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Summary 

While drilling for oil and gas, drilling mud is circulated from the surface to the bottorn of 
the hole. This fluid maintains the correct pressure in the hole, cools the bit, and transports 
the cuttings to the surface. Due to the rotating and whirling motion of the drillstring the 
fluid will flow in a spiralling manner in the annulus between drillstring and barehole 
wall. The resulting hydrodynamic force, which can be decomposed in a lift and a drag 
force, influence the drillstring dynamics. 

To study these farces a two dimensional model has been developed, consisting of a 
whirling rotor confined in a stator. The model is fully characterized by four non 
dimensional parameters: the eccentricity E, the ratio of the rotor and stator radii TJ, the 
ratio of rotational and whirling velocity y, and the Taylor number Ta. The main 
difference between model and actual field situation is in assuming a Newtonian fluid, 
neglecting axial flow and lower rotational velocities. 

Previous research has been limited to small eccentricity values. The present study is the 
first, as far as we know, to solve the flow problem for the complete eccentricity range 
(E=0-0.9) as well as examining the influence of TJ, y and Ta on the flow and the 
hydrodynamic force. 

The flow was simulated using the numerical code FLUENT V4.2 based on a finite 
difference method. This program can create plots of the stream fundion and pressure 
distribution in the annulus, and calculate the farces on the rotor. For turbulent flow it 
also provides plots of the turbulent kinetic energy distribution. 

On the basis of these plots the flow in the annulus surrounding an eccentric whirling 
rotor has been studied. The case of concentric cylinders was also considered. The 
influence of the four non-dimensional parameters on the torque, lift and drag force has 
been examined. 

This report is a condensed version of a confidential report which contains all the 
quantative results. The confidential version is kept in the library of the KSEPL in Rijswijk. 
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Chapter 1. Introduetion 

1.1 Introduetion 

Drilling for oil and gas is an expensive and highly complex process. The main objective 
of research at KSEPL is to make this process more efficient. The subject of research in this 

study is drill string dynamics, more specifically the interaction between drilling fluid and 

drill string. We will start the present chapter by giving a short explanation of the general 
process of oil well drilling (section 1.2). We will then praeeed to discuss drill string 
dynamics in section 1.3. Finally in section 1.4 and 1.5 the objectives and motivation for 
the study are given as wellas a short outline of the organisation of the chapters. 

1.2 Rotary drilling 

The main process during deep well drilling for oil or gas is the creation of a barehole by a 
rock-cutting tool called a bit. For this process two transport flows are required: energy 

transport from the surface to the bit, and material transport from the bit to the surface. 
The drilling technique commonly used in the oil industry, called rotary drilling, relies on 

a combined mechanical/hydraulic system for energy and material transport (see figure 
1.1). The mechanica! part is composed of a rotating bit to generate the borehole, a drill 
string to rotate the bit, a rotary drive at the surface to rotate the drill string, and a rig to 

support the string and the rotary drive. The hydraulic part consists of mud (drilling 

fluid), pumps and a transport channel: the mud is pumped down through the drill string 
and flows back through the annulus between the drill pipe and the barehole wa 11. The 
upper part of the barehole wall is supported with casings. The drilling fluid usually 

consists of water with viscosifiers and weighting materials, and is strongly non

Newtonian (shear thinning). It aids the cutting process by a jetting action, it cools and 
lubricates the bit and transports the cuttings from the hole bottorn to the surface. The 
cuttings are separated from the mud in a solids-removal system which consists of sieves, 

cyclones and centrifuges. 

The drill string consists mainly off drill pipes: slender tubes, about 9 m long, coupled 
with threaded connections, with an outside diameter of 127 mm (5 in.), and a wall 

thickness of 9 mm. The lowest part of the drill string, the bottorn hole assembly (BHA), is 
loaded in compression. To avoid buckling the BHA consistsof thick wall tubulars, called 

drill collars, and stabilisers. The BHA can be several hundred meters long and contains 

besides the drilling bit several specialised tools. 
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Figure 1.1: Essential componentsof an oil well drilling rig 

The drill string is rotated by the rotary table and a motor at the surface thus enabling the 
actual drilling by the bit. Another way of generating rotation of the bit is by using a 
downhole motor (Moineau motor). In that case the energy flow to the bit mainly sterns 
from the mud flow and only a small part from the rotation of the drill string. 

1.3 Drill string dynamics 

This section discusses the different types of vibrations which can occur when operating a 
drill string, and the resulting whirling motion of the drill string. The hydrodynamic force 
acting on the drill string due to its motion is also discussed. 
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1.3.1 Drill string vibrations 

A drill string is an extremely slender structure with a ratio between length and diameter 
larger than that of a human hair. Because the string has a diameter smaller then the 
barehole it is free to vibrate laterally. These lateral or bending vibrations are especially 
important in the lower part of the drill string. Higher up, the tension in the drill string 
causes the string to be in continuous contact with the barehole wall in most places, 
because bareholes are always slightly curved. This kind of vibration is very difficult to 
detect at the surface and as a result it has been overlooked for a long time. An important 
cause of lateral vibrations are out-of-balance farces in drill collars, resulting in a whirling 
motion, just as in an unbalanced centrifuge. Another cause of lateral vibration is the 
friction between the rotating drill string and the barehole wall, which can produce a 
backward rolling motion of the drill string along the wall. Other types of vibrations 
which can occur in a drill string are torsional vibrations (stick-slip) and longitudinal 
vibrations (bit bounce). These are bath of less importance to us now. 

1.3.2 Drill string motion 

Without going into the details of the complex equation of motion for a drill string we will 
discuss now the basic motion of a section of drill collar between two stabilisers. More 
details are given in work by Jansen OAN 1993] and Axisa et al. [AXI 1991]. As mentioned 
above drill collars can perfarm a lateral or bending vibration (see figure 1.2). 

Borehole wan Borehole wall 

Stabiliser Stabiliser 

Drill conars 

Drill conars 

Drin bit z Drin bit 

y 

x 

Figure 1.2: Schematic view of a straight and lateral vibrating drill collar 
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If we now consider the zy plane the vibration is described by 

( ) 
iQnt 

<Pn ze {1.1) 

where <Pn is a real modal shape and Qn a positive natural circular frequency of 
vibration. The same vibration will be present in the zx plane. Combining the two motions 
will result in a circular motion around the centre of the borehole at a circular frequency 
Qn (see figure 1.3 a) This motion is called the whirling motion of the drill string. Besides 
this whirling motion the drill string also rotates at a circular frequency w for the actual 
drilling. Thus the resulting motion will consist of two rotations as depicted in figure 1.3 
b. The rotation is defined positive in the counter clockwise direction. 

A B 

Figure 1.3 a: Whirling motion of drill string, b Total motion of the drill string 

If the ratio of the rotational veloeities y=w/Q is negative the drill string will role or slip 
along the borehole wall. This motion is called backward whirl. The case of positive y is 
c lied forward whirl. 

1.3.3 Hydrodynamic farces 

Due to the motion of the drill string as discussed above the drilling fluid will exert a force 
on the string which can be decomposed into a drag force and a lift force. The lift force is 
defined as the force increasing the eccentricity of the drill string. The drag force is 
defined as the force opposing the whirl motion of the drill string (see figure 1.4) 
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Dragforce 

Figure 1.4: Definition of the hydrodynamic farces 

1.4 Objectives and motivation of research 

Drill string vibrations are an important cause of premature failure of bits, downhole 
motors and other drill string components. When a crack in the drill string is detected 
while drilling the string has to be removed from the hole to exchange the failed 
component. When the crack is not detected it may result in parting of the drill string, and 
after removing the top part of the string the remaining part has to be fished out of the 
hole with special equipment. In the worst case the bottorn part of the string is not 
recovered, expensive equipment is lostand a part of the hole has to be abandoned. At 
best costly drilling time is wasted. Thus reducing or cantrolling drill string vibrations is a 
very important factor in improving drilling technique. From literature [WAL 1964] it is 
known that the lift and drag force influence the critical rotational velocity of a rotating 
shaft, i.e. velocity for which large lateral vibrations occur, and the amplitude of these 
vibrations (see figure 1.5). 

I 

I 
I 

{ I 

\ 
I 

~------// 
\ 

Frequency 

Virtual mass effect 

Amplitude 

Frequency 

Damping effect 

Figure 1.5: Effects of virtual mass (lift force) and fluid damping (drag force) on lateral 
vibrations. Dashed lines represent fluid effects 
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The hydrodynamic forces on a drillstring have not yet been investigated. The objective of 
this study is to develop a program which can provide us with information on these 
forces. Combined with experiments which are currently being developed this will 
hopefully lead to a better insight in the influence of the hydrodynamic forces on drill 
string vibrations. 

1.5 Outline of report 

The report is basedon work performed at the Koninklijke/Shell Exploratie en Produktie 
Laboratorium (KSEPL) during the past 10 months 

In chapter 2, the actual field situation is translated into a model which can be used in the 
simulations. This chapter also contains a short review of relevant literature. Chapter 3 
contains information about the numerical simulation program PLUENT V4.2 with which 
the simulations were performed. In chapter 4 the results of the simulations are presented 
which will be discussed in chapter 5 along with some key issues about the simulation 
(grid independence, non-dimensional parameters and Taylor number). Finally in chapter 
6 a summary of the conclusions is given along with recommendations for future research. 
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Chapter 2. Pormulation of the problem 

2.1 Introduetion 

Having considered the principles of drilling for oil and the general drillstring dynamics 
we will now consider a simplification of the present problem which will be the subject of 
this study. The field situation described insection 2.2 is translated into a model in section 
2.3. This model enables us to evaluate the fluid farces by numerically simulating the 
flow. Non-dimensional parameters will be derived for the modeland the different flow 
regimes in the annulus will be discussed. In section 2.4 a review of the relevant literature 
on the problem is presented foliowed by a brief outline of the simulations in section 2.5. 

