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Summary. 

In this thesis the nonstabie combustion of solid roeket propellants is discussed within the 
QSHOD - flame modeling - approach. All calculations are performed for a reference AP­
HTPB composite propellant. 

A survey of the model and its assumptions are given. For small disturbance amplitudes 
linear perturbation techniques can be applied to calculate the response of the propellant, 
yielding the linear frequency response functions. For larger disturbances, chemical re­
actions, and other strong nonlinearities, these linearized calculations are not applicable 
anymore. For this, the systems of equations is solved numerically. 

The common inert condensed phase with constant thermal properties is replaced by 
a chemical reacting condensed phase with temperature dependent thermal properties and 
phase changes of AP. This condensed phase can still be seen as a simplification, but is in 
better agreement with the reality. It is shown that the introduetion of this more realistic 
condensed phase has a large effect on the response function of a solid roeket propellant. 

The introduetion of subsurface reactions and phase transitionsof AP results in a propel­
lant which has a higher intrinsic combustion stability. It is also shown that the temperature 
dependent properties have a large effect on the intrinsic combustion instability. 

For high values of the surface heat release, self-sustained oscillatory combustion occurs. 
During self-sustained combustion the propellant burns with charaderistic spikes, without 
an external driving force. 

An existing analytica! nonlinear combustion stability analysis is discussed, which is 
compared to a linear numerical stability approach. Both methods are applied to find the 
value of the heat release where self-sustained oscillations emerge. 

Finally the stability for an HNF /GAP propellant combination is discussed. Due to the 
high heat release in the solid phase of the propellants, compared with composites, these 
propellants exhibit a large intrinsic combustion instability. 
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Pre face. 

This thesis is written to obtain a masters degree in Engineering Physics at the Eindhoven 
University of Technology. 

A short introduetion to solid roeket motor technology is included in chapter one. Chap­
ter two contains a background of transient burning, experimental techniques and the defi­
nition of response functions. Chapter three is a general section that covers flame modeling. 
In this chapter the equations governing in the condensed phase, burning surface, and gas 
phase are discussed. Chapter four deals with the camman linearized approach, based on 
the theory of chapter three. In chapter five an extended model for transient burning is 
presented, which is solved numerically in chapter six. This chapter also discusses several 
aspects of nonlinearity of the equations, and the results are compared with the linearized 
analysis of chapter four. In chapter seven cambustion stability, by linear, as well as non­
linear, approaches is reviewed, which is then compared with some of the results of chapter 
seven. The appendices A and B contain several derivations. To be complete, the Zeldovich­
Novozhilov approach is discussed briefly in appendix C. In appendix D the properties of 
a typical AP-composite are presented. This propellant serves as a reference for all the 
calculations in this thesis. Appendix E deals with the intrinsic stability of a next genera­
tion propellant, HNF /GAP, which is currently under development at TNO /PML. Finally, 
appendix F contains a poster and handout as presented at the TW95 meeting. 
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Chapter 1 

Solid roeket propulsion. 

1.1 Intro cl uction. 

In essence roeket propulsion can be divided in chemica! propulsion, nuclear propulsion 
and electric propulsion [56]. Of these types only chemica! propulsion is extensively used. 
Chemica! propulsion can be divided further in liquid propellant roeket engines and solid 
propellant roeket engines, and combinations thereof. 

Although the performance of solid propellants is nat as good astheir liquid counterparts, 
they are in most cases preferred, because of their reliability, simplicity and storability. An 
illustrative example of modern solid roeket engines are the boosters of the Space Shuttle 
vehicle and the Ariane 5 launcher. 

Solid roeket motors contain energetic material which reacts to farm species with a low 
molecular weight at high temperatures. These gaseaus products are accelerated through 
a Laval nozzle to produce the desired thrust. The current solid propellant can be divided 
into two classes, double-base (DB) propellants and composite propellants. 

Double-base propellants were the first production propellants. Essentially they consist 
of a nitrocellulose, in which nitroglycerin is dissolved. This yields a homogeneaus propel­
lant. Bath ingredients are explosives and fundion as a combined fuel and oxidizer in one 
molecule. 

Composite propellants farm a heterogeneaus propellant with the oxidizer crystals held 
tagether in a matrix of synthetic rubber binder, usually a polybutadiene. The oxidizer 
decomposes during heating, releasing oxygen. This oxygen burns the rubber. Nowadays 
ammonium perchlorate (AP) is the most common used oxidizer. Often a metallic fuel 
such as aluminum is included to enhance performance. Figure 1.1 schematically shows the 
difference between DB and composite propellants. Also combinations of DB and composite 
propellants exist, and these have been called composi te modified double-base ( CMD B) 
propellants. 

It is obvious that this classification is far from complete, see reference [56] for more 
information. 

1 



CHAPTER 1. SOLID ROGKET PROPULSION 2 

Double-Base Propellant 

Composite Propellant 

oxidizer partiele binder 

Figure 1.1: Schematic of a homogenous double-base propellant, and a heterogenous com­
posite propellant. 

1.2 Burning of solid propellants. 

During burning of homogeneaus propellants, the components pass unaffected through a 
preheated zone a few of tens of microns thick (see figure 1.2) and reach a very thin (few 
microns thick) degradation zone, known as the foam zone. Here there is a rise in tem­
per at ure, which is sufficient for degradation to take place. At pressures below 10 MPa, a 
distinction can be made between the primary fizz zone and the secondary luminous flame, 
which are separated by the dark zone. In this pressure range the secondary flame is too 
distant to have any effect on the surface, and does not even induce a temperature gradient 
in the primary zone. As a consequence, the burning rate is influenced only by the fizz zone. 

Composite propellants are of heterogeneaus structure. They consist of oxidizer crystals 
embedded in a matrix of a polymerized binder. The heterogeneous-structure burning 
processes are more complicated than that of homogeneaus propellants. Most composite 
solid propellant burning models are based on the Beckstead-Derr-Price model [2]. This 
model assumes multiple flames surrounding the ammonium perchlorate (AP) partieles, 
see figure 1.3. Flame thicknesses found in experiments vary from 10 11m up to 1000 11m 
depending upon pressure and AP partiele size. 

The burning rate of solid propellants is dependent on several parameters, e.g. the 
pressure, the partiele size distribution, the initial temperature, the presence of catalysts, 
and the velocity of the gas flow parallel to the burning surface. The pressure dependenee 
for both DB and composite propellants can be described by an empirica! equation 

( 1.1) 

where rb is the burning rate (m/s) and pis the pressure (Pa). The parameter n is known 
as the burning rate pressure exponent or cambustion index. This relation is only valid 
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Luminous Zone 

Dark Zone 

Fizz Zone 

Foam Zone 

Preheated Zone 

Propellant Surface 

Figure 1.2: The zones in the cambustion of a double-base propellant. 

during steady-state combustion, and not during transient burning1
, when the burning rate 

can be a magnitude larger as compared to steady burning. 
The solid propellant itself is called the grain. By modifying the geometrical shape of 

the grain, the thrust-time curve can be programmed. 

1 In this thesis the term steady-state is used for processes which do not have a time dependency. Pro­
cesses which are time dependent are called transient. So the term transient should not be confused with 
its meaning as starting transition. 
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~;.nal diffusion \ "7 flamo 

primary flame 

Figure 1.3: BDP-Multiple fiame model of composite propellant combustion. 



Chapter 2 

Transient burning of solid 
propellants. 

2.1 Introduction. 

2 .1.1 History. 

Early in the Second World War irregular thrust-time curves were occasionally observed 
for solid propellant rockets. In extreme instances the chamber pressure would exceed the 
structural strength of the motor casing, causing the roeket motor to explode. Irregular 
chamber pressure traces were often associated with oscillations in the flow. They could not 
be explained in terms of variations in burning area or erosive burning1

. The phenomenon, 
known as irregular burning, was therefore assumed to originate either in the cambustion 
process itself or in the interaction of the cambustion process, with acoustical waves in the 
combustion chamber. This general view has now been well established even though the 
detailed mechanisms involved are not understood entirely. 

2.1.2 Classification of instabilities. 

The general phenomenon of irregular burning may be divided into two main categories, 
acoustic instability and nonacoustic instability. 

In early observations the irregular burning was often accompanied by pressure fiuc­
tuations of acoustic frequencies. This led to the assumption that irregular burning was 
caused by amplification of the acoustic waves in the cambustion chamber by the com­
bustion processes occurring therein. Irregular burning produced by mechanisms invalving 
sound vibrations in an essential way, is termed acoustic instability. 

Unstable cambustion can also occur without interaction between the cambustion pro­
cesses and sound waves in the chamber. For example, chuffing combustion oscillation 
frequencies below any acoustic frequencies of the chamber have been observed for certain 

1 Enlarged burning rate due to extensive crossflow over the burning surface 

5 
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propellant formulations. Any occurrence of irregular burning that does not. involve interac­
tion between the cambustion process and a sound field in an essential way, can be termed 
nonacoustic instability or intrinsic instability. 

In roeket motors both instahilities can amplify each other. Acoustic pressure asciila­
tions cause the pressure to be a time dependent quantity. It is described in this thesis 
that this fiuctuating pressure causes a time-dependent burning of the propellant. This 
produces acoustic disturbances by the unsteady mass, momenturn and energy ejection in 
the cambustion chamber. vVhen this process occurs at proper spatial and temporal phases, 
a feedback loop may be established and substantial pressure oscillations can be sustained. 

A further division can be made into linear and nonlinear instabilities. Linear insta­
hilities are those which can be described in terms of smali-amplitude perturbations about 
steady, normal burning. A roeket motor is linearly-unstable when a small disturbance 
causes the cambustion pressure to grow exponentially. Nonlinear instahilities are those 
invalving finite-amplitude perturbations. A nonlinear unstable roeket motor is stable for 
small pressure fiuctuations, but unstable when these fiuctuations exceed a critical value. 
Figure 2.1 summarizes these two possibilities. It has been observed that experimental 
motors w hich are linearly stabie may be nonlinearly unstable [7]. 

P(t) 

Figure 2.1: Linear and nonlinear cambustion instabilities. 

2.2 Response functions. 

It was discussed in the previous paragraph that pressure oscillations affect the burning 
rate of a solid propellant. When the possible instability of a roeket motor is verified, it is 
necessary to know the response of the propellant on an acoustic pressure disturbance in the 
motor cavity. This response can be expressed by the pressure coupled response function, 
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defined as, 
m'/m TUrb R-----

p - p' I f5 - P' I tJ ' 
(2.1) 

where m' the fiuctuating value of the mass burning rate, m the steady-state value mass 
burning rate, p' the fiuctuating value of the pressure, and p the steady-state value of the 
pressure. The second equality holcis because the burning rate, Tb, can be calculated as 
Tb = mi Pc, where Pc the density of the condensed phase. 

For measurements it is often desirable to disturb the steady-state burning with fiuctu­
ating radiation (see section 2.3). Analogous to the pressure response function, the response 
fundion with respect to radiation fiuctuation is defined as 

(2.2) 

where ! 0 the external radiant flux intensity. Response fundions are complex fundions 
because in general the mass-rate oscillations are not in phase with the pressure oscillations. 

In a linearized analysis of oscillations, the oscillations of pressure in a specific mode 
have the form 

I 

!!_ = p eiwt (2.3) 
p 

where P the complex amplitude of oscillation at some arbitrary time t = 0. Assume the 
mass burning rate oscillates in response to the pressure oscillations, 

(2.4) 

where M the complex amplitude at t = 0. The relation of mass-rate oscillation to pressure 
oscillations is characterized by a ratio of amplitudes 

m'/m M 
Rp(w) = p'jp = P . (2.5) 

So in general Rp is a complex fundion because of the phase difference between mass ra te and 
pressure. A positive real part of the frequency response fundion implies an amplification 
of the pressure wave. The frequency response fundion can be seen as an index which 
measures the tendency of the cambustion processes to drive waves and, ultimately, to 
trigger instability. 

Mathematically, the response fundions have to respect the corresponding static limit 
when w--+ 0: 

. . m'/m 
hm Rp(w) = hm -

1
_ = n, 

w-o w-o f p 
(2.6) 

(2.7) 

being n and nq exponents defined respectively by the experimental steady-state burning 
rate laws. 
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2.3 Radiation-driven transient burning. 

There is a growing recognition of the advantages of studying the cambustion of solid pro­
pellants using unsteady external radiant energy sourees such as lasers. This technique 
is called radiation-driven transient burning. A reason that this particular approach has 
recently received renewed interest is that it is easier to control a radiant flux and to simul­
taneously measure the instantaneous burning rate than to perform a similar experiment 
with an unsteady pressure field. This method has some further advantages; it is contact­
less, the energy can be introduced into various spatial zones in the condensed phase due to 
the wavelength dependenee of propellant transparency, and the radiative heating can be 
carried out at different pressures and different compositions of a gaseous medium. 

2.3.1 Background. 

One of the first studies on radiation-driven burning was that of Milfeith et al. [41], who 
used a force transducer to measure dynamic burning rate of non-metalized AP-composite 
propellants under the action of an oscillating radiant flux from a xenon mercury lamp. 
Recoil force was converted to instantaneous mass flux via a momenturn balance. Soon 
hereafter Zarko and co-workers in Russia began an extensive program, using similar exper­
imental methods, which has continued to the present [58] [59]. Recently, Strand et al. [54] 
and DeLuca [18] used a C02 laser as perturbing source. 

2.3.2 Experimental technique. 

A setup for measurements of charaderistics of radiation-driven transient burning of solid 
propellant includes a radiation souree which can be modulated, a radiation power meter, a 
transducer for measuring the recoil force and a recording unit. Figure 2.2 shows a typical 
setup for radiation-driven transient burning experiments. 

For the irradiation of the sample, several sourees can be used. In the first experiments 
xenon lamps were used as radiation souree in the majority of the experiments. The radi­
ation spectrum of the lamp is similar to the solar one, extending from ultraviolet to the 
far infrared. Variation of the radiation intensity is realized by a slotted disk, rotating in 
front of the lamp. Nowadays C02 (10.6J-lm) or Nd/YAG (1.061-lm) lasers serve as radiation 
sources. 

Because of the attenuation of the laser beam by the plume, and the propellant reflec­

tivity [30], it is necessary to measure the radiant flux reaching the surface. Often a small 
fiberoptie is placed through the propellant sample [4] [31]. Laser radiation on the surface 
passes through the fiber producing a signal which can be detected by a photodiode. 

A methad for the determination of the transient mass flux is to measure the change in 
force generated normal to the surface when the burning rate of a propellant is modified 
by an external thermal energy source. By means of a momenturn balance, the total recoil 
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I Laser 

Nitrogen atmosphere 
,..---

: V\.fV'o... .... : r..:I\.JV' 

Propeliani 
sample'-

Force 
transduccr 

Data-aquisition unit 

ADC 

DAC -l 

Figure 2.2: Typical setup for radiation-driven transient burning experiments. 

force, f, created by the mass effiux from the burning surface can be calculated as 

f(t) = m(t) u9 (t) , 

9 

(2.8) 

where m the mass effiux, and u9 the velocity of the gasses leaving the surface. This velocity 
can be calculated from a mass balance across the burning surface, u 9 (t) = m(t)j p9 , where 
p9 the density of the gasses. This density can be calculated from the ideal gas equation. 
Finally it is found that [41] 

(2.9) 

where ~ the gas constant, Ti the fiame temperature, P the pressure and M the molecular 
weight of cambustion products. For small perturbations (') this can be modified to give 
the result 

f'(t) = 2mm(t)'~T1 . 
PM 

(2.10) 

Thus, the measured small force perturbations are proportional to variations in the mass 
burning rate. The experimental problem is to measure these small fiuctuations, which are 
on the order of 0.001 to 0.003 N / cm2

• 

Another methad for measuring the cambustion response is the microwave Doppler tech­
nique [54]. This technique is based on the fact that propellant regression rate is directly 
proportional to the time ra te of change of phase shift ( cP) between incident microwave signal 
and refiected microwave signal, 

I OcP' 
m = öt · (2.11) 
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2.3.3 Optical characteristics of solid propellants. 

As an approximation, radiation transmission as a funct.ion of the depth in the condensed 
phase obeys Beer's law [59]: 

(2.12) 

where qr the radiant flux intensity, and a;.. the volumetrie absorption coefficient. The 
absorption coefficient is dependent on radiation wavelength and propellant nature. 

Experiments with thin slides double-base propellants show that a;.. = 1000 cm- 1
, for 

wavelengths in the range 10 - 14 f.Lm. In the near infrared however, the transparency is 
much higher. 

The determination of the effective transparency of the heterogeneaus composite pro­
pellants is much more difficult. These propellants consist of a relatively transparent am­
monium perchlorate (AP) crystals, and an opaque binder. At a wavelength of 10.6 f-Lm 

for example, for the standard Hydroxyl Terminated PolyButadiene (HTPB) binder a;.. = 

500 cm- 1 [60], while an effective value of a;.. = 64 cm- 1 was measured for the standard 
A-13 composite propellant (containing 76% AP). Often powdered metals are added in 
composite propellants resulting in an even more complex system. 



Chapter 3 

Flame modeling. 

3.1 Introduction. 

It was discussed in the previous chapter that the instable cambustion of solid roeket pro­
pellants can be divided in acoustic and intrinsic instabilities. The intrinsic instability can 
be described by a thermal model which is presented in this chapter. 

Figure 3.1 shows the burning of a solid roeket propellant schematically. For away 
from the burning surface, the propellant is at its initial temperature Ta. Due to reactions 
in the condensed phase and thc conductive heating from the reactions in the gas phase, 
the temperature of the solid increases up to the surface temperature, Ts. At the surface 
gasification of the solid takes place. Above the surface, decomposition products of oxidizer 
and fuel react, until the gasses reach the flame temper at ure T1. \Vhen the condensed phase 
moves with the burning rate rb(t) to the right, the surface will remain at a fixed position. 

Solid ·: ......... / 
Propellánt' 

T(x~oo)=Tf 

Gaseous 
Products 

c(ondensed) s(urface) g(as) 

1-----. x-axis 
0 

Figure 3.1: Schematic view of the overall physical problem. 

11 
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For the problern to be tractable, several assurnptions have to be made. The first one is 
that of rnonodirnensionality in space, i.e. only a dependenee of the x coordinate is assurned. 
Then the energy equation of the solid phase of figure 3.1 can be written as 

for -oo<x<O, 

where t is the time. It has been assurned that the therrnal diffusivity, ac is ternperature 
independent. The term Q describes the possible heat sourees in the solid phase. As seen 
later this term can e.g. describe possible chernical reactions in the solid. By introducing 
equation 3.1 it was also assurned that the condensed phase is of homogeneaus structure. 

During steady state burning the time derivatives of equation 3.1 are canceled, and the 
salution of this equation for Q = 0 is (see appendix A.1) 

(3.2) 

where the boundary conditions T(x--+ -oo) =Ta and T(x = 0) = Ts have been used. So, 
in the condensed phase a therrnallayer exists. Because of the lirnited therrnal conductivity, 
and heat capacity of the condensed phase, this therrnallayer has a certain inertia. When 
external time-dependent periadie disturbances perturb this therrnallayer, resonant burning 
rnay occur, when the charaderistic time of the condensed phase is equal to that of the 
disturbance. This is the basis for intrinsic instability. 

In this chapter the governing general equations for the three regions of figure 3.1 are 
presented. As in most rnodels the approach is based on the QSHOD frarnework (Quasi­
Steady gas phase Homogeneaus One-Dirnensional). The exact rneaning of each term will 
becorne clear in this chapter. Within this frarnework two approaches can be distinguished, 
the Zeldovich-Novozhilov (ZN) metbod as described in appendix C and the flarne rnadeling 
(FM) rnethod. The flarne rnadeling approach calculates the time dependent burning of a 
propellant by rnadeling the conductive heat feedback frorn the gas phase to the solid phase 
and solving the energy equation of the solid phase. The Zeldovich-Novozhilov rnethod uses 
experirnentally deterrnined burning rates to calculate the time dependent burning. 

In this and the following chapters the following general assurnptions are made. Consicier 
a solid propellant burning in a vessel at uniform pressure and possibly subjected to a 
collirnated radiant flux that originates exclusively frorn a continuous external souree of 
therrnal nature. Assurne rnonodirnensional processes, no photochernistry, and no external 
forces (e.g. acceleration). It is further assurned that there is no velocity coupling, i.e. the 
burning rate is independent of the velocity of gasses parallel to the cambustion surface. 
Define a Cartesian x-axis with its origin anchored to the burning surface and positive in 
the gas phase direction, see figure 3.1. 

With the theory of this chapter the linear and nonlinear response functions can be 
calculated. These calculations will be discussed in chapters 4 and chapter 6 respectively. 
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3.2 The condensed phase. 

Let the condensed phase be a semi-infinite slab of uniform and isotropie composition, 
possibly suffering heat losses from the burning surface only. Assume that an external 
radiant flux irradiates the condensed phase. 

The energy equation 3.1 can be \vritten in a nondimensional form by nondimensional­
ising all the quantities involved. This is performed by dividing by those values associated 
with the steady state thermal layer in the condensed phase at a certain pressure. These 
reference values will denoted by a subscript ref, and are summarized in table D.1 of ap­
pendix D. 

