the differential current distribution and the energy-current 
distribution from the data in figure 4-9 {A], [B] and [Dj. Each initia[ phase interval between 
two values for which we calculated the radius and energy as a function of the turn number 
is evaluated with a small step dlp. The radius and energy for each turn, corresponding with 
current I( 'Pi)d'fJ, is found by linear interpolation. 

must be small enough to obtain an accurate integration1 of the souree current. 
Figure 4.10 gives an impression of the construction of the differential current for one 

step in the initial phase from -35° to -34°. The result of the calculation is astaircase 
function of the radial current distribution, as depicted in figure 4.11. Each bar represents 
the differential current over a radial interval ~r, scaled to the total internal current h 

A simultaneous evaluation of the partiele energy as a function of the initial phase 
(fig. 4.10 D) gives the possibility to calculate the energy-current distribution in a preset 
radial interval (RI). This RI can be the extractor entrance, or a particular aperture in the 
cyclotron. In this case we must only take into account the lowest turn for which a phase 
value 'Pi contributes to the current in the RI, to avoid double-counting of the current. 
Now the integration step d'P in the calculation is also limited by the demand that for 
each turn the energy step dE(d'P) may not exceed a preset resolution 8E. Figure 4.12 
shows the energy-current distribution for a RI from 15.4 to 15.8 cm. This is a possible 
position for the extractor entrance, set for extraction of turn 27. By keeping track of the 
total current that enters the RI, we find that only 35 % of the total internal current Ii 
enters the extractor. This illustrates the remark in the preceding section: because we 

1 Because we have the analytica! expression 

'lr/2 

J . V d .ft r( ~) 
sm cp cp = 2 r( E. + 1) 

0 2 

we can check that for integration with step dep= 1° the error is already lower than 10-5 %, which certainly 
satisfies our demand. 
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Figuur 4.12: The energy-current distribution over the radial interval RI in 4 .11. Here we 
had !::.E = 1 ke V, 6E = 0.1 ke V and br = 0.05 mm. IJ we only take into account turns 25 
to 28, we find that only 35 % of the internal current enters the extractor. 
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Figuur 4.13: The calculated differential current, calculated from contributions of turns 25 
to 35. 

only considered turns 25 to 28, we did not consider the stationary current distribution in 
the RL In figure 4.11 we can see that in this case only the particles with initial phase 
-84 ° < 'Pin < -50° contribute to the extracted current. In order to find contributions 
from particles with 'Pin > -50°, and thus achieve a more realistic current distri bution at 
the RI, we also should calculate higher turn numbers. Figure 4.13 depiets the calculated 
di:fferential current under the same conditions as in figure 4.11, where we calculated the 
partiele orbits over 35 revolutions. We see that now also particles with -40° < 'Pin < -50° 
contribute to the calculated di:fferential current. Because the souree current becomes higher 
with increasing initial phase, the di:fferential current shows a substantial increase. The 
energy current-distribution in figure 4.14 shows that we find the total current that enters 
the extrador to be 80 % of the internal current. Because we know that eventually all 
particles will enter the extrador, this indicates that we should calculate the partiele orbits 
for more than 35 revolutions, if we want to find the true di:fferential current distribution 
at extraction radius. Later on we will see that this is not necessary if we want to achieve 
single-turn extraction, because then we already have to use an aperture to limit the initial 
phase interval. 

Up to this point, we kept the RF frequency Jo for which we calculated the partiele 
orbits in the measured magnetic field fixed at Jo= 43.34 MHz. From figure 2.8 this seems 
to be an appropriate choice to ensure isochronous acceleration. On the other hand, from 
figures 4.13 and 4.14 we get the impression that if we could alter the acceleration process 
such that the energy gain of particles from the low initial phase area increases, we could 
improve the turn separation in the extraction region. In the next section we shall see that 
this is indeed the case. 
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Figuur 4.14: The energy-current distribution for the conditions in figure 4 .12. Here we took 
into account the first 35 revolutions of each partiele orbit. We find that 80 % of the internal 
current enters the extractor entrance. The energy-spread in the RI is approximately 4 %. 

4.5 Tuning of the average magnetic field 

In cyclotron operation, an essential part of the optimization procedure consists of the 
fine-tuning of the main magnetic field. By altering the main field we try to obtain an 
internal beam with the maximum achievable quality. Because the isochronous field is 
inversely proportional to the revolution frequency, we can easily reproduce this procedure 
by changing the RF frequency for which we calculate the partiele orbits in the measured 
magnetic field. 

The effect of a slight variatien in Jo on the radius as a function of the initial phase at 
extraction radius becomes clear in figure 4.15. Here we show the radius as a function of 
'{)in forturn 27 (see figure 4.9). We varied the RF frequency Jo with steps of 0.05 %. We 
see that by slightly lowering f 0 , we can diminish the total radial spread of the phase area, 
andreduce the overlap between successive turns. We also see that the particles that reach 
the maximum radius originate from a lower initial phase region, and thus represent higher 
currents. This is confirmed by the trend we see in figure 4.16. Because the maximum in 
the radius also becomes more pronounced if it is shifted towards lower values of '{)in, there 
should be an optimal situation, for which the central peak in the energy-current distri bution 
contains the largest fraction of the total internal current. We must also keep in mind that 
if the deviation from the isochronous field gets too large, the overall acceleration will be 
poor, resulting in lower beam separation at extraction radius. In figures 4.17 and 4.18 we 
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Figuur 4.15: The orbit radiusforturn number 27, at the azimuthof the extractorentrance 
under variation of the RF frequency Jo. Lowering Jo has the sa me effect as a proportional 
increase of the average magnetic field. We can see that a small decrease in Jo has a 
remarkable effect on the differential current distribution, because the maximum in the radius 
shifts towards lower values of 'Pin, which represent larger currents. 
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Figuur 4.16: The differential current at the azimuth of the extractorentrance under vari
ation of the RF frequency Jo. 
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Figuur 4.17: The differential current distribution from figure 4.13 shows a remarkable 
improvement ij we lower Jo by 0.1 %. The dotted lines show the position of the extractor 
entrance, set for extraction of turn number 27. 
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Figuur 4.19: The energy-current distribution at the extrador entrance for 8f0 = -0.15 %. 

show the differential current and the energy-current distribution, calculated for the same 
conditions as in figures 4.13 and 4.14, with 8f0 = -0.1 %. Now the turn separation has 
remarkably improved, leading to a much higher and sharper bounded peak in the energy
current distribution. Because now 100 % of the internal current enters the extractor, 
we know that for this case the radial current distribution is stationary after 35 turns. 
Comparison with the energy-current distribution in figure 4.19, calculated for 8f0 = -0.15 
%, shows that this situation is also quite close to an optimum: further decreasing the 
frequency results in a less ideal energy-current distribution. 

4.6 single-turn extraction 

Because the width of the extractor entrance is 4 mm, and the energy discrimination of the 
electrostatic channel is quite low, the energy spread in the extracted beam remains quite 
high. From figure 4.17 it becomes clear, that if the phase width of the internal beam could 
be cut off at 'Pin = -50°, we certainly have single-turn extraction, while still extracting 
a substantial portion of the internal beam current. Otherwise, the use of only the second 
harmonie acceleration system will always lead to multi-turn extraction. 

In ILEC a movable internal aperture has been mounted on one of the dummy-dee lists, 
which lies at an azimuth of 25°. Because the program IDIF can simultaneously evaluate 
the differential current at two different azimuthal positions, We can try to findan aperture 
position which allows single-turn extraction of turn number 27, and see how this alters 
the energy-current distribution of the beam at the entrance of the extractor. From the 
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Figuur 4-21: The differential current at extraction radius, for a beam stop from 4.45 to 
5.25 cm. Now the turn separation is sufficient for single-turn extraction. 
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Figuur 4.22: The energy-current distribution at the extractor entrance, for a beam stop 
from 4.45 to 5.25 cm. The energy spread has been lowered to approximately 1 %. 

differential current distribution at the azimuth of the aperture in figure 4.20 we can see, 
that if we for instanee place a single beam stop in turn 3, and block the internal beam 
for r = 4.45 to 5.25 cm, we exactly cut off the initial phase area at <{Jin = -50°. The 
extractor placement from figure 4.11 now leads to the energy-current distribution in figure 
4.22. Although now only about 33 % of the internal current is left, the energy spread in 
the beam at the extractor entrance has been reduced to about 1 %. Widening the beam 
stop leads to further reduction of the energy spread in the extracted beam, but will also 
substantially decrease the extracted current, so the dimensions of the aperture to be used 
will depend on the required beam quality. 
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4. 7 lnvolving the 6th harmonie system 

To obtain a beam with both small energy spread and high current, ILEC has been equipped 
with two small flattop dees, oscillating at three times the RF-frequency. The theoretica! 
background of the fl.attopping-principle, as applied to ILEC, is given in [11]. 

The main parameters that determine the beam quality at extraction radius under 6th 

harmonie operation are 

• The main magnetic field, which in the numerical calculations can be fine-tuned by 
altering the frequency Jo of the RF signal. 

• The amplitude of the 6th harmonie accelerating voltage, relative to the amplitude of 
the 2nd harmonie voltage, v3/1· 

• An additional phase shift 83 of the 6th harmonie accelerating voltage with regard to 
the 2nd harmonie voltage. 

By varying these three parameters for a fixed dee voltage Vdee,I of 30 kV, we tried to 
maximize the extracted current, demanding an energy-spread of less than 0.1 %. In figure 
4.23 [A] we see that we can extract more than 20 %of the internal beam current, and still 
keep the energy spread beneath 0.1 %. In this situation we had for the above parameters 
8Jo = -0.15 % (with Jo = 43.34 MHz), Î3;1 = 0.1, and 83 = 1.0°. To limit the energy
spread we had to place an aperture in the third turn, restricting the initial phase area of the 
internal beam. On the basis of figures 4.23 [B], [C] and [D] we will discuss the positioning 
of the extrador and aperture with which we obtain the energy-current distribution [A]. 

Figure 4.23 [B] shows the calculated differential beam current at extraction radius for 
the azimuthal position of the extrador entrance Oe = -20°. The verticallines indicaté an 
extrador entrance of 3 mm, positioned for extraction of turn number 30. Examination of 
the partiele energy as a function of the initial phase for the 30th revolution in figure 4.23 [C] 
indicates the desired initial phase area. In order to limit the energy-spread to about 0.1 %, 
we must select the initial phase region -56° < IPin < -46°. Finally, in figure 4.23 [D] we 
show the radius as a function of the initial phase at the azimuthal position of the internal 
aperture Ba = 20°, for the third revolution. Toselect the desired phase area, weneed a slit 
that only lets through particles with 5.22 < r < 5.32 cm. Evaluating the internal beam 
for these settings with the program IDIF results in the energy-current distribution [A]. 
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Chapter 5 

The motion of the orbit centre 

5.1 Introduetion 

In this chapter we discuss the results of the calculated motion of the orbit centrein ILEC 
under various conditions. We will show that the average centre position can be easily and 
accurately derived from the numerical orbit calculations. On the other hand, more insight 
in the separate influence of various parameters on the partiele motion can be gained from 
the Hamilton treatment than from numerical calculations alone. Especially the movement 
of the orbit centre during acceleration can be attributed elearly to separate terms in the 
Hamilton functions derived in [18]. Therefore we will use some of the analytic expressions 
to describe and verify the trends we find in the numerical results. Because we will only 
use the Hamilton treatment to give a more qualitative interpretation of the numerical 
results, we shall merely state the results of the theory, and not be concerned with the 
exact theoretica! background. We think this is justified by the good agreement between 
numerical and analytica! calculations in [18, 11 J. 

5.2 Calculation of the centre position 

For the calculation of the position of the orbit centre, we use the method described in [18], 
which is illustrated in figure 5.1. From numerical calculations we can determine the radial 
position of a partiele when it crosses the x or y axis. If we do this for two successive turns, 
we can immediately eliminate the turn separation D.r resulting from the energy gain, and 
thus find the average value (xe, Ye) for the centre coordinates (xe, Ye)· If we assume Vr- 1 
to be small, we have for the intersections x1 to x 4 with the x axis: 

Xt r +Xe 

x2 r + D.r +Xe 

X3 r + lD.r- x 2 e 

X4 r + ;lb.r- x 2 e 
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Figuur 5.1: Calculation of the position of the orbit centre is based on a linear combination 
of the x and y coordinates at consecutive intersections of the orbit with the x and y axis. 

Eliminatien of !.::..r yields 

Xe = ~ ( X1 + 3x2 + 3x3 + x4) (5.1) 

An analogous treatment of the intersections y1 to y4 with the y axis gives 

(5.2) 

5.3 Centre motion in the symmetrical field 

First we shall investigate the movement of the orbit centre for a typical partiele in the 
ideal symmetrical magnetic field, which consists of the first four Fourier coefficients A4k 

from figure 2.5. 
In figure 5.2 [A] we show the movement of the average centre position in the symmetrical 

magnetic fieldfora partiele with initial phase 'Pin= -50°, calculated with (5.1) and (5.2). 
With the aid of figure 5.2 [B], we can determine the approximate orbit radiusfora certain 
turn. The first thing we notice, is that the initial position of the orbit centre (turn 3) does 
not coincide with the cyclotron centre. A more detailed study of the partiele motion during 
the first revolution indicates that this deviation of the initial centre position originates from 
the first gapcrossing. From figure 5.3 it becomes clear that during gapcrossing 2 the partiele 
experiences a much higher electrical force along the x axis than during crossings 3 and 4. 
The reason for this is, that at small radii the accelerating gaps become somewhat wider, 
and more directed along the y axis (see figure 2.1). An electrical field in the direction of 
the negative x axis will force the orbit centre to move in negative y-direction. Because of 
the large relative energy increase during gap crossing 2, the negative displacement of the 
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Figuur 5.3: The x and y components of the electrical field [A} and the partiele energy 
[B} as a function of the azimuth () during the first revolution of the partiele from figure 
5.2. The dotted line in [B} indicates the high frequency phase. The partiele starts at () = 
42.4°, where it is first accelerated by the electrical field between souree and pull er ( p). The 
following gapcrossings are numbered 2 to 4, for consistency with the numbering in fig. 2.1. 
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Figuur 5.4: The first two turns of the partiele orbit [A} and the movement of the orbit 
centre during the first turn [B} for the partiele from fig. 5.2. The arrows indicate the 
translation of the orbit centre during acceleration between souree and puller (p) and in the 
gapcrossings (2 to 4) as in fig. 5.3. 

orbit centre will not be fully compensated during crossings 2 and 3. Herree the average 
centre position will he at negative y values. 

Because we have no modulation of the magnetic field at the radius of the first turn, we 
may assume the magnetic field there to be homogeneous, if we neglect the influence of the 
souree hole. This implies that the partiele will always move along a circular orbit, with 
the velocity vector perpendicular to the radius, which enables us to monitor the position 
of the orbit centre during the first revolution by the simple relations 

Xe= x- r(E) cos(Ov- ~71") 

Yc = Y- r(E) sin(Ov- ~71") 

where r( E) is the radius belonging to the kinetic energy E of the particle, conform equation 
( 4.6) and Ov denotes the angle of the velocity vector with the positive x axis. A more 
detailed view of the partiele motion during the first turn is given in figures 5.4 [A] and 
[B]. Clearly we can distinguish the shifts of the orbit centre resulting from the acceleration 
between souree and puller and in gaps 2 to 4. It is this initial deviation of the orbit centre 
from the cyclotron centre that is responsible for the further motion of the orbit centre in 
figure 5.2. 

