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Abstract

For the successful operation of the electron storage ring EUTERPE a closed orbit correction
system is required. In this graduation report the closed orbit distortion has been determined
and a correction system has been designed. This includes the design of the magnets used for
the correction: the sextupoles and the so-called window frame magnets.

As a result of displacements of and field errors in the magnetic elements, the electron orbit is
distorted. The position errors are mainly determined by the finite measurement precision during
alignment. The position errors due to other effects, e.g. thermal expansion, are negligible. The
distortion of the electron beam due to all errors equals x,,,, =4 +2mmandy = 1.0x0.4 mm
in the most sensitive mode of operation, the High Brilliance Small Beam mode. These
distortions have been calculated with the use of the computer code Methodical Accelerator
Design (MAD).

The closed orbit distortions have been reduced with a factor 26 in the horizontal and a factor 6
in the vertical direction with the use of a correction system. After correction the distortion
equals x,,,, = 0.14+0.02 mm in the horizontal and y,,, =0.16+£0.02 mm in the vertical direction.
The size of the distortions approximates the amplitude of the position and read errors of the
monitors (0, = ¢,=0.Imm for both errors). Without the monitor errors, the distortions can be
further reduced with a factor 2.

The number of monitors and correctors in the correction system has been minimized to 24
monitors and 24 correctors. This number corresponds to four monitors and correctors per
betatron wavelength. Eight sextupoles included in the main lattice are used as corrector
magnets in order to save lattice space.

The sextupoles are used as corrector magnets with the generation of additional dipole fields.
Simulations show that very uniform dipole fields can be produced in the sextupoles. Additional
corrector magnets are required for the correction in the long straight sections of the ring.
These corrector magnets are of the window-frame type. Uniform dipole fields can be generated
in both directions. The measured field strengths in the prototype window-frame magnet are in
perfect agreement with the calculated strengths.
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Chapter 1. Introduction

Chapterl

Introduction

The storage ring EUTERPE is under construction by the group Particle Accelerators in the
Cyclotron laboratory at the technical University of Eindhoven. The storage ring will mainly be
used for the storage of 400 MeV electrons. The EUTERPE-project is set up for the production
of synchrotron radiation and for studies of charged particle dynamics and applications of
synchrotron radiation.

The EUTERPE-ring has a circumference of 40 meters. Before entering the ring the electrons

EUTERPE

400 MeV

Quadrant d| Quadrant a

Quadrant ¢| Quadrant b

Qc2 Qct

Fig. 1.1 A schematic view of the EUTERPE ring.
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are pre-accelerated in a linear accelerator up to 10 MeV, then they are injected in a microtron,
where their kinetic energy is increased to 75 MeV. These 75 MeV electrons are injected in the
EUTERPE-ring where they can be accelerated to a maximum energy of 400 MeV. This report
concerns the EUTERPE-ring, which is depicted in figure 1.1.

When electrons are accelerated they produce synchrotron radiation (or Brehmstralung). The
EUTERPE-ring contains twelve dipoles in which the electron trajectory is bent. In each dipole
synchrotron radiation is produced. This synchrotron radiation can be coupled out by special
ports constructed in the vacuum chamber. The radiation has some exceptional properties,
which makes it very useful for the studies of materials: e.g. it has a low divergence, it is a
continuous radiation source over a wide wavelength range, from the infra-red up to soft x-rays
and has a well-defined polarisation.

As mentioned the EUTERPE ring is still under construction. At the beginning of this study the
design of the EUTERPE lattice was finished [Xi 95]. The locations of all magnetic elements is
determined. Furthermore the field strengths in all elements have been calculated for three
different modes of operation. The behaviour of the particles in an ideal lattice is known.
However due to lattice imperfections the electron orbit is distorted: the particle trajectories will
deviate from the designed orbit.

The aim of this study is to design a correction system in order to reduce these distortions as
much as possible. After the study the design of the correction system in the storage ring must
be fully prepared. This includes the determination of the locations of all correction elements -
the beam position monitors and corrector magnets - and a method to calculate the corrector
settings, but it also includes the design of the hardware regarding the closed orbit correction
system.

1.2 The EUTERPE-lattice

The EUTERPE-lattice consists of four identical sections or superperiods. Each superperiod
contains dipole, quadrupole and sextupole magnets separated by drift spaces. As mentioned in
the introduction, the electron trajectory is bent in the dipoles. The quadrupoles are used for the
focusing of the beam. The sextupoles in turn are used for the correction of the chromatic
aberrations (the so-called chromaticity) introduced by the quadrupoles (the chromaticity and all
other beam parameters used in this report are discussed in chapter 2). A schematic view of the
EUTEREPE lattice [Xi 95] is shown in fig. 1.2. The element types and sizes are given in table

-2-
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Fig. 1.2 The basic structure of the EUTERPE ring for one superperiod.

Table 1.1: Sizes of the different elements in the ring.

Name Elementtype Length (in meters)
Ol Driftspace 1.000

02 Driftspace 0.450

03 Driftspace 0.600

04 Driftspace 0.100

05 Driftspace 0.165

B Dipoles 0.516 *
Q1,02,Q3 | Quadrupoles 0.274 *

and Q4

S1 and S2 | Sextupoles 0.05 **

* This is the effective length of the magnets.
**  The sextupoles have been designed during this study; this the expected length of the sextupoles according
to [Xi 95].
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Apart from the normal magnetic elements each superperiod contains several corrector magnets
and beam position monitors. The corrector magnets and position monitors are part of the
correction system for the closed orbit distortion. These distortion are a result of lattice
imperfections (see chapter3). The deviations of the beam are measured at the locations of the
monitors; the electron trajectory is adjusted by introducing a magnetic induction in the
corrector magnets. The locations of the beam position monitors and corrector magnets are
determined in this project and are not included in figure 1.2.

At the entrance and exit of each superperiod there is a long straight section; the total length of
the long straight section between two successive quadrupole doublets is two meters. As a
result of the dipole configuration in the lattice all four straight sections are dispersion free; a
small energy-deviation of an electron will not influence its dispersion or position in the straight
sections. The straight sections are used for the insertion of special elements whose operations
require the absence of dispersion.

One of these special elements is the rf-cavity, which is placed in one of the dispersion-free
sections in order to prevent synchro-betatron coupling. The rf-cavity is used for the
acceleration of the electrons in order to compensate for energy-losses in the ring due to
synchrotron radiation. Another straight section is reserved for the injection system of the 75
MeV electrons coming from the microtron. The remaining two sections will be used in future
for devices like undulators and wigglers. These are special devices in which multiple electron
deflection results in intense synchrotron radiation.

1.3 Modes of operation

The design of the EUTERPE-lattice has a high flexibility: it allows for changing the character

of the electron beam by adjusting the focussing strengths of groups of quadrupoles. So far

three different modes of operation have been investigated [Xi 95]: the High Brilliance Small

Beam mode (HBSB), the High Light Flux mode (HLF) and the Small Bunch Length (SBL)

mode. The characteristics of the different modes are summarised below.

- In the HBSB mode the beam size in the dipoles will be very small, which results in a very
high brilliance. A small beam size requires strong focussing which gives rise to a large
natural chromaticity; therefore strong sextupole magnets are required.

- In the HLF mode the main interest is a high light flux. The beam size is of less importance.
The comparatively weak focussing of the quadrupoles makes the mode the least error-
sensitive. Therefore the HLF-mode is very useful for the first phase of the commissioning of
the ring.
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- The SBL mode is an optical mode in which the bunch length is minimised. The bunch length
is in the order of several millimetres corresponding to a pulse length of several picoseconds.

The most important beam parameters in the three different modes have been calculated by B.Xi
[Xi 95] and are listed in table 1.2. The parameters are explained in chapter 2.

Table 1.2: Beam parameters of EUTERPE

Mode HLF HBSB SBL
Tune v, 2.57 5.128682 3.37
y 1.63 247 241
By max 10.335 23.835 8.241
B, max 8.060 11.114 9.113
Betatron and Dispersion D,.x 0.854 0.494 1.040
functions (m) <B> 5.673 7.694 0.760
<B> 4.809 6.636 0.584
<D> 0.269 0.137 -0.211
Natural chromaticity E, -2.917 -15.859 -3.729
g, -5.755 -11.039 -8.376
Emittance (nm.rad) € 184.5 5.776 155.2
Energy spread o/E 3.47x10* | 3.47x10* | 3.47x10*
Coupling coefficient K 0.1 0.1 0.1
O, O3 0.89 0.058 0.56
Oy, O3 0.36 0.076 0.35
Beam size (mm) * O, 0.38 0.079 0.45
O, 0.20 0.063 0.11
Oy 1.31 0.349 1.14
Gy 0.25 0.014 0.19

* At the positions represented by:
0 - middle of long straight section
1 - dipole B1,
2 - dipole B2,
3 - dipole B3.
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1.4 The contents of this report

In this report the design of a correction system for the closed orbit distortion in the EUTERPE
ring is described. In the first part of this chapter a general description of the EUTERPE-ring,
its lattice structure and the different modes of operation has been given.

The particle dynamics of the electrons in the storage ring is discussed-in chapter 2. Beam
parameters used in this report will be explained. Furthermore a description of the closed orbit
distortion and correction will be given. In addition some general aspects concerning the design
of the sextupoles and the corrector magnets are discussed.

The sources for the closed orbit distortion - the deviations of the electron trajectories from
their ideal, designed path - are weighted in chapter 3. The closed orbit distortions due to single
and multiple errors are determined with numerical simulations.

The design of a correction system for these closed orbit distortions is discussed in chapter 4.
The influence of the positions of the beam position monitors and corrector magnets is
discussed. In addition a comparison of the closed orbit distortion before and after correction is
made.

The sextupoles already included in the main lattice, can be used as corrector magnets. In
chapter 5 the design of the sextupoles and the generation of the additional horizontal and
vertical dipole fields for the correction are discussed. Furthermore additional corrector
magnets are designed, which are of the so-called “window-frame” type. The first
measurements of the magnetic induction in the prototype window-frame corrector are
compared with simulations. Finally two types of beam position monitors are compared.

Concluding remarks are given in chapter 6.
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Chapter 2

Particle Dynamics and Control

First some general concepts of particle motion in an electron storage ring will be
discussed. Important beam parameters such as the emittance, tune, chromaticity and
closed orbit distortion are treated. Finally a general description of the closed orbit
correction is given.

2.1 The coordinate system

The description of the non-linear particle trajectory in a storage ring is in Cartesian coordinates
rather complex. The trajectory equations are simplified by using a curvilinear coordinate
system. The coordinate system used throughout this report is schematically shown in figure
2.1. The s-axis is defined to be tangent to the ideal particle trajectory at every position. The x-
axis points in the radial and the y-axis in the vertical direction. Furthermore the rotational
directions ¢, 0 and { are defined for rotations around respectively the x-, y- and s-axis.

y
4\

Reference orbit

Fig. 2.1 The curvilinear coordinate system.

In the new reference frame an ideal particle with the design energy E ; moves along the s-axis,
which is the design trajectory. The trajectory of an arbitrary particle will differ slightly from the

-7-
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design trajectory. The trajectory equations for such a particle are derived in the following
paragraphs.

2.2 The Hill-equations

An electron passing through an electromagnetic field will experience a Lorentz force.
Neglecting all non-linear terms the trajectory equations in the curvilinear coordinate system

become

d* 1 .Y

— + [—K®k = —— :

ds? p2(s) o p(s) p @12
2

and %slz’ +K(s)y = 0. | (2.1b)

In this formula p(s) is the local radius of curvature of the particle trajectory; Ap/p is the
relative momentum shift and K{(s) is the focusing or defocusing strength, dependent on the
direction. In the case of a mono-energetic beam, the two equations in formula 2.1 are similar
and can be expressed as

ﬁ + K(s)u = 0, with u = x, y, (2.2)
ds?

1/p*(s) - K (5)

and K(s) = { K (s)
y

All distortions from the central orbit are small; therefore only linear terms are non-negligible.
The transfer matrix between the divergence and position at a location s, can be expressed as
the position and divergence at an initial position s,,

UGs,) = RUs,) 2.3)

u'(s)

with UGs) = ( “(S)] .
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R is the transfer matrix. Every magnetic element in the ring (e.g. dipoles, drift spaces etc.)
can be easily expressed in an elementary matrix-form. A sequence of elements can be
represented by a single transfer matrix R, which is a multiplication of the elementary
matrices. Numerical calculations are simplified with the use of the matrix formalism. Many
computer programs use this formalism, e.g. Methodical Accelerator Design (MAD), which is
used throughout this report.

2.3 Betatron oscillations

In a circular machine K{(s) is a periodic function along the circumference L; as a result of the
periodicity eq. 2.2 is of the Hill-type. The solution of the Hill-equation is given by Flocquet’s
theorem [Cas94]

u(s) = \Je/Bls) cos(W(s) + Py). (24)

In here B(s) and y(s), are respectively the betatron function and the betatron phase; €, is a
constant, which is particle dependent. Eq. 2.4 describes the oscillation of a particle around the
central particle trajectory, which is called the betatron oscillation. The oscillation amplitude,
vey/P, and the betatron phase are particle dependent; as a result the electron beam has a
certain width, which continuously changes with the betatron function 3.

The emittance, €, is a measure for the maximum amplitude of the betatron oscillations. The
emittance is defined as the volume, which encloses all particles in the ring (with a deviation
of 2 0) in 6 dimensional phase space. The area enclosing all particles in 2 dimensional phase
space at a certain position s is graphically shown in figure 2.2. The shape of the emittance
continuously changes due to the contraction and divergence of the beam in the focusing and
defocusing elements in the lattice. However according to Liouville’s Theorem, the emittance
remains constant if the energy of the particles remains constant. Magnetic forces are non-
dissipative and therefore only change the shape of the beam, not the emittance.

Due to the emission of synchrotron radiation the particles lose a fraction of their energy; the
energy-loss is compensated in the rf-cavity in which the particles are accelerated. Synchrotron
radiation is emitted in the direction tangential to the particle’s velocity; so part of the
particle‘s transversal momentum is lost. The energy-gain in the rf-cavity is only in the s-
direction; the particle’s transversal oscillations are damped. Similar arguments prove that the
synchrotron oscillation - the oscillation in the longitudinal direction - is also damped due to
the emission of synchrotron radiation. As a consequence of quantum excitation - the

9.
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synchrotron radiation is emitted in quanta - the amplitude of the betatron oscillations is
increased. The resulting amplitude is an equilibrium between the radiation damping and
quantum excitation. '

Fig. 2.2 The phase space in two dimensions at a certain position s.
The parameter vy in figure 2.2 is a Twiss parameter, which is not further discussed here.
2.4 Resonances

The betatron number or tune v is defined as the number of betatron oscillations per turn. It
depends on the strengths of the focusing elements in the ring. The main contribution to the
focusing comes from the quadrupoles; for quadrupoles K(s) is equal to:

1 OB :
K (s) = —22 =x. V).
S) Bp u (u=x, y) (2.5)

Small lattice imperfections will distort the beam; as a result the amplitude and phase of the
betatron oscillation is slightly changed. If the value of the betatron tune equals an integer
value the excitations are resonantly amplified; the resonance will result in an unstable orbit
and a loss of the particles. In general resonances occur when the horizontal and vertical tune
satisfy:

mv, +nv =, (2.6)

-10-
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with m, n and r integers. It is stated that dipole errors lead to integer resonances, quadrupole
errors to resonances at half-integer v-values and sextupole errors excite third-integer
resonances [Cas94]. Combinations of horizontal and vertical tunes can result in resonances
due to coupling between horizontal and vertical betatron oscillation, mainly in the sextupoles.
Low order resonances (m,n < 3) generally result in a loss of the beam and should be avoided.
Higher order resonances have a less severe effect on the beam.

1.0
v Betatron tunes for the different
y modes of operation in the
) EUTERPE ring:
05 =
B \[SBL HBSB: v, =5.13 v, =2.47,
HLF: v,=2.57v,=1.63,
0 SBL: v,=3.37v,=241.
0 0.5 1.0
v,

Fig. 2.3 Resonance diagram

The working point for a storage-ring is defined by its betatron numbers v, and v,. The
working points for the HBSB, HLF and SBL mode are depicted in the resonance diagram, see
fig. 2.3. In the resonance diagram the tune values are reduced to their values between 0 and 1.
The working point in the HBSB-mode is near a semi-integer resonance in the vertical
direction. A small tune-shift, Avy = +0.03 results in an unstable orbit.

2.5 Dispersion and chromaticity

So far, only mono-energetic bunches are considered. In reality not all particles will have the
same energy (or momentum). Particles with a larger momentum p > p; are bent less in the
dipoles, as a result their orbit is shifted. However, the focusing quadrupoles do not permit the
particles to deviate too much from the design orbit and bend the particles towards the centre
of the beam. The defocusing quadrupoles in turn bend the particles away from this centre.
The resulting orbit of the off-momentum particles differs from the reference particles.

-11-
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The dispersion function D(s) is defined as the particular solution of the Hill equation, Ap # 0,

dp dp
x (s, =) = D(s). —=.
P 2o 2.7

With the use of the dispersion function the particle trajectory is described with

x(s, Aplp) = x(s) + D(s) Aplp, (2.8)

which is a simple superposition of the homogeneous and particular solution of the Hill
equation. The dispersion function will be largest in the focusing quadrupoles and smallest in
the defocusing quadrupoles. Due to dipole and quadrupole configuration in the EUTERPE
ring the long straight sections in the EUTERPE ring are dispersion free.

Another consequence of the momentum shift is that the tune of the off-momentum particles
changes. In the quadrupoles the particles with a higher momentum experience a weaker
focusing. The chromaticity £ is a measure for the dependence of the tune as a function of the
dispersion,

Av

- y
S o 29)

The chromaticity produced by all linear magnetic elements in the lattice is called the natural
chromaticity.

Chromaticity must be avoided for two reasons: the tune-shift due to chromaticity can cause
off-momentum particles to cross resonance lines; as a result their orbits become unstable.
Secondly the chromaticity can result in head-tail instabilities [Tur91]. The wake field
generated by the leading part of a bunch excites an oscillation in the following part. Due to
longitudinal oscillations (synchrotron oscillations) the electrons in a bunch interchange their
positions. As a result the oscillations can be anti-damped, which may cause a beam loss. It
appears that the oscillations are damped for zero chromaticity.

The natural chromaticity can be corrected with the use of sextupoles. The particles with a
larger orbit distortion x due to a larger momentum p are extra focused in the sextupoles
(B~7*), which results in an increase in the betatron tune. The chromaticity in a sextupole is
given by [Cas85]

-12-
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g

211; § B kys) D(s) ds. (2.10)

with P(s) the betatron function, D(s) the dispersion function and k, the sextupole strength. A
disadvantage of the chromaticity correction is that with the use of sextupoles third-order
resonances are excited and as a result the boundary of stable motion - the dynamic aperture -
is decreased.