2.2 The situation in the field 

The equipment and principles of drilling have already been discussed in chapter 1. A 
short recapitulation is given in order to campare the actual situation to the model. 
Consider a horizontal cross section of a barehole assembly ( see figure 2.1). 

Casing 

Annulus filled with 
drilling mud 

Drillstring filled with 
drillingmud 

@ Upward flow 

® Downward flow 

Figure 2.1: Cross section of a barehole 

The actual barehole as drilled by the bit in the formation will be rough surfaced. For the 
upper part of the hole casings will be inserted in the barehole as mentioned in chapter 1. 

In the lower part of the barehole however no casings are used . The barehole wall is 
covered with filter cake, a thick sticky mud. Once the drill string touches the barehole 
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wall large forces must be exerted on the string to pull it free from this cake. Mud is 
pumped down into the barehole through the drill sting and is transported up out of the 
barehole through the annular space between drill string and casing or barehole wall. The 
drill string perfarms either a forward or backward whirling motion in the barehole as 
explained in chapter 1. The rotational velocity of the drill string can vary between 100 
and 300 rpm .. The resulting flow in the annulus of the non-Newtonian mud, which 
contains cuttings and gas bubbles, will be a turbulent spiral motion. 

2.3 A two dimensional model of the problem 

From the description in the previous section it can be concluded that the problem in the 
field is very complex. In order to be able to simulate the flow and calculate the 
hydrodynamic farces numerically we will have to simplify the situation considerably. 
The assumptions made in the model are discussed insection 2.3.1. Insection 2.3.2 four 
non-dimensional parameters which characterise the flow problem are presented tagether 
with the sealing factors for torque and force. In Section 2.3.3 we will briefly discuss the 
possible flow regimes in the annulus as a fundion of the Taylor number. 

2.3.1 The assumptions 

Figure 2.2 shows the 2D model for the problem including the definition of the farces and 
some of the symbols. The veetors are all positive in the directions shown. The torque is 
defined positive in the direction opposing the rotation of the rotor. 

Stator wall 

Annular flow region 

Rotor 

Lift 

Figure 2.1: Schematic representation of the two dimensional model 

In the model, the barehole and drillstring are represented by a stator and a rotor, 
respectively. The force and torque will be considered per unit length of the rotor. The 
surface of these objects are assumed to be perfectly smooth. The radii of the stator and 
rotor, R0 and R; respectively, are based on a five inch diameter drill string within an 
eight inch diameter casing. However R; is increased in the simulations up to a value of 

3.6 inch. In the model the annulus is filled with water, which does nat contain any 
cuttings or gas. The presence of the filter cake is also neglected. The flow in the annulus 
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is taken to be strictly two dimensional so axial flow is not considered. Four different 
whirl motions are simulated with rotational veloeities varying between 0.008 rad Is and 
0.5 rad/s. Table 2.1 compares the model to the field situation and figure 2.3 shows the 
four different whirl motions which will be considered in the simulations. 

Field situation Model 

Wall roughness Yes No 

Radius casing (R0 ) 3.5-15 inch 4inch 

Radius drillstring 2.5 inch 2.5, 2.8, 3.6 inch 
(Ri) 

Drilling mud non-Newtonian Newtonian (water) 

Rotational veloeities 10-30 rad/s 0.008-0.5 rad/ s 

Flow 3 dimensional 2 dimensional 

Flow regime turbulent laminar I turbulent 

Whirl motion Yes Yes 

Table 2.1: Comparison of modeland field situation 

0' • 

0' Q Q
', __ _ 
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Backward whirl y=-1 
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Forward whirl y=1 

0' • 

-~ I - , 

~ û 
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0' • 

0' • 

0' Q [1
'-J_-' 

• J 
Ul 
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Figure 2.3: Four different whirl motions considered in this study 
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In each plot in figure 2.3 the position of the rotor is depicted for two points in time to 
and t1. A marker is drawn on the rotor which enables the reader to distinguish the rotor 
motion more clearly. The rotor size has been down scaled for clarity. 

2.3.2 The non dimensional parameters 

The non-dimensional parameters for a flow problem can be derived from the 
dimensional parameters by using the Buckingham's pi theorem [KUN 1990]. The present 
flow model is described by seven independent parameters: inner and outer radius Ri, 

and Ra, respectively, the displacement of the rotor centre relative to the stator centre d, 

the rotational and whirl velocity of the rotor oo and Q, respectively, the fluid density p 

and the dynamic viscosity f.l· This is reduced to a total of four non-dimensional 
parameters whic, are given in table 2.2 along with their definition 

Non dimensional parameter Definition 

E d 

Ro -Ri 

TJ Ri 

Ra 

y (!) 

-
Q 

wpRi ( R0 - Ri) 2 (Ro -RJ 
Global Taylor number Ta 

f.l ~ R +R. 
0 l 

Table 2.2: Non-dimensional parameters 

In order to be able to campare the results to other cases they have to be non
dimensionalized. In this study this was achieved by using the sealing factors in Table 2.3 

keeping in mind that the force and torque are considered per unitlengthof the rotor. 

Non-dimensional coefficients Sealing factor 

Torque CM 1 ( )2 2 2 rep w~ Ri [N] 

Drag force Cv 2 
p(dQ) Ri [N/m] 

Lift forceC L pJtR~Q2 [N/m] 
l 

Table 2.3: Sealing factors 
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2.3.3 The flow regimes 

The basic flow regimes, which can be present in an annulus between a whirling rotor and 
a stator, can best be discussed by considering two concentric cylinders of which only the 
inner one is rotating. This case has been subject of many studies [TAY 1923],[KAT 1984]. 
The flow for low rotational velocity is a shear flow without a pressure gradient in the 
direction of mean flow. When the rotation speed of the inner cylinder is increased 
beyond a critica! value the basic laminar axi-symmetric flow, known as Couette flow, 
becomes unstable. The centrifgal instability leads to a transition to a laminar cellular 
vortex flow, referred to as Taylor vortex flow. The vortices rotate in altemately opposite 
directions around axes which are located along the circumference of the inner cylinder 
(see figure 2.4) 

Figure 2.4: Taylor vortices between two concentric cylinders of which the inner one is 
rotating. 

The conditions for the laminar Couette flow to become unstable can be expressed by a 
charaderistic number known as Taylor number, Ta, of the form as given in table 2.2. If 
the rotational velocity is further increased the height of the vortex cells will reduce and 
eventually disappear. The flow is then fully turbulent. 

In all, we may discem three flow regimes, each circumscribed by the Taylor number in 
the following way 

Ta< 41.3: laminar Couette flow 

41.3 <Ta< 400 : laminar flow with Taylor vortices 

Ta> 400: turbulent flow 

These critica! numbers are only valid for the concentric case. It will beseen that a global 
Taylor number as used hereis notaccurate in predicting flow for an eccentric whirling 
rotor (section 5.3) An important point is brought up by this discussion. The model as 
defined in this section assumes two dimensionality, and since Taylor vortex flow is 
obviously three dimensional this cannot be simulated by the model. 
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2.4 A literature survey 

The case of two concentric cylinders, with the inner one rotating, has been the subject of 

numerous studies. Thus there is no problem in camparing data from simulations and 

literature. For this purpose we will use data from Schlichting's hook on Boundary-Layer 

Theory [SCH 1979]. Although literature conceming whirling rotors is very limited several 
studies have been found which contain relevant data. 

Two articles written by Iida [liD 1956],[IID 1959] deal with the problem of a confined and 

a non-confined whirling rotor. In these articles the hydrodynamic force is calculated 

from the equation of motion expressed in terms of the stream function. The whirl 

amplitude is assumed to be small ~ <<1. The resulting equations are then solved by 
Ri 

using power series expansions. Lift and drag farces are plotted for severalll =!!i_ values 
Ro 

and eccentricities. A limited number of experiments (only two as far as we know) were 
carried out, again for small E, to support the results of Iida. 

Another paper on the subject by R. J. Fritz [FRI 1970] consists of a theoretica} part and an 
experimental part. In the theoretica} part expressions are derived for the hydrodynamic 

force for Taylor vortex flow and for turbulent flow by using fluid friction factors in the 
continuity and momenturn equation. Fritz limited his approach to small eccentricities. 
The results are supported by an extensive set of experiments. 

"On the flow in an annulus surrounding a whirling cylinder" written by C. Brenoen [BRE 
1976] is an artiele in which general solutions of the Navier-Stokes equations are 

presented. These solutions are limited to a small amplitude of the whirl motion thus 
allowing a linearization of the equations. From these solutions the hydrodynamic force is 

derived under a wide variety of circumstances, including large and small annular widths 

and high and low Reynolds numbers. Expressions for the actual farces are given only for 
the limiting cases such as inviscid and laminar flow. No experiments were carried out to 
support the theory but the results are in good agreement with Fritz' results. 

Research has been carried out conceming joumal hearings [SHA 1949] which can display 

the same whirling motion, particularly dynamically loaded hearings, but is essentially 
different from our case. In joumal hearing theory Tl is considered to be almast unity thus 

flow in the radial direction can be neglected. The equation descrihing the flow in these 
thin lubrication films is called the Reynolds equation. lt has been demonstrated by 

Wannier [WAN 1950] that this Reynolds equation is a first order approximation for the 

Stokes equations if all quantities are expanded in powers of film thickness. Lubrication 
theory is therefore nat applicable in our study because of the large film thickness (ll""0.7) 

andresultscan nat be compared. However somebasic features of lubrication theory can 
be used in discussing the flow in the narrow annulus region for large e. 
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2.5 Outline of simulations 

Up until now the problem of whirling flow has only been solved for small eccentricity. 
The present study is the first, as far as we know, to solve the problem for the whole 
eccentricity range (E=0-0.9) as well as examining the influence of the non-dimensional 
parameters 11, y and Ta. This provides a more accurate and complete insight in the 
hydrodynamic force and torque on the rotor. The simulations used for these purposes 
can be divided in three categories 

- The concentric case. The torque calculated from these simulations can be compared 
with experimental data obtained from the literature. This way we can get an impression 
of the accuracy and validity of the methad for bath laminar and turbulent flow 

- The case of laminar whirl motion. These simulations are the first step in simulating the 
actual flow field. The force and torque on the rotor are determined and the influence of 
the parameters E, 11 and y is studied. 