In [18] the total motion of an accelerated partiele is split into the motion of the orbit 
centre and a circle motion with respect to this orbit centre. To obtain the desired splitting 
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of the motion, the original Hamiltonian H(x,px, y,py) is transformed via several canonical 
transformations into a scaled Hamiltonian H(y,py, E, 4>) with 

fJ 
H 

mw2 
0 

qBo 
Wo 

m 

Pi 
Pi 

qBo 

t wot 

In this Hamiltonian the conjugated pair (y, py) represents the ( slowly varying) coordinates 
of the orbit centre in relation to the cyclotron centre, and the pair (E, 4>) are the action 
angle variables of the circle motion. The action angle variabie E may be interpreted as the 
energy of the particle, and is related to the radius R of the circle motion by: 

(5.3) 

The angle variabie 4> represents the phase of the circle motion, and is a cyclic variable. 
If we neglect the influence of the circle motion on the centre motion in the Hamiltonian, 

by assuming that E and 4> are constant, we find [18]: 

with 

C* 

D* 

sin 4>o 

h 

2qV . 1 
---:;-h cos ha cos aszna

2
E cos [h( 4>- 4>o)] 

-
2~V h sin ha 2~ sin [h( 4>- 4>o)] 

V 
mw6 

qV . . h 
2
E cosasmasm a 

harmonie number of the accelerating voltage 

halve dee angle 

radial oscillation frequency 

In this equation we see a yPy term, of which the coe:fficient C* depends only slightly on 
the phase 4>. Because for ILEC llr - 1 is small ( < 0.01), it could well be that the flow of 
the orbit centrein figure 5.2 is caused by an unstable motion resulting from this coupling. 
If we presurne that the cent re motion is only determined by the y Py term, we find for the 
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equations of motion: 

Xe - 8H = C*x 
8f}e e 

(5.5) 

Ye aH_ -c*- (5.6) a- - Ye Xe 

where we denote the phase plane coordinates (y, Py) by the geometrical coordinates (fle, Xe)· 
According to [18] we can make a rough first-order approximation of the centre position 
(xe, fle) after n turns by: 

Xe(n) "'"' Xe( no) ( :
0

) -y (5.7) "'"' 

Ye( n) ~ (na) -r Ye(no) --;;: (5.8) 

where 

cos ha: . 
(5.9) I h . h cos a: sm a: 

szn a: 
0.64 for ILEC 

Because in these equations all phase-dependent terms were neglected, the real spread of 
the centre coordinates during acceleration will not depend on the initia! position of the 
orbit centre alone. Especially at low radii, the third term in equation (5.4) can not he 
neglected. Therefore we might expect the centre coordinates for particles with different 
initia! phase to diverge more than the initia! spread multiplied by the deviation terms in 
(5. 7) and (5.8), which is confirmed by the results in figure 5.5. 

Another remarkable observation we can make in figure 5.5 is the irregular behaviour 
of the centre motion after turn number 27, for particles with initia! phases of -50°, -60° 
and -70°. The reason for this behaviour is, that the particles enter the fringe field during 
their 27th revolution, at the point with the greatest distance from the cyclotron centre. In 
the fringe field the value of llr - 1 will decrease very rapidly, and become negative reversing 
the motion of the orbit centre into the observed 'backswing'. 

Because we don't know the exact orientation of the puller with respect to the ion souree 
( the angle between souree and pull er can he varied a few degrees), we should also consider 
the motion of the orbit centre under slight variations of the conditions under which the 
particles leave the puller. Figure 5.6 [A] shows the the centre motion for particles leaving 
the puller, where the radial position is varied with an amount of 8z = ±1 mm. The effect 
of the alteration of the angle of the velocity vector over 8a: = ±30 mrad is exposed in figure 
5.6 [B]. 
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Figuur 5.5: The movement of the average centre position of the orbit for particles with 
different initia[ phase. Because of the phase-dependency of the motion the spread in the 
centre coordinates becomes larger than expected from {5. 7) and (5.8). We also see that 
extraction beyond turn 27 is not favorable, because particles with low initia[ phase already 
encounter the infiuence of the fringe field, resulting in poor beam quality. 
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Figuur 5.6: The movement of the average centre position of the orbit for particles leaving 
the puller at different radii and under different angles. The central partiele has initia[ phase 

'Pin = -50°, the dee voltage was again 30 kV. 

5.4 The influence of correction coils 21'2 and 2A,B 

In 2.3.2 we already stated the magnetic field perturbation caused by a first harmonie 
correction coil centeredat (re, Be) to be: 

(5.10) 

To be able to incorporate the influence of the correction coils 21•2 and 2A,B in the orbit 
calculations, we have to know the parameters Ê1 and a. Because we have no data from 
measurements, we have to estimate these values. 

For the charaderistic coil width a we take 

with ~r the average radial with of the coil, and g the width of the magnet gap at the 
position of the coil. If we demand the total magnetic induction to equal the magnetic 
induction of an ideal coil with NI ampère turns we find for the amplitude Ê of the magnetic 
induction 

00 

J A _!.(L)2d flol N A 1 /lol N ~r 
Be 2 " r = --~r:::;. B = -------

g -../2i g a 
-oo 

(5.11) 
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Integration over the azimuthal width f:,.() of the coil gives for the fi.rst harmonie component 

l~e 
1 2 

7r J Ê cos ()d() 

_l~e 
2 

• fj.() 
~ B- for f:,.() small 

7r 

In figure 5.7 we tabulated the estimated values for Ê1 and a, and the magnitude of 
the parameters we used in the approximation. The right-hand figure gives a graphical 
representation of Ê and a in relation with the coil dimensions for the coil pair 21

•2 • Note 

••••••••••••• ............. t 
coils 21•2 coils 2A,B g:::i" 

re 12 cm 14 cm I ......•...... ~ ······•······ 
()c 45° I I oo l 

l i 

f:,.r 2.80 cm 2.80 cm i IIJN/g --. 

fj.() 40° 24° a 
ä ·-- ;_::;.:;:;---- i g 50 mm 35 mm --- --~ !x N 20 x 26 A 20 x 26 A i 

(]' 1.88 cm 1.65 cm -2 -1 0 2 . 
3.5 · 10-3 T 3.4 · 10-3 T 2B1 r-rc[cm] 

Figuur 5. 7: The parameters for the correction coil pairs 21•2 and 2A,B, used in the numerical 
calculations. 

that for the magnetic field of one pair of radially opposite coils, with their currents in 
opposite direction, we have to double the value of Ê1 in expression (5.10). 

The influence of the 1 st harmonie coils on the orbit centre motion is shown in figures 
5.8 and 5.9. The relative displacement of the orbit centre in figure 5.9 is constructed by 
subtrading the centre motion in the unperturbated symmetrical field from the perturbated 
motion. These results can be compared with the results of the measurements from [12], 
depicted in figure 5.10. If we take into account the possible error in the measurements, we 
see that the agreement is quite good. 

By applying the perturbation Hamiltonian for a first harmonie component, derived in 
[6], we can write for the relative motion of the orbit centre: 

Yc 
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Figuur 5.10: The measured relative motion of the orbit centre under infiuence of the coil 
pairs 21•2 and 2A,B. 

with È1 the relative amplitude of the first harmonie. These equations of motion show 
that the orbit centre will move in a direction perpendicular to the azimuth Oe of the first 
harmonie. Because for ILEC llr - 1 is quite small, this representation of the relative 
centre movement is appropriate when the centre displacement does not become too large. 
Integration per turn gives for the displacement of the orbit centre over one turn: 

~xc(n) 

~Yc(n) 

1rr(n)È1(r(n)) sin Oe 

-1rr(n)È1(r(n)) cos Oe 

which enables us to approximate the center position after n successive turns by: 

Xc(n) 

Yc(n) 
Xc(no) + 1rnrB1 sin Oe 

Yc(no)- 1rnrB1 cos Oe 

(5.12) 

(5.13) 

where f and B1 denote average values over turns n0 to n. For the estimation of the centre 
displacement due to the coil pair 21•2 from turn 14 to 20, we can see in figure 5.2 that 
f ~ 117.5 mm. With B1 ~ 1.5-10-3 T, we find ~Yc ~ 3.3 mm. The numerically calculated 
centre movement in figure 5.9 [A) also shows that the shift over turns 14 to 20 is about 3 
mm. 
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Figuur 5.11: The Fourier eosine [A} and sine [B} eoeffieients of the first three harmonies, 
derived from the magnetie field measurements. The first harmonie eomponents clearly show 
the infiuenee of the souree hole on the eentre field. 

5.5 Lower harmonie perturbations 

To achieve good agreement between the calculated and measured cent re motion in the ILEC 
magnetic field, we should also consider the influence of perturbations from the symmetrical 
field. Figure 5.11 show the relative Fourier eosine and sine coefficients of the first three 
harmonies, as calculated from field measurements. Because the influence of the 2nd and 3rd 

harmonies is quite small, we shall only consider the the first harmonies A1 and BI on the 
centre motion. figure 5.12 depiets the centre motion for a partiele with <{)in = -50°, where 
we added the first harmonies to the symmetrical field. We see that the main influence on 
the centre motion comes from the BI component, which causes a relative first harmonie 
of approximately 10-3 in the radial interval 5 < r < 17 cm at () = 90°. If we compare 
the calculated centre motion with the results of the measurements in [12], we see that 
the measured centre drift is of the same order of magnitude, but nearly in the opposite 
direction, which implies that the measured magnetic field does not agree with the reality. 

The reason why the measured magnetic field differs from the real situation is not clear. 
Regarding the consistency of the data, it appears to be unlikely that a measuring error 
of this magnitude has been committed. The only alternative is that there has been an 
alteration in the magnetic field, which occurred after the period during which field mea
surements have been performed. Some years ago, the minicyclotron has been moved to it 's 
present location. A possible explanation for the change in the magnetic field could be a 
small deformation of the main magnet or the pole-faces, resulting from this operation. 

By repositioning the small correction slabs with which the pole faces are provided, 
we were able to create a permanent first harmonie, which counteracts the unwanted first 
harmonie. The resulting orbit centre motion is very much the sameasin figure 5.12. The 
orbit centre drifts towards the extractor entrance, thus increasing the turn separation at 
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Figuur 5.12: The motion of the orbit centre due to the measured first harmonie perturba
tion, added to the symmetrical field (absolute centre coordinates). 

the position of the extractor. A more extensive treatment of the repositioning of the orbit 
centreis given in [12]. 



66 CHAPTER 5. THE MOTION OF THE ORBIT CENTRE 



Chapter 6 

Conclusions and recommendations 

The new programs for calculating the properties of the internal ILEC beam turned out to he 
a great improverneut on both precision and speed. We now have the possibility to simulate 
the influence of various parameters on the behaviour of the beam almost interactively, 
and to evaluate the energy-current distribution of the extraded beam. The results of 
the calculations show good agreement with measurements, and allow us to dirneusion and 
position an internal aperture, in order to produce a beam of the desired quality. 

The results of these calculations indicate that ILEC should be able to produce a fairly 
intense proton beam of high quality. With only second harmonie acceleration, single-turn 
extraction is feasible, resulting in extraction of approximately 100 % of the internal beam 
current, with an energy spread of 1 %. By applying the flattop system, this energy spread 
can be reduced to less than 0.1 %, while still extrading more than 20 % of the initial 
source-current. 

For the future, it is desirabie that also the emittance of the external beam can he 
calculated. Therefore the existing programs have to be modified. Because the numerical 
models for the extrador, magnet ie channel and fringe-field are already incorporated in the 
present code, the extension should ask for a relatively small effort. 
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Appendix A 

Program listings 



c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

c 

5 

c 

PROGRAM IDIF10 
================================================================= 
LAST UPDATED : 21-08-94, PETER OP DE BEEK 
================================================================= 
UPDATE-HlSTORY 

IMPLICIT NONE 
REAL*B rad,rdat(3,50),edat(3,50),ddat(3,50), 

+ dr,de,fas(3),fas_in(3),fas_in2(3),diaf(4), 
+ di_r(2000),di_e(2000),res_f,res_r,res_e, 
+ rslp~.eslp_mx,dslp_mx,roi_mx,roi~.mn_e,mx_e,av_e, 
+ df,df_mx,ib_tot,i_roi,f~,f_mx,rmx,rmx_in 

INTEGER fnum,funit,f_in,par(6),par_in(6),i, 
+ ndf,i~,i~ 

LOOICAL eof,diaf_ ok 
CHARACTER*1 answ 
CHARACTER*40 files(5) 
CHARACTER*BO comm 
CHARACTER*4 name_out 
CHARACTER*7 name_re , name_d 

INTEGER FNUM CONNECTS A FILENAME FROM ARRAY FILES TO A FIXED 
UNIT-SPECIFIER ACCORDING TO: 

FILENAME = FILES(FNUM) 
UNIT = FUNIT = FNUM + 10 

DATA files I 'in_r.rfn', 
+ 'in_e . efn' , 
+ 'in_d.rfn', 
+ 'out.idr', 
+ •out.ide'l 

1. IN_R.RFN 
2 . IN_E.EFN 
3 . IN_D.RFN 

4. OUT. IDR 
5. OUT.IDE 

INPUT FILE, R AS FUNCTION OF FIE_START 
INPUT FILE, E AS FUNCTION OF FIE_START 
INPUT FILE, R AS FUNCTION OF FIE_START 
AT AZIMUTH DIAFRAGMA 
OUTPUT FILE, RADIAL CURRENT DISTRIBUTION 
OUTPUT FILE, ENERGY-CURRENT DISTRIBUTION IN ROI 

rad= DATAN(1.0D0)145 . 0DO 
MINIMAL RESOLUTION RES_F IN INITIAL PHASE TO GUARANTEE A 
HIGH ENOUGH ACCURACY IN INTEGRATION OF SOURCE-CURRENT. 
A STEP OF 0.1 DEG. WILL BE SUFFICIENT, BECAUSE I(F) IS A 
VERY WELL-BEHAVED FUNCTION. 
NUMERICAL INTEGRATION WITH STEP = 0 . 1 DEG . FOR 0 < F < 90 DEG . 
GIVES A DEVIATION LESS THAN l.OD-5 t FROM THE ANALYTICAL VALUE: 
res_f = 1.0D-1 
res_f = res_f*rad 
INITIAL VALUES FOR SOME VARIABLES AND ARRAYS: 
ib_tot = O.ODO 
i_mx = 0 
i~ = 2000 
D05i=1,3 

fas(i) = O. ODO 
fas_in(i) = O.ODO 
fas_in2(i) = O.ODO 

CONTINUE 
diaf_ok = .FALSE . 
eof = .FALSE . 
DETERMINE NAMES OF IN- AND OUTPUT FILES : 
WRITE(6,*) 'GIVE NAME INPUTFILES FOR REN E (7 char)' 
READ(5,' (A7)') name_re 

c 

c 

10 

20 

c 
c 

c 
c 

c 

25 

c 

30 

c 

WRITE(6,*) 'GIVE NAME OUTPUT FILE (4 char)' 
READ(5, • (A4)') name_out 
ADAPTING FILE-NAMES IN ARRAY FILES TO GIVEN NAMES: 
files(1) •user2: [tnndrr.ilec.output)'llname_rell' .rfn' 
files(2) •user2: [tnndrr.ilec.output)'llname_rel/' .efn' 
files (4) •user2: [tnndrr. ilec . idif) • I lname_out/ I • ir. asc• 
files(5) •user2: [tnndrr.ilec . idif) '/lname_out/l'ie.asc• 
OPEN INPUT FILE FOR R AS FUNCTION OF INITIAL PHASE: 
fnum = 1 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='old') 
CALL get_par(fnum,files,comm,par,rmx) 
WRITE(6,*) 'PHASE REGION OF INPUT FILE ',files(l),' :' 
WRITE(6,' (1X,A25,I3) ') 'LOWEST PHASE (DEG.) ',par(4) 
WRITE(6,' (1X,A25,I3) ') 'HIGHEST PHASE (DEG . ) ',par(5) 
WRITE(6,' (1X,A25 , I3)') 'PHASE INTERVAL (DEG . ) ',par(6) 
WRITE(6,*) 'SELECT PHASE REGION' 
WRITE(6,*) 'GIVE LOWEST PHASE VALUE (DEG . ) 
READ(5, *) f_in 
IF (f_in.LT.pàr(4)) GO TO 10 
f~ = f_in*rad 
WRITE(6,*) 'GIVE HIGHEST PHASE VALUE (DEG.) ' 
READ(5,*) f_in 
IF (f_in.GT . par(5)) GO TO 20 
f_mx = f_in*rad 
IF A DIAPHRAGM IS PRESENT, ALSO R AS A FUNCTION OF THE INITIAL 
PHASE AT THE AZIMUTH OF THIS DIAPHRAGM MUST BE READ: 
WRITE(6,*) 'PLACE DIAPHRAGM (YIN) ?' 
READ(5, • (All •) answ 
IF ( (answ . EQ. 'Y') .OR. (answ.EQ. 'y')) THEN 

diaf_ok = .TRUE. 
WRITE(6,*) 'GIVE NAME INPUT FILERAT AZIMUTH DIAPR . (7 char)' 
READ(5,' (A7) ') name_d 
files(3) = •user2: [tnndrr.ilec . output)'llname_dll' .rfn• 
OPEN INPUT FILE FOR R AS FUNCTION OF INITIAL PHASE 
AT AZIMUTH DIAPHRAGM: 
fnum = 3 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=lOOO,STATUS='old') 
CALL get_par(fnum,files,comm,par_in,~in) 
CHECK CONSISTENCY INPUT-FILES: 
DO 25 i = 1,6 