2.6 Closed Orbit Distortions

The lattice of a real machine is never perfect. Small imperfections, such as misalignments and
field errors, lead to a distortion of the beam. As a result the particles in a bunch will not
oscillate around the designed orbit, but will perform their betatron oscillation around a new
closed orbit. In this paragraph the physics concerning the closed orbit distortion is treated.

In linear theory all perturbations can be seen as small angular kicks, originating from small
additional dipoles. This similarity is used to calculate the closed orbit distortion. The field
error is the difference between the real field strength (/B.dl),,,, and the designed field strength
(/B.dD) e

8(B.dl) = (/ Bdl),,, - (| Bd),,,. @2.11)

The field error results in an additional deflection

; _ O/Bdl . _
Au Bo)’ with u = x, y. (2.12)
As mentioned above a particle in a bunch will oscillate around the design orbit. Because the
betatron function P is dependent on the longitudinal position (s), the particle will not oscillate
harmonically, see eq. (2.4). However, new coordinates 1 and ¢ can be chosen with which the
Hill-equation is transformed into that of a harmonic oscillator [Cas85]. Both n and ¢ are
normalised with respect to . Furthermore ¢ is normalised with respect to the tune. This
results in the new coordinates, which are defined as:

= -12 = _d_s-
n=p"u and ¢ va' (2.13)

With the use of these coordinates the Hill-equation is transformed into

-13-
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d®n

ol vin = g(). (2.14)

In this formula g(¢) expresses the perturbation and is a function of F(s), which represents the
field error introduced at position s, according to:

g(d) = VB F(s), with F(s) = .égLs).

(2.15)

If the lattice is perfect except for a small angular kick at position s,, then g(¢) will be zero
throughout the ring except for position s,. In that case equation (2.14) describes a harmonic
oscillation with a small deflection at position s,. We are free to choose the origin of the
coordinate ¢; with ¢ equal to 7 at position s, we find the closed orbit which is visualised in
figure 2.4. Note that the figure is symmetrical in ¢ = .

n =n gos v
\

A AN A
YRV SVAY

0 =2 tan"! (dn/dp)

Fig. 2.4 Closed orbit in a perfect lattice with one imperfection

The oscillation of the particles is in the homogeneous area can described by

N = n, cosv. (2.16)
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At the location of the imperfection, the deflection is equal to A(dn /dd) = 2 (dn/dd) (see
figure 2.4); the deflection as a function of the field error is. given in equation (2.11).
Combining these two equations and using the definitions of the parameters 1 and ¢, results in
the orbit equation [Cas85]

x = BN, cosvd(s) = LU TG N, @2.17)
2sinmtv Bp

with B, the betatron function at the position of the imperfection. The equation shows that the
closed orbit is most sensitive for imperfections at locations where the betatron functions f is
large. It also expresses the fact that the distortion becomes infinite if the tune is equal to an
integer.

The expression in square brackets is the maximum amplitude of the perturbation at the
location s. If there are more perturbations around the ring, the closed orbit distortion is the
sum of these partial distortions.

2.7 Closed orbit correction

Deviations of the electrons from the design orbit are not wanted. The distortions can cause
part of the beam to hit the walls of the vacuum chamber, especially in special insertion
devices such as undulators and wigglers in which the aperture is very small. The distortion of
the electron beam can be reduced with the use of a correction system.

The electron orbit can be measured using Beam Position Monitors (BPM’s). If the position of
the beam is known the closed orbit can be adjusted by deflecting the beam with corrector
magnets. Several methods are developed to calculate the corrector settings, which minimise
the position errors. In this report the MICADO method is used. The method is discussed in
this paragraph.

2.7.1 Determining the number and position of the corrector magnets and
monitors

The predominant harmonic in the uncorrected orbit is close to the tune v. In order to establish
its amplitude and phase one needs four monitors per wavelength [Cas94 ], [Kuo93] in both
the horizontal and vertical plane. Furthermore one needs four correctors per wavelength for
the correction.
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Less correctors are needed if only the two harmonics nearest to the tunes are corrected;
studies show that the closed orbit distortion is already reduced to ca 30% of it’s initial value
with this simple harmonic correction.

The positioning of the monitors and correctors determines largely the effectiveness of the
closed orbit correction system. The horizontal position is most accurately measured near a F-
quadrupole (a quad focusing in the horizontal direction), where §, is large and the closed
orbit distortion will reach its maximum. The vertical position is best measured near a D-
quadrupole (defocusing horizontally and focusing vertically), where B, is large. Therefore
horizontal monitors are best placed near the F-quadrupoles and the vertical monitors near the
D-quadrupoles. The best position of the correctors is near the sources of the distortion or
180° in betatron phase shifted [Cas94].

The monitors should not be placed equidistantly; in that case distortions with a wave-length
twice the monitor distance are not measured. If the monitor distance is variable more
harmonics of the closed orbit distortion are measured. The positioning of the monitors and
corrector magnets is of course restricted by the free space available after the insertion of the
other elements in the storage ring, such as dipoles, quadrupoles, etc.

2.7.2 Closed orbit correction methods

If the position and number of monitors is roughly determined a closed orbit correction
method has to be chosen, with which the correction settings can be determined. Most
correction methods are based on a Least Squares approximation; the square errors at the
position of beam monitors are minimised. The number of correctors is not necessarily equal
to the number of beam position monitors. It is customary to use the smallest set of correctors
necessary to obtain a given orbit quality.

There are different strategies to minimise the orbit deviations using the smallest set of

correctors [Kou89]:

- The brute force method. For all possible combinations of correctors the least-squares
problem is solved, the combination with the smallest residue being the most effective
configuration.

- Most effective corrector. The most effective configuration of correctors is quicker found if
iteratively the most effective corrector is added to the subset of correctors. The most
effective corrector is selected by calculating the least squares error for the subset of
correctors plus every possible new corrector. The iteration is repeated until the squared
error is below a certain threshold value.
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- MICADO. The MICADO-algorithm [Aut73] basically follows the selective approach of
the most effective corrector. However in this algorithm the most effective corrector is not
determined by solving a least squares problem. Instead the response of each corrector at
the position of each monitor is determined. The cross-correlation between this response
and the residue distortion is calculated. The corrector with the highest cross-correlation is
considered to be the next most effective corrector. Only for this new subset of correctors
the least-squares problem is solved. The settings of all correctors previously selected
remains unchanged.

The least-squares norm is very sensitive to large measurement errors, which must somehow
be removed beforehand. The MICADO-method is implemented in the software packet
‘Methodical Accelerator Design (MAD)’, see [Mad91], which will be used throughout this
report.

Other norms are also implemented in correction techniques, e.g. the 1,-norm penalises errors
independently of their magnitude and thus wrong measurements have less weight. The I,-
norm is implemented in Simplex [Kou89]. The harmonic analysis method mentioned in the
previous paragraph is another method, which is more immune to noise. This noise can be
caused by for example, radiation striking the position monitor.

The differences in the quality from the different correction techniques and methods is small.

According to [Kou89] all methods are approximately equivalent from the point of view of the
final orbit residues.
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Chapter 3

The closed orbit distortion in the EUTERPE ring

A synchrotron with a perfect lattice has an ideal reference orbit. In a real machine the
orbit is distorted as a consequence of lattice imperfections. The reference particle will
deviate from the designed, ideal orbit. All particles will perform their betatron
oscillations around this new closed orbit. In this chapter the closed orbit distortions due
to different error sources are estimated. In § 3.1 the sources of the closed orbit distortion
are discussed; the amplitudes of the most important error sources are estimated. The
effects of these errors on the closed orbit distortions are simulated in the computer
group of codes “MAD” (Methodical Accelerator Design). The resulting closed orbit
distortions are discussed in § 3.2.

3.1 Sources of closed orbit distortion

The trajectory of the electrons in a storage ring is mainly affected by magnetic forces. The
distortion of the closed orbit is therefore normally a result of local field errors. These local field
errors are in turn a consequence of position errors of the magnets or of magnet imperfections. The
sizes of the position errors and magnet imperfections are estimated in this paragraph.

The position errors originate from different error sources; the contributions of these error sources
to the total position errors are estimated separately. In §3.1.1 to §3.1.3 respectively the
displacement errors due to misalignments, thermal expansion and vibrations are estimated. The
field errors are determined in §3.1.4. The total position and field errors used for the simulations
are given in §3.1.5.

3.1.1 Alignment errors

The position of the magnetic elements in the ring can only be measured with a finite precision.
Displacements with a smaller amplitude than the measurement error can not be eliminated. A
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special alignment lattice has been designed [Stei94]; with this lattice the amplitude of the
misalignments is reduced to 0, = 0, = 0,=0.1 mmand 0, = 6 = 6, = 0.1 mrad; all errors having
a Gaussian distribution.

The magnets are aligned with the use of three reference points on top of the magnets. These
reference points on the magnets are aligned with respect to 8 reference points located outside the
ring. As a consequence of the overdetermination of the magnet location the position error can
be reduced.

Support table

Fig. 3.1 Subsection containing a quadrupole doublet and two sextupoles.

Each quadrupole doublet and set of sextupoles in a short straight section of the ring is placed on
a large table, see figure 3.1. The position errors of the quadrupoles and sextupoles are a
superposition of two errors: the errors in the positioning of the quadrupoles on the tables and of
alignment errors of the tables in the ring. It is expected that the rms-values of the position errors
of the quadrupoles can be reduced to 0.1 mm {Tim95] in all directions.

The sextupoles can be aligned with the same accuracy. However the closed orbit is less sensitive
to sextupole displacements, therefore the alignment of the sextupoles is not necessarily as accurate
as the alignment of the dipoles or quadrupoles. With less effort the sextupoles could be aligned
with an error equal to 0.2 mm.
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Table 3.1 Expected alignment errors in the EUTERPE ring

Alignment error Dipole Quadrupole Sextupole
0, =0, =0, (mm) 0.1 0.1 0.2
04 = Op = O, (mrad) 0.1 0.1 0.2

3.1.2 Thermal effects

The temperature in the hall in which the EUTERPE ring is placed is not conditioned. As a
consequence the temperature in the hall will change during operation and in-between experiments.
The temperature change will result in a heating or cooling of the storage ring floor. The thermal
expansion or contraction of the storage ring floor results in a displacement of the ring elements.
The amplitudes of the displacements are estimated in this paragraph. A differentiation has been
made between local and global thermal expansion.

3.1.2.1 Global thermal expansion

The global temperature in the storage ring hall changes with the temperature outside. The
temperature in the hall varies from about 10 °C in winter to circa 30°C in summer: a temperature-
variation of 20 K. Moreover the temperature changes on a daily basis due to the heating of the
hall by the sun.

The temperature of the storage ring floor will change only in the surface layer of the concrete. An
upper limit to the global expansion is found assuming the temperature in the concrete is
homogeneously changed with 20 K (AT=+10K). In that case the storage ring floor will expand
linearly

Ax = reAT = 0.8 mm, (3.1)

r is the radius of the ring (r = 6.4 m) and € the linear expansion factor of concrete (€ =1.2.10°/K).
The displacement of all elements is approximately equal and is for all elements in the radial
direction.
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Fig. 3.2 Displacements due to global heating of the storage ring floor.

In reality the concrete floor of the hall is not homogeneously heated and due to stress in the
concrete the thermal expansion of the storage ring floor is reduced. An indication of the difference
between the thermal expansion of a homogeneously heated floor and the real thermal expansion
can be deduced from experiments at the Photon Factory in Japan. The thermal expansion of the
storage ring was measured [KAT93] as a function of the temperature of the storage ring floor and
of other parts of the storage ring hall. The main contribution to the displacements was the
temperature change in the storage ring floor; Ax = 3.2 10%/K. This measured thermal expansion
is 3 to 4 times smaller than the expansion calculated with eq. 3.1, which holds for a homogeneous
heated concrete layer.

Based on the experience in Japan it is expected that the thermal expansion calculated with eq. 3.1
(Ax =0.8 mm) is several times larger than the real thermal expansion. However the displacements
due to global thermal expansion are expected to be at least of the same order as the alignment
errors, viz. 6 = 0.1 mm.

3.1.2.2 Local temperature effects.

Not only the global, but also the local temperature in the storage ring hall will vary in-between
and during experiments. Due to local heating and the absence of ventilation the temperature in the
storage ring will vary locally. Local thermal expansion of the storage ring floor causes local
displacements; the direction of the local displacements is uncorrelated. However the local
temperature changes in the storage ring floor are small (the floor is slowly heated) and the
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domains over which the temperature changes are small. Assuming the temperature variation is 2
K over a length of 2 m (the length of a short straight section) an upper limit to the thermal
expansion is calculated with eq. 3.1; 0, = 0, < 0.05 mm. The displacements are expected to be
several times smaller than this upper limit. The displacements due to local thermal expansion of
the storage ring floor are several times smaller than the alignment errors; their contribution to the
total displacement errors are therefore negligible.

Not only the storage ring floor is heated locally; the metal frames on which the dipoles are placed
can be heated by sunlight. The temperature difference between the dipole-frame is possibly AT=
+5K.The temperature in a frame is homogeneous due the good thermal conduction of the steel.
In the case of linear expansion, which can be expected for a homogeneously heated dipole, the
vertical displacement of the dipole is equal to Ay= £0.06 mm (AT=+5 K.and fl:;:L.ZOm),

Local thermal expansion does have an influence on the vertical dipole position, but the total
amplitude of the vertical displacements is hardly increased. Furthermore local thermal expansion
is easily prevented with shielding.The effects of global and local thermal expansion are
summarised in table 3.2.

Table 3.2 The effects of thermal expansion

Cause Direction AT (K) | Displacement
Local heating of a dipole- vertical direction +5 Ay < 0.06 mm
frame

Local temperature All directions +2 0, 0,, O,
differences <0.05 mm
Global heating of storage horizontal direction | 10 Ax <0.8 mm
ring floor

3.1.3 Vibrations and other sources affecting the element positions.

The position of the magnetic elements is influenced by position errors originating from other
effects. In this paragraph the effects of vibrations of the storage ring floor and the dipole-supports
is estimated. Furthermore the influence of the rebuilding of the concrete bunker inside the ring
after alignment will be estimated.

-22-



Chapter 3. The closed orbit distortion in the EUTERPE ring

Vibrations in the storage ring floor can be excited due to external sources, such as trucks or trains
passing by. These vibrations in the storage ring floor in turn excite the vibrations in the supports
of the magnetic elements; as a result the positions of these elements are continuously displaced.

Several experiments have been done to determine the amplitudes and resonance frequencies of
the dipole-frames. The oscillation amplitudes of the dipole-frame in 3 dimensions were measured
as a function of the kick on the frames, see table 3.3. Furthermore the maximum displacements
of the dipole-frame have been measured during a small interval of time (about 1 minute). During
these experiments the water cooling system through the dipole was switched on; also the storage
ring floor was excited as much as possible. The maximum displacements remained smaller than
300 nm. The experiments are described in [Bres95].

Table 3.3 Parameters concerning the vibrations in the support of the first
EUTERPE dipole
Parameter x-direction y-direction s-direction
Maximum displacement Ax <300 nm Ay <300 nm Az <30 nm
Resonance frequency f=95Hz f=115Hz f=95Hz
Response dx=28+ 1 um/N | dy=22+4 ym/N | dz <4 pm/N

During the alignment of the dipoles, part of the bunker inside the storage ring (see figure 1.1) may
have to be removed; after alignment the bunker shall be rebuild again. The large mass-
concentration (150 ton per bunker) might cause the concrete floor to bend a little between the
piles. The size of the tilt-angle has been estimated. In the situation that all mass of the bunker
would be concentrated in the middle of one floor segment (5 metre by 5 metre), the tilt-angle
would still be smaller than 0.02 mrad. The effects of the rebuilding of the bunker are therefore
negligible.

3.1.4 Field errors due to magnet imperfections

Imperfections in the geometry of the magnets result in field errors. These field errors are measured
in the integrated field strengths along the electron trajectory.

At the start of this study only one dipole was completely manufactured. The quadrupoles were

still under construction and the sextupoles were designed during this study. The magnetic field
in the first dipole has been measured [Der93]. The fieldstrength along the electron trajectory (the
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field integral) is a function of the radial position of the dipole. The field integral changes more
than 0.05% if the dipole is 10 mm displaced in the radial direction; this corresponds to a deflection
of the beam with 0.015°. The dependency of the field strength on the magnet position is described
by higher order field components. The sizes of the higher field components according to[Der93]
are given in table 3.4. The relative difference in the field integral between different dipoles is in
the order of 10*, The extra deflection in a dipole with a relative error A, 4, //B.dl =10 is ca 0.05
mrad, which has a negligible effect on the total closed orbit distortion.

Relative errors in the fieldstrengths in the quadrupoles mainly affect the betatron tunes. The
relative quadrupole errors are expected to have an amplitude equal to oy, , /k,.dl=1.10", which
result in relative tune shifts of the same order. The higher order field errors in the quadrupoles and
sextupoles are expected to have a negligible influence on the closed orbit.

Table 3.4 Expected field errors in the EUTERPE dipoles and quadrupoles

Elements Error Magnitude

Dipoles relative field strength Opg!//Bdl  =1.10*
Dipoles sextupole field strength | Jk,* dI ~2.10" m?
Quadrupoles | relative field strength O g kdl =1.10°

3.1.5 Resulting displacement and field errors

In the previous paragraphs an extensive study of the displacements and field errors of the
magnetic elements in the EUTERPE ring has been made. Only the errors with the largest
amplitudes will be simulated in MAD in order to get an impression of the closed orbit distortion
in the storage ring (see next paragraph). The largest displacement errors are a result of the finite
measurement precision during the alignment. Apart from these alignment errors only the
displacements due to global thermal expansion are non-negligible. The amplitudes of the
displacement errors used for the simulations are summarised in table 3.5.

Note that the alignment errors and the displacements due to thermal expansion are fundamentally
different. The alignment errors are constant, while the errors due to thermal expansion vary
continuously. These errors cause the closed orbit to change during and in-between the
experiments.

-24 -



Chapter 3. The closed orbit distortion in the EUTERPE ring

The field errors in the magnetic elements are expected to have little effect on the total distortions.
The relative field errors in the dipoles are o, ; //B.dl = 1.10*, which result in deflections in the
order of Ax’=0.05mm per dipole. The relative field errors in the quadrupoles are expected to have
a larger effect, mainly on the tunes. Only the higher order field components in the dipoles have
been measured; their effect on the closed orbit distortions will be determined with simulations, see
table 3.5.

Table 3.5 Total displacements and field errors

Source Displacement Elements involved

Misalignments 6,=0,=0,=0.1 mm and All dipoles and quadrupoles.
0y =0p = 0y, =0.1 mrad

Misalignments 0,=0,=0,=0.2 mm and All sextupoles
0¢= 00 = Oq, = 0.2 mrad

Thermal expansion due | Ax = Imm All elements

to global heating

Magnet imperfections | Jk,’ dl = 17 m™ Dipoles
O/ Tydl = 1.10% Quadrupoles

3.2 Resulting closed orbit distortions

The size of the displacement and field errors in the magnetic elements has been
estimated in the previous paragraph. The effects of these errors on the closed orbit of the
electrons are examined by simulating them with the program MAD. The effects of both
the displacement of a single element in one direction as well as the effect of the
displacements of multiple elements in all directions have been determined.