- The case of turbulent whirl motion. Again the force and torque on the rotor are 
determined and the influence of the parameters E and y is studied. 

The results of these simulations are given in chapter 4 and will be compared to data 
found in literature in chapter 5. Further simulations have been carried out to check the 
grid independenee of the method. Whether the non-dimensional parameters and sealing 
factors characterise the flow problem correctly has also been checked. These results are 
also discussed chapter 5 

Finally it should be mentioned that the model as discussed in this chapter is in no way an 
accurate representation of the field situation. lt does however provide a good insight in 
the basic fundamentals of the annular flow. lt is possible to extend the model to contain 
non-Newtonian fluids, axial flow and two phase flow. Thus it provides a good 
fundamental basis for further research. 
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Chapter 3 The simulation 

3.1 Introduetion 

The simulations were performed with the PLUENT V4.2 code which is a general purpose 
computer program for modeHing fluid flow, heat transfer and chemical reaction. This 
wide range of phenomena is modelled by solving the conservation equations for mass, 
momenturn and energy using a control volume based, finite difference method. The 
governing equations are discretized on a curvilinear grid. The basic structure of this code 
and the theoretica! basis will be discussed in section 3.2. The way in which the two 
dimensional model is implemented in the code is the subject of section 3.3 where features 
like the geometry, the boundary conditions and the grid are considered. Pinally the 
solution method in PLUENT is explained in section 3.4, dealing with the control volume 
technique, the discretization procedures, the SIMPLEC algorithm and the iterative 
solution procedure. 

3.2 The code FLUENT V4.2 

The program PLUENT V4.2 consistsof two basic parts, the pre-processor preBPC V4, and 
a main module PLUENT as shown in figure 3.1. In preBPC V4 the geometry and a 
structured grid for the model are generated. The grid information is then transferred 
from preBPC to PLUENT via a grid file. Pollowing this transfer, PLUENT can be used to 
define physical models, fluid properties and boundary conditions that describe the 
problem. This information is added to the grid information and stored in a case file 
which is a record of all the input for the problem definition. All calculations and post 
processing are performed in PLUENT and the results are stored in a data file. 
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preBFCV4 

- geometry setup 

- grid generation 

Grid file 

~ 
, 

FLUENT 

- grid import 

- physical models 

- boundary cond. 

- fluid properties 
...... ...... ..... .... case file 

- calculation 

-post-processing ....... .... 
""1111 ...... data file 

Figure 3.1: FLUENT V 4.2 basic program structure 

Although FLUENT solves all equations in general curvilinear coordinates all equations in 

the remainder of this chapter are introduced in Cartesian tensor farm for simplicity. The 
standard summation convention will be used. 

The equations descrihing laminar flow are based on 

- conservation of mass 

- conservation of momenturn 

- conservation of energy 

Only the first two conservation laws will be considered since the conservation of energy 
is of no interest to our problem. Conservation of mass expresseJ by the continuity 

equation yields: 

ap +-a-(pu.)=o (3.1) 
at ax. l 

l 

Conservation of momenturn in the ith direction in an inertial (non accelerating) reference 

frame is described by 

a ( ) a { ) ap ih: ij - pu. +-- pu.u. = --+--+pg. + F. 
at l ax . l 1 ax. éJx . l l 

1 l 1 

(3.2) 

where p is the static pressure, 'tij is the stress tensor (described below) and gi and Fi 

represent the gravitational acceleration, which can be neglected, and external body 

forces. This last term is used to account for the rotation of the reference frame as 

15 



described below. Furthermore the flow is assumed to be incompressible. The stress tensor 
is then given by: 

'ij = ·[ ::~ + ::; ) (33) 

where 1-l is the molecular viscosity. 

FLUENT also allows computation of flows in a rotating reference frame as we will use in 
the salution of our problem. Since a rotating coordinate system is a non-inertial 
accelerating reference frame, body force terms arise in the momenturn equation 3.2, 
where the acceleration of the fluid is augmented by the angular acceleration of the 
reference frame. The total acceleration of the fluid in a constant rotating frame is thus: 

Dv 
-+2Qxv+Qx(Qxr) 
Dt 

(3.4) 

Here, v is the velocity in the rotating frame and is related to the velocity in the non
rotating frame, v', as: 

v'=v+Qxr (3.5) 

where Q is the rotatien vector and r is the position in the rotating frame. Thus, when a 
problem is defined in a rotating reference frame FLUENT solves the velocity relative to 
the rotating reference frame. This should be kept in mind when examining the stream 
functions in chapter 4. 

Having considered the basic equations for laminar flow we now praeeed to discuss the 
turbulence model as used in FLUENT. The conservation equations used in FLUENT for 
turbulent flows are obtained from those of the laminar flows using a time averaging 
procedure commonly known as Reynolds averaging. This averaging procedure for scalar 
equations can be illustrated using a transport equation for a conserved scalar quantity qJ: 

a 
-(pep)+ 
at 

_a (pu.cp) = 
ax. l 

l 

Accumulation Conveetien 

+ 
(3.6) 

Diffusion Souree 

The value of qJ in turbulent flow can be decomposed into a mean value and a fluctuating 
part: 

where ~ is the time averaged value of cj> defined as : 

- 1 11t 
cj>=- fcj>dt 

MO 

(3.7) 

(3.8) 

and 11t is a time scale much larger than the largest time scale of turbulent fluctuations. 
Turbulent fluctuations are assumed to be random such that 

cj>' = 0 (3.9) 
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Substitution of 3.7, tagether with analogous decompositions of ui, D~ and S~, in the 

general conservation equation 3.6 and time integration over a sufficiently large time 
interval yields 

a (-) a ( -) a (-) 1 [- - J 
- <1> +- ui<P =--u/ <I>' +- D"' +S"' at ax. ax. P 'I' 'I' 

l l 

(3.10) 

The termsin 3.10 are similar to those in its laminar flow counterpart (eq. 3.6) except that 
each quantity now is represented by its time averaged value and a new term containing 

the correlation U;' <P' appears on the right-hand side. This term multiplied by p represents 

the diffusion of Ijl due to turbulent fluctuations. In the momenturn equation, the double 

correlation U;' <P' becomes U;' u j '. Note that U;' u j' is a symmetrie second order tensor and 

hence has six unique terms. These terms, multiplied by the density are known as the 
Reynolds stresses. Expressions for the Reynolds stresses are obtained, in our case, via the 
k-E model 

The k-E turbulence model is an eddy viscosity model in which the Reynolds stresses are 
assumed to be proportional to the mean velocity gradients, with the constant of 
proportionality being the turbulent eddy viscosity 111:· This assumption provides the 
following expression for the Reynolds stresses: 

pu.' u.'= p-kö .. - f..l __ t +-1-
_ 2 ( a-;; au . J 

z 1 3 l1 t ax . ax . 
1 t 

where k is the turbulent kinetic energy: 

1 -2 
k=-4ui' 

2 I 

(3.11) 

(3.12) 

The equation for the Reynolds stresses is analogous to that descrihing the shear stresses 
that arise in laminar flow with the turbulent viscosity 111: playing the same role as the 
molecular viscosity f..l Therefore the form of the turbulent momenturn equations remain 
identical (neglecting the first term on the right hand side in eq. 3.11 because it represents 
the turbulent pressure which is in general much smaller than the static pressure) to the 
form of the laminar momenturn equations except that f..l is replaced by an effective 

viscosity 1-leff; 

(3.13) 

The turbulent viscosity is obtained by assuming that it is proportional to the product of a 
turbulent velocity scale and length scale. In the k-E model, these ·velocity and length 
scales are obtained from two parameters: k the turbulent kinetic energy and E the 
dissipation rate of k. Thus 

k2 
f..lt =pCf..l

E 
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where Cl! is an empirically derived constant (set to a default value of 0.09 in FLUENT) 

The values of k and E required in equation 3.14 are obtained by salution of the following 
conservation equations 

a a ( ) a ( 1-lt ak J -(pk)+- pul=--- +Gk-pE 
at ax. ax. ak ax. 

l l l 

( J 
2 

a a a lA-t iJE E E 
-(pE)+-(pu.E)=- -- +C -G -C p-
iJt ax. 1 ax. aE ax. 1E k k ZE k 

l l l 

(3.15) 

where c1E and c2E are empirica! constants,a k and oE are "Prandtl" numbers goveming 

the turbulent diffusion of k and E and Gk is the rate of production of turbulent kinetic 

energy: 

(

auj au.) au. 
Gk =lA-t -+-1 _t 

ax. ax. ax. 
l 1 1 

(3.16) 

Details of the assumptions involved in the k-E model description provided here can be 
found in [ROD 1984]. The values of the empirica! constantsas used in the simulations by 
PLUENT are given in table 3.1 

Constant Value 

cl! 0.09 

Ok 1.0 

(JE 1.3 

c1E 1.44 

C2E 1.92 

Table 3.1: Constants in FLUENT's k-E turbulence model [FLU 1993] 

From previous publications [ROD 1984], [SCH 1979] the k-E model is known to be 
applicable for pipe and annular flow. The basic restrietion on this model being that the 
turbulent fluctuations are assumed to be isotropic. The use of other, more accurate 
turbulence rnadeis like the Reynolds Stress Model or the Renormalized Group Model is 
possible in FLUENT. The k-E was chosen to be used in the simulations because it is more 
stable, time efficient and still renders reasanabie accurate results. 
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3.3 Implementation of the problem. 