IF (par_in(i) .NE.par(i)) GO TO 1600 
CONTINUE 
IF (rmx_in.GT.rmx) GO TO 1600 
READ DIMENSIONS OF THE DIAPHRAGM: 
WRITE(6,*)'THE DIAPHRAGM CONSISTSOF TWO BEAM STOPS,', 

+ 'DEFINING THE SLIT' 
WRITE(6,*) 'LOWEST RADIUS FIRST STOP (cm)' 
READ(5,*) diaf(l) 
WRITE(6,*) 'HIGHEST RADIUS FIRST STOP (cm)' 
READ(5,*) diaf(2) 
WRITE(6,*)'LOWEST RADIUS SECOND STOP (cm)' 
READ(5,*) diaf(3) 
WRITE(6,*) 'HIGHEST RADIUS SECOND STOP (cm)' 
READ(5,*) diaf(4) 
DO 30 i = 1,4 

diaf(i) = diaf(i)*l.OD-2 
CONTINUE 

END IF 
WRITE(6,*) ' ENERGY-CURRENT DISTRIBUTION IN ROI (R) OR', 

+' DIFFERENTlAL CURRENT DISTRIBUTION (D) ? 
READ(5,' (Al)') answ 
IF ((answ . EQ.'R') . OR . (answ.EQ . 'r')) THEN 

OPEN INPUT FILE FOR E AS FUNCTION OF INITIAL PHASE : 
fnum = 2 
funit = fnum + 10 



c 

35 

c 

c 
c 

c 

c 
c 

100 

c 

110 

c 

120 

c 

c 

OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='old') 
CALL get_par(fnum,files,comm,par_in,~in) 
CHECK CONSISTENCY INPUT-FILES: 
DO 35 i = 1,6 

IF (par_in(i) . NE.par(i)) GO TO 1600 
CONTINUE 
IF (rmx_in.GT.rmx) GO TO 1600 
OPEN OUTPUT FILE FOR IDE: 
fnum = 5 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='UNKNOWN') 
WRITE(6,*) 'GIVE RADIAL RESOLUTION (mm)' 
READ(5,*) res_r 
res_r = res_r*1.0D-3 
FIRST DETERMINE MAX AND MIN ENERGY IN ROI: 
READ POSITION ROl: 
WRITE(6,*) 'LOWEST RADIUS ROl (cm)' 
READ(5,*) roi_mn 
roi_mn = roi_mn*1.0D-2 
WRITE(6,*) 'HIGHEST RADIUS ROI (cm)' 
READ(5,*) roi_mx 
roi_mx = roi_mx*1.0D-2 
INITIAL VALUES MIN_E, MAX_E: 
mn_e = 3.003 
mx_e = O.ODO 
CALL GET_DAT FIRST TIME TO FILL COLUMN 2 IN ARRAYS YDAT 
WITH Y-VALUES: 
fnum = 1 
CALL get_dat(fnum,par,fas,f_mn,f_mx,rdat,eof) 
IF (eof) GOTO 1500 
fnum = 2 
CALL get_dat(fnum,par,fas_in,f_mn,f_mx,edat,eof) 
IF (eof) GOTO 1500 
IF (diaf_ok) THEN 

fnum = 3 
CALL get_dat(fnum,par,fas_in2,f_mn,f_mx,ddat,eof) 
IF (eof) GOTO 1500 

END IF 
fnum = 1 
CALL get_dat(fnum,par,fas,f_mn,f_mx,rdat,eof) 
IF (eof) GOTO 200 
fnum = 2 
CALL get_dat(fnum, par,fas_in,f_mn,f_mx,edat,eof) 
IF (eof) GOTO 200 
CHECK CONSISTENCY INPUT-FILES: 
DO 110 i = 1,2 

IF (fas_in(i) .NE . fas(i)) GO TO 1600 
CONTINUE 
IF (diaf_ok) THEN 

fnum = 3 
CALL get_dat(fnum,par,fas_in2,f_mn,f_mx, ddat,eof) 
IF (eof) GOTO 200 
CHECK CONSISTENCY INPUT-FILES : 
DO 120 i = 1,2 

IF (fas_in2(i) .NE.fas(i)) GO TO 1600 
CONTINUE 

END IF 
FILL COLUMN 3 OF YDAT WITH SLOPE: 
CALL slope(par,fas,rdat,rslp_mx) 
CALL slope(par,fas,edat,eslp_mx) 
IF (diaf_ok) THEN 

CALL slope(par,fas,ddat,dslp_mx) 
DETERMINE DF_MAX, MAX STEP IN RADIUS < RES R: 
df_mx DMIN1(res_r/rslp_mx,res_r/dslp_mx) 

ELSE 
df_mx = res_r/rslp_mx 

END IF 

C CHOOSE DF SUCH THAT DF <= DF_MAX AND THE INTERVAL STP_F 
C CONTAINS INTEGER NUMBER OF DF: 

ndf = INT(fas(3)/df_mx) + 1 
df = fas (3) /ndf 
WRITE(6,1700) fas(1)/rad,fas(2)/rad,df/rad 

C ADAPT MAX_E AND MIN_E FOR CURRENT PHASE AREA: 
CALL e_range(par,df,ndf,rdat,edat,ddat,diaf,diaf_ok, 

+ mx_e,mn_e,roi_mx,roi_mn) 
GO TO 100 

C THE ENERGY-RANGE OF THE ROl IS DETERMINED 
C FILL ARRAY DI_E ACCORDING TO THE DESIRED RESOLUTION IN THE 
C ENERGY-CURRENT DISTRIBUTION 
C THE COMPLETE PHASE REGION WILL BE EVALUATED AGAIN WITH THE 
C NECESSARY RESOLUTION IN DF 
C CALCULATE THE AVERAGE OF MAX_E AND MIN_E: 
200 av_e = (mx_e + mn_e)/2. 

WRITE(6,*) 'THE ENERGY-RANGE IN THE ROl GOES FROM' 
WRITE(6, '(1X,F8.2,A4,F8.2,A4) ') mn_e,' TO ',mx_e,• keV' 
WRITE(6,*) 'THE AVERAGE ENERGY IN THE ROl IS' 
WRITE(6,' (1X,F8.2,A4) ') av_e,' keV' 
WRITE(6,*) 'GIVE WINOCW SIZE DE (keV)' 
READ(5,*) de 

C CHECK IF THE ARRAY DI_E CAN CONTIAN THE WHOLE ENERGY-RANGE 
C WITH WINOCW SIZE DE: 

IF ((mx_e- mn_e)/de.GT.l900) THEN 
WRITE(6,*) 'ARRAY DI_E IS TOO SMALL FOR THIS WINOCW' 
GO TO 200 

END IF 
WRITE(6,*) 'GIVE ENERGY RESOLUTION (keV)' 
READ(5,*) res_e 

C RESET INPUT FILES: 
fnum = 1 
CALL get_par(fnum,files,comm,par_in.~in) 
fnum = 2 
CALL get_par(fnum,files,comm,par_in,~in) 
IF (diaf_ok) THEN 

fnum = 3 
CALL get_par(fnum,files,comm,par_in,rmx_in) 

END IF 
C RESET ARRAY DI_E: 

DO 210 i = 1,2000 
di_e(i) = O.ODO 

210 CONTINUE 
C RESET ARRAYS FAS, FAS_IN, FAS_IN1: 

DO 220 i = 1,3 
fas(i) = O.ODO 
fas_in(i) = O.ODO 
fas_in2(i) = O.ODO 

220 CONTINUE 
eof = .FALSE . 

C CALL GET_DAT FIRST TIME TO FILL COLUMN 2 IN ARRAYS YDAT 
C WITH Y-VALUES: 

fnum = 1 
CALL get_dat(fnum,par,fas,f_mn,f~,rdat,eof) 
IF (eof) GOTO 1500 
fnum = 2 
CALL get_dat(fnum,par,fas_in,f_mn,f_mx,edat,eof) 
IF (eof) GOTO 1500 
IF (diaf_ok) THEN 

fnum = 3 
CALL get_dat(fnum,par,fas_in,f_mn,f~.ddat,eof) 
IF (eof) GOTO 1500 

END IF 
300 fnum = 1 

CALL get_dat(fnum,par,fas,f_mn,f~,rdat,eof) 
IF (eof) GOTO 400 
fnum = 2 



CALL get_dat(fnum,par,fas_in,f~,f_mx,edat,eof) 
IF (eof) GOTO 400 
IF (diaf_ok) THEN 

fnum = 3 
CALL get_dat(fnum,par,fas_in,f~.f_mx,ddat,eof) 
IF (eof) GOTO 400 

END IF 
C FILL COLUMN 3 OF YDAT WITH SLOPE: 

CALL slope(par,fas,rdat,rslp_mx) 
CALL slope(par,fas,edat,eslp_mx) 
IF (diaf_ok) THEN 

CALL slope(par,fas,ddat,dslp_mx) 
C DETERMINE DF_MAX, MAX STEP IN 
C RADIUS <= RES_R , MAX STEP IN ENERGY <= RES_E 
C AND MAX INTEGRATIONSTEP <= RES_F : 

df_mx DMIN1(res_r/rslp_mx,res_r/dslp_mx, 
+ res_e/eslp_mx,res_f) 

ELSE 
df_mx DMIN1(res_r/rslp_mx,res_e/eslp_mx,res_f) 

END IF 
C CHOOSE DF SUCH THAT DF <= DF~ AND THE INTERVAL STP_F 
C CONTAINS INTEGER NUMBER OF DF : 

ndf = INT(fas(3)/df_mx) + 1 
df = fas(3)/ndf 
WRITE(6,1700) fas(1)/rad,fas(2)/rad,df/rad 
CALL evalde(par , fas,df,ndf,de,av_e,i_mx,i~. 

+ roi_mx,roi~,rdat,edat,ddat,diaf,diaf_ok,di_e,ib_tot) 

GO TO 300 
C THE COMPLETE PHASE-AREA HAS BEEN EVALUATED: 
400 fnum = 1 

funit = fnum + 10 
CLOSE(funit) 
fnum = 2 
funit = fnum + 10 
CLOSE ( funi t) 
IF (diaf_ok) THEN 

fnum = 3 
funit = fnum + 10 
CLOSE ( funi t) 

END IF 
C CALCULATE RELATIVE CURRENT IN EACH ELEMENT OF DI_E 
C CALCULATE TOTAL CURRENT IN ROI: 

i_roi = O. ODO 
DO 410 i = i~,i_mx 

i_roi = i_roi + di_e(i) 
di_e(i) = (di_e(i)/ib_tot)*100.0DO 

410 CONTINUE 
C WRITE DI_E TO FILE: 

fnum = 5 
funit = fnum + 10 
WRITE(funit,*) 'E(keV) I/I\LO' 
DO 420 i = i~- 1 ,i_mx + 1 

WRITE(funit,3000) (i-1000.5)*de + av_e,di_e(i) 
420 CONTINUE 

CLOSE(funit) 
WRITE(6,*)'THE TOTAL CURRENT IN THE ROI IS : ' 
WRITE(6,' (1X,F6.2 , A24)') 100.*i_roi/ib_tot, 

+ ' % OF THE INTERNAL CURRENT' 
ELSE 

c ================================================================= 
C ONLY DIFFERENTlAL CURRENT-DISTRIBUTION: 
c ================================================================= 
C OPEN OUTPUT FILE FOR IDR : 

fnum = 4 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='UNKNOWN') 
WRITE(6,*) ' GIVE WINDOW SIZE DR (mm)' 

READ(S,*) dr 
dr = dr*l. OD-3 
WRITE(6,*) 'GIVE RADIAL RESOLUTION (mm)' 
READ(S,*) res_r 
res_r = res_r*1.0D-3 

C RESET ARRAY DI_R: 
DO 430 i = 1 , 2000 

di_r (i) = 0 . ODO 
430 CONTINUE 
C CALL GET_DAT FIRST TIME TO FILL COLUMN 2 IN ARRAYS YDAT 
C WITH Y-VALUES: 

fnum = 1 
CALL get_dat(fnum,par,fas,f~.f_mx,rdat,eof) 
IF (eof) GOTO 1500 
IF (diaf_ok) THEN 

fnum = 3 
CALL get_dat(fnum,par,fas_in,f~,f_mx,ddat,eof) 
IF (eof) GOTO 1500 

END IF 
500 fnum = 1 

CALL get_dat(fnum,par,fas,f~.f_mx,rdat,eof) 
IF (eof) GOTO 600 
IF (diaf_ok) THEN 

fnum = 3 
CALL get_dat(fnum,par,fas_in,f~.f_mx,ddat,eof) 
IF (eof) GOTO 600 

C CHECK CONSISTENCY INPUT FILES: 
DO 510 i = 1,2 
IF (fas_in(i) .NE.fas(i)) GO TO 1600 

510 CONTINUE 
END IF 

C FILL COLUMN 3 OF YDAT WITH SLOPE: 
CALL s1ope(par,fas,rdat,rslp_mx) 
IF (diaf_ok) THEN 

CALL slope(par,fas,ddat,dslp_mx) 
C DETERMINE DF_MAX, MAX STEP IN 
C RADIUS <= RES_R AND MAX INTEGRATIONSTEP <= RES F: 

df_mx DMIN1(res_r/rslp_mx,res_r/dslp_mx,res_f) 
ELSE 

df_mx = DMIN1(res_r/rslp_mx,res_f) 
END IF 

C CHOOSE DF SUCH THAT OF <= OF~ AND THE INTERVAL STP_F 
C CONTAINS INTEGER NUMBER OF DF: 

ndf = INT(fas(3)/df_mx) + 1 
df = fas(3)/ndf 
WRITE(6,1700) fas(1)/rad,fas(2)/rad,df/rad 

C ADD CURRENT DI FOR EACH PHASE STEP OF TO CORRESPONDING ARRAY-
C ELEMENT OF DI_R : 

CALL evaldr(par , fas,df,ndf,dr,i_mx,i~. 
+ rdat,ddat,diaf,diaf_ok,di_r,ib_tot) 

GOTO 500 
C THE COMPLETE PHASE REGION HAS BEEN EVALUATED : 
600 fnum = 1 

funit = fnum + 10 
CLOSE(funit) 
IF (diaf_ok) THEN 

fnum = 3 
funit = fnum + 10 
CLOSE(funit) 

END IF 
C CALCULATE RELATIVE CURRENT IN EACH ELEMENT OF DI_R: 

DO 610 i = i_mn,i_mx 
di_r(il = (di_r(i}/ib_tot}*100 . 0DO 

610 CONTINUE 
C WRITE DI_R TO FILE : 

fnum = 4 
funit = fnum + 10 



620 

c 
c 
c 

1000 

1500 

1600 

1700 

2000 
3000 

c 
c 
c 
c 
c 
c 

c 

c 

c 
c 
c 
c 
c 

c 

c 

1500 

c 

c 

c 
c 
c 

c 

WRITE(funit,*) 'r(cm) III\LO' 
DO 620 i = i_mn,i~ 

WRITE( funit, 2000) (i-1) *dr*100., di_r( i) 
CONTINUE 
CLOSE ( funit) 

END IF 

LABELS AND FORMATS 

STOP'PROGRAM EXECUTION READY' 
WRITE(6,*)'ERROR OPENING FILE' ,files(fnum) 
STOP 
WRITE(6,*)'FILE ',files(fnum),' DOES NOT CONTAIN VALID DATA' 
STOP 
WRITE(6,*)'FORMAT ' ,files(fnum),' NOT CONSISTENT WITH ',files(1) 
STOP 
FORMAT(1X, 'EVALUATING PHASE AREA FROM ',F5.1,' TO ',F5.1, 