The thermal layer thickness in the condensed phase is characterized by the quantity 
a cl Tb. So the nondimensional space coordinate, X, is defined as X = x I ( ac,ref I rb,ref), 

where x the space coordinate, and ac,ref and rb,ref thermal diffusity and burning rate 
respectively, both at reference conditions. 

Further, the nondimensional temperature is defined as 8 = (T- Tref )l(l~,ref- Tref), 

where T temperature and Ts the surface temperature defined as Ts = T(x = 0). With this 
definition e = 1 at the surface under reference conditions, and e = 0 at the cold boundary 
if Tref is taken equal to Ta, as commonly done. 

The nondimensional time, T, is defined as as T = tI ( Cic,ref I r~,ref). Th is defini ti on is 
based on the charaderistic time parameter of the thermal wave, aclrr 

When the previous assumption of constant thermal properties is dropped, the nondi­
mensional energy equation in the condensed phase is given by the following nonlinear 
partial differential equation [18] 

[ 
ae ae ] a [ ae ] Cc(G) 8r + R ax = ax Kc(G) ax +Fa J(X) + Ec(G) He for - oo <X < 0, 

(3.3) 
where Cc the specific heat of the condensed phase, R = rblrb,ref the nondimensional 
burning rate, Kc the thermal conductivity. Note that the souree term Q has been divided 
further into two terms. The first one, Faf(x), describes a possible external radiant flux, 
with nondimensional radiant heat flux amplitude Fa, and spatial dependenee f(X), e.g. 
Beer's law (equation (2.12)). The second term, HcEc(G) describes the heat release in the 
condensed phase because of subsurface chemical reactions. Again this term is written as 
a product of amplitude, He, and temperature (read spatial) dependence, Ec(G), descrihing 
the chemical reactivity. He is the total energy released in the condensed phase. 

The initial condition is given by 

G(X, T = 0) = G;(X) for X < 0, 

where 8; the initial temperature profile. The boundary conditions are 

(3.4) 

(3.5) 

(3.6) 
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where Ba the temperature at the cold boundary of the propellant sample. Equation (3.6) is 
found from an energy balance at the surface. qc,s is the heat flux from the surface into the 
solid and q9 ,s is the heat flux from the gaseous phase into the surface. Hs is the heat release 
at the surface and qout is the heat loss toward the surroundings, typically by radiation from 
the hot burning surface. The heat fluxes are defined as 

and (3.7) 

The heat loss can be modeled by Stefan-Boltzmann's law 

(3.8) 

where E;., the average optical emissivity of the burning surface. Note that the heat loss is 
divided by the reference energy flux, <Pref, to obtain a nondimensional quantity. 

Due to the heating of the condensed phase, pyrolisis reactions take place in the con­
densed phase. Often these reactions are neglected because of the difficulty in modeling. An 
example of a model for these reactions in a DB propellant, is a two step process between 
the surface temperature, Y 5 , and some minimum temperature, Y min, below which no ther­
mal degradation is assumed to occur. When Y tra is the transition temperature between 
the two pyrolysis steps, the group HeEe is computed as [15]. 

{ 

He,l Ae,l e-Ec,l/Y ltra :::; l <'Y's 
H E = H 2 A 2 e-Ec,2/Y 'V' < 'V' < 'V' e e c, e, i min _ i i tra 

0 -oo < l < lmin, 

(3.9) 

where Ec,l and Ec,2 activation energies. The pre-exponenbal factors Ac,l and Ae, 2 can be 
deduced through normalization conditions. The value of the total heat release in the solid 
phase (Hc,l + He, 2 for the above equation) has to be obtained from experiments. 

It was found by Zenin [61] e.g., that the measured total condensed phase heat release, 
He, for double base propellants is described by 

;; = c1- c2 exp -c3P/VR, (3.10) 

where HE the total heat release of the propellant. In the limit for high pressures He= c1 HE, 
i.e. the maximum heat release in the solid phase is a fraction of the total heat release of 
the propellant. An important condusion can be drawn from this equation. It explains why 
moreenergetic propellants burn faster. Because of the proportionality He ""' HE, and the 
obvious relation R ""' He, i t is found that R ""' HE. 

3.3 The burning surface. 

Assume that the burning occurs within an infinitesimally thin planar surface subjected to 
one-step irreversible gasification process. Two pyrolysis laws are accepted in the literature 
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for concentrated surface gasification, the classica! exponential law by Arrhenius1 

(3.11) 

and the alternative power law by Krier et al. [3:3]. 

(3.12) 

No strong experimental evidence exists for pressure effects on the pyrolysis phenomenon 
under steady operations, hence pressure dependenee is usually neglected, i.e. ns = 0. 

The temperature dependenee of the nondimensional net heat release concentrated at 
the burning surface is computed as 

e, 

Hs(P) + j Cc(G)dG- C9 [8s- ês(P)], 

é,(P) 

(3.13) 

where C9 the heat capacity of the gaseous products, and the steady state quantity Hs(P) 
is experimentally deduced. It is shown in chapter 6 that Hs has a pronounced effect on 
the intrinsic instability of a propellant. 

3.4 The gas phase. 

The gas phase is considered to be semi-infinite and one-dimensional, extending from X = 0 
to X -+ oo. Assume that the gas consists of a mixture of thermally perfect components, 
the gas is adiabatic everywhere except at the burning surface and does not interact with 
radiation. The flow is assumed to be one-phase, laminar, nonviscous, and low subsonic. 

1This form may look strange, but is due to the normalizing by the reference conditions. The familiar 
( dimensional) form of the Arrhenius law is 

n [ ~s ] Tb = A · p ' · exp --
?RTs 

When this equation is divided by the Arrhenius law at reference conditions it is found that 

Tb ( p )n, [ Es (Ts,rej )] n [ ( 1 )] R=--= - ·exp- ---1 =P '·exp -~8 --1 
Tb,ref Pref ?RTs ,ref Ts 1 s 
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Further, assume that the gas phase can be described by a thermal model (Lewis num­
berLe=1)2. 

G"nder these assumptions the nondimensional energy equation in the gas phase (X> 0, 
T ;::: 0) is described by the following nonlinear partial differential equation 

(3.14) 

where p the density, and U the nondimensional gas velocity. The last term, p9 / PcH9 E9 , 

describes the heat release rate in the gaseous phase due to chemica! reactions of the reactive 
gasses. The total heat released in the gaseous phase is H9 , and the chemical reactivity is 
E9 . The associated boundary conditions are 

and initia! condition 

G(X=O+,r) 
äG 
äX(X ---toe, r) 0, 

G(X, T = 0) = ei( X) for x > 0, 

(3.15) 

(3.16) 

(3.17) 

During relaxation transients of solid propellants the gas phase adjusts much faster than 
the condensed phase, t; ~ t~ (t* charaderistic time). The validity of the quasi-steady 
assumption lies in the small gas-to-solid density ratio which implies that the transient 
time in the gaseous fiame is much shorter than the response time of the heat transfer in 
the condensed phase [29] [55]. The quasi-steady assumption cannot be justified, neither at 
high frequencies, nor at high pressure burning, when the gt1.s-to-solid density is not small 
enough to make the two relaxation times sufficiently different [9]. A typical frequency 
range for the quasi-steady approximation is from 0 to 1000 Hz. A quasi-steady gasphase 
approach needs in addition t; ~ t;xt , where t;xt is the charaderistic time of the external 
driving force. This requirement depends on the externally driven transient and may often 
be not true. Whenever a quasi-steady approach is used this inequality should be verified. 
In this approach the time derivatives are canceled in all gas phase equations, and initia! 
conditions are no longer required. An example of a model including nonsteady gas phase 
effects is given by Clavin and Lazimi [9]. A further simplification of equation (3.14) is that 
C9 (8) and K 9 (8) are taken constant. 

It can be shown (see e.g. reference [37]) that the quasi-steady thermal heat flux from 

2 The Lewis number, Le, is defined as 

a 9 rate of energy transport 
Le =- = , 

D rate of mass transport 

where D the mass diffusitivity. When Le = 1 the two governing differential equations in the gas phase 
( energy conservation and species continuity) can be replaced by one different ia! equation and an algebraic 
equation. In combustible gas mixtures Le is often very nearly unity [36). 
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the gaseous phase into the solid is given by 

r ( d8) loc pg [ Cg l qg,s(P, R) =lig -d = Hgt(X)- exp --T RX dX. 
X X=O Pc lig 

(3.18) 

0 

The most difficult point is how to describe the chemica] contribution Hgtgpg/ Pc· Even 
simple propellant compositions have a very complex gas phase and treating the problem 
with chemical kinetics is virtually impossible. Because of this, rnadeling is required. The 
fiame modeling (FM) method is named after this technique. Another approach of modeling 
is the ZN-approach which is described in appendix C. This method does not consider the 
fiames, but depends on experimental burning rates for different initia] temperatures. 

Often the gas phase is divided into two parts: 

1. A fiame region, Xi < X < X 1. The chemical activity takes place here. In the 
quasi-steady approximation, and with above assumptions the quasi-steady energy 
equation (3.14) becomes (note that a is replaced by d): 

pg c u de -
Pc g dX -

d28 p 
Kg-d 2 + 2Hgtg. 

.X Pc 
(3.19) 

2. A wake region, X > X 1. In this region there is no chemical activity anymore, so 
Hgtg = 0. In this case equation (3.19) can be integrated to give a uniform in space, 
but time-dependent temperature profile, 

(3.20) 

Note that the differential equation for the ~teady state gas phase is time independent, 
but the solution is time dependent because of the time dependency of the boundary 
conditions. 

In most cases Xi = 0, meaning that the fiames are anchored to the burning surface. 
The focus of fiame modeling is the modeling of the fiame reaction layer. Often the models 
resort to simple mathematica] fundions to describe the space distribution of heat release 
(see sections 3.4.1 and 3.4.2). 

Most detailed experimental investigations of the thermal wave structure in solid propel­
lant combustion have been measurements of temperature profiles obtained by imbedding 
small thermocouples in propellant samples. All experiments show that the heat release 
under steady state operabons is neither uniform, nor sharp in space, but rather features 
an elongated structure with a heat release rate very intense near the burning surface and 
gradually weakening in the tail. For the quasi-steady gas phase, the heat release distribu­
tion is assumed to be the same for transient and steady burning. A distinction must be 
made between homogeneons (DB) propellants and composite propellants. 

Taking the experimental results into consideration, several fiame models will be dis­
cussed next. The most simple model for the heat release rate, the KTSS fiame, will be 
discussed first. After this section the more complicated a,8Î-model will be treated. This 
model covers all of the currently available transient fiame models of thermal nature. 
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3.4.1 KTSS Flame Model. 

From the prcvious section it becomes clear that an appropriate fiame model has to be 
chosen, to be able to calculate the quasi-steady therrnal heat flux from the gas phase into 
the solid phase. The KTSS flame is the most simple model. 

The KTSS model developed by Krier et al. [33] assumes that the rate of product 
generation is uniformly distributed over the reaction zone, so that it can be modeled by a 
pulse function (see figure 3.2) 

H 
Pg -

9 E9 - = W, 

Pc 
(3.21) 

(c) (s) (g) 

H Pc 
gEgp 

g 

x 

x. 
I Xr 

Figure 3.2: Schematic of heat release distribution by the KTSS-model. 

The KTSS-fiame can be seen as an example of spacewise thick fiames (braad chemica! 
reaction zones in the Soviet literature), and is physically representative of cambustion 
processes controlled by mass diffusion. 

The KTSS-flame is the most simple model of chemical reactivity in the gas phase. All 
other flame models are similar in approach. The differences between the KTSS model and 
other quasi-steady models lie in the spatial distribution of the gas phase heat release rate, 
the assumption of equal specific heats of gas phase and solid phase, and the pyrolysis law 
for gasification of the solid propellant. 

In particular, a Dirac delta function was suggested to offer a convenient cicscription of 
flames with a very large activation energy, see figure 3.3. Physically this kind of fiame is 
representative of cambustion processes controlled by chemical kinetics with a very large 
activation energy. An example of this work can be found in ref. [10]. These flame sheets 
are an example of sharp fiames ( narrow chemica! reaction zones in the Soviet liter at ure). 

Also combinations of a rectangular pulse (KTSS-fiame) with a delta fundion (flame­
sheet) have been made [40]. This so called MTS-fiame, accounts for chemical kinetics 
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(c) (s) (g) 

x 

Figure 3.3: Schematic of heat release distrihution hy a Dirac delta function. 

and mass diffusion in transient flames. In this work the concept of charaderistic times is 
introduced. 

In the next section the a/31-model is discussed. The heat release rate distrihution of 
this model differs from the previous mentioned flames, in descrihing the heat release rate 
hy a more complicated function. 

3.4.2 The af}r-flame model. 

The models for the heat release in the gaseous phase reviewed in the previous section, are far 
too simple to descrihe the processes actually taking place. Consiclering the temperature 
measurements mentioned earlier, DeL u ca et al. [15] developed the so-called a/31-model. 
This mechanistic model accommodates different types of propellant flames hy changing 
the parameters a, ;3 and 1· In this approach for the heat release distrihution H9E/ 9 it is 

Pc 
assumed that 

{ 

H W (!3 + 1-P L) H Pc 9 a X! 
gEg pg = H w (1-X/Xt)'Y 

9 1-a 

0:::; X< aX1 

aX1:::; X:::; X1, 
(3.22) 

where Wis the maximum value of the chemica! mass reaction rate E9 p9 j Pc per unit volume, 
aX1 the flame thickness fraction where Wis located, ;JW is the fraction of the maximum 
chemica! mass reaction rate per unit volume occurring at the gas-phase side of the hurning 
surface, and 1 is a power descrihing the decay of heat release for X > aXf, see figure 3.4. 

By definition the three parameters depend on pressure and are hounded as follows: 

0:::; a(P) :::; 1, 0:::; ;J(P) :::; 1, 1(P) ~ 0. (3.23) 
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Figure 3.4: Schematic of heat release distribution by the a!h-model. 

The value of parameter W can be found from the normalization condition 

(3.24) 

yielding 
R( T) 1 + 1 

W(T) = X 1(T) 1 + a[;J(I + 1) + 1- 1]/2 
(3.25) 

To be able to calculate the flame length, X f, of equation 3.22 charaderistic time pa­
rameters of the gas phase have to be introduced. The quantity < T; > is a charaderistic 
gas phase time parameter, first defined by Summerfield and coworkers [40] 

1 Cg Pc 
< Tg >=< Tg > -}r , 

ig < pg > 
(3.26) 

where < Tg > is the residence time in the gas-phase. The quasi-steady mass conservation 
across the burning surface and gaseaus flame yields 

- Xt 
<Tg>= U 

< > 
(3.27) 

With the definition of equation (3.26), one fincis 

I Cg xt 
<Tg>= Kg R. (3.28) 

For the a$1-model the integration in equation (3.18) from 0 to oo, is replaced by an 
integration from 0 to X 1. With the above equation, the flame length X 1 can be calculated, 
when the time parameter < T; > is known. 
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Substituting the at-1h-heat release distri bution ( equation (3.22)) in the formal integra­
tion of equation (3.18), yields the heat flux from the gas phase to the burning surface. It 
is found that 

(3.29) 

where 

2 1 1-/1 
F (a, ,8, 1; R < Tg >) = /1 + R2 a < T~ > 

(-1)'1! ( 2 I ) 

( ) (1
::>2 ) exp -R <Tg > + 

1- a I L < T 1 > I g 

[~ (-1)il! 1-/1 l 2 1 

+ ~ (t- i)!(l- a)i(R2 <Tl >)i- aR2 <Tl> exp(-aR <Tg>). 
z=l g g 

(3.30) 

In the derivation of these equations it has been assumed that 1 is an integer. Notice that 
for a = 0 (which necessarily implies p = 1), and 1 = 0, the a/11-model exactly reeovers 
the KTSS type of transient fiame model. For 1 > 0, the fiame thickness associated with 
a/11-approach is 1 + 1 times larger than the thickness associated with KTSS type of fiame. 
For a = 1 and /1 = 0 ( the value of 1 is irrelevant is this case) the fiame sheet type of fiame 
model is obtained. 

For the common case a = 0 and p = 1, i.e. the maximum heat release rate is located 
at the burning surface, the above expression yields 

(3.31) 

where 

F( 2 I ) (-1)'1! ( 2 I ) ~ (-1)il! 
0,1,1;R <Tg> =1-(R2<T~>)'exp-R <Tg> +ft(t-i)!(R2<T~>)i. 

(3.32) 
U sing this relations the linearized version of the a/11-model can be found easily ( F -----t 1). 
In case of 1 = 0 the linearized KTSS fiame is reeavered ( qg,s ex 1/ R). These linearized 
relationships are useful for intrinsic stability analysis for small deviations from the steady 
state solution, see chapter 4. 

The determination of the charaderistic time of the gas phase is the most difficult task 
of the whole approach. An additional submodel is needed to determine this parameter. In 
general one can assume that 

< T~(P, R, ... ) >= f(P)g(R, ... ) ' (3.33) 

where the function f(P), can be determined from steady state operations, because of the 
quasi-steady assumption of the gas phase. A summary of the different possibilities in rnad­
elinggis given in reierenee [16], where expressions for nonaluminized AP-based propellants 
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and double base propellants are discussed. An extensive discussion on the rnadeling of dou­
ble base flames with t.hc a/Jr-model is given by DeLuca and Galfetti [ 17]. 

If only pressure dependenee is assumed for the characteristic gas phase parameter, i.e. 
< T~ >=< T;(P) >, its value can be obtained by a steady state energy balance written at 
the surface under adiabatic condit.ions. Due to the quasi-steadiness of the gas phase this 
calculated value can also be used in case of transient burning. The energy balance at the 
surface can be written as 

ijg,s = iic,s - RHs. (3.34) 

\Vith the equations (3.28), (3.31) and the first integral of the steady state energy equation 
in the solid phasc, i.e. 3 

8, 

iic,s = R J Cc( e )dG - R . L He ' (3.35) 

E>a 

the energy balance ( equation 3.6) can be rewritten to give 

(3.36) 

Solution of this equation requires an iterative loop as t.he equation is implicit in < T~ >. 
The heat release in the gaseaus phasc, !!9 , can be found from an energy conservation. In 
spirit of a quasi-steady gas phase, it is assumed that the steady state value of H9 can also 
be used for transient calculations, 

8, 

H9 (P) = H9 (P) = J Cc(G)dG + C9 (GJ- Gs)- Hs(P)- L He. (3.37) 

E>a 

In this section the afJr-model for the heat release in the gaseaus phase was extensively 
discussed. The heat feedback from the gas phase to the burning surface was calculated 
for this model (equation 3.29). In the next chapters the afJr-model will be used in all 
calculations. By proper selection of the parameters a, fJ and r, all other flame rnadeis of 
section 3.4.1 can be recovered. 

3 The steady state equation is the condensed phase is given by 

Integrating over the solid phase yields 

- jê, dê jo 
R Cc(8)d8 = Kc(8) dX +He Ec(G)dX. 

e. -00 

From this equation, ifc,s = Kc(8) ~~ can be calculated. 



Chapter 4 

Linear frequency response functions. 

In this chapter the frequency response fundion of a burning propellant surface is consid­
ered, within the framework of a linear thermal theory. The extensive work on pressure 
driven frequency response functions is summarized by Culick [12]. The discussion of radi­
ation driven frequency response functions is based on the work by Milfeith et al. [41] and 
Finlinson et al. [24]. 

We want to determine the fluctuation of the burning rate subject to an externally con­
trolled perturbation, e.g. pressure or radiant fluctuations. The situation during transient 
burning is sketched in figure 4.1. The x-axis is anchored to the mean equilibrium position 
x = 0. The condensed phase moves with a speed fb toward right, the surface fluctuatcs 
between two unknown locations, x = s- and x = s+, because of burning rate fluctuations 
r~. Consicier the assumptions of section 3.1 and assume also that the condensed phase 
is chemically inert and thermophysical properties are constant, i.e. te( 8 )He = 0, and 
Kc(8) = Cc(8) = 1. 

4.1 Condensed phase. 

With the assumptions mentioned above, the dimensional energy equation for the solid 
phase (equation (3.3)), can be rewritten as: 

( 4.1) 

where ac is the therm al diffusitivity defined as ac = kc/ (pccc), Nt is the radiation fraction 
absorbed below the surface layer, a;., is the volumetrie absorption coefficient, r;., is the 
reflectivity of the surface layer, and 10 is the external radiant flux intensity. Note that the 
transmission of the radiation is assumed to obey Beer's law (see equation (2.12)), with a 
spatially constant absorption coefficient a;.,. The natural radiant feedback from the flame 
to the solid is neglected. 

