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Abstract 

A restoration method torestere unknown samples in discrete-time signals is used to improve 

the quality of pitch contours. These pitch contours are produced by a pitch determination 

algorithm based on the summatien of subharmonics, that determines the pitch contour 

on a per-point basis. The restoration is a two-step procedure. In the first step the pitch 

contour is divided into reliable and unreliable points. The second step uses the restoration 

method to make estimates for the unreliable points from the reliable points and a model 

for the pitch contour. An algorithm is presented to determine which points are reliable in 

the pitch contour and which are not. The restored pitch contours are compared to pitch 

contours produced by another pitch determination algorithm, also based on the summa­

tien of subharmonics, but where the whole pitch contour is determined using dynamic 

programming techniques. It cannot be conclusively determined whether the restored pitch 

contours or the pitch contours determined by the pitch determination algorithm using 

dynamic programming techniques are better. 



Contents 

1 Introduetion 

2 Restoration 

2.1 Introduetion ••• 0 0 •• 

2.2 The finite data sequence 

2.3 The infinite data sequence 

2.4 The autoregressive model . 

2.4.1 Autoregressive processes 

2.4.2 Restoration, infinite case 

2.4.3 Estimation of the AR-parameters 

2.4.4 Adaptive restoration 0 •••• 0 0 

2.4.5 Estimation of samples on boundaries 

2.5 The band-limited model 

2.5.1 The infinite case 

2.5.2 The finite periadie case . 

2.5.3 Windowing the 9k . . . . 

2.5.4 Comparison with the autoregressive model 

2.5.5 Squared window . •••••••••••• 0 0 

3 Pitch determination 

3.1 Introduetion .... 

3.1.1 Speech model 

3.1.2 Pitch determination algorithm . 

3.1.3 Enhanced pitch determination algorithm 

4 Results 

4.1 Introduetion 

1 

3 

6 

7 

8 

11 

12 

12 

14 

15 

18 

19 

24 

24 

26 

26 

27 

28 

30 

31 

31 

32 

36 

38 

39 



I 

I 

4.2 Quality determination 

4.3 Feasibility . . . . . . . 

4.3.1 Introduetion .. 

Autoregressive model . 

Band-limited model . . 

4.3.2 

4.3.3 

4.3.4 Choice of the restoration methad 

4.4 Algorithm . . . . . . . . . . . . . . . . . 

4.4.1 Limits of using the voiced-unvoiced decision 

4.4.2 The algorithm . 

4.5 Restorations . 

5 Conclusions 

A Graphs 

References 

2 

40 

42 

42 

48 

71 

73 

74 
74 
78 

82 

112 

115 

125 



Chapter 1 

Introduetion 

In speech perception research, it is often valuable to have a measurement of the pitch as 

a function of time fora speech utterance. This is called a pitch contour. To make a pitch 

contour, the speech is recorded and fed to a device that determines the pitch as a function 

of time. These days, this is usual done by numerical analysis in a computer. This computer 

is fed with a sampled and digitized version of the speech utterance. The general procedure 

then is to divide this sampled data in so-called segments. The segment length is chosen 

to be of the order of the response-time of the human auditory system. For each segment 

the pitch is determined using a pitch determination algorithm. This then yields the pitch 

contour. 

It is not always possible to measure the pitch correctly for all segments. This can 

be so because of a number of possibilities. First of all, natura! speech always contains 

unvoiced parts, that have a noisy character, to which no pitch can be attributed. Any pitch 

measurement will produce meaningless pitch estimates for unvoiced parts. The second 

possibility is that due to environmental, electronic or measurement noise, for example 

other voices, ordinary noise, background music etc., it becomes impossible for the pitch 

determination algorithm to separate the noise from the signal. This then yields unreliable 

estimates for the pitch or even estimates for the pitch from the noise instead of the pitch 

from the signal. The third possibility is that the pitch determination, if at all, mimics the 

human method of determining the pitch, it never does so perfectly, which leads to errors in 

the pitch determination. Particularly troublesome are the so called octave failures, where 

the pitch is estimated one octave to high or to low. These are inherent to many of the 

pitch determination algorithms. 

Except for the erroneous pitch estimates, another thing corroborates the determination 

of pitch contours. These are the octave failures in the so-called creaky voices. These are not 

to be confused with the octave failures as produced by the pitch determination algorithm. 

The difference lies in the fact that for creaky voices, the octave failures correspond to an 

actual shifting of one octave of the pitch, while the other kind of octave failures are errors 

of the pitch determination algorithm. 
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Introduetion 

Many pitch determination algorithms correctly measure octave failures produced by 

a creaky voice. If these octave failures are shifted back with a computer, using speech­

analysis and resynthesis techniques, it is impossible for an inexperienced user to hear the 

difference between the "corrected" resynthesized and the original sentence. This is called 

perceptual equivalence. 

Since these octave failures cannot be heard, it is desirabie to have a pitch contour 

that does not contain them anymore. This is then called a "corrected" ore restored pitch 

contour. In this report a method is presented to make such a "corrected" pitch contour. 

This is clone as fellows. First, the pitch contour is made by an algorithm presented in 

[4]. Secondly, the octave failures as produced by a creaky voice, as well as unvoiced 

segments, and low-intensity segments are detected, using an algorithm presented in this 

report. These have to be detected, since the pitch estimates for these segments have to be 

corrected in some way, either because they are wrong pitch estimates - the latter two cases 

-, or undesirable - first case -. The low-intensity segments are included because for these 

segments it is likely that the different noise-sources are of the same order of magnitude as 

the signal, which may lead to faulty pitch estimates. 

The third step is the "correction procedure". For this, restoration methods for unknown 

samples in discrete-time signals, presented in [9] are used. The restoration methods suppose 

that the pitch estimates for the segments, for which the pitch estimates are to be corrected, 

are unknown. These are then restored with a restoration method from [9], using the 

"correct" (also called known) pitch estimates and a model for the pitch contour. If this 

model is (partly) estimated from the known pitch estimates the restoration method is called 

adaptive. 

In this report, first the restoration methods are described in Chapter 2. It starts with 

the general restoration method, foliowed by two general classes of restoration methods, one 

based on an autoregressive model for the data, the other based on a band-limited model for 

the data. In Chapter 3 the pitch determination algorithm is described. Furthermore a short 

qualitative explanation of another pitch determination algorithm to make a "corrected" 

pitch contour is given, that will be used to cernpare the restored pitch contours with. In 

Chapter 4 the results of the restoration of pitch contours are presented and discussed. 

It starts with introducing a method to measure the quality of a restored pitch contour 

by cernparing it with the other method of making a "corrected" pitch contour. It then 

continues with an investigation to determine if the restoration methods can be used to 

make restorations of a pitch contour. This is foliowed by a description of the algorithm 

that determines which pitch estimates are "correct" and which are not. This is completed 

with a graphical presentation of restored pitch contours and pitch contours produces by 
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the other method of makinga "corrected" pitch contour. These are compared and shortly 

discussed. The report ends with some conclusions in Chapter 5. 
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Restoration Introduetion 

Chapter 2 

Restoration 

2.1 Introduetion 

In this chapter a method will be described to restore unknown samples in a discrete-time 

sequence1
. This means that there is a sequence of samples 

sk, k = a, a+ 1, ... , b, 

from which the samples 

St(i), a :S t(l) < t(2) < ... < t(m) :Sb, 

are unknown and have to be restored. Heremis a finite integer, a and b integers that may 

be chosen to be equal to -oo and oo, respectively. In the latter case there is an infinite 

sequence of samples with only a finite number of unknown samples. In the remainder of 

this chapter it is assumed that the given sequence of samples is (part of) a realization of 

a stochastic process §..i, i = -oo, ... , oo, which is stationary up to at least order 2 unless 

explicitly stated otherwise. The condition that a stochastic process ~i' i = -oo, ... , oo, is 

stationary up to order 2 means that 

are independent of the index i. The E {} denotes the expectation value operator. From 

now on the term stationarity will be used to denote stationarity up to order 2. Stationarity 

is required in order to be able to define and make use of the autocorrelation function of a 

stochastic process, which is defined by 

R(k) = E {(§..i- p)(§..i+k- p)}, k = -oo, ... , oo, 

fJ = E Üi} · 

1This method was developed by R.N.J. Veldhuis e.a., an extensive survey can be found in [9] 

7 

(2.1) 

(2.2) 



The finite data sequence Restoration 

The spectrum of a stationary stochastic process Q.i, i = -oo, ... , oo, denoted by S(B), is 

given by the fourier transfarm of its autocorrelation function: 

00 

S(B) = L R(k)e-i9k, -1r < () < 1r. (2.3) 
k=-oo 

In Sections 2.2 and 2.3 it will be assumed that this autocorrelation function is known in 

advance and the general theoretica! background of restorations of realizations of stationary 

stochastic processes will be explained under this assumption. This is first clone for the case 

of finite sequences in Section 2.2 and extended to infinite sequences in Section 2.3. After 

this general introduction, that should provide a little bit more insight into the theoretica! 

backgrounds, some more practical cases will be stuclied in the next sections. In Section 2.4 

it is assumed that the data sequence can be modeled as an autoregressive process, which in 

many practical cases gives good restoration results (see for example [9]). Special attention 

is paid to the case that there are unknown samples on the boundaries of the sequence that 

need restoration. In Section 2.5 is is assumed that the data sequence is a realization of a 

band-limited stochastic process. Theoretically this gives a perfect restoration. In practical 

cases this band-limitedness assumption almost never holds and it was shown in [9] that this 

method is very sensitive to out-of-band components. Therefore, some adaptations are made 

that give better restorations in practical cases. Both methods in principle presuppose some 

knowledge of the autocorrelation function. Under the assumption of band-limitedness only 

knowledge of the location of the passband is required. This can be related to properties of 

the autocorrelation function. Under the assumption that the data sequence is a realization 

of an autoregressive process, the prediction coe:fficients that describe the autoregressive 

processneed to be known. The prediction coe:fficients can be computed from the autocar­

relation function and vice versa. Since the autocorrelation function can be related to and 

estimated from the data sequence this leads to an adaptive method. This method first 

estimates prediction coe:fficients from the known samples with initial estimates substituted 

for the unknown samples. Subsequently it estimates the unknown samples from the known 

samples and the prediction coe:fficients. This process can then be iterated an arbitrary 

number of times. 

2.2 The finite data sequence 

Suppose that there is a sequence of samples si, i = 1, ... , N with unknown samples at 

t(l ), ... , t( m ). Now estimates St(j)l j = 1, ... , m (St(j) denotes an estimate for St(j)) for the 
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Restoration The finite data sequence 

unknown samples are sought that are linear comhinations of the known samples 

c·(l) 
) = 

hll h12 h1 N 

( v, 

)· 
' ' ' 

h21 h2 2 h2N v2 
(2.4) ' ' ' 

St(m) 
hml hm2 hmN VN 

' ' ' 

where, defining the index sets S = {1, ... , N}, V= S\{t(1), ... , t(m)}, 

v· = {si if iE V 
z 0 if i rf_ V 

Coefficients hi,j, i = 1, ... , m, j E V ( the coefficients hi,j, i = 1, ... , m, j E S\ V, do 

not influence the estimates) are to he determined. The restoration should he optimized 

over all possihle realizations si, i = 1, ... , lN, of the stationary stochastic process Q.i, i = 
-oo, ... , oo. One way to do this is to minimize the varianee of the statistica! restoration 

error defined hy 

(2.5) 

The it(i) are called estimators and follow from (2.4) hy replacing St(i) hy it(i) and vi hy 

{ 
Q.i if i E V' Th · 1 c · · • · (2 5) . th t th' hl . 
0 

if i rf_ V . e partlcu ar reason 10r mm1m1zmg . 1s a 1s pro em 1s re-

latively easy to solve. Moreover, assuming that the samples have a gaussian prohahility 

density function, the salution maximizes the log likelihood function 

L(x) = log(p~Jy(xlv)) (2.6) 

as a function of the unknown samples x = [st(l), St(2)l ... , St(m)]T. Maximizing the log 

likelihood function is a well known method to ohtain estimates in statistics. Writing out 

(2.4) results in 

This is a quadratic expression in E {Q.i,Q.k}, jE V, k E V, and hi,l, i= 1, ... ,m, l = 

1, ... , m. Since stationarity and knowledge of the autocorrelation function R( ·) we re assu­

med this can he rewritten to yield 

E {f (L L hi,ihi,kR(j- k)- 2 L L hi,iR(j- t(i)) + O";)}. (2.7) 
i=l jEV kEV jEV kEV 
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The finite data sequence Restoration 

with u; the varianee of the stochastic process. Because (2. 7) is quadratic in hi,/, i = 

1, ... , m, l = 1, ... , N, minimizing this equation, if possible, is accomplished by setting 

the derivatives with respect to hi,l to zero. A pro of that there exists a solution ( that is not 

necessarily unique) may be found in [9]. It is also shown there, that the solution can be 

written in the form 

H- -G--lG - ' (2.8) 

with H an m x N matrix with elements hi,j, i = 1, ... , m, j = 1, ... , N, G an m x N 

matrix with elements 9i,j, i = 1, ... , m, j = 1, ... , N, and G an m x n matrix with 

elements 9i,j, i = 1, ... , m, j = 1, ... , m. The elementsof G are related to the elements 

of G by the relation gi,j = 9i,t(j), i = 1, ... , m, j = 1, ... , m. The matrix G can be 

determined directly from the autocorrelation matrix and the pattem of unknown samples. 

How this can be done will be discussed later in this section. Since G can be calculated 

from G, finding a solution comes down to finding G. The solution is given by 

A H G--lG X= V=- V. (2.9) 

This involves inversion of G which is computationally inefficient, since it requires 0( m4 ) 

multiplications. Therefore (2.9) is written in the form 

Gx = -Gv = -z. (2.10) 

Now finding the estimates comes down to solving a set of linear equations, which only 

costs 0( m 3) multiplications, and is therefore computationally much more efficient. Only 

G remains to be calculated from the autocorrelation function. For this the autocorrelation 

matrix R with elements ri,j = R(i- j), i,j = 1, ... , N, is needed. In [9], two cases are 

distinguished. The first case is when the rows of the autocorrelation matrix are linearly 

independent, i.e. R has full rank. The relation between R, G and the pattem of unknown 

samples is then given by 

(2.11) 

Here Ït(j) is the t(j)th column of the N x N identity matrix I. This case is called the regular 

case. The other case is called the singular case. It applies when there are only N - m or 

less linearly independent rows of the autocorrelation matrix. In this case it can be proved 

[9] that a restoration can be made with zero varianee of the statistkal restoration error, in 

other words, a perfect restoration can be made. Then G can be found from R by finding 

a non-trivial salution of 

(2.12) 

with 0 the all zero m x N matrix. Non-trivial means that G must have rank m. 
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Restoration The infinite data sequence 

2.3 The infinite data sequence 

For the infinite data sequence, some slight modifications have to be made. For the regular 

case (2.11), which can also be denoted as 

Rgj = Ît(j),j = 1, ... , m, 

with gj the jth column of GT, becomes 
00 

L R(k)(gj)l-k = 81-t(j)· 
-oo 

For the singular case (2.16), rewritten as 

Rgi = 0, 

becomes 
00 

L R(k)(gj)I-k = 0. 
-00 

(2.13) 

(2.14) 

For both cases, the elements of the matrix G become shifted versions of a sequence 9k· 

The elements of G are related to the sequence 9k by 

9i,j = 9j-t(i)· (2.15) 

For the regular case the sequence 9k may be computed from 
71' 

1 J 1 i8k 
9k = 21!' S(B)e dB. 

-71' 

(2.16) 

With the fourier transfarm G( ei8
) of the sequence 9k defined by 

00 

G( ei8) = L 9kei8k, (2.17) 
k=-00 

this is equal to 
i8 1 

G(e )= S(B)' 

For the singular case a G( ei8 ) has to be found such that 

(2.18) 
-71' 

The 9k are then given by the inverse transfarm of (2.17) 

(2.19) 
-71' 

11 



The autoregressive model Restoration 

2.4 The autoregressive model 

2.4.1 Autoregressive processes 

First, the restoration method will be examined under the assumption that the data se­

quence sk, k = -oo, ... , oo, is a realization of a stationary stochastic process ~kl k = 
-oo, ... , oo, that can be modeled as an autoregressive processof finite order. This means 

that the following equation holds for the stochastic process 

p 

L a1~k-1 = flkl k = -oo, ... , oo. 
1=0 

(2.20) 

Here p is the (finite) order of the autoregressive process, ao, a1, ... , aP, ao = 1, are the 

prediction coefficients and flk, k = -oo, ... , oo a zero-mean white noise process with 

excitation noise varianee O";. A stochastic process flkl k = -oo, ... , oo is a zero-mean 

white noise process with excitation noise varianee O"; if E {fld = 0, k = -oo, ... , oo, and 

E {flkflz} = ók-zO";, k, l = -oo, ... , oo. The spectrum of the autoregressive processis given 

by 

S(O) = 
0"2 

e 

I f a 1e-i
8f 

1=0 

0"2 
e 

p 
bze-iB1 L: 

(2.21) 

l=-p 

with 
00 

bk = L:.: a1a1+k, (2.22) 
1=-oo 

assuming ak = 0 for k < 0 and ak = 0 for k > p. An autoregressive process can be 

regarcled as the output of an all-pole filter, as exemplified in Figure 2.4.1. This follows 

from rewriting (2.20) in the following form 

p 

~k = flk- L a1~k-1 =, k = -oo, ... , oo. 
1=1 

This all-pole filter then has a transfer function 

1 

12 
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Restoration The a.utoregressive model 

r---------------------------- Sk 

+ 

Figure 2.1: Model of an autoregressive processof order 3 

a.nd is excited with white noise with varianee O";. The poles of the filterthen are the zeros 

of 

p 

A(z) = L a1z-1
, zE <C. 