+ 'STEP= ' ,E8.2, ' (DEG.)') 
FORMAT(1X, F7.3,1X, E11 . 4) 
FORMAT(1X,E13 . 6,1X, E11.4) 
END 

END MAIN PROGRAM 

SUBROUTINES 

SUBROUTINE get_par(fnum,files,comm,par,rmx) 

REAL*8 rmx 
INTEGER fnum,funit,par(6) 
CHARACTER*40 files(5) 
CHARACTER*80 comm 
REWIND INPUT FILE : 
funit = fnum + 10 
REWIND ( funi t) 
READ COMMENT LINE: 

READ(funit,'(A80) ' ) comm 
READ FORMAT INPUT FILE 
- NUMBER OF TURNS PER INITIAL PHASE VALUE 
- NUMBER OF R-VALUES PER LINE 
READ(funit,*,END=1500) par(l),par(2),par(3) 
IF (par(1).NE.l) STOP'N~IN .NE.1 KAN NOG NIET!' 
READ PHASE REGION AND FASE-STEP: 
READ(funit,*,END=1500) par(4),par(5),par(6) 
READ MAX RADIUS 
READ(funit,*,END=1500) rmx 
RETURN 
WRITE(6,*)'FILE ' ,files(fnum),' DOES NOT CONTAIN VALID DATA' 
STOP 
END 

SUBROUTINE get_dat(fnum,par,fas,f_mn,f~,curdat,eof) 
================================================================= 
IMPLICIT NONE 
REAL*B rad,curdat(3,50),fas(3),f_in,f_mn,f~ 
INTEGER fnum,funit,par(6),n_st,n_en,n 
LOGICAL eof 
rad= DATAN(1.0D0)/45.0DO 
funit = fnum + 10 
IF Y-VALUES FOR NEXT F AVAILABLE, 
READ NEW VALUE FOR F_E, AND THE CORRESPONDING Y_VALUES. 
AT THE END OF FUNIT, SET EOF = . TRUE.: 
READ (funit,*,END=100) f_in 
f_in = f_in*rad 
IF F_IN ABOVE SELECTED PHASE REGION, SET EOF . TRUE . : 
IF (f_in . GT . f~) GO TO 100 

c 
c 
c 
c 

c 
c 
c 
c 

10 

c 

20 
c 

c 
c 
c 
100 

200 

c 

c 

c 
c 

c 

10 
c 

c 
c 
c 

c 

IF F_IN BELOW SELECTED PHASE REGION, KEEP READING 
DATA UNTIL F_IN >= F_MN 
ALS F_IN ONDER GESELECTEERDE FASEGEBIED LIGT, DAN 
BLIJF DATA INPUFILE LEZEN TOTDAT F_IN >= F_MN 
DO WHILE (f_in . LT . f_mn) 

n_st = 1 
n_en = n_st + par(3) - 1 
DO WHILE (n_en.LE . par(2)) 

READ (funit,*,END=200) (curdat(1,n),n n_st,n_en) 
n_st = n_st + par(3) 
n_en = n_en + par(3) 

END DO 
READ (funit , *,END=100) f_in 
f_in = f_in*rad 

END DO 
F_IN IS NOW >= F MN 
COLUMN 1 OF CURDAT IS NOW FILLED WITH TRASH, 
COLUMN 2 IS STILL FILLED WITH 0 (1ST CALL) OR WITH Y-VALUES 
COPY COLUMN 2 TO COLUMN 1 : 
DO 10 n = 1,par(2) 
curdat(1,n) = curdat (2,n) 
fas(1) = fas(2) 
RESET COLUMN 2: 
DO 20 n = l,par(2) 
curdat(2,n) O. ODO 
FILL COLUMN 2 WITH NEW Y-VALUES: 
n_st = 1 
n en = n st + par(3) - 1 
DO WHILE (n_en . LE.par(2)) 

READ (funit,*,END=200) (curdat(2,n),n 
n_st n_st + par(3) 
n_en n_en + par(3) 

END DO 
fas(2) 
fas(3) 
RETURN 

f_in 
fas ( 2) - fas ( 1) 

TWO POSSIBILITIES : 
1 . END OF INPUT FILE HAS BEEN REACHED 

n_st,n_en) 

2 . END OF SELECTED PHASE REGION HAS BEEN REACHED 
eof = . TRUE. 
RETURN 
STOP'END INPUTFILE HAS BEEN ENCOUNTERED WHILE READING Y-VALUES ' 
END 

SUBROUTINE slope(par,fas,curdat,slp~) 

IMPLICIT NONE 
SLOPE FILLS COLUMN 3 OF CURDAT WITH THE SLOPE DY/DF FOR 
ALL TURNS FROM 1 TO PAR(2): DY/DF_N = Y_N(F_E)-Y_N(F_B)/(F_E-F_B) 
REAL*B rad,curdat(3,50) , fas(3),slp~ 
INTEGER n,par(6) 
rad= DATAN(1.0D0)/45.0DO 
RESET COLUMN 3 OF CURDAT: 
DO 10 n= 1,par(2) 

curdat(3 , n) = O. ODO 
CONTINUE 
INITIAL VALUE OF SLP_MAX : 
slp_mx = O. ODO 
DO 20 n = 1 , par(2) 
IF 1 OR BOTH Y_VALUES ARE <= 0, THE CURRENT TURN 
DOES NOT CONTRIBUTE TO THIS PHASE INTERVAL AND THE CORRESPONDING 
SLOPE REMAINS 0: 
IF (curdat(1,n) .LE . O. ODO) GO TO 20 
IF (curdat(2,n) . LE . O.ODO) GO TO 20 
CALCULATE SLOPE : 
curdat(3,n) = (curdat(2,n)-curdat(1,n))/fas(3) 
slp_mx = DMAX1(DABS(curdat(3,n)),slp_mx) 



20 CONTINUE 
C IF SLP_MAX < 1.00-3 THEN SET SLP_MAX = 1.00-3 BECAUSE VALUE ZERO 
C WILL CAUSE PROSLEMS IN THE CALCULATION OF OF : 

slp~ = DMAX1(1.0D-3,slp_mxl 
RETURN 
END 

c ================================================================= 
SUBROUTINE evaldr(par,fas,df,ndf,dr,i_mx,i_mn, 

+ rdat,ddat,diaf,diaf_ok,di_r,ib_tot) 
c ================================================================= 

IMPLICIT NONE 
REAL*B fas(3),df,dr , rdat(3,50),ddat(3,50),di_r(2000), 

+ diaf(4),f~,r~.rdiaf~,relf~,ib_f,ib_tot 
INTEGER n,n_p,par(6),ndf,i_f,i_r,p_i_r(50),i~,i_mn 

LOOICAL diaf_ok 
DO 10 i_f = 1,ndf 

C RESET ARRAY P_I_R : 
DO 15 n_p = 1,par(2) 

p_i_r{n_p) = 0 
15 CONTINUE 
C CENTRE INTERVAL OF WITH RESPECT TO FAS(1): 

relf~ = (i_f-0 . 5DO)*df 
C CENTRE INTERVAL OF (ABSOLUTE) : 

f~ = fas(1) + relf~ 
C KEEP TRACK OF TOTAL INTERNAL CURRENT : 

ib_tot = ib_tot + ib_f(f~)*df 
DO 20 n = 1,par(2) 

c DO 20 n = 25,28 

IF ((rdat(1,n).LE . O. ODO).OR.(rdat(2,n).LE.O.ODO)) 
+ GO TO 20 

C IF A DIAPHRAGM IS PRESENT, CHECK WETHER IT INTERCEPTS 
C INTERNAL CURRENT. IF SO, THEN NO MORE CONTRIBUTIONS 
C FROM THIS AND FOLLOWING TURNS TO THE INTERNAL CURRENT : 

IF (diaf_ok) THEN 
IF ((ddat(1,n) . GT . O.ODO).AND . (ddat(2,n) . GT . O. OD0)) THEN 

C RDIAF_M IS CENTRE OF INTERVAL DR(DF) AT AZIMUTH 
C DIAPHRAGM FOR TURN N: 

rdiaf~ = ddat(1,n) + ddat(3,n)*relf~ 
IF ((rdiaf~.GE . diaf(1)) . AND . (rdiaf~.LE.diaf(2))) GO TO 10 
IF ((rdiaf~.GE . diaf(3)) . AND . (rdiaf~.LE . diaf(4))) GO TO 10 

END IF 
ENDIF 

C CENTRE OF INTERVAL DR(DF) AT TURN N: 
r~ = rdat(1,n) + rdat(3,n)*relf~ 

C CALCULATE ARRAY-INDEX I_R OF DI_R FOR R_M : 
i_r = INT(r~/dr) + 1 
i~ = MAX(i_r,i~l 
i_mn = MIN(i_r,i_mn) 

C COMPARE I_R(N) WITH THE VALUES P_I_R(1,N-1) 
C OF THE PRECEEDING TURNS. 
C IF THE PHASE-INTERVAL DF(IF) HAS ALREADY CONTRIBUTED TO THE 
C CURRENT IN INTERVAL I_R, THE CURRENT FRACTION IB_F(DF) 
C MUST NOT BE ADDED AGAIN, TO AVOID DOUBLE-COUNTING: 

DO 30 n_p = 1,n - 1 
IF (i_r . EQ.p_i_r{n_p)) THEN 

GO TO 20 
END IF 

30 CONTINUE 
di_r(i_r) = di_r(i_r) + ib_f(f~)*df 
p_i_r(nl i_r 

20 CONTINUE 
10 CONTINUE 

RETURN 
END 

c ================================================================= 

c 

c 

c 

c 
c 
c 

c 
c 

c 

c 
c 
c 

c 

20 
10 

c 

c 

c 

c 

c 

c 

c 
c 
c 

SUBROUTINE e_range(par,df,ndf,rdat,edat,ddat, 
+ diaf,diaf_ok,mx_e,mn_e,roi~,roi_mn) 

IMPLICIT NONE 
REAL*S df,rdat(3,50),edat(3,50),ddat(3,50),diaf(4), 

+ r_m,rdiaf_m,e~,relf_m,mx_e,mn_e,roi_mx,roi_mn 
INTEGER n,par(6),ndf,i_f 
LOGICAL diaf_ok 
DO 10 i_f = 1,ndf 

CENTRE OF INTERVAL DF WITH RESPECT TO FAS(1) : 
relf_m = (i_f-0.5DO)*df 
DO 20 n = 1,par(2) 

DO 20 n = 25,28 
IF ((rdat(1,n) . LE . O.ODO) . OR . (rdat(2,n) .LE.O.ODO)) 

+ GO TO 20 
IF A DIAPHRAGM IS PRESENT, CHECK WETHER IT INTERCEPTS 
INTERNAL CURRENT. IF SO, THEN NO MORE CONTRIBUTIONS 
FROM THIS AND FOLLOWING TURNS TO THE INTERNAL CURRENT : 
IF (diaf_ok) THEN 

IF ((ddat(1,n) .GT.O.ODO) . AND. (ddat(2,n) .GT.O.ODO)) THEN 
RDIAF_M IS CENTRE OF INTERVAL DR(DF) AT AZIMUTH 
DIAPHRAGM FOR TURN N: 
rdiaf_m = ddat(1,n) + ddat(3,n)*relf~ 

IF ((rdiaf~.GE . diaf(1)) . AND. (rdiaf~.LE.diaf(2))) GO TO 10 
IF ((rdiaf~.GE . diaf(3)) . AND . (rdiaf~.LE.diaf(4))) GO TO 10 

END IF 
ENDIF 
CENTRE OF INTERVAL DR(DF) AT TURN N: 
r_m = rdat(1,n) + rdat(3,n)*relf_m 
IF ROI_MN <= R_M <= ROI_MX THEN N IS THE LOWEST TURN 
FOR WHICH PHASE INTERVAL DF(I_F) CONTRIBUTES TO THE CURRENT 
IN THE ROI : 
IF ((r~.GE.roi_mn) .AND. (r_m.LE.roi~)) THEN 

CALCULATE ENERGY CORRESPONDING TO INITIAL PHASE F_M: 
e~ = edat(1,nl + edat(3,n)*relf~ 
mx_e = DMAX1(e~.mx_e) 
mn_e = DMIN1(e_m,mn_e) 
GO TO 10 

END IF 
CONTINUE 

CONTINUE 
RETURN 
END 

SUBROUTINE evalde(par,fas,df,ndf,de,av_e,i~,i_mn, 
+ roi~,roi_mn,rdat,edat,ddat,diaf , diaf_ok , di_e,ib_tot) 

IMPLICIT NONE 
REAL*S fas(3),df,de,av_e , rdat(3,50),edat(3,50),ddat(3,50), 

+ diaf(4),di_e(2000), 
+ f_m,r~.rdiaf~,e~,relf~, ib_f,roi~.roi_mn,ib_tot 

INTEGER n,par(6),ndf,i_f,i_e,i~,i_mn 
LOGICAL diaf_ok 
DO 10 i_f = 1,ndf 

CENTRE OF INTERVAL DF WITH RESPECT TO FAS(1): 
relf~ = (i_f-0 . 5DO)*df 
CENTRE INTERVAL DF (ABSOLUTE) : 
f~ = fas(1) + relf~ 
KEEP TRACK OF TOT AL INTERNAL CURRENT: 
ib_tot = ib_tot + ib_f(f~)*df 
DO 20 n = 1,par(2) 

DO 20 n = 25,28 
IF ((rdat(l,n) .LE.O . ODO).OR . (rdat(2,n) . LE . O.OD0)) 

+ GO TO 20 
IF A DIAPHRAGM IS PRESENT, CHECK WETHER IT INTERCEPTS 
INTERNAL CURRENT. IF SO, THEN NO MORE CONTRIBUTIONS 
FROM THIS AND FOLLOWING TURNS TO THE INTERNAL CURRENT: 



IF (diaf_ok) THEN 
IF ((ddat(1,n).GT . O.OOO) . AND . (ddat(2,n).GT.0.000)) THEN 

C RDIAF_M IS CENTRE OF INTERVAL OR(OF) AT AZIMUTH 
C OIAPHRAGM FOR TURN N: 

rdiaf_m = ddat(1,n) + ddat(3,n)*relf_m 
IF ((rdiaf_m.GE . diaf(1)) . AND. (rdiaf_m.LE.diaf(2))) GO TO 10 
IF ((rdiaf_m . GE.diaf(3)).AND. (rdiaf_m.LE.diaf(4))) GO TO 10 

END IF 
ENDIF 

C CENTRE OF INTERVAL OR(OF) AT TURN N: 
r_m = rdat(1,n) + rdat(3,n)*relf_m 

C IF ROI_MN <= R_M <= ROI..)4X THEN N IS THE LOWEST TURN 
C FOR WHICH PHASE INTERVAL OF(I_F) CONTRIBUTES TO THE CURRENT 
C IN THE ROI : 

IF ((r_m.GT . roi_mn).AND . (r_m.LT . roi~)) THEN 
C CALCULATE ENERGY CORRESPONDING TO INITIAL PHASE F_M : 

e_m = edat(1,n) + edat(3,n)*relf_m 
C CALCULATE ARRAY-INDEX I_E FOR E_M 
C THE INDEX IS CHOSEN SUCH THAT I_E = 1000 IS THE ENERGY 
C INTERVAL AV_E - O.S*OE < E_M < AV_E + O. S*OE : 

i_e = NINT((e_m-av_e)/de) + 1000 
i~ = MAX(i_e, i~) 
i_mn = MIN(i_e,i_mn) 

C N IS THE LOWEST TURN FOR WHICH PHASE F_M CONTRIBUTES TO THE 
C CURRENT IN THE ROI, SO ADO IB_F(F_M) TO I_E: 

di_e(i_e) = di_e(i_e) + ib_f(f_m)*df 
GO TO 10 

END IF 
20 CONTINUE 
10 CONTINUE 

RETURN 
END 

c ================================================================= 
REAL*B FUNCTION ib_f(f) 

c ================================================================= 
C CALCULATION OF THE SOURCE CURRENT AS A FUNCTION OF INITIAL PHASE 
C IB_F(F) =K*(VD(F)**3/2) 
C K = CONSTANT, VD(F) = OEE-VOLTAGE 
C F OEPENDS ON THE INITIAL AZIMUTH TH_O OF THE PARTICLE 
C ACCORDING TO F = H*(WO*T-T~O) . H = HARMONIC NUMBER 2 
C FOR PARTICLES LEAVING THE CENTRE OF THE SOURCE-HOLE 
C TH_O = 42.4 OEG . WHICH IS 0.7400 RADlANS 