Applying a linear perturbation of rb, T, and 10 , the steady state form of the solid phase 
energy equatiön and the time-dependent energy equation can be obtained and solved, 

23 
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Figure 4.1: Surface of solid propellant during burning transients. The condensed phase 
moves with velocity rb to the right. Due to the transients the surface can be seen to 
ftuctuate between x = s- and x = s+. 

using the appropriate boundary conditions, see appendix A.l. The basic mathematical 
assumption of linear theories is that all time-dependent variables ( ... ) can be expressed as 
the sum of a steady state value (.-:.) and a small disturbance of the type ( ... )' · eiwt. the 
amplitude of the disturbance has to be much smaller than the steady state counterpart, 
typically below 10% of the steady state value [52]. The temper at ure is assumed of the type 

T(x, t) = T(x) + T'(x). eiwt, ( 4.2) 

where T(x) the steady state salution and T'(x) has to be determined. Linearizing and 
solving the energy equation in the condensed phase it is found that [19] (for derivation see 
appendix A.1 and A.2) 

T'(x) 

_ - Ntla 
, PcCcrb(Ts- Ta)+ -

1 
-

+ ~b T- 1 [eÀrbx/ac _ erbx/ac]) (4.3) 
rb - . ac 

PcCcrb ZW~ 
rb 

where, from now on, for convenience the factor (1 - r;..) was incorporated in the radiant 
flux intensity Ia, lr = a;..ac/rb is the ratio of thermal to radiant layer thickness, and >.. is 
the complex charaderistic root defined as 

>..(>..- 1) = in, ( 4.4) 
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where D nondimensional circular frequency, see appendix A.2. To avoid divergence of the 
solution at the cold propellant boundary (x ---+ -oo) only one salution of the two solutions 
of this equation is valid, 

1 + J1 + 4iwac/r~ 
À = . 

2 
(4.5) 

As described above, the surface fluctuates between x = s- and x = s+. Apply a 
Taylor's series to relatc the variables at the x = s position to those at the fixed surface 
(x = 0), to obtain the heat flux at the fluctuating surface on the solid phase side of the 
surface, see appendix A.2 

( 4.6) 

From the mass balarlCe it can be shown that 

1 m' 
(4.7) . - ' zw m 

for harmonically varying fiuctuations. 
As shown by Finlinson ct al. [24] the transient heat flux (on the solid phase si de of the 

surface) is found to bc 

kc ( ~:') s- = mccÀT; + ~ [ mcc(T~ -10)]- ~ [NJo >.(1 ~ ~ ~ lr)l + ~: [1 ~t;o~ zJ. 
( 4.8) 

A derivation of this equation is presented in appendix A.2. The first two terms on the 
right hand side are the familiar terms that appear in all studies where radiant heat flux is 
not considered. The last two terms originate from the external radiant heat flux. 

4.2 Surface conneetion relations. 

The surface reaction layer is assumed to be infinitely thin at the surface. The perturbed 
energy balance at the surface ( equation (3.6)) is given by 

( 4.9) 

where Qs is the sum of all heats of melting, vaporization and subsurface reactions per unit 
mass of propellant. As in most calculations Q s is assumed to be pressure and temper at ure 
independent. The last therm on the right hand side expresses the amount of radiant energy 
absorbed by the surface layer. 

The mass consumption ( m) matching condition for the steady state is 

- - -
ms = mg = m, ( 4.10) 
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where m = Pcfb, for the fiuctuating portion this is 

( 4.11) 

Arrhenius surface pyrolysis (see equation (3.11)) provides the temperature fiuctuation as 

1 m' s 
-·-- - ' Es ms 

(4.12) 

whereas the power law by Krier et al, ( equation (3.12)) provides the temper at ure fiuctuation 
as 

r; f's -1à m: 
-=- = Ws---
Ts Ta ms 

( 4.13) 

See appendix A.3 fora derivation of the equations (4.12) and (4.13). 

4.3 Gas phase. 

The gas phase energy term is obtained from equation (3.19), but requires rnadeling of the 
volumetrie mass reaction rate. In section 3.4 several heat release models were discussed. 
For the linearized calculations is is necessary to use linearized expressions of the heat 
feedback from the gaseaus phase. Following DeLuca et al. [19], it is assumed that the heat 
feedback from the gas phase is given by the a$1-model as described in section 3.4.2, for 
a = 0, and (3 = 1. The dimensional form of equation (3.31) can then be written as 

(4.14) 

where (1 = mc9 /k9 xf a nondimensional position. This heat feedback describes distributed 
fiames with the maximum heat release just at the burning surface. This thesis concentrates 
on the condensed phase and no derivation of the linearized heat feedback is given. For 
detailed information see e.g. reference [11]. 

4.4 Pressure-driven frequency response function. 

The pressure-driven frequency response function is defined in equation (2.1 ). From the 
equations ( 4.9), ( 4.8), and ( 4.14) the pressure driven response function for distributed 
fiames can be calculated [19]. Cast in the "two parameter" form (with parameters A and 
B) it becomes 

Rp(w) = nABp + n5 (À- 1) 
1 

,\ + 1- (1 +A)+ ABP 
( 4.15) 

where ,\ is defined in equation ( 4.5), n is the burning rate exponent, ns is the pressure ex­
ponent in the Arrhenius pyrolysis law, A= (1- T0 /Ts)Ès/ RTs is the normalized activation 
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energy for the surface reactions, which is charaderistic of the solid phase only, and varies 
\vith the approach [12]. B is a parameter whose value depends on the model used for the 
gas phase. For the current case 

_ 1 [ Cg n 5 l Bp = Bp(J) = ;-; Wp(J) +Cc A 

( )( 21)Hg[ Ts(9Ts ns9T1 )] Cg1-ns/n 1+1 1-- -2+- -+-- +------,--
u1 ( ) = (j (j Es g n g Cc A 
np{-n . 

21 ) Hg Cc Ts 9Tt 1- (J + 1)(1- (A~---
t (j Cg Es g 

( 4.16) 

( 4.17) 

where the subscripts Ts and T1 denote the derivative of g (as defined in equation (3.33)) 
with respect to T, and T1 respectively. 

Culick [12] showed that alllinearized pressure-driven response functions can be cast in 
the above "two parameter" form. This common result is a consequence of several basic 
assumptions [3]: 

1. The assumption of a homogeneaus solid phase with constant thermal properties. 

2. A quasi-steady gas phase restricting the analyses to the frequency range in which the 
gas phase responds much faster than the solid. 

3. The assumption that a one-dimensional description is adequate. 

4. Neglect of condensed phase reactions. 

Figure 4.2 shows a typical response function for A = 14, B = 0.8, n = 0.5, n 5 = 0 
and ns = 1. For low frequencies the response functions goes to the static limit given by 
equation (2.6). For 0 -? oo the response function tends towards zero, since the intertia of 
the system becomes more and more important for faster change of the applied sinusoidal 
pressure. 

4.5 Radiation-driven frequency response function. 

From the equations (4.9), (4.8), and (4.14) the radiation driven response function for 
distributed flames can be calculated [19] 

(1 - Nt)(1 -À) - lr 
nqABq 1 - ). - lr 

Rq ( w) = A Nt ( 1 _ >.) , ( 4.18) 
). + "".\ - (1 +A)+ ABq - nqABq >.( 1 _). _ lr) 

being 

d 
qr 

an nq = Bq(!), ( 4.19) 

where qr the nondimensional external heat flux given by qr = Io/[PcCre{fb(Ts- Tref)]. 
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Figure 4.2: Response function for A = 14, B = 0.8, n = 0.5, ns = 0 and ns = 1. 

4.6 Transfer function. 

It was explained in section 2.3 that the determination of the pressure driven response 
functions through radiation tests simplifies the experimental setup. However a relation 
beteen the pressure driven and radiation driven response functions has to be known, to 
be able to experimentally determine the pressure driven frequency response functions from 
these radiation tests. The relation between the two response functions is given by the 
Transfer Function (TF). A convenient definition of the normalized TF is 

( 4.20) 

which can immediately be computed from the previous relationships. In gener al, T F is a 
complex function whose magnitude and shape depend on the propellant nature and the 
specific set of operating conditions. A very simple result if found for n 5 = 0, fully opaque 
condensed phase at the working wavelength( s), and negligible average radiant flux. For 
this situation T F = 1 implying that there is only a scale factor between the normalized 
pressure driven and radiation driven frequency response functions. An example of such a 
derivation is given by Strand et al. [54]. 
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4. 7 Summary of the assumptions. 

In the previous sections the lineari~ed pressure driven and radiation driven frequency re­
sponse functions were derived. In this derivation several assumptions were made. These 
assumptions are summarized below: 

• Overall problem: 

The problem is treated homogeneous. 

The problem is treated one-dimensional. 

Velocity coupling is neglected. 

No external forces. 

No photochemistry. 

External radiant heat flux is of thermal nature. 

N atural radiant feedback from the gasses to the solid is neglected. 

Constant thermal properties. 

• Condensed phase: 

lsotropie composition. 

No chemica! reactions. 

Absorption of the radiation obeys Beer's law. 

• Surface layer: 

Surface is considered to be infinitesimally thin. 

Pyrolysis is described by an Arrhenius law. 

• Gas phase: 

Quasi-steady gas phase. 

Gas flow is laminar, nonviscous, one-phase, and low subsonic. 

Gas phase is described by a thermal model with Lewis number Le = 1. 

Flame model describes distributed flames featuring the maximum heat release 
just at the burning surface. 

From the list above it becomes clear that a lot of assumptions are necessary to allow 
for an analytica! calculation of response functions. Some of these approximations will have 
a large effect on the response function as will be shown in chapter 6. In that chapter 
the assumptions of constant thermophysical properties in the condensed phase, and the 
nonreading condensed phase are dropped. 
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Another disadvantage of the linearized models lies in the linear approximation. Simple 
nonlinear systems can bchave unpredictable in contradiebon to their linear counterparts. 
This also applies for roeket motors and the cambustion processes therein. Chapter 6 vvill 

show the effect of the linearization, and its validity. 



Chapter 5 

Model for the transient burning of 
AP-composites. 

Most transient cambustion models neglect the solid phase reactions. Deluca et al. [17] 
developed a two step reaction process for double base propellants. In the solid phase of 
ammonium perchlorate ( AP) based composite propellants also reactions take place. In 
addition there are two phase transitions of AP in the temperature range of interest. The 
first is the crystalline transformation of orthorombic AP to cubic AP which occurs at 
513 K [8]. Due to this transition the properties of the propellant change abruptly. The 
thermal conductivity is reduced by approximately a factor three. The density of the AP 
crystals changes from 1.95 g/cm3 to 1.76 g/cm3

. This transition from cubic to orthorombic 
is endothermic requiring 21.3 cal/g (89.1 Jjg). The secoud transition occurs at a temper­
ature of 723 K, when the AP starts to melt. This transition is also endothermic, requiring 
59.6 cal/g (249 Jjg). See appendix D for a detailed description of the thermophysical 
properties of AP-composites. 

From the discussion above it becomes clear that the treatment of the condensed phase 
as nonreading with constant thermal properties is a very crude approximation of the 
processes actually taking place. In the next section a model for the condensed phase which 
accounts for these processes is presented. 

5.1 Model for a reacting condensed phase. 

In figure 5.1 a schematic view of the system considered is given. Far away from the burning 
surface (X --+ -oo ), the propellant has its initial temperature Ga. The solidis heated due 
to conductive heat transfer from the gas phase. 

At X = Xtra the solid reaches the crystalline transition temperature of AP. At this 
point the latent heat of transition is withdrawn from the solid. The boundary condition 
at this point can be expressed as 

[ ae] Kc(8) ax _ = 
x tra 

[ ae] Kc(8) ax x+ + RHtra, 
tra 

(5.1) 

31 
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x~ x. o 

Figure 5.1: Schematic of the temperature distribution in an AP-propellant. 

where Htra the latent heat of the crystallographic-phase transition (Htra < 0). In the cubic 
zone the temper at ure of the solid increases further, until the melting temper at ure of AP 
is reached. Like the previous phase transition this transition requires energy, 

[ 88] [ 88] I<c(8) öX x- = I<c(C0) öX x+ + RHm, 
m m 

(5.2) 

where Xm the point where the melting occurs, and Hm the latent heat accompanying the 
melting of AP (Hm < 0). 

Measurements show that the surface temperatures for composite propellants are well 
above the typical degradation temperatures of the binder and the oxidizer [57], so chemical 
reactivity in the condensed phase is expected. These subsurface reactions can be modeled 
by a first-order Arrhenius equation, 

(5.3) 

where Ec(X) is the chemical reaction rate, and He is the total heat release in the solid 
due to the reactions. The activabon energy Ec has a typical value of 30 kcal/mole (125 
kJjmole) for composite propellants [35]. Because of the high value of Ec the chemical 
reactivity falls to exponentially small values even at short distances from the surface. The 
maximum surface temperature is about 1000 K, so the chemical reactivity at the surface 
is orders of magnitude larger (105 

"' 106
) than at the transition point. From this it is seen 

that it is justified to neglect chemical reaction in the orthorombic zone. Ac(P) is found 
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from the normalization condition [18] 

0 

J HcEc( X)dX = HeR , ( 5.4) 

-= 

yielding, 

Ac(P) = I ] . J~tra exp l-Ec/?RT(X) dX 

R 
( 5.5) 

5.2 Summary of the equations. 

In the model described above the energy equation for the condensed phase ( equation (3.3)) 
becomes a set of equations, coupled by the energy conservation equations across the tran­
sition surfaces ( equations ( 5.1) and ( 5.2)). If it is further assumed that the absorption of 
the external radiation obeys Beer's law, then this set can be written as 

_!!__ [r (8) ()8 l 1 - r';_ F, X/Sa 
ÖX ie ÖX + Da oe + 

+ { 0 for - 00 < X < Xtra 
HcEc(8) for Xtra <X < 0 , 

(5.6) 

where Da the opticallayer thickness, defined as (1/a;..)j(ac/rb,ref ). 
On the cold boundary side, X ---+ -oo, the boundary condition is given by 

8(X ---+ -oo, T) = Ga . (5.7) 

On the burning surface the energy balance (see equation (3.6)) yields the boundary con­
dition 

(5.8) 

where the energy loss due to radiation has been neglected. For typical propellants the 
emissivity is 0.85 [50] and with this value the radiation contributes less then 0.5% to the 
energy equation, so it is justified to neglect this term. 

The burning rate Ris found from an Arrhenius law, as given by equation (3.11). The 
surface heat release is found from equation (3.13). Unless noted otherwise, the gas phase 
is modelled by the a~1-model with a= 1 and ~ = 0, see section 3.4.2. 



Chapter 6 

Numerical calculations of 
non-steady burning. 

6.1 Transformation of the problem. 

As derived in appendix A.1 for the steady state, the thermal profile in the condensed 
phase is exponential. Such a profile is characterized by steep gradients near the burning 
surface, and is varying slowly near the cold boundary. For the numerical computations to 
be performed efficiently it is necessary to either use a nonuniform mesh size or to use a 
scale transformation. Because of the exponential profile in the solid phase, an exponential 
transformation first proposed by Sills [53] is very appropriate. This transformation maps 
the semi-infinite domain, -oo < X < 0, into the finite region -1 < X' < 0, and is given 
by 

X'= ef3X- 1 . ( 6.1) 

This transformation is shown in figure 6.1. From this figure it can beseen that intervals near 
the origin are enlarged, and intervals far away from the origin are reduced. Note that this 
transformation has an explicit inverse relation. Another advantage of this transformation 
is that the boundary condition at the cold side may be imposed directly as opposed to 
being satisfied asymptotically. 

Transformation of the energy equation (5.6), and its boundary conditions ( equations (5.1 ), 
(5.2), (5.7), and (5.8)), yields 

Cc(8) [ ~~ + R(J(X' + 1) :~,] 
+ 1 ~ r>- Fo(X' + 1)1/(f3cîa) 

a 

8(X = -1, T) 

[ Kc(8){3 :~~],_ 
x tra 

(3
2
(X' + 1) 0~, [ Kc(8)(X' + 1) :~,] + 

+ { 0 for - oo < X' < x;ra 
HcEc(8) for x;ra < X' < x:n , 

8a , 

[ ae] 
Kc(8)(3 äX' '+ + RHtra , 

x tra 
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(6.2) 

(6.3) 

(6.4) 
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x 

X' 

Figure 6.1: Illustration of the transforrnation. 

[J{c(8)(3 :~~],_ 
Xm 

[ 88 l Kc(8)(3 8X, x'+ + RHm , 
m 

( 6.5) 

[]{ (8)B 88 l 
c ' 8X' 

( 6.6) 
C,8 

For accurate cakulations it is desirabie to use a large value of ,8, so the intervals near 
the burning surface are greatly stretched. However, there is an upper limit which bounds 
the maximum value of (3. The steady-state temper at ure profile in the condensed phase is 
given by equation (A.14). In the new coordinates this becomes 

Differentiating this equation with respect to X' yields 

8è(X') 
8X' 

(ês- 8a);(X' + 1)Rii3 + (6.8) 

+ 1 - r;.. [(-1- -l )(X'+ 1 )(1/i3órad)-1 _ ( R _ 1 )(X'+ 1 )(R/13)-1] 
R - 1/ Órad f38rad (3 

This derivative has to be bounded at the cold boundary, i.e. at X' = -1 

lim (X'+ 1 )R/!3 'I ±oe :::} (3 :S: R, 
X'l-1 

1 
lim (X'+ 1 )1/Pórad =F ±oe :::} (3 < _ . 

X'l-1 - Órad 

(6.9) 

(6.10) 
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This derivation only holds for the analytica! solution, however calculations by Ga.lfetti et 
al. [25] show that with this condition reliable numerical solutions are also obtained for 
systems which can not be solved analytically. 

For brevity the primes are not longer printed from now on. 

6.2 Finite difference approximation. 

The transformed set of equations was first solved using the common Crank-Nicholson 
finite-di:fference method. This method assumes constant mesh size in the transformed 
space and implicit finite-di:fference schemes. However, the calculations showed that this 
method was not able to accurately calculate the cambustion transients, unless a fine space 
grid, and small time step were used. Because this turned out to be very inefficient, an other 
implicit method, as suggested by Galfetti et al. [25], was used. This scheme is described 
in reference [45] (page 191, scheme 13), and is shown in figure 6.2. The space coordinate 
is discretisized by N X grid points; j = 1 at the burning surface to j = N X at the cold 
end. The time level is noted as n, n + 1 indicating the current ( unknown) timestep, n the 
previous time step, etc. 

l/12 5/6 l/12 

+3/2 n+1 

-2 n 
Q) 

E ....... 
~ 

+l/2 n-1 

j-1 j+1 

- Coldend 
Buming surface -

Space 

Figure 6.2: Schematic of the computational molecule. 

To improve stability of the time derivative, the time derivative is approximated by a 
weighted average of the points next to the point to be solved 

ae 1 [ 1 5 1 ] 
()T ~ ~T 12 (8w)J+l + 6(8w)j + 12 (8w)j-1 ' ( 6.11) 

where Gw is the time derivative at a fixed position, calculated from 

(8 ) . = ~en+I - 28n + !en-I 
WJ 2 J J 2 J • 

(6.12) 
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The convective term is approximated by forward differences 

88 en+1 - en+1 
R(P. Y )f3[X + 1]- ~ R(Pn+1 Yk)B[X + 1] J-

1 
J 

· " 8X ' s . J .6..X ' (6.13) 

where tbe superscript k indicates the cstimated temperature profile. This temperature 
profile is necessary to be able to calculate the temperature dependent properties at eacb 
grid point. The diffusive term is approximated by central differences 

(6.14) 

Following N ogotov [42], the therm al properties between the grid points (j ± ~), are calcu­
lated as 

(6.15) 

Substitution of these approximations in equation (6.2) yields the finite difference form of 
the energy equation 

- Ajej:i + Bj8j+1 
- CjGj~{ =Dj . (6.16) 

For the definition of the coefficients A, B, and C, see appendix B.l. This equation is 
applied to all points of the grid, except for the boundaries and at the transition points 
Xtra and Xm, leading to a linear set of equations, whose coefficients can be cast m a 
tridiagonal matrix. 

At the cold boundary side (j = N X - 1), equation (6.16) is rewritten to fit m a 
tridiagonal form using the boundary condition 

- NX-1 NX NX-1 NX-1- J NX-2- NX-1 ===} A e n+1 + B en+1 C·en+1 _ D } 

GNx =Ga 

B e n+1 C .en+1 - D + A 8 NX-1 NX-1- J NX-2- NX-1 NX-1 a· (6.17) 

The boundary condition at the burning surface (equation (6.6)) is evaluated from 

(88) 
8X X=o-

(6.18) 

where the surface derivative is evaluated using a four point forward formula 

(88) 
8X X=o- 6.6..X 

(6.19) 

With these equations e~+1 can be eliminated from equation (6.16), for j = 2. The resulting 
equation can be made tridiagonal by subtrading a suitable multiple of equation (6.16), for 
j = 3. 
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The condition at the transition points (Xtra and Xm) is approximated by replacing the 
partial derivatives by the first order approximations, e.g. equation ( 6.4) becomes 

en+l - en+l en+l - en+l 
} r (Bk ) )tra ]tra+l _ }r (8k ) ]iTa-1 ]iTa R(Pn+l yk)H (6.20) 
'-c )tra+l/2 .6.X - '-c jh·a-1/2 .6.X + ' s tra ' 

where jtra is the grid position where the transition takes place. This equation is in tridi­
agonal form, and can be solved along with the other equations, however jtra is unknown 
and must be solved iteratively until the condition 8jt~~ = 8tra is satisfied. The equations 
descrihing the melting of AP are analogous. The resulting equation is in a tridiagonal 
form, and is solved using the "Thomas algorithm', which is described in appendix B.2. 

