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Abstract 

In this thesis a study of the stability of liquid films and foams is performed. The stability of 
films and interfaces is governed by their elastic properties. In equilibrium, these elastic properties 
are quantified by the Gibbs elasticity, expressing the dependenee of the surface tension on an 
extension or contraction of the interface(s). Our main interest is to study this dependenee as a 
function of the presence of surface-active molecules (surfactants). 

The Gibbs elasticity of interfaces is stuclied by simulation. To this end a Molecular Dynamics 
program bas been developed. In the simulations, a simple generic model of interfaces is used. 
The model interactions determine the subsequent configurations of the particles at the interface. 
Thermodynamic properties of the interface are averages over these configurations. 

In contrast to the surface tension, the Gibbs elasticity is a fluctuation. Fluctuations are 
far more difficult to obtain from a simulation than simpte linear averages. Furthermore, the 
thermodynamics of fluctuations is a topic that is not fully discussed in literature. 

This thesis bas been organized as follows. Chapter 1 illustrates the relation between the 
stability of films and foams and the Gibbs elasticity. General aspects of simulation in classica! 
statistica} mechanics are discussed in chapter 2. In chapter 3 the Molecular Dynamics metbod 
is explained. Techniques to obtain a constant temperature are emphasized, since the calculated 
Gibbs elasticity is expected to be strongly dependent on their quality. In chapter 4, fluctuation 
formulae are derived for thermodynamic quantities, in partienlar for the Gibbs elasticity. Chapter 
5 discusses methods to estimate errors in quantities calculated by simulation. It is shown that 
estimating errors in fluctuations is not trivial. Molecular Dynamics simulations of bulk systems 
consisting of Lennard-Jones particles, are described in chapter 6. The reason is that the interfaces 
are modelled as two repulsive liquids, each of which consists of Lennard-Jones particles. This is 
explained in chapter 7. Here, results are presented for the dependenee of the surface tension and 
the Gibbs elasticity on the concentration of surface-active molecules present at the interfaces. 
The calculation of the Gibbs elasticity is a time-consuming activity, if one realizes that a simpte 
calculation (at a given concentration) takes approximately 2 days on the IBM Scalabie Power 2. 
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Chapter 1 

Introduetion 

1.1 Surface tension and elasticity 

Atoms or molecules in boundary regions have a different environment than those in bulk regions. 
For a liquid-vapour surface, this is a result of the partiele density difference across the surface. 
Particles in the liquid phase near the surface do not have as many neighbours as those in the 
bulk liquid. Since the interactions of interest are attractive1 , in many cases van der Waals forces, 
particles near the surface experience an attraction into the liquid. This results in a tendency 
of the surface to minimize its area. This tendency can he expressed in a surface tension, which 
is the force in the surface acting on a line of unit length drawn in the surface. We will always 
assume that this tension is uniform, i.e. it is perpendicular to any line drawn in the surface and 
its magnitude is independent of the direction of this line and the position on the surface. For 
systems in equilibrium at a constant temperature T, the surface tension 'Y can he defined as the 
derivative of the free energy F with respect to the interfacial area A, 

aF 
1 =a A' 

{1.1) 

where the other independent macroscopie variables, as temperature, are kept constant. Since 
systems in equilibrium at a constant temperature have a minimal free energy, a positive surface 
tension expresses a tendency to minimize the interfacial area. 

An interface between two immiscible liquids shows the same tendency, which in this case is 
the result of repulsive interactions across the interface. We will use the name surface tension 
for the liquid-vapour surface as well as the liquid-liquid interface, although strictly speaking it 
should he interface tension in the latter case. 

Provided that there is a difference of polarity across the interface, as in the case of liquid­
vapour surfaces of polar fluids and liquid-liquid interfaces as the oil-water interface, surface 
tensions can he affected by the addition of amphipathic molecules. These molecules consist of a 
spatially separated hydrophilic and hydrapbobic part. The hydrophilic part, which is called the 
head of the molecule, is attracted to polar phases, whereas the hydrapbobic tail prefers apolar 
phases. Addition of these molecules results in a stronger attraction across the interface, i.e. in 
a decrease of surface tension. Making the demand of minimal interfacial area less severe, these 
so-called surfactant molecules increase the foaming ability of a liquid-gas interface or the mixing 
ability of two immiscible liquid phases, respectively. 

The stability of an interface is largely determined by the dependenee of the surface tension 
on the presence of amphipathic molecules. If an interface is perturbed from equilibrium in such 
a way that locally its area is increased, the local area density of amphipathic molecules will 

1 Attractive forces are essential for the liquid-vapour coexistence; particles with only repulsive interactions do 
not show a liquid-vapour transition. 

1 
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Figure 1.1: A locally expanded surface tends to contract due to the locally increased surface 
tension. Ditfusion from the bulk counteracts this stabilizing effect. 

decrease. As a consequence the surface tension will increase locally. The locally increased force 
will restare the interface to its equilibrium configuration. This stahilizing effect is known as 
the Marangoni effect. The Marangoni effect is a dynamic effect in the sense, that a low area 
concentration of amphipathic molecules induces ditfusion from the bulk phase to the interface 
(see figure 1.1). Time scales involved in these processes are of importance to the stability of 
interfaces. 

Since the Marangoni effect is a result of the dependenee of the surface tension on the area 
density of amphipathic molecules, it is closely related to the dependenee of the surface tension 
on the interfacial area. This dependenee is expressed by the surface elasticity, which was first 
introduced by Gibbs [1] as 

{1.2) 

again at constant temperature. 
The difference, however, is that the Gibbs elasticity is defined under equilibrium conditions, 

whereas the Marangoni effect is a dynamic effect. Therefore, no simple relationship between the 
Marangoni effect and the Gibbs elasticity has been found. In this thesis we will he studying 
systems in equilibrium. For these systems, stability criteria for interfaces can he expressed in 
terms of the Gibbs elasticity. 

In the next section we will discuss some experimental studies on the elasticity of films and 
surfaces. Insection 1.3 and 1.4 we will illustrate the role of the elasticity in the stability of films 
and foams, respectively. 
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1.2 Experimental studies on elasticity 

In this section we want to give an impression of some experimental studies on elasticities of films 
and surfaces. We will start with a description of a technique published by Prins et al. in 1967 
[2]. 

The elasticity of films of thicknesses of the order of 10-4 cm was measured. Films of these 
thicknesses will be referred to as thick films. The elasticity of a film is defined as 

2d"'( 
dlnA' 

where the factor 2 arises because the film has two surfaces (A is the area of the film). 

(1.3) 

Liquid films were formed between the thin wires of two vertical frames, after immersion in a 
surfactant solution. The frames were moved vertically in such a way that one frame moves up 
while the other goes down. In this way the total surface area of the surfactant salution did not 
change. During the upward movement of one frame, new film is drawn from the solution. This 
new film, much thicker than the lower part of the original film, acted as a load for the original 
film. Due to this load the original film was extended. The change in area of an element in the 
original film was related to the change in its thickness. This decreasein thickness was measured 
from the displacement of the interference fringes (corrected for the contribution of drainage). 

The corresponding change in surface tension was found by assuming mechanica! equilibrium. 
Then the weight of the film is supported completely by a vertical gradient in the surface tension. 
This will be explained in the next section. The procedure consisted of measuring the total weight 
of the film present between the film element considered and the horizontal salution surface. 

The film elasticity was obtained as a function of film thickness for relatively high concentra­
tions (see figure 1.2). For this concentration regime, the film elasticity was found to decrease 
with increasing film thickness due to diffusional interchange of surfactauts between the surfaces 
and the salution in the film. Since in thicker films there are more surfactants in salution near 
the surfaces, the diffusional effect is larger in thicker films. 

There is a concentration above which surfactants in salution form complexes called micelles. 
The corresponding concentration is the critical micellar concentration (c.m.c.). In a micelle, the 
surfactants point their hydrophilic head towards the water phase, while their hydrophobic tails 
form the interior of the micelle, which is depleted of water. Due to the formation of micelles, 
the surface concentration does not increase with increasing bulk concentration above the c.m.c. 
Therefore, the surface tension shows a plateau above the c.m.c. (see figure 1.3). Above the 
c.m.c., Prins et al. found the film elasticity to be an order smaller than below the c.m.c. due to 
an increased diffusional effect (the micelles forming an extra reservoir). Also above the c.m.c. 
the film elasticity decreased with film thickness. 

Another method to measure elasticity was published in 1975 by Lucassen and Giles [3]. Here 
it concerned measurements of the elasticity of a surface2 • Surfaces of surfactant solutions were 
subjected to area variations in the form of small harmonie longitudinal waves. This compression 
and expansion of the surface was performed at a constant temperature. Surface tension varia­
tions resulting from the area variations were measured by the Wilhelmy plate method. In this 
method, the force acting on a small vertical plate touching the surface exactly, is measured by a 
microbalance. 

For insoluble monolayers, where there is no diffusional interchange of surfactants between 
the surface and the solution, the surface tension followed the area changes instantaneously. For 
higher concentrations, a non-zero phase angle () was observed. Then the surface elasticity was 
written as e = lel exp (iB). The absolute value lel was obtained within an error of 1% as a function 
of both concentration of the salution and frequency of the longitudinal waves (see figure 1.4). 

The absolute value of the surface elasticity was found to increase with the bulk concentra­
tion of the salution for low concentrations. This concentration regime will be referred to as the 

2Some authors refer to surface elasticity as surface dilational modulus and to film elasticity as Gibbs elasticity. 
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Figure 1.2: Film elasticity as a lunetion of film thickness as found by Prins et al. The upper curve 
corresponds to a bulk concentration 4 w-6 moljcm3 and the lower curve to 15 w-6 moljcm3

, 

which is above the c.m.c. 510-6 moljcm3 • Films drawn from solutions of sodium dodecyl sullate 
(SDS). 
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log (concentration) 
Figure 1.3: A sketch of the dependenee of the surface tension on the bulk concentration. 

insoluble monolayer regime, since diffusional effects are small. For larger concentrations lel de­
creased with increasing bulk concentration, due to a dominating diffusional effect. The maximum 
in the surface elasticity was found for concentrations below the c.m.c. Above the c.m.c. addi­
tional diffusion mechanisms caused the surface tension to decrease more quickly with increasing 
concentration. 