1=0 

(2.25) 

The autoregressive filter must be stable, which is equivalent to requiring that the poles of 

(2.25) are all within the unit circle of the complex plane. First, in Subsection 2.4.2 the 

restoration methad for realizations of autoregressive processes will be examined under the 

assumption that an infinite data sequence is available. It will be shown that this yields a 

method that is also valid when only a finite data sequence is available with no unknown 

samples in the first and the last p samples. It will then be shown that for these cases 

the salution can also be expressed as the salution of a minimization problem. Until then, 

it was assumed that the autocorrelation function and thus the autoregressive parameters 

were completely known. In most practical cases, this is not true. This means that the 

autoregressive parameters have to be estimated first from the incomplete data sequence. 

This is discussed in Subsection 2.4.3. This estimation method will also be shown to be 

related to the minimization problem mentioned before. In Subsection 2.4.4 the results of 

the previous subsections will be used to make the restoration method adaptive. Then, 

finally, in Subsection 2.4.5 attention will be paid to the case where there is a finite data 

sequence available with unknown samples in the first and last p samples. This is of interest 

since for the signals under consideration these samples are likely to be unknown. 

13 
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2.4.2 Restoration, infinite case 

It was already assumed that there would he only a finite number of unknown samples and 

that their indices are all within the interval 

p + 1 ~ t(1) < t(2) < ... < t(m) ~N-p. (2.26) 

For reasons that will become clear later, the index of the first unknown sample was chosen 

to he greater than or equal to p + 1 (p is the order of prediction) and N was taken so that 

N-p would he greater than or equal to the index of the last unknown sample. In [9] it 

was derived that the estimates can then he found by taking 

with the bk given by (2.22) and subsequently solving (2.16) 

with 

and 

Gx= -z 

SÏi.i = bt(j)-t(i), i, j = 1, ... , m, 

p 

zi = L bkvk-t(i), i= 1, ... , m. 
k=-p 

(2.27) 

Since the 9k given in Subsection 2.4.2 constitute a sequence of finite length, it can he 

seen that, if p + 1 is smaller than or equal to the index of the first unknown sample and 

N-p greater than or equal to that of the last unknown sample, only known samples with 

indices between 1 and N will he used to make a restoration. This means that this method 

of restoration is also applicable in a situation where a finite segment of an infinite sequence 

is under consideration, provided that at least the first p samples and the last p samples are 

known. N ow consider minimizing 

N p 2 

Q:+l(a,x) = L L:a1sk-1 , (2.28) 
k=p+l 1=0 

with respect to the unknown samples x. Here x is the vector of unknown samples 

and a the vector of prediction coefficients 

14 



Restoration The autoregressive model 

It can be shown that, under the assumptions stated above, (2.28) can be written as 

N P 

Q:+l(a,x)= L (La1vk-1) 2 +2xTz+xTGx. 
k=p+l 1=0 

(2.29) 

Minimizing (2.29) with respect to the unknown samples x is equal to setting the derivatives 

with respect to x to zero. This gives 

Gx = -z. (2.30) 

with the same G and z as given for the finite case with the first and last p samples nat 

unknown. Thus minimizing (2.29) will yield the same estimates for x as the restoration 

for the infinite case c.q. the finite case with p known samples on either side. 

2.4.3 Estimation of the AR-parameters 

To make the restoration, the autocorrelation function must be known, which, for autore­

gressive processes is equivalent to knowing the prediction coefficients. These have to be 

estimated from the data. However, nat all the data are known in advance, because a num­

ber of samples is unknown. Therefore an initial estimate for those samples has to be made. 

Usually this initial estimate is made by setting all the unknown samples to zero. This data 

segment will be used to make a first estimate of the prediction coefficients. The prediction 

coefficients are then used to make new estimates for the unknown samples. This leads to 

an iterative estimation procedure of subsequently estimating the unknown samples and the 

prediction coefficients. To estimate the prediction coefficients, two methods are used: the 

autocorrelation methad and the autocovariance method. 

Autocorrelation method Suppose that the autocorrelation function of the stationary 

stochastic process 21c, -oo < k < oo is known, how this is estimated from the data will 

be discussed later. Now, since it is assumed that §..k is an autoregressive processof order p 

the following must apply 
p 

§..k = ~ - L ai§..k-i, 
i=l 

therefore the following equation is satisfied 

p 

R( l) = E {§..k§..k-1} = - L ai[ bk-i§..k-1} + E {~§..k-1} · 
i=l 

15 
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Sirree the all-pole filter is causal and ~k is white noise, E {.~a~} = 0 if a > b, and the above 

equation reduces to 
p 

R(l) = - L aiR(l- i), 
i=l 

for l ;:::: 0. This can he rewritten as the so-called Yule-Walker equations 

R(O) 
R(1) 

R(p- 1) 

R(-1) 
R(O) 

R(p- 2) 

R( -p + 1) 
R( -p+ 2) 

R(O) 
lD =-

R(1) 
R(2) 

R(p) 

(2.31) 

Solving (2.31) then gives estimates ä fora. To solve (2.31) an estimate for the autocarre­

lation function lagsis needed. In principle this could he clone by taking 

~ 1 N-lkl 
Runbiased(k) = N _ lkl I; Sn+lkiSn (2.32) 

as an estimate where s1 , ... s N are the data available. It is called unbiased because 

E { Runbiased(k)} = R(k). 

Another estimate is 

(2.33) 

It can he seen directly that the expectation values of the estimates for the autocorrelation 

lags are biased, sirree 

E { Rbiased(k)} = N ~lkl R(k). 

This bias is rather small if k ~ N. Sirree in practical cases, only the autocorrelation lags 

R(O) through R(p) are used and usually p ~ N and thus kmax ~ N this bias can he 

neglected. The relation between the two estimates for the autocorrelation function can he 

expressed as 
~ N -lkl ~ 

Rbiased(k) = N Runbiased(k). 

This means that the biased estimate is the unbiased estimate windowed with a triangular 

window. In practical applications there are two reasans to favor the biased estimates. 

First, for practical applications the sum of the varianee and the squared bias of the tends 

to he smaller for the biased estimate than for the unbiased estimate [7]. The second 

reason is that the unbiased estimate may provide invalid autocorrelation sequences. This 

16 
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can be seen as follows. The estimates for the autocorrelation lags can only be valid if 

S( B) ~ 0. This can be shown [8] to be equivalent to the requirement that any N x N 

autocorrelation matrix is positive semi-definite (a matrix M is positive semi-definite if, 

with u =J 0, uHMu > 0). This automatically provides estimates for the autoregressive 

coefficients that form a stabie and causal autoregressive filter. It can be proven that 

the positive semi-definiteness necessarily holds for the biased autocorrelation estimates, in 

contrast to the unbiased autocorrelation estimates, which may forma non-positive-definite 

estimate for the autocorrelation matrix. For these two reasans the biased autocorrelation 

estimates are used preferably, rather than the unbiased estimates. It can be proved that 

for the unbiased estimate, the autoregressive parameters may equally well be found by 

minimizing a slight modification of (2.28), namely 

00 p 2 

Q~00 (a,x)= L L:a1sk-1 , (2.34) 
k=-oo 1=0 

with respect to the vector of predietien coefficients a. Here the available data segment is 

extended with zeros on both sides. Note the similarity between (2.28) and (2.34). 

Autocovariance method Minimizing (2.28), written in a somewhat different notatien 

N p 2 

Q(f)( a(!), x) = L La~!) sk-l , (2.35) 
k=p+l 1=0 

with respect to the vector of forward predietien coefficients aU) then yields the so-called 

autocovariance equations 

with 

C( -1, -1) C( -2, -1) 
C( -1, -2) C( -2, -2) 

C( -1, -p) C( -2, -p) 

C( -p, -1) 
C( -p, -2) 

C( -p, -p) 

N 

aU) 
p 

C( -k, -l) = L si-ksi-1, -k, -l = 0, ... ,p. 
i=p+l 

C(O, -1) 
C(O, -2) 

C(O, -p) 

(2.36) 

Note that reversion of the data sequence will yield different predietien coefficients. These 

are called the backward predietien coefficients. The backward predietien coefficients follow 

from minimizing 

(2.37) 
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with respect to the vector of backward predietien coeffi.cients a(b). Both methods are widely 

used for estimating predietien coefficients for applications in speetral estimation [7]. The 

autocorrelation method, with biased estimates ensures a stabie filter. The autocovariance 

method does not, but has better performance on short data sequences, since it does not 

extend the data sequence with zeros, therefore reducing the bias caused by that extension. 

2.4.4 Adaptive restoration 

Until now, it was either assumed that the samples were known and the autoregressive 

parameters had to be estimated or that the autoregressive parameters were known and 

the samples had to be estimated. In practical cases, however, neither of these will be 

known. However, estimating both autoregressive parameters a, as well as estimating the 

unknown samples x, can be formulated as minimizing a function Q(a, x) quadratic in both 

the unknown samples x and the autoregressive parameters a. Either Q(a,x) was chosen 

(2.35) 

or (2.37) 
N-p p 12 

Q(b)(a(b), x) = {;_ ~ a~b) sk+1 , 

where it was required that there were at least p known samples on either side or (2.34) 

00 p 2 

Q':'00 (a, x) = L L a1sk-1 , 
k=-oo 1=0 

where the data segment was extended with zeros on either side. Since these expressions are 

offourth order when minized simultaneously fora and x it is a difficult problem because the 

salution cannot be found analytically. Therefore the following approach is used: An initial 

estimate :X(l) for the unknown samples (usually an all zero vector) is made. Q(a,x(l)) is 

minimized with respect to a. This yields an estimate ä(l) for the autoregressive parameters. 

Now Q(ä(l), x) is minimized with respect to the unknown samples x which yields a new 

estimate :X(2) for the unknown samples. This procedure may then be iterated until a 

satisfactory restoration is obtained. Usually convergence is fast and only a few iterations 

(e.g. 3) are needed [9]. Q( a, x) may be used as an indication of the quality the restoration. 

It can be proven [9] that an unbiased estimate for 0'; is given by 

(2.38) 
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with m the numher of unknown samples, for the case that there are at least p known 

samples on either side of the data segment. A similar expression can he formulated for 

Q(bl(a(b),x). Another estimate for 0'; would he 

a-;= N 1 Q~oo(a,x), 
+p-m 

(2.39) 

Intuitively, it can he understood that ifthe varianee ofthe excitation noise hecomes smaller, 

the restoration will he hetter. Another indicator would he the varianee of the restoration 

error. Since this requires inversion of the m x m matrix G -I this is not feasihle for practical 

cases with possihly more than 100 unknown samples. It should he noted that convergence 

of this methad is not necessarily to a glohal minimum. 

2.4.5 Estimation of samples on boundaries 

When minimization of (2.35) is used to find estimates when there are unknown samples 

within the first p samples of a data sequence, severe prohlems arise. This can he seen 

as follows. Assume that the AUl(z) from (2.24) has all its zeros within the unit circle. 

Note that this might not necessarily he the case if the prediction coefficients are estimated 

using the autocovariance method. For conveniency it will he assumed that there is a data 

segment availahle si, 1 :::; i :::; N, N ~ p. Now the varianee of the statistica! restoration 

error will he examined for two cases. The first case is when a hurst of m samples on the 

right withindices i > N has to he restored. The second case is when a hurst of m samples 

on the left with indices i < 1 has to he restored. For hoth cases only the limit for m goes 

to oo will he examined. It is relatively easy to prove that in the first case the specific 

restoration for a sample si, i > N, will he given hy 

p 

si = L aU)lsi-l· 
1=1 

This means that, with §_k = §.k! k =N-p+ 1, ... , N, 

Since it was assumed that A( z) had all zeros within the unit circle it is clear that 

lim §_k = 0. 
k->oo 

Therefore 
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The statistica! restoration error per sample for a hurst of m samples therefore too, has in 

the limit that m goes to oo the value 

Thus for a burst of infinite length the interpolation error approaches the signal variance, 

the same result that was found in [5] for the case of a burst in between known samples. A 

similar derivation for the hurst on the left side yields 

for the statistkal restoration error for the kth sample and 

lim E {_!_ f(i1-i- .,i1_i)
2

} = oo, 
m--+-00 m i=l 

for the statistica! restoration error per sample. Both for the limit that m goes to oo. 

Finding estimates by minimizing (2.35) while assuming that A(b)(z) has all its zeros within 

the unit circle in the complex plane yields R(O) for restorations on the left and oo for 

restorations on the right, i.e. exactly the opposite of the forward prediction method. The 

correct method should ohviously yield restorations that have statistkal restoration errors 

per sample that go to R(O) in the limit m goes to oo on both sides. When estimates for 

samples on hoth houndaries have to he found, these restoration methods therefore do not 

work correctly. The actual reason for these errors lies in the fact that, if (;U) denotes 

the restoration matrix for forward prediction and G(b) the restoration matrix for backward 

prediction have the following property. The row Gl~}, j = 1, ... , m, becomes much smaller 

than the other rows of (;U) in the case of unknown samples on the left side, yielding a 

sparse matrix with at least one eigenvalue close to zero, typical of the order aifl. A similar 

statement can he made for the row G~~J' j = 1, ... , m, of G(b). Since the varianee of the 

relative restoration error can be expressed as [9] 

E = u;trace(G-1
). 

mR(O) 

With À1 :::; .X2 :::; ••. :::; Àm the eigenvalues of G it follows that 

(2.40) 

(2.41) 

which will he dominated hy the lowest eigenvalues À. Since for the case that samples have 

to he restored on the boundary, one eigenvalue will he close to zero, it follows that the 
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varianee of the statistica! restoration error per sample will get rather large. This behavior 

can be improved by using the following restoration matrix 

{2.42) 

Before proceeding with evaluating this matrix, first the solution, consistent with solving 

(2.11) for an autoregressive process of known order p will be examined. This involves 

inverting the autocorrelation matrix. The autocorrelation matrix is Hermitian (ri,j = rj,i) 

and Toeplitz (ri+l,j+l = ri,j)· In [7] a method is presented for inversion of a Hermitian 

Toeplitz matrix. Using this it can be found that the inverse of the N x N autocorrelation 

matrix R is given by 

1 

PR 

0 

a* 1 

0 

0 

0 

0 

aN-1 0 

with all ... , aN_1 given by the salution of 

0 

0 

1 l 
0 

1 

0 

0 

a* 1 

0 

(2.43) 

0 0 

R(O) 
R(1) 

R((N- 1)) 

R( -1) 
R(O) 

R((N- 1)- 1) 

R( -(N- 1)) 
R(-(N-1)+1) 

R(O) 
( :, l =- (p:J.(2.44) 

aN-1 0 

Note that this is a modified form of the (2.31). If it is assumed that p < N, then ak = 

0, k = p + 1, ... , N- 1, and PR = u;. Now, since Ris not only Hermitian, but in fact 

symmetrie, since only real-valued data are used, it follows that a; = ai. This yields for the 

elements (R)~f, i,j = 1, ... ,N + 1 ofR-1 

1 N 

(R)~/ = - 2:(ai-1aj-1- aN+l-i+1aN+l-j+1), i,j = 1, ... , N + 1. 
PR 1=1 

(2.45) 

The second term is only used when i ~ N- (p -1) 1\ j ~ N- (p- 1 ). A simple calculation 

shows that (2.45) can be written as 

1 N 
(R)~} = - L a1-ia1-j - aN+l-1+iaN+l-1+i, i, j = 1, ... , N + 1. 

PR 1=1 

{2.46) 
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In this form the second term is only used when i ~ p 1\ j ~ p. If it is demanded that p < ~ 
then calculating the lower right (N-p) x (N-p) submatrix (or equivalently the upper left 

(N-p) x (N-p) submatrix) of R-1 can be done by just summing the left part of (2.45) 

(or (2.46)). It can be proven that for the lower right part this can be done by miniruizing 

with respect to x (2.35) 

and for the upper left part by miniruizing with respect to x (2.37) 

N-p p 2 

Q(b)(a(b), x) = ,L ,L a~b) sk+1 , 

k=l 1=0 

with aU) = a and a(b) = a The first expression is the forward prediction and the second 

the backward prediction. If it is furthermore demanded that p < ~ ( this is a stronger 

requirement than the previous condition p < ~), then the upper right and lower left 

p x p matrices are identically zero. This also follows correctly from the salution of the 

minimization problems. 