To determine the initial condition to start the transient computations the steady state 
salution is calculated first. The steady state calculations are also solved with finite­
difference procedures, instead of the familiar Runge-Kutta methods for ordinary differ­
ential equations. The finite-difference method yields a more compact code, because the 
same procedures used for transient burning can be applied. This method is as fast as the 
Runge-Kutta methods [25]. 

6.3 lmplementation in software. 

The model as described previously was implemented in FORTRAN-77 because of it's porta­
bility and speed. Figure 6.3 shows the concept of the program. After initialization, the 
steady-state situation is calculated. This condition serves as a starting point for the trau­
sient calculations, which is then perturbed by a prescribed time dependent (e.g. sinusoidal) 
pressure and/or radiation disturbance with frequency f. From the response of the pro­
pellant on these perturbations the pressure and radiation driven response function can be 
calculated for the frequency f. These calculations are repeated for several frequencies and 
yield as output the frequency plots of the two response functions and the transfer function. 
The calculation of the response function from the propellants response is explained later 
on (see secbon 6.5.3). 

As described earlier the steady-state and the transient temperature profiles are cal­
culated in an analogous way. Figure 6.4 shows a flow chart of the temperature profile 
computation method. This part of the program is executed during steady-state calcu­
lations and during the determination of the response of the propellant on a perturbing 
signal. 

Because the thermophysical properties are temperature dependent it is necessary to 
estimate the thermal profile (8k) to be able to calculate the finite-difference coefficients at 
each grid point. If a steady-state calculation is performed this initial profile is estimated 
by the analytica! salution (see equation (A.14)). For transient calculations the profile is 
estimated by a linear extrapolation of the previous two time steps, according to 

(6.21) 
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Figure 6.3: Flow chart of the program. 

Next the heat release by the gas phase, Hg, and the charaderistic gas phase time 
parameter < T; >, are calculated. 

For calculations where the phase transitions are taken into account, the transition points 
(given by Jtra and Jm) are determined from the estimated thermal profile. With these 
estimations the thermal profile is calculated. If the difference between the calculated and 
the estimated temperature profiles is larger than the prescribed tolerance, the estimated 
profile is adjusted by successive substitution. It was found that a direct substitution of 
the calculated profile does not yield convergence for all situations. Because of this the 
estimation profile, e;' is only partially adjusted for each iteration step 

(6.22) 

For stability reasans this adjustment is small for steady state calculations (e.g. a = 0.9 
and b = 0.1), and may be larger for transient calculations (a= 0.5 and b = 0.5). 

Next it is verified whether the temperature at the transition points is correct. If not, 
the transition points are moved, and calculations with the adjusted points are performed 
agam. 

If all conditions are satisfied, the thermal profile in the condensed phase is known. For 
transient calculations these computations are repeated for a large number of points of the 
perturbing function (e.g. 50 calculations per cycle of the perturbation). 

6.4 Steady-state burning. 

Most time-dependent burning calculations start from the steady-state situation, which is 
then disturbed e.g. by changing pressure, or external radiation (for ignition transients the 
initial temperature profile is constant, and equal to the ambient temper at ure). So, it is 
necessary to calculate the steady-state temperature profile. This section shows some typical 
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Calculate tempersture profile, 
using the assumed profile 

Figure 6.4: Flow chart of the calculation of the thermal profile in the condensed phase. 

temperature distributions calculated for the dataset of appendix D. Unless noted otherwise, 
all calculations were performed at a pressure of 1 MPa, and with temperature dependent 
thermal properties in the condensed phase. The nonlinear heat-feedback from the gas 
phase was modeled with a charaderistic time dependent on pressure only (T9 = f(p)), and 
with a= 0, (3 = 1, and Î = 0, i.e. a nonlinear KTSS flame. 

The empirical burning rate equation, rb = apn, can only be used for steady state 
calculations. For the transient calculations the Arrhenius pyrolysis law of equation (3.11) 
is used. Of course this pyrolysis law should have the steady state burning law as a limit 
for steady burning. In figure 6.5 the steady-state burning rate equation and the Arrhenius 
equation as used for the transient calculations are plotted. From this figure it can be 
concluded that the Arrhenius law describes the burning rate accurately in the pressure 
range of interest. 

First the influence of thermal properties is examined. As described in chapter 5, thermal 
properties may not be regarcled as constant over the temperature range in solid propellants. 
Figure 6.6 shows two steady-state profiles in the condensed phase, one is the analytical 
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Figure 6.5: Comparison of the steady-state equation rb = apn and the Arrhenius pyrolysis 
law. 

salution for a nonreacting solid with constant thermal properties (see equation A.14), 
the other one is calculated with variabie thermal properties (latent heat of phase change 
neglected), see appendix D for details. From this figure it can be seen that for accurate 
calculations it is not allowed to consider the thermal properties as being constant. It 
should be noted that the discontinuities in the thermal properties have been removed by 
connecting the different regimes between transitions in the thermal conductivity by straight 
lines between the points 20 K befare and aft er the transitions, see figure 6. 7. The reason 
for this is twofold; for the numerical calculations the convergence is better, and because 
of the inhamogeneaus structure of AP-composites the measured temperature profiles are 
not sharp, but rounded at the transition points. By introducing the small conneetion 
lines, the calculated temperature profile in the solid becomes smoother, because no more 
discontinuities in the properties exist. 

As described in the previous chapter, the crystallographic transition, and the melt­
ing of AP require energy. Due to these heat sinks the temperature profile will change. 
Figure 6.8 shows the effect of the latent heats Qtra, and Qm. These are calculated as 
Qtra = fAPQtra,AP, and Qm = fAPQm,AP where JAP the weight fraction AP in the pro­
pellant, Qtra,AP the latent heat of crystal transition for pure AP, and Qm,AP the melting 
heat for pure AP. The value of Qm,AP is not found in open literature, so the melting heat 
of potassium perchlorate was used in the calculations, as suggested by Guirao [28]. As 
expected, the profile which accounts for the latent heats lies below the profile where these 
heats have been neglected. 

To validate the calculations, measurements of temperature profiles in the condensed 
phase were sought for, however very few accurate measurements of profiles in the condensed 
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Figure 6.6: Steady-state thermal profiles in the condensed phase. Profile 1 is obtained by 
calculations with variabie thermal properties, and profile 2 is the analytica] salution of the 
energy equation. 

phase exist. Figure 6.9 compares the results of measurements from a recent work [57] with 
the thermal profile obtained by numerical calculations, at a pressure of 1.5 MPa. The 
thermophysical properties used in the calculations, were derived from these experimental 
steady-state temperature profiles. For the derivation of these properties, it is necessary 
to assume that Qm = Qtra = 0. So, to obtain the same results as in the experiments the 
latent heats have been set to zero in the calculations. It is further seen that the measured 
profile only shows a bend at the crystal transition point, and not at the melting point. To 
reproduce these results the thermal conductivity had to be adjusted, so that the thermal 
conductivity was continnes at the melting point of AP. 
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Figure 6.8: Effect of the latent heat of crystal transition and melting of AP on the steady­
state thermal profiles in the condensed phase. 
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Figure 6.9: Comparison of calculated and measured thermal profile at 1.5 MPa. In the 
calculation the latent heat of crystallographic transition, and melting have been set to zero. 
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6.5 Time-dependent burning. 

In order to examine the effects of the propellant parameters on the transient combustion, 
several numerical experiments were performed. This section describes the results of these 
experiments, and summarizes the sensitivity of the cambustion transients to some of the 
propellant parameters. 

6.5.1 Introduet ion. 

To explain the transient cambustion of a solid roeket propellant, an illustrative example 
will be discussed first. Figure 6.10 shows the response of a solid roeket propellant to a 
sinusoidal pressure disturbance. At T = 0 the propellant is in its steady state. Because of 
the inertia of the propellant, the disturbance has a phase lead to the response. At several 
positions in time, the temperature profile was monitored . 
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Figure 6.10: Gombustion transient during a sinusoidal pressure disturbance. 

Figure 6.11 shows the temperature profiles of the several situations of figure 6.10. It is 
seen that the temperature profiles continuously change during nonsteady combustion. It 
is also seen that the cambustion is not only determined by the temperature profile at that 
time, but also by the previous profiles. The profiles 1 and 3 e.g. are almost equal, but the 
envelope of the surface temperature is different. 
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Figure 6.11: Temper at ure profiles in the condensed phase during transient burning. 

6.5.2 Combustion transients. 

First the effect of pressurization is verified. These calculations start from a steady state 
situation foliowed by a raise in pressure according to 

{ 
P if T < 0 

P(t) = P + !::..P(1 -e-T) if T > 0. (6.23) 

For the standard dataset as described in appendix D, the pressurization transients can be 
foliowed easily without any transients. However, the propellants response is very sensitive 
to the value of the surface heat release, Q s [6] [39], and liter at ure shows great scatter of its 
value. From thermocouple measurements Sabadellet al. found Qs = 130 caljg (544 Jjg) for 
a AP/PBAA-propellant [47]. Finlinson et al. reported a value of Qs = 160 cal/g (669 Jjg) 
for a trirnadal AP /HTPB-propellant [24]. When this value is used in the calculations the 
propellants response is much largeras shown in figure 6.12. Calculations fora step function 
for the pressure increase show the same response. It was tried to find nonlinear instability 
as shown in figure 2.1, but this type of instability was not found, all calculations showed a 
damped response, identical to that of figure 6.12. 

The condensed phase heat release is exponentially distributed below the burning surface 
according to equation 5.3. The surface heat release can be seen as a limiting case for the 
condensed phase heat release, when all the heat is released in an infinitesimally thin layer 
below the surface. Also shown in figure 6.12 is the cambustion transient for Qs = 0 and 
Qc = 160, i.e. all exothermic heat release located in the solid phase. From this figure 
it becomes clear that surface heat release and condensed phase heat release have a very 
similar effect on the (in)stability of a solid propellant in this model. 
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Figure 6.12: Cambustion transient duringa pressurization from 1 to 2 MPa. It can beseen 
that the effect of the surface and condensed phase heat release, Q s and Q c is identical. 

An analogous calculation can be performed for a radiation perturbation. Figure 6.13 
shows the result of an increase of cxternal radiation from 50 cal/cm2s to 75 cal/cm2s 
(209 to 314 W jcm2

). For the calculations two extreme values of the absorption coefficient 
were used. The minimum absorption has a charaderistic layer thickness of 100 11m (a>. = 

100 cm-1 
), while a maximum absorption has a layer of 5 11m (a>. = 2000 cm- 1 

). It is 
shown that a high absorption coefficient yields a fast response. This is easily understood, 
because for a low absorption the radiant energy is absorbed far in the solid, for high 
absorption however, all radiant energy is absorbed near the burning surface, leading to 
a large increase of temperature below the surface. The ultimate response however is the 
same. As will become clear later, this figure is an example of self-sustained oscillatory 
combustion, see section 7.1.2. 

U ntil the recent advance of powerful computers, most instability calculations were per­
formed with the linearized equations as discussed in chapter 4. Within these calculations 
the disturbance amplitude is assumed to be small as compared to the steady state value. 
However, during real cambustion large fluctuations may occur, e.g. by nozzle blockage 
or resonance in the roeket motor cavity. Due to the nonlinearity of the equations the re­
sponse of the propellant is dependent on the disturbance amplitude. Measurements show 
that propellants may be stable for small disturbances, but unstable for large perturbations. 
Figure 6.14 shows the effect of the perturbation amplitude on the propellants response, in 
analogy wi th eq uation ( 2.1) defined as 

!!J.8s/ês 
Response = !!J.P / P (6.24) 
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Figure 6.13: Effect of increase of external radiant flux on the surface temperature, for two 
extreme values of condensed phase absorption. 

This figure is obtained by disturbing the steady state situation with a sinusoidal pressure 
having a frequency of 500 Hz, and an amplitude of 10% and 50% of its steady state value 
of 1.0 MPa. For small perturbations the response is approximately sinusoidal, i.e. linear 
with its source. For large amplitudes ho wever, the response is no longer linear, and large 
fluctuations may occur. 

To further analyze the effect of the nonlinearity for large amplitudes, power spectrum 
analysis of the cambustion transients have been performed. For the calculation of the 
discrete Fourier transfarms the Fast Fourier Transformation (FFT) subroutine of the Turbo 
Pascal Numerical Tooibox software package is used. This routine calculates the FFT of 
dataseries with 2i (i and nonnegative integer). 

Because of this limitation it is necessary to truncate the wavefarm to be analyzed after 
these 2i points. In general this truncation does not take place at a multiple of the period 
of the propellants response. Because of this, sharp discontinuities are introduced, which 
results in additional frequency componentsin the frequency domain [5]. This effect is called 
leakage, and is inherent in the Discrete Fourier Transfarm (DFT) because of the required 
time domain truncation. 

To reduce leakage, a truncation function x(t) can be used, i.e. in stead of calculating 
the DFT of j(t), the DFT of x(t)j(t) is calculated. A good truncation function is the 
Banning function given by x(t) = ~- ~ cos(27rt/Tc), for 0 ::; t ::; Tc, where Tc he lengthof 
the truncation interval. The utilization of this function will reduce leakage significantly [5]. 

To clearly illustrate the effect of the disturbance amplitude on the response of the 
propellant a large surface heat release ( Q s = 150 cal/ g, 628 J / g) is used for the calculations. 

Figure 6.15 shows the effect of the disturbance amplitude on the power spectrum of 
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Figure 6.14: Response of the propellant on a sinusoidal pressure perturbation, with an 
amplitude of 10% and 50% of its steady state value of 1.0 MPa. 

the response, forasignalof 1024 datapoints (i= 10). For small amplitudes the response 
contains only one frequency, the driving frequency Jo of the pressure disturbance. For 
large disturbances the response of the system becomes nonlinear, and other frequencies 
are introduced. It is interesting to note that these frequencies are higher harmonies of the 
perturbing frequency J0 . From the figure is becomes clear that for the usual limit of 10% 
disturbance the system responds almost linearly, and it is justified to consider it as linear. 

It has been reported that it is possible to calculate the response of the system for 
different frequencies with one measurement with a pulsating disturbance [52]. However, 
this is only allowed when the perturbation is so small that the response is linear. This 
it opposite to the desired large amplitude disturbances for a good signal to noise ratio in 
experiments. 

The response of the system toa rectangular pulse of 500 Hz, with an amplitude of 10% 
is shown in figure 6.16. The FFT of these two signals are shown in figure 6.17. The FFT 
curves have been normalized by their value at the disturbance frequency J0 . It is seen 
that the response exhibits a response with a frequency ~Jo, i.e. a noninteger multiple of 
the base frequency, which is not a frequency of the disturbing signal. So when pulsating 
experiments are carried out, the disturbance amplitude has to be vary small, in order to 
stay in the linear regime. 

In this section several examples of transient burning were discussed. It was shown 
that the nonlinearity plays an important role when the perturbing amplitudes are large. 
Especially the surface heat release, Qs, and condensed phase heat release, Qc, are important 
parameters. In the next section these calculations will be extended to the calculation of 
response functions. 
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Figure 6.16: Pulsating perturbation and the response of the propellant. 
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Figure 6.17: FFT spectrum of the pulsating perturbation and the response of the propel­
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6.5.3 Pressure driven frequency response functions. 

\Vhen the steady-state burning is perturbed with sinusoidal pressure and radiant ft ux 
disturbances of different frequencies, the response functions of the propellant can be cal­
culated. As seen from figure 6.14, thc response from the propellant is nonlinear, and is 
dependent on the previous history. 

A large number of responses have been calculated, and it was found that for frequen­
cies below the resonance frequency the response becomes periodically1 after a few cycles 
(usually two or three). This is in agreement with the findingsof DeLuca et al. [20]. For 
frequencies above the resonance frequency however, it was found that more cycles had to 
be calculated in order to achieve a periodical situation. For high frequencies the distance 
burned during one disturbance cycle is smaller than the therrnal layer thickness, hence it 
takes more cycles to burn through the disturbed zone and to achieve the dynamic equilib­
rium situation. Figure 6.18 shows a typical surface temperature history, duringa sinusoidal 
pressure disturbance. 
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Figure 6.18: Fluctuating surface temperature due to a sinusoidal pressure disturbance. 
After a few initial cycles the surface temperature responds periodically. 

It was found generally valid that the response becomes periodical after approximately 
10 to 15 cycles. Because of the wider thermallayer for calculations with condensed phase 
reactions, these type of calculations take more cycles to obtain this situation. 

The response function for a given frequency is defined as the maximum relative change 
in burning rate occurring in the the disturbance in the situation of dynamic equilibrium. 

To validate the numerical calculations in the limit of small perturbations, a comparison 
has to be made with the linear analysis. Figure 6.19 shows the results of this calculation. 

1 Periodical in the sense of f( T) = f( T + p), where p is period. 
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The calculations in this figure were performed with constant thermal properties, a surface 
heat release of 125 cal/g (523 Jjg), and a sinusoidal pressure change, with an amplitude of 
10% of its mean value. Unless noted otherwise all calculations in this sectionare performed 
\Vith this type of disturbance. As seen from the figure the calculations correspond, but still 
show some deviation from the linear profile. 

2.5 

2 
nonlinear calculations, amp=lO% 

1.5 
nonlinear calculations, amp=l% 

[Rp[ 

1 
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0 
10 100 1000 10000 
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Figure 6.19: N onlinear pressure dri ven response function versus linear calculated response 
fundion (constant thermal properties). 

Because of this deviation, a second calculation was performed, with an amplitude of 
1% of its mean value, see figure 6.19. This response fundion still shows a small deviation 
from the linear response fundion, but now the maxima correspond. 

Two explanations have been found for the remaining difference between linear and 
nonlinear calculations. First there is the heat feedback from the gas phase and the pyrol­
ysis law. For the nonlinear calculations a nonlinear KTSS-flame is used, while the linear 
response function is calculated for a linear KTSS-flame. A further difference is the pyrol­
ysis law. For the nonlinear calculations an Arrhenius type of pyrolysis law was assumed 
(equation (3.11)), while the linear calculations arebasedon the power law by Krier (equa­
tion (3.12)). 

Most measurements of pressure-coupled response fundions are carried out under low 
pressures. The reason for this is the that high pressure measurements can only be performed 
with expensive equipment. However, typical pressures in solid roeket motors vary from 4 
to 15 MPa, and cannot be compared with the conditions under which the experiments are 
carried out. 

Figure 6.20 shows the effect of the pressure on the response functions. The resonance 
peaks decrease in magnitude for increasing pressure, and shift towards higher frequencies. 
So, when the propellant is burning at a higher pressure, it becomes more stable. This 
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phenomenon can be explained as follows. At low pressures the burning rate is small, 
yielding a braad thermal layer ( d rv ~:). When the pressure is increased the burning ra te 
increases, resulting in a thin thermallayer. The thermallayer can be seen as a "memory" 
in which the previous cambustion processes are stored. Braad thermallayers have a large 
memory, and respond fiercely on the disturbance. Thin thermal layers burn away fast, 
so the memory is short. Note that the analogy with a memory is nat complete, for high 
frequencies there is a phase lead of the burning rate on the applied disturbance, for an 
extensive discussion see Finlinson et al. [24]. The maxima shift to higher frequencies, 
because the thermal layer is smaller for higher frequencies. Smaller thermal layers have a 
higher resonance frequency. 

It is necessary to make a camment on these calculations. It was discussed in chapter 3 
that the quasi-steady assumption of the gaseaus phase is only valid for low frequencies and 
at low cambustion pressures. Thus the high pressure calculations have to be interpreted 
carefully, because they may vialate bath conditions. The condensed phase charaderistic 
timet: at 10 MPa is calculated as 

* Ûc O'c(300 I<)+ O'c(1000 I<) _4 te = 2 = 2 = 6.9 · 10 S , 
rb rb 

(6.25) 

where the mean value of the thermal diffusitivity in the thermallayer, ac, is approximated 
by the mean of it 's value at the cold boundary and at the burning surface. The gas phase 
characteristic time t; is calculated as 

(6.26) 

where the last equality is obtained from a mass balance across the burning surface. The 
density of the gas phase, pg, is calculated from the i deal gas equation 

pg!RT1 
p = ]yf (6.27) 

where M the average molecular mass of the gas products. With the NASA SP-273 code [26] 
it is found that M = 25 at 10 MPa. Finally it is found that t; = 1.4 · 10-6s. The resonance 
peak at 10 MPa occurs at an external disturbance frequency of approximately 4000 Hz, 
i.e. t;xt = 2.5 · 10-4 s. So, for the calculations at 10 MPa it is found that t:xt rv t; ~ t:. So 
the quasi-steady theory is applicable at 10 MPa. 

The relations between the several curves of figure 6.20 can be made clear by platting 
them as a function of the nondimensional circular frequency n, as shown in figure 6.21. 
Because this frequency incorporates the steady-state burning ra te ( see equation ( 4.4)), the 
x-axis sealing factor is different for each pressure. It is seen that n is a good nondimensional 
quantity, shifting all maxima to the same frequency, even for these nonlinear calculations. 

The same calculations have also been performed for constant thermal properties. Fig­
ure 6.22 and 6.23 show the result of these calculations. Several conclusions can be drawn 
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Figure 6.20: Effect of the value of the steady-state pressure on the pressure coupled re­
sponse function, for temperature dependent thermophysical properties. 

from the comparison of the figures 6.21 and 6.23. The location of the maxima does not 
coincide. This is easily explained. The nondimensional frequency f1 is based on the ther­
mal diffusivity at reference conditions, ac,ref, i.e. at temperature 300 K. For temperature 
dependent thermophysical properties this value does not describe the actual diffusivity in 
the thermal layer, hence the calculations are based on a different ac as they are scaled 
with. 