The absolute value of the surface elasticity showed no frequency dependenee in the low con­
centration limit. For higher concentrations the surface elasticity was found to increase with 
increasing frequency. The frequency dependence, growing with increasing concentration, could 
be explained from the dynamics of the diffusion processes. The region from which surfactauts 
can reach the surface in the time of expansion of the surface, is smaller at higher frequencies 
than at lower frequencies. It was shown that this frequency dependenee can be mapped on the 
dependenee of the film elasticity on film thickness, if for the film thickness is chosen 

(1.4) 

where Dis the diffusion coeflicient of the surfactauts and w the angular frequency. Using this re­
lation, film elasticities at a given thickness and surface elasticities at the corresponding frequency 
can be compared (see figure 1.5). For low as well as high concentrations, the film elasticity is 
simply twice the surface elasticity. For intermediate concentrations (around the elasticity maxi­
mum), the deviation is very small. 
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Figure 1.4: Sketch of the absolute value of the surface elasticity Ie: I as a lunetion of bulk concen­
tration at different frequencies. 
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thinner film 

thicker film 

concentration 
Figure 1.5: Elasticity as a lunetion of bulk concentration. Solid curves repcesent half the film 
elasticity at a certain thickness, whereas dasbed curves repcesent the surface elasticity at the cor­
responding frequency. The two upper curves correspond toa thinner film (or higher frequency). 
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Figure 1.6: The effect of insoluble monolayers on the flow in a vertical free film. 

1.3 Film stability 

Two stages in the history of a film are critica! to rupture. The first is just after its birth when 
the film is young and thick, the other is much later when it is old and thin after drainage. 
Rupture of thin films (of thicknesses below a few hundred nanometers) is a consequence of 
the interaction between the two approaching surfaces of the film. These interactions involve 
electrastatic repulsion, van der Waals attraction and steric repulsion. In general a thin film will 
he instabie if a thickness fluctuation will grow. For an attractive interaction this is the case if 
the attraction increases with decreasing thickness. 

Rupture of thick films is determined by their dynamic elastic properties. This will he illus­
trated below for the case of a vertical film in a gravitational field. For a general review on the 
dynamic properties of free liquid films and foams, we refer to Lucassen [4]. 

Consider a vertical, free liquid film with surfaces covered with an insoluble monolayer (see 
figure 1.6). The downward velocity -vy is governed by the Navier-Stokes equation for Stokes 
flow (stationary, incompressible flow of low Reynolds number) 

rPvy 
11 dx2 = pg, (1.5) 

where 1J is the viscosity of the liquid, p its mass density and g the gravitational acceleration. The 
presence of the monolayer farces the velocity at the boundaries to he zero in the lower part of 
the film , i.e. vy (±h/2) = 0, yielding the parabalie velocity profile 

(1.6) 
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This is only possible if the stress exerted by the flowing liquid is balanced by a surface tension 
gradient 

d'"'f = 'TJ dvy I = pgh. 
dy dx lh 2 

2 

(1.7) 

Although flow is essential in creating a surface tension gradient, this relation also applies for very 
high viscosities, where the rate of flow is negligibly small. In that case it is more obvious that 
the weight of film elements should be balanced by a tension difference. 

Since the tension difference is bounded toa maximum (namely the tension of the pure liquid 
minus the minimal tension that can be reached for the monolayer in question), there is a maximal 
height where the tension can just support the weight of the film below. From equation 1.7 this 
maximum height is inversely proportional to the film thickness as 

L - 2~'Y 
max- pgh (1.8) 

For aqueous films the maximum surface tension difference ~ 'Y is of the order of 50 mN / m, leading 
to 

1 
Lmax = lOh' (1.9) 

with lengths expressed in cm. Above this maximal length a surface tension gradient is absent. 
Therefore the viscous stress should vanish at both surfaces and as aresult there will be no velocity 
gradient in the x-direction (plug flow). Film elements will simply and quickly be extended. Since 
the rate of extension is increasing with height, the film as a whole will undergo a catastrophic 
rupture process. This processis initiated at high thicknesses (equation 1.8). 

So far we have considered the case where the film is covered with insoluble monolayers. In this 
regime the film elasticity, at a given low surfactant concentration, is independent of thickness. 
An extension of a film element then leads to a decrease in film elasticity of this element, because 
of surfactant depletion. Thinner parts of the film thus have a lower resistance to thinning than 
thicker parts. Therefore, insoluble monolayers are usually unsuitable as film stabilizers (although 
the film elasticity can be quite large). 

On the other hand, films in which the thickness dependenee is dominated by diffusional 
exchange with the film liquid, i.e. at higher surfactant concentration where the film elasticity 
decreases with increasing liquid concentration, show a stahilizing effect. During extension the 
liquid concentration in these films decreases, which means that the film elasticity increases with 
decreasing film thickness. 

When the adsorption isotherm, relating the surface and bulk concentrations, is known, the 
shape of a film just after its formation can be calculated. A qualitative impression is given in 
figure 1.7. On the left is shown a film in the insoluble regime. The film elasticity is lower in 
the thinner parts of the film. On the right a film at a higher concentration is shown. Due to 
diffusion the film elasticity shows an opposite dependenee on film thickness. 

1.4 Foam stability 

In a foam, individual films are separated from each other by liquid channels, the Plateau borders 
(see figure 1.8). The interplay between a Plateau border and the films is a crudal factor in foam 
generation and stability. To illustrate this, consider a foam which is subjected to deformation. 
The foam films will tend to either increase or decreasein area. However, they can never do so in 
isolation and the Plateau borders will have to be involved in the deformation too. To first ap­
proximation, the tension should be uniform during the joint deformation. As a consequence, the 
ratio between the relative extensions of the Plateau border and the film is inversely proportional 
to the ratio between their elasticities. Since for most surfactant solutions, the elasticity of the 
Plateau border is much smaller than that of the adjoining film (due to diffusion of surfactants), 
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Figure 1.7: Film profiles just after formation. The film on the left is in the insoluble regime, 
whereas the film on the right in the dilfusion dominated regime. The film elasticity increases 
along the arrows. 
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Plateau border 

Figure 1.8: The junction of three foam films. 

the extension of the Plateau border is much larger. The result is that new thick film is being 
pulled out of the Plateau border. The Plateau borders then act as a buffer against deformation, 
in such a way that the films are protected against rupture. 

The interaction between foam films and Plateau borders involve more processes than the one 
described above. Under certain circumstances, the Plateau borderscan have an accelerating effect 
on the thinning of the films, called marginal regeneration. Foradiscussion of this effect, we refer 
to Lucassen (4]. Another effect that can cause foams to disappear is bubble disproportionation, 
due to diffusion of gas from smaller bubbles to larger ones. The foam canthen collapsewithout 
any of its films actually breaking. In two dimensions (no gravity) this effect bas been described 
by Weaire and Rivier (5] and Glazier and Weaire [6]. In three dimensions drainage of the foam 
due to gravity ( described by Verbist and Weaire (7]) causes rupture of films to dominate bubble 
disproportionation. Below, we will discuss the stability of spheres embedded in a larger medium. 
These spheres can either he drops or bubbles. 

For a general curved interface we have to consider the pressure difference across the interface, 
which in equilibrium is related to the surface tension by the Laplace-Young equation 

Ap = 'Y (~1 + ~J. (1.10) 

The principal radii of curvature R1 and R2 are locally defined as the maximum and minimum 
radii of curvature of the interface. If the pressure difference equals zero, the Laplace-Young 
equation reduces to 1/ R1 + 1/ R2 = 0, which is the condition of minimal area for interfaces that 
are closed or have a fixed boundary. In order to derive stability criteria, we will focus on two 
simple cases, both invalving spherical interfaces. 

First we will consider a spherical region of a particular phase at a pressure p entirely sur­
rounded by an indefinitely large region of. a different phase at a pressure p0 • In this case the free 
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energy is a function of the sphere volume and area F (V (r), A (r)). The equilibrium condition 
oF I ar = 0 can he written out as 

oF oF 8V oF 8A 2 
ar = 8V ar + 8A ar = - (p- Po) 41rr + -yB1rr = O, 

which directly yields the Laplace-Young equation for spherical interfaces 

2-y 
!::lp = R. 

The stability condition 82 Ff8r2 > 0, or more explicitly 

82 F op 2 a-y 2 
8r2 = -ar 41rr - l::lp87TT + 8A {87rr) + -y87r > 0, 

reduces to 

Here the pressure dependenee on volume appears as a stahilizing effect. 

{1.11) 

{1.12) 

{1.13) 

{1.14) 

Next consider the equilibrium of two spheres of a particular phase at the same pressure, 
embedded in another phase. Equal pressures can he established by connecting the spheres by a 
thin pipe. In equilibrium the radii of the spheres are equal. In order for the two spheres to he 
in stabie equilibrium, a small transfer of particles from sphere 1 to sphere 2, giving rise to an 
increase in the radius of sphere 2, should he foliowed by a pressure increase in sphere 2. This 
stability condition that for both spheres 8pf8r should he positive, reduces to 

'Y 
ê-- > 0 

2 ' 
{1.15) 

which only involves the surface tension and elasticity. Equation 1.15 is also applicable toa system 
of two equal-sized bubbles in a foam. In this case the surface tension and the Gibbs elasticity 
refer to both surfaces constituting the film of the bubbles. 
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Classica! statistica! mechanics 

2.1 The classical approximation 

We are interested in macroscopie properties of many-particle systems. At a microscopie level the 
time evolution of the system can he described by either quanturn or classica! mechanics. We will 
be consirlering classica! systems only. 

For atomie systems the classica! approximation holds, if the de Broglie thermal wavelength, 
defined as 

= (~)1/2 
A kBTm ' 

{2.1) 

is much smaller than the mean nearest-neighbour separation, which can be approximated by 
p-113 with p the number density. (h is the Planck constant divided by 21r, kB the Boltzmann 
constant and m the atomie mass.) Formolecular systems, there are additional requirements for 
the rotational and vibrational degrees of freedom. The classica! approximation leads to important 
simplifications, because kinetic and potential contributions to thermadynamie properties can be 
separated. Camparision between the total kinetic energy K and tot al potential energy U, offers 
a simple means of characterizing the system. For the dilute gas Kj lUl ~ 1, whereas for the 
low-temperature solid K / lUl « 1. For the liquid state K and lUl are comparable. Alternatively, 
characterizing the interactions in the system by a length u and energy €, the reduced density 
p* = pu3 and the reduced temperature T* = kBT/E arebothof orderunityin the liquid state. 
For a general review on the theory of classicalliquids, we refer to Hansen and McDonald [8]. 