3.2.1 Simulations in MAD

The principle concern of this report is the closed orbit distortion. In this paragraph the closed orbit
distortions and tune shifts are calculated for many different error configurations. The software
packet Methodical Accelerator Design (MAD) is used for the calculations. MAD has been
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developed at CERN as a tool for charged particle optics in accelerators. Many features are
included in the program [Mad85]; among these features are the calculation of the closed orbit
distortion and the closed orbit correction. More information about the program is given in
appendix A.

Many other beam parameters are calculated with MAD. During the simulations in this report the
chromaticity , the dispersion D, the betatron amplitudes {3, the momentum compaction factor &,
and the increase of the closed orbit length As are calculated. Only the values of the parameters
affecting the closed orbit (the tunes and closed orbit distortions) are given in the different tables.

Each element in the EUTERPE ring will have a random displacement error with an rms-value as
mentioned in §3.1.5. In MAD random displacement errors are assigned to each element using a
Gaussian table. All displacement errors used in the simulations are defined as the relative
displacements at the entrance of the magnetic elements’. For one possible error-configuration the
closed orbit distortion is determined. The statistical error introduced by this error-assignment is
reduced by averaging the results over 10 runs.

3.3.2 The effects of single misalignments

The effects of all possible single misalignments - a perfect lattice containing only a specified
displacement of one element in one direction - have been calculated with MAD in order to get a
first impression of the sensitivity for different displacements. The displacements with the largest
effects on the amplitudes of the closed orbit distortions or tunes are given in table 3.6. The effects
of all possible misalignments are given in appendix B. The effects of single misalignments of the
other dipoles (D2) and quadrupoles (Q2, Q3 and Q4) were comparable with the effects of the
displacements of the first dipoles and quadrupoles. An example of the closed orbit distortion due
to a single displacement is given in figure 3.3.

The closed orbit is very sensitive to displacements of the quadrupoles in the x-direction, see table
3.6. The displacement of the first quadrupole in the x-direction results is 34 times amplified in
the closed orbit distortion! The sensitivity of the distortion for the quadrupole displacements are
a consequence of comparatively large values of both the induction and the betatron function.

! This definition of the displacement errors differs from the definition of misplacements
at the centre of each element, see appendix B.
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Table 3.6 The effects of single displacements on the closed orbit (DIl=dipole 1,
Ql=quadrupole 1), mode HBSB

Element | Displacement X ax Venax Av, Av,
(mm) (mm) *10* *10¢
Q1 dx=0.1mm 3 0 25 1
Q1 dy=0.1mm 0.004 0.4 0.5 0.2
Q1 d0=0.1mrad 0.5 0 4 1
Dl dx=0.1mm 0.2 0 0.1 2
Dl dy=0.1mm 0.002 0.3 0.04 0.02
Dl ds=0.1mm 0.7 0 0.2 8
D1 dyr=0.1mm 0.002 0.3 0.04 0.02
5.0 L : '
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Fig. 3.3 The closed orbit distortion in the HBSB-mode due to a displacement dx=0.1mm
of the first quadrupole (Q1).
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It must be noted that in practice the displacements of an element in a certain direction may have
a significant influence on the closed orbit, while a single misalignment in the specific direction
does not affect the closed orbit. E.g. a single misalignment of a quadrupole in the s-direction
does not distort the closed orbit, because the beam is not deflected in the quadrupole. In a real
lattice however the closed orbit is already distorted due to other lattice errors and the closed orbit
does not coincide with the magnet axis of the quadrupole. As a consequence the particles are
deflected and a displacement of a quadrupole in the longitudinal direction does have an effect on
the closed orbit.

The effects of single misalignments have also been examined in the HLF-mode; for this mode the
effects of single misalignments on both the closed orbit distortions and the tunes were about 10
times smaller. This is a result of a difference in the focusing strength of the quadrupoles.

3.3.2 The effects of multiple misalignments and field errors

The consequences of misalignments in all directions of all dipoles, quadrupoles and/or sextupoles
have been examined. The results are summarised in table 3.7 for the HBSB-mode. All results are
averaged over 10 runs with different random displacements. The deviations of the closed orbit
distortions are about 50 %; the deviations of the tune-shifts are even larger. These uncertainties
are not a result of the limited number of simulations; the deviations are not reduced if their value
is averaged over more runs.The rms-value of the closed orbit distortion in the horizontal and
vertical plane is calculated for 50 error-configurations and is equal to x,,,; (co) = 0.7+0.3 mm and'
Yms (€0) = 0.420.2 mm. These results differ little from the values in table 3.7.

The displacements of the quadrupoles are the main sources of the closed orbit distortions. The
influence of the displacements of all dipoles is several times smaller; this is partly due to a smaller
amount of dipoles (12 dipoles and 32 quadrupoles) but also a consequence of a bigger sensitivity
for quadrupole-displacements. The sextupole-displacements have little effect on the distortion,
due to their comparatively weak magnetic field. However the sextupole displacements have a
significant effect on the betatron tunes, as a consequence of their additional focusing.
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Table 3.7 Effects of multiple displacements (0=0.1mm and 0=0.1mrad) and field errors
on the closed orbit distortion (mode HBSB)
Displacement Xpms Vrms Av, Ay, Nosare ®
(mm) (mm) *102 *10
All dipoles 0.7 0.5 0.07 0.1 0
+0.2 +0.2 + 0.03 +0.1
All quadrupoles | 4 1.1 0.4 - & 8
+2 +0.3 +0.3
All sextupoles 0.007 0.006 0.02 0.2 1
+0.004 +0.003 +0.01 0.1
All elements 3 1.4 0.9 - 7
+1 +0.5 +0.8
All elements + 3 14 0.9 - 8
field errors +1 +0.5 +0.8
) The betatron oscillations in the vertical plane were unstable for several error-configurations as a consequence

of the tune shifts caused by the lattice imperfections. For errors which resulted in a high number of unstable

runs N,,.... the tune shifts in the vertical direction are not given.

unsta

The closed orbit distortions are within a few percent a linear function of the amplitude of the
misalignments. The distortions are proportional to the error fields. Moreover the resulting error
fields in both the dipoles and quadrupoles are proportional to the displacement of the elements.
The error fields due to sextupole misalignments are a quadratic function of the displacement
errors, as a consequence of the proportionality of the sextupole field to r2. However the effects
of the sextupole misalignments on the total distortion are negligible. The closed orbit distortions
due to misalignments with a different amplitude are easily calculated with the values listed in table
3.7 as aresult of this linearity.
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Fig. 3.4 The closed orbit due to the random displacements of all dipoles, quadrupoles and
sextupoles for two different error-configurations.

The closed orbit distortion due to the misalignments of all dipoles, quadrupoles and sextupoles
gives a good impression of the real closed orbit. An example is given in figure 3.4.

If the maximum values of the closed orbit distortions exceed the dimensions of the vacuum
chamber the beam is instantly lost. The maximum value of the lattice with all elements misaligned
and with field errors in the dipoles is for ten different error-configurations equal to:
Xpae =18 mm,
and y,, =5 mm.

These values are still smaller than the inner radius of the vacuum chamber, which is 22.5 mm. The
distortions reach their maximum value in the long straight sections for all error-configurations.
Due to the absence of focusing elements the betatron values and the distortions are maximum in
these sections. The maximum closed orbit distortions are listed in appendix B.

The closed orbit distortions are calculated in the HLF mode using the same displacement errors
as in the HBSB mode. The distortions in the HLF mode are 10 times smaller in the horizontal and
2 times smaller in the vertical direction than in the HBSB mode. Moreover the tune shifts in the
HLF mode are smaller, Av, , Ay, <2.10°. As a result the betatron oscillations in the vertical
plane are stable for all error configurations.
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Finally the effects of global thermal expansion and the energy spread are calculated. The effects
of global thermal expansion are illustrated in fig. 3.5. All elements are displaced in the radial
direction. The closed orbit is shifted with the elements.

x., (mm)

104\ M MN MN

0.5+ L

ool Sl Mol Boliolol

0 10 20 30 40
s (m)

Fig. 3.5 The closed orbit distortion due to global heating; all elements are displaced in
the radial direction, Ax=1mm, in the HBSB mode.

The influence of momentum deviations (or energy spread) on the orbits is described by the
dispersion function. The dispersion function for the EUTERPE ring is depicted in appendix C.
The maximum value of the dispersion function is D = dx / d(4p/p) = 0.5 mm in-between the
dipoles. The momentum spread of the particles in the EUTERPE ring is given by [Xi 95]

by the injection of the beam: Ap/p = 0.5 % , which gives Ax,,, = 2.6mm
during operation for a 400 MeV beam Ap/p = 0.04 % , which gives Ax . = 0.2mm.

The effects of the dispersion on the total distortion of the electrons is limited. However the
dispersion increases the beam width significantly. According to table 1.2 the beam width is less
than 0.1 mm in the HBSB mode. At the injection the local broadening of the beam due to the
dispersion is several times larger than this value. During operation the momentum spread is
damped; as a consequence the dispersion is reduced.

-31-



Chapter 3. The closed orbit distotion in the EUTERPE ring

3.3 Summary

Due to position and field errors of the magnetic elements in the EUTERPE ring the closed orbit
of the electrons is distorted. In this chapter the closed orbit distortion has been calculated as a
function of the estimated position and field errors.

A study of the error sources resulting in the displacements of the magnetic elements showed that
the finite measurement precision during alignment is the main source of the position errors. The
resulting displacements and tilt angles of the elements have a Gaussian distribution with 6,=0,
=0,= 0.1 mm and 6,=0, =0,~0.1 mrad. The influence of other effects, such as thermal expansion,
and vibrations, are several times smaller and therefore negligible for the total displacements.

The closed orbit is most affected by displacements of the quadrupoles in the horizontal direction.
The sensitivity of the closed orbit for the displacements of the different elements has been
determined with simulations of single displacements: simulations of a perfect lattice containing
only a displacement of a single element in one direction. A single displacement of a quadrupole
in the horizontal direction results in a 34 times larger closed orbit distortion. The largest
distortions are in the long straight sections, between two focusing quadrupoles.

The closed orbit distortion due to the misalignment of all elements in all directions is equal to x,,,,
= 3+1mm in the horizontal and y,,,. = 1.4+0.5 mm in the vertical direction. The distortion has been
determined with simulations in MAD; random displacement errors have been assigned to all
elements. For statistical reasons the results have been averaged over 10 error-configurations. The
closed orbit distortions in the horizontal plane are more error-sensitive due to the higher tune-
values in the horizontal direction. The higher order field components in the dipoles have a
negligible influence on the total distortion.

The displacements of the elements and the field errors resulted in shifts of the betatron tune. The
vertical tune in the HBSB-mode is near a semi-integer resonance. The tune shift due to the
displacements of the elements resulted for 8 out of 10 error configurations in a resonance of the
vertical betatron oscillation, which in practise results in a loss of the beam. With a small
adjustment of the working point, away from the semi-integer resonance line, this resonance can
be prevented.

All results mentioned above are calculated for the High Brilliance Small Beam mode, which is the

mode of operation with the strongest focusing and as a result most sensitive for lattice
imperfections. The closed orbit distortions in the High Light Flux mode, which has the weakest
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focusing, are about ten times smaller than in the HBSB mode. Furthermore the tune shifts in the
HLF mode are about 10 times smaller. As a result the betatron oscillations in the vertical plane
were stable for all simulated error-configurations. The results confirm the stability of the HLF
mode; this same stability is the reason why the mode will be used for the first phase of the
commissioning of the machine.
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Chapter 4

Design of a closed orbit correction system

In this chapter a closed orbit correction system is described, which has been designed in
order to reduce the closed orbit distortion. The locations available for the insertion of the
corrector magnets and beam position monitors are determined in §4.1. With the use of the
available locations different correction lattices have been designed. In §4.2 the lattices are
given and compared. The maximum reduction of the distortion is determined. In §4.3 the
number of monitors and correctors required for the correction is minimised. The results
are summarised in §4.4.

4.1 Introduction

The uncorrected closed orbit distortions in the High Brilliance Small Beam mode are large in
comparison to the inner radius of the vacuum chamber. The stability of the beam is improved if
the distortion is reduced. Therefore a closed orbit correction system is necessary. The aim of
the correction system for the EUTERPE ring is to reduce the distortion as much as possible,
while using as little space as possible for the insertion of the correction elements.

The calculations of the closed orbit distortion in the previous chapter showed that the
horizontal closed orbit distortions in the HBSB mode are the largest. Therefore the reduction
of the horizontal closed orbit distortion in this mode will be the main purpose here. The
resulting distortions in the HLF mode will be checked after correction with the final lattice.

Only a few locations are available for the insertion of the correction system, which consists of
beam position monitors and corrector magnets. The major part of the ring is reserved for the
‘normal’ lattice elements, such as the dipoles, quadrupoles and sextupoles. The available
locations are marked in fig. 4.1. The long straight sections between the quadrupole doublets of
two successive superperiods are reserved for special elements, such as the rf-cavity and the
injection elements. The available locations in these sections are still unknown.

Different correction lattices have been compared. A standard lattice is composed in §4.2.1.
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Fig. 4.1 Available locations for the insertion of the correction elements.

The monitors in this lattice are placed near the focusing quadrupoles. The total number of
monitors and correctors used in the lattice is equal to 20. Both the correctors and monitors
function in both the horizontal and vertical direction. The positions of the elements of the
correction systems are at the available locations mentioned above. The long straight sections
are considered to be available for the insertion of the corrector magnets and beam position
monitors; the effect of the displacement or removal of these correctors and monitors is
determined later.

The dipoles and sextupoles in the ring can be used as corrector magnets with the generation of
additional dipole fields. With the use of the sextupoles and dipoles as corrector magnets the
total number of monitors and correctors can be enlarged without increasing the space required
for the correction system. In §4.1.2 both the sextupoles and dipoles are used as corrector
magnets. Even with the use of both the sextupoles and dipoles, additional corrector magnets
are required in the long straight sections. Extra monitors are included at the locations of the
corrector magnets in the standard lattice; the total number of monitors is increased to 36.

In order to reduce the number of different elements used as corrector magnets, only the
sextupoles are used as additional corrector magnets. The distortions after correction with these
lattices are given in §4.1.3. The influence of monitor misalignments and monitor read errors on
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the resulting distortions are discussed.

Finally the space occupied by the correction system will be minimised. The distortions after
correction with the lattices with more monitors will serve as a reference.

4.2 A comparison of different correction lattices

The reduction of the closed orbit distortions due to the closed orbit correction is determined
with simulations in the computer code Methodical Accelerator Design [Mad91]. First the
uncorrected closed orbit distortions have been calculated after giving all elements (dipole,
quadrupole and  sextupole) misalignment errors, with 0,=0,=0=0.Imm and
04,=04=0,=0.1mrad. Then the distortions after correction with the different correction lattices
are determined; the elements of the correction system are given the same misalignments. The
monitor readings have a deviation equal to 6,=0,=0.1mm. For statistical reasons this procedure
is repeated 10 times and the results are averaged.

4.2.1 The standard correction lattice

In correction lattice, A, the monitors are placed near the focusing quadrupoles. In between
every quadrupole doublet a monitor is placed; an extra monitor is inserted in the long straight
sections. The corrector magnets are evenly distributed at the available locations in the ring.
The total number of monitors and correctors equals N,,,,.= 20 and N,,, =20. This correction
lattice will be used as a reference for the following correction lattices and is referred to as the
standard lattice.

The best correction is obtained if the monitors are included at the locations with the largest
electron beam distortions. The maximum orbit distortions are reached at the locations with the
largest betatron function, B,(s) and B, (s). The betatron functions are depicted in figure 4.2. Of
course, the maximum values of the betatron functions are in the focusing quadrupoles. In the
long straight sections between the focusing quadrupoles, the betatron function reaches a very
high constant value. The monitors are placed at the locations with the highest horizontal
betatron values. The standard lattice A is shown in fig. 4.3.

Quadrupoles focusing horizontally are defocusing vertically. As a consequence the maxima and
minima of the betatron functions B, (s) and {§ (s) are reversed. A second lattice has been
simulated in which the locations of the monitors and correctors is reversed. Because the
monitors in this second lattice are placed at the locations with the largest values of B(s), the
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vertical correction is expected to improve with this lattice. The horizontal correction is
expected to deteriorate.

30 1 | | 1

6
s (m)

Fig. 4.2  The betatron amplitudes in the horizontal and vertical direction (f, and B,) for
one superperiod for the HBSB-mode.

The number of monitors and correctors used in the standard lattice approximate the number of
four correctors and monitors per betatron wavelength. This number of monitors is required for
the full establishment of the amplitude and phase of the distortion. The highest tune-values in
the EUTERPE-ring are v, = 5.13 and v, = 2.47, both for the HBSB-mode, which corresponds
to 20 to 24 horizontal and 8 to 12 vertical beam position monitors required for the correction
system.The number of both the monitors and correctors in the standard lattice are within these
limits.
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Fig. 4.3

Schematic view of the standard lattice, A.

The closed orbit correction with the standard lattice is very successful. The rms-values of the
closed orbit distortions are reduced with a factor 22 in the horizontal and a factor 5 in the
vertical direction.

The beam position errors in the monitors have been reduced to x,,, =0.01 mmand y,,. = 0.01
mm. The resulting distortions are therefore a consequence of the limited number of monitors
and the position and read errors of the monitors. The vertical closed orbit distortions are
shown in appendix C.

Table 4.1 The closed orbit distortions after correction with the standard lattice.

Correction lattice. Xpoe (mm) | x,,,. (mm) |y, (mm) |y, (mm)
No correction 10+5 4+2 2.740.8 1.0+04
Standard lattice A 0.44+0.09 | 0.16+0.06 | 0.6+0.1 0.19+0.03
Locations of monitors and | 0.5+0.1 0.23+0.06 | 0.4+0.1 0.16+0.03
correctors reversed

With the locations of the monitors and correctors reversed, the horizontal distortion after
correction is 40 % larger. On the contrary the vertical distortion is +20% extra reduced. The
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results confirm the expectation that the monitors should be placed at the locations with the
highest values of the betatron functions. The reduction of the distortion after correction is
much smaller in the vertical than in the horizontal plane, which is a result of the smaller vertical
distortions before correction. The maximum reduction is limited by the size of the monitor
displacements and read errors (both with 0,=0,=0.1 mm).

The vertical tune shifts are reduced due to correction with about a factor 3 for most lattices.
As a result, the number of error configurations resulting in resonance of the vertical betatron
oscillation is reduced. The beam deflections in the correctors and the tune shifts are given in
the table below.

Table 4.2 The tune shifts and orbit deflections for the standard correction lattice.