REAL*B th_O,h,f,vd 
h = 2.000 
th_O = 7.4000-1 
vd = OSIN(f+h*th_O) 
IF (vd . GT.O . OOO) THEN 

ib_f OSQRT(vd**3) 
ELSE 

ib_f 
END IF 

0.000 

RETURN 
END 

c ================================================================= 
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PROGRAM cen10 

CALCULATION OF THE ORBIT-CENTRE MOVEMENT AND ORBIT- PARAMETERS 
AT GIVEN AZIMUTHAL INTERVAL 

LAST UPDATED: 
BY: 

UPDATE-RISTORY 

SUBROUTINES : 

INCEN10 
ORCEN10 
TUCEN10 
INCHN10 
INGAP10 
INRLX10 
INMAG10 

EQOMF 

CHN10 
GAP10 
RLX10 
MAG10 

EFLD10 MFLD10 

08-06-94 
PETER OP DE BEEK 

VMSCPU 
HF_FASE 
GERK 
FEHL 
E02BAF (EXTERN, NAG-ROUTINE) 
E02BBF (EXTERN, NAG-ROUTINE) 

TIME (EXTERN, INTRINSIC) DATE (EXTERN, INTRINSIC) 

FUNCTIONS: 

DISLINE 

MAIN PROGRAM: 

CALL incen10 
CALL orcen10 

STOP 'PROGRAMMA KLAAR' 

END 

SUBROUTINE incen10 

INCEN10 INITIALISATION OF THE ORBIT CALCULATION 

IMPLICIT NONE 
INTEGER fnum,funi t, 

REAL*8 

h,z,i, 
ngh , hh(10) , imax,jmax, 
n_max,hfpst,lharm,hharm 
c,el,pi,rad, 
fO,~fO,b_iso,wO,cnstnt,vdee,v6v2,fi1,fi3,delta, 
mrust,intrv, 
xst,yst,al fast,eO,d1xst,d1yst,rrl,rr3, 
q,vO,abserr,relerr,r_max.~dee, 
b22_m,r22_0 , w22_h,b2b_m,r2b_O,w2b_h, 
ri(lO),ra(lO),t(10),yc(10), 
hx,hy, hz , emap(1 : 201,1 : 281,3), 
xminl,xmaxl,yminl,ymaxl 

LOGICAL kan,twochan , cor22,cor2b 
CHARACTER*8 systime 
CHARACTER*9 sysdate 
CHARACTER*80 comm 
CHARACTER*7 file_out 

c 
c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

c 

c 
c 
c 

c 

c 
c 
c 

1. 
2. 
3 . 
4. 
5. 
6. 
7 . 

8 . 

CHARACTER*40 namemag,namekan,nameef 
CHARACTER*40 files(8) 
COMMON/natconst/c,el,pi,rad 
COMMON/integr/ intrv , abserr,relerr,r_max,n_max 

COMMON/cycl/ fO,b_iso,wO,cnstnt,vdee,v6v2, 
+ fil,fi3,delta,h 

COMMON/part/ mrust,z 
COMMON/baan/ xst,yst,alfast,eO,d1xst,dlyst,rrl,rr3,hfpst 
COMMON/answ/ kan,twochan, cor22,cor2b 
COMMON/harms/lharm, hharm 
COMMON/relax/xminl,xmaxl,yminl,ymax1,hx, 

+ hy,hz, emap, imax, jmax 
COMMON/deltadee/~dee 
COMMON/firstharm/b22_m,r22_0,w22_h,b2b_m,r2b_O,w2b_h 
COMMON/iofiles/ files 

DETERMINATION OF FILE-NAMES 

FNUM CONNECTS FILENAME TO UNIT-SPECIFIER ACCORDING TO 
FILENAAM = FILES(FNUM) 
unit = FUNIT = FNUM + 10 

DATA files I ' [- . input]cenlO . dat', 
+ •user2: [tnndrr . ilec]m1sft.dat ' , 
+ ' user2: [tnndrr . ilec]mchan.dat', 
+ •user2:[tnndrr . ilec]erelx2.dat', 
+ 
+ 
+ 
+ 

•user2: [tnndrr . ilec]exyzl.dat ' , 
'[- . output]cenlO . doc•, 
• [-.output]cenlO.nxy', 
• [-.output]cen10 .cen'/ 

NAMES CENlO . NXY EN CEN10.DOC ARE ADJUSTED, ACCORDING TO NAME 
READ FROM CENlO.DAT 

INTORXX.DAT 
MAGNlS.DAT 
MCHAN . DAT 
ERELX2.DAT 
EXYZ1 . DAT 
XXXXXXX . DOC 
XXXXXXX . NXY 

INPUTFILE, PARAM . PROGRAM 
DATA MAGNETFIELD 
GEOMETRY MAGNETIC CHANNEL 
DATA ELEKTR . FIELD 
GAP GEOMETRY 
UITPUTFILE, DOCUMENTATION WITH 
UITPUTFILE , CONTAINS NUMERICAL 
ORBIT COORDINATES 

(INIT1) 
(MAGNETO) 
(INCHNlO) 

(INRLXlO) 
(INGAPlO) 

OUTPUT FILES 
OUTPUT 

XXXXXXX . CEN UITPUTFILE, CONTAINS NUMERICAL OUTPUT 
ORBIT CENTRE COORDINATES 

NATCONST 

c = 2 . 99792458D8 
el = 1 . 60217733D-19 
pi= 4 . *DATAN(1.0D0) 
rad = pi/180 . 

DETERMINE SYSTEM TIME AND DATE 

CALL time (systime) 
CALL date (sysdate) 

READ PROGRAM PARAMETERS 



c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

fnum = 1 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='old') 
REWIND ( funi t) 
READ(funit,'(A80)') comm 

: NAME OUTPUTFILE (7 CHAR., NO BLANCS) 
READ(funit, • (A7) ') file_out 

OUTPUT INTERVAL IN WO*T 
READ(funit,*) intrv 

HIGHEST TURN IN .XYR-FILE (<= 40) 
READ ( funi t, *) n_max 

MAXIMUM RADIUS 
READ(funit,*) r_max 

INITIAL PHASE 
READ(funit,*) hfpst 

ABSOLUTE ERROR 
READ(funit,*) abserr 

RELATIEVE ERROR 
READ(funit,*) relerr 

DEVIATION FROM F_O [PROMILLE) 
READ(funit,*l q_fo 

INITIAL ENERGY (KEV) 
READ(funit,*) eO 

X-COORD. STARTING POINT 
READ(funit,*) xst 

Y-COORD. STARTING POINT 
READ(funit,*) yst 

INITIAL ANGLE WITH POS. X AXIS 
READ(funit,*) alfast 

RELAXPARAMETERS 
READ ( funi t, •) xmin1 
READ(funit,*) xmax1 
READ(funit,*) ymin1 
READ(funit,*) ymax1 
READ(funit,*) imax 
READ(funit,*) jmax 

B-FIELD, FOORIER HARMONICS 
READ(funit, *l hharm 

HARM . 1*SYM .. . HHARM*SYM IDEAL SYMMETRICAL 
READ(funit,*) lharm 

LOWER HARM. 1. .. LHARM ADD TO IDEAL FIELD 
READ ( funi t, • ) kan 

MAGNETIC CHANNEL (FALSE/TRUE) 
READ(funit,*) twochan 

DUMMY-CHANNEL (FALSE/TRUE) 
1E-HARM CORRECTION COILS 22 AND 2B 
================================== 
READ(funit, *) cor22 

COIL 22 ON (FALSE/TRUE) 
READ ( funit, *) b22..JII 

AMPLITUDE GAUSS-PROFILE COIL 
READ(funit, *) r22_0 

RADIUS B(R) = B_MAX COIL 22 
READ(funit, *) w22_h 

HALF-VALUE WIDT (M) 
READ(funit, *) cor2b 

COIL 2B ON (FALSE/TRUE) 
READ(funit,*) b2b_m 

AMPLITUDE GAUSS-PROFILE COIL 
READ( funit, *) r2b_O 

22 

(M) 

2B 

RADIUS B(R) = B_MAX COIL 2B (M) 
READ(funit,*) w2b_h 

HALF-VALUE WIDTH (M) 

CYCLOTRON-PARAMETERS: 

(T) 

(T) 

FIELD 

c 

c 

c 

c 
c 

c 

c 

c 

c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 
c 

c 

c 

:HARMONIC NUMBER 
READ(funit,*) h 

:FIRST HARMONIC RF-FREQUENCY (MHZ) 
READ(funit,*) fO 

DEE-VOLTAGE (KV) 
READ(funit,*) vdee 

REL. DEVIATION 2-E HARM . DEE ALONG POS . 
Y-AXIS FROM DEE-VOLTAGE (%) 

READ(funit,*) d_dee 
PROPORTION 6/2-HARM. DEE-VOLTAGE 

READ(funit,*) v6v2 
ADDITIONAL PHASE-SHIFT FLATTOP VOLTAGE 

READ(funit,*) delta 
: PARTICLE CHARGE IN EL 

READ(funit,*) z 
RESTMASS (KG) 

READ(funit,*) mrust 

CLOSE ( funi t) 

READ MAGNETIC FIELD 

fnum = 2 
CALL inmag10(fnum,namemag,cor22,cor2bl 

READ DATA MAGNETIC CHANNEL 

fnum = 3 
IF (kan) CALL inchn10(fnum,namekanl 

FILENAMES OUTPUT-FILES 

files(6) 
files(7) 
files(8) = 

• [- . output) '//file_out//'.doc' 
• [-.output) '//file_out//' .nxy' 
• [- . output)'//file_out//'.cen' 

vdee = vdee*l . E3 

delta = delta•rad 
intrv = intrv•rad 
alfast = alfast•rad 

q = z*el 
fO = fO*(l + q_f0/1000.0DO)*l . OD6 
D_FO = AFIJKING VAN FO UIT INPUT-FILE IN PROMILLES 
d_dee = q_dee/lOO.ODO 

wO= f0*2 . *pi 
b_iso = mrust*wO/q 

cnstnt = (mrust*wO*w0)/(2.*el) 
vO = DSQRT(l.e3*e0/cnstnt) 
dlxst = vO*DCOS(alfast) 
dlyst = vO*DSIN(alfast) 
rrl 2.*mrust*vdee/(q*b_iso*b_iso) 
rr3 = v6v2*rrl 



c 
c 

c 
c 
c 
c 

WRITE . DOC FILE 

fnum = 6 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=lOOO,STATUS='unknown') 
WRITE (funit,2300) 'UITVOER BIJ PROGRAMMA CENlO.FOR' 
WRITE (funit,2400) 'NAAM UITVOERFILE:',file_out 
WRITE (funit,2300) '================================' 
WRITE(funit,*) 'DATUM: ',sysdate 
WRITE ( funi t, *) 'TIJD : ' , systime 
WRITE (funit,2300) '================================' 
WRITE (funit,2300) 'INTEGRATIE-PARAMETERS' 
WRITE (funit,2300) '=====================' 

WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 

(funit,2300) 
(funit,2100) 
(funit,2100) 
(funit,2200) 
(funit,2300) 
(funit,2300) 
(funit,2000) 
(funit,2200) 
(funit,2300) 
(funit,2300) 
(funit,2000) 
(funit,2100) 
(funit,2200) 
(funit,2200) 
(funit,2200) 
(funit,2200) 
(funit,2200) 
(funit,2200) 
(funit,2300) 
(funit,2300) 
(funit,2200) 
(funit,2100) 
(funit,2100) 
(funit,2200) 
(funit,2000) 

'Fehlberg routine, variabele 
'absolute fout 
'relatieve fout 
•uitvoer-interval [deg) 
' BAAN- PARAMETERS ' , _______________ , 
---------------

' hoogste omloop 
•maximale straal 
'CYCLOTRON-PARAMETERS' 
'====================' 
'harmonisc~getal 
'isochroon B-veld [Tl 
'omloop freq . [Mhz) 
•afw van ingelezen fO [prom) 
'dee spanning [kV) 
•afw. dee spanning y-dee (%) 
•verhouding 6/2 deesp. 
•fasev . 6-2 [deg) 
'PARAMETERS DEELTJE' 
'==================' 
'start energie [keV) 
•x-coord. startp. [m) 
•y-coord. startp. [m) 
•starthoek pos. x-as [deg) 
' startfase [deg) 

WRITE (funit,2300) 'MAFNEETVELD-SETTINGS' 
WRITE (funit,2300) '====================' 

stap• 
',abserr 
',relerr 
',intrv/rad 

, ,n_max 
',r_max 

',h 
• ,b_iso 
',f0/l.E6 
',d_fO 
• ,vdee/l.E3 
•, d_dee*lOO. 
',v6v2 
• ,delta 

',eo 
,xst 

',yst 
•, alfast/rad 
• ,hfpst 

WRITE (funit,*) 'harmonischen *sym t/m ',hharm 
WRITE (funit,*) ' lagere harmonischen t/m ',lharm 
WRITE (funit,*) 'magn. kanaal ',kan 
WRITE (funit,*) ' dummy kanaal •,twochan 
WRITE (funit,*) 'le-harm spoel 22 •,cor22 
WRITE (funit,2100) 'amplitude gauss-profiel (T) ',b22_m 
WRITE (funit,2100) •straal B(r) = B~x (m) •,r22_0 
WRITE (funit,2100) ' halfwaarde-breedte (m) •,w22_h 
WRITE (funit,*) 'le-harm spoel 2b •,cor2b 
WRITE (funit,2100) ' amplitude gauss-profiel (T) ' ,b2b_m 
WRITE (funit,2100) •straal B(r) = B_max (m) •,r2b_O 
WRITE (funit,2100) 'halfwaarde-breedte (m) •,w2b_h 
CLOSE(funit) 

================================================================ 
READ DATA ELECTRIC FIELD 

fnum = 5 
CALL ingapl0(fnum,nameef,ngh,ri,ra,t,yc,hh,fil,fi3) 

fnum = 4 
CALL inrlxlO(fnum,emap,hx,hy,hz,imax,jmax) 

c 
c 
c 

2000 
2100 
2200 
2300 
2400 

c 
c 
c 

1000 

c 

c 

c 

c 
c 
c 

1000 

RETURN 

FORMATS 

FORMAT(lX,A30,I3) 
FORMAT(1X,A30,D16.6) 
FORMAT(1X,A30,F8 . 3) 
FORMAT(1X,A40) 
FORMAT(lX,A30,A7) 

ERRORLABELS 

WRITE(6,*) •fout tijdens openen file • ,files(fnum) 
STOP 'fout tijdens uitvoer ilo-statement! • 
END 

SUBROUTINE orcenlO 

IMPLICIT NONE 
INTEGER fnum,funit,n_max 

REAL t_cpu 
REAL*S intrv,abserr,relerr,r_max 
CHARACTER*40 files(8) 

COMMON/integr/ intrv,abserr,relerr,r_max,n~x 
COMMON/iofiles/ files 
CALL vmscpu(t_cpu) 
OPEN .XYR-FILE: 
fnum = 7 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='unknown') 
WRITE(funit,*)'n x y th hfp th_v e_k' 
fnum = 8 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='unknown') 
WRITE(funit,*) •n x_c y_c • 
CALL tucen10 

CALL vmscpu(t_cpu) 
fnum = 7 
funit = fnum + 10 
CLOSE(funit) 
fnum = 8 
funit = fnum + 10 
CLOSE(funit) 

ERRORLABELS 

RETURN 
WRITE(6,*) •fout tijdens openen file • ,files(fnum) 
STOP 'fout tijdens uitvoer ilo-statement!' 
END 



c 

c 

c 
c 
c 

c 
c 
c 

c 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 

SUBROUTINE tucen10 

IMPLICIT NONE 
INTEGER 

REAL*8 

LOOICAL 

fnum,funit,hfpst, 
h , oml_t,z,n~,naz_u, 
dim,i,n,iflag, 
nfe,kop,init,jflag,kflag 

c , el,pi , pi_2,rad, 
fO,b_iso,wO,cnstnt,vdee,v6v2 , fi1,fi3,delta, 
mrust,intrv,r~,az_u(4),~c,y_c, 

xst,yst,alfast,e0,d1xst,dlyst,rr1,rr3, 
x(4),r,th,th_v,hfp,t,t2,d_th,err_az,r_i_n(4,40), 
relerr,abserr,gerror(4),e_kin,err_r,err_e, 
yp(4) 'fl(4) ,f2(4) ,f3(4)' f4(4)' fS(4)' 
yg(4),ygp(4),h_s,savre,savae 

kan,twochan,cor22,cor2b, 
az_neg,th_neg(4) 

CHARACTER*40 files(8) 

EXTERNAL eqomf 

COMMON/natconst/c,el,pi,rad 
COMMON/integr/ intrv,abserr,relerr,r~.~ 
COMMON/cycl/ fO , b_iso,wO,cnstnt,vdee,v6v2, 

+ fi1,fi3,delta,h 

COMMON/part/ mrust , z 
COMMON/baan/ xst,yst,alfast,eO,d1xst,dlyst,rr1,rr3,hfpst 
COMMON/answ/ kan,twochan,cor22,cor2b 
COMMON/iofiles/ files 
COMMON/gerksave/yp,~s,f1,f2,f3,f4,fS,yg,ygp,savre,savae, 

+ nfe , kop , init,jflag,kflag 

STARTCONDITIES 

CHECK N_MAX <= 40 W.R.T OlMENSION R_I~ : 

IF (n~.GT.40) STOP'DIMENSIE ARRAY R_I~ AANPASSEN!' 

pi_2 = 2.0DO*pi 

naz_u = 4 
az_u(1) -O.SDO*pi 
az_u(2) 0.000 
az_u(3) O.SDO*pi 
az_u(4) -1.0DO*pi 
ERROR ERR~Z IN DETERMINATION VAN AZ_U(I) MAY BE 2 DEG .: 
err_az = 2 . 0DO*rad 
dim = 4 
oml_t = 1 

so 

c 

ss 
c 

c 

c 

100 

INITIAL VALUES 
x(1) xst 
x(3) yst 
x(2) d1xst 
x(4) d1yst 

az_neg = .FALSE . 
DO SO i = 1,naz_u 
t~neg(i) = .FALSE . 