2.2 Ensemble averages 

In classica! mechanics the state of one partiele is described by its position r. and momenturn p. 
As a consequence a microscopie state of a classica! many-particle system is characterized by the 
positions and momenta of all particles. 

A macroscopie state of a system is characterized by the density of microscopie states in phase 
space. This density p (r.N' rt) expresses the probabilities of all microscopie states the system can 
he in. {The superscript N refers to the complete partiele set.) It is referred to as the ensemble 
of the macroscopie state. A macroscopie quantity B is defined as the average over the ensemble 
of the corresponding microscopie quantity B (r.N, pN) by 

{2.2) 

13 
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The denominator is the central property of the macroscopie system, since it is proportional to 
the partition function of the system. From this partition function all thermodynamic properties 
can be derived. 

A system is said to be in equilibrium if its macroscopie state does not change in time. 
This means that the system can be described by a unique ensemble, corresponding to a time­
independent density of microscopie states. For a one-component atomie system some commonly 
used ensembles are the microcanonical NVE, the canonkal NVT, the isothermal-isobark NpT 
and the grand canonical JL VT ensemble. We will discuss some of these ensembles below. 

For instanee in the microcanonical ensemble, all microscopie states of the ensemble have the 
same number of particles N, volume V and energy E. Since Nis a constant, we are dealing with 
a phase space of fixed dirneusion 6N (3N in coordinate space and 3N in momenturn space). All 
microscopie states lie on a surface of constant energy E in this space. The position and shape 
of this surface can be expressed as a function of the volume V only. Since all microscopie states 
with energy E are equally probable, for the microcanonical ensemble the density of microscopie 
states is proportional to the Dirac 6-function 6 (E -'H), where the Hamiltonian 1i depends on 
atomie positions and momenta. 

In the canonkal ensemble microscopie states with different energies have different probabili­
ties. The density of microscopie states is proportional to the Boltzmann factor exp ( -/31i) with 
/3 = 1/ (kBT). Note that the temperature is constant only in a macroscopie sense. The kinetic 
energy of the microscopie states of the canonical ensemble does fluctuate for a fini te system. As a 
consequence the instantaneous temperature, which can be defined in terrus of this instantaneous 
kinetic energy, is not constant. 

2.3 Ensemble dependenee of fluctuations 

Macroscopie quantities that can be written as simple averages over microscopie states, i.e. B = 
(8}, do not depend on the choice of ensemble in the thermodynamic limit of infinite system size. 
In fact this is only true if the quantity belongs to a certain class of functions. We will always 
consider quantities that belong to this class and will not go into detail about the necessary subtie 
criteria (see [9]). Fora finite system relative differences are of the order 1/N. 

On the other hand fiuctuations are ensemble dependent, even for infinite systems. Fluctu­
ations can be ex~ressed as variances or covariances of microscopie quantities. These will be 
denoted by ((68) } and (6A68} respectively, where 68 means 8- (8)1. Fluctuations show up 
in thermodynamic derivatives. In this study they play a major role, since we are interested in 
volume and area dependences of macroscopie quantities, in particular the Gibbs elasticity. 

Lebowitz, Percus and Verlet [9] derived expressions to transform fluctuations between ensem­
bles. In the canonical ensemble, fluctuation formulae for derivatives can be found in a straight­
forward way. In chapter 4, we will derive expressions involving volume and area derivatives in 
the canonical as well as the microcanonical ensemble. Direct derivation of fluctuations in the 
microcanonical ensemble is not straightforward. The main reasou is the appearance of the Dirac 
6-function. Ray and Craben [10] first succeeded in directly deriving expressions for fluctuations 
in the NVE ensemble. A different approach was foliowed by Pearson et al. [11], where Laplace 
transform techniques were applied to deal with the mathematics. We will discuss this approach in 
chapter 4. Both direct derivations yield expressions consistent with the Lebowitz transformation 
rul es. 

1 From the context it will always be clear whether 6 refers to the Dirac 6-function or to a deviation from an 
average value. 
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2.4 Simulation techniques 

We will only consider microscopie quantities that are a function of either the atomie positions 
or momenta. In the latter case the macroscopie quantity in the canonical ensemble is easily 
obtained, since the Hamiltonian is a simple quadratic function of the atomie momenta. If the 
microscopie quantity is a function of atomie positions only, we are still dealing with a non­
trivial average over configurational space. For a system interacting through pair potentials only, 
theory on the system can be developed by approximating this average by diagramrnatic cluster 
expansions. 

Another way to attack the problem is by simulation. In 1953 Metropolis, Rosenbluth, Rosen­
bluth, Teller and Teller [12] introduced a methad to sample configurational space in the canonical 
ensemble. Pioneer work had been done by Mayer, Ulam and Von Neumann. This methad is 
well known as the Monte Carlo (MC) method. The name is due to the random character of 
the partiele moves. Originally, a new microscopie state is generated from the previous one by 
randomly changing the coordinate of one particle. In order to simulate the canonical ensemble, 
the following acceptance criterium is used: accept the new state if the energy difference 6.1-l with 
the old state is negative; if the energy has increased, the new state is accepted with a probability 
exp ( -/36.1-l). Since its introduetion the Monte Carlo methad has been modified in order to make 
the sampling more eflicient. The original methad allows the movement of one partiele at a time. 
The freedom in partiele moves is bigger than this: each combination of moves is allowed as long 
as the transition probabilities satisfy the principle of detailed balance. 

The Monte Carlo technique can be easily adapted to sample the isothermal-isobaric or grand 
canonical ensemble. In these ensembles partiele moves are combined with volume changes in 
the N pT ensemble and partiele destructions and insertions in the J.L VT ensemble. Of course the 
acceptance criteria should be appropriately modified. 

Another modified version is the Gibbs ensemble methad introduced by Panagiotopoulos [13] 
to simulate phase equilibria, specifically liquid-vapour coexistence. Up to now it is impossible to 
simulate 1023 particles, instead simulation systems contain 100 to 105 particles. Studying phase 
equilibria in such small systems, the interfacial region dominates the bulk regions. If one is not 
interested in interfacial properties, the Gibbs ensemble methad provides an outcome. Instead of 
simulating coexistence in one simulation box, the Gibbs ensemble methad simulates the liquid 
and gas bulk phases in two different boxes at the same pressure and chemica! potential. Of course 
interfacial properties cannot be obtained in this way. Starting from the same partiele density 
in both boxes, a combination of partiele moves, volume changes and partiele exchanges between 
the boxes leads to phase separation. In equilibrium the boxes of lower and higher concentration 
correspond to the vapour and liquid phase respectively. 

The Monte Carlo methad does not give information on the dynamics of the system in ques­
tion. If one is interested in dynamic behaviour, one can resort to another simulation method, 
known as Molecular Dynamics (MD). This methad will bedescribed in the next chapter. Since 
the properties of interfaces are affected by processes invalving ditfusion of surfactants, we have 
chosen the Molecular Dynamics method. In this thesis, we stuclied equilibrium properties as the 
equilibrium surface tension and Gibbs elasticity. Maybe at a later stage, the dynamic surface 
tension might be stuclied based on the code currently developed. 



Chapter 3 

Molecular Dynamics 

3.1 Conventional MD 

Macroscopie quantities are averages over an ensemble of microscopie states. If a system is ergodic, 
ensemble averages are equivalent to time averages. The Molecular Dynamics methad is based on 
this equivalence. In classica! Molecular Dynamics microscopie states are generated by Hamilton's 
equations of motion, which are equivalent to Newton's equations (for atomie systems). Since 
energy is a conserved quantity, the natura! ensemble simulated by Molecular Dynamics is the 
microcanonical one. Ergodieity then means that the system will have passed an equal number 
of times through every phase-space element lying on the hypersurface of constant energy. 

If the potential is a continuons function of partiele coordinates, the equations of motions can 
he solved by fini te difference methods. If this is not the case as for hard spheres and square wells, 
collisions should he taken into account explieitly. Finite difference methods solve the equations 
of motion on a discrete time scale. The time step 6t should he chosen such that the farces can he 
considered constant during one time interval. A variety of algorithms is available, which roughly 
fall into two classes. These are the predietor-corrector algorithms and the Verlet algorithms. 
Both types are reviewed by Allen and Tildesley [14]. Here we will only consider the Verlet type. 

The original Verlet algorithm is a direct salution of Newton's equations. Positions at time 
t + 8t are calculated from positions and farces at time t and positions at time t - 8t. The 
veloeities are not necessary to propagate the system, but only in calculating the kinetic energy. 
Two modifications of the original algorithm are the leap-frog and the veloeity-Verlet schemes. 

In the leap-frog algorithm positions r. and veloeities:!!. are advanced by 

r.(t + 8t) = r.(t) + 6tQ(t + !8t)' 

Q(t + !8t) = Q(t- !8t) + 8tg(t)' (3.1) 

with Q the acceleration. To calculate quantities that require veloeities at integer multiples of the 
time step (i.e. t = n8t), such as the kinetic energy, veloeities should he calculated as 

1 
Q(t) = 2 [:!!.(t + !8t) + Q(t- !8t)]. (3.2) 

The veloeity-Verlet algorithm stores positions, veloeities and accelerations all at the same 
time and is given by 

1 
r.(t + 6t) = r.(t) + 8tQ(t) + 2 (8t)2 g(t)' 

1 
:!!. (t + 8t) =:!!. (t) + it [!! (t) + Q (t + 8t)J. (3.3) 

16 
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The velocity-Verlet scheme is attractive for reasous of storage, numerical stability and simplicity. 
It should he noted that every integration algorithm leads to differences from the exact salution 

for very long times { due to the fini te time step). Th is is fa tal only, if we are interested in dynamic 
properties over large time scales. If an exact salution can he obtained for times comparable with 
the correlation times of interest, time correlation functions, corresponding to dynamic properties, 
can he calculated accurately. 

If we are not interested in dynamic properties, the only requirement is to generate the mi­
crocanonical ensemble. For this purpose, we do not need the exact trajectories. Instead, energy 
conservation is essential and should therefore he the main test of a finite difference algorithm. 