The problem is thus solved, but stillsome fast indication ofthe quality ofthe restoration 

is needed. Since there is no minimization problem associated with the correct solution, 

the only indication would follow from inversion of the restoration matrix. Since this is 

not feasible, this approach is dropped and the minimization problem associated with the 

restoration matrix of (2.42) is adopted. The G(b+f) follows from the salution of miniruizing 

Q(f+b)(af,ab,x) = QUl(aU),x) + Q(b)(a(b),x) = 
N p 2 N-p p 2 

L La~!) sk-I + L L a~b) sk+l (2.47) 
k=p+l 1=0 k=l 1=0 

with respect to x. Here af = [a{, a~, ... , atJ T are the forward prediction coefficients as 

discussed in Paragraph autocovariance of Subsection 2.4.3 and ab = [at, a~, ... , atJT the 

backward autocovariance prediction coefficients as discussed there. This follows directly 

from miniruizing this (2.47) with respect to the forward and backward prediction coeffi­

cients af and ab. The estimates for x now follow from miniruizing (2.47) with respect to 

x. Since (2.42) is the sum of the two sparse matrices, but since these are not sparse in 

the same regions, this matrix is given by (2.42) is not a sparse matrix. The effect that 

corrupted the restorations that foliowed from miniruizing (2.35) and (2.37) respectively 

with respect to x will therefore be suppressed. 
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Comparison In this paragraph a comparison is made between the restoration method 

that yields estimates that fellow from minimizing (2.47) with respect to x and the method 

that fellows from solving (2.16). Minimizing (2.47) could be written as assuming that 

1 { N N } (RQ)~} = 2 L a{_ia{-i + L aL1a~_1 , i,j = 1, ... , N + 1. 
PR 1=1 1=1 

and if for conveniency it is assumed that af = ab = a this is equal to 

(2.48) 

Now adding (2.45) and (2.46) and dividing by 2 yields 

-2

1 {t aN+I-l+iaN+I-l+i + aN+l-i+1aN+l-i+1}, i, j = 1, ... , N + 1. 
PR 1=1 

(2.49) 

This gives R -l for an autoregressive process with predietien coefficients ak. It can readily 

be seen that the secend term (aft er the minus sign) vanishes always, except for the cases 

that i ::; p A j ::; p or i > N - p + 1 A j > N - p + 1. This means that only the p x p 

upper left and lower right submatrices are different. This demonstrates that for the case 

that there are at least p known samples on either side, both methods are identical, since 

then only elements that are not withinthese submatrices of R- 1 are used. Since R- 1 is 

persymmetrie only the deviations of the upper left p x p matrix have to be considered. 

These are given by 

(2.50) 

Unfortunately these deviations usually do not become small relative to the other compo­

nents of R - 1. Therefore it can be condurled that for the case that there are unknown 

samples in the boundaries it cannot be guaranteed that the two restoration methods yield 

similar restorations. 
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2.5 The band-limited model 

In this section, a method will he discussed, in which it is assumed that the data sequence 

is a realization of a band-limited signal §..b k = -oo, ... , oo. Band-limited means that the 

spectrum of the signal, S( 0) varrishes on a finite subinterval of the fundamental baseband 

[0, 1r]. It can he proven that for a finite number of unknown samples a perfect restora­

tion can he achieved. This however is the case in only two cases. For bath cases, the 

band-limited assumption should hold quite good, sirree it can he proven that out-of-band 

components strongly degrade the results. The two cases are discussed in Subsection 2.5.1 

and Subsection 2.5.2 and assume the availability of an infinite segment or a finite, but pe­

riodic sequence respectively. Bath are in practice too sensitive to out-of-band components. 

The periodicity requirement is, at least for the signals under consideration, artificial. The­

refore the methad assuming an infinite data sequence is examined more carefully. It can 

he shown that using this methad when only a finite data sequence is available, introduces 

serious errors, sirree the finiteness of the data segment can he interpreted as a farm of out­

of-band noise. Performance can he improved by using windowing techniques. How this is 

clone and what the advantages and disadvantages are is discussed in Subsection 2.5.3. Then 

the band-limited methad is compared to the method basedon an autoregressive model in 

Subsection 2.5.4. This leads to a windowing technique in Subsection 2.5.5 that is slightly 

different from the one discussed in Subsection 2.5.3. 

2.5.1 The infinite case 

Suppose that RN represents the N x N autocorrelation matrix of a signal with spectrum 

S(B). The elements of RN are RN = (R(k - l))k,l, k, l = 0, ... , N - 1. Now, sirree 
00 . 

S(O) = L: R(k)e- 1k9 , 0::;; 0::;; 1r. It follows from Szegö's limit theorem that the eigenvalue 
k=-oo 

distri bution of RN for N --+ oo approaches the value distri bution of S( 0) on the interval 

0 ::;; 0 ::;; 1r. It was assumed that the spectrum of the signal vanished on some part of 

the fundamental interval, say on [a, b], with 0 ::;; a < b ::;; 1r. This means that the matrix 

RN will have an infinite number of eigenvalues that go to zero, as N --+ oo, which means 

that the theory for the singular case applies. In [9], Appendix A, it is shown that even 

for signals that are not band-limited in the sense outlined above, but that have a fairly 

strong attenuation in some part of the fundamental interval, the autocorrelation matrix 

may he considered almast singular. Sirree the theory of the singular case can he applied, 
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gk, k = -oo, ... , oo must be found that satisfy (2.18): 

and (2.19) 

'Ir 

__!__ j G(ei8)S(B)ei8kde = 0, 
211" 

-'Ir 

'Ir 

9k = 2~ j G(eie)eiBkde. 

The ba.nd-limited model 

A necessary and sufficient condition is that the fourier transform, G( ei8 ) of the 9k is zero in 

the regions of the fundamental interval where the spectrum of the signal S( B) is non-zero. 

One way to do this is to take G( ei8 ) to be an ideal bandpass filter. For the case that 

the data segment is a realization of a stochastic process band-limited to [0, a::1r], a < 1, 

this ideal bandpass filter has to be a high-pass filter with passband ( a::1r, 1r] given by the 

expression 

sin( ak1r) 
9k = 8k - k1r , k = -oo, ... , oo. (2.51) 

This is an infinite sequence. Now (2.10) 

Gx= -z 
00 

has to be solved with 9i,j = 9t(j)-t(i), i, j = 1, . .. , m and zi = L: 9k-t(i)vk, i = 1, ... , m. 
k=-00 

It can be proven [9] that for the singular case a perfect restoration can be made. if for some 

reasons, the calculated syndrome contains errors, the restorations will contain errors too. 

Suppose that the calculated syndrome is z' as opposed to its true value z then it can be 

derived [3] that the following relationship holds for the new ( erroneous) estimates vector 

x and the vector of "true" values x: 

.:.:__11 x...."...-...."...x--"-11 < _Àm_ax 11 z' - z 11 

llxll - Àmin llzll ' (2.52) 

in which Àmax and Àmin denote the maximum and minimum eigenvalues of G. Now for the 

most critical case, a burst of m samples, it can be derived that 

À min ~ e -am'Tr. 

Furthermore, Àmax ~ 1. Thus, for an erroneous syndrome, the restoration errors increase 

exponentially with increasing bandwidth and increasing burst length. The first error that 

can occur in the syndrome is out-of-band noise (the effect of out-of-band noise was stuclied 

in [9]), this includes the noise due to quantization errors. Finally 9k present an infinite 

filter and the syndrome z can therefore never be calculated exactly, in practice some finite 

approximating sequence will be used, introducing an error in the syndrome. In general, 

this procedure is just a windowing of the 9k· This is stuclied in Subsection 2.5.3. 
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2.5.2 The finite periodic case 

Here it is assumed that the signal has a periodicity of N and is band-limited to [0, a1r] with 

a < N -;.,m. These restrictions mean that it can he solved with the fini te method for the 

singular case. The restoration may he found by minimizing the expression 

N 

L 1Fdatasegmentl
2 (i), 

i=[ o:Nl 
(2.53) 

with respect to the unknown samples x. Here Fdata segment the complex discrete fourier 

transfarm of the sequence si, i = 1, ... , N. It can he shown that (2.53) is of the form 

with s the data sequence including the unknown samples, F the complex fourier transfarm 

matrix, and Pa: the projection matrix that filters out the high-pass components. This can 

then he written as 

(2.54) 

with Avv' Bxv and Cxx submatrices of FTP;!'P o:F. Minimizing (2.54) with respect to x 

then directly yields the estimates x for the unknown samples, namely 

A slightly different representation however, provides a link with the method discussed in 

the previous subsection. This is done by using the same gk as described in that subsection 

and making a infinite set of equations for the case where the same data series including 

unknown samples is periodic. Although this set of equations cannot he solved directly, it 

indicates that the method has the same sensitivity to out-of-band noise. It lacks the other 

two sourees of errors, i.e. errors caused by truncation of the filter and errors caused by 

only being able to evaluate things for a time-limited part of the data segment. 

2.5.3 Windowing the gk 

In this subsection, some results from [1] are presented. There, the case is examined that 

the data is low-pass band-limited to the interval [0, a1r], a < 1. It can he straightforwardly 

he derived from the fact that high-pass filtering this signal yields 0, that the estimates for 

the unknown samples Xj are given by 

00 00 

L ((H(o:)t 1)i,jXj = L (H(o:))i,kVk, (2.55) 
j=-oo k=-00 
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with H(a) the perfect high-pass matrix, with pass-band [a1r, 1r]. 
With M(a), the perfect low-pass matrix, such that H(a) =I- M(a), it fellows that (2.55) 

may be written as 

00 00 

L ((I- M(a)t1)i,rri = L (I- M(a))i,kvk. 
j=-oo k=-oo 

Note that (I- M(a))i,kl i =J. k, may be replaced by (M(a))i,k, i =J. k, yielding the expression 

used in [1]. The elements ofi-M(a) can be connected with the theory as presented in this 

report by making the identification (I- M(a))i,j = 9i-j, i, j = -oo, ... , oo. This proves 

that, if the 9k from the theory are taken to be the filter coe:fficients of an ideal low-pass 

filter that both theories are equivalent. Independently it was shown in [9] and [1] that 

the error due to out-of-band components is concentrates in the pass-band c.q. is pulse­

shaped and is likely to be "amplified" as shown in Subsectien 2.5.1. In [1] it is showed that 

windowing the 9k can improve the performance of the restoration method in the presence 

of out-of-band components at the cast of a decreased performance in the absence of noise, 

in particular that it does not yield good restoration for signals band-limited to [0, a1r], but 

only for signals band-limited to [O,f31r], with f3 <a. In [1] the sequence 9k is replaced by 

a windewed version, i.e. by gk('-y) = gkW(.J1k), with W a smooth even window function 

on IR, such that W (x) ---t 0 as x ---t oo, and 9k ('-y) ---t 9k as 1 ---t 0. The 1 is a number 

close to zero introduced in [1], that is varied to study the infl.uence of the windowing. In 

[1] good results were obtained for W(x) = e-x
2

, and 1 in the range [10-2 , 10-3]. The 

interpretation is that the G, that is I- M(a), that fellows from the windewed gk, will tend 

to have eigenvalues that are less close to zero, which is proved for the case of a burst of 

unknown samples in [1]. This can be easily seen if G is written down. The strenger the 

9k are windewed the more the G resembles the matrix g0I, i.e. ~ ---t 1 as 1 ---t oo. 
mm 

Furthermore, the calculation of the syndrome is easier, since it converges more strongly 

as 1 ---t oo, and truncation will not introduce such a large error. Now 1 is varied to get 

a satisfactory tradeoff between better results in the presence of out-of-band noise and the 

performance of restorations of in-band signals. 

2.5.4 Comparison with the autoregressive model 

Given the predietien coe:fficients a 0 through aP the restoration method for an autoregressive 

model fellows from minimizing (2.34) 
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with respect to the vector of unknown samples x. Now, since the data sequence has finite 
00 

energy, i.e. 2:: jskj2 < oo, because only si, i = ... 1, ... , N is available, then identifying 
k=-oo 

the prediction coefficients with , according to Parseval's inequality 

00 p 2 

Q~00 (a, x) = L L azsk-l = 
k=-oo l=O 

7r N-1 2 7r N-1 2 

_!__ j L Sk+le-iBk IA(eiB)j2dO = _!__ j L Sk+le-iBk B(eiB)dO, 

27!" -7(" k=O 27!" -7(" k=O 

(2.56) 

with B( ei8 ) = f b1e-i81 . 
l=-p 

Similarly it follows, for the band-limited model, given an infinite data segment, that 

the restoration method can be written as 2 minimizing 

2 
00 00 

k=-oo l=-oo 

7t" 2 7t" 

2~ j f sk+le-iBk jG(eiB)j2dO = 2~ j S(O)G2(eiB)dO, 
-7(" k=-00 -7(" 

(2.57) 

with respect to the vector of unknown samples x. Here g is the (infinite) vector of the 

filter coefficients gk. For an i deal pass-band filter ( eigenval u es 1 and 0 only) it follows 

straightforwardly that G2( ei8 ) = G( ei8). For the band-limited method, it can be proven 

that in the absence of errors, the restoration method is independent of choosing G( ei8 ) 

instead of G2( ei8). The difference between the method based on an autoregressive filter 

thus lies in the fact that for the band-limited model it is assumed that G2 = G, while 

for the autoregressive model A2 is replaced by B, with B = A2• It is thus clear that 

for both methods, a submatrix of a non-negative definite matrix (e.g. G or B) must be 

used as the restoration matrix. This means that windowing the gk must be done such 

that the fourier transfarm of the gk is non-negative definite. The method presented in the 

following subsection assures that this requirement is met for general windowing functions 

(for example a simple rectangular window). 

2.5.5 Squared window 

As was noted in the previous subsection, an arbitrary windowing function in general does 

not yield a sequence gk with a non-negative definite fourier transfarm G. This can be 

2This is not a rigorous mathematica! proof, since not all steps may be allowed, however it gives a good 

indication of the line of reasoning. 
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solved as follows. Instead of using the windowed sequence directly to build the restoration 

matrix, (2.57) is minimized directly with respect to the unknown samples x: 

00 00 

L I L W( {;k,)glsk-11 2
• (2.58) 

k=-oo 1=-oo 

This method is in fact equal to leaving the (windowed) G2 in (2.57) insteadof substituting 

it with (the windowed) G. 
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Chapter 3 

Pitch determination 

3.1 Introduetion 

In this section, pitch determination in speech signals is discussed. In Subsection 3.1.1, the 

so-called souree-filter model for speech, and in particular the linear predictive coding model 

(LPC) is briefly discussed. Subsequently, in Subsection 3.1.2, the problem of determining 

the pitch in a sampled audiosignalis discussed. The algorithm for the pitch-determination 

algorithm is discussed there also. Finally another pitch determination algorithm, that will 

he used for comparison is qualitatively described. 