The problem of a whirling drillstring in a barehole as defined in chapter 2 has to be 
"translated" into a model which can be implemented in FLUENT. This implies 
constructing a geometry which describes the drillstring and the barehole wall, assigning 
boundary conditions to the drillstring and barehole wall in order to simulate the correct 
motions and constructing a grid so that the equations can be discretized and solved. 

3.3 .1 The geometry 

The geometry for the model is rather straightforward (see figure 3.2) 

y 

arehole wall=Stator 

Figure 3.2: Problem geometry in FLUENT. 0-0' is the displacement d of the rotor. 

The outline of the geometry can be created in preBFC and has to be adjusted if a different 
eccentricity is considered. The displacementdof the rotor is always along the negative y
axis. The lift and drag force are thus positive in the negative y and x direction, 
respectively. The ratio of the inner and outer radius l']=Ri/Ro can also be adjusted. 

3.3 .2 The boundary conditions 

In order to simulate the whirling motion in the geometry of figure 3.2, boundary 
conditions have to be implemented on the rotor and stator. The problem is simulated in a 
rotating reference frame because this leads to simple boundary conditions on both rotor 
and stator. Figure 3.3 shows the four different whirl motions (see section 2.2 Figure 2.3) 
in a reference frame rotating with angular velocity Q. 
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• y' • y' 

y=1 y=2 

Figure 3.3: Four different whirl motionsin the rotating reference frame. The rotor is 
down scaled for clarity. 

For the case of backward whirl (y=-1) the boundary conditions in the rotating frame will 
be explained. In the x,y frame y=-1 is a rolling motion of the rotor along the stator wall. 
Consider now the rotating reference frame x',y'. This frame rotates with angular velocity 
Q thus the motion of the rotor consist only of rotation around 0'. The stator now rotates 
at an angular velocity Q. The rotation velocity of the rotor in x',y' is twke the rotation 
velocity in x,y. This is due to the definition of the motion in x,y. 

The advantage of consirlering the problem in a rotating reference frame is that the 
boundary conditions for the veloeities are tangential to gridlines. This increases accuracy 
and decreases processing time. More details on grid and gridlines are discussed in the 
next section 

3.3.3 The grid 

In order to solve the governing partial differential equations numerically, 
approximations to the partial differentials need to be introduced. In finite volume 
methods such as those used in FLUENT, the partial differentials are reduced to algebrak 
expressions by integrating the governing equations over discrete subdomains. The 
algebrak equations are subsequently solved within the domain of interest. Therefore, a 
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set of grid lines must be specified within the domain in order to create these subdomains. 
The process of creating this grid system is called grid generation. The quality of the grid 
is of critica! importance to numerical simulations. A poorly constructed grid can cause 
divergence of the solution, long processing time and even physically incorrect results. In 
this section we will step by step construct a high quality non-uniform grid by considering 
some desirabie properties and requirements. 

- Grid size 

The grid size is a consideration of two factors: accuracy and computation time. A grid 
consisting of a large number of cells will result in an accurate salution but will take a 
long time to complete an iteration. For the problem under consideration it was decided to 
..tse a 90x10 cell grid. This has been proven to be sufficiently accurate with the advantage 
of a low computation time per time step. 

-Uniform grid (90x10 cells). 

A uniform grid of 90 cells along the rotor and stator wall is created by marking the rotor 
and stator circumference with 91 equi distant marks or nodes. The annular gap width is 
divided in 10 nodes. The node distribution can now be interpolated by preBFC to 
construct a uniform 90x10 grid. preBFC uses an algebrak 4-point (cubic) interpolation 
method. In the physical domain this will result in a grid as shown in figure 3.4 a This 
corresponds to a rectangular grid in the computational domain (figure 3.4.b ). Cyclic 
boundary conditions have to be imposed on the curves AB and CD. The curves AC and 
BD represent the stator and rotor wall. The cells on these last two curves are wall type 
cell to which the boundary conditions will be assigned. The other cells are computational 
cells or live cells and are used as control volumes. 

a 

Stator wall 
A.....-------------,C 

10 cells 

Ju Rotor wall 
B---o 

90 cells 
I 

b 

Figure 3.4: Uniform grid in physical and computational domain (~:=0.5) 
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-Grid spacing near walls 

The basic flow in the annulus will be Couette type flow. The velocity gradients near a 
wall will be large compared to gradients in the middle of the annulus. Therefore the 
density of the grid lines should be sufficiently high near a wall to be able to adequately 
approximate the velocity gradients by the difference expression. For laminar Couette 
type flow between flat parallel plates separated by a height H it is recommended that: 

!in 
- :S 0.05 (3.16) 
H 

where An is the distance between the wall and the first adjacent grid line. The density of 
the gridlines is now changed to meet these requirements. 

-Grid skewness 

Generated gridlines are aften nat orthogonal when using body fitted co-ordinates. While 
some degree of non-orthogonality is allowable, the computational grid should maintain 
grid intersection angles close to 90 degrees in order to simplify the discretized equations. 
The result is a more stabie numerical salution procedure which converges more quickly 
Grid orthogonality can be achieved by redistributing the nodes on the stator wall and 
reinterpolating the grid. 

-Cell aspect ratios 

The cell aspect ratio is defined as; 

(3.17) 

where Axi, Axj are the cell dimensions in two coordinate directions. In general, this aspect 
ratio should nat exceed 10 and should be closer to 1 in regions of complex flow. The 
stability of convergence can be affected by large cell aspect ratios. The aspect ratios can 
be controlled by the mapping of the nodes on the edges of the grid. A grid constructed 
for our simulations which satisfies the above mentioned requirements is shown in figure 

3.5 
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Figure 3.5: Non-uniform standard grid (90x10 cells) as used in simulations (t=0.5) 

3.4 The solution method 

FLUENT uses a control volume based technique to solve the conservation equations for 
mass, momenturn and turbulence quantities as described in section 3.3. This control 
volume technique consists of: 

- division of domain into discrete control volumes using a general curvilinear grid as 
discussed in the previous section, 

- integration of the governing equations (section 3.2) on the individual control volumes to 
construct the algebraic equations for the discrete unknowns (velocity, pressure, scalars), 

- solution of the discretized equations. 

The discretization of the differential equations, and the techniqucs used by FLUENT to 
solve them are described in this section. 

3.4.1 The control volume technique 

FLUENT is basedon a control volume technique to convert the differential conservation 
equations to algebraic equations which can be solved numerically. This control volume 
technique consists of integrating the differential equations about each control volume, 
yielding a finite difference evaluation that conserves each quantity in a control volume. 
FLUENT defines the discrete control volumesusinga non-staggered grid storage system. 
In this scheme, the same control volume is employed for integration of all the 
conservation equations and all variables are stored at the control volume cell centre. The 
integration of the differential equations can be illustrated most easily for a one 
dimensional equation set (see figure 3.6) 
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w 
• 

p 

• 
E 

• 
Figure 3.6: One dimensional control volume nomendature used to illustrate volume 

integration 

Consider first the one dimensional differential equations for continuity and momenturn 

~(pu) = 0 
a x 

a ap a [ (au)] -(puu)= --+- 1..1.- +F 
ax ax ax ax 

(3.18) 

Volume integration by employing the divergence theorem on the control volume of 
figure 3.6 thus yields for the continuity equation 

Ie-lw= 0, whereJ = puA (3.19) 

and for the momenturn equation 

leue-lwuw =-(pe-Pw)A+[ !..l.e (ue-up)- !..l.w (up-uw)]A+F~V 
~e ~w 

(3.20) 

These equations are algebraic equations which can be solved provided that the basic 
unknowns (u and p) are interpolated in a manner that relates their values at the control 
volume faces to the stared value at the control volume centres. The discretization 
procedures toperfarm this interpolation are discussed in the next section. 

3.4.2 Discretization procedures 

The interpolation todetermine face values of the unknowns is accomplished via either 
the Power law, blended second order upwind/central difference or QUICK interpolation 
scheme. All schemes have been used and the difference in results was minimal for 
laminar flow. For turbulent flow however the higher order schemes were more accurate. 
Of these, the QUICK scheme was faster so this interpolation scheme was used in most 
simulations and is described below. A complete discussion can be found in [FLU 1994] 
and [LEO 1979]. 

The higher order QUICK scheme computes the face value of an unknown (e.g. cjlf) based 
on the value stared at the two adjacent cell eentres (cjlp and cjiE) and on a third cell centre 
at an additional upstream point (e.g. cjlw). Using the nomendature depicted in figure 3.7, 
the face value can be written as: 
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(3.21) 

where <l>f is the face value, <l>o is the downstream value, <l>c is the centre cell value and <l>u 
is the upstream value 

u c D 
... • • 4 • 

<Pu 
cp ~f cpd c 

Lo .. Lo .. 
I'" r 

Figure 3.7: Centra!, downwind and upwind cell nomendature employed in QUICK 
scheme 

In equation 3.21 e is chosen by PLUENT in a way which eliminates oscillation or 

overshoots. 