3.2 Thermostatting 

The natura! ensemble for Molecular Dynamics simulations, is the microcanonical ensemble. In 
order to simulate the canonical ensemble, we have to change the dynamics of the system. Below 
a comparison is made between a few important methods of constant temperature Molecular 
Dynamics. A more extensive review is given by Nosé [15]. 

3.2.1 Velocity sealing 

Velocity sealing is the earliest method. It scales the veloeities of all particles at each time step, 
in such a way that the instantaneous kinetic energy is fixed to the constant value corresponding 
to the desired temperature. Therefore it is called a constraint method. Since the kinetic energy 
should fiuctuate in finite systems, constraint methods do not generate the right distribution 
of microscopie states in momenturn space. However, this is not an important disadvantage, 
since properties depending on momenta only, can easily he calculated analytically. The question 
is, whether this particular method generates the canonical distribution in coordinate space. 
According to Nosé, the momenturn-sealing procedure does not. In fact, the coordinate part of 
the generated distribution would show the same deviations from the canonkal distribution as 
does the microcanonical distribution projected onto coordinate space. {To answer this question, 
we present numerical investigations in section 6.4.) If this is the case, sealing would he useless 
in simulating the canonical ensemble. In simulating the microcanonical ensemble, however, the 
procedure would he helpful in adjusting the energy E of the system to {1-l) NVT· This is necessary, 
if one wants to campare microcanonical and canonical simulations.1 

3.2.2 Andersen's metbod 

In 1980 Andersen [16] was the first to propose a method that generates the canonical ensemble in 
phase space. In his approach, the particles change their momenta instantaneously by stochastic 
collisions. Particles suffer collisions the rate of which is determined by an average callision rate 
v. The velocity of a partiele aftera callision is sampled from the Boltzmann distribution at the 
desired temperature. The time evolution of the system can thus he divided into a Hamiltonian 
part and a collisional part. Collisions change the kinetic energy of the system, as a result of 
which the system jumps to a hypersurface with a different energy. This is shown in figure 3.1. 
The canonical ensemble is obtained, if the Hamiltonian motion forces the system to pass through 
every point on a surface of constant energy with the same probability, i.e. if the sytem is ergodic. 
This demand, which is the same as for conventional microcanonical MD, is suflident but not 
necessary. This is because the collisions increase the freedom of the motion in phase space. 

The callision frequency v does not affect equilibrium properties of the system. However, 
dynamic properties are very sensitive to this callision frequency. Therefore, it is reasanabie 

1 Constraint methods can also be defined in terms of a Hamiltonian of an extended system. The choice of the 
potential of the extra variabie then determines the dynamics of the system. In this respect there is a unique 
potential which generates the canonical ensemble in coordinate space (compare section 3.2.3). 
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Hamilton 

Collision 

Hamilton 

Figure 3.1: Time evolution in phase space of a system governed by Andersen 's dynamics. The 
motion is mostly on a surface of constant energy, but sametimes a callision forces the system to 
continue its motion at a different energy. 
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to choose the callision frequency, so as to simulate a real fluid element subjected to energy 
fluctuations due to its surroundings. Consider a system of volume V consisting of N particles 
surrounded by a reservoir at temperature T. Suppose that the temperature of the system is 
T + ilT. Then the system willlose energy to the reservoir at a rate proportional to the thermal 
conductivity "' and the temperature difference ilT. By dimensional considerations, the rate of 
heat loss is shown to be aK.ilTV113 , where a is a dimensionless constant dependent on the shape 
of the system. This energy loss rate should be equal to 3NvkBilT/2, the lossof kinetic energy 
due to collisions. So v can be related to the thermal conductivity by 

2aK. 
(3.4) 

where p = NJV. A crude estimation of v follows from the consideration of a system containing 
only one particle. In this case it is reasanabie to set v equal to the actual callision frequency 
Vc for a particle. Elimination of "' then leads to the relation v = vc/ N 213

• For a large number 
of particles, v is much smaller than the actual callision frequency. Therefore, the Hamiltonian 
motion is dominant and only infrequently a partiele will suffer a collision. 

3.2.3 Nosé-Hoover 

Andersen's methad has the disadvantage that the evolution ofthe system is governed by stochas­
tic processes. Nosé [17] proposed a methad that is fully deterministic. His so-called extended 
system methad introduces an additional degree of freedom s with associated momenturn Ps, 
which acts as an external system on the physical system. Also virtual variables are introduced 
for the partiele coordinates, momenta and for time. The transformation from real to virtual vari­
ables can be interpreted as a time-sealing transformation where the sealing factor is s. Therefore 
the virtual coordinates are equal to the real ones, while the virtual momenta differ from the 
real momenta by a factor s. The extended system is then described by a Hamiltonian, where 
the choice of the potential dependenee on the variabie s turns out to be essential. Since we are 
dealing with canonical equations of motion in the virtual variables, energy is conserved in these 
variables. Transforming back to real variables, this virtual microcanonical ensemble changes into 
the canonical ensemble in real phase space, only for a partienlar choice for the potential depen­
denee on s. Nosé shows that this dependenee should be chosen logarithmic. In his analysis, 
effects of conservation of total momentum, which are of the order 1/N, are neglected.2 

Hoover [18]later pointed out that the only significant variabie for the external heat bath is 
a friction coeflicient ( = sp8 /Q, where Q is the mass for the motion of s. Using this variabie the 
time-sealing can be interpreted as a frictional effect. The resulting equations, constituting what 
is now knowas the Nosé-Hoover thermostat, become [19] 

dr· dt' = !!.i, 

d:Qi 
dt 

d( 

dt 

dlns 
dt 

1 au 
= ----(:Qi, 

mi 8r.i 

= ~ ( ~ miV~ - gkBT) , 

= (. (3.5) 

The quantity g is the number of degrees of freedom 3N - 3. The first three equations farm 
a closed set. Note that in the second equation an additional force is introduced, which has a 

2Note that in a simulation box with periodic boundary conditions, the total angular momenturn is not 
conserved. 
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thermostatting effect. The last equation, however, is very useful to check for programmingerrors 
and to estimate the accuracy of the integration algorithm. Indeed, s is necessary in calculating 
the conserved quantity 

1 2 
'HNosé = 'H + 2Q( + gkBTins. (3.6) 

This quantity is not a Hamiltonian, since the equations of motion are not canonical. 
The traditionalleap-frog algorithm extended to Nosé-Hoover MD, works welland samples the 

canonical distribution correctly if the quality factor Q is chosen appropriately [20]. This quality 
factor is defined in terros of the thermostat time constant r as Q = gk8 Tr2 . This time constant 
in combination with the time step should he chosen such that 'HNosé is constant to within the 
required accuracy. 

Nosé-Hoover MD generates the canonical distribution if the ensemble averages and trajectory 
averages are equal, i.e. the system is ergodic. Practically this means that the system should he 
sufficiently chaotic. A notabie exception is the single harmonie oscillator [18]. Difficulties are 
also expected for other small or stiff systems. Generalizations from a single thermostat variabie 
to a chain of variables might help in these cases [21]. 

Of course the Nosé-Hoover thermostat changes the time-dependent properties of the system. 
Studying time-dependent properties is only allowed, if the thermostat time constant r corre­
sponds to the time constant governing the energy fluctuations in a real system. This demand 
is equivalent to the demand on the callision frequency v in Andersen's method. We will not he 
studying time-dependent properties, so a check on the conservation of 'HNosé will he sufficient. 



Chapter 4 

Derivatives of thermodynamic 
quantities 

4.1 Introduetion 

In general the partition function of a system is difficult to obtain from a simulation. The reason 
is that the partition function involves a summation over microscopie states instead of an averag­
ing. Derivatives of the partition function with respect to the fixed parameters of the ensemble, 
respectively N, V, E in the microcanonkal ensemble and N, V, T in the canonical, contain 
important information of the system. These derivatives are available from simulation, because 
they can be written in terms of averages over microscopie states. Starting from a well-known 
system, the partition function of the system of interest can then be found by integration of these 
derivatives. 

Since in conventional Molecular Dynamics the microcanonical ensemble is simulated, whereas 
the canonical ensemble is more relevant to the present problem, we will treat them both in the 
following sections. In this thesis we will focus on derivatives with respect to the important length 
scales of the system. Derivatives with respect to the other fixed parameters of the ensemble can 
be treated completely analogously. 

Neglecting surface effects, for atomie one-component systems the only dimension of impor­
tanceis the total volume of the system, since the system is isotropic. The integration over partiele 
coordinates is limited to the volume of the system. This volume dependenee can be removed by 
a transformation invented by Green [22], which is given by 

(4.1) 

This transformation is commonly used (see e.g. McQuarrie [23]). It introduces a Jacobian VN in 
coordinate space. For non-isotropie systems, such as solids, length scales in different directions 
should be treated separately. 

We will also be regarding systems that can be characterized not only by their volumes, but also 
by a particular interfacial area A. Forthese systems the microcanonical and canonical ensemble 
refer to systems at constant N, V, A, E and N, V, A, T respectively. We will only be consiclering 
flat interfaces and take the z-direction perpendicular to the interface. Area derivatives at constant 
volume can then be treated by the following transformation [24]: 

X i = Al/2 x~ . ' 
Yi = Al/2 y~ 

" V, 
(4.2) Zi = A zi. 

21 
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Note that this transformation does not introduce a Jacobian different from unity, in contrast to 
transformation 4.1. 

4.2 Derivatives in the microcanonical ensemble 

As stated in the first chapter the phase-space density of the microcanonical ensemble is pro­
portional to 8 (E -11.), with the Hamiltonian depending on partiele coordinates and impulses. 
Integration of this density gives the function w (N, V, E), which is the derivative with respect to 
E of the phase-space volume S1 (N, V, E). These functions are given by 

n(N,V,E) = ~I dr.Nd1te(E-'H), 

w(N, V,E) = ~I dr.Ndlt8(E -11.), 

where e (x) is the unit step function, defined as 

ex-{1 ifx>O 
( ) - 0 otherwise. 

(4.3) 

(4.4) 

Averages of microscopie quantities B (r.N,zt) depending on partiele coordinates and momenta 
are then written as 

(4.5) 

In order to obtain thermodynamic properties, we have to define the entropy S of the system. 
In the microcanonical ensemble there is some ambiguity in this definition. Two possibilities are, 
among others, to define the entropy as ks ln n or ks ln w. These definitions are in agreement 
to order 1/N. Following Pearson, we will start from the first definition and apply a Laplace­
transform technique to obtain expressions for thermodynamic derivatives. 