The effect of the temperature dependent thermal properties is obvious. The response 
fundions are shifted tovvards higher frequencies, as seen from figure 6.24. Resonance 
will occur when the charaderistic time of the external disturbance t;xt is of the same 
order as the charaderistic time of the condensed phase t~. t~ is dependent on the thermal 
diffusivity, so the location of the maximum is determined by the value of the thermophysical 
properties. Because the temperature dependenee of the thermal properties yields steeper 
temperature profiles in the solid (see figure 6.6), the affected zone in smaller, and hence the 
"storage capability" is less. So, it is expected that response function for a calculation with 
temperature dependent properties has a smaller maximum. This expectation is confirmed 
by figure 6.24. 
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Figure 6.21: Effect of the value of the steady-state pressure on the pressure coupled re­
sponse function, for temperature dependent thermophysical properties. 
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Figure 6.22: Effect of the value of the steady-state pressure on the pressure coupled re­
sponse function, for constant thermophysical properties. 
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Figure 6.23: Effect of the value of the steady-state pressure on the pressure coupled re­
sponse function, for constant thermophysical properties. 
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Figure 6.24: Effect of the thermal properties on the pressure coupled response function. 
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6.5.4 Radiation driven frequency response functions. 

An important issue in contemporary roeket research is to determine the relation between 
radiation driven and pressure driven response functions. The ultimate goal is to mca­
sure the radiation driven response function and to calculate the pressure coupled response 
function from this data, via the theoretica! transfer function. To determine this transfer 
function theoretically both response functions have to be calculated. The radiation driven 
response function is calculated in a similar way as the pressure driven response function, 
by disturbing the steady-state with a disturbance amplitude of 10% of it's steady-state 
value. 

The volumetrie absorption coefficient, a->-, is an important parameter which should be 
known accurately to calculate the propellants response on the external fluctuating radiant 
source. Pure AP has a high absorption coefficient, a->- = 2000 cm- 1

, but measurements 
show much lower values of a->- for composite propellants. This discrepancy may be explained 
by scattering at the AP crystals and the transparency of the binder. Finlinson et al. [24] 
used a->- = 4000 cm-1

, fora trirnadal AP-propellant, containing 0.1% carbon black. These 
values are about an order of magnitude larger than the measured values. The reason for 
calculating with this unusual high value of the absorption coefficient were the experimental 
results. According to Finlinson et al. the high absorption can be contributed to the 
formation of a melt layer on the surface, or the crystalline phase change of AP, which 
could result in a surface with very different optical properties. 

Figure 6.25 shows the response of the reference propellant for different values of a->­
for a mean radiant heat flux of 50 cal/cm2s (209 W /cm2

). As seen from this figurc, the 
shape of the curve varies for different values of the absorption coefficient, changing from 
a monotonous decreasing function (a>. = 100,500 cm- 1 

), to a function with a maximum 
((i>, = 1000,2000,5000 cm- 1 

). Not only the value of the maximum is affected by the 
absorption coefficient, but also the location of this maximum. These effects are comparable 
with the effects found for linearized calculations [14]. The static limit (equation (2.7) can be 
determined from this figure, yielding nq ~ 0.25. Measured values of nq for AP-composites 
show large scatter. Finlinson et al. measured nq = 0.012 and nq = 0.20 [24]. Strand 
et al. reported nq = 0.42 at a nominal pressure of 2.1 MPa, and a mean heat flux of 
20 cal/cm2s (84 W /cm2

) [54]. Recently a value of nq = 0.29 was publisbed by Son and 
Brewster [52], for a mean radiant power of 41 W jcm2 (10 cal/cm2s). So, the calculated 
value of nq agrees with measured values, within experimental uncertainties. 

Son and Brewster reported about the experimental dependenee of the response fundion 
on the mean value of the radiant energy flux [52]. To verify this, a second series of 
calculations was performed for a energy which is twice as large as used for the previous 
calculations. The perturbing part was kept 10% of it's steady state value. Figure 6.26 
shows the result of these calculations. 

Two conclusions can be drawn from the comparison of these two calculations. First, the 
maxima of the response fundions become larger, and are shifted towards a higher frequency. 
Second, the static limit, nq, is different for both situations. This can be explained easily. 
Pressure response fundions have a static limit nP = n, because of the steady-state burning 
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Figure 6.25: Effect of volumetrie absorption coefficient a.;-, on the radiation driven response 
function for the reference propellant, for a heat flux of 50 cal/cm2s. Crystal transitions 
and condensed phase reactions have been neglected in these calculations. 

law rb = apn. The dependenee of the steady-state burning ra te on the radiant heat flux 
is not given by such a power law, but is generally a nonlinear relation rb = ((Jo) [24] [51] 
[52]. Figure 6.27 shows the measurements of Finlinson et al. [24]. The radiant heat flux 
fluctuates around it's steady-state value, and around this value the steady-state burning law 
can locally bedescribed by rb = bi;q. In this way the relation rb =((Jo) can be considered 
built up from power functions. Of course these power functions have coefficients, band nq, 

which are dependent on the mean value of the radiant flux. 
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Figure 6.26: Effect of volumetrie absorption coefficient a;.. on the radiation driven response 
function for the reference propellant, for a heat flux of 100 cal/ crn2s. Crystal transitions 
and condensed phase reactions have been neglected in these calculations. 
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Figure 6.27: Experirnentally deterrnined steady-state burning rate as function of the ap­
plied external heat flux for three different propellants [24]. 
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6.5.5 Condensed phase reactions. 

Condensed phase reactions play an important role in the burning of both composite and 
DB propellants. To evaluate the effect of spatially different heat release rates, the effect of 
one typical group is further examined. It is assumed that the heat release can be modeled 
by 

(6.28) 

where n an integer, n = 0, 1, 2, .... Figure 6.28 shows the effect of n on the heat release 
rate. This set of equations can be seen as an approximation of the processes taking place; 
the energy release in the condensed phase becomes larger near the burning surface. In 
the real situation the chemical reactivity is larger near the burning surface. An implicit 
temperature dependenee is present, because Xtra is defined as G(Xtra) = Gtra, where 
Gtra the crystallographic transition temperature of ammonium perchlorate. Note that the 
situation for n = 0 is an exception, this describes a constant release of energy. In a recent 
publication of DeLuca et. al. [21] linearized calculations for a uniform distribution, I.e. 
n = 0, were performed. 

The value of Ac can be found from the normalization condition 

0 

J Hcéc(X)dX = HeR. (6.29) 

-oo 

The special forrn of equation (6.28) was selected such that this integration can be carried 
out easily 

0 J AcHc(X- XtratdX (6.30) 

-oo 

(6.31) 

This yields 

A =(-1)n+1 (n+1)R. 
c (Xtra)n+l 

(6.32) 

Figure 6.29 shows the effect of the parameter n on the steady state ternperature profile, 
fora total condensed phase heat release Qc = 100 cal/g (481 Jjg) (note that the phase 
transitions are also accounted for in these calculations). For n = 0 a large part of this 
energy is released for away frorn the surface, which results in a higher temperature in the 
solid. For large n the heat release HcEc(X) becornes very steep near the burning surface, 
yielding temperature profiles which are alrnost independent of n. Because the steady-state 
temperature profiles are different for each value of n, the transition point Xtra is also 
different for each n. This means that the chemical reaction zone width is determined by 
the value of n. 
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Figure 6.28: Heat release rates for different values of the parameter n. 

Figure 6.30 shows the infiuence of the parameter n on the transient cambustion of 
the propellanL for an sinusoidal disturbance, applied of 500 Hz. It is seen that, for this 
frequency, an increase of the value of the parameter n yields a larger response of the 
propellant, i.e. when more energy is released close to the surface, the response of the 
propellant becomes larger, hence it is shown that by collapsing the condensed phase energy 
to the surface ( n -t oo), the response function becomes larger for this frequency. Based on 
the linearized calculations mentioned before, DeLuca et. al. derived the same conclusions 
for an exothermic and endothermic heat release of 20 cal/ g [21]. 

For a fixed frequency of 500 Hz, the response is larger for an increased heat release 
close to the surf ace. Ho wever, this does not mean that the response function is larger for 
all frequencies. To know the behavior of condensed phase reaction, the complete response 
function has to be calculated. Figure 6.31 shows the results of these calculations. By 
decreasing the reaction layer (increase of parameter n) the intrinsic stability increases, and 
the resonance peak shifts towards higher frequencies. 

The chemica! reactivity can also be modeled by a classica! Arrhenius law as also dis­
cussed previously. Figure 6.32 shows the effect of the heat release distribution on the re­
sponse function for three different cases. The first case is the common case Q s = 125 cal/ g, 
and Qc = 0, i.e. all reactivity is assumed to take place on the surface. This result 
can be compared with the response function obtained from linearized analysis. The 
other two curves show the response function for a more realistic situation, Q s = 0, 
and Qc = 125 cal/g. Two activation energies have been used, a high activation energy 
28.9 kcal/mole, as suggested by Kumar and Culick [35], and a low activation energy of 
10 kcal/mole. The high activation energy resembles the situation of surface reactions, be­
cause for the high activation energy the chemica! reactivity decreases very fast below the 
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Figure 6.29: Steady state temperature profile for several values of the parameter n. 

surface. It is seen that the condensed phase reactions lower the maximum response. So, 
when subsurface reactions are approximated by surface reactions, the propellant appears 
to be less stable. The maxima of the response function shift to lower frequencies, because 
the thermal layer is larger for subsurface reactions. 

The results of the calculations with an Arrhenius-type reaction law and the above 
presented model are comparable. An increase of heat release near the surface deercases 
the stability ( n larger or higher activation energy), and increases the resonance frequency. 
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Figure 6.31: Effect of heat release distribution on the pressure coupled response function. 
By decreasing the reaction layer (increase of parameter n) the intrinsic stability increases, 
and the resonance peak shifts towards higher frequencies. 
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Figure 6.32: Effect of heat release distribu~ion on the pressure coupled response func­
tion. Surface reactions (infinitesimally thin reaction layer) have the largest response. By 
increasing the reaction layer ( deercase of activation energy) the intrinsic stability increases. 
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6.5.6 Response functions of AP-composites. 

The current models for the determination of thc response functions of solid propellants 
predict the experimental trends, but not within the desired accuracy. Several workers 
reported that the models could be improved by accounting for the chemical rcactions in 
the solid phase. With the cambustion model of chapter 5, this hypothesis can be verified. 

Figure 6.33 shows two normalized pressure driven response functions as calculated for 
the reference propellant. One function is obtained assuming that all latent heats are zero, 
Qm = Qtra = 0. The other function is calculated for Qm =/:- 0 and Qtra =/:- 0. The figure 
shows a shift of the peak to a higher frequency, again due to an decrease in thermal layer 
thickness, see figure 6.8. It is also seen that the maximum decreases, i.e. the introduetion 
of the latent heats prediets a more stabie propellant response. 
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Figure 6.33: Effect of latent heats on the normalized pressure driven response function for 
the reference propellant. 

A difficulty is the determination of the heat released in the solid phase, Qc. Equa­
tion 3.10 gives arelation for Qc for double base propellants. For composite propellants no 
such relation was found in the open literature, and an estimation has to be made. 

Kishare and Verneker [32] have shown that composite propellant decomposition is a 
nonadditive phenomenon, i.e. the reactions in the condensed phase yield a larger exother­
mity of the propellant, compared to the additive heats of decomposition of its components. 

The several processes in the condensed phase can be summarized as follows: 

AP vaporization 
AP decomposition 
HTPB vaporization 
Overall exothermicity 

requmng 
releasing 
reqmnng 

1893 
2879 

251 
735 

J / g propellant 
J / g propellant 
J / g propellant 
J / g propellant ( 176 cal/ g) 
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Measurements of the contribution from reactions in the solid phase to the overall heat 
release are not known from literature, so this contribution is ucglected for the moment, and 
only the processes above are considered. The total exothermicity of the condensed phase is 
described by two termsin the model, the surface heat release, Qs, and the condensed phase 
heat release Q c· Because the relation between these two terms is not known, it is assumed 
that Qc = Qs = 88 cal/g (368 Jjg). When calculations with this data were performed, 
it was found that the response fundion could not be calculated, because for these input 
data, the system is in a self-sustained regime (see section 7.1.2). The data used are adually 
measured values, so no self sustained burning is expeded. 

However, when also the phase transitions are accounted for, the calculations are per­
formed in a normal cambustion regime, and response fundions can be calculated. This 
change of regime is caused by the stahilizing nature of the introduetion of phase changes, 
because not all thermal energy is put in the heating of the solid, but also in the latent 
heats. Figure 6.34 shows the result of calculations where both condensed phase reactions, 
and phase transitions are accounted for. It turns out that the location of the maximum 
of the peak is determined by the phase transitions, because the resonance frequency is the 
same for both the calculations with and without the condensed phase heat release. The 
maximum of the response function is increased further. 
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Figure 6.34: Effect of condensed phase heat release and phase transitions in the solid phase 
on the normalized pressure coupled response function. 

Compared to the reference propellant a large increase in the response fundion is ob­
served. It is concluded that chemical reactions and phase transitions have a pronounced 
effect on the pressure-coupled response function, and these effect may not be neglected. 
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6.5. 7 Effect of gaseous heat release distribut ion. 

Until now all calculations were performed with Î = 0 (KTSS-fiame). By increasing Î, the 
heat is released wider zone (see figure 3.4). This means a weaker coupling between gas 
phase and condensed phase due to the decreased heat feedback from the gas phase, and 
hence a deercase of intrinsic cambustion stability. The effect of increasing Î is illustrated 
in figure 6.35. 
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Figure 6.35: Effect of parameter Î on the pressure coupled response function (a = 0, (3 = 1 ). 

To illustrate the sensitivity of the pressure-driven response functions to the value of 
the parameter a several calculations with small changes in a were performed. Figure 6.36 
shows that shifting the maximum heat release from the burning surface (increase of a) has 
a positive effect on the cambustion stability. 

Figures 6.35 and 6.36 show that the parameters a, (3 and Î infiuence the response 
fundion noticeable. So, both the condensed phase and the gas phase are important in 
determining the intrinsic instability of a solid roeket propellant. 
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Figure 6.36: Effect of parameter a on the pressure coupled response function ( 1 = 1, and 
(3 = 0.5, except for a= 0, then by definition (3 = 1 ). 



Chapter 7 

Intrinsic cambustion instability. 

Two types of stability can be distinguished. The first one is called the static stability, con­
cerning the stability of an equilibrium situation. The self-sustained oscillatory cambustion 
as already shortly mentioned in section 6.5.2 is an example of a static instable equilibrium. 
Dynamic cambustion stability is concerned with the stability of burning transitions, be­
tween two stable steady state configurations, driven by an external time dependent forcing 
function, e.g. pressure. In this chapter only static stability will be discussed. 

Two different methods of cambustion instability analysis will be presented. Section 7.1 
discusses a nonlinear approximate instability analysis based on an integral method as first 
published by DeLuca. In section 7.2 a method will be presented which determines the 
linear stability of an equilibrium state of a systern. Both analysis will be applied to find 
the value of the surface heat release where static stability changes to static instability. 

It should be noted however that any intrinsic stability theory can only extract the 
stability properties implicitly imbedded in the transient cambustion model. It was assumed 
e.g. that the problem can be described by a one-dimensional model with homogeneaus 
condensed phase, so possible instahilities due to three-dimensional effects, or heterogeneaus 
condensed phase can not be predicted with this model. 

7.1 N onlinear cambustion instability. 

In this section a nonlinear approach towards cambustion stability is presented. This method 
was first published by DeLuca, and is detailed in reference [18]. The approach is based 
on an integral method, transforming the energy equation of the solid phase (a partial 
differential equation, PDE) to an ordinary differential equation ODE. After transformation 
the question of stability is more traceable by means of the Lyapunov criterion. This 
approach preserves the nonlinearity of the equations. 

The transformation of the PDE to an ODE is based on an approximate analytica! 
procedure, which fully preserves the nonlinearity of the problem. This technique is similar 
to that proposed by Von Karman and Polhausen for boundary-layer analysis. 

For static stability analyses, the initial condition is by definition the steady state profile, 

70 
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l.C. 

G(X, T = 0) = G;(X) = ê(X) ' (7 .1) 

whose stability is to be verified. So, this method requires an initial temperature profile. 
This profile can be obtained by using the numerical analysis of chapter 6. 

The principle of transformation can be outlined with the help of figure 7.1. It is assumed 
that the steady state is perturbed over a layer thickness Ç( T ). The temper at ure disturbance 
profile is defined as the difference between the pert urbed and the steady profile, 

u(X,r) = G(X,r)- G(X) = us(r) · uc(X). (7.2) 

The spatial dependenee of the perturbation, uc(X) is approximated by a simple function, 
e.g. an exponential function, or polynomial, which has to satisfy the conditions uc(X = 

Ç) = 0 and uc(X = 0) = 1. By integrating the energy equation over this perturbed thermal 
layer the partial derivatives with respect to X disappear, and an ODE in T remains. 
Appendix A.4 contains this, rather mathematical, derivation. 

e 

------------~--------~x 

0 

Figure 7.1: Condensed phase with two temperature profiles. The steady state profile ê(X), 
and the perturbed profile G(X, r). The perturbation is limited to the disturbance layer 
thickness Ç ( T). 

In appendix A.4 it is shown that the energy equation of the condensed phase (PDE) 
can be reduced to an ODE by introduetion of an approximation method. The result of 
this methad is a nonlinear ODE in time descrihing the surface temperature history for a 
monotonic propagation in time of the disturbance layer thickness Ç( T) 

(7.3) 

where f the static restoring function, and g the dynamic restoring function. The static 
restoring function describes the stability of an initial condition, in this chapter the steady 
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solution. The dynamic restoring function describes the stability during a time-dependent 
change of an external parameter such as e.g. the pressure, when two stable steady state 
situations exist. 

7.1.1 Static restoring function. 

The static restoring function f(8s- ês) was defined in appendix A.4. Figure 7.2 shows a 
typical plot of this function. The roots satisfy the relation d8s(T)jdT = f(8s- ês) = 0, 
i.e. they are candidates for stationary burning. Root C is a trivial solution, descrihing the 
situation of a non-burning propellant. Generally two more roots exist, A and B. 

c 

Figure 7.2: Typical plot of a static restoring function with three roots. 

First consider root A. Assume that the surface temperature increases starting from root 
A., The time derivative of the surface temper at ure becomes negative, and the propellant 
forces the surface temperature to decrease in the direction of A. For the reverse situation 
it can be shown analogous that the response of the propellant also forces the surface 
temperature in the direction of A. So, it can be concluded that root A is stable. 

The situation in root B is different. By the same arguments it can be shown that root 
B is unstable; any disturbance yields movement away from the point. 

This static stability can be described by the first Lyapunov criterion: The solution of 
the nonlinear ODE of equation (A.58) is stabie in the neighborhood of a given point e: if 

(7.4) 

The magnitude of the derivative dj jd8s at that point can betaken as measurement of the 
stability strength at that point. 
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By changing the operating conditions, the shape of the static restoring function changes. 
\Vhen the parameters are changed below or above a critica! value, the number of roots may 
change suddenly. For example by increasing Qs (or Qc, or decreasing P), two new roots 
appear, D and E (figure 7.3). 

Figure 7.3: Typical plot of a static restoring function with five roots. 

For the case of figure 7.3, two unstable roots (B and D) are next to the stable root 
(A). If the surface temperature passes the root B or D during a transient, the surface 
temperature will decelerate towards C (lower instability) or E (up per instability). For 
lower instability this means extinction of the propellant. The situation for upper stability 
is more complicated. For slow acceleration past D, slow deceleration from E towards A will 
occur, i.e. the equilibrium position will settle again. Forstrong acceleration past D, strong 
deceleration from E toD and A and possibly C (extinction) will occur, due to overstability. 

By further changing the operating conditions, the restoring function of figure 7.4 may 
occur. In this situation, the A and D roots have moved towards each other, until coalescence 
and exchange of stability occurs. Then the Band D roots disappear. Under these circum­
stances, the only allowed salution is the trivial nonreading configuration, represented by 
root C. 

7 .1.2 Bifurcation diagrams. 

Different cambustion regimes such as stabie combustion, self-sustained oscillatory burning, 
and dynamic extinction can be distinguished. These regimes ar better understood if the 
roots of the static restoring function are plotted vs any of the parameters of interest. These 
plots are called bifurcation plots, because they show when and if the steady-state bifurcates 
from the time invariant A-root salution to e.g. a self-sustained oscillatory configuration. 
Reference [18] gives a large survey of different bifurcation plots for a large number of 
varying parameters. 
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Figure 7.4: Typical plot of a static restoring fundion when roots B and D have exchanged 
stability. The only possible stable contiguration is the nonreading situation, represented 
by root C. 

Self-sustained oscillatory combustion. 

When figure 6.13 is carefully studied, it is noticed that the spikes in the response of the 
propellant seem to sustain, even when the external radiant flux has become constant, and 
no driving force is present anymore. This type of transient burning is called self-sustained 
oscillatory combustion. This phenomenon was extensively discussed by DeLuca [13]. It 
will be shown that the occurrence of self-sustained cambustion is related to high values of 
the surface heat release, Q s. 