3.4.3 SIMPLEC algorithm 

The SIMPLEC (SIMPLE-Consistent) algorithm is a variant on the standard SIMPLE 
algorithm. The algorithms of the SIMPLE family are based on using a relationship 
between velocity and pressure corrections in order to reeast the continuity equation in 
pressure correction terms. The SIMPLEC algorithm starts from the linearized discrete 
momenturn equation (in 10 Cartesian form): 

(3.22) 

where Ap and ANB are the finite difference coefficients containing convection and 
diffusion terms, up and uNB are the local velocity and neighbour velocity values and Pe 
and Pw are the face pressures acting across the control volume. Equation 3.22 is solved to 
obtain a guess for the velocity, up* using the current guess for pressure, p* as: 

A Pup*= }sANBu* NB +(p*w -p* e)A +S (3.23) 

The actual velocity and the pressure fields are related tothese "guessed "values as: 

* ' Up= Up +Up 

PP = PP * +pp' 
(3.24) 

where u'p and p'e are the velocity and pressure corrections, respectively. Substitution of 
eq. 3.24 into 3.22 followed by subtradion of the current "guessed" momenturn balance 
(eq. 3.23) yields a momenturn balance in termsof the velocity and pressure corrections: 
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(3.25) 

Equation 3.25 is used to relate the velocity and pressure corrections, after subtradion of a 
new term, }: AN8 u• P, from both the leftand right hand sides: 

NB 

(3.26) 

Next, the term involving the difference (u' NB -u' p) is dropped under the argument that 

this term is small and will vanish at convergence when the corrections are zero. The 
resulting relationship between pressure and velocity corrections becomes: 

(3.27) 

Equations simHar to eq. 3.27 are used to cast the continuity equation in terms of an 
equation for the pressure correction. The mass balance equation is first written in terms 
of the velocity u*+u': 

(pA))u* +ut -(pA)Ju* +u't = 0 (3.28) 

Using equations similar to eq. 3.27, this continuity equation can be reeast in terms of 
pressure correction, as: 

(3.29) 

Equation 3.29 can now be solved for a correction to the pressure field which is then used 
to compute the velocity correction via 3.27. Finally, using eq. 3.24 the velocity and 
pressure corrections thus obtained are used to update the current velocity and pressure 
fields. 

3.4.4 The iterative salution procedure 

The SIMPLEC algorithm described above relates the velocity and pressure fields which 
satisfy the linearized momenturn and continuity equation at a point. Because PLUENT 
does not solve the equations at all points simultaneously, and because the equations are 
coupled and non-linear, an iterative solution procedure is required with iterations 
continuing until all equations are satisfied at all points. Each iteration of FLUENT's 
solution procedure consistsof the following steps: 
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1. The u1 and u2 momenturn equations are solved in turn using the guessed pressure 
field p *. 

2. The pressure correction equation (mass balance) is solved to obtain the necessary 
corrections to the pressure field. Corresponding corrections to the velocity components 
are also made. 

3. For turbulent flows, the k and e equations are solved using the updated velocity field 
to obtain the dis tribution of the effective viscosity and I or Reynolds stresses. 

4. Fluid properties are updated 

These steps are continued until the error in each conservalion equation within each 
volume and hence over the global domain has decreased to a required value. In the 
simulations the normalized residual value was l.I0-3. The algebrak equation to be 
solved for any variabie <1> at point P may be written as: 

(3.30) 

where the subscript NB denotes the neighbour values, the coefficients Ap and ANP 
contain convection and diffusion coefficients and S<p is the souree of <1> in the control 

volume surrounding point P. For each unknown, <j>, an equation of this form must be 
solved at all points within the domain. This salution process is accomplished via a "line 
by line" solver in which the equations along a single line of cells are solved 
simultaneously. The procedure used in PLUENT is the line Gauss-Seidel methad [FLU 
1993] and is repeated for alllines in the domain so that <1> is updated at all points P. There 
is some degree of freedom in this line by line salution procedure; the direction of the 
lines to be considered can be controlled and the number of times each line is visited in 
order to update a given variabie within each global iteration loop. In the simulations a 
alternate sweep direction was used and the number of loops for pressure and velocity 
was 10 and 5, respectively. 

This line by line salution methad reduces local errors with relative ease. That is, the effect 
of the salution on one line is communicated to adjacent lines relatively quick. However 
the line-by-line solver is less effective at reducing "long wavelength errors" (errors which 
exist over a large number of control volumes. Multigrid acceleration of the solver 
provides a remedy for this weakness in the line solver by deriving "global" corrections 
which are based on a control volume balance over a large number of cells. Besides 
reducing long wavelength errors the multigrid procedure also speeds op the solution. 
[FLU 1993]. 
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Chapter 4. The results 

4.1 Introduetion 

A wide variety of simulations has been carried out to determine the influence of the 
four non-dimensional parameters e, y, 11 and Ta on the hydrodynamic force and the 
flow in the annulus. These simulations can be divided in to three categories: the 
concentric case, the eccentric laminar case and the eccentric turbulent case. The 
concenttic case consists of simulations which were carried out for e=O, '11=0.63 and at 
Taylor numbers ranging from 13 up to 935. The results of this set will be given in 
section 4.2. The eccentric laminar case is a set of simulations which was carried out at 
Q=0.008 rad Is for varying e , y and '11· The results of this set will be given in section 
4.3. The final category of simulations is the eccentric turbulent case. This set of 
simulations was carried out at Q=0.2 rad/s for varying e and y. The results of this set 
will be given in section 4.4. A complete list of all the simulations can be found in 
Appendix 1. 

Befare we continue some important notes have to be made. In figure 4.1 a schematic 
recapitulation of the definition of various parameters is giveP. In this figure the 
annulus is divided into 4 regions which will be useful for the discussion in the 
remainder of this chapter. 

3 Lift 

Figure 4.1: Definition of directions and nomendature for the annulus regions. 
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Furthermore it has to be stressed that the streamfunction plots, which will be 
discussed in this chapter, are given relative to the rotating reference frame while the 
other plots (pressure distribution and turbulent kinetic energy) are also valid in an 
inertial reference frame. All the results will be discussed relative to the rotating 
reference frame unless explicitly stated otherwise. Due to practical reasoos the colour 
plots, numbered C.1-C.15, are placed at the end of sections 4.3 and 4.4. Their scales 
will be briefly explained in these sections. A more detailed discussion is given in 
Appendix 2. 

4.2 Concentric rotor 

This set, consisting of four simulations, was carried out at different rotational 
velocities, which are given in table 4.1 along with their corresponding Taylor 
numbers. The flow in the annulus thus ranges from laminar to turbulent. The 
whirling velocity for this case is of course zero. The definition of the Taylor number 
is Jightly different from the one for eccentric whirl (see table 2.2) but the same as 
used by Schlichting, so the results can be easily compared. 

w [rad I sl wR C%. Ta =--1- --
con. v Ri 

0.008 13 

0.02 37 

0.2 374 

0.5 935 

Table 4.1: Rotational veloeities of the rotor and corresponding Taylor numbers 

v=1.00210-6 m2/s, Ri=0.0635 mand R
0

=0.10l6 m 

We will now take a look at some flow features in the annulus like the stream 
function and the pressure distribution, foliowed by a discussion of the influence of 
the Taylor number on the torque. 

4.2.1 Flow features in the annulus 

A useful tooi for studying fluid flow is the stream function tjJ which can be defined 
fora 20, steady, incompressible flow in cylindrical coordinates as: 

1 iJtjJ 
ur =--; 

r ae 
iJtjJ 

u --e- ar (4.1) 

Thus a streamline (line of constant tjJ) is a line for which the fluid velocity is 
everywhere tangential to the direction of that line. Figure C.1 shows the streamlines 
for Ta =37. The colour scale for streamfunction plots ranges from zero (red) to large 
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negative (blue). From the figure it is obvious that the flow in the annulus is a Couette 

type of flow. For this type of flow in an annulus between two concentric cylinders 

the flow velocity and pressure in the radial direction can be calculated analytically 
from mass and momenturn conservation equations: 

u~ =..!:. ap 
r par 

0 = w~[~~(ru )] 
dr rdr e 

This yields for the velocity: 

B 
u6 =Ar+

r 

with constants defined as: 

2 ooR2 2 
A = - ooR; B = ; Ra 

R 2 -R~' R 2 -R2 
0 l 0 l 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

In figure 4.2 a and b the analytica[ calculated velocity and pressure relative to the 
operating pressure for the case of Ta=37 are compared to the values in the 
simulations. Theory and simulations are in good agreement. 
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· Calculated velocity 
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Figure 4.2.a: Velocity over a cross section of the annulus for Ta=37 
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Figure 4.2.b: Pressure over a cross sedion of the annulus for Ta=37 

4.2.2 Torque on rotor 

An important and well studied property of flow between two concentric cylinders is 
the torque exerted by the fluid on the rotating cylinder. To get a validation and an 
idea of the accuracy of the methad used in the simulations the torque on the rotor 
was calculated for the four Taylor numbers and compared with theoretica! values as 
given in Schlichting's Boundary-Layer Theory [SCH 1979]. These theoretica! values 
are supported by experiments. Figure 4.3 shows the torque coefficient CM, as defined 
in section 2.3.2, as a fundion of the Taylor number. 
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Figure 4.3 : Torque coefficient CM as fundion of Ta. 
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The sirnulations are in good agreement with the theory for the larninar case. For the 
turbulent regime a certain offset frorn the theoretical values is found. This will be 
discussed in greater detailinsection 5.4.1. 

4.3 Eccentric whirling rotor; laminar case 

All sirnulations in this category were carried out at a whirl velocity Q=0.008 rad Is. 
The rotational velocity was varied between -0.008 rad/s and 0.016 rad/s yielding a y 

ranging between -1 and 2. The eccentricity E was varied between 0.1 and 0.9 while 
the ratio of the inner and outer radius, lJ, was either 0.63, 0.7 or 0.9. For these 
parameters the flow is in the larninar region thus the dorninating force will be the 
viseaus force. It should be rnentioned that the characterisation of the flow by the 
Taylor nurnber in a eccentric whirling situation is non-trivial. This will be discussed 
in detail in section 5.3. In the sections 4.3.1 through 4.3.3 the change in flow as a 
function of E, y and lJ is considered while in the sections 4.3.4 through 4.3.6 the 
influence of these parameters on the rotor surface pressure is studied. All colour 
plots are given at the end of section 4.3. 