The integral definitions of n, w and (B) can be rewritten in a more suitable form by taking 
the Laplace transform with respect to energy. Since the Hamiltonian is separable in coordinates 
and momenta, the momenta integrals can be performed. Here it is necessary that B is a function 
of partiele coordinates only, which we will assume in the following. Inverse transformation then 
leads to the following expressions: 

!l(N,V,E) = 1 I N )3N/2 ( ) 
Cof(3N/2+1) dr. (E-U e E-U' 

w(N, V,E) = 1 I N 3N/2-l 
Gor (3N/2) dr. (E-U) e (E-U)' 

(B) 1 I N 3N/2-l 
= wGof (3N/2) dr. B (E-U) e (E-U)' (4.6) 

where r ( n) is the gamma function and the new constant of proportionality is related to the old 
one by 1/Go = (27rm)3

N/
2 JG. (The potential energy U depends on partiele coordinates only.) 

Using these expressions, the temperature, which is defined by 1/T = (oSfoE)Nv• can easily 
be obtained as 

n 2 2 
ksT=~= 

3
N (E-U)= 

3
N (K:). (4.7) 

This is a direct illustration of the equipartition theorem. 
We will now turn to the question of how to deal with derivatives with respect to volume. 

Integration over partiele coordinates is limited to the volume of the system. This dependenee is 
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removed by Green's change of variables. In the mkrocanonkal ensemble the pressure is defined 
by p =- (aEiaV)Ns = T(aSiaV)NE and can he written as 

1 80 N (aU) 
p=;:;av=vksT- av · (4.8) 

In this expression the first term is the ideal gas contribution or kinetic term. The secoud term 
is a result of interactions between the particles. For pair-wise additive interactions it can be 
expressed in the virial function W (see appendix A). Equation 4.8 is then referred to as the 
virial theorem. 

In general, the derivative of an average quantity can be written as 

a(B) = _ (3N _1) (öBö (]._aU)) (oB) 
aV 2 IC aV + aV . 

(4.9) 

In this expression we can substitute for B the potential energy U. Since total energy is kept 
constant while differentiating with respect to volume, we automatically find an expression for 
the dependenee of kinetic energy on volume, i.e.{) (IC) laV = -8 (U) laV. 

The surface tension 'Y is defined analogously to the pressure as (aEiaA)Nvs = 
-T(aSjaA)NvE· Using the Laptace transfarm technique this can he written as 

Note that there is no kinetic term here. 

4.3 Derivatives in the canonical ensemble 

( 4.10) 

For volume derivatives in the canonkal ( and also the grand canonkal ensemble) we refer to 
Gray and Gubbins [25], where a detailed treatment can he found. In the canonkal ensemble 
the pressure is defined as the volume derivative of the free energy p = - (aF I a V) NT' The free 
energy is related to the partition function by Z = exp ( -(3F). The volume dependenee of the 
partition function is fully described by the configuration integral 

J dr_Ne-f3U. (4.11) 

Using Green's transformation 4.1, we can remave the volume dependenee of the integration 
boundaries, resulting in 

N (aU) 
P = (3V- aV . (4.12) 

So we find the same expression as in the microcanonkal ensemble. This should always he the 
case for averages, as explained in chapter 2. 

Now consider the volume derivative of the average of an arbitrary quantity B. Again using 
the transformation due to Green, we can write 

a(B) = -(3 (öB 6 (aU)) (oB) 
aV aV + aV . (4.13) 

Taking for the quantity B the potential energy, we obtain an expression for a(U) /{)V. Note 
that in the canonkal ensemble a(IC) I {)V equals zero.1 Using the relation between free energy 

1This is not the case in the grand canonkal ensemble due to the variabie partiele number. 
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and internal energy F = (1-1.} - TS, the volume dependenee of the entropy S in the canonical 
ensemble is obtained as 

T ;~ = ; - ~ ( 6U 6 ( ;~)) . (4.14) 

This quantity can he related to the thermal pressure coefficient via the Maxwell relation 

(4.15) 

which can he obtained by differentiating the free energy with respect to both volume and tem­
perature in different order. 

We will now treat area derivatives in the canonical ensemble. The derivative of the free 
energy with respect to the interfacial area is called the surface tension of this interface, i.e. 
'Y = (8F/8A)NvT· Note again the sign difference with the definition of the bulk pressure. 
Where pressure has the tendency to increase the volume of a system, surface tension tends to 
minimize the interfacial area. Using the transformation 4.2, we find for the surface tension the 
same expression as in the microcanonical ensemble, as we expected. 

The area derivative of an arbitrary average can he written as 

(4.16) 

Again taking for B the potential energy, the covariance can he related to the change in entropy 
by 

(4.17) 

where we used the fact that the average kinetic energy does not depend on A. This quantity 
can he helpful in studying phase transitions due to surface properties. It can he related to the 
'thermal surface tension coefficient' by 

(4.18) 

Stability criteria of interfaces involve the second derivative of the free energy with respect 
to the interfacial area. As mentioned in the introductory chapter, this can he expressed by the 
surface elasticity, which was first defined by Gibbs as ê = (8"1/ainA)NvT· Taking for B in 
equation 4.16 the quantity 8Uf8A, we find for the surface elasticity 

( 4.19) 



Chapter 5 

Error estimation 

5.1 Introduetion 

We use simulation as a computational approach to a physical problem. Typically, this involves 
breaking up differential equations into finite-difference equations, restricting infinite time inte­
grals to finite ones, etc. In order to quantify the errors involved, we discuss in this chapter the 
rnathematics surrounding our error estimation. lt should be realised that as the Gibbs elasticity 
is a fluctuation quantity, we have to discuss error estimates for nonlinear quantities (section 5.3) 
which are not readily found in literature as are the conventional techniques for averages (section 
5.2). 

5.2 The blocking metbod 

The problem in estimating errors in averaged properties, is the time correlation of the data. 
Allen and Tildesley [14] describe a procedure which is known as batehing of the data. Batehing 
in this sense means dividing the data in blocks of the same length. The statistics of these blocks 
then give a way of determining the so-called efficiency parameter, which is a measure of the 
time correlation. To obtain the error in au averaged quantity this efficiency parameter should 
be stuclied as a function of block size. Since this is au elaborate operation, we will now focus on 
au alternative procedure called the blocking methad [26] . 

The blocking methad transfarms the original data series { x1, .. , Xn} into half as large a data 
series {x~, .. ,x~,}, where 

x'· 
1 

= 2 (X2i-1 + X2i), • 
n' n 

{5.1) = 2" 
Repeated application of this transformation, creates a number of new series. The average m and 
varianee of the average u2 ( m) of the data is invariant under this transformation. Therefore, no 
relevant information is lost in this transformation of the data series to half as large a series. Not 
only is nothing lost, but sarnething is gained: Flyvbjerg and Petersen show that au estimate for 
u2 (m) is given by 

u2 (x) 
n-1' 

where u2 (x) is the varianee of the data series 

1 n 

u2 (x) = - L (xi - m)2
• 

n i=l 
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(5.2) 

{5.3) 
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Figure 5.1: Error in {U/N} = -4.340 as a lunetion of the number of block transformations 
applied for a Nosé-Hoover simulation at p* = 0.835, T* = 1.0 and N = 500. The value at the 
plateau gives the best estimate. 

Because of the time correlation in the data, we should study this estimate as a function of 
the number of transformations applied. The number of transformations can both he too small, 
causing the resulting series to still he time correlated, or too large, causing the resulting series 
to he too small to obtain good statistics. Fortunately there is an optimum in between, which 
gives a good estimate of the error in the average u (m) and even an uncertainty interval around 
this error: 

u(m)~Ju2(x)(1± 1 )· 
n- 1 J2 (n- 1) 

(5.4) 

A typical result is shown in figure 5.1. 

5.3 The jackknife metbod 

The blocking methad works well for averages. However the quantities we are interested in, 
involve variances and covariances. To make an error estimation of these quantities, we have to 
use different procedures, such as the jackknife or the bootstrap methad (27]. We will only he 
consirlering the jackknife methad here. 

For time uncorrelated data this methad makes a set of n new data series by omitting each 
data point from the original series. For correlated data a block of m data points should he 
removed, resulting in nfm new series. For each of this new series, we can calculate the quantities 
of interest. In our case this can he eiter an average, a varianee or a covariance. Statistics on 
these quantities give us an estimate of the standard error in them. Time correlation again farces 
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us to study these estimates as a function of the block size m. If we now take this block size to 
he an increasing power of two, we can for averages make a full comparison with the blocking 
method. We will apply the jackknife metbod in the error estimation of the simulations described 
in the following chapters. 



Chapter 6 

Simulation of the Lennard-J on es 
liquid 

6.1 Introduetion 

In the next chapter, we will discuss the physical system that we are interested in. lt consists of 
two liquids. Particles of equal identity attract each other by a Lennard-Jones potential. Particles 
of different identity repel each other. Surfactauts are build by joining some particles of different 
identity by a spring-like potential. This system should provide a simple generic model of a liquid­
liquid interface. lt has proved useful for this goal in numerous studies in the past (Telo da Gama 
and Gubbins [28], Smit [29] and Karaborni et al. [30]). 

The Lennard-Jones liquid has been studied since the early days of simulation. We will not 
try to give an overview on a subject as extensive as this. Our main interest is not in the 
thermodynamics of the Lennard-Jones liquid, but in phenomena occurring at the interface of 
two immiscible Lennard-Jones liquids. Therefore, in this chapter we will focus on those topics 
that are of importance to simulation techniques, instead of making a quantitative description of 
the Lennard-Jones liquid in terros of equations of states and dynamics. We also add a discussion 
of different ensembles (section 6.4) and the calculation offluctuations, exemplified by the melting 
transition (section 6.5). 

6.2 The effective pair potential 

In general, interactions between atoms of simple liquids can adequately he described in terros of 
pair potentials.1 Three-body·interactions are undoubtedly significant at liquid densities. Nev­
ertheless they are only rarely included in computer experiments, since any calculation invalving 
a sum over triplets of atoms will he very time-consuming. Fortunately the average three-body 
effectscan he partially included in an effective pair potential. Four-body and higher interactions 
can he fully neglected. 