Correction lattice. Av, Av, Nunsane | Ax’ Ay’ .
(mrad) (mrad)

No correction 0.01 -8 6 0 0
+0.01

Standard lattice (A) 0.008 0.02 3 0.5£0.1 {0.42
+0.004 +0.01 +0.08

Locations of monitors and | 0.005 0.01 1 0.8+0.2 {0.40

correctors reversed +0.003 +0.01 +0.06

) The betatron oscillations in the vertical plane were unstable for several error-configurations as a consequence of
the tune shifts caused by the lattice imperfections. For errors which resulted in a high number of unstable runs
N,

unstable

the tune shifts in the vertical direction are not given.

4.2.2 'The use of the dipoles and sextupoles as additional corrector magnets

The dipoles and sextupoles included in the main lattice of the ring can be used as corrector
magnets with the generation of additional dipole fields. E.g. the dipoles can be used as
horizontal corrector magnets if extra currents are injected in the coils around the poles; this
way an additional correction field can be added to the common dipole-field. Additional dipole-
fields can be generated in the sextupoles with the injection of currents in the coils around

opposite poles (see chapter 5).

Using this idea, a second lattice B has been designed, in which all sextupoles and dipoles in the
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ring serve as corrector magnets. With the use of as corrector magnets the total number of
correctors and monitors can be increased without increasing the space occupied by the
correction system.

The number of monitors in lattice B is increased with respect to the standard lattice, while the
number of corrector magnets is the same. This is done, because an increase in the number of
position monitors is expected to result in the largest reduction of the orbit distortion. There are
no sextupoles or dipoles included in the long straight sections, therefore an additional corrector
magnet is used in the middle of every long straight section. The extra monitors are inserted at
the positions, which have been occupied by the corrector magnets in the standard lattice.

The total number of monitors in lattice B equals M,,,, = 36; the number of horizontal correctors
is equal to N, (x) = 32 and the number of vertical correctors Y, (y) = 20. The number of
horizontal and vertical correctors is different, because the dipoles can only be used as
horizontal correctors. "

HC1
lllll Ml - M2 i M4 M5 M6 M7 M§ M9
M1  Monitor 1 i Monit
Cl  Corrector1 omtor
HC1 Horizontal Corrector 1 | Corrector Magnet
Fig. 44 Schematic view of correction lattice B, in which both sextupoles and dipoles

are used as corrector magnets.

Simulations show that the horizontal distortion after correction (see table 4.3) is not further
decreased with the use of all dipoles and sextupoles as additional horizontal correctors. On the
contrary, the distortion after correction is larger than the distortion after correction with the
standard lattice.

This is a consequence of the number of correctors, which is locally too large. Several monitors
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in the lattice are placed directly in-between two corrector magnets (these are the monitors
indicated in fig. 4.4). The readings in these monitors can always be minimised with a large
deflection in the first corrector and a compensating large deflection in the second. Position and
read errors of the monitors result in amplified distortions as a consequence of the large
amplitude of the divergence, Ax’. The horizontal deflections in the lattice, with all sextupoles
and dipoles used for the correction, are an order of magnitude larger than the horizontal
deflections in the standard lattice, the maximum deflections are respectively Ax’,,, = 15 mrad
and Ax’,,,. = 1.2 mrad.

The correction system is significantly improved if the use one of the two correctors near the
monitors is discarded. In fact the horizontal distortions after correction are 20% smaller than
after correction with the standard lattice. The vertical distortions are nearly 40 % smaller.
Furthermore the number of error-configurations in which the betatron oscillations were
unstable is reduced to 1 out of 10 (for the standard lattice: 3 out of 10).

The use of the dipoles and sextupoles as additional corrector magnets can be considered an
improvement for the closed orbit correction. Because the closed orbit distortions after
correction are even smaller than after correction with the standard lattice, without occupying
more space in the ring.

Table 4.3 The closed orbit distortions in the HBSB mode after correction with lattice B

Correction lattice. Xpoe (mm) | x,,,. (mm) |y, (mm) |y, (mm)

Standard lattice, A 0.44+0.09 | 0.16+0.06 [ 0.6+0.1 0.19+0.03
All dipoles and sextupoles 0.8+0.3 0.23+0.06 | 0.4+0.1 0.13+0.01
used as additional correctors.

8 sextupoles and all dipoles 0.41+0.08 { 0.13+0.01 | 0.320.1 0.12+0.02
used as additional correctors.

4.2.3 A correction system containing only sextupoles as additional correctors

Sextupoles, dipoles and additional magnets have been used as corrector magnets in the
previous paragraph. Because a uniform correction lattice is desired, it is examined here if the
use of the sextupoles as additional correctors is sufficient for the correction.
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In lattice C differs all sextupoles are used as additional correctors; the only difference with the
previous lattice B is that the dipoles are not used for the correction. The monitor locations are
the same.

Fig. 4.5 The representation of correction lattice C, in which only the sextupoles are
used as additional correctors.

Table 4.4 The closed orbit distortions in the HBSB mode after correction with lattice C

Correction lattice. Xpae (mm) | x,,,c (mm) |y, (mm) |y, (mm)

Standard lattice, A 0.44+0.09 | 0.16+0.06 | 0.6£0.1 0.19+0.03

Lattice C, all sextupoles used | 0.40+0.07 | 0.13+0.02 | 0.4+0.1 0.13+0.02
as additional correctors.

Four monitors relocated 0.4+0.2 0.15+0.02 | 0.520.1 0.15+0.05

With the relocating of one of the monitors the dependency of the correction on the monitor
positions is examined. The new location of the monitor is given in fig. 4.7. The monitor is
shifted from a place between defocusing elements to a place near defocusing elements.
Therefore it might be expected that the correction is slightly improved.

However, due to the displacement of the monitor, the monitor near the central dipole is placed
between two correction elements, with no strong focusing elements in between. This resulted
in large deflections in the previous paragraph. Because the distance between the correctors is

increased, the effects are smaller.

The closed orbit distortion after correction equals the distortion after correction with lattice B
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(with the dipoles used as additional correctors) and is an improvement over the standard
lattice. With the use of only sextupoles as additional correctors the number of correctors is
smaller than lattice B; furthermore only two types of corrector magnets are used in lattice C
(the dipoles are not used as additional horizontal correctors). Therefore the use of only the
sextupoles as corrector magnets can be considered an improvement.

The closed orbit distortions in the HLF mode have after correction with lattice C
approximately the same amplitude as the distortions in the HBSB mode: x,,,, = 0.13 + 0.03 and
Yoms = 0.12 £ 0.01.

4.2.4 The influence of position and read errors in the monitors

In this paragraph the contribution of the monitor errors to the orbit distortion will be
discussed. The horizontal distortion after correction with a lattice containing only perfectly
aligned monitors will be compared with the distortion after correction with the same lattice,
but with monitor errors.

Lattice C, treated in the previous paragraph, is used for the comparison. In figure 4.4 the
closed orbit after correction is shown for a correction lattice with read errors and
misalignments and the same correction lattice, but with ideal monitors, perfectly aligned. The
closed orbit distortion is more than twice as small for the ideal correction lattice. For the lattice
with monitor displacements and misalignments the rms-value of the closed orbit distortion is
about equal to the rms-value of the monitor misalignments.

Table 4.5 The influence of the monitor read errors and misalignments on the horizontal
distortion, mode HBSB.

Note X o rms Av,
(mm)

Ideal lattice 0.06 0.007
+0.02 +0.005

Monitors displaced, 0,=0,=0.1 mm, | 0.11 0.01
no rcad errors +0.02 +0.01

Monitors displaced, 0,=0,=0.1 mm | 0.13 0.01
+ read errors, 0,=0, =0.1 mm +0.02 +0.01
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The closed orbit distortion after correction approximates the amplitude of the position and
read errors of the monitors. In order to improve the correction these errors should be reduced.

0.5 ' . '
—_ Ideal lattice

— — Monitors displaced + read errors
" I

co (mm)

X

0 10 20 30 40
s (m)

Fig. 4.6  The closed orbit after correction with lattice C; comparison of a perfect
correction lattice and a lattice with misaligned monitors and read errors.

The closed orbit distortion after correction with an ideal lattice is equal to x_,, = 0.06£0.02
mm, which is smaller than the beam width near the dipoles (see table 1.2).

If the size of the distortion after correction is compared to the distortion due to dispersion,
another impression of the size of the distortions is obtained. The momentum spread of the
particles in a bunch results in a local increase in the beam width. This increase only depends on
the dispersion function D(s) and is not a function of the distortion. A momentum spread of
0.04% is expected for the normal operation of the EUTERPE ring. The closed orbits of two
particles with different momentum, Ap/p = + 0.04% and Ap/p = - 0.04%, are compared in fig.
4.7.

The figure shows that the increase of the beam width is of the same order as the closed orbit
distortion after correction. This illustrates how small the amplitude of the distortion after
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correction is.

0.6 L :
_ Ap = +0.04%

- - Ap = —0.04%

Fig. 4.7  The closed orbits after correction for a particle with Ap/p = + 0.04% and
Ap/p = - 0.04%

4.3  Reducing the number of monitors and corrector magnets

In the previous paragraph the possible reduction of the closed orbit distortions with the use of
a correction system has been determined. However, the correction lattice with the largest
reduction factor contained 50% more monitors than is necessary. With four monitors per
betatron wavelength it should be possible to obtain a similar reduction (see §2.6). In this
paragraph the total number of monitors and correctors and so the space occupied by the
correction system is minimised. For this purpose several new correction lattices are compared.

With the standard lattice a reduction of the distortion with a factor 22 has been obtained. This
lattice contains 20 monitors and 20 correctors. However, all these elements have to be added
to main lattice of the ring. Less elements are necessary if the sextupoles are used as correctors

without increasing the number of monitors, the occupied lattice space is reduced.

Simulations show that if only the sextupoles and 4 additional corrector magnets in the long
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straight sections are used for the correction, the quality of the correction system is significantly
reduced. The resulting closed orbit distortions are x,,, = 0.35 * 0.07 mm and y =
0.35+£0.07mm. An example of the closed orbit after correction is shown in fig. 4.5. The
correction is deteriorated, because the distance between the corrector in the middle of the long
straight section and the next corrector is too large. Correction lattices in which the monitor
locations have been adjusted, but with the same corrector configuration, have been simulated
and resulted in the same (large) distortions after correction.

The distance between successive correctors is reduced in the second lattice with an extra
corrector magnet in front of the first and after the third dipole of a superperiod. The number of
corrector magnets used remains constant, while the nearest sextupoles are not used for the
correction. The reduction of the distortions is significantly improved as is shown in table 4.6.

However, the lattice two has to be adjusted if the monitors and correctors in the middle of the
long straight section have to be removed for the insertion of the special devices in these
sections. If the monitor and corrector in the long straight section are removed and no extra
monitors are inserted for compensation the distortion will increase. The influence of the
removal of these monitors and correctors has been measured for the correction lattice C in the
previous paragraph and resulted in a 40 % increase of the distortion, see appendix C.

0.5 :

20
s (m)

Fig. 4.8 The closed orbit distortion after correction with the final lattice, containing 24
monitors and 24 correctors.
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Table 4.6 The closed orbit distortions after correction with the correction systems with a
reduced number of monitors and correctors.

Correctors Xmax Xms Y max Yerns
(mm) (mm) (mm) (mm)

16 sextupoles + 1.3+04 0.35£0.07 | 0.61 £0.07 | 0.22 £0.02
4 additional correctors

8 sextupoles + 04+0.1 0.15+0.02 | 0.49+0.08 | 0.17 +£0.03
12 additional correctors

8 sextupoles + 038+0.08 | 0.14+0.02 {0.42+0.08 | 0.16 +0.02
16 additional correctors

Coé

Cl1 C2 C3 C4 C5

M1 M2 M3 M4

l Monitor

D Corrector Magnet

Fig.4.9 The lattice of the final correction system, with 24 monitors and 24 corrector
magnets

In the final lattice (D) two monitors and correctors are placed on both sides of the long straight
sections, next to the quadrupoles, for compensation. This way the space available for the
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insertion of the special devices is only slightly reduced. As a consequence of the two monitors
on each side of the long straight sections with no focusing or defocusing elements in between,
the distortion in these sections is extra reduced. The rms values of the distortions in the whole
ring are reduced as well, to x,,, = 0.14+0.02 mm and y,, = 0.16+£0.02 mm. The number of
error-configurations in which the betatron oscillations were unstable is reduced to 1 out of 10.
These values approximate the values for the best lattice in the previous paragraph with 36
monitors.

So indeed a reduction of the number of elements in the correction system is possible without a
significant loss of the correction quality.

4.4 Summary

A closed orbit correction system has been designed for the EUTERPE ring. Several correction
systems have been compared. For all lattices, the closed orbit distortions and tunes after the
correction have been determined for ten different error-configurations using the program
MAD. The corrector settings are calculated with the MICADO method.

First different correction systems have been compared in which the space occupied by the
correction system is kept constant. A standard correction lattice has been composed with
monitors in-between the quadrupoles in a doublet and an extra monitor in the long straight
section. Furthermore 20 corrector magnets are used. With the standard lattice, the closed orbit
distortion is already reduced with a factor 22 in the vertical and a factor S in the vertical
direction (see table 4.7).

However, the correction system is further improved if more beam position monitors are used.
With the use of the sextupoles and dipoles as corrector magnets, the number of monitors can
be increased without occupying more lattice space. As a result the distortion is reduced with
20 % in the horizontal and 40% in the vertical direction. In this lattice only 8 sextupoles are
used for the correction. Otherwise monitors are placed directly between corrector magnets,
which results in large beam deflections in both magnets and as a consequence in large
distortions.

If only the sextupoles are used as corrector magnets (plus four additional correctors in the long

straight sections) the same correction quality can be achieved. The complexity of the
correction system is reduced, because only two instead of three different type of magnets are
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straight sections) the same correction quality can be achieved. The complexity of the
correction system is reduced, because only two instead of three different type of magnets are
used for the correction.

Table 4.7 Summarised results of the correction systems discussed in this chapter.

Lattice | N,y | Noorr. | Xpms (mm) | ¥ (mm) | Note
A 20 20 0.16 0.19 Standard lattice
+0.06 +0.03
B 36 32 0.13 0.12 Both the sextupoles (8) and dipoles
+0.01 +0.02 are used as additional correctors
C 36 20 0.13 0.13 All sextupoles (16) are used as
+0.02 +0.02 additional correctors, no dipoles used.
D 24 24 0.14 0.16 Final Lattice
+0.02 +0.02 Minimisation of the total number of
elements and of the space occupied by
the correction system.

The number of monitors and corrector magnets has been reduced in the final correction lattice.
This lattice contains 24 monitors and 24 corrector magnets, which corresponds to 4 monitors
and correctors per betatron wavelength. These are required for the full establishment of the
amplitude and phase of the distortion.

The closed orbit after correction is limited by the displacements and read errors of the

monitors. Without monitor misalignments and read errors the closed orbit in both the
horizontal and vertical plane are further reduced with a factor 2.
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Chapter 5

Hardware regarding the closed orbit correction
system

The closed orbit correction system contains several corrector magnets and beam
position monitors. The design of the sextupoles, which will be used as corrector
magnets, is discussed in §5.2, the design of the window-frame corrector magnets in
§5.3. Furthermore a brief study of the beam position monitors is represented in §5.4
followed by a summary of the results in §5.5. But first the basic principles used for
the magnet design are discussed in §5.1.

5.1 Introduction

The magnetic fields in the magnets will be induced with currents through the coils around the
magnet-poles. The current required for a certain induction is found using Ampere’s law:

fH.dl = NI (5.1)

In this formula N.I is the total current through all the windings in the coil and H is the
magnetic field strength. The magnetic field is given by H = B/up,; with p_the relative
magnetic permeability.

The effect that a magnet has on the particle trajectory depends completely on the integrated
field strengths. E.g. the deflection of the electron beam depends on the field integral /B.dl,
and the chromaticity in a sextupole depends on the integrated sextupole strength /k, dl. Based
on the requirements on the deflection or chromaticity, the required induction can be
calculated if the effective length of the magnet is known.

The effective length of a magnet is defined as:
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B.di
.

: ' (5.2)

max

The field lines outside the magnet yoke (the fringe fields) give an extra contribution to the
field integral. As a consequence the effective length of a magnet is larger than its mechanical
length. The effective lengths in a dipole and quadrupole are [Mut95].

Ly=1L,

'yoke

+ k.R, with  k =2.4 for adipole
and 0.9 <k < 1.1 for a quadrupole.

In this formula L, is the length and R the aperture radius of the magnet; k is a constant

dependent on the magnet design. The effective length for quadrupole fields is more than
twice as small as the effective length for dipole fields.

This decrease in effective length is a consequence of the proportionality of the induction B to
the distance w.r.t. the magnetic axis r. Because the induction in a sextupole is proportional to
B~ 1% its effective length will be further decreased. The size of the effective length for a
sextupole has not been found in literature, and must therefore be measured for the prototype
EUTERPE-sextupole.

In order to estimate the quality of the magnetic field in the designed magnets; the magnetic
fields in the magnets will be described as the summation over the multipole components.

k’l
B = En;'_ r". (5'3)

with k, the harmonic components; e.g. k, is the dipole coefficient. In an ideal dipole, no
multipole fields are present and all values of k, with n#0 are equal to zero. The description of
the error fields in their harmonic components is called harmonic analysis.

5.2 Design of the sextupoles

The sextupoles in the EUTERPE-ring have been designed to generate both sextupole and
dipole corrector fields. The sextupole field is produced by sending equal currents through all
coils; the direction of the currents through the coils around successive poles is reversed. The
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horizontal and vertical corrector fields are generated with additional currents through the coils
around opposite poles.

The design of the sextupoles is discussed in this paragraph. The requirements on the sextupoles
are determined and listed in § 5.2.1. According to these requirements a prototype sextupole
has been designed; the design is discussed in §5.2.2. The field profile in this sextupole has been
determined with simulations in the software-packet POISSON; the calculated field profiles are
shown in § 5.2.3.

5.2.1 Requirements on the EUTERPE sextupoles

The sextupoles in the EUTERPE ring have to satisfy both mechanical conditions and
requirements on the field profiles. These requirements are treated separately below.

The dimensions of the sextupoles are limited by the size of the vacuum chamber and by the
space available in the lattice. The aperture of the sextupoles must be several millimetres larger
than the size of the vacuum chamber (d = 48 mm). This safety margin required for the
positioning of the sextupoles is the equal to the margin required for the positioning of the
quadrupoles (3mm).

Unlike the quadrupoles the sextupoles can not pass the ends of the vacuum chamber and have
to be assembled around the vacuum chamber. As a consequence the sextupoles must be
divisible into two parts.

The length of the sextupoles is limited by the space between the bellows and quadrupoles in
between which the sextupoles are placed. The available lattice space is ca 150 mm. In order to
avoid excessive synchrotron radiation hitting the sextupoles, the total diameter of the

sextupoles must remain smaller than 270 mm.