To verify the effect of the parameter Q s on the transient burning, the surface tempera­
ture was monitored, duringa very slow increase of Q s· This increase is performed as follows. 
First the steady state is calculated. Then the value of Q s is increased a small amount (typ­
ically 0.25%). Next, the propellant is allowed to relaxfora large time (for example 100-t~). 
Then the value of Q s is increased again, etc. This method closely resembles the "brute force 
method" of reference [44]. Figure 7.5 shows the result of such a calculation for constant 

thermal properties. The upper limit for Q s is given by Q s,max = JJ: cc(T)dT = 163.8, for 
the nonlinearized KTSS fiame. It is seen that for values of Q s below a cri ti cal value, the 
surface temperature responds mildly to the increase in surface heat release. However, for 
values above 131.25, the response is fierce. It was verified that this response sustains when 
Q s is not increased anymore. So, the oscillations are self-sustained. The sudden increase of 
Q s acts as a disturbance triggering the self-sustained oscillations. This can also be achieved 
by any other disturbance, e.g. a pressurization or increase in external radiation. It was 
shown by DeLuca that the response in a self-sustained regime is only determined by the 
final operating conditions, and not by the history of the cambustion [13]. 

When a part of figure 7.5 is enlarged, charaderistic spikes are observed. Figure 7.6 
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Figure 7.5: Envelope of the fluctuating surface temperature for a slowly varying surface 
heat release, Q8 • 

shows the typical form of these spikes. The physical interpretation of these spikes is as 
follows: The intense heat souree near the burning surface (large Qs) results in a thermal 
"explosion", with associated high burning rates. During these high burning rate periods, 
the preheated zone is burned away completely. Due to the slow thermal layer build-up, 
the propellant reeovers slowly, until a new thermal explosion occurs. 

The behavior of figure 7.5 can be made clear by platting the roots of the surface 
heat release as fundion of the surface temperature. In this way the bifurcation diagram of 
figure 7.7 is found. The calculations were performed for n = 3, as suggested by DeLuca [20]. 
For values of Qs < 108, the situation of figure 7.2 exists. When the surface heat release is 
increased further, the roots D and E appear, according to figure 7.3. For Qs > 157, the 
situation of figure 7.4 arises. 

This bifurcation diagram shows that between A-D roots and B-D roots coalescence, 
selfsustained oscillatory burning may be found, i.e. 132 < Qs < 157. In this range the 
burning propellant bourrees back and forth under the competing infiuence of D and E roots. 

For Qs > 157, no stabie roots exist, and extinction occurs. This is verified by figure 7.8, 
which shows the extinction of the propellant for Q s = 160, and a perturbation by a 
pressurization from 0.9 to 1.0 MPa. 

The envelope of the surface temperature of figure 7.5 is obtained for an increasing 
surface heat release. When the surface heat release is then decreased, the situation of 
figure 7.9 occurs. It is seen that hysteresis emerges. This hysteresis cannot be predicted 
by the nonlinear stability analysis. 



CHAPTER 7. INTRINSIC GOMBUSTION INSTABILITY. 

CD 

::J 

~ 
CD 
a. 
E 
CD 
I-

CD 
0 

~ 
::J 

Cf) 

c 
0 
z 

1.20 r------------------------, 

1.10 

1.00 

0.90~vvvvv vv vvv V 

0.80 '------'-----'-------'-----'------"'------' 

20 25 30 35 40 45 50 

Nondimensional time, T [-] 

Figure 7.6: Characteristic spikes during self-sustained transient burning. 
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Figure 7. 7: Bifurcation diagram at 1.0 MPa pressure. Shown are the roots of the static 
restoring function, (A, B, C, and D), and the envelope of a numerical calculation, by slowly 
varying Q 5 • 
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Figure 7.9: Hysteresis in the envelope of the fiuctuating surface temperature for an increase 
in surface heat release, followed by a decrease in surface heat release. 
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7.2 Stability of an equilibrium of a linearized system 

In case there are no time dependent external disturbances, the complete system of the solid 
propegant cambustion can be considered as an autonomous system, described by a vector 

field F. The equilibrium vector Xeq describes the equilibrium point of the system. For a 
numerical calculation of the cambustion of a solid roeket propellant, this vector is given 
by Xeq = (e2, e3, ... , eN x _t)T, where N X the number of grid points in the numerical 
approach. Note that el = es and eNx are not part of Xeq, because they are determined 
by the boundary conditions. 

The local behavior of the system near Xeq is determined by linearizing the vector field 
at Xeq· The relation 

(7.5) 

describes the time evaluation of a perturbation 8( t) in the neighborhood of the equilibrium 
point Xeq· 

The solution of this equation describes the envelope of the disturbance 8(t), due to the 
disturbance 80 at t = 0, 

__, 

8(i) = e V F(ieq)tg
0

. (7.6) 
__, 

Let the eigenveetors of V F( Xeq) be À; with conesponding eigenveetors ij;, for i = 2 ... N X-
1, then this can be rewri tten to gi ve 

(7.7) 

where the coefficients c; are chosen to satisfy the initial condition. 
lf À; is real, and ij; and c; are also real, it is clear that the eigenvalue is the rate of 

contraction (À;_,< 0) or expansion (À; > 0) near Xeq in the direction of ij;. 

Because V F( Xeq) is a real matrix, complex eigenvalnes occur only in complex conjugate 
pairs, from this it can be shown that the real part of À; gives the rate of expansion ( or 
contraction) and the imaginary part of the eigenvalue is the frequency of rotation. 

Depending on the position in the complex plane of the eigenvalues, several situations 
can be distinguished [ 44]: 

• If Re[À;j < 0 for all À; then all perturbations tend toward 0 if t -t oo, and Xeq IS 

asymptotically stable. 

• lf Re[À;] > 0 for all À; then all perturbations grow with time and Xeq is unstable. 

• lf there exists i and j such that Re[À;] < 0 and Re[Àj] > 0, then Xeq is non-stable. 
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The stability of an equilibrium situation for solid roeket propellants is tested as follows: 

1. At T = 0 the steady-state is calculated, this defines the state vector Xeq· 

2. At T = ~T the cornponents of this state are successively disturbed by the per­
tmbation vector 8, of which the cornponents are given by ( b); = 0.058;,jêi, for 
j = 2, 3, ... , N X - 1 ( b;,j is Kronecker-delta). This rneans that each of the different 
cornponents is disturbed by 5% of its steady state value. Also calculations for a 
1% perturbation have been carried out. 

3. The disturbed situation at T = 2~T is calculated, Xdis· Points 2 and 3 are repeated 
for all j. 

__, __, 

4. From the above calculations V F can be calculated according to 

__, 

(7.8) 

5. The eigenvalnes of V F are calculated with the Mathcad program. Because the max­
imum number of points is limited, only the points most closely to the surface are 
considered, i.e. j = 2, 3, ... , M (typically A1 = 300 and N X= 2500). 

For the situation of self-sustained oscillator cambustion (section 7.1.2), the stability 
was verified with the integral method. These results can be compared with the results of 
the linear stability calculations. 

Table 7.1 shows the calculated eigenvalnes for several values of the parameter Q5 • For 
Q s = 100 only negative eigenvalnes are found, implying a stable equilibrium. This situation 
holds, until Qs is increased above 105. At that time a positive eigenvalue emerges, and 
the equilibrium situation is not langer linear stable anymore. When the value of 105 is 
compared with the transition value found from the figures 7.5, and 7. 7 an discrepancy is 
seen. The linear stability analysis prediets that the propellant becomes unstable at lower 
values of Q8 • 

It was considered that the disturbance amplitude of 5% was to large, and would not 
reveal the eigenvalnes of the linearized system. Hence the calculations were repeated for a 
disturbance of 1%. As seen from table 7.1 the difference between the two calculations is 
very small, so the system can be seen linear, even for the 5% disturbance. 

As explained before, the steady state at T = 0 is perturbed at T = ~T and then the 
temperature profile at T = 2~T is calculated. The numerical methad used calculates the 
new profile based on the two previous calculations. For stable situations the perturbed 
temperature should return to its steady state value, but because of the memory of the 
numerical methad this means a very large time derivative. 

Todetermine the effect of the numerical method, also calculations were performed where 
the profile at T = 0 was also perturbed. This means that the calculations for T = 2~T 

are started with two identical thermal profiles at T = 0 and T = ~T. The result of these 
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100 
105 
110 
120 
130 
140 
150 

Eigenvalues, 1% disturbance 
-0.493, -7.582, -9.200, .. . 
-0.204, -7.559, -9.197, .. . 
+0.118, -7.536, -9.195, .. . 
+0.882, -7.488, -9.190, .. . 
+ 1.862, -7.438, -9.184, .. . 
+3.154, -7.387, -9.179, .. . 
+4.935, -7.332, -9.173, .. . 

~ 

Eigenvalues, 5% disturbance 
-0.491, -7.582, -9.200, .. . 
-0.202, -7.559, -9.187, .. . 
+0.120, -7.535, -9.195, .. . 
+0.886, -7.487' -9.189, .. . 
+1.869, -7.437, -9.184, .. . 
+3.168, -7.385, -9.179, .. . 
+4.960, -7.331, -9.173, .. . 

80 

Table 7.1: Calculated eigenvalues of V F for several values of the parameter Qs, and two 
different disturbances. 

calculations are summarized in table 7.2. It is seen that forthese calculations the transition 
from stabie to unstable cambustion is between Q s = 140 and Q s = 150, which is above the 
value of 131 found from the nonlinear cambustion theory. 

Q s Eigenvalues, 1% disturbance 
100 -2.870, -8.187, -9.400, .. . 
120 -1.838, -8.116, -9.392, .. . 
130 -1.104, -8.079, -9.388, .. . 
140 -0.136, -8.040. -9.384, .. . 
150 +1.197, -7.999, -9.380, .. . 

~ 

Table 7.2: Calculated eigenvalues of V F for several values of the parameter Q8 • Forthese 
calculations the temper at ure profile was perhrbed at T = 0 and at T = .0.T. 

Now return the the first type of calculations with only a perturbation at T = .0.T. To 
clarify the difference between the linearized and nonlinear stability approaches, the evolu­
tion of the !x dis I was monitored. According to equation 7. 7 the modulus of the disturbance, 

and hence lxdisl = li'eq+bl, increases exponentially in time. So by platting lxdisl as function 
of the time, it becomes clear whether the disturbance grows in time, or deercases in time. 
Figure 7.10 shows the evolution of the normalized modulus. For Qs :S 130 the modulus 
reaches the steady state value after some time. For Q s :::0: 135 the modulus increases, sug­
gesting a unstable situation. The results of this calculation are comparable with that of 
the nonlinear cambustion analysis, based on the integral method, which is not surprising 
because the calculations of figure 7.10 are nonlinear as well. 

It can be concluded that these linear stability calculations are very sensitive to the 
numerical approach. Dependent on the approach, they overpredict, or underpredict the 
stability boundary of the equilibrium state. 
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Figure 7.10: Plot of the normalized modulus of Xdis as function of the time. For Qs:::; 130 
the modulus returns to it's value at T = 0. For larger values the equilibrium is unstable, 
diverging from the steady situation because of the perturbation at T = 0.1. 



Chapter 8 

Conclusions and suggestions for 
future work. 

It is shown that the steady state temperature profiles in the steady state are very different 
when calculated for constant thermal properties, as when calculated for actual measured 
temperature dependent thermal properties. 

As an extension to this steady state burning it is shown that the transient cambustion 
of solid roeket propellants is also largely affected by the introduetion of temperature de­
pendent thermal properties. For the situation of temperature dependent properties, the 
response becomes smaller, and the resonance frequency shifts to higher frequencies, because 
of the decrease in thermal layer thickness. 

The introduetion of phase transitions of AP to the model shows that these transitions 
can not be neglected. Phase transitions yield a more intrinsic stable propellant (lower 
resonance peak), with a higher resonance frequency. 

Radiation driven transient burning is discussed briefly and the nonlinear numerical 
calculations show that the mean value of the transient radiation disturbance affects the 
radiation driven response function. 

Comparison of subsurface and surface reactions shows that surface reactions yield a 
propellant which is less stable as compared to the propellant with the same amount of 
subsurface reactions. So, the classical linear calculations, which consider surface reactions 
only, tend to overpredict the intrinsic instability. Surface reactions are not practical, but 
just a mathematicallimit of a very thin reaction zone near the surface. 

It is shown that the response of the system may be considered linear for disturbances 
up to 1% of their mean value. For the common 10% perturbations, a deviation is seen 
from the linearized analysis. 

For very high values of the surface heat release, self-sustained oscillations may exist. 
The occurrence of these oscillations is verified by a brute force method. Also nonlinear and 
linear cambustion stability analysis have been performed, to show that the steady state 
in this case is unstable. The linear stability approach is unable to calculate the value of 
the surface heat release where self-sustained oscillatory cambustion occurs. The nonlinear 
analysis however, show good agreement with the numerical calculations. 

82 
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It is shown in this thesis that reactions, and other processes in the condensed phase 
have a pronounced effect on the intrinsic cambustion stability of a solid roeket propellant. 
Hence a better knowledge should be obtained about condensed phase processes. Accurate 
temperature profiles measured by small thermocouples can be of great help to gain more 
information abou t the condensed phase. 

Theoretically, the models can be improved by the introduetion of an heterogeneons 
condensed phase. Calculations in this thesis show that the typical thermallayer thickness 
is of the same order as the typical AP partiele size, so the homogeneaus treatment of the 
condensed phase is questionable. 

The flame models used at the moment are simple, but mathematically traceable. A 
systematical study towards the cambustion stability for different flame models would reveal 
whether the current flame models cover the the real situation accurate enough. In recent 
studies the flame models have been extended to include the actual chemica] reactions 
taking place. These models are less general, but describe the multiple flame processes. A 
comparison between these flames, and the common flames used for intrinsic cambustion 
stability studies, could provide the knowledge whether these new models have an decisive 
effect on cambustion stability. 

Accurate experimental data should be generated to be able to campare theoretica] 
results with measured data. 
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Appendix A 

Derivations. 

A.l Derivation of the steady state thermal profile. 

In this section the steady statethermal profile in the condensed phase is calculated, neglect­
ing chemica! reactions in this phase. For convenience, write from now for ]0 = (1- r>.)10 . 

Starting with the steady-state energy equation for the solid ( equation ( 4.1)) 

dT _ d2T . a>. a>.x 
7'& d - nc d 2 + Nt loe . 

X X PcCc 
(A.1) 

The steady state temperature at position x can be written as [11] 

T(x) = Tc(x) + 1~(x), (A.2) 

where 1~( x) the thermal profile due to heat conduction, and 1~ the thermal profile due to 
radiation. Substitution in the energy equation yields the following set of equations 

with boundary conditions 

_ dTc 
rb­

dx 
_ dTr 
rb­

dx 

Tc(x = 0) 

Tc( X ---t -oo) 

Tr( x ---+ -oo) 
dTr 
dx (x ---+ - oo) 

Ta' 
0, 

0, 

(A.3) 

(A.4) 

(A.5) 
(A.6) 

(A.7) 

(A.8) 

where Ts,c the surface temperature resulting from heat conduction only. Equation (A.3) 
and its boundary conditions yield the familiar exponential profile 

(A.9) 
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The next problem is to find the salution of the differential equation for T,.(x). According 
to equation (A.7), the salution has to be zero far in the deep. Because of this 

T- ( ) _ (-ax flx) ,.x-ac-e 

is tried as solution. Substituting of this function in equation (A.4), results in: 

Ntfo 
a= - . 

PcCc(fb- aca>.) 
So the steady state thermal profile can be written as 

A.2 Derivation of the transient thermal profile. 

(A.lü) 

(A.ll) 

(A.l2) 

(A.13) 

(A.14) 

The transient thermal profile is obtained from linearizing the energy differential equation 
( equation ( 4.1)) 

oT _ oT o2T . cl>. a>.x - + T'b- = ac-- +Nt-loc . 
ot ox ox2 PcCc 

This linearizing is clone by substituting 

T(x,t) 

Ia(x,t) 

T(x) + T'(x)eiwt 

la(x) + I~(x)eiwt, 

(A.15) 

(A.l6) 

(A.17) 

and neglecting terms of second order. Wh en the differential equations for the steady state 
( equations ( A.3) and ( A.4)) are subtracted, the differential equation for the fluctuating 
portion of T is found 

(A.18) 

As for the steady state, the fluctuating portion of the temperature profile can be written 
as 

T' (x) = r: (x) + r; (x) . (A.l9) 

Substitution of this equation in equation ( A.18) yields two differential equations, 

. T' _ dT: 
ZW c + T'b dx (A.20) 

. T' dT: 
ZW + fb-

r dx 
(A.21) 
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The boundary conditions are 

T~(x----+ -oo, t) 

T~(x = 0, t) 
r;(x----+ -oo, t) 

dT' 
_r (x ----+ -oo t) 
dx ' · 

0 
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(A.22) 

(A.23) 

(A.24) 

(A.25) 

The salution of equation (A.20) and its boundary conditions can be found by substituting 

(A.26) 

where À and f. have to be determined. Note that the boundary conditions are satisfied by 
this equation. Substitution in the differential equation results in 

(A.27) 

and À satisfying the equation 

À(À- 1) = i WIYc = i Ç1 
-2 ' 
rb 

(A.28) 

where n is the nondimensional circular frequency. Solution of the fluctuating radiation 
part, equation (A.21), is performed in an analogous way to the steady-state radiation part. 
Substitution of 

(A.29) 

(A.30) 

where lr = a>.ac/fb, the ratio of thermal to radiant layer thickness. From the equa­
tions (A.26) and (A.30) the transient part of the temperature profile is known 

(A.31) 

From this equation the heat flux into the solid can be calculated. Because the surface 
fluctuates between x = s+ and x = ç, this flux is not calculated by the derivative at x = 0, 
but at x = s. The surface temperature fluctuation can be found by a Taylor expansion 

(A.32) 
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For small (linearized) variations, the terms of second order and higher can be neglected. 
The fiuctuating part of the heat flux is then calculated as 

(A.33) 

As for the temper at ure (see equation (A.32) ), the value of Ib at the surface can be approx­
imated by a Taylor expansion 

( ') , (dlo) 10 x=s ~ 10 + s -
dx x=o-

The value of s is found from an continuity equation across the burning surface 

yielding 
1 m' 

s = --. -' 
ZW Pc 

where the term p9 u 9 has been neglected. 
These equations, together with the steady and transient profiles, lead to 

(A.34) 

(A.35) 

(A.36) 

k (dT') =me >..T' + m' [mcc(fs- To)]- m' [NJo 1- >.. l + ~b [ Ntlolr l· 
c dx s- c s m >.. m >..(1 - >.. - lr) Ia 1 - >.. - lr 

(A.37) 

A.3 Derivation of the linearized pyrolysis laws. 

The Arrhenius pyrolysis law is given by 

m, = AT;•pn' exp [- ;;, ] (A.38) 

No pressure dependent pyrolysis has experimentally been observed, so ns is set to zero. 
Note that the assumption of ns = 0 does not imply that the pressure exponent n = 0. 
The steady-state burning rate fb = apn is hidden in this equation, because of the relation 
Ts = Ts(p). In figure 6.5 the two relations fb(p), and rb(P) = f(Ts(P)) are compared. 
Differentiating with respect to Ts yields 

(A.39) 
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With the definition Es = O's+ Ès/ RTs this can be rewritten to give 

1 

The KTSS pyrolysis law given by 

·m' s 

BTa, n, (T 'T' )w' ms= s'P' s-1a · 
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(A.40) 

(A.41) 

With the same assumption n 8 = 0, and further a" = 0, as suggested by DeLuca [19], it can 
be derived in an analogous manner that 

T: Ts- Ta m~ 
Ts Ta ms 

(A.42) 

A.4 Derivation of the static restoring function. 

Define the temperature disturbance profile, u, propagating inside the condensed phase after 
a perturbation at the burning surface, as 

u(X, r) = G(X, r)- ê(X). (A.43) 

Assume that within a perturbed thermallayer of thickness Ç(r), the temperature distur­
bance can be separated into a space dependent and time dependent part, and can be 
expressed as: 

u(X,r) = U8 (T) · Uc(XjÇ), 0 ~ lXI ~ Ç(r), (A.44) 

where U 8 is left unknown, and Uc is approximated by 

uc(XjÇ) = (1 + X/Çt , (A.45) 

or 
(A.46) 

Both forms describe the monotonic decay in space of the disturbance. At the burning 
surface uc(O) = 1, and at the end of the disturbance layer uc( -1) = 0 for the polynomial 
profile, or ~ 0 for the exponential profile if n large. 