In simple liquids the pair potential can he separated in a short-range repulsion and an at­
traction of longer range. For reasons of mathematica! convenience, the short-range repulsive 
interaction is usually represented by an inverse power law, i.e. r-n, with n in the range 9 to 15. 
For rare-gas atoms the teading term in the attractive interaction describes the dipole-induced 
dipole interaction, which varies as r-6 • Higher-order terros are generally negligible. The 12-6 

1 An explicit treatment of pair potentials is given in appendix A. 
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Lennard-Jones potential, obtained by taking n = 12, is of the farm 

éJ (T) = 4e [ (~)12- (~)6]' (6.1) 

where a is the callision diameter and e the depth op the potential well. The Lennard-Jones 
potential gives an adequate description of the interaction between pairs of rare-gas atoms and 
also of quasispherical molecules, such as CH4 • 

If interactions between particles are completely specified by a few parameters, it is useful to 
introduce reduced units. For the Lennard-Jones potential, these parameters are a and e. Reduced 
lengths and energies are thus expressed in units of a and e respectively. In chapter 2 we already 
introduced the reduced density p* = pa3 and temperature T* = kBTje. Similarly, pressure 
reduces to p* = pa3 je and surface tension to 7* = 7a2 je. Consiclering systems consisting of 
just one partiele type, another parameter that enters in the equations of motion is the mass of a 
particle. In red u eed units this is taken as the unit of mass, so that impulses and veloeities as well 
as farces and accelerations are numerically equal. Using reduced units, time will he saved in the 
simulation, since parameters as a, e and m do nat appear explicitly. Moreover, simulations in 
reduced units have the property to he generic for a class of systems, in this case Lennard-Jones 
systems. 

For liquid argon the effective pair potential can he described by a Lennard-Jones potential 
with ejkB = 119.8 K and a = 0.341 nm. Using these values and anatomie mass m = 39.948 u, a 
reduced time unit corresponds to 2.2 ps. A typical value for the time step used in the integration 
of the equations of motion, is 0.005 in reduced units. Using t* = (ma2 je)- 112 t, this is of the 
order 10 fs. 

Computer simulations are performed on finite systems. Finite systems show surface effects, 
which are unwanted in studying bulk properties. This problem can he overcome by the introdue­
tion of periadie boundary conditions. In a periadie system, the container walls of the simulation 
box are removed. Instead, the original box is replicated throughout space, forming an infinite 
lattice. Since all boxes are the same, a partiele leaving the central box through one face, will 
enter the central box as one of its periadie images through the opposite face. A periadie system 
is a good model of the macroscopie system which it represents, if the range of interaction is short 
compared to the size of the box. For Lennard-Jones particles simulated in a cubic box with 
periadie boundaries, a size of 6a suffices. Still nat every phenomenon can he stuclied using a 
periadie setup. Density waves with a wavelength larger than the size of the simulation box are 
suppressed. lt is therefore impossible to simulate a liquid close to the gas-liquid critical point, 
where the range of critica} fluctuations is macroscopie. Furthermore, suppression of fluctuations 
causes first order phase transitions to show characteristics of higher order transitions. 

lt is impossible to include all interactions between particles, regardless of the box they are 
in. In the minimum-image convention, a partiele in the central box interacts with the ciosest 
periadie images of the other N- 1 particles. The calculation of the potential energy then involves 
N(N- 1)j2 terms. To reduce this number, a further approximation is made. Forshort-range 
farces, a spherical cut-off can he introduced. For a Lennard-Jones pair potential a typical cut-off 
radius is Tc = 2.5a. 

Applying a cut-off introduces a discontinuity in the potential and the farces at the cut-off 
sphere. Since the equations of motion are solved using a finite time step, these discontinuities 
introduce some difficulties. We can overcome these probieros by slightly changing the potential. 
If we want the total energy to he conserved in a microcanonical simulation, it sufHees to shift 
the potential by its value in Tc. Then the farces still show a discontinuity, which is removed by 
making the potential differentiable at T =Tc. In our simulations we have used a special-purpose 
potential, which is continuous up to the second derivative with respect to T at the cut-off. The 
reason for this is that the surface elasticity involves this second derivative. 

There is some freedom in the different shifting procedures. For instanee we could choose T as 
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the principal variabie and shift the potential to order m, yielding 

S{m) { ) = LJ ( ) _ ~ [dkuLJ (T)] (T- Tc)k 
u T u T L.....t dTk k! 

k=O Tc 
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{6.2) 

for T $ Tc· The term with k = 1 involves T, which is obtained by taking the square root of 
x2 + y2 + z2 • This is a time-consuming operation. We can avoid the square root evaluations 
by taking T2 /2 instead of T as the principal variable. The potential is then shifted to order m, 
according to 

{6.3) 

with u (T2 /2) =u (T). These potentials are shown in figures 6.1 and 6.2. 
As can he seen the potentials shifted in T2 /2 show a smaller deviation from the unshifted 

Lennard-Jones potential than the ones shifted in T. We have chosen u8 '{2) for the interatomie 
potential. 

In a Molecular Dynamics simulation, the calculation of the interatomie farces is the most 
time-consuming part. For this reason, we implemented a table equidistant in T2 for the potential. 
This table is constructed at the beginning of a simulation. During the simulation, values of T~i 
are calculated for pairs of atoms i and j. The potential is then found by interpolation from the 
table. We used the Newton-Gregory forward-difference metbod [14]. (Linear interpolation will 
he sufHeient fora larger table.) The lengthof an interval was chosen to he a 2 /100, yielding with 
a cut-off radius Tc = 2.5a a table of 625 intervals. 
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We can accelerate the force calculation even more by maintaining a list of the neighbours of 
each partiele in the central box. We used the Verlet neighbour list where the cut-off sphere is 
surrounded by a skin, giving a larger sphere of radius Tl (see figure 6.3). Particles that are within 
a sphere of radius Tl from a certain particle, are called the neighbours of this particular particle. 

At the beginning of the program, the neigbour list is created. In the force routine, we then 
only have to examine the neighbours of each partiele and check whether they are in the cut­
off sphere. The neigbour list is updated automatically, depending on the displacements of the 
particles since the last update. In principle, the list should he updated when the sum of the two 
largest displacements exceeds Tl -Tc· We used a slightly different criterium, namely that, when 
the square of the largest displacement in x-, y- or z-direction exceeds (Tl - Tc)

2 /3, the list is 
updated. 

For Lennard-Jones liquids, a typical value of T1 is 2.7u, which corresponds to an update 
interval of 10-20 time steps. For systems consisting of 500 particles or more, the size of the 
neighbour list per partiele is approximately constant. The time spent in the force calculation is 
thus reduced from being proportional to N 2 in the original minimum image convention to being 
proportional to N. 

6.3 Initialisation and equilibration 

Given an initia! state in phase space, we now have a scheme to obtain the microscopie states 
our system will pass through. The choice of the initia! state should not affect macroscopie 
quantities. One way of constructing an initia! structure is to place the particles at random in 
the simulation box. For hard-core systems, the problem then arises that the configuration thus 
obtained may contain unphysical overlaps. The conesponding large forces cause difficulties in 
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Figure 6.3: Tbe cut-off sphere, surrounded by the Verlet neigbbour skin; only particles witbin 
tbe cut-off spbere interact witb the central particle; if a partiele enters the outer spbere, the 
neigbbour list sbould be updated. 
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Figure 6.4: Pair correlation function for p* = 0.83 and T* = 1.0, using 500 particles. 

solving the differential equations of motion. 
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For this reason, a different procedure is followed, where the initia! configuration is on a 
Bravais lattice. Using a cubic simulation box, natura! choices for this lattice are the cubic 
lattices. Usually the face-centred cubic lattice is chosen. Since a unit cell of the f.c.c. lattice 
contains 4 lattice points, the total number of particles should he chosen 4M3 with M a positive 
natural number. In our simulations, we have chosen M to be 5, corresponding to 500 particles. 
The initia! veloeities are sampled randomly from the Maxwell-Boltzmann velocity distribution 
at the desired temperature, corrected in such a way that there is no total momentum. 

The initia! state of the system is obviously not characteristic for the system in equilibrium. 
Therefore the system will equilibrate from the initia! state during the first period of the sim­
ulation. The most sensitive indicators of the length of this equilibration period are structural 
properties. In the case of atomie systems these are described by the pair correlation function 
defined by 

(6.4) 

This definition is useful in computer experiments, where it is approximated by a histogram. We 
have calculated the equilibrium pair correlation function from the configuration at the end of a 
simulation. A typical result is shown in figure 6.4. A more accurate correlation can he found by 
averaging over time. 

Another guideline in determining the equilibration length is the behaviour of energy and 
pressure. The drift that these quantities show during equilibration should vanish in equilibrium. 
This is only a minimal criterium. A typical behaviour of energy and pressure during equilibration 
is shown in figure 6.5. Here we used the Nosé-Hoover thermostat with a time constant r = 0.01. 
In fact, we will always use this value in this thesis. For our simulations we used an equilibration 
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Figure 6.5: Initialisation run of a system of 500 particles at P* = 0.83 and T* = 1.0, using the 
Nosé-Hoover thermostat with time constant T = 0.01. 

time of 5000 time steps. 

6.4 Velocity sealing compared to Nosé-Hoover 

We simulated a Lennard-Jones system of 500 particles at a number density p* = 0.835. Three 
different simulations were performed, two of which at a temperature T* = 1.0 and the third at 
a constant energy per partiele E/N = {1t/N)NvT = -2.846. 

The first constant-temperature simulation involved a velocity-sealing procedure as described 
in subsection 3.2.1. The equations of motions were integrated using the velocity-Verlet algorithm 
described in section 3.1. In figure 6.6 the initialisation run for this simulation is shown. The 
kinetic energy is artificially held constant at each time step, generating the wrong distribution 
in momenturn space. 

The second constant-temperature simulation was performed using the Nosé-Hoover equations 
of motion. These were integrated using the leap-frog algorithm. A comparison between the three 
simulations is made in table 6.4. The Nosé-Hoover thermostat produces not only a kinetic energy 
of 3kBT/2 per particle, but also a varianee < fJ{IC/N) 2 >Nvr= 3(kBT)2 /{2N). Tagether with 
the conservation of 1tNosé, which we checked, this is a reason totrust the algorithm. Camparing 
the fluctuations in the potential energy and the pressure, we can conclude that the velocity­
sealing procedure is more close to the Nosé-Hoover result than the microcanonical simulation. 
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Figure 6.6: Initialisation run of a system of 500 particles at p* = 0.835 and T* = 1.0, using the 
velocity-sealing procedure and the velocity-Verlet algorithm. 