All mechanical requirements are listed in table 5.1.
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Table 5.1 The requirements on the geometry of the sextupoles

Requirement Cause
d>48 mm This is the diameter of the vacuum chamber.
Leeys 150 mm ¥ This is the space reserved for the insertion of the
sextupoles.
dp < 270 mm *¥ To avoid blocking of the synchrotron radiation.
The mantle must be constructed | The sextupoles have to be constructed around the
out of two parts vacuum chamber.

&) ] .. is the total mechanical length of the sextupole including the coils.

mech

Ge) . is the outer diameter of the sextupole

The field profiles in the sextupoles have to satisfy certain conditions too. The most important
parameter in the sextupoles is the sextupole strength integrated over the electron trajectory

[kyds = [ Bp k, ds = [ % (:—Zg]ds, (5.4)
r

k,' is the sextupole strength normalised with respect to Bp, which is a measure for the
momentum of the electrons; Bp=1.33 for the 400 MeV electrons in the EUTERPE ring. The
normalised sextupole strength is mentioned, because it is used in MAD. The maximum value of
the integrated sextupole strength is [k, ds = 28 Tm'', for S1 in the HBSB mode. The required
sextupole coefficient (k,) still depends on the effective length of the sextupole.

The required field integral for the correction (Jk,.ds) is calculated with eq. (2.22)

Au' = f—Bd—s
Bp

, with u = x, y.

The maximum deflection in the corrector magnets is Au’=1.5 mrad, which gives for the
required field integral [k,.ds = 2.10”.

During the acceleration of the electrons the strengths of the sextupole fields have to increase
proportional to the electron energy. The time constant of the inductance in the coils, has to be
smaller than the time required for the acceleration of the electrons from 75 to 400 MeV, which
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is ca 3 seconds.

Table 5.2 The requirements on the induction in the sextupoles

Requirement Reason

[ k,.ds > 75 T/m This equals the required integrated sextupole-strength
for S1 (HBSB mode).

[ ko.ds > 2.10° Tm The field integral required for a 1.5 mrad deflection of
400 MeV electrons

7 (inductance) < 3 seconds The sextupole strength is increased proportionally to

the electron energy

Ak,/k, < 5 % for r<10mm The relative field error in the beam domain has to be
smaller than 5 %

Other aspects taken into account in the design of the sextupoles are construction costs and the

power required during operation.

- The construction costs will be minimised by keeping the mechanical design as simple as
possible. E.g. a prototype sextupole has been constructed out of solid iron instead of the
laminated iron which is used for the quadrupoles and dipoles and which is more difficult to
manufacture.

- Furthermore the total size of the sextupole is minimised in order to reserve as much space in
the EUTERPE lattice as possible.

5.2.2 The prototype sextupole

Based on the requirements in the previous paragraph a prototype sextupole is
designed. The geometry of the sextupole is determined in §5.2.2.1. With the use of
‘Poisson’ the field profiles in the sextupole are calculated. The generated sextupole
field is shown in §5.2.2.3; the corrector fields in §5.2.2.3. The specifications of the
coils are given in §5.2.2.3. Finally the field profile in a sextupole in full operation -
with additional horizontal and vertical correction - is discussed.
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5.2.2.1 The geometry of the sextupole

The geometry of the sextupole depends on the requirements listed in table 5.1. The prototype
sextupole is shown in fig. 5.1. It has an aperture diameter of 51mm, which equals the aperture
radius of the quadrupoles. The mechanical length of the sextupole is 75 mm. Due to the fringe
fields the effective length of the sextupole is estimated to increased L,~85+10mm, which
results in a required sextupole strength of k, ~ 880 Tm. The effective length of the sextupoles
has a large uncertainty, because the value has not been found in literature.

Fig.5.1 The prototype sextupole for the EUTERPE ring
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The pole-width of the sextupoles is 20 mm. Due to this finite width of the poles error-fields are
introduced. These errors depend on the aperture radius and the pole-width. The relative error
in the EUTERPE sextupole with an aperture radius equal to 25.5 mm is less than 2 % in the
region with radius r = 10mm around the magnetic axis [Mon85]. These field-errors are several
times smaller than the required accuracy.

The ideal pole shape is described by a equipotential surface, due to the fact that the magnetic
field is directed perpendicularly to the pole surface. These surfaces are found with the poisson
equation derived in appendix F. The ideal pole shape of a sextupole satisfies

3+ 3xy? = R3. : (5.5)

R is the distance between the pole and the magnet axis, which is equal to R=25.5 mm for the
EUTERPE sextupole. The ideal pole-shape is approximated by a circle with a radius p=17.2
mm, which makes the poles easier to manufacture. The difference between the ideal pole
surface and the circle approximation is at every position less than 0.013 mm and can be
neglected.

5.2.2.2 The generation of the sextupole field

The sextupole field is generated with currents through all coils. Using Ampere’s law, and with
B=1/2.k, r* the total required current can be calculated

} _li _ kR 3
\'extupole -
o Ho

6,

= 1935 A.turns.

The total current NI = 1935 A.turns corresponds to a prototype sextupole with an effective
length of L ;=85 mm.

This value is verified with simulations in the program POISSON (see appendix F). With the
program the induction in the sextupole is determined as a function of the current through the
coils. In Poisson the induction is calculated with the Poisson equation [Poi91]. Only field
profiles in planes in which the magnetic induction is symmetric can be calculated.

The field profile in the middle of the sextupole perpendicular to the particle trajectory is shown
in fig. 5.2.

-56-



Chapter 5. Hardware regarding the closed orbit correction system

Table 5.3 Harmonic components of the
generated field shown in fig. 5.2.

ko 1 G

k, 0.1 G/cm
k/(21) | 440 G/cm?
ky/(31) -0.1 G/em®
kg /(8Y) 0.04 G/cm®

k
Fig. 5.2 The generated sextupole field with B = Y —"1 r".
n!

The required sextupole field k, = 880 T/m? (=880 G/cnl ) is generated with a total current
NI=2040 A.turns; this is about 5 % larger than the value calculated with Ampere’s law above.
The extra number of Ampere.turns necessary, for the generation of the sextupole field is a
consequence of the contribution of the higher order field components to the field integral. In
the region of interest, the relative contributions of the higher order field components to the
induction are small with respect to the sextupole field (see harmonic components in table 5.3).
Even the dodecapole component (kg), which is a result of the finite pole width, is negligible.
Within a radius of 10 mm around the magnetic axis the induction differs less than 3 % in
comparison to the induction of an ideal sextupole.

The field components are calculated above in the case of an ideal sextupole. Due to pole
misalignments the field profile could be distorted. The distortion of the field profile is expected
to be largest if the poles are displaced in the radial direction. In table 5.4 the effect on the
harmonic components is shown of the displacement of one pole in the radial direction.

Table 5.4 The effects of the displacement of pole 2 on the field profile.

Displacement |k, (G) |k (Glem) |k, /(4D | & /(8Y) Ak k)
(G/cm?) (G/cm®) r < 10mm

dy=0.2mm 7 -3 438 0.003 <1%

dy=1.0mm 30 18 396 3 <3%
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The induction in a sextupole with a pole 1 mm displaced still satisfies the condition that the
relative error in the sextupole coefficient is less than 5 %. However the generated dipole and
quadrupole fields are large. A field error equal to B = 30 G results in a 0.3mrad deflection,
which is not acceptable. In principle the field errors can be corrected with additional currents
through the coils, but this is not desirable. With with these currents the uniformity of the
sextupoles is broken. If the displacements of the poles remain smaller than Ay = 0.1 mm both
the dipole and quadrupole fields are negligible.

As a consequence of the manufacturing technique used for the production of the prototype
sextupole all displacement errors and surface errors are reduced to less than 0.05 mm.

5.2.3 Generation of the dipole fields in the sextupole

The sextupoles will be used as both horizontal and vertical correctors. For the
correction it is necessary to induce dipole fields in the sextupoles. In this paragraph
the generation of the dipole fields in the sextupole is discussed.

The corrector magnets have to be able to deflect the electron with Au’ = 1.5 mrad. The
effective length of the sextupole used as corrector magnet becomes:

L

eﬂ'zL

'yoke

+24 R = 136 mm,

with R the aperture radius (R=25.5 mm) and L,,,...x the pole length (75mm). The field
integral needed for the correction are equal to Jk,.dl = 2.1073, as a consequence the strength of
the dipole field in the sextupole must be at least k,~150G.

The sextupole is used as a horizontal corrector with the generation vertical dipole-field; this
dipole-field can be produced if currents are injected through the coils around pole 2 and 5. The
field generated with a total current NI=340 A.turns through the coils around these poles is
shown in figure 5.4a. In the region of interest a dipole field is generated. The field deteriorates
quickly if the distance to the magnet axis is increased; the maximum values of the relative field
error (4B,/B,) and the coupling coefficient (B /B ) are about 25 % within a radius of 10 mm
around the magnetic axis, see table 5.5. The sextupole component of the generated field is the
main component of the error field.
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The homogeneity of the field is increased if additional currents are sent through the coils
around pole 1, 3, 4 and 6. Simulations show that the homogeneity of the induction is best if the
current through these coils is 50% of the current through coil 2 and 5. The maximum values of
the coupling coefficient (B/B,) and the relative field error (AR /B ) are reduced to less than 2
% within the region of interest, see table 5.5. The sextupole coefficient in the induction has
vanished. With the insertion of additional currents through the coils around pole 1, 3, 4 and 6
the field strength around the magnet axis is ca 50 % increased to B=150G.

The currents needed for the generation of an induction B=150 G can be compared to the
required currents calculated with Ampere’s law for a dipole with an aperture radius R=25.5
mm: NI =305 A.turns. The extra currents required in the sextupole are a consequence of the
divergence of the field in the area around the magnet axis.

Table 5.5 Harmonic components of the generated vertical dipole field

Currents (ABJB ) | (ABJB) s | o k, k2 |k, 14
r<10mm r<10mm | [G] [G/cm] | [Glem®] | [Glem']

I, =360 A.turns' | 25 % 25 % 101 -1.107% |26 2

I,=360 Aturns | 0.6 % 1.5% 152 -4.10° |2.10° 3

I, =180 A.turns

!, is the current through the coils around pole 2 and 5
2 [, is the current through the coils around pole 1, 3, 4 and 6.
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Fig. 5.3 The sextupole used as a horizontal corrector; fig. a) with currents through the
coils around pole 2 and 5 (I,=500 A.turns) and fig. b) with currents through all

coils (I, = 500 A.turns, I, =250 A.turns).

With the generation of a vertical dipole field the sextupole can be used as a horizontal
corrector. The maximum required field strength is k, = 150 G. A dipole field with this strength
is produced if a total current /=310 A.turns is injected in each of the coils around pole 1, 3, 4
and 5. Due to the pole symmetry the error fields are very small. The maximum values of B/B,
and AB/B, are less than 2 % in the region of interest. A further reduction of the error fields
with the use of additional currents through the coils around pole 2 and 5 is not necessary.

Table 5.6 The generation of the horizontal dipole field

Current (AB/B)mx | BBl | ko k, k, k,
r<10mm | r<10mm | [G] [G/em] | [G/em’] | [Glem]
1=310 A.turns 1.6 % 0.6 % 150 |1.10% |[3.10% |3

The decapole-component of the magnetic field is comparatively strong. However, the

contribution of the decapole-component to the total induction is still very small.
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~

Fig. 5.4 The generated correctorfield in the horizontal direction

5.2.4 Coil specifications

With the currents required for the generation of the different fields known, the
specifications of the coils around the poles can be determined.

The total current through the coils must be sufficient for the generation of the maximum ‘
sextupole and corrector fields. The maximum current required for the generation of the
corrector fields is NI=480 turns through coil 1, 3, 4 or 6 in the case of 1.5 mrad deflection of
the beam in both directions. The current through coil 2 and 5 never exceeds NI=360 A.turns.
For reasons of uniformity all coils will be equal.

The coil around each pole will be divided in two parts: one part for the generation of the
sextupole field (NI=2040A.turns), the other for the generation of both corrector fields
(NI=480A.turns). In practice these two coils are set in serie, which reduces the number of
power supplies.

The currents through the coils around opposite poles are always equal, even if additional
corrector fields are generated (see appendix D). The coils around opposite poles are therefore
connected, which reduces the number of power supplies per sextupole to 3.

The wires used for the coils have a maximum current /=7A, which is the maximum current
provided by the original power supplies. The conductive area in the wire is 2.5 x 1.5 mm? The
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specifications of the coils are summarised in table 5.7.

Table 5.7 Specifications of the coils around the poles of the sextupoles.

Parameter Size
Maximum current L.=TA
Conductive area per winding A=25x1.5 mm?’

Number of turns inserted for the generation

of the: - sextupble field N, =272 turns
- corrector fields N, =100 turns
Total number of turns N,, =372 turns

Maximum current for the generation of the

- sextupole field (Nispuupotedmax = 1905 A.turns
- corrector fields (Niorr)max =700 A.turns
Total current (Vi) = 2604 A.turns.
Total size per coil Thickness: 25 mm
Length: 85 mm (in radial direction)
Total length: 126 mm (along s-axis)
Time constant for the generation of the T=0.1s*
sextupole field

*The time constant of the inductance is calculated in appendix D.

The total number of turns is sufficient for the generation of the fields. The division of the turns
has to be adjusted to N, =302 and N = 70.

The coils in the sextupole are winded so that they increase the total length of the sextupoles as
little as possible. The coils are therefore not winded in a triangular form, but the top of the
coils is flattened. The total length of the sextupoles becomes L,, = 126 mm (see appendix D)

5.2.4 Field profile in a sextupole in full operation

The field profile in a sextupole used both as a horizontal and vertical corrector with maximum
correction settings is shown in fig. 5.6. The resulting field profile is just a superposition of the
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elementary fields, shown in fig. 5.6b. The harmonic analysis of the field shows that the error-
fields are very small. The main contribution to the error field comes from the decapole field,
which is introduced with the generation of the correction fields. The decapole component is
too small to have a significant effect on the closed orbit.

‘>> (, Sextupole

‘ . field

I i
i

S .
(@i)))x‘( ! {] HT e

TR Z> >
Z ’& “" l/ \ Horizontal
a N\ NI > Dipole fild
S—>
a) field profile in the xy-plane b) Principle harmonic fields

Fig. 5.5 The sextupole in full operation, with maximum sextupole and horizontal and vertical
dipole strength. The currents through the coils are according to table 5.8.

Table 5.8 The harmonic components in the sextupole with additional hor. and vert.
corrector fields.
Currents B, B, k, k, k, - ke
Gl |Gl |[Glm] |[Glm’] [[Glem’] | [Glem’]

1,,,= 2530 A.turns
1,,; = 1680 A.turns 152 150 0.7 440 4 0.04

I1,,s=1910 A.turns

Gx) The currents through the coils around opposite poles are equal. [, is the current through the coils around
pole 1 and 4; I,,; the current through the coils around pole 2 and 5 and [, the current through the coils
around pole 3 and 6.

In order to get an impression of the field strengths, the induction is depicted as a function of
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® Calculated B =212 +380.4*x2

750

g t Sextupole field
S
&
Dipole field
o 1 1 1 L
-10 6 -2 2 6 10
x [mm]
Fig. 5.6 The induction along the x-axis in the sextupole calculated with Poisson compa-

red to the superposition of an ideal sextupole and dipole field.

the horizontal position x in fig. 5.7. The figure shows that the approximation of the induction
by a superposition of a dipole and a sextupole field is almost perfect. All contributions from
higher order fields are negligible, which is expressed in the low values of the harmonic
components in table 5.8. There is no danger of saturation of the magnetic field. The maximum
induction in air is B = 0.6 T near the pole-edge. Within the yoke the flux density is increased;
the maximimum induction is B = 1.2 T, for which there is still no saturation.

5.3 The window frame corrector magnets

The number of sextupoles used as corrector magnets is not sufficient to correct the closed
orbit. The closed orbit distortion is further reduced if corrector magnets are inserted between
the superperiods. Therefore corrector magnets have been designed. In order to use as little
space as possible, the corrector has to deflect the beam in both the horizontal and vertical
direction.

In this paragraph the design of a prototype corrector magnet is discussed. The requirements on
the corrector magnet are already discussed in §5.2. The design of the prototype corrector
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magnet is given in §5.3.1. The field profiles calculated in Poisson are shown in §5.3.2. A
prototype corrector magnet has been constructed at the central workshop of the TUE; the
measured induction is compared with the field profiles calculated in Poisson.

5.3.1 The design of the window frame corrector magnet.

The corrector magnets are of the so called window frame type. The yoke of the magnet has the
shape of a window-frame, see fig. 5.8. The window frame shape has the main advantage that
perfect dipole fields can be generated in two directions, which is impossible with the
conventional dipoles. Furthermore the construction is very simple and easy to manufacture.

The maximum deflections of the electron beam in the window frame magnets are equal to the
maximum deflections in the sextupoles, Ax’,,,. =Ay’,,, =1.5 mrad. This corresponds to a field
integral /B.dl = 2.10° Tm. The length of the magnets is a compromise between the length of
and the field strength in the magnet. A increase in the requiréd field strength also results in an
increase in the coil size and the aperture diameter. The final length of the magnet is / = 0.05m
and the aperture diameter is d=0.08m.

The large aperture diameter in comparison to the magnet length results in a large extension of
the field along the magnet axis.
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Window frame

Coils

80 mm

Fig. 5.7 The window frame corrector magnet

5.3.1.2 Field profiles calculated with Poisson

With simulations in Poisson the induction in the window-frame magnets is determined. Firstly
the magnetic field profile is calculated in the xy-plane in the middle of the corrector. Secondly
the induction in the sy-plane - the induction along the magnetic axis - is determined.

In the horizontal and vertical direction the uniformity of the induction is almost perfect, which
is illustrated in fig. 5.8.
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a) I, = 1280 A.turns b)I,=1,= 1280 A.turns

Fig. 5.8 Field profile in the window-frame corrector in the xy-plane for correction in the
vertical direction (a) and for correction in both vertical and horizontal direction (b).

The fringe fields along the magnetic axis are extended many centimetres beyond the yoke as a
consequence of the large aperture diameter (80mm) in comparison to the magnet length
(50mm). In these fringe fields the electron beam is deflected. However the deflection of the
beam is only determined by the field integral /B.dl and is therefore not influenced by
inhomogeneities.

5.3.3 Field measurements in the window-frame corrector magnet

The induction in the corrector magnet is determined using a Hall-probe and a movable XY-
table. The experimental set-up is described in appendix E. The hysteresis in the magnet is
determined by measuring the induction at a fixed location, while changing the current.

The remnant induction equals B, = 4.5 Gauss. Compared to the rms-value of the induction
required for the correction - (B,),,~(B,)m~80 G - the remnant induction is small. With
software the hysteresis can be corrected for; otherwise the correction lattice will adjust the
corrector settings after feedback from the beam position measurements.
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Fig 5.9  Hysteresis in the window frame corrector magnet.

The induction B, in the sx-plane of the corrector magnet is measured and shown in fig. 5.10. In
the horizontal direction the induction is constant, as expected. Along the longitudinal axis the
induction is inhomogeneous. The measured induction along this axis is compared with the
induction calculated in Poisson, see fig. 5.11.