Differentiating equation ( A.44) with respect to X yields the disturbance thickness as 
function of time 

(A.4 7) 

where ( Ux )c,s = ( ouj fJX)c,s, the disturbance gradient at the surface. 
This disturbance thermal gradient can be evaluated as 

(88) (dê) (ux)c,s = fJX - dX 
c,s c,s 

(A.48) 
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\Vith the energy conservation at the surface ( equation (3.6) ), and the first integral of the 
energy equation this can be rewritten to give 

(A.49) 

Using the equation (A.43) and integrating the energy equation (3.3) over the perturbed 
thermallayer ( -Ç ::=:; X < 0) it is found that 

o- o-

- [JC(e);~L + J F,J(X)JX + j ,,H,dx. 
-Ç -Ç 

(A.50) 

By integrating over the disturbed layer the PDE is reduce to an ODE in time. At the 
edge of the perturbed thermal layer 8(X, T) -:::= ê(X), because uc( -1) ::::- 0. Using thc 
equations (3.6) and (A.44) it is found that 

o-

f Cc(8) [d1~;T)uc(X/Ç) +us(T)duc~~/Ç)l dX 

-Ç 

8, 

~ -R(T) j C,(8)d8 + q9 ,, + R( T)Jl,- q"'"- [ r{,(e) :~ L 
8{ 

o- o-

+ j Fof(X)dX + j EcHcdX (A.51) 

-Ç -Ç 

Rewrite the space integration as 

o- o- Ç(r) 

J ... dX := J ... dX - J ... dX , (A.52) 

-Ç(r) -oo -oo 

and use the first energy integral of the steady-state energy equations, to find 
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e, e~ e~ 

= -R(T) J Cc(8)d8 + R(T) J Cc(G)dG- R J Cc(G)dG + qg,s + R(T)Hs +Fa 

o-

- qout + R(T)Hc + AcHc J {exp(-Ec/T(X))- exp(-Ec/Î(X))} dX, (A.53) 

-Ç 

where the function G1 is defined as 

G _ { (1 + Xjf,) for polynomial disturbance 
1 

- 1 for exponential disturbance, and n large enough 
(A.54) 

The most influential term is the surface thermal gradient disturbance at the surface side, 
(ux)c,s, defined by equation (A.48). In general, this term depends on the momentary values 
of surface temperature, pressure, and other time dependent parameter possibly affecting 
the surface boundary condition. Thus, for common situations its time derivative can be 
written as 

d(ux)c,s = dus(T) [o('ux)c,s] + dP(T) [o(ux)c,s] 
dT dT OUs p dT oP u, 

(A.55) 

Static burning stability. 

Static burning stability implies that the operating conditions are maintained constant in 
time. Under these circumstances equation (A.55) becomes 

d(ux)c,s = dus(T) [o(ux)c,s] . 
dT dT OU 8 p 

(A.56) 

For the static situation the following term of equation (A.53) becomes 

Us(T) uc(XjÇ) (- ~X ) _!}___ ( nus ) = _ dus(T) uc(Xjf,)~ [(ux)c,s _ (o(ux)c,s) l 
G1 Ç ( T) dT (U x )c,s dT G1 U8 OUs p 

(A.57) 
For monotonic propagation in time of the disturbance layer thickness Ç( T ), the following 

ODE is found for the surface temperature 1 

1 From the equations (A.43) and (A.44) it is found that 

dus(r) d8s(r) 
= dr dr 
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_de-----'s (--'-T) = f( e _ ê ) = 
dT s s 

(Jo-Cc(e)uc(XjÇ(T)) {1- ~ [ _(ux)c: - ( ~(ux)c,~ ) ] } dX) -l X 

G1 es- es ä(es -es) P 
-(, 

x [ -R( T) l C,(0)d0 + (R -!i) zC,(0)d0 H.o.• + R(H, +EH,) + 

F'o- q,u, + A,H, J { exp(- EJY(X))- exp(- EJî'(X))} dX]. (A.58) 
-(, 

This ODE defines the static restoring function j(es - Gs)· The initial condition is given 
by 

(A.59) 

Dynamic burning stability. 

For the second part of equation (A.55) can be treated in an analogous way to obtain an 
expression of the form 

(A.60) 

This equation defines the dynamic restoring function g( T, es- ês)· Note that this equation 
is time dependent whereas the static restoring function is time independent. 
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Numerical met ho ds. 

B .1 Finite-differences approximation of the condensed 
phase energy equation. 

The finite-differences approximation of the condensed phase energy equation can be written 
as (see equation (6.16)) 

A e n+1 + B en+1 C en+1 D - j ~ j+1 j ~ j - j ~ y-1 = j ' 

wherc the coefficients Aj, Bj, Gil and Dj are defined as 

C (ek) {32 
- ~6; + (6 X)2 (Xj + 1)(Xj+l/2 + 1)Kc(eJ+1;2), A J 

Bj = 4~T Cc(eJ)- :x R(Pn+1, 1;)(Xj + 1)Cc(eJ) + (:;)2 

(Xj + 1) [(Xj-1/2 + 1)Kc(eJ_1;2) + (Xj+1/2 + l)Kc(eJ+1;2)] 

c J = - S~T Cc(eJ)- :XR(Pn+1, 1;)(Xj + 1)Cc(eJ_112 ) 

+ 
{32 

(
6

X)2(Xj + 1)(Xj-1/2 + 1)Kc(eJ_112), 

D J = Cc(e]) [ 1 (en 1en-1) 5( en 1en) 
6T i2 2 ~ j+1 - 2 ~ j+1 + 6 2 ~ j - 2 ~ j 

+ 2_(2en - ~en-1 )] + 1 - r À F.n+1 (X + 1)1/(fJóa) +HE (ek) 0 

12 y-1 2 y-1 Óa 0 J c c J 

B.2 Thomas algorithm. 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

Applying finite difference methods to a partial differential equation yields a set of simul­
taneous equations for every timestep. For most problems these equations are linear. If 
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the system of equations to be solved is very large, the matrix inversion methad may use 
excessive computer time. A number of explicit finite difference methods, e.g. the Crank­
Nicolson method, yield a tridiagonal matrix to be solved. These systems can be solved 
efficiently, with the Thomas algorithm (see e.g. [1 ]). 

Consicier the following tridiagonal system of n equations 

bl cl UJ dl 
a2 b2 c2 u2 d2 

a3 b3 c3 u3 d3 
(B.6) 

an-1 bn-l Cn-1 Un-1 dn-1 
an bn Un dn 

Successive subtraction of a suitable multiple of each equation from the preceding equation, 
transfarms the system into a simpler one of upper diagonal form 

cl 
1 ul dl 

1 

1 cl 
2 u2 dl 

2 

1 cl 
3 U3 dl 

3 

1 I 
cn-l Un-1 d~-1 

1 Un dl n 

where the coefficients <, and d; are calculated from the relations 

and, of course c~ = 0. 

dl -dl 
1- bl' 

i=1,2, ... ,n-1, 

(B.7) 

(B.8) 

(B.9) 

From this Un is directly known, Un = d~. U sing the special form of the upper diagorral 
matrix it is easily seen that all other values of Un can be calculated successively from 

dl I 
U;= i- C;Ui+l, i= (n- 1), (n- 2), ... , 1 . (B.10) 

Note that computing time is short because no iteration is necessary. The memory used 
by the sparse matrix of equation (B.6) can be reduced by only storing the coefficients 
unequal to zero. 



Appendix C 

The Zeldovich-Novozhilov approach. 

Although transient burning calculations within the fiame approach are the subject of this 
report, the Zeldovich-approach is also shortly discussed in this appendix to be complete. 
The fiame description approach, as discussed in the previous chapter, requires detailed 
knowledge of the heat release in the gas phase, in order to calculate the heat feedback from 
the gas phase to the condensed phase. Within the Zeldovich-Novozhilov (ZN) approach this 
feedback is calculated from experimental steady-state burning rate data, surface tempera­
ture, pressure, and initia] propellant temperature. The assumptions made in this approach 
are similar to those of fiame rnadeling approaches. 

In the ZN -approach, it is assumed that the burning ra te ( rb) depends on pressure (p), 
fiame temper at ure (TJ ), and the temperature gradient at the solicl-gas interface ( <I> 9 ,s = 
àT/àx) 

(C.1) 

The energy balance yields 
(C.2) 

It is further assumed that the pyrolysis law, and the heat release at the surface are described 
by the following functional relations 

(C.3) 

and 
(C.4) 

An energy balance over a control volume on the surface yields 

(C.5) 

where hc,s and h9 ,J the enthalpy in the condensed phase respectively in the gaseaus phase. 
The equations (C.l)-(C.5) forma system of five equations inseven unknowns (rb, Qs, 

<1> 9 ,8 , <P9 ,s, Tj, Ts, and p). After eliminating four unknowns from the five equations, one 
obtains a single equation in three unknowns 

(C.6) 
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If the gas phase and the surface reactions are considered quasi-steady, while the condensed 
phase is treated as a transient process, then this equation can be extended to transient 
burning to obtain 

<I>c,s(t) = <I>g,s (rb(t),p(t)) . 

From experimental data the following relationships are krwwn 

Y'b(Ta,P) 
T,(p, rb) . 

The steady-state solid-phase energy balance is written as 

f, 

Kc<I>c,s = TbPc j Cc(T)dT . 

Ta 

(C. 7) 

(C.S) 

(C.9) 

(C.lO) 

Using equations (C.6)-(C.l0) it is possible to construct the Zeldovich map. If the pro­
pellant initial temperature, chamber pressure, and instantaneous burning rate are known, 
<I>c,s can be determined . This quantity is needed to specify the boundary condition at the 
solicl-gas interface for the transient solid phase energy equation. Sirree the burning rate 
appears also as a coefficient in the energy equation, the salution is iterative. Radiation 
absorption can be modelled by use of the cquivalence principle [30]. This principle states 
that there is an equivalence between radiant flux and an increased propellant temperature, 

(C.ll) 

where 10 the external energy flux. 
The ZN-method is reliable only when accurate steady state burning data is available. 

If this is not the case, than the ftame cicscription is more accurate. 



Appendix D 

Thermophysical properties of 
AP-composites. 

In this section an overview is given of measurements of thermadynamie properties and 
burning charaderistics of AP-composites. As reference a nonaluminized composite propel­
lant containing 86% AP and 14% HTPB is chosen ("AP1" from reference [57]). First the 
properties of pure AP are discussed, and hereafter the propellant properties are reviewed. 

D.l Thermophysical properties of AP. 

Ammonium perchlorate is an inorganic salt commonly used as an oxidizer in composite 
propellants. As monopropellant is has been stuclied over a large temperature and pressure 
range. A recent review of AP monopropellant cambustion is reported in reference [57]. 

AP features two crystalline phases in the temperature range of ballistic interest, or­
thorombic in the range of 83- 513 K, and cubic above 513 K (although 516 K has also 
been reported, see e.g. reference [8]). As reported by Guirao and Williams [28] this tran­
sition is endothermic requiring 21.3 cal/g (89.1 Jjg). 

The melting temperature of AP is 723 K. As this temperature lies below typical surface 
temperatures for composite propellants, it becomes clear that this phase transition is also 
important for descrihing the condensed phase accurately. As the crystallographic transi­
tion, this transition is also endothermic, with a latent heat of 59.6 cal/ g (249 J / g) [28]. 

During phase transitions the densities change from 1.957 g/ cm3 in the orthorombic 
state, to 1. 756 g/ cm3 in the cubic state, and 1. 710 g/ cm3 in the liquid phase. 

The specific heat, thermal diffusivity and thermal conductivity of AP-crystals are 
strongly temperature dependent. These properties are not discussed for pure AP, but 
only for the complete propellant (see next section). For details consult references [28], [46], 
and [57]. 
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D.2 Thermophysical properties of HTPB. 

Hydroxyl terminated polybutadiene (HTPB) is the traditional binder used in composite 
roeket propellants. This rubbery organic material serves as a fuel and is oxidized by the 
oxygen released during the decomposition of AP. 

HTPB is an amorphous polymer. In contrast with the crystalline polymers, the amor­
phous polymers do not exhibit discontinuities in their thermophysical properties. The 
discontinuities in the thermal properties of AP- HTPB propellants come from the AP, and 
not from t.he HTPB. Typical for amorphous polymcrs is the linearly dependency of the 
specific heat on the temperature. This is confirmed by the measurements for HTPB. See 
reference [57] for a summary of these measurements. 

D.3 Thermophysical properties of an AP /HTPB pro­
pellant. 

Define Ttra as the temperature at which crystallographic transition occurs (513 K), and 
1~ as the melting temperature of AP (723 K). 

As said before, the density of AP is dependent on its phase. Due to these differences, 
the density of the propellant ( containing AP) also changes during phase transitions. For 
the current propellant this can be summarized as 

Pc(T) = { 1.630 gjcm~ forT< Ttra 
1.506 gj cm for T > Ttra . 

(D.1) 

The thermal diffusity is controlled mainly by the preserree of AP. When AP is orthorom­
bic, the average thermal diffusivity is slightly below that of pure AP. When AP is cubic or 
liquid, the thermal diffusivity is much lower and reproduces that of cubic AP. The thermal 
diffusivity can be written as 

(T) 
_ { 1.84- 10-3 cm2 /s for T < Ttra 

O:c - 3 2/ f T 0.53 - 10- cm s or > Ttra . 
(D.2) 

The specific heat of the condensed phase is given by (in cal/ gK) 

cc(T) = { 0.289 + 0.469- 10-
3
(T- 300) for T < Tm 

0.381 forT> Tm. 
(D.3) 

Th is equation is summarized in figure D .1. 
The thermal conductivity can be computed from the above properties and is given by 

(in cal/ cm s K) 

{ 

8.67 ---l0-4 + 1.41 - 10-6 (T- 300) for T < Ttra 
kc(T) = 2.31 ---l0- 4 + 3.74- 10-7(T- 300) forTtra < T <Tm 

3.04 ---l0-4 for Tm < T, 
(D.4) 
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Figure D.l: Specific heat of an AP /HTPB:86/14 propellant as function of the temperature. 

see figure D.2. Note the large dependenee of kc on temperature, causing a factor 3 difference 
between maximum and minimum thermal conductivity. 

Table D.l shows the propellants properties as used in the calculations, unless noted 
otherwise. The adiabatic fiame temperature, Tf, is calculated with the NASA SP-273 
code [26], assuming a temperature efficiency of 95%. 
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Symbol Value I Unit I Reference 

AP weight fraction 86 % 
AP crystalline transition temperature Ttra 513 K [57] 
AP crystal transition heat Qtra -21.3 cal/g [28] 
AP melting temperature Tm 723 K [57] 
AP melting heat Qm -59.6 cal/g [28] 
AP decomposition heat Qdec 800 cal/g [16] 
AP vaporization heat Qvap,AP -493 cal/g [28] 
HTPB weight fraction 14 % 
HTPB vaporization heat Qvap,HTPB -430 cal/g [38] 

Condensed density Pc 1.630 g/cm3 [57] 
Condensed specific heat cc(T) eq. (D.3) cal/g K [57] 
Condensed thermal conductivity kc(T) eq. (D.4) cal/cm s K [57] 
Condensed thermal diffusivity ac(T) eq. (D.2) cm2 /s [57] 
Gas specific heat cg(T) 0.33 cal/g K [18] 
Gas thermal conductivity kg(T) 2.0. 10-4 cal/cm s K [18] 
a/h-flame model parameters a(p) 0 ... 1 -

/3(p) 0 ... 1 -

Î(P) 0, 1, 2, 3, ... -

Surface pyrolysis pressure exponent ns 0 -

Surface pyrolysis activation energy Es 21000 cal/male [57] 

lnitial sample temperature Ta 300 K 

Steady-state burning rate Tb 1.074 · (P/Pref )0
·
53 cm/s [57] 

Steady-state surface temperature f's 945.2 · (P/Pref )0
·
045 K [57] 

Adiabatic flame temperature tf 2763. (P/Pref )0.019 K SP-273 
Steady-state surface heat release CJs 96.5 · (P/Pref )0

·
049 cal/g [25] 

Condensed phase CJc 0 cal/g 

Reference Properties 

Pressure Pref 68 atm 
Temperature Tref 300 K 
Length Xref 17.14. 10-4 cm 
Time tref 15.96. 10-4 s 
Heat Qref 186.5 cal/g 
External radiation Iref 326.4 cal/cm2 s 

Table D.l: Properties of the AP:HTPB 86:14 propellant used as reference propellant. All 
heat releases positive if exothermic. 



APPENDIX D. THERMOPHYSICAL PROPERTIES OF AP-COMPOSITES. 107 

0.12 

v; 
~ 0.10 E 
~ 
ëä 
~ 0.08 
.:1 

-~ C\J 
> 0.06 ·;:: w 
u~ 

::J 
'0 
c 
0 0.04 
ü 

ëä 
E 
CD 0.02 

.<::: 
1-

0.00 
200 400 

Ttra 
600 T 800 

m 
1000 

Temperature, T [K] 

Figure D.2: Thermal conductivity of an AP /HTPB:86/14 propellant as function of the 
temperature. 



Appendix E 

HNF-GAP propellants. 

E.l Properties of HNF-GAP propellants. 

E.l.l Properties of HNF. 

Hydrazinium NitroFormate (HNF) is a potential high performance chlorine free oxidizer 
for future solid propellants. Until the renewed interest for this oxidizer only a few studies 
existed. Thermophysical properties are hardly found in the open literature. 

Von Elbe et al. found a thermal diffusivity of O:c f',.J 0.001 cm2 /s, by a fitting procedure 
on the thermal profiles as obtained by micro-thermocouple measurements in the condensed 
phase [23]. The density is not accurately known, measurements at PML-TNO gave a den­
sity of 1.91 g/cm3

, which is within the literature data [49]. The condensed specific heat is 
estimated as Cc= 0.3 cal/g, and the thermal conductivity is set at kc = 1-10-4 cal/cm s K 
(in agreement with the thermal diffusivity). 

The melting point of HNF is related to its purity. A representative value for the melting 
point of HNF is 396 K (123°C). At this temperature HNF decomposes. 

E.1.2 Properties of GAP. 

Glycidyl Azide Polymer (GAP) is an energetic material which produces heat by decom­
position, because of the azide groups ( N3 ) in its structure. It is expected that GAP in 
combination with HNF, produces a reduced smoke, high performance propellant. Recently 
is has been tested with existing oxidizers such as ammonium nitrate and ammonium per­
chlorate as substitute for the less energetic HTPB [48]. 

Because of the high heat release during scission of the -N3 bond, GAP shows a self 
sustairred cambustion at pressures above 0.3 MPa [34]. This makes it an excellent candidate 
fuel for gas generators in ducted rackets. It is also possible to (partly) replace the common 
HTPB in hybrid rockets with GAP, to overcome the problem of low regression rates [38]. 
Owing to the great number of applications of GAP, a lot of effort is put in the research of 
its characteristics. Thermophysical properties are given by Kubota and Sonobe [34]. 
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.Vfeasurements of the cambustion zone of GAP show a condensed readion zone, starting 
at a temperature of 600 K, and extending to the surface temperature of approximately 
700 K. It was found that the condensed phase heat release in this reaction zone is Qc = 

149 cal/g [34]. 

E.1.3 Properties of HNF-GAP propellants. 

Only little burn rate data is available for HNF-GAP propellants. The TNO /PML HGU-4-1 
combination has been tested in a chimney burner. This propellant contains 47.5% HNF 
and 52.5% GAP by weight. The burning law was determined to be 

rb = 15.3 · p0
.
751 mm/s , (E.1) 

where p in MPa. It is seen that the burning exponent n and overall burning rate are large. 
As mentioned before HNF starts to decompose at its melting point (396 K). Because of 

the low melting point, it is expeded that the surface temperature of HNF-based propellants 
is much lower than that of AP composites. Assume that the surface temperature of the 
HGU-4-1 propellant is 550 K at reference properties. The high readivity of HNF-based 
propellants will result in a high sensitivity of the burning rat~ on the surface temperature. 
This sensitivity is expressed by the surface act i vation energy Es. For composite propellants 
this adivation energy varies between 15 and 25 kcal/mole (63 and 105 KJ/mole). Based 
on these values, the surface activation energy is assumed to be Ès = 30 kcal/mole. 

By fitting the steady state temperature as fundion of the pressure is found from the 
steady state burning law1

. Figure E.1 shows the surface temperature as fundion of the 
pressure. The relation between flame temperature and pressure is found from calculations 
with the NASA SP-273 code. 

At reference conditions the energy necessary to heat up the propellant up to it 's steady 
state temperature is calculated as 

Q = Cc(Ts,ref - Ta) = 95 cal/ g . (E.2) 

Assume that 50% of this energy is released by condensed phase readions and surface 
readions, and the other 50% is conduded from the flame into the propellant. It is further 
assumed that all condensed phase readions are collapsed to the surface, i.e. Qc = 0. 

Table E.1 summarizes the properties of HNF and GAP individually, and the HGU-4-1 
propellant. The quantities marked with an asterix ( *) are estimated because of the lack of 
experimental data. 