3.1.1 Speech model 

In speech-analysis, speech is often modeled with a so-called souree-filter model. It states 

that speech can he modeled as a time-varying souree that excites a stabie time-varying all­

pole filter. The souree is taken either to he noise, or a periadie source, where the periodicity 

is called the pitch-period. When this is compared to actual speech, the noise-source may he 

attributed to the excitation produced by the air being pushed trough a narrow hole in the 

vocal tract, used to produce consonants like /f/, jpj, jsj and jtj. This is usually referred 

to as unvoiced speech. The periadie souree corresponds to the excitation produced by the 

vocal chords in vowels and consonants like jjj, /m/, /n/, jw /. This is called voiced speech. 

The filter is then formed by the rest of the vocal tract. This is schematically depicted in 

Figure 3.1.1 for voiced speech. The souree formed by the vocal chords, produces a periadie 

sound, that for the human voice falls of about 12dB per octave. The periodicity can he 

recognized by the delta-peaks in the signal. Subsequently, this sound is lead through the 

acoustical filter formed by the vocal tract. Finally the mouth opening resembles a filter 

with a filter that falls of circa 6dB per actave as the frequency gets lower. A similar picture 

can he made for unvoiced speech, where the souree is replaced by a ( colared) noise source. 

Often the +6dBjoctave effect of the mouth-opening is incorporated in the filter, as well 

as the -12dB in voiced speech just as the "coloredness" of the noise souree in unvoiced 
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Figure 3.1: souree-filter model for voiced speech 
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speech. This leads to a model that consists of a souree that is either white noise or a 

periodic souree with equally strong harmonies that excites an all-pole filter. The filter is 

often modeled as an autoregressive filter of about order 10. This is called LPC (linear 

predictive coding) analysis. These can be determined with speetral estimation techniques 

for determining the autoregressive parameters as were presented in the previous section. 

Now only the voiced-unvoiced decision and, for the voiced case, the periodicity of the vocal 

chords remain to be determined. Several algorithms exist [11]. The determination of the 

periodicity or pitch of the voiced speech is the main interest in this report. In the next 

subsection, a pitch determination algorithm as presented by Dik Hermes in [4] is explained. 

3.1.2 Pitch determination algorithm 

In this subsection, first some theoretica! background of the problem of pitch determi­

nation will be explained, foliowed by a short description of the algorithm. 

In nature, many sounds, for example the sound produced by a string, do not consist of 

a single pure tone, but of a fundamental frequency and higher harmonies, i.e. two, three 

times the fundamental frequency etc. Not only the fundamental frequency, but also the 
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Figure 3.2: Illustration of the various stages of the SHS pitch determination algorithm. For simplicity, 

only subharmonies up to rank 5 are taken into account. The waveform of the signal is shown in (a). In 

(b ), its amplitude spectrum is shown on a linear frequency abcissa. Five main speetral componentscan be 

distinguished. In ( c) the same amplitude spectrum after peak enhancement A(!) is shown on a logarithmic 

frequency abcissa, A(s), with s = log2 f. The speetral window W(s), representing the auditory sensitivity, 

is presented in ( d). The amplitude spectrum after multiplication with this window, P( s ), is displayed in 

( e ). The subharmonie summation is shownon the right-hand side of the figure. The harmonically shifted 

( compressed on linear abcissa) spectra, hnP( s + log2 n), of rank n = 1, 2, 3, 4, 5 are shown in (f)-(j). The 

sum of them, H( s ), gives the subharmonie sum spectrum, shown in (k). The maximum of the subharmonie 

sum spectrum (see arrow) gives the estimate for the pitch. 

harmonies contribute to the pitch perception. Even in the absence of the fundamental 

frequency, i.e. only harmonies are present, the perceived pitch matches the fundamen­

tal frequency that corresponds to the harmonies. The concept of subharmonies gives an 

explanation of this phenomenon. Here it is assumed that there exists an array of frequency­

sensitive elements, that are excited not only by the frequency they are most sensitive to, 

but also by higher frequencies that are twice, three times the most sensitive frequency etc. 

Higher harmonies contribute less to the formation of the pitch. Viewed in a slightly diffe­

rent way, this statement is equal to assuming that each pure frequency activates not only 

the frequency sensitive element that corresponds to that frequency, but also the element 

with half that frequency, one third etc. These are called subharmonics. This is a model 

for the pitch determination as it is clone in the human mind. 

The pitch determination algorithm about to be discussed tries to mimic this method. In 
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Figure 3.1.2 the algorithm is depicted. It will he described stepwise in the remainder of 

this subsection. The speech segment is sampled at 10 khz and subsequently divided into 

40-ms segments. Subsequently to each segment the following procedure is applied: 

1. Low-pass filtering: This is clone by using a running average filter on the the signal. 

The running average filter W has filtering coefficients wk, k = -oo, ... , oo, with 

wk = i, for 0 ~ k ~ 3 and wk = 0 else. Then only each 4th sample is taken, 

i.e. 75 percent of the samples is thrown away. The signal that is left is thus band­

limited to 1250 Hz. This filtering procedure appears not to introduce any errors 

that seriously affect the pitch determination algorithm [4]. Furthermore, this lew­

pass filtering implicitly assumes that frequencies above 1250 Hz are not necessary to 

make a reliable pitch-estimate. For speech signals this is generally the case [4]. 

2. Windowing: The resulting sequence is then multiplied with a Hamming window to 

diminish distortions in the frequency spectrum caused by truncation at the segment 

boundaries. 

3. FFT: First the sequence is padded with zeros to gain 256 points. Subsequently a 

FFT is performed, yielding the amplitude spectrum. The frequency resolution then 

is 9. 77 Hz on a linear abcissa. 

4. Peak-enhancement: All points further than 2 points ( equal to 19.53 Hz) away from 

a peak (local maximum) in the amplitude spectrum are set to zero. This can he 

interpreted as a method to decrease the infl.uence of anharmonic components to the 

pitch formation [4]. If compared to Figure 3.1.1 it might he seen as a method to 

filter out the peaked structure of the souree that is lost due to the time-windowing. 

According to [4] this doesn't infl.uence the magnitude or position of the peaks. This 

spectrum is then smoothed using a 3 point Hanning window, i.e. if Un represents 

the points of the unsmoothed peak-enhanced frequency spectrum, then the smoothed 

spectrum points An fellow from An = iUn-1 + !Un + iUn+l· 

5. Logarithmic scale: Now the spectrum is calculated for a logarithmic scale. It is 

calculated at 48 points per eetave using a cubic-spline interpolation method. This 

was found to he enough to prevent undersampling of the peaks at higher frequencies 

[4]. 

6. Auditory system: This logarithmic spectrum A(!),- for convenience J, the frequency 

is taken to he a continuons variabie-is multiplied with a raised arc-tangent function, 
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W(f). The raised arc-tangent function is the amplitude characteristic of a filter that 

is supposed to represent the sensitivity of the auditory system for frequencies below 

1250Hz. The result is called P(f), i.e. P(f) = W(f) ·A(!). 

7. Summation of subharmonics: To represent the contribution of subharmonies to the 

pitch perception this spectrum P(f) is shifted along the logarithmic frequency ab­

cissa, multiplied by a weight factor hn and added. This is clearly seen in Figure 3.1.2. 

In a formula, with s = log2 f, this can be represented as 

N 

H(s) = L hnP(s +log2 n), (3.1) 
n=l 

where n numbers the subharmonics. The number N, set to 15, is the number of 

subharmonies that are taken into account. This number, taking into account the 

cut-off frequency of 1250 Hz corresponds to a fundamental frequency as low as 80 

Hz. Voices with higher pitches could do with a lower number [4]. The factor hn was 

chosen 0.84n-l to represent that higher harmonies contribute less to pitch than lower 

harmonies do. The spectrum H(f) is called the subharmonie sum spectrum. 

8. Pitch estimation: The estimation of the pitch is the value f = 28 for which H(f) is 

maximum. 

It can be seen that this algorithm only considers the peaks in the subharmonie sum spec­

trum, which correspond to the virtual pitches in [10]. It doesn't incorporate the information 

in the spectrum P(f), whose peaks are called speetral pitches and are physically present 

in the original signal. This distinction is of importance in Sectien 4.4. It is shown in [4] 

that this algorithm is in qualitative agreement with the principles that are formulated and 

implemented in [10], from which he derives the numerical weight attributed to the virtual 

pitch. These principles will repeated here as well as the qualitative agreement of the SHS 

algorithm with them, as discussed in [4]. The first principle is that there are more speetral 

components (read harmonies) that contribute to the virtual pitch. This is represented by 

the summation in this algorithm (SHS). Secondly, the weight of these contribution of each 

speetral component to the virtual pitch should increase with the weight of a speetral pitch 

that matches the speetral component. This is clone by multiplying the spectrum with a 

function that represents the sensitivity of the auditory system. Third, the weight of each 

speetral component should decrease with the harmonie number, which is realized by the 

decreasing values of hn. The last principle, that if a speetral component has a frequency 

that deviates from the harmonie structure of the other components, that its weight should 
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decrease. This is roughly done by the peak-enhancement procedure. Quantitatively, howe­

ver, SHS is a little bit sim pier, where the choice of the parameters is concerned, as opposed 

to [10], where the parameters are adjusted to quantitative psycho-physical experiments. 

SHS proved to be a good and reliable pitch estimation algorithm, as was shown in [4], for 

natura} speech. Furthermore SHS was tested on telephone speech, i.e. speech high-passed 

filter with a cut-o.ff frequency of 300 Hz. This high-pass filtering implies that the funda­

mental frequency and the first harmonie( s) are no langer present in the signal, and there 

will certainly be no speetral pitch that matches the virtual pitch. Even in this cases SHS 

proved a reliable algorithm. 

Along with this pitch determination algorithm, a voiced-unvoiced decision algorithm 

was used, whose exact nature isn't important. For every pitch estimate it yields a number 

between -1 and 1 that represents the probability that the pitch-estimate wasfora voiced 

segment (higher values) or for an unvoiced segment (Iower values). In [4] it was chosen 

to set the threshold to 0.52. Now for every segment of the speech segment a pitch and 

a voiced unvoiced decision is made. The graphs from the pitch as a fundion of time are 

called pitch contours. Usually they consist only of the pitch estimates that where judged 

voiced. In this report, however, the pitch contour will often be graphed as a whole, i.e. 

every pitch estimate is displayed. 

3.1.3 Enhanced pitch determination algorithm 

As was outlined in the general introduction, restorations of pitch contours have to be made. 

As there was no time left to do perceptual experiments, a comparison with another pitch 

determination algorithm was the only way to compare the restored pitch contours with 

a more or less "good" pitch contour. This is also needed to make any judgements about 

the quality of the restored pitch contours, without doing any perceptual experiments. The 

other pitch determination algorithm, which will only be discussed qualitatively, is generally 

a modified version of SHS. In the first part, it is identical to SHS, including the summation 

of subharmonics, i.e. the spectrum H(f) is determined. Instead of choosing the highest 

peak, the following is done. For each segment in the pitch con tours, a number of high peaks 

in H(f), along with there amplitude in H(f) is stored. Then it is assumed, that if the 

amplitude is higher, the peak is more likely to be a good peak. Furthermore penalties are 

introduced that increase with bigger jumps across different segments. Using backtracking 

techniques, an optimal path is searched for the whole pitch contour, i.e. that with the 

least jumps and the highest average amplitude (there is a weighing introduced between the 

penalties for jumps and the amplitude). This then yields a "smooth" contour, that can 
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be compared with the restored contour. This pitch determination algorithm is generally 

referred to a.s PDT. 
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Chapter 4 

Results 

4.1 Introd netion 

In this section, the results will be presented of the attempts to make restorations of pitch 

contours. First of all, in Section 4.2 a method of judging the quality of restorations is 

introduced that will be used throughout this chapter. Results of these restorations will be 

shown for pitch contours of several sentences. The sentences were divided into those that 

yield "good" pitch contours, using the SHS pitch determination, and those that yield "bad" 

contours. This division was made by an experienced researcher, who has been involved in 

speech-perception research for many years. The sentences will be referred to by their codes. 

The "good" contours were expected to be relatively easy to restore and are listed in Table 

4.1. The general structure of this chapter is as follows. First it has to be investigated, 

using the "good" contours, if it is possible to make satisfactory restorations for these good 

contours. This is done in Section 4.3. For these "good" contours it is expected that 

restorations of pitch contours that were determined using the SHS pitch determination 

algorithm are almost equal to the pitch contours determined using the PDT algorithm. 

The pitch contours produced by PDT are taken as a reference. To make restorations a 

division must be made between known and unknown points. As a first approximation the 

voiced segments were taken to be the known points and and the unvoiced segments were 

taken to be the unknown points. The number of unknown points could be increased by 

setting a higher threshold value for the voiced-unvoiced decision, i.e. a number of voiced 

segments are taken to be unknown and have to be restored. It proved that the method based 

on an autoregressive model is a method that yields fairly good and reliable restorations. 

The method using a band-limited model, although it sometimes gave good restorations, 

proved not reliable enough to yield a restoration method for pitch contours. No further 

results are presented therefore for the bandlimited method, although in Subsectien 4.3.3, a 

short example is given to demonstra te why it cannot be used to make restorations of pitch 

contours. Subsequently, the attention is focused on the restoration of the "bad" pitch 
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Table 4.1: Good contours 

Code Gender Sentence 

Tl6 Female Op een dag kwam een vreemdeling het dorp binnenwandelen. 

T53 Male Weet je wie de sleutel gevonden heeft. 

T59 Male U luistert naar de sprekende chip, ontwikkeld door IPO, Natlab en Elcoma 

Table 4.2: Bad contours 

Code Gender Sentence 

T6 Male Ik was achttien toen er gebeld werd. 

Tl4 Male Kom nou, je wil toch niet op een hert schieten met hagel. 

T19 Female De laatste weken is er enige vooruitgang merkbaar. 

T36 Male John says he can't come. 

contours, listed in Table 4.2. The main problem proved to he the algorithm that has to 

decide between the known and the unknown pitch estimates, i.e. those points that are used 

as the input for the restoration algorithm and those that have to he estimated using the 

restoration algorithm. The voiced-unvoiced decision that was used to make this division 

for the "good" contours was not suflident for the "bad" contours. It was therefore not 

tried to make an algorithm out of this method. Therefore an algorithm was developed that 

used different criteria to discriminate between known and unknown points. In Section 4.4, 

that algorithm is presented. Finally, in Section 4.5, the restorations of all pitch contours 

made by the SHS pitch determination algorithm are shown. To make the restorations, the 

restoration methad from Chapter 2 and the algorithm presented in Section 4.4 are used. 

The restored pitch contours are compared to the pitch contours yielded by the PDT pitch 

determination algorithm. 

4.2 Quality determination 

In this section, a method will he introduced that is supposed to he a measure for the 

quality of a restored pitch contour. First of all it should he noted, that only a perceptual 
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determination algorithm are compared to these resynthesized with a restored pitch con­

tour can measure the actual quality of a restoration. It can then be decided whether 

the performance of the restored pitch contours are superior or inferior to the ether pitch 

determination algorithm. Unfortunately, this was not possible because no time was left 

to do these experiments. Another method is to cernpare the restored pitch contours to 

pitch contours restored by an experienced researcher. The latter are almest always pitch 

contours that consist of straight lines, the so-called close-copy stylization. A close-copy 

stylization is a pitch contour consisting of the minimal amount of straight lines that, if 

used to make a resynthesization of the sentence cannot be discriminated from the original. 

Since the restorations do not consist of a set of lines, close-copy stylizations cannot be fairly 

compared to restored pitch contours. Therefore it was decided to cernpare the restored 

pitch contours numerically to these produced by the PDT pitch determination algorithm. 