The magnitude and direction of the induction in the vertical plane is within a few percent equal

to the induction in the horizontal plane. The induction in the vertical direction is shown in
appendix E.
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Fig. 5.10
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Fig. 5.11
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Measured induction in the window frame corrector magnet in the horizontal
plane, NI = 1280 A.turns
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Comparison of the measured and calculated induction along the s-axis.
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5.4 Beam position Monitors

In this paragraph a brief study is presented on two types of beam position monitors:
the striplines and the button type monitors. The basic principles of the monitors are
given in §5.4.1. In the same paragraph the size of the output signals is theoretically
derived. Some general parameters are estimated for the EUTERPE monitors and are
given in §5.4.2. With these parameters, the expected output voltages and
difference/sum signals of the monitors are calculated. The specifications of several
monitors included in similar storage rings are given in the same paragraph. Finally
the button monitors and striplines are compared.

5.4.1 Theory concerning the button type and stripline beam position
monitors

For the successful operation of the closed orbit correction system, high resolution beam
position monitors (BPM’s) are required. Many different types of beam position monitors are
available. The button type pickup monitor is most commonly used in electron storage rings.
The monitor has the advantage of being easy to manufacture and has a very low impedance
and therefore does not disturb the beam. In this paragraph the basic principles of the button
type monitor are treated based on [Bea89]. The button type monitor is compared with the
stripline monitor, which is treated as well.

A capacitive pick-up monitor is a small button or plate, which is placed in the vacuum-

chamber. Exposed to the electric field of the beam, a mirror current will be driven into the
buttons. The induced voltage in the left button V, equals [Bea89]

VL(t) - - Vo (56)

with ¢, the azimuthal extent of the left button, / the button length, C the capacitance of the
button, I, the beam current, f3,c the electron velocity and V, a constant. The output voltage of
€q. 5.6 is just the voltage developed over a capacitance C with a current I = ¢, LI (t)/2n,c.
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Fig. 5.12 Schematic view of a circular button type position monitor.

If a resistor R placed in series with the button, the output signal is differentiated in time

IR dl,()
2np,c ar .

Vi) = Riff) = (5.7)

This principle is used in button monitors.

With the expansion of the beam current in its Fourier components the output current is found
as a function of the frequency.

I(t) = <> + 2<I,> Y A, cos (mwp), (5.8)

m=1

with A the Fourier components. Combining the Fourier expansion with eq.5.7 gives

_ V20R ol
V(w) - <I,> A(w) 2Bbc' (5.9)
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Higher harmonics are more amplified than the components with lower frequencies. The
Fourier components A, approach 1 as long as the bunch length is shorter than the wave
length of the modulation signal (A,~exp(-m’w,?0> /2) for a bunch with Gaussian
distribution).

The actual beam position is measured with two striplines on opposite sides of the beam; in the
plane of the striplines the beam position is calculated from the ratio of the difference and sum
signals. The difference and sum signals are deduced from eq 5.9. Considering only linear
terms the difference/sum signal S in a circular monitor is linear to the horizontal
displacement, x, of the beam

S = 4sin($/2) x ,

b o (5.10)

with p the aperture radius of the monitor [The94].

Several other monitor techniques are known, based on the detection of the wall current, that is
induced on the inner surface of the vacuum chamber by the electron beam, e.g. stripline
monitors. The striplines are conductive plates isolated from the vacuum chamber. Two
connectors connect the stripline to coaxial transmission lines at both ends of the plate.

The striplines serve as transmission lines for the TEM wave accompanied by the electrons.
When the beam pulse approaches the upstream end of the electrode the TEM wave is split in

COAX COAX

BEAMPIPE

COAX ' COAX

Fig. 5.13 A schematic view of a stripline beam position monitor.
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two (with the right choice of its characteristic impedance). Part of the wave flows to the other
end of the stripline and part is coupled into a detection device. At the other end of the
stripline this wave is dissipated in the resistor. When the beam accompanied by the TEM
wave approaches the downstream, the TEM is split in two again. The part of the wave
flowing to the upstream end is coupled out. The output signal is a superposition of TEM
waves. Due to interferention the maximum output signals are reached if the stripline is one
quarter of the measured wavelength /=A/4. The length of most striplines in operation equals a
quarter wave-length of the measured harmonic, but in principle lower frequencies can be

measured as well.

The response of the stripline monitor is given by

¢Z ol [ 1 1
Vw) = — <> A(w) sin |— | — + — || .
o lZC ( B, Bb)] 4D

with Z the impedance of the transmission line, B, the beam velocity and f3; the wave velocity.
The output voltage of the stripline is very similar to the output voltage of the button type
monitors. For Z=2R, the output signals are equal in the low frequency range. This is shown in

fig. 5.12.

Vout

Vbutton

Vistripline

max strripline

f
0 3GHz 6 GHz

Fig. 5.14 The output voltages of the striplines and button type monitors as a function of
the frequency, with Z=2R , B.=f,=1 and 1=2.5cm.
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5.4.2 Monitors for the EUTERPE ring.

In the previous paragraph it has been shown that the expected output signals of the two types
of monitors are of the same order. In this paragraph the size of the output signals is estimated.

The output signals of the monitors can be calculated using the equations derived in the
previous paragraph. Several parameters of the monitors are already known; therefore an
estimation of the final output signals can be made.

- The position accuracy of the monitors required for the correction system is equal to 0,, 0, <
0.1 mm for beam currents ranging from 10 mA to 200 mA.

- The aperture radius, p, of the monitors is determined by the inner diameter of the vacuum
chamber, which is 45 mm (and gives p =22.5mm).

- The monitors will be circular like the vacuum chamber in order to minimise their impedance.

- The position accuracy of the monitors in one direction is best if the azimuthal angle is
equal to =1 rad [The94].

With these parameters an impression of the output voltages and difference/sum signals of the
monitors is obtained. The difference/sum signal for a displacement of x=0.1mm is equal to

S=Miz9%,

d p (5.12)

A relatively large value. The resolution of the sum/difference signal in the storage ring in
Stanford is equal to 500 ppm [Seb94].

For the estimation of the output voltage several characteristic parameters are used:

- The minimum beam current in the EUTERPE ring is : <I,> =10mA.

- The bunch lengths ¢ in the EUTERPE ring range from 0.08 to 3.7 cm (see table 1.2); as a
result the Fourier component A,, of the beam current approximate 1 for frequencies up to 3
Ghz.

- The velocity of 400 MeV electrons nearly equals the speed of light, which gives f,c=c.
The transmission of the output signals through 50 Q-coax cables requires that the
characteristic impedance is R = 50Q.

- The length [ and the modulation frequency of the buttons are for the moment chosen to be
equal to /=1cm and f=45 MHz (the basic frequency of the beam)

With the use of the parameters estimated above the output voltage of the monitor becomes
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vias i) = LR o5 aw) E‘i = 0.9 mV.
T

»C

(5.13)

An output voltage, which should be high enough to be measurable. If the modulation
frequency is increased higher harmonics can be measured, with f=3GHz the output voltage is
ca 66 times amplified. However the signal processing in the high frequency regime is much

more difficult.

The desired resolution for the beam position monitors in the EUTERPE ring (0=0.1mm) is
comparatively low in comparison to the achieved resolutions in similar storage rings [Sco94],
[Gi193], [Seb94], [Smi94]. The most important parameters regarding the monitors used in
Daresbury, Stanford and Los Alomos are given in table 5.9.

Table 5.9 BPM parameters in other storage rings

Storage ring SPEAR (Stanford) SRS in Daresburry | MIT South Hall ring
(button type mon.) (button type mon.) (stripline monitors)

Energy 3GeV 2 GeV

fop ¥ 358 MHz 500 MHz 2865 Mhz

fneas 717 Mhz 500 Mhz 2865 Mhz

Current range 20-100 mA 20-100 mA 1-80 mA

Resolution 10 ym 10pm 0.1mm

Absolute Acc. 10 pm <100pm (rms)

Dynamic Range 40 dB 10dB unknown

Monitor size Width 155 mm not known Aperture 60 mm
Heigth 44 mm Length 24.7mm
Length 20 mm

(%)

fzr is the frequency of the rf-cacity

f ...s is the first harmonic, which is measured in the monitors.
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5.4.3 Conclusions regarding the position monitors

It is expected that a measurement accury of the beam position monitors required for the
closed orbit correction can be obtained. The output voltages of the stripline and button type
monitors are relatively large (in the order of mV for the measurement of a 45 MHz signal);
the difference/sum signals are also large due to the relatively small aperture radius
(R=25.5mm) of the vacuum chamber in the EUTERPE ring. Furthermore resolutions in the
order of Ax=10 pm have been obtained with monitors in similar storage rings.

The measurement accuracies attained with the striplines and button monitors are similar at
first sight. Stripline monitors are more difficult to manufacture, but have the advantage that
there is some experience in the group with these monitors. Stripline monitors are used for the
monitor system of the Race Track Microtron Eindhoven. However for a good comparison of
the two monitor types a more extensive study of both techniques is required. Because both
monitors are easily constructed, it would be very useful to manufacture test models of both
monitors and test them in the 45 MHz to 3 GHz regime.

5.5 Summary

The design of the hardware regarding the closed orbit correction is for the major part finished.
The design of the sextupoles and window frame corrector magnets required for the closed
orbit correction has been completed. However the monitoring techniques have been only
briefly studied.

Sixteen sextupoles are included in the EUTERPE ring; all sextupoles will be uniform and
therefore all sextupoles can be used for both the chromaticity and the closed orbit correction.
Simulations show that almost perfect dipole fields can be generated in the sextupole. The
uniformity of the generated sextupole and corrector fields is several times better than the
tolerances. The calculated induction has to be verified with field measurements in the prototype
sextupole, which is still under construction. A simple and accurate measurement of the higher
order field components is possible with a rotating coil device.

The window frame corrector magnets have been designed and a prototype magnet has been
constructed at the TUE. Field measurements in the prototype corrector magnet show that the
dipole field is very uniform and in perfect agreement with the simulations. The field integral
IB.dl along the magnet axis is more than sufficient for a deflection of 400 MeV electrons with
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Ax’=1.5mrad. Along the longitudinal axis the magnetic field is extended for many centimetres
beyond the yoke. Simulations in Poisson show that the coupling fields B/B, and B/B,, for
respectively the horizontal and vertical correction are very small.

Studies on the beam position monitors show that position resolutions of 0.1lmm should be
attainable with the use of stripline or button type monitors.
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Chapter 6

Conclusions and recommendations

The electron orbits in the storage ring EUTERPE are distorted due to lattice imperfections. An
extensive study has been made of the position and field errors of the magnetic elements, which
are the most important sources of the closed orbit distortion. The position errors are mainly
determined by the finite measurement precision during the alignment. The displacements due to
all other error sources - e.g. due to thermal expansion - are negligible. The field errors in the
elements are small.

The closed orbit distortion as a result of all possible lattice imperfections has been determined
with simulations in the computer code Methodical Accelerator Design (MAD). Because the
position errors are expected to have a gaussian distribution, the closed orbit distortion has been
determined for multiple error-configurations.

The closed orbit distortion in the EUTERPE ring are mainly determined by the position errors
of the magnetic elements. From all position errors, the closed orbit distortion is most sensitive
to the displaments of the quadrupoles. This is a result of the strong dependency of the
magnetic induction on the position in the quadrupoles; the sensitivity is increased due to the
high values of the betatron function. The field errors in the quadrupoles affect the tunes and
therefore need to further examined.

It is desired that the electron trajectory approximates the design trajectory, therefore a closed
orbit correction system is needed. Furthermore closed orbit correction is required if e.g.
undulators are included in the ring. The maximum distortion of the electron beam is for the
uncorrected orbit of almost the same size as the inner radius of the vacuum chamber. Because
the aperture of an undulator is expected to be smaller, a correction of the closed orbit
distortion is required in order to prevent a beam loss in these devices.

The closed orbit distortion can be reduced with a factor 28 in the horizontal and a factor 8 in
the vertical direction with the use of a correction system containing 36 monitors and 20
corrector magnets. The distortion can be further reduced with a factor 2 if the monitor errors
are eliminated. The resulting distortion x,,,, = 0.13£0.02 mm and y_ = 0.13+0.02 mm is of
approximately the same size as the position and read errors in the monitors.
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The number of elements of the correction system has been reduced to 24 corrector magnets
and 24 monitors, without a significant loss of the correction quality. The number of monitors
corresponds to four monitors per betatron wavelength, which is the minimum number of
monitors required to establish the amplitude and phase of the distortion.

The sextupoles will be used as corrector magnets, in order to save space in the ring. Uniform
dipole fields can be produced in the sextupoles in the horizontal as well as the vertical direction
with the injection of extra currents through the coils. The coupling coefficients B,/B, and B/B,,
remain smaller than 2 % in the region of interest if the coils around all poles used for the
generation of the correction field. The field profiles have been calculated with the use of the
program ‘Poisson’ and show that the generated sextupole field is very uniform as well
(Aky/k,< 1%, with k, the sextupole strength).

The magnetic field profiles have to be measured on the prototype sextupole, which at the
moment is under construction. Higher order field components have to be measured, which is
not possible with Hall plates. Therefore a new measurement device has to be constructed, e.g.
a rotating coil device.

The dipoles can be used as horizontal corrector magnets. However the correction is
deteriorated, if all dipoles and sextupoles are used for the correction. This is a consequence of
the fact that some of the monitors are placed directly in between two corrector magnets. The
minimization of the beam position errors results in large deflections in the two adjacent
corrector magnets and a local increase of the distortion. If one of the correctors near these
monitors is discarded, the correction is improved.

Additional corrector magnets have to be included in the long straight section in which no
sextupoles are present. The simulations show that otherwise the distance between successive
corrector magnets becomes too large.

The additional correctors are of the so-called ‘window frame’ type. The window frame
magnets have the advantage that uniform dipole fields can be generated in two directions.
Furthermore they are very easy to manufacture. The specific shape of the window frame results
in a dipole field of high quality; the calculated coupling coefficients B,/B, remain smaller than
1% in the region of interest.The first measurements on the prototype window frame magnet
show that the measured field profiles are in perfect agreement with the simulations.

The field profile in the longitudinal direction is less uniform as a result of the large aperture
radius with respect to the magnet length. Care must be taken if the correctors are inserted near
other elements. Magnetic materials will influence the field integral of the corrector and as a
consequence the deflection of the beam.
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The yokes of the window frame can be made of ordinary steel. The remnant induction in the
prototype magnet is smaller than 6 G, corresponding to a deflection equal to Au’= 0.06 mrad
of a 400 MeV electron beam. Due to the feedback of the beam position with the monitors, the
corrector settings will be adjusted.

6.2 Recommendations

Most of the error-configurations in the most sensitive mode of operation (the HBSB mode) the
misalignments resulted in resonances of the betatron oscillations in the vertical plane. This
instability can be prevented with an adjustment of the quadrupole strengths; with less vertical
focusing the working point is shifted away from the semi integer resonance line.

A brief study on beam position monitors showed that a measurement precision of 0.1 mm
should be obtainable. Two types of monitors are under consideration: button type and stripline
monitors. Both types of monitors seem to be equally suited for the EUTERPE ring. The button
type monitors have the advantage of being easier to manufacture; on the contrary, more
experience in the group is present stripline monitors. Further studies have to be done to
determine which type of monitors to use.

In this study the closed orbit distortion is corrected globally; the distortion at all positions is
weighted equally. However, the distortion can be further reduced with local correction. It is
possible that local correction is required, e.g. for the reduction of the closed orbit distortion in
the bypass. Therefore the possibilities and the necessity of local correction have to be
examined.

An integration of the monitors and optical elements of a subsection on a single support
structure is recommended. This is expected to provide perfect alignment within such a straight
section and will therefore further increase the quality of the correction system and reduce the
distortion.
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Appendix A  Methodical Accelerator Design

The software packet Methodical Accelerator Design (MAD) is used throughout this report for
the simulations of the EUTERPE ring. In this appendix the algorithms used in the program
and a short introduction to the program are given. Examples are shown of the input- and
output-files for the calculation of the closed orbit distortions before and after correction in a
lattice with multiple misalignments

The closed orbit distortions due to different kind of errors are determined with simulations in Methodical
Accelerator Design (MAD) [MADS5]. The program was developed at CERN to design accelerator rings
in 1985, but is nowadays a frequently used tool for the design of storage rings, e.g. [Saj94].

A1l Algorithms used in MAD

The program represents machine elements by transfer matrices as described in §2.2 [Wu 91], [Saj85]. The
whole ring is represented by a series of matrix multiplications. The transfer matrix R between point ‘0’
and ‘1" is defined as

Z(1) = RZ(0)

where Z represents the particle coordinate vector; the transpose of Z can be written as ZT = (x, X", y, y’, s,
s’), where x, x’, ¥, y’, s and s’ are the particle coordinates. In first-order the matrix multiplications are
described by 2.3.

R=R(m)R(n-1)....R(2)R(1)

Where R are the first-order transfer matrices. However first order matrices are not sufficient to describe
the machine behaviour, e.g. sextupoles can only be represented by second-order matrices. The matrix
multiplication for the second-order matrices is defined as:

Tp ) = 2, RTD) + Y, ) Ty (DR(DR, (1),

R(1) and R(2) are the first-order matrices between point ‘0' and ‘1', and ‘1' and ‘2' respectively; the T
matrices represent the second-order matrices in these intervals. The equation truncates the matrices to
second order. No individual T matrices elements are multiplied together, which would yield terms of
higher order than the second. These terms can not be represented by second-order matrices.

The closed orbit distortion is deduced from the eigenvector of the transfer matrix of the whole ring is

-85-



Appendix A. Methodical Accelerator Design

determined. The closed orbit distortion at a particular location is found as a function of the location s with
the use of the elementary transfer matrices. The tunes can be calculated by tracking electrons with small
deviations from the calculated closed orbit and determining the oscillation frequency.

A2 The use of the program

Many different element types can be inserted, from normal magnets, such as dipoles, quadrupoles, etc to
rf-cavities, undulators, correction elements, etc. For the simulations in this study the EUTERPE lattice has
been inserted in the program. The most importent magnetic elements in the EUTERPE ring are defined;
the input is listed in fig. Al.

Different kind of errors can be assigned to the elements in the lattice. All alignment errors in the
EUTERPE ring have a gaussion distributions. Random numbers with a Gaussian distribution and unit
standard deviation are available in the program. A particular sequence of gaussion numbers is selected
with the SEED option. The misalignments are assigned to the elements with the EALIGN command (see
fig. Al). The random errors assigned to the elements with fig. Al as input is given in fig. A2.

Many ring parameters can be calculated with the ‘MAD’. This study was mainly concentrated on the
parameters in the Twiss-table, which are given in figure A2. The parameters given are: the closed orbit
distortions x,, and y,, the tunes v, and v, (referred to with Qx and Qy in MAD), chromaticity &, and £,
(Qx’ and Qy’in MAD), the maximum betatron amplitudes B, and p,, the dispersions D, and D, the
momentum compaction factor &, the total ring length s and the increase of the ringlengt As and finally the
transition energy Y.