CONTINUE 

INITIAL RADIUS 
r=DSQRT(x(1)**2+x(3)**2) 

th=DATAN2(x(3),x(1)) 
IF (th.LT . O. DO) az_neg 

DO SS i = 1,naz_u-1 

. TRUE . 

IF (th.LT . az_u(i)) th_neg(i) 

CONTINUE 
SPECIAL CASE I = 4: 

IF (th.GT.az_u(3)) th_neg(4) 

hfp = hfpst*rad 

. TRUE. 

. TRUE . 

INITIAL VALUE HIGH-FREQUENCY PHASE 
t = hfp/h+th 
th_v = DATAN2(x(4) , x(2)) 

e_kin = mrust*wO*wO*(x(2)**2+x(4)**2)/(2.0D3*el) 

fnum = 7 
funit = fnum + 10 
WRITE(funit,1000)oml_t,x(1)*100.0,x(3)*100 . 0, 

+ th/rad,hfp/rad,th_v/rad,e_kin 

WRITE(6,*) 'OMLOOP',oml_t 

iflag = 1 
DO WHILE (oml_t.LE.n_max) 

t2 = t + intrv 

CALL gerk(eqomf,dim,x,t,t2,relerr,abserr , iflag,gerror) 
IF (iflag . NE . 2) THEN 

ENDIF 

IF (iflag.EQ.6) THEN 
iflag = 2 
WRITE(6,*) ' INTERVAL TE KLEIN ' 
GOTO 100 

ELSE 
WRITE(6,*) 'INTEGRATIEFOUT. IFLAG = ',iflag 
WRITE(funit,*) 'INTEGRATIEFOUT . IFLAG = ',iflag 
STOP 

END IF 

t = DMOD(t,2 . 0DO*pi) 

th = DATAN2(x(3),x(1)) 

r=DSQRT(x(1)**2+x(3)**2) 



300 

c 
c 

c 
c 
c 
c 
c 
c 

200 

+ 

+ 

+ 

+ 

IF (r.GT.r_max) GO TO 400 

IF (th.LT.O.DO) az_neg = . TRUE. 
IF ((th.GE . O. DO) . AND . (az_neg)) THEN 

oml_t = oml_t +1 
az_neg = . FALSE . 
WRITE(6 ,* ) 'OMLOOP',oml_t 

ENDIF 

CALL hf_fase(t,th,hfp,h,pi,pi_2) 
e_kin = mrust*wO*wO*(x(2)**2+x(4)**2)/(2.0D3*ell 
tn_v = DATAN2(x(4),x(2)) 

WRITE(funit,1000)oml_t,x(1)*100.0,x(3)*100.0, 
th/rad,hfp/rad, th_v/rad,e_kin 

DO 200 i = l,naz_u-1 
IF (th.LT . az_u(i)) th_neg(i) = . TRUE. 
IF ( (th . GT . az_u(i)) . AND . (th_neg(i))) THEN 

tn_neg(i) = . FALSE. 
d_th = th-az_u(i) 
DO WHILE (DABS(d_th).GE . err_az) 

t2 = t - d_th 
CALL gerk(eqomf,dim,x,t,t2,relerr,abserr,iflag,gerror) 
IF (iflag.NE.2) THEN 

IF (iflag . EQ . 6) THEN 
iflag = 2 
GOTO 300 

ELSE 
WRITE(6,*)'INTEGRATIEFOUT. IFLAG = ',iflag 
WRITE(funit,*)'INTEGRATIEFOUT. IFLAG = ',iflag 
STOP 

END IF 
ENDIF 
th = DATAN2(x(3),x(1)) 
d_th = th-az_u(il 

END DO 
r=DSQRT(x(1)**2+x(3)**2) 
~R DSQRT((X(1)*GERROR(1))**2+ 

(X(3)*GERROR(3))**2)/R 

E_KIN MRUST*WO*WO*(X(2)**2+X(4)**2)/(2 . 0D3*EL) 
~E MRUST*WO*WO*DSQRT((X(2)*GERROR(2))**2+ 

(X(4)*GERROR(4))**2)/(1 . 0D3*EL) 
CALL HF_FASE(T , TH,HFP,H,PI,PI_2) 
WRITE(FUNIT,1100)HFPST,OML_T,I,TH/RAD,R,ERR_R, 

HFP/RAD,E_KIN,ERR_E 
r_i_n(i,oml_tl = r 
WRITE(6,3000) r*lOO.,i,th/rad 

END IF 
CONTINUE 

i = 4 
IF (th . GT . az_u(3)) th_neg(i) = .TRUE. 
IF ( (th.GT . az_u(i)) .AND. (th . LT . az_u(2)) .AND. (th_neg(i))) THEN 

th_neg(i) = . FALSE. 
d_th = th-az_u(il 

DO WHILE (DABS(d_th) . GE.err_az) 
t2 = t - d_th 

350 

c 
c 

c 
c 
c 
c 
c 
c 

+ 

+ 

+ 

CALL gerk(eqomf,dim,x,t,t2,relerr,abserr,iflag,gerror) 
IF (iflag.NE.2) THEN 

IF (iflag . EQ . 6) THEN 
iflag = 2 
GOTO 350 

ELSE 
WRITE(6,*) 'INTEGRATIEFOUT. IFLAG = ',iflag 
WRITE(funit,*) 'INTEGRATIEFOUT. IFLAG = ',iflag 
STOP 

END IF 
ENDIF 
th = DATAN2(x(3),x(1)) 
IF (th . GT . O.ODO) THEN 

d_th th + az_u(i) 
ELSE 

d_th = th - az_u(il 
END IF 

END DO 
r=DSQRT(x(1)**2+x(3)**2) 

ERR_R DSQRT((X(1)*GERROR(1))**2+ 
(X(3)*GERROR(3))**2)/R 

E_KIN MRUST*WO*WO*(X(2)**2+X(4)**2)/(2 . 0D3*EL) 
ERR_E MRUST*WO*WO*DSQRT((X(2)*GERROR(2))**2+ 

(X(4)*GERROR(4))**2)/(1.0D3*EL) 
CALL HF_FASE(T,TH,HFP,H,PI,PI_2) 
WRITE(FUNIT,1100)HFPST,OML_T,I,TH/RAD,R,ERR_R, 

HFP/RAD,E_KIN,ERR_E 
r_i_n(i,oml_t) = r 
WRITE(6,3000) r*100.,i,th/rad 

END IF 

END DO 

400 IF (oml_t.LE . n_max) THEN 
WRITE(6,*)'MAXIMALE STRAAL ~MAX OVERSCHREDEN' 

ELSE 
WRITE(6,*) ' MAXIMALE OMLOOP N~ OVERSCHREDEN' 

END IF 
C CALCULATE X- AND Y-COORD . ORBIT CENTRE, AND WRITE TO FILE: 

fnum = 8 
funit = fnum + 10 
DO 550 n = 3,oml_t-2 

x_ c (r_i_n(2,n)+3.0DO*r_i_n(2,n+1l 
+ -3.0DO*r_i_n(4,n)-r_i_n(4,n+1ll/8.0DO 

y_c (r_i_n(3,n)+3.0DO*r_i_n(3,n+1) 
+ -3 . 0DO*r_i_n(1,n)-r_i_n(1,n+1))/8.0DO 

WRITE(funit,2000)n,x_c*100.,y_c*100.,r_i_n(2,n)*100 . 
550 CONTINUE 

1000 
2000 
3000 

c 

c 
c 
c 
c 
c 

RETURN 
FORMAT(1X,I4,2E14 . 5,3F8 . 2,E14.5) 
FORMAT(1X,I4,3E13 . 4) 
FORMAT(1X, 'r (cm) ',F8.2,' i= ',I3,' 
END 

th 

INCLUDE •user2: [tnndrr.ilec.source)txlib10.for' 

EXAMPLE OF THE INPUT FILE CEN10.DAT 

',F8.2) 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PARAMETERS 
dri3004 
10 . 
30 
0.19 
13 . 78 
1. OE-16 
1.0E-7 
-1.000 
0.54369E3 
7 . 1894E-2 
1.1297E-2 
98.72 
-4.E-2 
4.E-2 
-6 . E-2 
6 . E-2 
201 
281 
4 
0 
TRUE 
TRUE 
FALSE 
-3.5E-3 
0 . 12 
.0188 
FALSE 
3 . 4E-3 
0 . 14 
0 . 0165 
2 
21.67EO 
30.0 
0 . 0 
0.0 
0 . 0 
1 
1. 6726E-27 

BAANBEREKENINGS-PROGRAMMA 
naam outputfile (7 char. lang, geen spaties) 
integratie interval 
hoogste omloop (<= 40) 
maximale straal (cm) 
startfase 
absolute fout 
relatieve fout 
afwijking omlfreq . van ingelezen fO [promilles) 
start-energie (keV) 
x-coord . startpunt 
y-coord . startpunt 
starthoek met pos. x_as 
xminl 
xmaxl 
yminl 
ymaxl 
imax 
jmax 
aantal ideale harmen •sym 
aantal niet-symmetrische harmonischen 
magn. kanaal 
dummy-kanaal 
spoel 22 aan/uit 
amplitude gauss-profiel (T) 
straal waarbij B(r) = B~ (m) 
halfwaarde-breedte (m) 
spoel 2b aan/uit 
amplitude gauss-profiel (T) 
straal waarbij B(r) = B~ (m) 
halfwaarde-breedte (m) 
harmonish getal 
omloopfrqentie (MHz) 
deespanning (kV) 
verschilfactor 2-e h. dee langs pos. y-as (%) 
verhouding 6/2-harm. deespanning 
faseverschil flattop-dee 
lading deeltje in veelvoud van el 
rustmassa (kg) 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 

PROGRAM radlO 

BEREKENING VAN DE BAANPARAMETERS 
VAN DE INTERNE BUNDEL OP EEN BEPAALDE WAARDE 
VAN HET UITVOER-AZIMUTH. DEZE HOEK WORDT GEDEFINIEERD IN DE 
INPUT-FILE. DE UITVOER-FILES ZIJN BESTEMD ALS INVOER 
VOOR ANDERE PROGRAMMA'S. 

HET PROGRAMMA MAAKT EEN SCHATTING VAN DE GLOBALE FOUT IN DE 
BEREKENDE PARAMETERS, DOOR DE INTEGRATIESTAP TE HALVEREN. 
DE LOKALE FOUT WORDT BEREKEND DOOR VARIATIE VAN ORDE. 
HET PROGRAMMA MAAKT GEBRUIK VAN DE INTEGRATIEROUTINE GERK, 
ONTWIKKELD DOOR SHAMPINE & WATTS. 
ALLE BEREKENINGEN WORDEN IN DOUBLE-PRECISION UITGEVOERD. 

DATUM LAATSTE UPDATE: 08-06-94 
DOOR: PETER OP DE BEEK 

UPDATE-HISTORY 

SUBROUTINES: 

INRADlO 
ORRADlO 
TURADlO 
INCHNlO 
INGAPlO 
INRLXlO 
INMAGlO 

EQOMF 

CHNlO 
GAPlO 
RLXlO 
MAGlO 

EFLDlO MFLDlO 
TIME (EXTERN, INTRINSIC) 

FUNCTIONS: 

DISLINE 

VMSCPU 
HF_FASE 
GERK 
FEHL 
E02BAF (EXTERN, NAG-ROUTINE) 
E02BBF (EXTERN, NAG-ROUTINE) 

DATE (EXTERN, INTRINSIC) 

================================================================ 
HOOFDPROGRAMMA: 

CALL inradlO 
CALL orradlO 

STOP 'PROGRAMMA KLAAR' 

END 

================================================================ 
SUBROUTINE inradlO 

INRADlO INITIALISEERD HET BAANBEREKENINGSPROGRAMMA 

IMPLICIT NONE 
INTEGER fnum,funit, 

+ h,hfpst_rnin,hfpst~x.stap_hfpst,z,i, 
+ ngh,hh(lO),irnax,jrnax, 
+ n_min,n_max,n_reg,lharm,hharm 

REAL*8 c,el,pi,rad, 
+ fO,q_fo,b_iso,wO,cnstnt,vdee,v6v2,fil,fi3,delta, 
+ mrust,intrv, 
+ xst,yst,alfast,e0,dlxst,dlyst,rrl,rr3, 
+ q,vO,abserr,relerr,az_u,err_th,r_max,Q_dee, 
+ b22_rn,r22_0,w22_h,b2b_rn,r2b_O,w2b_h, 
+ ri(l0),ra(l0),t(l0),yc(l0), 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

1. 
2. 
3. 
4. 
5 . 
6 . 

7. 

8. 