This numerical cernparisen had to outputsome number(s) that should indicate the quality 

of the restoration. The numerical method had to satisfy the following criteria 

1. Only these pitch estimates that were restored should contribute to the quality jud­

gement. 

2. Only veieed pitch estimates should contribute to the quality judgement. 

3. The quality should degrade with increasing di:fference in pitch. 

4. The di:fferences in pitch should be measured using a perceptual scale that is a measure 

for the ability to hear the di:fference between two frequencies. 

5. It should he possible to cernpare the quality of two different restored pitch contours 

insome way. 

The first criterion can be easily satisfied. The secend criterion is satisfied by using the 

voiced-unvoiced decision of the PDT pitch determination algorithm. To satisfy the third 

and the fourth criterion, for a single restored veieed pitch estimate, with index i, the 

following measure is introduced: 

(4.1) 

where Pi,restored is the pitch as determined by the restoration method in Hz, ~.PDT the pitch 

as determined by the PDT pitch determination algorithm. The ERB() function transfarms 

the linear frequency abcissa in Hz to the so-called ERB scale [2]. The transformation from 

Hz to ERB can be approximated by [2] 

[ERB] = 21.4 ·log10(4.37E-3 [Hz] + 1). (4.2) 
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Graphs of (4.2) are given with a linear frequency axis in Figure A.8 and a logarithmic 

frequency axis in Figure A.9, both in Appendix A. For low frequencies the transformation 

is almost a linear, while for high frequencies it behaves as a logarithm. The unit of the 

ERB-scale is the ERB. In the ERB scale, the difference of two pitches is a measure for 

the ability to hear the difference in pitch. Therefore, to satisfy the third criterion, the 

difference from the pitch of the restored contour and the pitch as estimated by the PDT 

pitch determination algorithm is taken in the ERB scale. Because the measure should 

increase with pitch-difference, the square from this is taken, to satisfy the fourth criterion. 

The error for a single restored voiced pitch estimate is thus measured in ERB2
• To satisfy 

all criteria, including the last, finally two measures of quality are introduced. The first 

measure is given by 
1 

E= -hLEi, 
iEY 

(4.3) 

where Y is the set of voiced restored pitch estimates in the contour, and h is the number 

of voiced restored pitch estimates in the contour. To get an idea of how the errors are 

spread, the following quantity is introduced: 

a(E) = 

with Y and h as in ( 4.3). 

1 
-L(Ei- E)2 , 
h- 1 iEY 

(4.4) 

The other measure of quality, Ema.x, is given by the description that Ema.x = E;, with j fixed 

and j E Y, such that there is no iE Y, such that Ei > E;. Although the author realizes that 

these are not the only possible measures for quality and that no condusion can be drawn 

from absolute numbers that result from these quality measures. It is expected, however, 

that it gives at least an indication as to how good a restored contour is as compared to 

a restored contour, which was restored using a different restoration method. It should be 

noted that these measures can only be used to say that a restoration of a pitch contour 

is bad (i.e. high value which corresponds to a large distance ). It is not fit to compare 

two pitch contours that are not bad (i.e. both have rather small values, i.e. lie closely 

together). 

4.3 Feasihility 

4.3.1 Introduetion 

Only the pitch contours from Table 4.1 were used to examine the feasibility of the res­

torations. The results are presented in the form of graphs and tables. Graphs are only 
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presented for the sentence T16. The graphs for T53 and T59 show similar features. First 

some pitch contours are shown. 

SHS pitch contour: The pitch contour for T16, determined using the SHS pitch deter­

mination algorithm is shown in Figure 4.1. This incorporates the pitch estimates for the 

unvoiced segments. Most of the "jumpy parts" of this figure can he attributed to pitch 

estimates for the unvoiced segments. 

Voiced segments of SHS pitch contour: In Figure 4.2, only the pitch estimates for 

the voiced (as judged by the SHS algorithm) segmentsof Figure 4.1 are shown. 

Correct voiced segments of SHS pitch contour: Later on in this section, trial 

restorations are made from the pitch contour of T16. Therefore a discrimination between 

known and unknown points has to made. A first approximation is to use the voiced pitch 

estimates as known points and the unvoiced parts as unknown points. It can he seen in 

Figure 4.2, that this stillleaves some known points in the pitch contour which, if judged by 

a human would have been classi:fied as unknown. Unfortunately, leaving this points in the 

list of known points affects the restoration results in a negative way, i.e. the restoration 

results become poorer. 

To be able to classify these points as unknown, the following approach was followed. 

As was outlined in the previous chapter, the voiced-unvoiced decision was based on a 

number that varled between -1 (probably unvoiced) and 1 (probably voiced). The voiced­

unvoiced. decision then depended on whether that value was below the threshold value of 

0.52 (unvoiced) or above it (voiced). Now the threshold value was increased, until the 

pitch contour did not contain any pitch estimates for voiced segments, that were wrong 

(as judged by the author). This then results in the pitch contour as shown in Figure 4.3. 

The benefits from this are twofold. 

• First of all, there are no points that are classi:fied known unjusti:fied, that could make 

the restoration results worse. 

• Secondly, some voiced segments are classi:fied as unknown and have to he interpo­

lated. This has the advantage that one can judge the interpolation results for voiced 

segments, using the measures of quality introduced in Section 4.2. This is of impor­

tance, since interpolation of unvoiced segments do not contribute to a better pitch 

contour since they are perceptually not relevant. 
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It should he noted that the voiced pitch estimates in Figure 4.2 that lie around 50 Hz 

are produced by some audible 50 Hz noise-source. This is thus not a failure of the SHS pitch 

determination algorithm, which produces a correct pitch estimate forthese segments. Vet, 

they would have been classified as unknown by an experienced human and therefore have 

to he removed before restorations can he made. This was accomplished by the procedure 

of adjusting the threshold for the voiced-unvoiced decision. 

PDT pitch contour: For comparison, a pitch contour using the PDT pitch determi­

nation algorithm was made. This is shown in Figure 4.4. As can he seen, this yields a 

smoother pitch contour, which corresponds more closely to what a human listener would 

expect. On the end ofthe pitch contour a sudden downward movement ofthe pitch contour 

can he seen. This is an artifact, caused by the low-frequency 50Hz noise souree mentioned 

before. In practice this does not bother, since this part is judged unvoiced, as can heseen 

from Figure 4.5, where the pitch estimates for the voiced segments of the pitch contour 

from Figure 4.4 are shown. 

In Subsectien 4.3.2 the feasibility of restoring the pitch contours as produced by the SHS 

pitch determination algorithm using an autoregressive model for the pitch contour will he 

studied. Then the feasibility of restoring the pitch contours using a band-limited model 

will he shortly discussed in Subsectien 4.3.3. Finally in Subsectien 4.3.4 it will he explained 

what model will he used to make the restorations. 
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Figure 4.1: Graphof the pitch contour of the sentence T16 as determined by the SHS pitch determination 

algorithm. 
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Figure 4.2: Graphof the pitch contour of the sentence T16 as determined by the SHS pitch determination 

algorithm, only the pitch estimates that were qualified as voiced are shown. These constitute 75 percent 

of the total pitch contour. 
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Figure 4.3: Graph of the pitch contour of the sentence T16 as determined by the SHS pitch determination 

algorithm. The voiced-unvoiced decision was set to a higher threshold until a satisfactory pitch contour 

was yielded. Now 72 percent of the total pitch contour remains. 
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Figure 4.4: Graph of the pitch contour of the sentence T16 as determined by the PD T pitch determination 

algorithm. 
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Figure 4.5: Graph ofthe pitch contour ofthe sentence T16 as determined by the PDTpitch determination 

algorithm, only the pitch estimates that were qualified as voiced are shown. These constitute 74 percent 

of the total pitch contour. 
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4.3.2 Autoregressive model 

First of all, it should be explained what is meant by the autocorrelation method, the 

correct autocorrelation method and the autocovariance method. All these are iterative res­

toration methods that iteratively estimate predietien coefficients from the incomplete data 

alternated by estimating the unknown samples from the predietien coefficients and the 

incomplete data. 

With the autocorrelation method a restoration method is meant, where 

1. the predietien coefficients are calculated using the autocorrelation method described 

in the paragraph Autocorrelation metbod of Subsectien 2.4.3, 

2. the restoration is made by taking the forward and backward predietien coefficients 

equal to the predietien coefficients just calculated and subsequently minimizing (2.4 7) 

with respect to the unknown samples. 

With the correct autocorrelation method a restoration method is meant, where 

1. the predietien coefficients are estimated as for autocorrelation method, 

2. restoration is accomplished by inversion of R, as described in Subsectien 2.4.5. 

With the autocovariance method a restoration method is meant, where 

1. The forward and backward predietien coefficients are calculated using the autocova­

riance method described in the paragraph Autocovariance metbod of Subsectien 

2.4.3, 

2. The restoration is made by taking the forward and backward predietien and minimi­

zing (2.47) with respect to the unknown samples. 

Most of the time, the las method, i.e. the correct autocorrelation method will not be 

used, since it will be shown that the restoration results are hardly different than those for 

the autocorrelation method. To make a restoration, using a restoration method derived 

from the autoregressive model, one must choose the order of predietion. The predietien 

coefficients do not need to be chosen in advance, since they can be estimated from the data, 

using the iterative restoration method. The number of iterations has to he chosen too. In 

Subsubsection 4.3.2.1 and Subsubsection 4.3.2.2, it is argued why the predietien order will 

be chosen 10 and the number of iterations will be chosen 3 for making restorations of pitch 
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contours. For these values of order of prediction and number of iterations. Polar plots 

of the zeros of the autoregressive filter are shown in Subsubsection 4.3.2.3. In [9] it was 

argued that the closer these zeros are to the unit-eirele in the complex plane, the better 

the restorations will be. Finally Subsubsection 4.3.2.4 compares the different methods 

with each other using the quality measure introduced in Section 4.2 and the PDT pitch 

determination methad as the reference. Furthermore it examines the effects of making 

the restorations in the ERB or the Hz scale, the effects of reducing the number of known 

samples in the pitch contour and once more the effect of varying the number of iterations 

and the order of prediction. 

4.3.2.1 Order of pred.ietion 

Several methods exist in the literature, to choose the order of prediction. For example, for 

the restoration of audio signals, in [9], the order of prediction was set to p ~ 3m, with p 

the order of prediction and m the number of unknown samples that have to be estimated, 

with a maximum for pof 50. 

In this report the following approach is taken. The estimation methods for the pre­

clietion coefficients, i.e. the autocorrelation method and the autocovariance method can be 

formulated as the minimization of a quadratic expression in both samples and prediction 

coefficients. In this report, this quadratic expression is usually referred to as Q, see for 

Chapter 2. One now takes a typical complete pitch contour, i.e. without unknown points. 

This may equally well be a restored pitch contour, for which after the restoration all points 

are chosen to be known. Subsequently the prediction coefficients for this pitch contour 

are estimated for a number of different prediction orders. In this report this is done for 

prediction orders between 1 and 100. For each order this then yields a Q. The Q should 

be a monotonic non-increasing fundion of the order of prediction. If a graphof Q against 

the order of prediction then shows for example a sudden drop of Q at a certain order, 

this could indicate that this contour might be modeled as an autoregressive process of 

approximately that order. 

To make a more direct comparison between the autocorrelation method and the auto­

covarianee method of estimating the prediction coefficients, not a graph of Q, but rather a 

graph of a-; against the order of prediction is made. The expression a-; will also be referred 

to as the estimate for the varianee of the excitation noise. This can be related to Q using 

(2.38) 

49 



Feasibility Results 

for the autocorrelation method, or (2.39) 

,for the autocovariance method. Furthermore, it is examined whether previously subtracting 

the declination has advantages, i.e. reduces a-;. This would then enable to get the same 

performance at a lower prediction order, which is computationally more efficient. For a 

number of pitch contours, the following methods of estimating the prediction coeffi.cients 

are used to give estimates for a-;: 

1. Autocorrelation method, declination not subtracted. 

2. Autocorrelation method, declination subtracted. 

3. Autocovariance method, declination subtracted. 

4. Autocovariance method, declination subtracted. 

This is applied to the original pitch contours as produced by the SHS and PDT algorithms 

:first, and thereafter this is done for reconstructed pitch contours that were produced by 

the SHS and PDT algorithm. 

Original: In Figure 4.6, this graph is shown, using the pitch contour of Figure 4.1. 

This pitch contour still contains a lot of noise in the form of pitch-estimates for unvoiced 

segments. Therefore it is likely that the restoration results for this pitch contour are a 

lot poorer than for a pitch contour without these errors, for example as produced by the 

PDT pitch determination algorithm. These erroneous pitch estimates are expected to give 

a higher estimate for the varianee of the excitation noise, i.e. that it is harder to model 

it as an autoregressive process. It is likely that a restored pitch contour would look like 

a pitch contour as produced by the PDT pitch determination algorithm. Therefore the 

graph from Figure 4.6 should be compared to a similar graph made for the pitch contour 

as determined by the PDT algorithm. This graph is depicted in Figure 4. 7. 

Reconstructed: These graphs can be compared to Figure 4.8 and Figure 4.9. These 

are the graphs for reconstructed pitch contours. Three iterations where used to make the 

reconstructed pitch contours that were the basis for both graphs. In Figure 4.8, the pitch 

contour, reconstructed from Figure 4.3 was used, while for Figure 4.9 the pitch contour 

reconstructed from Figure 4.5 was used. The scales of Figures 4. 7 through 4.9 are such 
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that the graph for the case that the autocorrelation method is applied without previously 

subtrading the declination, does not lie in the displayed part1. 

Discussion: When Figures 4.6 through 4.9 are compared, the following things can he 

remarked. First of all, Figure 4.6 has the expected larger estimates for the varianee of 

the excitation noise. This can he attributed to rnadeling the pitch estimates for unvoiced 

segments. Since the objedive was to model the voieed pitch-estimates, this means, that 

Figure 4.6 can not he used to get an impression as to how well pitch contours can he 

modeled as an autoregressive process. This leaves us with the other three graphs. 

It is striking that, for the autocorrelation method of estimating the predietien coeffi­

cients, previously subtrading the declination from the pitch contour, yields a significantly 

lower estimate for the varianee of the excitation noise, as opposed to the case where the 

declination is not previously subtracted. This can not he observed for the autocovariance 

method of estimating the predietien coefficients. A relatively simple explanation exists for 

this phenomenon. In order to determine the predietien coefficients for the autocorrelation 

method, the data segment (here the pitch contour) is padded with zeros. Subsequently, 

the predietien coefficients are estimated for the combination of the data segment and the 

padded zeros. Usually there is a transition from the data segment to the zeros. A sharper 

transition from the data segment to the zeros is harder to model, whieh reflects itself in 

a higher estimate for the varianee of the excitation noise. Usually there is quite a sharp 

transition from the zeros to the data segment, unless the declination is removed. Therefore 

the estimate for the varianee of the excitation noise is higher if the declination is not re­

moved. Since the autocovariance method only uses the available data segment, this effect 

is not present there. Sametimes a (much smaller) effect can he seen that is due to the 

fact that subtrading the declination already partly models the data. With the same order 

of predietion, this leaves more predietien coefficients to model the behavior of the data, 

yielding a better model and thus a lower estimate for the varianee of the excitation noise. 

Furthermore, it can he observed that except for maybe the transition from order 1 to 

2, the estimate for the varianee of the excitation noise, hardly gets lower with increasing 

order. This indieates that even a very low order autoregressive process describes a pitch 

contour very well. It is therefore expected that a predietien order of 10 would he more 

than sufReient to model the pitch contour. It is noted again, that for thesentences T53 and 

T59, similar results are gained. The final choiee for the order of predietien will therefore 

he 10. 