1The nondimensional farm of the steady state burning law is R = (P/Pref t. The nondimensional 

Arrhenius pyrolysis law is written as R = exp { -E./SRT, (p)} / exp { -E. /SRTs,ref)}. Equalization of 

these equations yields 
1 

T.(p) = 1 nSR . 
--- -- !n(p/Pref) 
Ts,ref Es 

This equation is then fitted to the common power relation T,(p) = Ts,reJ(P/Pref )nr,. 
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Symbol Value Unit Reference I 

HNF weight fraction 47.5 % 
Condensed density of HNF Pc,JI N F 1.91 g/cm3 [49] 
Condensed specific heat of HNF Cc,JI N F 0.30 cal/gK * 
Condensed thermal conductivity of HNF kc,JI N F 1.0. 10-3 cal/cm s K * 
Condensed thermal diffusivity of HNF CXc,HNF ~ 1. 10- 4 cm 2/s [23] 
Melting temperature of HNF Tm,HNF 395 K [49] 

GAP weight fraction 52.5 % 
Condensed density of GAP Pc,GAP 1.28 g/cm3 [38] 
GAP decomposition heat Qdec,GAP 150 cal/g [38] 
Condensed specific heat of GAP Cc,GAP 0.45 cal/gK 
Condensed thermal conductivity of GAP kc, GAP 3.5 . 10-4 cal/cms K [38] 
Condensed thermal diffusivity of GAP CXc,GAP 6.1. 10- 4 cm 2/s [38] 
Decomposition temperature of GAP Tdec,GAP 600 ~ 700 K [34] 

Condensed density Pc 1.52 g/cm3 [49] 
Condensed specific heat Cc 0.38 cal/g * 
Condensed thermal conductivity kc 8.1. 10-4 cal/cm s K * 
Condensed thermal diffusivity CXc 1.4. 10-3 cm2/s * 

Gas specific heat Cg 0.46 caljgK SP-273 
Gas thermal conductivity kg 2.0. 10-4 cal/cm s K * 
rx/3')'-flarne model parameters cx(p) 0 -

;3(p) 1 -

'Y(P) 0/1 -

Surface pyrolysis pressure exponent ns 0 -

Surface pyrolysis activation energy Es 30000 cal/mole * 

Initia! sample temperature Ta 300 K 

Steady-state burning rate rb 6.381 · (P/Pref )
0 751 cm/s TNO/PML 

Steady-state surface temperature Ts 550. (P/Pref )0 026 K * 
Adiabatic flame temperature T_f 2037. (P/Pref )0 00082 K SP-273 
Steady-state surface heat release Qs 47.5 cal/g * 
Condensed phase Qc 0 * 

Reference Properties 

Pressure Pref 68 atm 
Temperature Tref 300 K 
Length Xref 2.2. 10-4 cm 
Time tref 3.4. 10-5 s 
Heat Qref 76 cal/g 
External radiation Iref 737 cal/cm2s 

Table E.l: Properties of the HGU-4-1 (HNF:GAP 47.5:52.5) propellant. 
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Figure E.l: Estimated surface temperature as function of the pressure for a HNF-GAP 
propellant. 

E.2 Burning of HNF-GAP propellants. 

E.2.1 Steady state burning. 

The high regression rates and the expected low surface temperatures of HNF-based pro­
pellants result in temperature profiles which are very different from the profiles in AP­
composites. Figure E.2 compares a typical profile of an AP-propellant (curve 1) with that 
of a HNF-GAP propellant (curve 2). The steep profile is a direct result from the high burn 
rates of the HNF propellant because of the factor fbx / ac in the exponent of the analytical 
salution (see equation (A.14)). 

E.2.2 Response functions. 

Wi th the data from table E.1 a response function calculation for the H G U -4-1 propellant 
was performed at pressure of 1.0 Mpa. Figure E.3 shows the results of these calculations, 
tagether with the response function of the AP reference propellant for comparison. It 
is seen that the propellant has its maximum response at a frequency of approximately 
3000 Hz. This high resonance frequency can be attributed to the small thermal layer of 
HNF-propellants, which resonates at a high frequency of the disturbance signal. For low 
frequencies the thermal layer is burned away completely within less then one cycle. For 
example, at a frequency of 100 Hz, the propellant burns 150 11m in one cycle, which is 
much larger then the thermallayer thickness (see figure E.2). 

From the linearized calculations of chapter 4 it is known that Rp "' n (see equa-
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Figure E.2: Comparison of the temperature profile in the condensed phase of a typical AP­
propellant (1) and a HNF-GAP propellant (2). Bath calculations with constant thermal 
properi ties. 

tion ( 4.15) ), so the large instability of HNF based propellants ( compared to the AP pro­
pellant) is not originated by the large value of n, because this would lead to a value which 
is only 50% higher. However, as also discussed for AP propellants the response function 
is very sensitive to the value of Qs (and Qc). Figure E.4 summarizes several response 
functions for different values of Q5 • 

Due to the decomposition of GAP in the solid phase, the subsurface heat release of pure 
GAP is 149 cal/g (section E.1.2). Ifit is assumed that this process doesnotchange because 
of the presence of HNF in the solid phase, the subsurface heat release due to HNF solely, 
is 78 cal/ g. When this value is used in the calculations, it is evident from figure E.4 that a 
large intrinsic instability will be found. However, this high instability is far from practical. 
It can be concluded that the HNF /GAP propellant is insufficiently studied, and that the 
values of the different quantities are not known accurate enough. It is also important to 
know more about the chemical reaction zone, to be able to tell whether simplified analysis 
of an inert condensed phase and simple ftame model are valid. 
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Figure E.3: Comparison of the pressure coupled response function of a HNF /GAP­
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TW95 Workshop. 

Some parts of the workof this thesis were presented at the International Workshop TW95, 
"Chemical gasdynamics and combustion of energetic materials", held in Tomsk, Russia, 
June 26-29, 1995. The next pages show the poster (reduced size) and accompanying 
handout presented there. 
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Effect of solid phase reactions 
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· Introduetion 
An extended model tor the transJent burning of AP­
composites was developed. The model accounts tor: 

• temperature dependent thermal properties 
• solld phase reaelions 
• the matting of AP and the crystalllne transformation 

of orthorhombic to cubic AP. 

The model is based on the flame descrlptlon 
approach, With the following most important 
assu m ptlons: 

• quasl-steady gas phase, the heat feedback trom 
the gaseaus phase to the condensed phase (Qg,a) 
is calculated uslng the a~y-model wlth a--o, ~=1, 
and r-0.1,2 ... 

• homogeneaus one-dlmensional condensed phase. 

Rgure 1 shows the model consldered. Deep In the 
propeliani solld phase, the propeliani has lts lnltlal 
temparature e.. Due to lhe conducUve healing by the 
gas phaee, and chemica! reaelions In the eolld, lhe 
temparature In tha sollel lncreasas. Thls procass can 
ba describad by the followlng nondlmenalonal 
pansbollc psrtfal differentlal aquatton: (1) 

C0(9)~ +A~= ~ra(9) ~+H.e.(9), lor --<X<O 

The equatlona are sotved numerlcally by the uee of 
an Impfielt ftnlta dlffantnce method. 

Object of thls study Is to analyze tha affects of the 
proce81881n the condansad phaee on the tranelent 
bumlng. 

.l~r----------------------------, Rv<n•• 

1.0 

Surta:::e RoacUons 
~ 

Condensed Phasa At«tlont, hl~ E ___...­
Concter"ed Phue Aeacllons, low E 

• Results 
Figure 2 shows the effect of saveral processas on 
the steady-state tempersture profile in the 
condensed phase: 

1. constant thermal properties (analytica! salution of 
eq uatlon ( 1 )) 

2. tempersture dependent thermal properties 
3. as 2. wlth latent heats of phase transltlons. 

From transJent calculatlons the response tunetion of 
the propallani can ba calculated. The pressure driven 
response tunetion Is computed by perturblng the 
steady state wlth a slnueoldal fluctuatlng pressure, 
with an amplitude of 10% of it maan value. Aftar a 
tew cycles a sltuatlon of dynamic equilibrium 
develops. The relativa change in bumlng rata, rb. 
durlng thls balenee dlvtded by the relativa change In 
pressure deflnes the pressure coupled response 
tunction, accordlng to: (2) 

r'Ji'ij, 
Ap = P'lP 

Flgure 3 Is an example of the calculation of the 
response on a 500 Hz slnusoldal dlsturbance, tor 
threa different dlstrtbutions of the chemlcal reactlons: 

1 • Reaelions occurrtng at the surface 
2. Reaelions In the condansed phase, high 

actlvaUon energy, I.e. cloee to the surface 
3. Reaelions In the condansed phase, low activatien 

energy, i.e. braad reactlon zone. 

Flgure 4 shows the preesure coupled response 
tuncUon obtalned lor tha complete trequency domaln. 

Flgure 5 shows the transJent resulta tor flrst two 
stillaUons of tigure 2. 
Flgure 6 shows tha afteet of the crystallographlc 
transltlon, and mailing of AP. 
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• Conclusions 
- Solld phase reaelions have a slmllar affect on tha 
transJent bumlng as the surface haat release, 
hoWavar lor condensed phase reaelions the 
maximum of the response dacreasas, and shifts to 
lcwar frequenclas, because the thermallayer 
thlcknessls enlargad (flgure 4). 

- Tha approxlmatlon of oonstant thermal propartles Is 
too crude to preeliet tha response of a propallani 
accurately (flgure 5 ). 

- Phase changes In the oondensed phasa ytalds a 
more stabie propallant, lowerlng the maximum of the 
response lunetion and shlfUng lt to higher 
frequenclas (ftgure 6). 
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Effect of Solid Phase Reactions on the Nonlinear 
Transient Burning of Composite Propellants1 

Jeroen Louwers, Guy M.H.J.L. Gadiof 
TNO Prins Maurits Laboratory, P.O. Box 45, 2280 AA Rijswijk, The Netherlands 

The phenomenon of transient burning of solid propellants is a topic which still 
contains a large number of questions. In this paper the transient burning of AP 
composite propellants is calculated within the QSHOD approach (Quasi Steady 
gas phase, Homogeneaus One-Dimensional condensed phase). This paper 
focuses on the effect of the condensed phase on the transient burning of solid 
propellants by showing the effect of temperature dependent thermal properties, 
phase transitions and chemica! reactions in the solid phase. Nonlinear effects 
are conserved, as governing equations are solved numerically. 

+ Introduetion 

116 

In the past a lot of effort has been put into the development of models for transient burning 
of solid propellants. With the exception of a few models, most models share the same basic 
assumptions, of which the most important are: homogeneaus propellant, quasi-steady gas 
phase and neglect of solid phase reactions. Several researchers reported that the existing 
models could be improved by accounting for the chemica! reactions in the solid phase, hence, 
an extended model for the solid phase of Ammonium Perchlorate (AP) composites was 
developed, within the flame description approach. This model accounts for the sohd phase 
reactions, the melting of AP and the crystalline transformation of orthorhombic to cubic AP, 
the latter causes an abrupt change of thermal properties at the transitions. 

+ The model 

Figure 1 shows the model considered. Deep in the propellant solid phase, the propellant has 
its initial temperature 8a. Due to the conductive heating by the gas phase, and chemica! 
reactions in the solid, the temperature in the solid increases. This process can be described 
by the following nondimensional parabalie partial differential equation [1]: 

C (8) _+R- = K (8)- + He (8) , for -oo<X<O . [a8 a8] i[ a8] 
c a-r ax ax c ax c c 

(1) 

Cc is the (temperature dependent) heat capacity of the condensed phase, Kc the thermal 
conductivity of the propellant, 8 is the temperature, R is the burning rate, 't and X are the 
time and space coordinate respectively, and HceJX) is the heat release distribution due to 
chemica! reactions in the solid phase, which is assumed to be exponentially dependent on the 

Presentedat the International Workshop- TW95, Chemica! Gasdynamics and Cambustion of Energetic 
Materials, June 26-29, 1995, Tomsk, Russia 

Corresponding author, E-mail: gadiot@pml.tno.nl 
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local temperature. (all nondimensional 
quantities). The sourees of nonlineacity are 
Raeldx, and HreJ8 ). At the surf ace, heat is 
released which is described by the term H,. 
This surface heat release can be seen as the 
total heat released in the condensed phase 
which is collapsed at the surface. This 
allows for simple calculations, because this 
term does not appear in the energy equation 
but in its boundary conditions. 

During heating two phase transitions take 
place in the solid, the crystallographic 
transition (at X=X1,a) and the melting of AP 
(at X=Xm). These transitions require energy 
and act as heat sinks in the solid phase (H1,a 

and Hm respectively). Also the temperature 
dependenee of the thermal conductivity and 
heat capacity are accounted for. The thermal 
conductivity of AP, e.g., is reduced by a 
factor of three during the transition from 
orthorhombic to cubic AP as illustrated by 
figure 2 [2]. The gas phase is considered to 
be quasi-steady, which holcts for low 
frequencies and low pressure. The heat 
feedback from the gaseous phase to the 
condensed phase (qg,s) is calculated using the 
a~y-model with a=O, ~=1, and y=0,1,2, ... 
[1]. lt is assumed further that this 
conductive heat transport is only pressure 
dependent From these assumptions it 
becomes clear that the gas phase is 
modelled very crude, however, it is the 
objective of this study to analyze the effects 
of the processes in the condensed phase on 
the transient burning. 
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Figure 1 Schematic of the temperature 
distribution and physical processes in an AP 
propellant. 
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Figure 2 Thermal conductivity of a typical 
nonalurninized AP propellant. 

The equations are solved numerically by the use of an implicit finite difference method. 
Unless noted otherwise, all calculations are performed at a pressure of 1.0 MPa. The 
temperature dependent thermal properties are obtained from Ref.[2]. 
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+ Steady State Burning 

Because of the dependenee of the thermo­
physical properties on the temperature, the 
temperature distribution in the condensed 
phase will be different from the analytica! 
solution of Eq.(l) which holds for constant 
thermal properties (curves 1 and 2 of figure 
3). When the latent heats are introduced the 
profile becomes steeper (curve 3), because 
of the condition 

IKC(8) ael JKC(8) ael +RH"a ,C2) 
[ ax =x.~ [ ax =x· 

at the crystallographic transition point, and 
analogous at the melting point. Note that the 
melting heat of AP is not found in the open 
literature, and is approximated by that of 
potassium perchlorate [3]. 

+ Transient Burning 
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Figure 3 Analytica! temperature distribution in 
the solid(l). Effect of temperature dependent 
thermophysical properties (2), and latent heats 
(3). 

In order to be able to calculate the transient burning of a solid roeket propellant, it is 
necessary that the propellant parameters are known accurately. The value of the total heat 
released by chemica! reactions (H,+Hc) is a quantity which is difficult to measure. lt was 
shown that the surface heat release H, is a very sensitive quantity for steady state burning [4], 
as well as for transient burning for which this sensitivity can be shown easily by the 
linearized calculations of the response function [1]. Apart from the value of the total heat 
release in the condensed phase, the distribution of this release is another important aspect. 

To verify the effect of the distribution of condensed phase reactions on the transient burning 
of solid propellants, the response of the propellant on a pressurization was calculated. The 
calculations started from a steady state at t=O, foliowed by an increase in pressure according 
to 

p('t) =p+L\p ·(1-e -'t) . (3) 

Forthese calculations p=L\p= 1 MPa. The total heat released by chemica! reactions is assumed 
to be 150 cal/g. This value is somewhat larger than the realistic values (100 .. 125 callg), but 
was choosen because it clearly demonstrates the effect of the different distributions. 

Figure 4 contains several typical results. Curve 1 shows the fluctuating surface temperature 
for a propellant with all the chemica! reactions collapsed to the surface (H;::I=O, Hc=O). Curve 
2 is obtained from calculations with all chemica! reactivity in the condensed phase (Hs=O, 
Hc::I=O). For these calculations a high activatien energy has been used (28.9 kcalfmole, 
according to ref.[5]), i.e. the heat is released in a thin layer close to the surface, and falls to 
exponentionally small values, even at short distances from the surface. As expected for this 
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high value of the activation energy the 
response is similar, showing a damped 
response. This shape can be attributed to the 
increase in buming rate during the increase 
in pressure. At higher buming rates the 
thermal zone in the condensed phase is 
smaller. Because the temperature 
distribution was in its steady state at t=O, 
the layer is too thick during the transition. 
Thus a preheated zone exists, which bums 
away fast (the maximum in the response). 
After this period almost no thermal layer 
exists, and it takes time to build a new 
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thermal layer by heat conduction from the Figure 4 Cambustion transient during a 
gasesous phase (minimum in the response). pressurization from 1 to 2 MPa. 
Note that the response of the propellant 
resembles a typical response of an 
underdamped second order mass-spring-
dasphot system on a step response. This 
analogy can be shown by approximation of 
the partial differential equation ( 1) by an 
ordinary differential equation [1]. Curve 3 is 
the result of calculations with an activation 
energy of 10 kcal/mole. The energy is 
released in a wider layer, yielding a slower 
response. The three responses show that 
even for a narrow chemica! zone, the 
approximation of this zone by a heat release 
at the surface is not correct ( difference 
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between curves 1 and 2). For real Figure 5 Fluctuating surface temperature 
propellants the reaction zone is spatially during a sinusoidal pressure disturbance. 
distributed over a wider thermal layer, 
which exhibits a different response. These calculations illustrate that the transient buming of 
solid roeket propellants is greatly affected by a spatial distribution of the heat release due to 
chemica! reactions. 

For the three same cases the surface temperature was monitored for a sinusoidal pressure 
disturbance of 500 Hz. Figure 5 shows the results of these calculations. When compared to 
the results of the pressurization experiment it is seen that now curve 1 gives the largest 
response. 
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+ Response Functions 

From the transient calculations the response function of the propellant cao be calculated. The 
pressure driven response function is computed by perturbing the steady state with a sinusoidal 
fluctuating pressure, with an amplitude of 10% of it meao value. After a few cycles a 
situation of dynamic equilibrium develops. For high frequencies the number of transient 
cycles is larger because it takes more cycles to buro through the disturbed preheated zone. 
Figure 6 is an example of such a situation. The relative change in burning rate, rb, during this 
equilibrium divided by the relative change in pressure defines the pressure coupled response 
function, according to: 
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Figure 6 Fluctuating surface temperature due 
to a sinusoidal pressure disturbance with an 
amplitude of 10% of its meao value. After a 
few initia! cycles the response of the reaches 
a dynamic equilibrium. 

(4) 

non•near calculalions, arnp-10% 

Frequency, f [Hz i 

Figure 7 Nonlinear pressure driven 
response functions versus linear 
calculated response function. 

To verify the numerical calculations under limit conditions, a comparison has been made with 
the familiar linearized analysis [1]. Figure 7 is an example of such a calculation. For these 
calculations the condensed phase is assumed to be inert, with no phase transitions, and 
constant thermal properties. lt is seen that the response function for a disturbance amplitude 
of 10% prediets a much larger response than that for an amplitude of 1%. So even for the 
usual ö.p/[J=0.1, nonlinearity plays an important role. This is an important restrietion when 
pressure coupled experiments are compared with linearized analysis. From an experimental 
point of view, large disturbance amplitudes are desirabie for acceptable signal to noise ratios. 

The nonlinearity from figure 7 is confirmed by the Fast Fourier Transform (FFf) calculations 
of the propellant response on a sinusoidal pressure disturbance with a frequency of 500 Hz, 
(figure 8). This figure demonstrates that a second harmonie is introdueed for an amplitude of 
10% of the meao signal. For a larger amplitude even more harmonies appear. 
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Figure 8 Effect of the disturbance amplitude 
on the fft -spectrum. 
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Constant therm al properties 
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Figure 9 Effect of thermal properties on 
the pressure coupled response function. 

The effect of the temperature dependent properties on the pressure driven response functions 
is shown in figure 9. As seen from figure 3, the thermal layer thickness of the analytica! 
temperature profile is much larger than that of the other two profiles because of the reduced 
thermal conductivity of AP. This thermallayer stores information of foregoing disturbances. 
Because of the smaller affected zone of the condensed phase for a propellant with temperature 
dependent thermal properties, the response is smaller. This smaller zone has a higher 
resonance frequency, expressed by the shifting of the maximum of the response function to 
higher frequencies. 

The effect of phase changes of AP are not 
only found in the thermal properties, but 
coupled with it are the latent heats of 
transition, H1, 0 and Hm. As seen from curve 
3 of figure 3, this leadstoa smaller thermal 
layer, with an accompanying higher 
resonance frequency. This is confirmed by 
the calculations of figure 10. The propellant 
for which phase transitions are accounted 
for has a smaller maximum of the response 
function, indicating that this propellant is 
more stable, as compared to the propellant 
for which the latent heats are assumed to be 
zero. 
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Figure 10 Effect of crystal transitions on the 
normalized pressure coupled response function. 
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Figure 11 shows the effect of the heat 
release distribution on the response function, 
for the same situations of the figures 4 and 
5, however, now the more realistic heat 
release of 125 cal/g has been used. It is seen 
that the condensed phase reactions lower the 
maximum response. So, when subsurface 
reactions are approximated by surface 
reactions, the propellants appears to be less 
stable. The maxima of the response function 
shift to lower frequencies, because the 
thermal layer is larger for subsurface 
reactions. 

+ Conclusions 
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Figure 11 Pressure coupled response function 
for several chemica! heat release distributions. 

- The approximation of constant thermal properties is too crude to predict the response of a 
propellant accurately. 

- Phase changes in the condensed phase yields a more stabie propellant, lowering the 
maximum of the response function and shifting it to higher frequencies. 

- Solid phase reactions have a similar effect on the transient buming as the surface heat 
release. Subsurface reactions demonstrate an decrease in maximum and resonance frequency 
for an increase in chemica! reaction zone width. 

- For small disturbance amplitudes of 1%, the response of the propellant is linear, for 10% 
disturbances the nonlinearity cannot be neglected anymore, and differences can be found from 
small amplitude calculations. 
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