For the closed orbit correction the command CORRECT is used; the closed orbit correction settings in the
corrector magnets are calculated according to the Micado-method [Aut73]. Parameters used in the
statement are:

Error The desired accuracy of the correction (peak to peak error of the closed orbit)

Neorr The number of correctors to be used.
The description given above is certainly not complete; many other parameters can be and have been
adjusted in the simulations.

sk 3 2k ok ok 3k 2k o 3k 3k 3k ok 3k ok 3 ok ok o6 ok ok o ok e ok Input file in MAD sesfeok ookl o ok s ok ok ek ok ok ok ok s ok

option, echo, keyword=3
assign,echo=echo.mad

TITLE, HBSB
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! Test of a closed orbit correction system

! with random displacements of all dipoles, quadrupoles and sextupoles

! Comparison of 10 runs starting with seed=123...

! The correction is with lattice D with and without extra monitor/kicker in long straight section
! Epsilon = 0.01 mm, monitors displaced, with monitor read errors

!**************** Deﬁﬂition of the nng ok 3k ok ok ofe e o 3 ke e s ok ok sk e ok

| #***x* Definition of the drift spaces ****

xm=0.23 ! Distance between sextupoles and monitors

xm2=0.175 ! Distance between sextupoles and the second monitors
xq=0.08 ! Distance between the first quad and the monitor

ol: drift, type=dr, 1=1.000
ola: dr, I=xm

olb: dr, 1=1.00-xm
02: dr, 1=0.450
o2a: dr, I=xm

o2b: dr, 1=0.45-xm
03: dr, 1=0.600
o3a: dr, I=xm

03b: dr, 1=0.60-xm
04: dr, 1=0.100

05: dr, 1=0.165

oSa: dr, I=xq

o5b: dr, 1=0.165-xq

! **+* Magnet Definition (HBSB mode) ***
b: sbend, type=di, 1 =0.516, angle=raddeg*30, &
el=raddeg*15, e2=raddeg*15, hgap=0.0125, fint=0.5

ql: quadrupole, type=qu, 1=0.274, k1= 4.396
q2: quadrupole, type=qu, 1=0.274, k1=-4.500
q3: quadrupole, type=qu, 1=0.274, k1= 7.351
q4: quadrupole, type=qu, 1=0.274, k1=-1.794

s1: sextupole, type=se, 1=0.05, k2= 832.932
s2: sextupole, type=se, 1=0.05, k2=-1122.946

! #*** definition of the correction elements, length=0 ****

m: monitor, type=mon, 1=0 ! monitor in both horizontal and vertical direction
hk: hkicker, type=ki, I=0 ! Horizontal kicker

k : kicker, type=ki,]=0 ! kicker in both horizontal and vertical direction

1 ¥¥%+* Ring structure *****
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pl: line=(q1,05a,m,05b,q2)
p2: line=(q3,05a,m,05b,q4) ! vertical kicker in the middle of the quadrupole-doublet

! cell: line=(01,p1,03) ! Definition of the ring without correction
! cel2: line=(02,s1,04,p2,04,52,02)
! super: line=(cell,b,cel2,b,-cel2,b,-cell)

cella: line=(o1,p1,03a,m,03b)

cel2a: line=(02,k,s1,04,p2,04,52,k,02a,m,02b)

! ***Definition of lattice D, with additional corrector and magnet in long straight section

super: line=(cella,b,cel2a,b,-cel2a,b,-cella,m,k)
euterpe: line=(4*super)

USE, euterpe
]k Calculation of the closed orbit distortions *kok
print
Twiss ! Calculate Twiss parameters for the ideal lattice
EOPT, SEED=123456789 ! start reading "random"-numbers at position 123456789
y1:=0.0001 ! misalignment: 0.1mm or 0.1mrad
EALIGN, type=di,qu,se & ! *** all dipoles, quadrupoles and sextupoles are misaligned ***

dx=yl*gauss(), dy=yl*gauss(), ds=yl*gauss(),&
dphi= y1*gauss(),dtheta= y1*gauss(),dpsi= y1*gauss()
TWISS ! Calculate Twiss-parameters for the lattice with misalignments
EALIGN, type=mon & | #%*  all monitors are misaligned ***
dx=yl*gauss(), dy=yl*gauss(), ds=yl*gauss(),&
dphi= y1*gauss(),dtheta= y1*gauss(),dpsi= y1*gauss(), &

mrex= yl*gauss(), mrey=yl*gauss() ! *¥** monitor read errors ***
eprint, type=b,mon ! *** print misalignment errors for verification
SELECT, OPTICS, full I #*** Create dataset for plot-file ****
OPTICS, filename="p2m.dr", column=s,betx,x,bety,y,dx,dy
putorbit ! ¥** Calculate monitor-readings for the uncorrected orbit
putkick, filename="kick0" ! *¥* Save zero corrector settings
CORRECT, error=0.00001,iterate=5 ,c2list ! *** Calculate the corrector settings with the MICADO method
twiss ! ¥** Calculate Twiss-parameters after correction
getkick, filename="kick0" 1 *** Reset corrector settings to zero

1 #*** Second run, the same parameters are calculated for the same lattice, but with different alignment errors *
EOPT, SEED=223456789 ! start reading "random"-numbers at position 123456789
EALIGN, type=di,qu,se & 1 %** all elements are misaligned ***
dx=yl*gauss(), dy=yl*gauss(), ds=yl*gaussQ,&

! *%x* Run 3 to 10
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Stop

Fig. A.1 Input file for MAD; calculations of the closed orbit distortion in the EUTERPE ring before
and after correction for one error configuration.

HBSB *MAD* Version: 8.9/0 Run: 10/08/95
17.14.43
Linear lattice functions. TWISS line: EUTERPE range: #S/#E
Delta(p)/p: 0.000000 symm: F super: 1 page
1

ELEMENT SEQUENCE I HORIZONTAL I VERTICAL
pos. element occ. dist I betax alfax mux x(co) px({co) Dx Dpx I betay alfay muy y{co) pyl(co) Dy
Dpy
no. name no. [m] I [m] [$8] [2pi] {mm]) [(.001} [m) f1) I {m] 1] {2pi] {mm) {.001] [m]
(1)
begin EUTERPE 1 0.000 23.803 0.000 0.000 0.000 0.000 0.000 0.000 0.475 0.000 0.000 0.000 0.000 0.000
0.000

end EUTERPE 1 40.000 23.803 0.000 S.131 0.000 0.000 0.000 0.000 0.475 0.000 2.470 0.000 0.000 0.000
0.000

total length = 40.000000 ox = $.130718 Qy = 2.469618

delta(s) = 0.000000 mm ox* = 0.006697 Qv = 0.213699

alfa = 0.109009E-01 betax (max}) = 23.844893 betay (max) = 11.120178

gamma (tr) = 9.577861 Dx (max) = 0.467609 Dy (max) = 0.000000
Dx(r.m.s.) = 0.261222 Dy(r.m.s8.) = 0.000000
xco (max) = 0.000000 yco (max) = 0.000000
xco{r.m.5.}) = 0.000000 yco(r.m.s.) = 0.000000

HBSB *MAD" Version: 8.9/0 Run: 10/08/95

17.14.43

Linear lattice functions. TWISS line: EUTERPE range: $S/4E

Delta(p)/p: 0.000000 symm: F super: 1 page

1

ELEMENT SEQUENCE I HORIZONTAL I VERTICAL

pos. element occ. dist I betax alfax mux x(co) pxico) Dx Dpx I betay alfay muy ylco) pylco) Dy

Dpy

no. name no. (m) I {m) {1] [2pi] (] [.001) [m] ] I [m) (1] [2pi] [mm) [.001] (m)

(1]

begin EUTERPE 1 0.000 27.639 -0.037 0.000 -3.435 -0.084 -0.134-0.003 0.000 0.000 0.000 -0.402 -0.733 0.001

0.013

end EUTERPE 1 40.000 27.806 -0.054 5.127 -3.435 -0.084 -0.134-0.003 0.000 0.000 0.000 -0.402 -0.733 0.001
0.013

total length = 40.000000 ox = 5.127398 Qy = 0.000000
delta(s) = -0.153988 mm ox* - 0.226837 Qy* = 0.000000
alfa - 0.107609E-01 betax (max) L4 27.806198 betay (max) = 0.000000
gamma(tr) = 9.639970 Dx (max) = 0.519294 Dy (max) - 0.175300
Dx(r.m.s.) = 0.266227 Dy(r.m.s.) = 0.059667
xco (max) - 6.690439 yco {max}) = 4.329595
xco(r.m.g8.}) = 1.937330 yco(r.m.s5.) = 1.966563
HBSB *MAD* Version: 8.9/0 Run: 10/08/95
17.14.43
Inperfections. EPRINT line: EUTERPE range: $#S/4E
symm: F super: 1 page
1
Element Displ in (nwm) Rotations in (mrad) Pield errors in
1.0E-3
pos. element occ. DX DY DS DPHI DTHETA DPSI Re (KOL) Im(KOL)
no. name no. Re(K1L} Im({K1L) Re(K2L) Im(K2L) Re(K3L) Im(K3L} Re (K4L) Im(K4L)
Re{K5L) Im{K5L) Re{K6L) Im{K6L) Re (K7L) Im(K7L) etc.
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108 1 0.64781E-01 -0.12988E-02 0.72286E-01 0.49999E-01 -0.25334E-01 0.66710E-01
26 B 2 -0.88420E-01 -0.37254E-01 -0.31126E-01 -0.18270 -0.30344E-01 0.49028E-01
42 B 3 -0.11949 0.10949E-01 -0.20702 0.10670 0.15524 0.11976
63 B 4 0.52519E-01 0.74144E-01 0.99403E-01  0.10885 0.32891E-01 -0.85307g-01
79 B § -0.63674E-02 -0.10769 0.45890E-02 -0.96416E-01 -0.46986E-01 0.75416E-01
95 B 6 <-0.77851E-01 0.53565E-01 0.11800 -0.38241E-01 0.11129 -0.72678E-01
116 B 7 =-0.25728E-01 0.35755E-01 -0.32336E-01 -0.11471E-01 0.27106E-01 -0.16042E-01
1328 8 =-0.12230 0.95380E-01 -0.17152E-01 -0.89743E-01 -0.17639E-01 0.84012E-01
148 B 9 -0.16131 0.10590 -0.11427 -0.42311E-01 -0.67079E-01 -0.17262
169 B 10 0.52007E-01 0.69732E-02 -0.6107SE-01 -0.74339E-01 -0.13513E-01 0.33352E-01
185 B 11 -0.13272 ~0.61990E-01 -0.70708E-01 0.10701 ~0.18648 0.14235e-01
201 B 12  0.17805E-01 ~-0.34584E-01  0.45354E-01 -0.10438 0.25252E-01 -0.10051E-01
4 1 -0.91928E-01 0.39680E-01 0.272758-01 0.93561E-01 -0.14421 0.24770
8 M 2 -0.10256 0.96915E-01 -0.68633E-01 -0.12116 -0.83155E-01 -0.95596E-01
17 M 3 0.29599E-01 -0.23428 ~0.16187 0.63002B-01 0.37668E-01 0.17964
24 M 4 -0.10595 0.15275 0.18160 0.26827E-01 -0.17919E-01 0.58868E-01
28 M 5 0.79228E-01 0.1572S -0.55595E-01  0.83241E-01 -0.57971E-01 0.53885E-01
35 M 6 0.81567E-01 0.35956E-01 -0.92267eE-01 0.11856 -0.12823 0.57057E-01
M 7 -0.11714 -0.59156E-01 0.40322E-02 0.18146E-01 0.48916E-01 0.90746E-01
48 M 8 0.15262 0.10873 -0.54545E-01 -0.81267E-01 -0.22619 0.67564E-01
52 M 9 0.69235E-01 0.61581E-02 ~0.16535 0.18279 0.76814E-02 0.13968
ST M 10 -0.13991 0.67379E-01  0.63480E-01 0.47421E-01 0.34102E-01 0.83913E-01
61 M 11 -0.19063 -0.79652E-01 -0.38649E-01 -0.87540E~01 -0.11894 0.14750
70 M 12 0.83159E-01 -0.29276E-01 -0.30701E-01 0.58335e-01 -0.83881E-01 -0.24255
M 13 -0.19590 0.36057E-01  0.13140E-01 0.47300E-01 -0.16766E-01 -0.12365
81 M 14 -0.13365 0.16341E-01 -0.86702E-01 0.11131 -0.46746E-01 -0.11922E-02
88 M 15 -0.46094E-01  0.15130 0.61560E-01 -0.48045E-01  0.21512E-01 0.16035
97 M 16 -0.51927E-01 -0.26884E-01 0.60821E-01 -0.13967 0.16097 ~0.37447E-01
101 M 17  0.23240E-01  0.81412E-01  0.82765E-01 -0.32815E-01  0.19350 0.58425E-02
105 M 18 -0.20654 -0.29079E-01 -0.11241E-01 -0.24746 -0.52891E-02  0.30200E-01
110 M 19 0.29221 ~0.46160E-01 -0.70521E-01 0.12304 0.66344E-01 -0.14693
114 M 20 0.36292E-01 0.93010E-01 -0.96150E-01 -0.82926E-03 0.20641 0.78165E-01
123 M 21 -0.46725E-01 0.93052E-01  0.10393 -0.10907 0.18743 -0.16819E-01
130 M 22 -0.13729 -0.24463E-01 0.99535E-02 0.68478E-01 -0.67785E-01 0.85359E-01
134 M 23 -0.14317 -0.55198E-01  0.49572E-01 -0.15739 0.11348E-01  0.22580E-02
41 M 24 0.19999 0.24586E-01  0.13481 0.77058E-01 -0.82821E-01 -0.29127E-03
150 M 25 0.10451 -0.63975E-01 -0.17732 -0.20480E-01 0.77178E-01  0.21776E-02
154 M 26 0.16607 0.6768SE-02 -0.22459E-01 0.10696 0.40173E-01 -0.10381
158 M 27 -0.27461E-02 0.84410E-03 0.82356E-02 0.86418E-01 <-0.24673E-01 -0.17641
163 M 28 -0.15883 0.21775 0.27277e-01 0.22017E-01  0.20957 -0.11683
167 M 29 -0.18861 -0.28432E-01 0.13081 -0.12942E-01 0.54095E-01 0.99963E-01
176 ¥ 30 0.43170E-01 0.70506E-01  0.15967 0.15086 ~0.40722E-01 -0.18529
183 M 31 0.65641E-01 0.84376E-01 -0.11034 -0.34982E-01 -0.17180 0.84269E-02
187 M 32 -0.16504E-01 0.62193E-01 -0.98804E-01 -0.40226E-01 -0.26728E-01 -0.18489
194 M 33  0.11109E-01 ©0.10519 -0.18902 0.18901E-01 -0.1B270E-01 -0.25872
203 M 34 0.15715 0.52809E-01 0.17128 0.33408E-01 -0.11524 0.11634
207 M 35  0.11313 -0.26398E-01 -0.29406E-01 ©0.25479E-01  0.17850E-01 -0.12605
2l1 M 36 -0.68435E-01 -0.18432E-02 -0.25366E-01 0.45790E-01 -0.10403 ~0.24333
HBSB “MAD* Version: 8.9/0 Run: 10/08/95
17.14.43
Corrector strengths (before correction) for beam line EUTERPE page
1
horizontal vertical
Correctors used: 0 (of 20) 0 (of 20)
Maximum strengths: 0.000000 mrad at [ 0] 0.000000 mrad at i 0]
R.m.s. strengths: 0.000000 mrad 0.000000 mrad
HBSB "MAD® Version: 8.9/0 Run: 10/08/95
17.14.43
Orbit and dispersion at monitors {(before correction) for beam line EUTERPE page
1
horizontal vertical
Orbit monitors used: 36 36
Dispersion monitors use 36 36
Total monitors: 36 36
Minimum dispersion: -0.133637 m at M [ 36) -0.171994 m at X ( 16}
Maximum dispersion: 0.479969 m at M { 331 0.167573 m at M [ 20
R.m.s. dispersion: 0.232591 m 0.063519 m
Minimum readings: ~3.458692 mm at M t 36] -4.295654 mm at M { 20)
Maximum readings: 6.657272 wen at M { 18] 4.338627 mm at M [ 16)
R.m.8. readings: 2.096277 mm 2.086537 mm
HBSB *MAD" Version: 8.9/0 Run: 10/08/95
17.14.43
Corrector strengths (after correction) for beam line EUTERPE page
Number name ocecur. position xcorr ycorr betx bety max muy
effect
[m] (mrad] [mrad) [m} {m] [2*pi} [2*pi)
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12 X 1 3.279000 -0.069611 0.866792 2.719596 3.3745%4 0.445290 0.234413
22 K 2 4.292000 -0.405492 0.293309 1.410731 4.684111 0.503618 0.288091
30 K 3 5.708000 0.266899 -0.794009 1.410731 4.684111 0.779061 0.329313
40 K 4 6.721000 -0.265828 1.275964 2.719596 3.3745%4 0.8373%0 0.382991
53 K 5 10.000000 -0.029059 -0.115756 23.802882 0.475078 1.282680 0.617404
65 K [ 13.279000 -0.114163 0.194668 2.71959%6 3.3745%4 1.727969 0.851818
75 K 7 14.292000 0.320548 0.231220 1.410731 4.684111 1.786298 0.905496
83 K 8 15.708000 -0.141358 -0.292890 1.410731 4.684111 2.061741 0.946718
93 K 9 16.721000 ~-0.111658 0.198549 2.719596 3.374594 2.120069 1.000395
106 K 10 20.000000 0.080543 -0.006840 23.802882 0.475078 2.565359 1.234809
118 KX 11 23.279000 -0.234284 -0.562859 2.719596 3.374594 3.010649 1.469222
128 K 12 24.292000 0.688095 0.748729 1.410731 4.684111 3.068978 1.522900
136 K 13 25.708000 0.288944 -0.639231 1.410731 4.684111 3.344420 1.564122
146 K 14 26.721000 -0.386947 0.570135 2.71959%6 3.374594 3.402749 1.617800
159 K 15 30.000000 -0.173593 0.143218 23.802882 0.475078 3.848039 1.852213
1711 K 16 33.279000 -0.017813 -0.422239 2.719596 3.3745%4 4.293328 2.086627
181 K 17 34.292000 -0.076586 0.206041 1.410731 4.684111 4.351657 2.140304
189 KX 18 35.708000 0.262124 -0.127313 1.410731 4.684111 4.627100 2.181527
199 K 19 36.721000 0.269658 0.209196 2.719596 3.374594 4.685428 2.235204
212 K 20 40.000000 0.213921 0.056034 23.802882 0.475078 5.130718 2.469618
horizontal vertical
Coxrectors used: 20 (of 20) 20 (of 20)
Maximum strengths: 0.688095 mrad at K { 12] 1.275964 mrad at K [ 4)
R.m.s. strengths: 0.269427 mrad 0.511925 mrad
HBSB *MAD* Version: 8.9/0 Run: 10/08/95
17.14.43
Orbit and dispersion at monitors (after correction) for beam line EUTERPE page
1
horizontal vertical
Orbit monitors used: 36 36
Dispersion monitors use 36 36
Total monitors: 36 36
Minimum dispersion: -0.015700 m at M [ 27) ~0.048185 m at M [ 20)
Maximum dispersion: 0.439284 m at M ( 30) 0.061946 m at M 4 161
R.m.s. dispersion: 0.223102 m 0.026329 m
Minimum readings: -0.182139 mm at M { 19] -0.339748 mm at M { 28]
Maximum readings: 0.222737 mm at M { 20]) 0.248732 mm at M [ 29]
R.m.s. readings: 0.086945 mm 0.106893 mm
HBSB “MAD" Version: 8.9/0 Run: 10/08/95
17.14.43
Linear lattice functions. TWISS line: EUTERPE range: #S/#E
Delta(p)/p: 0.000000 symm: F super: 1 page
1
ELEMENT SEQUENCE I HORIZONTAL I VERTICAL
pos. element ocec. dist I betax alfax mux x{co) px(co) Dx Dpx I Dbetay alfay muy y{co} pylco) Dy
Dpy
no. name no. m] I [m] [1) [2pi} [mm]) £.001] [m} 1) I ([m) (1] (2pi] (mm) [.001] (m)
[1]
begin EUTERPE 1 0.000 24.457 -0.025 0.000 0.037 -0.053 0.005 0.001 0.423 0.033 0.000 -0.011 0.045
-0.012~0.008

end EUTERPE 1 40.000 24.283 -0.015 5.136 0.037 -0.053 0.005 0.001 0.420 0.016 2.456 -0.011 0.045
-0.012-0.008

total length = 40.000000 ox = 5.135804 Qy = 2.456410
delta(s) = -0.175215 mm ox* = -0.033278 oy = -0.078892
alfa = 0.108364E-01 betax(max) = 24.949443 betay(max) = 12.439237
gamma (tr) = 9.606323 Dx (max} = 0.474810 Dy {max) = 0.063311
Dx(r.m.s8.) - 0.259781 Dy(r.m.s8.) = 0.025022
xco (max) - 0.343187 yco (max) = 0.492176
xco(r.m.s.) = 0.129138 ycol{r.m.8.) = 0.154082