1 In Appendix A, these graphs, on another scale so that all the curves are within the displayed part can 

beseen in Figures A.l through A.3 respectively. 
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Figure 4.6: Graph of the estimate for the excitation-noise varianee of the autoregressive filter against 

the order of prediction for the case, where the autoregressive parameters are determined using ( cor) the 

autocorrelation method, and ( cov) the autocovariance method. This is done ( no lin.) on the plain data, and 

(lin.) after subtrading the declination. The data points used, were determined from the sentence T16, 

using the SHS pitch determination method. Note that the vertical from this graph is 40 times that of the 

graphs that follow. 
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Figure 4. 7: Graph of the estimate for the excitation-noise varianee of the autoregressive filter against 

the order of prediction for the case, where the autoregressive parameters are determined using ( cor) the 

autocorrelation method, and (cov) the autocovariance method. This is clone (no lin.) on the plain data, and 

(lin.) after subtrading the declination. The data points used, were determined from the sentence T16, 

using the PDT pitch determination method. The lines (lin.) and (no lin.) for (cov) almast coincide and 

can therefore not he distinguished. The line for (cor no lin.) is not within the displayed region. 
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Figure 4.8: Graph of the estimate for the excitation-noise varianee of the autoregressive filter against 

the order of prediction for the case, where the autoregressive parameters are determined using ( cor) the 

autocorrelation method, and ( cov) the autocovariance method. Th is is clone ( no lin.) on the plain data, and 

(lin.) after subtracting the declination. The data points used, were determined from the sentence T16, 

using the SHS pitch determination method. Only the pitch estimates shown in Figure 4.3 are used. From 

this a restoration was made, using three iterations. The line for (cor no lin.) is not within the displayed 

region. 
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4.3.2.2 Num.her of iterations 

The other parameter that has to he determined is the number of iterations. Here, like in 

choosing the order of prediction, the estimate for the varianee of the excitation noise is 

studied, but now as a function of the number of iterations. In Figure 4.10, restorations, 

from the pitch contour of Figure 4.3, using prediction order ten where made, while for 

Figure 4.11 the restorations where made from Figure 4.5. The scales of Figures 4.10 

and 4.11 are such that the graph, for the case that the autocorrelation method is applied 

without previously subtracting the declination, does not lie in the displayed part2 . When 

Figures 4.10 and 4.11 are compared, the following things can he remarked. The first, most 

important remark is that there is no need to do more than three iterations, possibly often 

two iterations will suffice. Furthermore it can he seen that for the autocovariance method, 

the estimate for the varianee of the excitation noise decreases monotonically, as it should, 

since the restoration method can he rewritten as a method that iteratively minimizes the 

estimate for the varianee for the excitation noise as a function of the prediction coefficients 

and the unknown samples. For the autocorrelation method, however, such arelation only 

exist if there are at least p known samples on either side of the data segment. This is not 

the case here. The performance for the autocovariance method of estimating the prediction 
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Figure 4.10: Graphof the estimate for the excitation-noise varianee of the autoregressive filter against the 

number of iterations made in restoring the pitch contour. This is clone for case, where the autoregressive 

parameters are determined using ( cor) the autocorrelation method, and ( cov) the autocovariance method. 

This is clone (no lin.) on the plain data, and (lin.) after subtracting the declination. The data points 

used, were determined from the sentence T16, using the SHS pitch determination method. Only the pitch 

estimates shown in Figure 4.3 are used. From this a restoration was made, using a prediction order of 

ten. The hili in the graph for ( cor. lin.) is due to the fact that the restoration method can not be written 

as an iterative minimization of one quadratic expression. 
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Figure 4.11: Graphof the estimate for the excitation-noise varianee of the autoregressive filter against the 

number of iterations made in restoring the pitch contour. This is clone for case, where the autoregressive 

parameters are determined using ( cor) the autocorrelation method, and ( cov) the autocovariance method. 

This is clone (no lin.) on the plain data, and (lin.) after subtracting the declination. The data points 

used, were determined from the sentence T16, using the PDTpitch determination method. Only the pitch 

estimates shown in Figure 4.5 are used. From this a restoration was made, using a prediction order of 

ten. 
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4.3.2.3 Plots of the zeros of the autoregressive filter 

In this paragraph the plots of the zeros of the autoregressive filter will be shown, i.e. the 

complexzerosof the polynome 
p 

A(z) = L akzk. 
k=O 

The autoregressive filter is calculated for restored pitch contours of the sentence T16. 

The pitch contours were determined using the PDT pitch determination algorithm. Fifty 

percent of the voiced pitch estimates were restored, using order of predietien ten and three 

iterations. The fifty percent was achieved by raising the threshold value to 0.92 (for T16). 

These graphs of the zeros of the autoregressive filter are shown for the autocorrelation 

method in Figure 4.12 and Figure 4.13. The former for the case that the declination was 

not removed, the second for the case that the declination removed. For the autocovariance 

method these graphs are shown in Figure 4.14 and Figure 4.15 respectively. Only the zeros 

for the autoregressive filter formed from the forward predietien coefficients is shown for 

this method. It can be seen, that for the autacovariance methad the zeros tend to be 

a little bit closer to the unit circle, which would indicate a possibly better restoration 

[9]. Removing the declination also yields zeros a little bit closer to the unit circle, again 

indicating a possibly better restoration. If all the graphs from this and the two previous 

paragraphs are compared, it indicates that the autacavariance methad perfarms better than 

the autacarrelation methad and that removing the declination yields better results than not 

doing so. 
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Figure 4.12: Zerosof the autoregressive filter after restoration of the pitch contour of thesenterree T16 

from fifty percent of the voiced segments. The autocorrelation method without removing the declination 

was used both for the reconstruction and determining the autoregressive filter. 
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Figure 4.13: Zeros of the autoregressive filter after restoration of the pitch contour of the sentence T16 

from fifty percent of the voiced segments. The autocorrelation method with removal of the the declination 

was used both for the reconstruction and determining the autoregressive filter. 
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Figure 4.14: Zerosof the autoregressive filter after restoration of the pitch contour of the sentence T16 

from fifty percent of the voiced segments. The autocovariance method without removing the declination 

was used both for the reconstruction and determining the autoregressive filter. 
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Figure 4.15: Zeros of the autoregressive filter after restoration of the pitch contour of the senterree T16 

from fifty percent of the voiced segments. The autocovariance method with removal of the the declination 

was used both for the reconstruction and determining the autoregressive filter. 
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4.3.2.4 Comparison 

In this subsubsection it will be examined under what conditions the restorations are good, 

and under what conditions they get worse. To cernpare these, the measures introduced 

in Sectien 4.2 will be used. This thus means that all camparing will be done in the ERE 

scale. From now on, the abbreviations from Table 4.3 will be used (in other tables). Unless 

Table 4.3: Abbreviations. 

Method Abbreviation with Abbreviation without 

previously subtracting previously subtracting 

the declination the declination 

autocorrelation methad CorLin CorNoLin 

autocovariance methad CovLin CovNoLin 

correct autocorrelation methad Cor NoLinCorrect Cor NoLinCorrect 

explicitly stated otherwise, the pitch contours were processed in the Hz-scale. When the 

pitch contours were processed in the ERB scale, this is denoted by a suffix ERB after the 

abbreviations as introduced in Table 4.3. In the following paragraphs, subsequently it will 

be examined if the restoration results depend on 

1. The restoration method, i.e. using the autocovariance methad or the autocorrelation 

methad and whether or not to subtract the declination prior to restoration, 

2. Restoration method should be fed in Hz or in ERB's, 

3. Using the correct autocorrelation methad or the autocorrelation method, 

4. Order of prediction, 

5. Number of iterations, 

6. The amount of voiced segments that has to be interpolated. 

lnfluence of the restoration method: First of all, it is examined whether the parti­

cular choice of the restoration method infl.uences the restoration results. For this purpose, 

Table 4.4 should be examined. Here the quality of the restoration is judged for a restoration 

of the pitch contours of T16, T53 and T59 as produced by the SHS pitch determination 
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algorithm. Three iterations and a predidion order of ten were used to make the restora­

tions. Fifty percent of the voiced segments had to he interpolated. It can he seen from 

this table that it hardly makes any difference whether the autocorrelation method or the 

autocovariance method is used. The same can he said about subtrading or not subtrading 

the declination prior to making a restoration. For the pitch contours of For both pitch 

contours fifty percent of the voiced segments had to he restored. This was clone by adjus­

ting the voiced-unvoiced decision threshold until fifty percent of those segments that were 

originally classified voiced remained. These were then taken to he the known points. For 

the pitch contour of T59, still one point had to he removed manually, since it was clearly 

a faulty pitch estimate, before the restorations were made. 

Hz or ERB: Restoration performed as in the previous paragraph. Now only for the 

pitch contour of the sentence Tl6. Then it is examined, by using Table 4.5 whether or 

not the input of the restoration method should he given with the pitch estimates in Hz 

(no suffix) or in ERB's (suffix ERB). It can heseen from Table 4.5 that this hardly makes 

any difference, i.e. the performance does not depend on this choice. This was more or less 

predictable, since as can been seen from Figure A.8, for pitches under consideration, say 

50 to 250 Hz, the transformation from Hz to ERB is almost linear, and the restoration 

methods do not depend on multiplication by a constant of the data. 

Which autocorrelation method: Restoration as in the previous paragraph. It can he 

seen from Table 4.6 that it does not matter whether the - mathematically more correct -

correct autocorrelation method is used instead of the autocorrelation method. 

Because it already became clear that the restoration results hardly depend on the actual 

method that was chosen to make the restoration, and whether the pitches were provided 

in the Hz or the ERB scale, only one method is chosen to study the effects of the order 

of predidion and the number of iterations on the quality of the restorations. For this 

purpose, the restorations were made with the autocorrelation method and no declination 

was subtracted prior to making the restoration. Restoration was clone with pitch estimates 

in Hz. This is expected to be the worst restoration method as expected in the previous 

subsubsedions with respect to the restoration method and because the pitches are provi­

ded in Hz, for which one would intuitively expect the restorations to he poorer than for 

pitch provided in ERB's. Fifty percent of the voiced segments had to he interpolated. 
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Dependency on the order of prediction: Restorations were performed as described 

above, i.e. the worst-case scenario. From Table 4. 7 it follows that the restoration results 

hardly depend on the order of prediction in a very broad range. The choice to take a 

prediction order of 10 is thus good. 

Dependency on iterations: Restorations as for the paragraph above. From Table 4.8 

it follows that 1 iteration is definitely not enough to get an optima! restoration, sirree 

the restoration results become radically worse. For 3 and 10 iterations there is hardly 

any difference. It thus follows that it was a good choice to take 3 iterations to make the 

restorations. 

Effect of how much pitch estimates have to he restored: In Table 4.9 it is examined 

for the autocorrelation method applied without previously subtracting the declination of the 

pitch contour, how the restoration results depend on the percentage of the voiced segments 

that had to he interpolated. It can he seen that, the results hardly depend on the actual 

percentage of voiced segments that has to he restored. Only if unvoiced segments are used 

to make the restoration, the restoration results become worse very fast. This indicated 

that a good algorithm has to he used to divide the pitch contour in known and unknown 

segments. 

A discrepancy may he found between the first and the second column. This is a result 

of the fact that for the second column, the percentage of voiced segments is determined 

using the SHS method, while in the third column this is clone using the PDT method. 

It should he remarked that the restoration results may he a little flattered for this pitch 

contour, sirree no long consecutive parts with missing voiced segments are present. Even 

when only 41 percent of the voiced pitch estimates is used to make the restoration, all the 

unknown voiced pitch estimates are distributed uniformly over the pitch contour. 

Final remark: All this indicates that all the methods based on an autoregressive model, 

are stabie methods to make restorations of pitch contours, if the following requirements 

are met: 

1. No faulty pitch estimates (in particular pitch estimates for unvoiced segments) are 

used as known points in the pitch contour that is used for restoration. 

2. The number of iterations is 3 ( or larger). 

Not important for the restoration results are: 
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Table 4.4: This is a table to show the effect on the restoration errors of the methad used. Restorations 

were made for the pitch contours of T16, T53 and T59, determined using the SHS pitch determination 

algorithm. Fifty percent of the voiced segments had to be restored. The restoration method was the 

autacarrelatian methad without removing the declination. Three iterations and a predictionorder of ten 

were used. 

Senterree Method E[ERB2
] u(E)[ERB2

] Emax[ERB2
] 

T16 CorNoLin 0.015 0.044 0.32 

T16 CorLin 0.023 0.056 0.37 

T16 CovNoLin 0.022 0.055 0.41 

T16 CovLin 0.024 0.062 0.41 

T53 CorNoLin 0.030 0.092 0.44 

T53 CorLin 0.025 0.071 0.31 

T53 CovNoLin 0.035 0.12 0.64 

T53 CovLin 0.035 0.11 0.51 

T59 CorNoLin 0.162 0.47 2.6 

T59 CorLin 0.090 0.24 1.4 

T59 CovNoLin 0.11 0.32 1.9 

T59 CovLin 0.08 0.23 1.4 

1. The particular choice for the prediction order. 

2. Whether restorations are made using pitches given in the ERB scale or in the Hz 

se ale, 

3. Whether the autocorrelation method, the correct autocorrelation method or autocova­

riance method is used, 

4. Whether the declination is modeled separately by subtracting it from the pitch con­

tour prior to making a restoration ot not doing this. 
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Table 4.5: This is a table to show the effect on the restoration errors of providing the pitch estimates in 

Hz or in ERB's. Restorations were made for the pitch contour of T16 determined using the SHS pitch 

determination algorithm. Fifty percent of the voiced segments had to be restored. The restoration method 

was the autocorrelation method without removing the declination. Three iterations and a predictionorder 

of ten were used. The errors should he compared as pairs, as indicated in the table. 

Method E[ERB2
] o-(E)[ERB2

] Emax[ERB2
] 

CorNoLin 0.015 0.044 0.32 

CorNoLin ERB 0.015 0.041 0.29 

CorLin 0.023 0.056 0.37 

CorLin ERB 0.024 0.065 0.44 

CovNoLin 0.022 0.055 0.41 

CovNoLin ERB 0.021 0.050 0.40 

CovLin 0.024 0.062 0.41 

CovLin ERB 0.025 0.070 0.47 

Table 4.6: This is a table to determine whether the correct autocorrelation method yields significantly 

better results than the autocorrelation method. Restorations were made for the pitch contour of T16 

determined using the SHS pitch determination algorithm. Fifty percent of the voiced segments had to he 

restored. The restoration method was the autocorrelation method without removing the declination. Three 

iterations and a predictionorder of ten were used. The errors should be compared as pairs, as indicated in 

the table. 

Method E[ERB2
] o-(E)[ERB2

] Emax[ERB2
] 

CorNoLin 0.015 0.044 0.32 

Cor NoLinCorrect 0.016 0.050 0.37 

CorLin 0.023 0.056 0.37 

Cor Lin Correct 0.019 0.038 0.24 
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Table 4. 7: This table is to study restoration errors as function of the order of prediction. Restorations 

were made for the pitch contour of T16 determined using the SHS pitch determination algorithm. Fifty 

percent of the voiced segments had to be restored. The restoration method was the autocorrelation method 

without removing the declination. Three iterations were used. 

Order of prediction E[ERB2
] O"(E[ERB2

]) Emax[ERB2
] 

1 0.021 0.080 0.58 

5 0.019 0.066 0.50 

10 0.015 0.044 0.32 

50 0.014 0.041 0.32 

100 0.013 0.036 0.26 

Table 4.8: This table is to study restoration errors as function of the number of iterations. Restorations 

were made for the pitch contour of T16 determined using the SHS pitch determination algorithm. Fifty 

percent of the voiced segments had to be restored. The restoration method was the autocorrelation method 

without removing the declination. A predictionorder of ten was used. 

Iterations E[ERB2
] O"(E)[ERB2

] Emax[ERB2
] 

1 0.21 0.24 1.1 

3 0.015 0.044 0.32 

10 0.015 0.044 0.32 
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Table 4.9: This is a table to determine if the restoration results depend on the percentage of voiced 

segments that has to be restored. Restorations were made for the pitch contour of T16 determined using 

the SHS pitch determination algorithm. The restoration method was the autocorrelation methad without 

removing the declination. Three iterations and a predictionorder of ten were used. 