4.3.1 Flow in the annulus as function of E 

To obtain a clear understanding of the change of flow with increasing eccentricity we 
will consider strearn line patterns, keeping in rnind that these represent the flow in 
the rotating reference frame. First consider backward whirl, y=-1 for TJ=0.63. Figure 
C.2. shows the strearn function for three different eccentricities. For low eccentricity ( 
E=0.1) the flow in the annulus resembles Couette flow (cornpare to fig. C.1) which is 
as expected since there is only a srnall change in the geornetry with respect to the 
concentric case. If the eccentricity is increased to 0.5 the distribution of the 
strearnlines in region 1 becornes less dense which implies a lower ue. The opposite 
occurs in region 3 resulting in a higher Ue. This is caused by conservation of rnass 
flux. Increasing the eccentricity further to 0.9 yields a totally different pattem for the 
strearnlines. Two recirculation areas can clearly be distinguished in region 1. The 
direction of the circulation in the top area is opposite to that of the bottorn area. This 
result can be cornpared to results discussed by Ottino [OTT 1989) (see figure C.3). In 
the exarnple studied by Ottino lJ=0.33, E=0.8 and y=-3 so the strearn function will 
differ in sorne details but the general behaviour is identical to our case. 
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4.3.2 Flow in annulus as Ju netion of y 

Todetermine the influence of y on the flow in the annulus we will consider the case 
for E=0.9 and 1]=0.63. At these values the influence on the two recirculation areas can 
be examined. Simulations were done for y=-1,0,1,2. Figure C.4 shows the resulting 
stream functions. It can be seen that the bottorn recirculation area (the one close to the 
rotor) does not exist for values of y 2: 1. Consider the case of y=2; the stator rotates 
clockwise at Q, the rotor rotates counter clockwise at 2Q. The annulus width in 
region 3 is so small that it will block the flow almast entirely. Thus a recirculation 
area now occurs in region 1 with the direction of flow determined by the direction of 
rotation of the walls. For y=1 the flow is similar. If the rotor is static (y=O) or rotates in 
a clockwise direction (y=-1) the noslip condition on the rotor wall will create a shear 
flow between the fluid near the rotor wall and the flow in the recirculation area. This 
ind u ces the second recirculation area near the rotor wall. 

4.3.3 Flow in annulus as Ju netion of 'YJ 

For three values of eccentricity (E=0.1,0.5,0.9) and two values of y (-1 and 1) the ratio 
of the radii, rJ, was increased from 0.63 to 0.7 and 0.9. The formation of the 
recirculation areas will be suppressed and actually disappear for high rJ. These effects 
have been observed in studies on joumal bearings. For 1]=0.9 the simulation at E=0.9 

has nat been carried out because a grid with different charaderistics is required. This 
is due to the extremely large pressure gradients in bath radial and tangential 
direction. Such a grid has nat been constructed. To show stream function plots for E 

=0.5 is of no interest since recirculation areas have nat formed yet. The influence of Tl 
on the farces and torque can however be deducted from our limited set of numerical 
experiments. This will be discussed in section 4.3.6. 

4.3.4 Pressure on rotor as Ju netion of E 

Due to the fluid in the annulus shear and normal farces are exerted on the rotor 
which result in a torque and a lift and drag force. The shear farces determine the 
torque on the rotor while the normal farces are the dominating factor for the lift and 
drag force. The normal farces result from the pressure distribution on the rotor. In the 
following sections the pressure relative to the operating pressure is considered. 
Following the same methad as for the stream function we will first take a look at the 
change in pressure as function of the eccentricity at constant Tl and y, foliowed by 
changing y while E and Tl are constant and finally studying the influence of Tl by 
holding y and E constant. At the end of section 4.3.6 the plots for lift, drag and torque 
as function of these three parameters are given. 

Consider now the case of y=-1 (backward whirl) for 1]=0.63 and Q=0.008 rad/s. 
Figure C.S shows the pressure distribution in the annulus for eccentricity E=0.5. In all 
pressure distribution plots red represents high pressure regions and blue low 
pressure regions. The scales for the plots are relative (see also appendix 2). It is 
evident that the pressure increases on a line radially outward from the rotor to the 
stator. This is due to the centrifugal force caused by the rotation of the flow which 
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tends to push the fluid against the stator. For examining the lift and drag farces we 

do not need the pressure in the entire annulus just the pressure on the rotor wall. This 
is given in figure C.6 for 'Y)=0.63, y=-1 Ta=13 and E=0,0.1,0.5,0.9. In all these pressure 
distribution plots the value of the pressure is represented by the shape and colour of 
the contour. For E=Ü the pressure distribution on the rotor is of course uniform. 
Increasing the eccentricity to 0.1 results in a slightly higher pressure in region 1 and a 
low pressure in region 3. This pressure distribution can be explained by considering 
the rotor and stator motion in the rotating reference frame. Both the stator and rotor 
motion (for y=-1) induce a clockwise flow which results in a pressure build up in the 
region where the annulus starts to narrow. The low pressure region occurs also as 
consequence of these motions. If the eccentricity is increased to 0.5 the same 
mechanism for the pressure build up is present but the build up will be more intense 
now since the channel becomes narrower. For E=0.9 eventually the pressure 
distribution is of the same general shape as a lubrication profile (see figure C.7). In 
fact we are now dealing with a bad constructed joumal hearing with a time 
dependent laad [SHA 1949], the difference being that for a joumal hearing l1 is almast 
unity while in 01 ~ case 'Y)-0.7. 

The resulting lift an drag farces are dominated by this pressure distribution. The 
influence of the shear farces on lift and dragis at least a factor 3 smaller. Considering 
the lift force we can see that it will be positive for small eccentricities and change to a 
large negative force for high eccentricities. The drag force is always positive and 
increases with eccentricity. 

4.3.5 Pressure on rotor as Ju netion of y 

Let us consider now E=0.5 for the same values of 'Y), and Q as above but for y=-1 ,0,1,2. 
Figure C.8 shows the pressure on the rotor for this case. An increase in y results in an 
increase of pressure in the high pressure region and a shift towards the part of the 
annulus were the gap is narrower (region 3). In the low pressure region the opposite 
happens (decrease of pressure and shift to region 1). This can again be explained by 
examining the rotor and stator motion. The stator motion induces a counter 
clockwise flow, yielding a pressure build up in region 2. This holds for all values of y. 
For y=-1 the rotation of the rotor will force fluid close to the rotor to flow in a 
clockwise direction thus adding to the pressure build up. Fora value of y=2 however 
the counter clockwise rotor motion will ind uce high pressure in region 4. Combined 
with the "stator effect" this results in the pressure distribution as seen in figure C.S. 
The pressure dis tribution for y=O or 1 can be explained analogous. 

As a result the lift force changes from positive for y=-1 to negative for y=2 at this 
given eccentricity and rotational velocity. The drag farces decreases but remains 
positive. 
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4.3.6. Pressure on the rotor as function of Tl 

The resulting effect of an increase in lJ on the pressure distribution is reasonable 
simple. Figure C.9 shows the pressure distribution in the entire annulus for l]=0.63, 
0.7, 0.9 at a constantE and y. An increase in lJ results inaslight shift of the location of 
the high and low pressure regions and "intensifies" the pressure. This implies that 
with an increase in lJ the drag and lift forces increase but do not change in direction 
which is aresult well known from lubrication theories. 
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Figure C.l : Strearn function in concentric annulus for '11=0.63 Ta=37. 

Eccentricity = 0.1 Eccentricity = 0.5 

Eccentricity = 0.9 

Figure C.2: Sirnulated strearn function for different eccentricities. (y=-1, '11=0.63, Ta 13) 
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Figure C.3: Stream function as given by Ottino (y= -3, E=0.8,TJ=Ü.33 and Ta<l). 

y=-1 y=O 

y=l y=2 

Figure C.4: Stream function for different y val u es (E=0.9, TJ=Ü.63, Q=0.008 rad I s) 
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Figure C.5: Pressure in annulus ('11=0.63, y=-1, E=0.5, Ta= 13) 

Concentric Eccentricity=0.1 

Eccentricity=0.5 Eccentricity=0.9 

Figure C.6: Pressure on rotor for different eccentricities ('11=0.63, y=-1 , Ta= 13) 

38 



Figure C.7: Pressure on a joumal hearing (without whirl) 'Y]=0.99 [SHA 1949] 

y=-1 y=O 

y=1 y=2 

Figure C.8: Pressure on rotor for different y values (E=Ü.5, 'Y)=0.63, Q=0.008 rad / s) 
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yt=0.63 yt=0.7 

yt=0.9 

Figure C.9: Pressure in annulus with increasing'Y] (E=0.5, y=-1, Q=0.008 rad / s) 
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4.4 Eccentric whirling rotor; turbulent case 

The simulations in this category are conducted in the same way as for the laminar 
case. The parameter 11 was now held constant at 0.63 in all simulations. The value of 
Q was increased to 0.2 rad/s (Ta=374). The flow in the annulus will thus be mainly 
turbulent which implies that the inertia farces will be dominating. The turbulent flow 
was simulated using the k-E turbulence model as described in section 3.2. Because of 
the similarity with the set-up of the simulations in the laminar case we will treat the 
turbulent case in the same way. First we will take a look at the influence of E and y on 
the flow in the annulus in sections 4.4.1 and 4.4.2. We will do this by studying the 
stream function and by studying the distribution of the turbulent kinetic energy 
(TKE) in the annulus. We then praeeed by studying the influence of E and y on the 
pressure in the annulus in sections 4.4.3 and 4.4.4 The colour plots are given at the 
end of section 4.4. 