11 11 sealing I N osé-Ho over I NV E 11 

(1i/N) -2.841 -2.846 -2.846 
(IC/N) 1.497 1.494 1.494 
(U/N) -4.338 -4.340 -4.340 

(P) 2.82 2.81 2.81 

< 8 (1i/N)"l. > 1.9 10-3 5.o 10-3 
rv o (1o-8) 

< 8 (IC/N)~ > rv o (1o-11) 3.o 10-3 1.2 10-3 

< 8 (U/N)~ > 1.910-3 2.0 1o-3 1.2 10-3 

< 8 (P)~ > 4.610-2 4.8 10-2 2.410-2 

11 <lJ(U{N) bP> 11 V <b(U/N)2 ><b(P)2> 
0.97 0.97 0.95 

11 

Table 6.1: Results of the momenturn-sealing procedure and the Nosé-Hoover thermostat at 
T* = 1.0, and a microcanonical simulation at E/N = -2.846. All simulations were preformed 
at p* = 0.835 for 218 = 262144 time steps, using 500 particles. 
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Figure 6.7: Derivative of entropy with respect to volume. 

6.5 A short story about melting 

In this section we discuss the calculation of a fluctuation conesponding to a thermodynamic 
derivative. An illustration is given of the Maxwell relation equation 4.15. As an example we will 
consider a transition that is very common in MD simulations, namely the melting transition. 
After all, the simulation of a liquid starts out from an overexpanded solid configuration, namely 
the Bravais lattice on which we placed the particles. This overexpansion, conesponding to a 
negative pressure, generally will force the system to melt. However, in MD simulations solid 
microclusters have to he superheated before they melt [31]. This suggests a kinetic harrier to 
melting. 

We started our simulations at a relatively low temperature T* = 0.51. The initia! overex­
panded solid did not melt at this temperature, not even after raising the temperature to 0.5325 
{following the system at each temperature for approximately 250000 time steps). At T* = 0.533 
the solid melted, but at T* = 0.534 again it did not melt. Raising the temperature even more, 
forced the system to melt for each simulation we performed. 

At each temperature we calculated the derivative of entropy with respect to volume, using 
equation 4.14. The result is shown in figure 6.7. By the Maxwell relation equation 4.15, this 
quantity is equal to the thermal pressure coefficient. Thus, in principal, the pressure can he 
obtained from these data by integration with respect to temperature. The resulting curve, 
together with the directly measured pressure, is shown in figure 6.8 as the solid line. The slope 
of the curve has the right value both for the low as the high temperatures. Only the size of the 
step is not in agreement with the pressure data. This is not remarkable, since the exact shape 
and height of the peak in 6. 7 cannot he determined from the data. First of all we do not have 
enough data points and secondly the error bars are relatively large, varying from 30% at the top 
of the peak to 1% away from the peak. By applying the simple trapezium rule, it is assumed 
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Figure 6.8: The points are the directly measured pressure ditierences with the pressure p0 = 
-1.60 at T* = 0.51. The solid curve is obtained by integration, whereas the dashed curve is 
fitted to the data. 



CHAPTER 6. SIMULATION OF THE LENNARD-JONES LIQUID 

. 
S' 
~ 
~ 

600.0 

500.0 

400.0 

300.0 

200.0 

100.0 

I 
I 
I 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

t •\ 
I 
I 

•• I 

I \ 

' 
--- - .. ---- .. --- -·~· '-e. -·-- ---.--- -·- ---0.0 '-----L------"--~..;:._----'-____;:_,._;_;;_c:_;;-"l,..:; _ ___"'---'-------' 

a~ a~ a~ . a~ a~ 

temperature T 

38 

Figure 6.9: Derivative of entropy with respect to volume. The dashed curve is obtained from 
differentiation of the fitted pressure curve. 

that the data are connected by straight lines. In this way a sharply peaked function can never 
be integrated properly, if the width of the peak and the integration step are of the same order. 

We also foliowed another approach by fitting a function to the pressure data. Both the 
low and high temperature parts were taken as linear functions of slope 10 and 7, respectively. 
For the steeply rising part, wetook the exponential form A (1 - exp [-a (T* -Tc*)]), startingat 
T; = 0.533 and fitted a and the amplitude A. The resulting curve with a = 440 and A = 1.2 is 
shown as the dasbed line in 6.8. Differentiating this curve, a comparison can be made with the 
data obtained from the fluctuation formula (see figure 6.9). This condurles the technica! sections 
and we are now in a position to start our discussion of the simulation of interfaces. 



Chapter 7 

The oil-water interface 

7.1 Simulation set-up 

In this chapter we will investigate a flat interface between two immiscible liquids, e.g. oil and 
water. For simplicity we will refer to the two liquids by oil and water, although the model is not 
that specific. Both liquids will he modelled as Lennard-Jones liquids. Interactions between an 
oil partiele and a water partiele are modelled as purely repulsive. For this repulsive potential the 
Lennard-Jones potential is shifted at its minimum in such a way that the potential is continuous 
in its second derivative, analogously to equation 6.3. As already stated, the reason for this is 
that the Gibbs elasticity involves second derivatives of the potential with respect to interpartiele 
distances. 

The pure oil-water system consists of N /2 oil and N /2 water particles. For the smallest 
simulation N /2 was taken 4M3 = 500 particles with M = 5. Two interfaces are made by putting 
half of the oil particles on top of the water particles and the other half underneath (see figure 
7.1). Also simulations were performed on systems twice and four times as large in the direction 
perpendicular to the plane of the interfaces (the z-direction), thus having a total number of 
particles equal to 2000 and 4000 respectively. Always the average density of the system was set 
to p* = 0.835 and the temperature to T* = l.O. The box length of the system in the plane of 
the interfaces is then M (4/ p)1

/
3 a= 8.43a, corresponding to a total interfacial area of 142.1a2 • 

7.2 Surface tension and system size 

We measured the surface tension as a function of the system size in the z-direction. lt was found 
that the surface tension does depend on the system size, at least for the smal! systems that we 
investigated. The surface tension without surfactauts 'Yo was found to he 1. 76 for N = 1000, 
1.67 for N = 2000 and 1.56 for N = 4000 with a standard error of 0.04. This dependenee can 
he explained from the behaviour of the partiele density. 

Density profiles in the z-direction are shown in figures 7.2, 7.3 and 7.4, corresponding to 
system sizes N = 1000, 2000 and 4000 respectively. These figures show that the smaller the 
system, the more the bulk density deviates from the average value p* = 0.835. The repulsion 
across the interfaces forces the particles to move away from the interfaces into the bulk phases, 
thereby increasing the bulk density. For large systems, this is a negligible effect. Our systems, 
however, do feel this effect. Now a valid question is, whether our systems are too small to obtain 
quantitative results. The answer is no. Each system gives quantitative results for the bulk density 
which it corresponds to.1 The smaller the system, the larger the bulk density and therefore the 

10f course, this is not true for sytems where finite-size effects are dominant. 
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Figure 7.1: Set-up of the simulation. Of all oil and water particles only a few are shown as black 
and white circles. 
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1.5 .----~----.---r------,---~----,r----~---. 

1,0 •••••••••••••••••••••••••••••• •••••••••• ••••••••••••••••••· .. ·••••· .. ~•••• •••••••• •••••/•K•••••••••••••••••••••••••••• 

0.5 

J '- J \ 0.0 '---~---'-''--"-'----'---~----'-----'o.JL.-..--'------' 
-20.0 -10.0 0.0 10.0 20.0 

z/cr 

Figure 7.3: Density profilefora system of 1000 oil and 1000 water particles. 
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Figure 7.4: Density profile for a system of 2000 oil and 2000 water particles. 
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larger the surface tension. Comparison of simulations at different system sizes gives information 
on the dependenee of the surface tension on the bulk density. 

7.3 Elasticity and surfactant concentration 

Surfactants are modelled as consisting of a water-like head and a tail of oil-like particles [29]. 
We always used tails consisting of 4 oil-like particles. A water-like (oil-like) partiele behaves 
completely as a water (oil) particle, except for the interaction with its neighbours within the 
molecule. Within the molecule, neigbours are held at a fixed separation a by a potential of the 
farm 

(7.1) 

which for r ~a reduces to the harmonie potential K (r- a)2 /2. Potential 7.1 is preferred since 
it avoids the square root evaluation. The equilibrium bond length was chosen a= u, whereas 
the bond strength K was chosen such as to minimize the fiuctuations in the actual bond lengths. 
For large K problems can arise with the (finite time step) integration algorithm, since small 
displacements from equilibrium give rise to large farces. On the other hand, for small K the 
honds are too weak to keep the neighbour distances constant. By trial and error the optima} 
bond strength can he found. A detailed treatment of inluding other intramolecular interactions 
as bending and torsion potentials, is given in [32]. 

The surfactants are added to the oil-water system at the interfaces (see figure 7.1). We always 
added an even number of surfactant molecules, so that they could he equally divided over the two 
interfaces. The head of a surfactant was placed in the layer of 2M2 = 50 lattice positions ciosest 
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Figure 7.5: Bond length averagedover 120 bonds (30 surfactants with 4 tail particles); the bond 
strength is increased by a factor 10 going Erom the dasbed line to the dotted line and Erom the 
dotted line to the solid line; if the bond strength is further increased by a factor 10, the average 
bond length explodes after a few time steps. 

to the interface. Thereby a water partiele is replaced by the head of the surfactant. The positions 
within this layer arechosenat random (of course with the limitation that two head particles may 
not occupy the same lattice point). The tail of the surfactant is grown from the head into the 
oil phase. Again the tail particles are placed on lattice positions, thereby replacing oil particles 
(see figure 7.9). By this construction the initia! neighbour distances are 2-112(4/p*)113u ~ 1.2u. 
Equilibration to the equilibrium distance a = u is reached after a few hundred time steps for a 
reasonable choice of K (see figure 7.5). 