+ 
+ 

hx,hy,hz,ernap(l : 201,1:281,3), 
xminl,xmaxl,yminl,ymaxl 

LOGICAL kan,twochan,cor22,cor2b 
CHARACTER*8 systirne 
CHARACTER*9 sysdate 
CHARACTER*80 cornrn 
CHARACTER*7 file_out 
CHARACTER*40 narnernag,narnekan,narneef 
CHARACTER*40 files(8) 
COMMONinatconstlc,el,pi,rad 
COMMONiintegrl intrv,az_u,err_th,abserr,relerr 

COMMONicycll fO,b_iso,wO,cnstnt,vdee,v6v2, 
+ fil,fi3,delta,h 

COMMONipartl rnrust,z 
COMMONibaanl xst,yst,alfast,e0,dlxst,dlyst,rrl,rr3 
COMMONianswl kan,twochan,cor22,cor2b 
COMMONiharrnsllharrn,hharrn 
COMMONirelaxlxrninl,xrnaxl,yrninl,yrnaxl,hx, 

+ hy, hz, emap, imax, jmax 
COMMONirfnln_rnin,n_rnax,n_reg,hfpst_rnin,hfpst~x , stap_hfpst,r_rnax 

COMMONideltadeelq_dee 
COMMONifirstharrnlb22_rn,r22_0,w22_h,b2b_rn,r2b_O,w2b_h 
COMMONiiofilesl files 

VASTLEGGEN VAN DE NAMEN VAN DE INPUT- EN OUTPUT FILES 

DE INTEGER FNUM VERBIND TIJDENS EEN IlO-OPERATIE STEEDS 
EEN FILENAAM MET EEN UNIT-SPECIFIER VOLGENS: 

FILENAAM = FILES(FNUM) 
UNIT = FUNIT = FNUM + 10 

DATA files I ' [-.input]radlO.dat', 
+ •user2: [tnndrr.ilec]rn1sft.swp', 
+ •user2: [tnndrr.ilec]rnchan.dat', 
+ •user2: [tnndrr.ilec]erelx2 .dat', 
+ •user2: [tnndrr.ilec]exyzl.dat', 
+ '[-.output]rad10.doc•, 
+ '[-.output]rad10.rfn', 
+ '[-.output]rad10.efn' I 

DE NAMEN RAD10.RFN EN RAD10.DOC WORDEN, AFHANKELIJK VAN 
DE INGELEZEN NAAM UIT RAD10.DAT, VERDEROP AANGEPAST 

INTORXX.DAT 
MAGNlS . DAT 
MCHAN . DAT 
ERELX2.DAT 
EXYZl.DAT 
XXXXXXX. DOC 

XXXXXXX . NXY 

XXXXXXX. CEN 

INVOERFILE, BEVAT PARAM. 
DATA MAGNEETVELD 
GEOMETRIE MAGN. KANAAL 
DATA ELEKTR . VELD 
GAP GEOMETRIE 

PROGRAMMA ( INIT1) 
(MAGNETO) 
(INCHN10) 
(INRLX10) 

UITVOERFILE, BEVAT DE DOCUMENTATIE 
DE UITVOER-FILES 

(INGAP10) 
BIJ 

DE NAAM 'XXXXXXX' VAN DE UITVOERFILES WORDT 
GEDEFINIEERD IN DE FILE INTERXX.DAT 
UITVOERFILE, BEVAT DE NUMERIEKE UITVOER 
VAN DE BAANCOORDINATEN 
UITVOERFILE, BEVAT DE NUMERIEKE UITVOER 
VAN DE COORD. VIH BAANMIDDELPUNT 

================================================================ 

NATCON ST 

c = 2 . 99792458D8 
el = 1.60217733D-19 



c 
c 
c 
c 
c 

c 
c 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

c 

c 

c 

c 

c 

pi= 4 . *DATAN(1.0D0) 
rad pi/180. 
C: LICHTSNELHEID IN VACUUM [MIS) 
EL: ELEMENTAIRE LADINGSEENHEID [C) 
PI : GETAL PI 
RAD: AANTAL RADIALEN PER GRAAD 

BEPALEN SYSTEEMTIJD EN SYSTEEMDATUM 

CALL time (systime) 
CALL date (sysdate) 

INLEZEN PROGRAMMA-PARAMETERS VAN INPUT-FILE 

fnum = 1 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum) , ERR=1000,STATUS='old') 
REWIND ( funi t) 
READ(funit,'(A80)') comm 

: NAAM OUTPUTFILE (7 CHAR. LANG, GEEN SPATIES) 
READ(funit,'(A7)') file_out 

UITVOER INTERVAL IN WO*T 
READ(funit,*) intrv 

AZIMUTH WAAROP UITVOER WEGGESCHREVEN MOET WORDEN 
READ(funit,*) az_u 

TOLERANTIE IN UITVOER-AZIMUTH 
READ(funit,*) err_th 

LAAGSTE OMLOOP 
READ(funit,*) ~in 

HOOGSTE OMLOOP (<= 40) 
READ ( funi t, * ) n..;nax 

AANT R-WAARDEN PER REGEL IN . RFN-FILE 
READ ( funi t, * ) n_reg 

MAXIMALE STRAAL VOOR UITVOER 
READ(funit, *) r_max 

LAAGSTE STARTFASE 
READ(funit,*) hfpst~in 

HOOGSTE STARTFASE 
READ(funit,*) hfpst_max 

INTERVAL TUSSEN OPEENVOLGENDE STARTFASEN 
READ(funit,*) stap_hfpst 

ABSOLUTE FOUT 
READ(funit,*) abserr 

RELATIEVE FOUT 
READ(funit,*) relerr 

AFWIJKING WERKELIJKE OMLFREQ . VAN 
INGELEZEN WAARDE FO [PROMILLE) 

READ(funit, *) d_fO 
START-ENERGIE (KEV) 

READ(funit,*) eO 
X-COORD . STARTPUNT 

READ(funit,*) xst 
Y-COORD . STARTPUNT 

READ(funit,*) yst 
STARTHOEK MET POS . x_As 

READ(funit,*) alfast 
RELAXPARAMETERS 

READ(funit , *) xmin1 
READ(funit,*) xmaxl 
READ(funit,*) ymin1 
READ(funit,*) ymax1 

Cl ~.vt.'IW YOU FINOTMif"N)CUCTIMRA.IUA8i MOIITU'I IT. 

c 

c 

c 

c 

c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 
c 

c 

c 

c 

c 
c 

c 

c 

c 

c 

c 
c 
c 

c 
c 
c 
c 

c 
c 

READ(funit,*) imax 
READ(funit,*) jmax 

ELEMENTEN B-VELD 
READ ( funi t, * ) hharm 

HARMON . VAN 1*SYM ... HHARM*SYM VOOR OPBOUW IDEALE VELD 
READ(funit,*) lharm 

LAGERE HARMON. VAN 1 ... LHARM TOEVOEGEN AAN IDEALE VELD 
READ(funit,*) kan 

MAGNETISCH KANAAL (FALSE/TRUE) 
READ(funit , *) twochan 

DUMMY-KANAAL (FALSE/TRUE) 
1E-HARM CORRECTIE SPOELEN 22 EN 2B 

READ(funit , *) cor22 
SPOEL 22 AAN (FALSE/TRUE) 

READ(funit,*) b22~ 
AMPLITUDE GAUSS-PROFIEL SPOEL 22 (Tl 

READ(funit,*) r22_0 
STRAAL WAARBIJ B(R) = B_MAX SPOEL 22 (M) 

READ(funit,*l w22_h 
HALFWAARDE-BREEDTE (M) 

READ(funit,*) cor2b 
SPOEL 2B AAN (FALSE/TRUE) 

READ(funit,*) b2b~ 
AMPLITUDE GAUSS- PROFIEL SPOEL 2B (Tl 

READ(funit,*) r2b_O 
STRAAL WAARBIJ B(R) = B_MAX SPOEL 2B (M) 

READ(funit,*) w2b_h 
HALFWAARDE-BREEDTE (M) 

CYCLOTRON-PARAMETERS: 

:HARMONISH GETAL 
READ(funit,*) h 

:OMLOOPFRQENTIE (MHZ) 
READ(funit,*) fO 

DEESPANNING (KV) 
READ(funit,*) vdee 

REL . AFWIJKING 2-E HARM . DEE LANGS POS. 
Y-AS VAN INGESTELDE DEE-SPANNING (%) 

READ(funit,*) d_dee 
VERHOUDING 6/2-HARM. DEESPANNING 

READ(funit,*) v6v2 
FASEVERSCHIL FLATTOP-DEE 

READ(funit,*) delta 
:LADING DEELTJE IN VEELVOUD VAN EL 

READ(funit,*) z 
RUSTMASSA (KG) 

READ(funit,*) mrust 

CLOSE(funit) 

INLEZEN MAGNEETVELD 

fnum = 2 
CALL inmag10(fnum,namemag,cor22,cor2b) 

INLEZEN DATA MAGNETISCH KANAAL 

fnum = 3 
IF (kan) CALL inchn10(fnum,namekan) 

AANPASSEN FILENAMEN VOOR OUTPUT-FILES 



c 

c 
c 
c 

c 

c 
c 

c 
c 
c 

files(6) 
files(?) 
files(8) "' 

'[-.output] ' //file_out//' . doe' 
'[ -. output] ' //file_out//' . rfn ' 
'[-.output] ' //file_out// ' .efn ' 

OMREKENEN VAN PARAMETERS 

vdee = vdee*1.E3 

delta = delta*rad 
intrv = intrv*rad 
alfast = alfast*rad 
az_u = az_u*rad 
err_th err_th*rad 

q = z*el 
OMLOOPFREQUENTIE DEELTJES 
fO = f0 * (1 + d_f0/1000.0D0)*1.0D6 
D_FO = AFIJKING VAN FO UIT INPUT-FILE IN PROMILLES 
ASYMMETRIE DEE-SPANNING : 
d_dee = d_dee/100 . 0DO 

wo= f0*2.*pi 
b_iso = mrust*wO/q 

cnstnt = (mrust*w0*w0)/(2.*el) 
vO = DSQRT(1.e3 *e0/cnstnt) 
d1xst = vO*DCOS(alfast) 
d1yst = vO *DSIN(alfast) 
rr1 2.*mrust*vdee/(q*b_iso*b_iso) 
rr3 = v6v2*rr1 

WEGSCHRIJVEN VAN DE PARAMETERS IN HET . DOC FILE 

fnum = 6 
funit = fnum + 10 
OPEN(UNIT=funit , FILE=files(fnum),ERR=1000,STATUS='unknown') 
WRITE (funit,2300) ' UITVOER BIJ PROGRAMMA RAD10.FOR' 
WRITE (funit,2400) 'NAAM UITVOERFILE:', file_out 
WRITE (funit,2300 ) ' ================================' 
WRITE(funi t,*) 'DATUM : ',sysdate 
WRITE(funit,*) 'TIJD : ',systime 
WRITE (funit,2300) ' ================================' 
WRITE (funi t , 2300) ' INTEGRATIE-PARAMETERS ' 
WRITE (funit,2300) ' =====================' 

WRITE (funit,2300) 'Fehlberg routine, variabele 
WRITE (funit,2100) ' absolute fout 
WRITE (funit , 2100) • relatieve fout 
WRITE (funit , 2100) ' uitvoer-azimuth 

stap' 
',abserr 
',relerr 
',az_u/rad 

WRITE (funit,2100) ' tolerantie in uitvoer-azimuth ' ,err_th/rad 

WRITE (funit,2200) ' integratie-interval [deg] ',intrv/rad 
WRITE (funit,2300) 'BAAN-PARAMETERS ' 
WRITE (funit,2300) ' --------------- ' ---------------
WRITE (funit,2000) ' startw hoogfreq.-fase [deg] ', hfpStJllin 
WRITE (funit,2000) 'eindw hoogfreq.-fase [deg] ' , hfpStJllaX 
WRITE (funit , 2000) 'stap in hoogfreq . -fase [deg] ' ,stap_hfpst 
WRITE (funit,2200 ) ' maximale straal uitvoer , r_max 
WRITE (funit ,2300 ) ' CYCLOTRON- PARAMETERS ' 
WRITE (funit,2300) ' ==================== ' 
WRITE (funit,2000 ) ' harmonisch_getal ',h 

01'CHV1.70:J# YOU I'WDTM8~~"--MCIWQI:STVIIT. 

c 
c 
c 
c 

c 
c 
c 

2000 
2100 
2200 
2300 
2400 

c 
c 
c 

1000 

c 

c 

WRITE (funit , 2100) ' i sochroon B-veld [T] 
WRITE (funit , 2200) 'omloop freq. [Mhz] 
WRITE (funit,2200) 'afw van ingelezen fO [prom] 
WRITE (funit , 2200) 'dee spanni ng [kV] 
WRITE (funit , 2200) ' afw. dee spanning y-dee (\) 
WRITE (funit,2200) 'verhouding 6/2 deesp. 
WRITE (funit , 2200) 'fasev . 6-2 [deg] 
WRITE (funit,2300) 'PARAMETERS DEELTJE ' 
WRITE (funit , 2300) '==================' 
WRITE (funit,2200) 'start energie [keV] 
WRITE (funit,2100) •x-coord . startp . [m] 
WRITE (funit,2100) •y-coord . startp. [m] 
WRITE (funit,2200) 'starthoek pos. x-as [deg] 

WRITE (funit,2300) 'MAFNEETVELD-SETTINGS' 
WRITE (funit,2300) '====================' 

',b_iso 
' , f0/l.E6 
' , d_fO 
' ,vdee/l.E3 
',d_dee*100. 
', v6v2 
' ,delta 

• ,eo 
,xst 
, yst 

' , alfast/rad 

WRITE (funit,*) 'harmonischen *sym t/m ' ,hharm 
WRITE (funit,*) 'lagere harmonischen t/m ' , lharm 
WRITE (funit,*) •magn . kanaal ',kan 
WRITE (funit,*) 'dummy kanaal ' ,twochan 
WRITE (funit,*) '1e-harm spoel 22 ', cor22 
WRITE (funit,2100) 'amplitude gauss-profiel (T) ' , b22_m 
WRITE (funit , 2100) 'straal B(r) = BJ!IaX (m) ' , r22_0 
WRITE (funit,2100) 'halfwaarde-breedte (m) ' , w22_h 
WRITE (funit , *) ' 1e-harm spoel 2b ',cor2b 
WRITE (funit,2100) •amplitude gauss-profiel (T) ',b2b.Jll 
WRITE (funit,2100) ' straal B(r) = BJllax (m) •,r2b_O 
WRITE (funit,2100) 'halfwaarde-breedte (m) ',w2b_h 
CLOSE(funit) 

INLEZEN DATA ELEKTRISCH VELD 

fnum = 5 
CALL ingapl0(fnum,nameef , ngh,ri , ra , t , yc , hh,fi1 , fi3) 

fnum = 4 
CALL inrlxlO(fnum,emap , hx,hy, hz,imax, jmax) 

RETURN 

FORMATS 

FORMAT(1X , A30 , I3) 
FORMAT(1X,A30 , D16 . 6) 
FORMAT(1X,A30,F8 . 3) 
FORMAT ( 1X, A40) 
FORMAT(lX,A30,A7) 

ERRORLABELS 

WRITE(6,*) 'fout tijdens openen file' , files(fnum) 
STOP ' fout tijdens uitvoer ilo-statement!' 
END 

SUBROUTINE orrad10 



c 

c 

100 

c 
c 
c 

1000 

c 

c 

IMPLICIT NONE 
INTEGER fnum,funit,hfpst,hfpst~in,hfpst_max,stap_hfpst, 

+ n_max,~in,n_reg 

REAL 
REAL*8 

t_cpu 
intrv,az_u,err_th,abserr,relerr,r~x 

CHARACTER*40 files(8) 

COMMON/integr/ intrv,az_u,err_th,abserr,relerr 

COMMON/iofiles/ files 
COMMON/rfn/~in.~ax,n_reg,hfpst~in,hfpst_max,stap_hfpst,r_max 

CALL vmscpu(t_cpu) 
OPENEN VAN .RFN-FILE : 
fnum = 7 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='unknown') 
WRITE(funit,*) n_min,n_max,n_reg 
WRITE(funit,*) hfpst_min,hfpst_max,stap_hfpst 
WRITE(funit,*) r~x 
OPENEN VAN .EFN-FILE: 
fnum = 8 
funit = fnum + 10 
OPEN(UNIT=funit,FILE=files(fnum),ERR=1000,STATUS='unknown') 
WRITE(funit,*) ~in,n_max,n_reg 
WRITE(funit,*) hfpst~in,hfpst_max,stap_hfpst 
WRITE(funit,*) r_max 

DO 100 hfpst = hfpst~in,hfpst_max,stap_hfpst 
CALL turad10(hfpst) 

CONTINUE 

CALL vmscpu(t_cpu) 
fnum = 7 
funit = fnum + 10 
CLOSE(funit) 
fnum = 8 
funit = fnum + 10 
CLOSE(funit) 

ERRORLABELS 

RETURN 
WRITE(6,*) 'fout tijdens openen file ' ,files(fnum) 
STOP 'fout tijdens uitvoer ilo-statement!' 
END 

SUBROUTINE turad10(hfpst) 

c 
c 
c 

c 
c 
c 

10 

15 

c 

IMPLIC!T NONE 
INTEGER fnum,funit,hfpst,hfpst_min,hfpst~x.stap_hfpst, 

+ h,oml_t,z,n~x,n~in,n_reg,n_st,n_en, 
+ dim,i,n,iflag, 
+ nfe,kop,init,jflag,kflag 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

REAL*8 c,el,pi,pi_2,rad, 
fO,b_iso,wO,cnstnt,vdee,v6v2,fi1,fi3,delta, 
mrust,intrv,az_u,r~ax, 
xst,yst,alfast,eO,d1xst,d1yst,rr1,rr3, 
x(4),r,th,hfp,t,t2,d_th,err_th,tn_u,rf_n(40),ef_n(40), 
relerr,abserr,gerror(4),e_kin,err_r,err_e, 
yp ( 4) • f1 ( 4) • f2 ( 4) ' f3 ( 4) ' f4 ( 4) ' f5 ( 4) ' 
yg(4),ygp(4),n_s,savre,savae 

LOG I CAL 
+ 

kan,twochan,cor22,cor2b, 
az_neg,th_neg 

CHARACTER*40 files(8) 

EXTERNAL eqomf 

COMMON/natconst/c,el,pi,rad 
COMMON/integr/ intrv,az_u,err_th,abserr,relerr 
COMMON/rfn/n~in,~x,n_reg,hfpst~in,hfpst~x,stap_hfpst,r_max 

COMMON/cycl/ 
+ 

fO,b_iso,wO,cnstnt,vdee,v6v2, 
fi1,fi3,delta,h 

COMMON/part/ mrust,z 
COMMON/baan/ xst,yst,alfast,eO,d1xst,d1yst,rr1,rr3 
COMMON/answ/ kan,twochan,cor22,cor2b 
COMMON/iofiles/ files 
COMMON/gerksave/yp,h_s,f1,f2,f3,f4,f5,yg,ygp,savre,savae, 

+ nfe,kop,init,jflag,kflag 

STARTCONDITIES 

VASTLEGGEN VAN DE BEGINWAARDEN 

pi_2 = 2.0DO*pi 

dim = 4 
oml_t 1 
DO 10 i=1,40 
rf_n(i) = O.ODO 

CONTINUE 
DO 15 i=1,40 
ef_n(i) = O.ODO 

CONTINUE 

STARTWAARDEN X,Y,V_X,V_Y 
x(l) xst 
x(3) yst 
x(2) dlxst 
x(4) d1yst 

az_neg = .FALSE . 



c 

c 

c 

c 

c 

50 

100 

th_neg = .FALSE. 

r=DSQRT(x(1)**2+x(3)**2) 
STARTWAARDE BAANSTRAAL 

th=DATAN2(x(3),x(1)) 
STARTWAARDE AZIMUTH 
IF (th.LT.O.DO) az_neg .TRUE . 