Part of the Part of the E[ERB2
] u(E)[ERB2

] Emax[ERB2
] 

voiced segments voiced segments 

restored [%] restored [%] 
as determined as determined 

by SHS by PDT 

6 percent 2.6 11 13 29 

unvoiced 

segments used 

7 7.9 0.044 0.086 0.30 

19 19 0.023 0.061 0.30 

33 33 0.018 0.058 0.34 

45 44 0.014 0.040 0.27 

59 58 0.018 0.041 0.34 
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4.3.3 Band-limited model 

Restorations using a band-limited model proved not feasible. Although sametimes the 

results were encouraging, the method was not stabie enough to provide a reliable resto­

ration method for pitch contours. Not removing the declination always gives bad results. 

This is because the known segment is padded with zeros and since the transition is full of 

high-frequency noise, none of the band-limited methods will work if this transition is not 

made small by removing the declination. The available pitch contour itself is relatively 

well band-limited. This can be shown by determining the power density spectrum of the 

contour using (in this case) a forward covariance speetral estimation technique of order 

50, which is in fact the autocovariance method, used in this report. An example for the 

pitch contour of T16, determined using the PDT pitch determination algorithm is given in 

Figure A.6, Appendix A. Then for each frequency, a graph is made of how much energy 

is left in the high-pass region from that frequency to the Nyquist frequency. For this, too, 

an example for the pitch contour of T16, determined using the PDT pitch determination 

algorithm is given in Figure A.6, Appendix A. Subsequently it can be determined at which 

frequency 90 or 99 percent of the energy is concentrated in the low-pass region. This is 

shown in Table 4.10. Notwithstanding this excellent band-limitedness, that in many cases 

Table 4.10: Cut-off frequencies for the pitch contours of T16, T53 and T59 for which 90, respectively 99 

percent of the energy is Low-Pass. 

Pitch Relative Bandwidth [%] Relative Bandwidth [ % ] 
Contour at which 90 percent of the at which 99 percent of the 

energy is limited to energy is limited to 

that passband that passband 

T16 3.8 17.9 

T53 11.0 32.5 

T59 6.7 25.4 

gave satisfactory restorations, it proved not su:fficient to guarantee a stabie restoration 

algorithm. This is shown fora simple example for the most stabie method. Therefore the 

pitch contour of T16, determined using the SHS pitch determination algorithm was used, 

for which fifty percent of the voiced samples had to be restored. Here a bandwidth of 32.5 

percent3 of the fundamental band was taken. A windowed version of the 9k was used, with 

3the maximum from Table 4.10 to have every pitch contour for at least 99 percent band-limited. 
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Figure 4.16: Restored pitch contour of the sentence T16. The pitch contour was determined using the SHS 

pitch determination algorithm. To make the restoration the band-limited method was used, with the 

bandwidth set to 32.5 percent of the fundamental interval. A windowed version of the 9k was used, with 

windowing function W(x) = e-"'
2

, and 'Y = 10-2 • This means that the windowed gk('Y), were given by 

9k('Y) = W(.;;yk)gk. Fifty percent of the voiced samples had to he restored. 

windowing function W(x) = e-z
2

, and 1 = 10-2. This means that the windewed gk(ï), 
were given by gk(ï) = W(v'fk)gk. This was known to he one of the better methods in 

[1]. A graph of the restored pitch contour is then given in Figure 4.16. It can he seen 

that it suffers from the pulse-shaped errors as described in [9] and [1]. Because of these 

unpredictable errors, this method could not he used for restorations. 

All the methods basedon a band-limited method suffer from these errors. None of these 

is therefore fit to make restorations of pitch contours. 
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4.3.4 Choice of the restoration metbod 

It is argued in Suhsection 4.3.3 why the restoration methods hased on an autoregressive 

model will not he used to make restorations of pitch contours hecause they are not reliahle 

enough. This leaves the autoregressive methods as discussed in Suhsection 4.3.2 as the only 

possihle choices. Based on the arguments in Suhsection 4.3.2 the restorations will he made 

with the so-called autocovariance method. Before the restorations are made, the declination 

is removed (and added again afterwards). Furthermore, the errors are measured in ERB's 

as discussed inSection 4.2. The pitch estimates, however are fed to the restoration methods 

in the Hz-scale and not in the ERB scale. This is a matter of conveniency, and it does 

not have any measurahle ( negative) effect on the restoration results, as pointed out in 

Suhsection 4.3.2. 
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4.4 Algorithm 

In this section an algorithm to make a division between known - that is voiced segments 

for which a good pitch was determined - and unknown- that is unvoiced segments and 

unreliable voiced segments - is presented. In Subsection 4.4.1 it will he shown that the 

method of adjusting the threshold of the voiced-unvoiced detection criterion as used in 

Section 4.3 cannot he used for all pitch contours. In Subsection 4.4.2 then the actual 

algorithm will he discussed. 

4.4.1 Limitsof using the voiced-unvoiced decision 

It will he shown, using the pitch contour of one of the "bad" contours, namely T36, that 

adjusting the voiced-unvoiced decision cannot he used to make a division in known and 

unknown points. 

In Figure 4.17 the whole pitch contour of T36 as determined by the PDT pitch deter­

mination algorithm is shown. This gives a good impression of how the pitch contour for 

this pitch contour should look like, as judged by an researcher experienced in the field of 

speech perception research. 

In Figure 4.18 the voiced segmentsof the pitch contour of Figure 4.17 are shown, i.e. the 

voiced segments of the pitch contour of T36 as determined by the PDT pitch determination 

algorithm is shown. It should he noted that the quality of the voiced-unvoiced decision is 

disputable, since this is an example of a so-called creaky voice, that contains lots of noisy 

sounds even in the segments that should normally he voiced, i.e. the vowels. For example, 

the drop in Figure 4.17 is judged unvoiced. This is in the middle of the I o I of come (re­

member that the sentence was John says he can't come). This is normally a voiced syllable. 

In this sentence, however, it is very noise, and therefore unjustified? judged unvoiced. 

In Figure 4.19 the voiced segmentsof the pitch contour of T36 as determined by the SHS 

algorithm is shown. This clearly still contains to much faulty pitch estimates. Furthermore 

it is interesting to see that in a beginning, there is a place where the pitch drops exactly 

one octave for a number of segments. This is an example of a so-called octave-failure. 

Although in some cases this could he an artifact of the pitch determination algorithm, 

in this pitch contour, the pitch is actually one octave lower in these places. This can he 

heard of the piece that contains the octave-failure is listened to separately. However, in 

running speech, it cannot he heard by an inexperienced listener. They hear this part in 

the "expected" pitch. Therefore, these pitch estimates should he classified unvoiced and 

restored so that they match the "expected" pitch. 
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H one tries to remove both octave-failures and other faulty pitch-estimates from the pitch 

contour by adjusting the voiced-unvoiced decision, one finally ends up with a pitch contour 

as in Figure 4.20. This still contains lots of pitch estimates that are wrong. This includes 

some of the octave failures and on the end some other faulty pitch estimates. Even if they 

would have been removed by this procedure, it is the experience of the author that the 

good pitch estimates that remain in Figure 4.20 are not suflident to make any reliable 

restoration at all. 

From this it is clear that some other algorithm has to he developed to divide the pitch 

contour in known and unknown points. The algorithm that was developed for this purpose 

is presented in the next subsection. 
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Figure 4.17: Graph of the pitch contour of the sentence T36 as determined by the P D T pitch determination 

algorithm. 
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Figure 4.18: Graph ofthe pitch contour ofthe sentence T36 as determined by the PDTpitch determination 

algorithm. Only the voiced segments are shown. 
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Figure 4.19: Graphof the pitch contour of the sentence T96 as determined hy the SHS pitch determination 

algorithm. Only the voiced segments are shown. Lotsof octave-failures can he seen. 
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Figure 4.20: Graph of the pitch contour of the sentence T96 as determined hy the P D T pitch determination 

algorithm. Only segments are shown that were judged voiced hy the voiced-unvoiced determination algo­

rithm, after significantly raising the threshold value. It can he seen that stilllots of faulty pitch estimates 

remain. 
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4.4.2 The algorithm 

Here the algorithm will he presented that divides the segments in known and unknown 

segments. It is noted here, that several algorithms were tried that did so merely by using 

charaderistics of the pitch estimates fora whole contour. None of these yielded a reliable 

method that worked for all sentences, although some of them yielded good results for the 

"good" contours. It was therefore decided to make use of other information, in partienlar 

the sampled data. 

First of all, it will he outlined, what segments have to he classi:fied as unknown. These are 

1. Segments that are unvoiced, 

2. Segments with octave-failures, as discussed in Subsection 4.4.1 and can he seen in 

Figure 4.19, 

3. Segments where the speech is so low in volume that environmental noises become 

audible that might disturb the pitch determination algorithm. An example of this is 

the fifty hertz noise souree in the pitch contour of Figure 4.1. 

The algorithm is in fact a modi:fication of the SHS algorithm as described in Subsection 

3.1.2. The pitch estimates remain the same, but insteadof the voiced-unvoiced decision it 

outputs a number that, if below 0.05 means that the segment is classi:fied unknown and if 

above 0.05, it is classi:fied as known. Now, it will he discussed how the above requirements 

for classifying segmentsas unknown are met. 

Unvoiced segments: In Subsection 3.1.2 the SHS pitch determination algorithm is 

described. From this a pitch estimate is found, call this p. Now introduce, H(P), where 

H(f) is the subharmonie spectrum as described in point 7 of the SHS algorithm. It is 

expected that, if the segment is voiced, that a great deal of the speetral energy available in 

the signal, contributes to the virtual pitch, estimated by p. This means that if one takes 

so+.ó.-' 

j H(s)ds, 
-'o-.ó.-' 

in a neighbourhood ds of s0 = log2 p, that is expected to encompass much of the peak 

attributed to the virtual pitch, that this would he not too small compared to 

00 

j P(s)ds, 
0 
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with P(s) = P(f), f = 28
• Note that the integrals are taken in a logarithmic scale. In 

practice tls is taken such that the integral is taken over ~ semitone, which corresponds to 

f8 of an octave. A segment is now judged voiced if 

so+.1.s co 

j H(s)ds ?_ ~ j P(s)ds, 
so-.1.s 0 

If a segment is judged unvoiced, it is classified as an unknown point. 

Octave failures: For downward octave failures, that is a sudden drop for a few segments 

of one octave, an interesting phenomenon was observed. It turned out that in octave 

failures, there was hardly any speetral pitch associated with the virtual pitch that was 

estimated, i.e. the pitch estimate p. in other words this means that, that P(p) ~ H(p). 
For the virtual pitch one octave above the pitch it is then expected that P(2p) ~ H(2p) 
The following practical implementation was made. If 

P(p) 1 P(2p) 
H(p) < 10 H(2p)' 

then the segment was a candidate for an octave failure and classified as unknown too. 

No such thing could be observed for upward octave failures. It was as yet not impossible 

to develop a reliable algorithm that could detect upward octave failures, based on the 

available pitch contour or any additional information. Therefore nothing was implemented 

to classify upward octave failures as unknown. 

Low volume segments: For this, first the whole pitch contour was determined. For 

each segment, H(p) was determined. Subsequently the average fl(P) for the whole pitch 

contour was determined. If for a segment 

H(p) < ~fl(p), 

then the segment was a candidate fora low-volume segment and classified as unknown .. 

An example of how this performs can be seen in Figure 4.21, where the known points, 

determined with this algorithm of the pitch contour of T36, determined with the SHS 

pitch determination algorithm is show. It will be clear from this that still some isolated 

points are classified known unjustified. To remove this, a simple post-processing algorithm 

is applied that classifies pitch estimates of segments unknown if: 
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1. The direct neighbour of that segment has a pitch estimate that is more than one 

fourth of an octave different in pitch, 

2. If in the direct neighbourhood, defined by the two points on either side, there are 

not at least three adjacent known points, 

3. The point was already classified as unknown. 

This procedure is iterated until no more points become classified as unknown, i.e. it is 

stable. This then yields for the pitch contour of T36 the pitch contour as shown in Figure 

4.22. It proved to be a fairly reliable and good algorithm. In the authors opinion, the case 

for the pitch contour of the sentence T36 was one of the most difficult cases. Even for this 

contour, a fairly satisfactory division is made in known and unknown points. It should be 

noted that all this (the algorithm as well as the statement that it works rather well) is 

more based on intuition than on any hard numerical data. 

80 



Results Algorithm 

600 I I I I I 

pitch contour • 

500 r- -

400 r- -

f(Hz) 300 - -

200 r- • -. __ , - ~~ . '--- • 
• ~. • 

100 r- - -• .. 
0 I I 

0 20 40 60 80 100 120 
Point 

Figure 4.21: Graph of the pitch contour of the sentence T36 as determined by the SHS pitch determination 

algorithm. Only the known segments are shown, as determined by the algorithm presented in this section, 

without the postprocessing part. 
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Figure 4.22: Graph of the pitch contour of the sentence T36 as determined by the SHS pitch determination 

algorithm. Only the known segments are shown, as determined by the algorithm presented in this section, 

wit the postprocessing part. 
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4.5 Restorations 

In this section the results are presented of the restorations of pitch contours. Results are 

presented for all the pitch contours listed in Table 4.1 and Table 4.2. Since for the "bad" 

pitch contours it cannot be assumed that the PDT pitch determination algorithm gives 

good results, the restoration errors, as listed in tablefinal, should not be taken to literally. 

Table 4.11: This is the table with the restoration errors for the final restorations that were made for all 

pitch contours. This is listed for completeness, because for the "bad" contours, these measures are not 

reliable because the PDT algorithm might not perfarm well. Therefore it is not a reliable method to 

campare the restored pitch contours with. Therefore all the restorations are discussed separately in the 

text. 

T16 0.037 0.067 0.27 

T53 0.060 0.096 0.29 

T59 0.12 0.24 1.3 

T6 0.10 0.31 1.1 

T14 0.8 2.2 7.7 

T19 3.1 3.5 8.0 

T36 1.0 1.0 2.8 

To give a better impression of how the restoration results are, for each sentence the 

restoration will be compared with the PDT pitch determination by four graphs that have 

been made for each sentence. 

1. First a graph of the pitch contour produced by the PDT pitch determination al­

gorithm is presented, with the voiced segments highlighted. This is taken as the 

reference. 

2. Then a graph is presented that shows the graph of the PDT pitch determination 

algorithm. Superimposed on this are the pitch estimates as determined by the SHS 

algorithm that were judged to be known by the algorithm presented in Section 4.4. 

From this an impression can be formed of how well this algorithm worked for the 

partienlar pitch contour. 
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3. Next a graph is presented of the reconstructed pitch contour, for which the pitch 

estimates of the known segments were determined using the SHS pitch determination 

algorithm. The pitch estimates for the unknown segments were estimated from the 

known pitch estimates, using the autocovariance method. The declination had been 

removed before the restoration method was applied. Along with this are plotted the 

pitch estimates for the voiced segments of the pitch contour as determined by the 

PDT pitch determination algorithm. These are the points where a difference in pitch 

could he heard if they are restored incorrectly. The quality of the restoration has to 

he judged mainly from this graph. 

4. Finally a graph is presented where the pitch estimates for the voiced segments from 

the original pitch contour as determined by the SHS pitch determination algorithm 

are shown along with the restored pitch contour. This gives an impression of how 

"good" or "bad" the pitch contour for the partienlar sentence is. 

For each sentence, these four graphs are then shortly discussed. 