4.4.1 Flow in annulus as function of E 

As mentioned above we will again study the streamfunction to get a good 
understanding of the flow features in the annulus. In addition to this we will also pay 
attention to the TKE distribution which is helpful in examining turbulent flow. The 
TKE plots arealso used in the discussion of the Taylor number (section 5.3). 

We will start by consiclering the backward whirl motion y=-1. Figure C.10 shows the 
stream fundion for three different eccentricities E=0.1,0.5,0.9. Although the flow is 
now dominated by inertia farces the difference with the laminar stream function 
patterns is minimal, the main difference being a shift in the position of the 
recirculation areas. Figure C.ll shows the distribution of turbulent kinetic energy 
(TKE) in the flow for the sameparameters as figure C.10. In TKE plots a red colour 
corresponds to a region of high TKE where blue corresponds to a region of minimal 
or zero TKE. The scale is relative as is the case for all colour plots (see appendix 2). 
The TKE decreases for increasing eccentricity which implies a stahilizing influence of 
the eccentricity on the flow. This effect is discussed in detailinsection 5.3. 

4.4.2 Flow in annulus as ju netion of y 

At a constant eccentricity E=0.5 the value of y is varied between -1 and 2 to examine 
the influence of y on the flow. The stream fundions for this case are depicted in figure 
C.12. The eccentricity E=0.5 was chosen in order to study the creation of the first 
recirculation area. For increasing values of y the recirculation area becomes more 
pronounced which can be explained as follows; flow veloeities decrease in region 1 
because of conservation of mass flux. For y=2 the rotor and stator rotate in opposite 
directions (in the rotating reference frame). The resulting shear flow causes the flow 
velocity in the middle of region 1 to decrease further. Around this patch of "statie" 
fluid the flow direction is determined by the rotation direction of the rotor and stator 
resulting in a recirculation area. This also explains why for y=-1 no recirculation area 
will be present. 

4.4.3 Pressure on rotor as ju netion of E 

41 



In order to examine the behaviour of the farces on the rotor we will again study the 

pressure in the annulus and on the rotor as a function of y and E. We will consider the 
influence of E at a constant y and then, holding E constant, study the influence of y. 
First we will take a look at a plot of the pressure in the entire annulus (Figure C.13). 

The obvious difference with the laminar case is a shift in the position of the high 
pressure region (compare to Figure C.S) which will be explained below. The force on 
the rotor is calculated from the pressure distribution on the rotor surface which is 
given for different eccentricities at y=-1 in figure C.14. The pressure distribution for 
the concentric case will be uniform which is trivial. The pressure distribution for the 
non-concentric cases can be explained by utilising Bernoulli's equation. It has to be 
stressed that this approximation is nat used in the calculation of the hydrodynamic 
force by FLUENT. It is merely discussed here to provide an insight in the flow 
mechanisms. Bernoulli's equation states that for inviscid, incompressible flow in a 20 
horizontal plane; 

1 2 
-pV + p = constant along stream line 
2 

(4.6) 

where V is the velocity and p the pressure. The essence of this equation can be stated 
as: low velocity <o> high pressure, high velocity <o> low pressure. This equation is 
valid for the flow in the annulus if viscosity effects can be neglected which is more or 
less true if we look at the main flow region and stay away from the boundary layers. 
Consider now E =0.1. From conservation of mass flux it follows that the flow velocity 
will be low for a wide annulus and high for a narrow annulus. By using Bernoulli's 
equation this yields that the pressure will be high for a wide flow region and low for 
a narrow flow region which is exactly what can be seen in figure C.14 As the 
eccentricity increases Bernoulli's equation no langer applies because the flow 
veloeities decrease under the influence of the creation of recirculation areas. For these 
lower veloeities the viseaus farces increase. Thus the flow can no langer be 
considered inviscid. The validity of Bernoulli's equation is also influenced by y since 
this parameter also determines the flow velocity (see section 4.4.4). For high 
eccentricities (E=0.9) the rotor stator set-up starts behaving as poorly constructed 
joumal bearing as explained in 4.3.4. 

The resulting lift force will thus be positive for small eccentricities and change to a 
large negative force for large eccentricities. The drag force will grow steadily with 
eccentricity. 

4.4.4 Pressure on rotor as Ju netion of y 

We will now consider the influence of y for E=0.5. The plots of the pressure on the 
rotor are given in figure C.15 Analogous to the previous section the Bernoulli 
equation can again be used to provide some insight in the flow. It was also already 
mentioned that the validity of Bernoulli's approximation is limited by bath E and y. 
From figure C.15 it is plausible that for y <1 the flow can be explained by Bernoulli's 
equation. For y <!:1 however the pressure distribution is different from the one 
predicted by Bernoulli. This is again caused by the generation of recirculation areas 
as explained in the previous section (see also Figure C.12). When these areas occur 
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the flow becomes viscid again. Thus the pressure on the rotor can be explained 

analogous to the laminar case. 

For the farces this implies that the lift will change from positive for y=-1 to negative 
for y=2 while the drag will decrease but remain positive. 

43 



Eccentricity=O.l Eccentricity=0.5 

Eccentricity=0.9 

Figure C.lO: Simulated stream funtions for different eccentricities (y=-1, 'Y]=0.63 
Ta=374) 
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Eccentricity=O.l Eccentricity=O.S 

Eccentricity=0.9 

Figure C.ll: Simulated turbulent kinetic energy distribution for different 

eccentricities. (y=-l,'Y]=0.63, Ta=374) 
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y=-1 y=O 

y=1 y=2 

Figure C.12: Simulated stream function as a funtion of y. (E=0.5,YJ=0.63, Q=0.2 rad / s) 

Figure C.13: Pressure in annulus (YJ=0.63, y=-1, E=0.5, Ta =374) 
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Concentric Eccentricity=O.l 

Eccentricity=0.5 Eccentricity=0.9 

Figure C.14: Pressure on rotor for different eccentricities (yt=0.63,y=-l,Ta =374) 
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y=-1 y=O 

y=l 

Figure C.15: Pressure on rotor as function ofy. (E=0.5,l]=Ü.63, Ta=374) 
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Chapter 5. Discussion 

5.1 Introduetion 

In this chapter some key issues about the simulations will be thoroughly reviewed 
and discussed. The use of the Taylor numbers is discussed in section 5.3. We will 
start, in section 5.2, with a check of some basic requirements of the methad like grid 
independenee and the use of non-dimensional parameters and sealing factors. A 
complete discussion of the resulting hydrodynamic force and torque on the rotor is 
included in the confidential version of this report. 

5.2 Basic check of metbod 

Same basic features of the methad have to be checked befare the results can be 
considered of any significance. First of all the results of any numerical methad have 
to be independent of the grid size. If the grid is refined enough to capture the flow 
features of interest further refinement should not alter the results significantly. 
Another issue that has to be checked is whether the problem is correctly 
characterized by the set of non-dimensional parameters and sealing factors. 

5.2.1 Grid independenee 

The grid independenee can be checked by running the same simulation for different 
grid sizes and camparing their results. This check has been performed at three 
different eccentricities, E=0.2,0.5,0.9 and l'J=0.63 for y=O and y=2 in bath the laminar 
and turbulent case . The results were assumed tobevalid for the complete set. The 
grids used il, the test are listed in table 5.1. 

Grid number of cells represented in plots by 

Standard grid 90x10 0 

half-standard grid 45x5 ... 
(laminar) 

half-standard grid 45x10 ... 
(turbulent) 

double-standard grid 180x20 • 
Table 5.1: List of grids used in grid independenee tests. 
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The half-standard grid used in the turbulent simulations still consists of 10 cells 

across the annulus width which was necessary in order to fulfil the requirements 
made on the grid in the boundary layers. 

In the laminar case the difference between the results decreases from 30% between 
the half-standard and standard grid to 5% between the standard and double
standard grid. In the turbulent case these values are 32% and 15%, respectively, 
implying no convergence to a grid independent solution. This is due to the values 
for E=0.9. For this eccentricity the quality of the grid is less due to large aspect ratios 
and cell skewness. If lower eccentricities are considered the difference between the 
grids is 32% and 7% which is satisfactory. From this we may conclude that the 
change in results reduces sufficiently in order to consicter the methad reasonably 
grid independent. 

5.2.2 Non-dimensional parameters and sealing factors 

Buckingham's pi theorem, as mentioned in section 2.3.2, yields that the problem 
considered here is characterised by four non-dimensional parameters. Two flow 
problems can be considered identical if the set of non-dimensional parameters which 
describes them have the same values. This provides us with a way to check the 
relation between the chosen non-dimensional parameters and the sealing factors. 
Three simulations were carried out in which the dimensional parameters were 
changed but the non-dimensional parameters were identical. If the non-dimensional 
parameters and sealing factors characterise the flow correctly the results for CL and 
CD will be identical. This is the case as can beseen from table 5.2. 

R; Rn d [m) w Q p ~ [Pa CL CD 

[m] [m) [rad/s) [rad/s) [kg/m3] s) 

1 0.0635 0.1016 0.0191 0 0.008 998 0.001 3.90 14.6 

2 0.0635 0.1016 0.0191 0 0.008 1996 0.002 3.90 13.8 

3 0.127 0.2032 0.0382 0 0.004 499 0.001 3.92 15.2 

Table 5.2: Dimensional parameters for three different simulations and the resulting 
lift and drag coefficients.(y=O, l']=0.63, E=0.5, Ta=O) 

5.3 Taylor number 

Up until now we have used a Taylor number for eccentric flow defined as: 

Ta glob. 

wRi(R0 -RJ 
2---- (5.1) 

This Taylor number is a global number and is commonly used in actieles about 
whirling flow [FRI 1970],[BRE 1976]. It is based on the definition of the Taylor 
number as used for concentric cylinders. Although it has been proven to be very 
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useful for the concentric case, there are reasons to doubt its validity for the case of an 
eccentric whirling cylinder. 