Simulations were performed on the system with N = 2000 for various amounts of surfactants. 
From these simulations the surface tension and Gibbs elasticity were calculated. The results are 
shown in figures 7.6 and 7.7. Without surfactant molecules, the surface tension was found 
to he "YÓ = 1.67 ± 0.04 or "Yo = 21.1 mN/m, using the argon value u2 /f = 78.9 m/N. At zero 
surfactant concentration the Gibbs elasticity is practically zero, as expected for an interface of 
two immiscible liquids. 

Gradually the surfactant concentration was increased up to a total number of 50 surfactants, 
corresponding to a concentration of 5 10-10 mol/cm2 for liquid argon. Addition of surfactants 
lowers the surface tension monotonously. The Gibbs elasticity does not show a monotorrous 
behaviour. It increases from zero and possibly shows a maximum. 

According to Lucassen [4] this maximum should he present. The increase at low concentration 
is due to the increased surface excess. This is defined as the amount of surfactant per unit area 
in excess of the amount that would he present, if the surfactant would not have any preferenee 
to absorb onto the surface. The decrease at higher concentration is related to the growing 
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Figure 7.6: The dependenee of surface tension on the total number of surfactants added to the 
interfaces. The total area of the two interfaces is 142.1u2 • 
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Figure 7.7: Tbe dependenee of tbe Gibbs elasticity (per interface) on tbe total number of sur­
factants added to tbe interfaces. 
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11 

0 1290.6 (1 ± 0.012) 1289.0 1 ± 510 "4 -1.6 ± 15.6 
6 1318.3 (1 ± 0.011) 1332.2 1 ± 510 "4 13.9 ± 13.9 
10 1349.7 (1 ± 0.011) 1364.2 1 ± 510 "4 14.5 ± 14.2 
20 1425.7 (1 ± 0.012) 1440.1 1 ± 510 "4 14.3 ± 17.0 
30 1508.8 (1 ± 0.010) 1518.9 1 ± 510 "4 10.1 ± 15.6 
50 1679.1 (1 ± 0.009) 1689.8 1 ± 510 "4 10.7± 15.6 

Table 7.1: Contributions to the elasticity. 

importance of the diffusional interchange of surfactant between the interfaces and the bulk phases, 
which, as it were, short-circuits the surface tension changes. From our simulations, we cannot 
decide whether this is the reason for the behaviour of the elasticity. After 250 000 time steps, we 
observed only 1 surfactant molecule in the oil bulk phase up to a total number of 20 surfactants. 
For 30 and 50 surfactauts there were 3 and 5 surfactauts in the oil phase, respectively. We did 
not observe the formation of micelles. 

Note the size of the error bars in the elasticity. This is due to an almost complete cancellation 
of the two terms in equation 4.19 (see table 7.3). The fiuctuation term, having a relative error 
of 1%, determines the error in the elasticity. The error bars shown are calculated using the 
jackknife technique described in section 5.3. We also calculated errors by dividing the simulation 
in 5 blocks of 50 000 time steps each (batching method). The resulting errors are in agreement 
with the results of the jackknife method. 

We repeated the simulations described above with a different interaction between a head 
partiele and a water particle. This interaction was increased by a factor 4, resulting in a stronger 
attraction (at distauces larger than 2116a). Again we varied the number of surfactauts and 
measured the surface tension and Gibbs elasticity. As expected, the surface tension shows a 
stronger dependenee on the number of surfactauts added to the surface (see figure 7.8). The 
Gibbs elasticity was found to be practically zero for all concentrations. Tentatively, one could 
argue that this is a result of an effective repulsion between the head particles, since a head 
partiele prefers to be surrounded by water particles. 

7.4 Film thickness 

In the previous section we considered a system consisting of N /2 oil and N /2 water particles, of 
which a certain number were replaced by surfactant particles. The thickness of the water layer 
in the direction perpendicular to the interfaces was globally half the box length in this direction. 
In this section we will decrease this thickness h by replacing a certain amount of water particles 
by oil particles. The surfactauts are still added at the interfaces ( which are now closer together) 
by replacing oil and water particles. 

It turns out that there is a critical thickness, below which it is favourable for the water 
particles to form a sphere instead of a fiat film. This critical thickness is easily estimated on 
the basis of the following macroscopie considerations. Suppose the free energy is proportional 
to area by the same factor for both the sphere and the film. Then the most favourable shape 
is that which has the lowest area. Comparison of both expressions for the area 47r R2 and 2A 
respectively, and the demand of volume conservation, i.e. 47r R3 /3 = hA, gives the critical film 
thickness 

( )

1/2 

he= !: ~ 0.266A112
• (7.2) 

To test this criterium, we performed simulations with a total number of particles N = 1000. 
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Figure 7.8: Surface tension as a lunetion of the total number of surfactants. The open circles 
correspond to an energy parameter 4e for the interaction between a head partiele and a water 
particle, insteadof e (filled circles). 
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We varied the number of water particles (before ad dition of surfactauts) from 500 to 100 in steps 
of 100. Furthermore, 30 surfactauts were added to the system, all consisting of 5 particles of 
which 1 head particle. lt was observed that a break-up of the film into a sphere only occured when 
the number of water particles was red u eed to 100, corresponding to a film thickness h = 0.2A 112 • 

Therefore, the critica! film thickness is expected between 0.2A 112 and 0.4A 112 , in agreement with 
equation 7.2. Since all our calculations (e.g. of surface tension) were set up for systems with 
a planar symmetry, we only give qualitative information on this system. The time evolution of 
the system is depicted in figures 7.9 to 7.12, where the contiguration of the surfactant and water 
molecules is shown. 

Simulations on systems of 200 and more water particles did not show this break-up phe­
nomenon. They kept their flat interfaces even after 500000 time steps. The surface tension was 
only weakly dependent on the film thickness in this range (see figure 7.13). We measured -y* to 
be equal to 1.28, 1.31, 1.30 and 1.36 for film thicknesses h equal to A 112 , 0.8A112 , 0.6A112 and 
0.4A112 respectively. 

We were not able to perform a study of film elasticity on film thickness. This dependenee 
is governed by diffusional interchange of surfactauts between the solution and the surfaces. In 
our simulation set-up we were not able to study these diffusion processes, since the time and 
length scales involved are too large. Realistic film thicknesses are of the order of 1 J.Lm, giving a 
diffusion time of the order of 1 ms (diffusion coefficient Dof the order of 10-6 cm2 fs). In our 
simulations film thicknesses are of the order of a few nanometers, whereas the maximum time 
that can be simulated is of the order of 10 ns (corresponding to 106 time steps for argon). 
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Figure 7.9: Configuration of the system at the beginning of the simulation. The head particles are 
represented by white spheres connected to a tail of gray spheres. Water particles are represented 
by single white spheres. Oil particles are not shown, but occupy the remaining lattice points. 
The bonds are of a length ::::: 1.2u. Note that the sphere radius is smaller than the Lennard-Jones 
parameter u. 
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Figure 7.10: Configuration after 5000 time steps. The bond lengtbs have equilibrated to their 
equilibrium value u. 
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Figure 7.11 : Configuration af ter approximately 250 000 time steps. 
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Figure 7.12: Contiguration after approximately 500000 time steps. 
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Figure 7.13: The dependenee of the surface tension on the thickness of the water layer fora 
system of 1000 particles in which 30 surfactants are present. 



Chapter 8 

Coneinsion 

In this thesis a study of the stability of liquid films and foams was performed. The Gibbs 
elasticity of interfaces was stuclied by simulation. To this end a Molecular Dynamics program 
has been developed. A comparison was made between two methods of constant-temperature 
Molecular Dynamics, namely momenturn sealing and Nosé-Hoover thermostatting, and conven­
tional constant-energy Molecular Dynamics. The motive is that, since the Gibbs elasticity is a 
fluctuation, it is expected to he strongly dependent on the quality of the thermostat. 

An illustration of thermadynamie integration was given by an artificial melting transition. 
The thermal pressure coefficient was obtained both indirectly from the measured pressure and 
directly from the measured volume dependenee of the entropy, invalving a fluctuation. 

The calculation of any quantity by simulation is subject to statistica! uncertainties. Although 
error estimation for fluctuations is not trivia!, we were able to estimate the uncertainty in the 
calculated Gibbs elasticities. Due to an almost complete cancellation of the two terms contribut­
ing to the Gibbs elasticity, the relative uncertainty was found to he of the order one. Here it 
concerned simulations taking approximately two days on the IBM Scalabie Power 2, to obtain 
the elasticity at a given concentration. Longer simulation are needed to increase the accuracy of 
the resulting elasticities. 

Despite these uncertainties, the calculated dependenee of the Gibbs elasticity on the concen­
tration of surfactauts foliowed the trends of the expected behaviour, as discussed by [4]. We 
also observed a stronger concentration dependenee of the surface tension, after increasing the 
attraction between the water and the head of the surfactant. 

The break-up of a thin and flat film into a sphere was observed at a thickness below the 
predicted critica! thickness. In the sphere, consisting of water, the surfactants pointed their 
heads inward and their tails towards the oil phase. As expected, films thicker than the critica! 
thickness did not break up. For these films, we observed a small dependenee of the surface 
tension on film thickness. 
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Appendix A 

Pair-wise additive potentials 

If the interactions are pair-wise additive and dependent on interpartiele distances only, the po­
tential energy can be written as 

U= LLu (!r~i). (A.1) 
i i>i 

The radial dependenee is written in terms of squared interpartiele distances, since these are 
directly available in a simulation. In this way, we can avoid taking square roots in order to 
obtain the interpartiele distances themselves. 

For additive potentials it is convenient to introduce the virial function W as 

W = -aU = _ __!_"'"' "'"'T~·U1 (lr~·) v av 3V L...., L...., •J 2 •J ' 
i i>i 

(A.2) 

and the instantaneous surface tension r as 

au 1 "'"'"'"'( 2 2 2) '( 2) r = aA = 2A L...., L...., Xij + Yij - 2zij u trij . 
i i>i 

(A.3) 

This quantity has no contributions from isotropie regions. Therefore only the interfaces con­
tribute to the surface tension. 

Finally, the second derivative of the potential energy with respect to area can be written 
explicitly as 

ar 1 L L ( ( 2 2 ) 2 " ( 2 ) 2 , ( 2 ) ) - = -- r·.- 3z.. u lr .. + 12z . . u lr .. 
aA (2A)2 i i>i •J •J 2 •J •J 2 •J 

(A.4) 
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