First the restorations for the three sentences that produce "good" pitch contours (Table 

4.1) will he discussed, foliowed by the discussion of the sentences that produce "bad" pitch 

contours (Table 4.2). Restorations were made by 

1. Using the SHS pitch determination to make the pitch contour, 

2. Using the algorithm from Section 4.4 to divide this pitch contour in known and 

unknown points, 

3. Removing the declination, 

4. Making a restoration using the autocovariance method. 

5. Adding the declination. 
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Restored pitch contour of T16: Figures 4.23, 4.24, 4.25 a.nd 4.26. Not much has 

to be said about the restoration of this contour. The only main difference between the 

restored contour and the contour as produced by the PDT pitch determination algorithm 

is the V-shaped feature, present in the restored and the original SHS pitch contour (Figure 

4.25). This is not present in the PDT contour (Figure 4.23. The pitches in the V-shape 

were determined by the SHS algorithm, and judged known by the algorithm that divides 

it into known and unknown points. As can be seen from Figure 4.25 it was judged voiced 

by the original SHS pitch determination algorithm. From Figure 4.23 it follows that it 

was judged unvoiced by the PDT algorithm. Manual inspeetion of the wave-form indicates 

that this V-shape is voiced. It should be investigated if this difference has any perceptual 

relevance. Without further experiments it cannot he said whether the PDT pitch contour 

or the restored SHS contour is better. 
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Figure 4.23: Graphof the pitch contour of the sentence T16. The line is from the PDT pitch determination 

algorithm. The points are from the voiced segments of the PDT pitch determination algorithm. 
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Figure 4.24: Graph of the pitch contour of the sentence T16. The line is frorn the PDT pitch deterrnination 

algorithrn. The points are frorn the known segrnents of the SHS pitch deterrnination algorithrn. 
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Figure 4.25: Graph of the pitch contour of the sentence T16. The line is from the restored contour 

from the SHS pitch determination algorithm. The points are from the voiced segments of the PDT pitch 

determination algorithm. 
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Figure 4.26: Graphof the pitch contour of the sentence T16. The line is from the restored contour from 

the SHS pitch determination algorithm. The points are from the voiced segments of the pitch contour 

from SHS, that was not yet reconstructed. 
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Restored pitch contour of T53: Figures 4.27, 4.28, 4.29 and 4.30. It can be seen 

from Figure 4.29 that this is a good reconstruction. Interesting to see is that the "pitch­

estimates" for the unvoiced segments on the end of the PDT contour in Figure 4.27 show 

a sudden upward movement. Although perceptually not relevant, since these are unvoiced 

segments, it is nice to see that the restoration algorithm gives the result that one would 

expect. From Figure 4.30 it can be seen that the original SHS pitch contour contained 

some strange pitch estimates that, moreover were judged voiced, on the end of the pitch 

contour. These should have been classi:fied unvoiced, since it contains the /f/ and /t/ from 

heeft. The algorithm that divides the pitch estimates in known and unknown ones had no 

trouble classifying these pitch estimates as unknown. 
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Figure 4.27: Graph of the pitch contour of the sentence T59. The line is from the PDT pitch determination 

algorithm. The points are from the voiced segmentsof the PDT pitch determination algorithm. 
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Figure 4.28: Graph of the pitch contour of the sentence T59. The line is from the PDT pitch determination 

algorithm. The points are from the known segments of the SHS pitch determination algorithm. 
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Figure 4.29: Graph of the pitch contour of the sentence T53. The line is from the restored contour 

from the SHS pitch determination algorithm. The points are from the voiced segments of the PDT pitch 

determination algorithm. 
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Figure 4.30: Graph of the pitch contour of the sentence T53. The line is from the restored contour from 

the SHS pitch determination algorithm. The points are from the voiced segments of the pitch contour 

from SHS, that was not yet reconstructed. 
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Restored pitch contour of T59: Figures 4.31, 4.32, 4.33 and 4.34. Although this 

pitch contour was difficult for the algorithm that divides the pitch contour in known and 

unknown points, as can he seen from Figure 4.34, the restoration results are excellent, 

when compared to the pitch contour produced by the PDT pitch deterrnination algorithm. 

This can be seen from Figure 4.33. 
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Figure 4.31: Graph of the pitch contour of the sentence T59. The line is from the PDT pitch determination 

algorithm. The points are from the voiced segmentsof the PDT pitch determination algorithm. 
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Figure 4.32: Graph of the pitch contour of the sentence T59. The line is from the PDT pitch determination 

algorithm. The points are from the known segmentsof the SHS pitch determination algorithm. 
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Figure 4.33: Graph of the pitch contour of the sentence T59. The line is from the restored contour 

from the SHS pitch determination algorithm. The points are from the voiced segments of the PDT pitch 

determination algorithm. 
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Figure 4.34: Graph of the pitch contour of the sentence T59. The line is from the restored contour from 

the SHS pitch determination algorithm. The points are from the voiced segments of the pitch contour 

from SHS, that was not yet reconstructed. 
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Restored pitch contour of T6: Figures 4.35, 4.36, 4.37 and 4.38. This is the :first 

"bad" contour that has to be restored. As can be seen from Figure 4.37, there is only 

one point in the restored pitch contour that is clearly different from the pitch contour 

determined by PDT. First of all, this should have been classi:fied unvoiced by PDT because 

it is in the /t/ of werd. Secondly, it is the pitch of a noise-source rather than the pitch of 

the speech. Therefore, for this pitch contour the restored pitch contour is slightly better 

than the pitch contour as produced by PDT. Whether or not this can be heard will have 

to he investigated by doing a perceptual experiment. 
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Figure 4.35: Graph of the pitch contour of the sentence T6. The line is from the PDT pitch determination 

algorithm. The points are from the voiced segments of the PDT pitch determination algorithm. 
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Figure 4.36: Graph of the pitch contour of the sentence T6. The line is from the PDT pitch determination 

algorithm. The points are from the known segments of the SHS pitch determination algorithm. 
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Figure 4.37: Graph of the pitch contour of the sentence T6. The line is from the restored contour 

from the SHS pitch determination algorithm. The points are from the voiced segments of the PDT pitch 

determination algorithm. 
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Figure 4.38: Graph of the pitch contour of the sentence T6. The line is from the restored contour from 

the SHS pitch determination algorithm. The points are from the voiced segments of the pitch contour 

from SHS, that was not yet reconstructed. 
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Restored pitch contour of T14: Figures 4.39, 4.40, 4.41 and 4.42. From Figure 4.39 

it can be seen that there is around point 60 one faulty voiced pitch estimate in the pitch 

contour from PDT, which was due to a low-frequency noise-source. This is not present 

in the restored pitch contour, as can be seen from Figure 4.41. However, on the end, 

the restored pitch contour shows a sudden upward movement which is, according to the 

author, due to an upward octave failure that was not removed by the algorithm that 

divides the pitch contour into known and unknown pitch estimates, since no detection 

algorithm could be implemented to detect upward octave failures. This is probably a very 

serious shortcoming of the present detection algorithm. It is likely to produce audible 

errors, so here the restored pitch contour is inferior to that produced by the PDT pitch 

determination algorithm due to the shortcomings of the algorithm that has to detect the 

faulty pitch estimates. 
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Figure 4.39: Graph of the pitch contour of the sentence T14. The line is from the PDT pitch determination 

algorithm. The points are from the voiced segments of the PDT pitch determination algorithm. 

100 



Results 

300 

250 

200 

f(Hz) 150 

100 

50 

0 
0 50 100 150 

Point 
200 

PDT All­
SHS Known • 

250 

• • 
I 

~\ 

Restorations 

300 

Figure 4.40: Graph ofthe pitch contour ofthe sentence T14. The line is from the PDT pitch determination 

algorithm. The points are from the known segments of the SHS pitch determination algorithm. 
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Figure 4.41: Graph of the pitch contour of the sentence T14. The line is from the restored contour 

from the SHS pitch determination algorithm. The points are from the voiced segments of the PDT pitch 

determination algorithm. 
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Figure 4.42: Graph of the pitch contour of the sentence T14. The line is from the restored contour from 

the SHS pitch determination algorithm. The points are from the voiced segments of the pitch contour 

from SHS, that was not yet reconstructed. 
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Restorations Results 

Restored pitch contour of T19: Figures 4.43, 4.44, 4.45 and 4.46. Herethereis only 

a difference on the end of the pitch contour, as follows from Figure 4.45. The PDT pitch 

determination algorithm here follows an octave failure. This is wrong. The algorithm 

managed to classify these octave failures correctly as unknown. However, the restoration 

that was made from this goes up as can heseen from Figure 4.45. This is likely to yield a 

resynthesization that has a pitch that will he perceived to high at the end of the sentence. 

A simple form of post-processing was tried, that would compare the two graphs of Figure 

4.46 and said:" well as can he seen, some of the pitch estimates that were classi:fied unknown 

are pretty close to the restored pitch contour, why not classify them as known and make 

a new restoration." Although this will obviously work for this contour, the threshold for 

reclassifying points as known, will have to he so high that it makes things worse for most 

of the contours, because it then classi:fies wrong pitch estimates as known pitch estimates 

again. This therefore proved not possible. A perceptual experiment whether the PDT 

pitch contour or the restored pitch contour is perceived as being a better representation of 

the original. 
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Figure 4.43: Graph of the pitch contour of the sentence T19. The line is from the PDT pitch determination 

algorithm. The points are from the voiced segments of the PDT pitch determination algorithm. 
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Figure 4.44: Graph ofthe pitch contour ofthe sentence T19. The line is from the PDT pitch determination 

algorithm. The points are from the known segments of the SHS pitch determination algorithm. 
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Figure 4.45: Graph of the pitch contour of the sentence T19. The line is from the restored contour 

from the SHS pitch determination algorithm. The points are from the voiced segments of the PDT pitch 

determination algorithm. 
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Figure 4.46: Graphof the pitch contour of the sentence T19. The line is from the restored contour from 

the SHS pitch determination algorithm. The points are from the voiced segments of the pitch contour 

from SHS, that was not yet reconstructed. 
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Restorations Results 

Restored pitch contour of T36: Figures 4.47, 4.48, 4.49 and 4.50. Although the me­

thod that has to distinguish between reliable pitch estimates and unreliable pitch estimates 

does a pretty good job, as can be seen from Figure 4.50. The restoration is too high on 

the end of the pitch contour, as can beseen from Figure 4.49. The PDT pitch algorithm 

is known to yield a rather good pitch contour for this sentence, so here it is clear that the 

restoration method fails. 
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Figure 4.47: Graph ofthe pitch contour ofthe sentence T96. The line is from the PDT pitch determination 

algorithm. The points are from the voiced segments of the PDT pitch determination algorithm. 
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Figure 4.48: Graph of the pitch contour of the sentence T36. The line is from the PDT pitch determination 

algorithm. The points are from the known segments of the SHS pitch determination algorithm. 
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Figure 4.49: Graph of the pitch contour of the sentence T36. The line is from the restored contour 

from the SHS pitch determination algorithm. The points are from the voiced segments of the PDT pitch 

determination algorithm. 
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Figure 4.50: Graph of the pitch contour of the sentence T96. The line is from the restored contour from 

the SHS pitch determination algorithm. The points are from the voiced segmentsof the pitch contour 

from SHS, that was nat yet reconstructed. 
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--------------------------------

Conclusions 

Chapter 5 

Conclusions 

In this report the restoration of pitch contours produced by the SHS algorithm is discussed. 

To be able to make a restoration, an algorithm has been developed to decide what pitch 

estimates have to be restored in the pitch contour and what pitch estimates are already 

good as delivered by the SHS pitch estimation algorithm. 

This algorithm that divides the pitch contour in known and unknown points works fairly 

well. It fails only in one case (pitch contour of Tl4), due to upward octave failures, for 

which no discrimination method was implemented in the algorithm. It could therefore 

not be expected that the algorithm would recognize these. The algorithm succeeds in 

classifying as unknown the unvoiced segments, downward octave failures and low-volume 

segments. Although it was tried to make an algorithm to detect upward octave failures, 

nothing reliable could be developed. If the existing algorithm for classifying faulty pitch 

estimates as unknown could be extended with an algorithm to detect upward octave failu­

res, the performance of the algorithm would increase. 

The restoration method based on a bandlimited model proved not to be stabie enough 

to make restoration of pitch contours. This is due to the numerical instability and out-of­

band components. 

The restoration method based on an autoregressive model perfarms well for "good" pitch 

contours. For "bad" contours the performance is less good. To measure the quality of the 

restored "bad" contours, a perceptual experiment has to performed, where sentences re­

synthesized with the restored pitch contours are compared to the pitch contours produced 

by the PDT pitch determination algorithm and the original sentences. 

It turned out that restoration did not depend on whether the pitch estimates were fed 

to the restoration method in Hz or in the psycho-acoustically more correct ERB scale. 
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Conclusions 

This is probably due to the fact that for the frequencies of interest (0-300 Hz), the trans­

formation from one scale to the other is almost linear, and that the restoration methods 

do not depend on any linear sealing that is applied before the restoration takes place. 
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Appendix A 
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Figure A.l: Graph of the estimate for the excitation-noise varianee of the autoregressive filter against 

the order of prediction for the case, where the autoregressive parameters are determined using ( cor) the 

autocorrelation method, and ( cov) the autocovariance method. This is clone ( no lin.) on the plain data, and 

(lin.) a.fter subtrading the declination. The data points used, were determined from the sentence T16, 

using the PDT pitch determination method. The lines (lin.) and (no lin.) for (cov) almast coincide and 

can therefore not he distinguished. 
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Tl6: a-; versus order 
1000.---~~--~~--~~--~~----~~--~l--~1--~l--~l~~ 

800-

600 

400 

200 -

cor no lin. 
cor lin. 

cov no lin. - -
cov lin. 

-

-

-

0~~~~~~~~~~~~~--~ 

0 10 20 30 40 50 60 70 80 90 100 
Predictienorder 

Graphs 

Figure A.2: Graph of the estirnate for the excitation-noise varianee of the autoregressive filter against 

the order of prediction for the case, where the autoregressive parameters are deterrnined using ( cor) the 

autocorrelation method, and (cov) the autocovariance method. This is clone (no lin.) on the plain data, and 

(lin.) after subtrading the declination. The data points used, were deterrnined frorn the sentence T16, 

using the SHS pitch deterrnination rnethod. Only the pitch estirnates shown in Figure 4.3 are used. Frorn 

this a restoration was made, using three iterations. The lines (lin.) and (no lin.) for (cov), as well as 

the line for ( cor lin.) almast coincide and can therefore not he distinguished. 

116 



Graphs 
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Figure A.3: Graph of the estimate for the excitation-noise varianee of the autoregressive filter against 

the order of prediction for the case, where the autoregressive parameters are determined using ( cor) the 

autocorrelation method, and ( cov) the autocovariance method. This is clone ( no lin.) on the plain data, and 

(lin.) after subtrading the declination. The data points used, were determined from the sentence T16, 

using the PDTpitch determination method. Only the pitch estimates shown in Figure 4.5 are used. From 

this a restoration was made, using three iterations. The lines (lin.) and (no lin.) for (cov), as wellas 

the line for (cor lin.) almost coincide and can therefore not he distinguished. 
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Graphs 
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Figure A.4: Graph of the estimate for the excitation-noise varianee of the autoregressive filter against the 

number of iterations made in restoring the pitch contour. This is clone for case, where the autoregressive 

parameters are determined using ( cor) the autocorrelation method, and ( cov) the autocovariance method. 

This is clone (no lin.) on the plain data, and (lin.) after subtrading the declination. The data points 

used, were determined from the sentence T16, using the SHS pitch determination method. Only the pitch 

estimates shown in Figure 4.3 are used. From this a restoration was made, using a prediction order of 

ten. The hill in the graph for (cor. lin.) is due tothefact that the restoration metbod can not he written 

as an iterative minimization of one quadratic expression. 
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Figure A.5: Graph of the estimate for the excitation-noise varianee of the autoregressive filter against the 

number of iterations made in restoring the pitch contour. This is clone for case, where the autoregressive 

parameters are determined using ( cor) the autocorrelation method, and ( cov) the autocovariance method. 

This is clone (no lin.) on the plain data, and (lin.) after subtracting the declination. The data points 

used, were determined from the sentence T16, using the PDTpitch determination method. Only the pitch 

estimates shown in Figure 4.5 are used. From this a restoration was made, using a prediction order of 

ten. 
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Figure A.6: Power density spectrum of the pitch contour of T16. The power density spectrum was 

determined from the estimates for the forward prediction coefficients. The order of prediction was 50. The 

pitch contour was determined using the PDT pitch determination algorithm. Here, before the spectrum 

was estimated, the linear part was removed from the pitch contour. 
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Figure A.7: Fraction of the energy in the high-pass region of Figure A.6 as a function of frequency. 
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Figure A.8: Graph of the transformation of the Hz scale into the ERB scale. Note the almast linear 

behavior for these low frequencies. 
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Figure A.9: Graph of the transformation of the Hz scale into the ERB scale. Note the almost linear 

behavior for low frequencies, while there is an almost logarithmic behavior for the high frequencies. 
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