First of all only the rotational velocity is accounted for thus neglecting the whirling 
velocity. Furthermore no eccentricity effects are taken into account which can be 
seen by consiclering the transition of laminar flow into Taylor vortex flow. Using the 
definition (eq. 5.1) the critical number is independent of the eccentricity. This is 
however incorrect as can beseen from experimental values of Tacrit.· in figure 5.3. 

4.5 ~-~ 

4 +----1 

--o-~~~ Castie 

~-+-Di Panna,Stuart 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Ec c e ntridty 

Figure 5.3: Experimental values for the critical Taylor number as function of the E for 

an eccentric rotor (y=O, rt..0.7). 

From the experimental data it is evident that the eccentricity has a stahilizing effect 
on the flow. This stahilizing effect has also been found in tre numerical experiments 
(see section 4.4). A different approach to a Taylor number is based on consiclering 
the flow locally at any section of the annulus [URB 1972]. For this purpose a local 
Taylor number is introduced: 

3 
Ta = Utoc. 2 Ctoc. 

loc. R R 
V o + i 

(5.2) 

where C1oc. is the local annulus thickness and U toe. is the local velocity of the rotor in 

the inertial reference frame as calculated from eq. 5.3 (see also figure 5.4): 

where 

and 

u1 = 1(wR. +llicos(8-cj>))
2 

+(llisin(8-cj>))
2 

oe. ~ l 

c1 = ~R; -(xsin(8-cj>))
2 

-xcos(8-cj>) oe. 

8 = Arctan 
sincj> 

d 
coscj>-

R. 
l 
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(5.5) 

Figure 5.4: Nomendature as used for the local Taylor number. 

This local Taylor number does take eccentricity effects in to account and is based on 
both the rotational and the whirling velocity. In figure 5.5 this number is calculated 
for backward whirl at Q=0.008 rad Is. 

0.0 1.0 2.0 3.0 

• 
4.0 5.0 

• Ta local ecc.: 0.1 

Cl Ta local ecc.: 0.5 

0 Ta local ecc.: 0.9 

--Taglobal 

6.0 

Figure 5.5: Local Taylor number for y=-l,r]=0.63, Q=0.008 rad Is. 

To check if this newly defined Taylor number is an impravement on the global 
number we will use it to calculate the critical number for the case of an eccentric 

(non-whirling) rotor and compare this to the data in figure 5.3. The most stabie 
position is found to beat the widest gap position («j>=O) [RIT 1968]. For this position 

the ratio of the local and global Taylor number is: 

Taloc. =(l+E)l.S (5.4) 
Ta 

glob. large gap 

In figure 5.5 both this ratio and the experimental values for Tacrit. are plotted 
Ta glob.crit. 
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Figure 5.5: Ratio of local and global critical Taylor numbers. 

The large gap critical Taylor number resembles the experimental data more 
accurately. We may therefore condode that this number is a more accurate 
description of the flow for the case of an eccentric rotating cylinder. It is plausible 
that the same considerations are valid for the case of an eccentric whirling cylinder. 
In fact from the TKE distribution plots in figure 4.17 it is evident that the TKE 
decreases with increasing E, thus implying a stahilizing effect. This can however not 
be forther substantiated since no data on critical values are present for this case. 
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Chapter 6. Conclusions and recommendations. 

6.1 Conclusions 

A method has been developed for the simulation of the flow in an annulus between an 
eccentric whirling rotor and a stator using FLUENT V 4.2. This is the first (numerical) 
study, as far as we know, to solve the problem for the whole eccentrieity range as well as 
examining the influence of the non-dimensional parameters 11, y and Ta on the 
hydrodynamica! force and torque on the rotor. The results of this model are independent 
of the grid size. 

The accuracy of the simulations has been established at 3% for laminar flow and 20% for 
turbulent flow in the concentric case. These accuracy's can not be considered valid for the 
eccentric cases although they are likely to be a good indication 

For low eccentrieities good agreement has been found between the lift force obtained 
from simulations, the Kutta-Zhukhovski lift theorem and data from literature [FRI 1970]. 
The centrifugal force on the fluid mass displaced by the rotor is found to be nota good 
approximation of the lift force. 

Again for low eccentrieities good agreement has been found between the drag force 
obtained from simulations and the drag force as given by Fritz [FRI 1970]. The simulated 
drag differs significantly from the drag on a non-rotating eircular cylinder and the drag 
force as given by Iida [liD 1959]. 

6.2 Recommendations for future research. 

The model as described in chapter 2 differs in some critica! points from the field 
situation. The main differences are the assumption of Newtonian fluid, the negled of 
axial flow, and the low rotational veloeities in the model. These differences should be 
eliminated in future research in order to obtain a better representation of the actual 
hydrodynamic force. The model can be extended to include these features without any 
severe complications. Several tests have already been carried out at higher rotational 
veloeities without encountering major problems. 

Furthermore it is recommended to establish the influence of the hydrodynamic forces 
experimentally. Future research on this subject is justified because it is likely that the 
magnitude of the forces will be large enough to influence the drillstring dynamics 
considerably for rotational veloeities in the order of 10 rad Is. 
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Appendix 1. List of simulations 

This appendix contains a detailed list of all the simulations performed with FLUENT. 
Figure Al shows the definition of all the important parameters. 

Figure Al: Definition of parameters. 

The simulations are divided into 5 sets. Por all of these simulations the grid size and the 
dimensional parameters are listed in the tables Al-AS. Insome cases it is more convenient 
to give a non dimensional parameter. 

- Grid independenee set. These simulations were carried out to check the grid 
independenee of the results as discussed in section 5.2. The details are given in Table Al. 

Grid size ro [rad/s] Q [rad/s] R; [m] R
0 

[m] e p ~[Pas] 

[kg/m3] 

45x5 0/0.016 0.008 0.0635 0.1016 0.2/0.5/0.9 998 0.001 

45x10 0/0.4 0.2 0.0635 0.1016 0.2/0.5/0.9 998 0.001 

180x20 0/0.016 0.008 0.0635 0.1016 0.2/0.5/0.9 998 0.001 

180x20 0/0.4 0.2 0.0635 0.1016 0.2/0.5/0.9 998 0.001 

Table Al: Grid independenee set 

Al 



- Non-dimensional parameter and sealing factor set. These simulations were carried out to 
check the validity of the non-dimensional parameters and the sealing factors. The results 
are discussed insection 5.2. The details are given in Table A2. 

Grid size 

90x10 

90x10 

90x10 

w [rad/s] n [rad/s] Ri [m] R
0 

[m] d p 
[k_g/m3] 

0 

0 

0 

0.008 0.0635 0.1016 0.019 

0.008 0.0635 0.1016 0.019 

0.004 0.127 0.2032 0.0381 

Table A2: Non dimensional and sealing factor set. 

Forthese simulations E=0.5, TJ=0.63, y=O, Tagtob=O. 

998 

1996 

499 

ll [Pas] 

0.001 

0.002 

0.001 

- Concentric set. These simulations were used to exarnine the flow and to determine the 
torque fora concentric rotating cylinder as discussed insection 4.2 and 5.4. The details are 
given in Table A3. 

Gridsize w [rad/s] n [rad/s] Ri [m] R
0 

[m] E p ll [Pas] 
[kg/m3] 

90x10 0 0.008 0.0635 0.1016 0 998 0.001 

90x10 0 0.02 0.0635 0.1016 0 998 0.001 

90x10 0 0.2 0.0635 0.1016 0 998 0.001 

90x10 0 0.5 0.0635 0.1016 0 998 0.001 

Table A3: Concenttic set 

- Eccentric laminar set. These simulations were used to determine the influence of E, TJ, and 
'Y on the hydrodynamic farces and the torque for laminar flow. The details are given in 
TableA4. 

Grid size 'Y n Ri [m] R0 [m] E p ll [Pas] 
[rad/s] [kg/m3] 

90x10 -1/0/1/2 0.008 0.0635 0.1016 0.1/0.3/0.5/0.7/0.9 998 0.001 

90x10 -1/1 0.008 0.0711 0.1016 0.1/0.5/0.9 998 0.001 

90x10 -1/1 0.008 0.0914 0.1016 0.1/0.5/0.9 998 0.001 

Table A4: Eccentric laminar set 

A2 



- Eccentric turbulent set. These sirnulations were used to determine the influence of E and 
TJ on the hydrodynamic forces and the torque for turbulent flow. The details are given in 
Table AS. 

Grid size 'Y n R; [m] R
0 

[m] E p ll 
[rad/s] [Wm3] [Pas] 

90x10 -1/0/1/2 0.2 0.063S 0.1016 0.1/0.3/0.5/0.7/0.9 998 0.001 

90x10 -1/1 0.2 0.0711 0.1016 0.1/0.S/0.9 998 0.001 

90x10 -1/1 0.2 0.0914 0.1016 0.1/0.5 998 0.001 

Table AS: Eccentric turbulent set 

A3 



Appendix 2. Colour plot scales 

In this appendix the colour spectra for the plots Cl-ClS as used in chapter 4 is given. It 
should be kept in mind, when examining these plots, that the range of the colour scales is 

adjusted to the maximum and minimum values in each plot. Thus a certain colour in a 

plot does not represent the same pressure or velocity in another plot. In the surface 

pressure plots the magnitude of the pressure is also given by the shape of the contour. The 

contour of the rotor can be considered the zero pressure line for these plots. The colour 

spectra are given in Figure A2. 

High pressure Low pressure 

High TKE ZeroTKE 

Zero stream function Large negative stream function 

Figure A2: Colour spectra for Figure Cl-ClS. 
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