IF (th.LT.az_u) th_neg .TRUE. 

hfp = hfpst*rad 
STARTWAARDE HOOGFREQUENTFASE 
t = hfp/h+th 
ZIE THEORIE 

WRITE(6,2000)hfpst , oml_t 

fnum = 7 
funit = fnum + 10 
WRITE(funit,*) hfpst 

fnum = 8 
funit = fnum + 10 
WRITE(funit,*) hfpst 

iflag 

t2 

1 

t + intrv 

CALL gerk(eqomf,dim,x,t,t2,relerr,abserr,iflag,gerror) 
IF (iflag.NE.2) THEN 

IF (iflag . EQ.6) THEN 
iflag = 2 
WRITE(6,*) ' INTERVAL TE KLEIN ' 
GOTO 100 

ELSE 
WRITE(6,*)'INTEGRATIEFOUT. IFLAG = ' ,iflag 
WRITE(funit,*)'INTEGRATIEFOUT. IFLAG = ',iflag 
STOP 

END IF 
ENDIF 

t = DMOD(t,2.0DO*pi) 

th = DATAN2(x(3),x(1)) 
r=DSQRT(x(1)**2+x(3)**2) 
IF (r . GT . r~) GO TO 400 

IF (th . LT . O. DO) az_neg = . TRUE . 
IF ( (th.GE.O.DO) .AND . (az_neg)) THEN 

oml_t = oml_t +1 

ENDIF 

az_neg = .FALSE. 
WRITE(6,2000)hfpst,oml_t 

IF (th . LT . az_u) th_neg = .TRUE. 
IF ( (th . GT.az_u) . AND . (th_neg)) THEN 

300 

c 

c 
c 

400 

th_neg = . FALSE. 
d_th = th-az_u 
DO WHILE (DABS(d_th) .GE.err_th) 

t2 = t - d_th 
CALL gerk(eqomf,dim,x,t,t2,relerr,abserr,iflag,gerror) 
IF (iflag . NE . 2) THEN 

IF (iflag.EQ.6) THEN 
iflag = 2 
GOTO 300 

ELSE 
WRITE(6,*)'INTEGRATIEFOUT. IFLAG = ',iflag 
WRITE(funit,*)'INTEGRATIEFOUT. IFLAG = ' ,iflag 
STOP 

END IF 
ENDIF 
th = DATAN2(x(3),x(1)) 
d_th = th-az_u 

END DO 
WRITE(6,3000) R*100.,I,TH/RAD 

r=DSQRT(x(1)**2+x(3)**2) 
rf_n(oml_t) = r 

ERR_R = DSQRT((X(1)*GERROR(1))**2+ 
+ (X(3)*GERROR(3))**2)/R 

e_kin = mrust*wO*wO*(x(2)**2+x(4)**2)/(2.0D3*el) 
ef_n(oml_t) = e_kin 
IF (oml_t.LE . n_max) GO TO 50 

END IF 
IF (oml_t.LE.n_max) GO TO 50 

fnum = 7 
funit = fnum + 10 
n_st = n_min 
n_en = n_st + n_reg - 1 
DO WHILE (n_en.LE.n_max) 

WRITE(funit,' (8E13.6) ') (rf_n(i) , i 
n_st n_st + n_reg 
n_en = n_en + n_reg 

END DO 
fnum = 8 
funit = fnum + 10 
n_st = n_min 
n_en = n_st + n_reg - 1 
DO WHILE (n_en.LE.n_max) 

WRITE(funit,' (8El3 . 6) ' ) (ef_n(i), i 
n_st n_st + n_reg 
n_en = n_en + n_reg 

END DO 

RETURN 

n_st , n_en) 

n_st,n_en) 

2000 FORMAT(1X, 'STARTFASE ',I4,' OMLOOP ',!4) 
3000 FORMAT(1X, 'r (cm) ',F8 . 2 ,' i = ' , I3 , ' th ', F8. 2) 

c 

c 
c 
c 
c 
c 
c 
c 

END 

INCLUDE 'user2 : [tnndrr . ilec.source]txlib10 . for' 

EXAMPLE OF THE INPUT FILE RAD10.DAT 

PARAMETERS BAANBEREKENINGS-PROGRAMMA 
radia02 : naam outputfile (7 char. lang, geen spaties) 



C 10 integrat i e interval 
C 20.0 azimuth uitvoer 
C 0 . 5 t olerantie azimuth-iteratie 
C 1 laagste omloop 
C 35 hoogste omloop (<= 40) 
C 5 aant r-waarden per regel in . rfn-file 
C 0 .19 maximale straal voor uitvoer (cm) 
C -85 laagste startfase 
C -27 hoogste startfas e 
C 1 interval tussen opeenvolgende startfasen 
C 1.0E-16 absolute fout 
C l . OE-6 relatieve fout 
C -1.500 afwijki ng omlfreq . van ingelezen fO [promilles) 
C 1.E-3 start-energie (keV) 
C 1 . 070E-2 x-coord. startpunt 
C 0 . 977E- 2 y-coord . startpunt 
C 128. starthoek met pos . x_as 
C -4 . E-2 xmin1 
C 4.E-2 xmax1 
C -6 . E-2 ymin1 
C 6 . E-2 ymax1 
c 201 imax 
c 281 jmax 
C 4 aantal ideale harman *sym 
c 0 aantal niet-symmetrische harmonischen 
C TRUE magn . kanaal 
c TRUE dummy- kanaal 
C FALSE spoel 22 aan/uit 
c O.OE-4 amplitude gauss-profiel (T) 
c 0.19 straal waarbij B(r) = B~ (m) 
C .10 halfwaarde-breedte (m) 
c FALSE spoel 2b aan/uit 
c 2 . 5E-3 amplitude gauss-profiel (T) 
c 0.1375 straal waarbij B(r) = B_max (m) 
c . 04 halfwaarde-breedte (m) 
C 2 harmonish getal 
c 21.67EO omloopfrqentie (MHzl 
c 30.0 deespanning (kV) 
0 . 0 verschilfactor 2-e h . dee langs pos . y - as (%) 
0 . 10 verhouding 6/2-harm . deespanning 
1 . 00 faseverschil flattop-dee 
1 lading deeltje in veelvoud van el 
1 . 6726E-27 rustmassa (kg) 
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 

5 

c 

10 

PROGRAM sor10 
================================================================s 

SOR10 WRITES SELECTED TURN NUMBERS FROM THE . RFN AND .EFN FILES 
FROM THE PROGRAM RAD10 TO AN ASCII-FILE 

LAST UPDATED: 04-08-94 
BY: PETER OP DE BEEK 

UPDATE-RISTORY 

IMPLICIT NONE 
REAL*B y_n(50),f , rmx 
INTEGER fnum,un_in,un_out,~low,ri_hig,n,step_n,par(6) 
LOOICAL eof 
CHARACTER*l answ 
CHARACTER*40 files(3) 
CHARACTER*7 name_re 
CHARACTER*4 name_out 
CHARACTER*BO comm 

INTEGER FNUM CONNECTS A FILENAME FROM ARRAY FILES TO A FIXED 
UNIT-SPECIFIER ACCORDING TO: 

FILENAME = FILES(FNUM) 
UNIT = FUNIT = FNUM + 10 

DATA files I ' i~r.rfn', 
+ 'in_e.efn', 
+ •out . xxx'/ 

1. IN_R . RFN 
2. IN_E.EFN 
6. OUT.xxx 

INPUT FILE, R AS FUNCTION OF FIE_START 
INPUT FILE, E AS FUNCTION OF FIE_START 
OUTPUT FILE 

eof = .FALSE. 

DETERMINE NAMES OF IN- AND OUTPUT FILES : 
WRITE(6,*) 'GIVE NAME INPUTFILES FOR REN E (7 char)' 
READ(5,' (A7)') name_re 
WRITE(6,*) 'GIVE NAME OUTPUT FILE (4 char)' 
READ(5,'(A4)') name_out 
files(l) = 'user2 : [tnndrr.ilec.outputl'//name_re//' . rfn' 
files(2) = •user2: [tnndrr.ilec.output)'//name_re//' . efn' 
WRITE(6,*) 'CHOOSE OPTION: ' 
WRITE(6,*) 'RAS A FUNCTION OF FIE_INITIAL .... (1)' 
WRITE(6,*) 'E AS A FUNCTION OF FIE_INITIAL . . .. (2)' 
READ(5,' (Al)') answ 
IF ((answ.NE.'l').AND . (answ. NE.'2')) GO TO 5 
IF (answ.EQ.'1') THEN 

fnum = 1 
files(3) = •user2:[tnndrr . ilec.idif)'//name_out//'RF.asc' 

END IF 
IF (answ.EQ . '2') THEN 

fnum = 2 
files(3) = •user2:[tnndrr . ilec.idif)'//name_out//'EF . asc• 

END IF 

OPEN INPUT FILE FOR R OR E AS FUNCTION OF INITIAL PHASE: 
un_in = fnum + 10 
OPEN(UNIT=un_in,FILE=files(fnum),ERR=lOOO,STATUS='old') 
CALL get_par(fnum,files,comm,par,rmx) 
WRITE(6,*) 'INPUT FILE ',files(fnum),' : ' 
WRITE(6,' (1X,A25,I3)') 'LOWEST TURN : ',par(l) 
WRITE(6,' (1X,A25,I3)') 'HIGHEST TURN : ' ,par(2) 
WRITE(6,*)'GIVE LOWEST TURN IN OUTPUT FILE:' 
READ(5,*) ~low 

20 

c 

c 
100 

c 

200 

c 
c 
c 
1000 

c 
c 
c 
c 
c 
c 

c 

IF (n_low.LT.par(1)) GO TO 10 
WRITE(6,*)'GIVE HIGHEST TURN IN OUTPUT FILE:' 
READ(5,*) n_hig 
IF (n_hig .GT .par(2)) GO TO 20 
WRITE(6,*) 'GIVE STEP BETWEEN TURNS : ' 
READ(5,*) step_n 
IF ((n_hig-n_low)/step_n.GE.B.) GO TO 10 
OPENING OUTPUT FILE : 
fnum = 3 
un_out = fnum + 10 
OPEN(UNIT=un_out,FILE = files(fnum),ERR=lOOO,STATUS = 'UNKNOWN') 
WRITE (un_out,' (1X,A1,8I6) ') •f•, (n,n = ~low.~hig,step_n) 
CALL GET_DAT TO FILL ARRAY Y_N WITH Y VALUES: 
CALL get_dat(un_in,par,f,y_n,eof) 
IF (eof) GOTO 200 
wegschrijven geselekteerde omlopen in un_out: 
CALL put_dat(un_in,un_out,~low,n_hig,step_n,f,y_n) 
GOTO 100 

CLOSE(un_in) 
CLOSE(un_out) 
STOP'PROGRAM EXECUTION READY' 

LABELS AND FORMATS 

WRITE(6,*)'ERROR OPENING FILE' ,files(fnum) 
STOP 
END 

END MAIN PROGRAM 

SUBROUTINES 

SUBROUTINE get_par(fnum,files,comm,par,rmx) 

REAL*B rmx 
INTEGER fnum,funit,par(6) 
CHARACTER*40 files(3) 
CHARACTER*BO comm 

C REWIND INPUT FILE : 
funit = fnum + 10 
REWIND ( funi t) 

C READ COMMENT LINE: 
C READ(funit,'(A80)') comm 
C READ FORMAT INPUT FILE 
C - NUMBER OF TURNS PER INITIAL PHASE VALUE 
C - NUMBER OF R-VALUES PER LINE 

READ(funit,*,END=l500) par(1),par(2),par(3) 
IF (par(l) .NE.l) STOP'N_MIN .NE.l KAN NOG NIET!' 

C READ PHASE REGION AND FASE-STEP: 
READ(funit,*,END=l500) par(4),par(5),par(6) 

C READ MAX RADIUS 
READ(funit,*,END=1500) rmx 
RETURN 

1500 WRITE(6,*)'FILE ',files(fnum),' DOES NOT CONTAIN VALID DATA' 
STOP 
END 

c ================================================================= 
c ================================================================= 

SUBROUTINE get_dat(un_in,par,f,y_n,eof) 
c ================================================================= 

IMPLICIT NONE 
REAL*8 f,y_n(50) 
INTEGER n,un_in,par(6),n_st,n_en 
LOGICAL eof 

C IF Y-VALUES FOR NEXT F AVAILABLE, 



C READ NEW VALUE FOR F_E, AND THE CORRESPONDING Y_VALUESo 
C AT THE END OF FUNIT, SET EOF = o TRUE o : 

READ (un_in,*,END=100) f 
C RESET ARRAY Y~: 

DO 20 n = 1,par(2) 
y_n(n) = OoODO 

20 CONTINUE 
C FILL ARRAY Y~ WITH NEW Y-VALUES: 

n_st = 1 
n_en = n_st + par(3) - 1 
DO WHILE (n_enoLE opar(2)) 

READ (un_in,*,END=200) (y_n(n),n n_st,n_en) 
n_st n_st + par(3) 
n_en = n_en + par(3) 

END DO 
RETURN 

100 eof = oTRUEo 
RETURN 

200 STOP'END INPUTFILE HAS BEEN ENCOUNTERED WHILE READING Y-VALUES' 
END 

c ================================================================= 
SUBROUTINE put_dat(un_in,un_out,n_low,n_hig,step_n,f,y_n) 

c ================================================================= 
IMPLICIT NONE 
REAL*8 f,y_n(50) 
INTEGER un_in,un_out,n_low,n_Pig,step_n,n 
IF (un_inoeqo11) THEN 

WRITE (un_out,'(1X,F6o2,8E13o6)') 
+ 

ELSE 
f, (y_n(n)*100o,n = n_low,n_hig,step_n) 

+ 
WRITE (un_out,' (1X,F6o2,8E13o6)') 

f,(y_n(n),n = n_low,n_hig,step_n) 
END IF 
RETURN 
END 

c ================================================================= 