Fig. A.2 MAD Output file; calculations of the closed orbit distortion before and after correction for
one error configuration.
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Appendix B

Closed orbit distortions due to misalignments

The closed orbit distortions due to single and multiple misalignments have been determined
with simulations in MAD. The effects of all single misalignments are given in part Bl. The
effects of multiple misalignments in the HLF mode are given in B2. The results are
summarised in Chapter 3.

B1 Single misalignments

The effects of misalignments and other errors causing closed orbit distortion have been examined by
simulating them with the program MAD. The Closed orbit distortions and the tune shifts are given in table

B.1toB4.

Table B.1 The effects of single misalignments of the dipoles in the HBSB mode

Dipole Displa- Xomax Xrms Vimas Yrms Av, Av,
cement (mm) (mm) (mm) (mm) *10°3 *10°5

1 dx 0.2 0.07 0 0 1 20
1 dy 0.002 0.0005 0.25 0.12 0.4 0.2
1 ds 0.73 0.25 0 0 2 80
1 dd 0.00001 0 0.008 0.004 0 0
1 do 0 0 0 0 0.1 3
1 dy 0.002 0.0005 0.25 0.12 04 0.2
2 dx 0.09 0.03 0 0 0 0.1
2 dy 0.001 0.0004 0.21 0.1 0.4 0.1
2 ds 0.32 0.13 0 0 0.4 1
2 dd 0 0 0.003 0.002 0 0
2 do 0.00001 0 0 0 0.4 0
2 dy 0.001 0.0004 0.21 0.1 0.4 0.2
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The closed orbit distortions reach their maximum values at the long straight sections.

For the single displacements of the dipoles it is important to know how the displacement errors are
defined. In MAD all displacement errors are assigned at the entrance of each element. In a dipole the
electron-orbit is bent; the comoving reference frame rotates with the orbit. As a result, displacements
assigned at different positions describe different misalignments.

In table B.1a the closed orbit distortions are calculated for single misalignments in the s'- and x'-directions
(these are the s- and x-directions in the middle of the dipoles). In this new reference frame the influence of
a single displacement in the x'-direction is nihil (compare this with the effects of a displacement dx), the
influence of a displacement in the s'-direction is about 3 % bigger than for a displacement in the s-
direction.

The rotational directions ¢', ©' and ¢ in the middle of the dipoles also differ from the rotational directions
¢, 6 and Y. The influence of the rotation of the reference frame on the closed orbit distortion is limited (a
few percent for dy) and the correlation between the two reference frames complex; the single

misalignments d¢', d0' and dy' have not been simulated.

Table B.1a Single misalignments of the dipole with the displacements defined with respect to the
middle of the dipole (mode HBSB)
Dipole | Displa- | x,,, Xrms Yimax Yrms Av, Av, B
cement (mm) (mm) (mm) (mm) *10° *10°3
1 dx’' 0.00007 | 0.00002 | O 0 0 0
1 ds' 0.77 0.26 0 0 2 78
2 dx' 0.00003 ] 0.00001 ] O 0 0 0
2 ds' 0.34 0.13 0 0 0.4 1
Table B.2 The effects of single misalignments of the dipoles in the HLF mode
Dipole Displa- X Xpms Yimas Yoms Av, Av,
cement (mm) (mm) (mm) (mm) *10° *10°S
1 dx 0.02 0.008 0 0 0.4 0.2
1 dy 0.0002 0.0001 0.22 0.12 0.2 0
1 ds 0.06 0.03 0 0 1 1
1 dé 0 0 0.004 0.002 0 0
1 dy 0.002 0.0005 0.23 0.12 0.2 0
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2 dy 0.00006 { 0.00003 | 0.12 0.06 0.1 0
2 ds 0.14 0.07 0 0 0 0.1
2 dy 0.00007 | 0.00004 | 0.12 0.06 0.1 0

B.1.2 Single misalignments of the quadrupoles

The beam parameters are calculated for the situation in which all magnetic elements are perfectly aligned,
with the exception of one quadrupole, which is misaligned in one direction. The EUTERPE-ring has 4
superperiods each containing 8 quadrupoles. Because each superperiod is symmetric, there are only 4
independent quadrupoles, with different strengts.

The effects of misalignments in de x- and y-directions and rotations around the y-axis have the largest
influence on the closed orbit. The influence of single displacements in the s-direction and rotations around
the s-axis are nihil. In table 2 only the effects of the most important misalignments are given.

In the HBSB-mode the effects of misalignments of the first three quadrupoles on the closed orbit
distortion are comparible, the effects of misalignments of the fourth quadrupole are several times smaller.
In the HLF-mode the closed orbit distortion is the least sensitive to misalignments of the second
quadrupole. Comparing the effects of misalignments for the two different modes, we see that the closed
orbit distortions in the HLF-mode are an order of magnitude smaller than in the HBSB-mode.

Table B.3 The effects of single misalignments of the quadrupoles in the HBSB mode

Quadru - | Direc- Xpax Xpms Ymax Yoms Av, Av,

pole tion (mm) (mm) (mm) (mm) *10* *10+
Q1 dx 34 1.2 0 0 25 1
Q1 dy 0.004 0.001 0.38 0.18 0.1 0.1
Q1 ds 0 0 0 0 0.1 3
Q1 dé 0.00008 | 0.00003 | 0.05 00.03 0 0
Q1 do 0.46 0.16 0 0 4 0.1
Q1 dy 0 0 0 0 0 0
Q2 dx 2.0 0.7 0 0 27 2

| Q2 dy 0.01 0.01 0.65 0.32 0.1 0.2

Q2 dé 0.0002 | 0.0001 0.09 0.04 0 0
02 df 025 0.09 0 0 3 02 ]
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Q3 dx 2.6 0.9 0 0 34 6
Q3 dy 0.007 0.002 0.48 0.24 0.1 0.2
Q3 d¢ 0.0001 0.00005 0.07 0.03 0 0

| Q3 do 0.36 0.12 0 0 4 0.6
Q4 dx 0.46 0.16 0 0 3 1
Q4 dy 0.0007 0.0002 0.16 0.08 0.01 0.02
Q4 do 0.00001 | O 0.02 0.01 0 0
Q4 do 0.06 0.02 0 0 0.5 0.2

Table B.4 The effects of single misalignments of the quadrupoles in the HLF mode

Quadru - | Direc- Xpax Xyms Ymax Yrms Av, Av,
pole tion (mm) (mm) (mm) (mm) *10°S *10°

Q1 dx 0.17 0.08 0 0 5 2
Q1 dy 0.00008 | 0.00003 | 0.1 0.05 0.2 1
Q1 do 0.02 0.01 0 0 5 2
Q2 dx 0.05 0.02 0 0 0.4 1
Q2 dy 0.00001 { O 0.04 0.02 0.8 0.5
Q2 dé 0.07 0.03 0 0 0.6 0.6
Q3 dx 0.15 0.9 0 0 0.4 2.4
Q3 dy 0.0001 0.00006 | 0.02 0.01 0.2 0.8
Q3 do 0.02 0.01 0 0 0.7 0
Q4. dx 0.38 0.18 0 0 0.6 2
Q4 dy 0.0004 0.0001 0.3 0.15 5 0.6

| Q4 do 0.05 0.02 0 0 0.3 3

B.2.1 Summary of the effects of single misalignments

The simulations show that the closed orbit is most sensitive for misalignments of the quadrupoles in the
horizontal direction. The single misalignment of the first quadrupole Ax = 0.1mm results in a maximum
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closed orbit distortion of x,,, = 3 mm,; the resulting closed orbit distortion is 30 times as large as the
displacement. The closed orbit is also very sensitive for dipole displacements along the electron trajectory
(with respect to the middle of the dipole). The main contributions to the vertical distortion come from the
displacements of the quadrupoles and the dipole in the vertical direction and rotations of the quadrupoles
around the y-axis and the dipoles along the s-axis.

The closed orbit in the HLF mode is sensitive for similar displacements. However the resulting distortions
are about 10 times smaller in the HLF mode due to the weaker focusing.

B.2 The effects of multiple misalignments on the closed orbit

The effects of multiple misalignments of all elements in the HLF-mode are given in table B.5.

For all calculations with multple misalignments the first address read from the gaussian table in MAD is:
Eopt = 123456789. All random errors are read from the table; each consequetive error read from the
consequetive address. In chapter 3 the effects of multiple misalignments on the closed orbit in the HBSB
mode are discussed. The maximum values of the closed orbit distortion averaged over 10 runs are given in
table B.5.

Table B.5 Effects of multiple displacements (0=0.1mm and 0=0.1mrad) on the closed orbit

distortion (mode HLF).
Displacement Xpgy (mm) Vg (mm)
All dipoles 2x0.5 1.3+0.6
All quads 12+5 2.9+0.8
All sextupoles 0.012 0.003
+0.004 +0.001
All elements 127 5+2

The effects of multiple misalignments in the HLF mode are given in B.6. The results in table B.5 show
that the effects of multiple alignments in the HLF mode are about 2 times smaller in the vertical and about
10 times smaller in the horizontal direction than in the HBSB mode.
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Table B.5 Effects of multiple displacements (0=0.1mm and 0=0.1mrad) on the closed orbit
distortion (mode HLF).
Displacement Xmax Xpms Vmaz Yoms Av, Av,
(mm) (mm) (mm) (mm) *10°2 *102
All dipoles 0.3+0.1 | 0.12+0. | 1.0+0.2 0.4£0.2 0.008 = 0.01
5 0.006 +0.01
All quads 1.0£0.5 | 0.5£0.2 | 1.3x04 0.5£0.2 0.04 0.04
+0.03 +0.03
All sextupoles 0.004 0.002 0.006 0.0016 0.16 03
(0=0.2mm,mrad) | +0.002 +0.0004 | +0.003 +0.0005 | +0.07 +0.2
All elements 1.2+£0.6 { 0.6+0.3 | 1.5+0.5 0.65+0.2 0.05 0.2
002 | +006 |
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Appendix C  Closed orbit correction

The closed orbit distortion in the vertical direction is shown after correction. Furthermore the
values of several beam parameters are compared before and after correction.

The closed orbit distortion after correction is calculated for several lattices with different error
configurations. The ‘random’ displacements assigned to the magnetic elements are again read from the
gaussian table in MAD. The first errors in the consequetive runs were read from respectively address
123456789, address 223456789, address 323456789, address 423456789, address 523456789,
address 623456789, address 723456789, address 823456789, address 923456789 and address
933456789. This way the errors assigned to the magnetic elements were equal for every correction lattice.

C1 The closed orbit distortion in the vertical direction after correction

The closed orbit distortion in the HBSB mode in the vertical direction has been determined after
correction with the second lattice in §4.2.1. The monitor locations in this lattice are reversed with the
corrector locations with respect to the standard lattice. Although the vertical distortion is ‘only’ reduced
with a factor 8, the difference between the distortion before and after correction is very large, see fig. C.1.

6 ] 1 1

—_ Uncorrected

_ _ Lattice A

- i I
0 10 20 30 40
s (m)

Fig.C.1 The closed orbit distortion in the vertical plane before and after correction in the
HBSB mode.
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C2 The effects of the closed orbit correction on other beam parameters

Many beam parameters have been calculated with the simulations (see appendix A); the values of the
chromaticity, the dispersion and the betatron amplitude are compared in this paragraph for the ideal lattice
and the lattice with all elements misaligned before and after correction with all sextupoles used as
corrector magnets, lattice C described in §4.2.3.

The chromaticity and betatron amplitude are increased as a results of the misalignments. However the
chomaticity remains small; the momentum spread of Ap/p~ 0.04% under normal circumstances results in
a tune shift of less than Av<5.10*, which is negligible on the total tune shift. The maximum beam width is
proportional to B2 and is ca 10 % increased due to the misalignments; 5 % of this increase in the
maximum beam width is eleminated after correction.

The change in the dispersion due to the misalignments is very small.

Table C.1 The chromaticity, dispersion and betatron amplitude in the ideal, the distorted and
corrected lattice.

Parameter Ideal lattice All elements Closed orbit correction
misaligned with lattice D
Chromaticity &, 0 0.4+0.4 0.05 + 0.04
g, 0 -1 04 + 02
Dispersion (DYms 0.257 0.268 + 0.008 0.259 = 0.003
(Dy)ms 0 0.04 £ 0.02 0.02 + 0.01
Betatron function B, . (m) 23.8 29+2 251
By max (M) 111 --! 18+5

Horizontal chromaticity reduced with a factor 8, Horizontal betatron amplitudes reduced with about 20 %.
The dispersion is within 1% constant for the three lattices.

The dispersion function after correction is shown in fig. E.2.

! For 6 out of 10 error configurations the vertical betatron oscillations were unstable; the vertical betatron
amplitudes and vertical chromaticity are not known for these runs and are therefore not given.
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D(s) (mm)

4 6
s (m)

Fig. C.2 The dispersion in the HBSB mode after correction.
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Appendix D Mechanical drawings of the designed sextupole and corrector magnets

Appendix D  Mechanical drawings of the designed
sextupole and corrector magnet.

The drawings of the EUTERPE sextupole and window corrector magnet, which are constructed at
the Design and Construction Facility (CTD) of the TUE, are given.

D1 The sextupole

The mechanical drawings of the prototype sextupole magnet are depicted below. Furthermore

the currents through the coils of the sextupoles used as horizontal and vertical corrector are
shown. Finally the inductance in the coils is calculated.

Scale 1:2



Appendix D Mechanical drawings of the designed sextupole and corrector magnets

Side view sextupole

270 =05

75 <05
126 *

Note, for simplicity only the coils around pole 2 and 5 are drawn
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Currents through the coils Generated fields

Sextupole

Q f> field

/ \
Vertical
(T / Dipole field
\

/._:.;\

4 — 5\
/ \ Horizontal
r—————*/ Dipole field
\ >,

N——>

The fields shown on the right are generated with the assigned currents through
the coils.

@ @ Currents for the generation of the sextupole field
s s

® QR @ ® Currents for the generation of the vertical dipole field
\' \ \ Vv

@ ® Currents for the generation of the horizontal dipole field
H H

The figure shows that the currents throught the coils around opposite poles are

always equal. However the polarity of opposite poles is reversed; if pole 1 is a

magnetic N-pole, pole 4 is a S-pole.

The total currents through the coils is superposition of the required currents for
the generated fields.
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Coil 2

Coil 4 Coil 5

The electric circuit for the coils around pole 3 and 6 is similar.

Ns = 268 turns
Nc = 100 turns
Ntot = 368 turns,
Imax=7A

NI = 2576 A.turns (max)
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D2 The window-frame corrector magnet

@ Coils:

182 turns 2.5x1.5 mm
NI= 1274 A.turns (max)

No cooling.
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Appendix D Mechanical drawings of the designed sextupole and corrector magnets

D3 The time constant of inductance

Due to the inductance in the coils it takes a finite time to induce the sextupole field. The time constant t of
the inductance is given by [Mon85]:

with L the inductance of the coil and R the resistance. The inductance depends on the number of turns per
circuit N, the flux ¢ and the current I through the wire according to

l
R=p74-.

The resistance of the coil is dependent on the total length of the wire /, the resistance of the conduction
material p and the conductive area A

h

I

Z
~|-e-

Using these formulas the time constants of the window frame corrector magnet and the sextupole are
calculated. The value of all parameters used in the calculation are given below.

The time constants are equal to T=0.1s for the sextupole and t =~ 1ms for the window frame corrector
magnet. Both time constant are negligible in comparison to the time it takes to accelerate the electrons
from 75 MeV to 400 MeV.

Specifications wire
Material cupper p=17.10%Qm
Conductive area A =2.5x1.5 mm?
Maximum current L.=TA

Sextupole VWindow frame
Total number of turns through one circuit N=1744 N=182
Total length 1=200m I~70m
Maximum magnetic flux $=1.103Tm> ¢~ 1.10* Tm?
Total resistance per circuit R=1Q R=0.3Q
Inductance L=01H L=3mH
Time constant =015 I=1lms
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Appendix E  Field measurements

The magnetic induction in the prototype window frame corrector magnet is measured using a Hall-probe
(SIEMENS, model SVB613) attached to a xy-table. A step motor is used to position the X-Y table. A
control/interface unit is used for the reading of the Hall voltage and the steering of the X-Y table. Some
general characteristics of the measurement system are listed in table E.1 [Web94].

Table E1 Specifications of the Hall probe used for the measurements of the induction

Size 1 x 1 mm?
Absolute position accuracy 1 mm
Relative position accuracy 0.05 mm
Stability 10*
Temp. effect of Hall probe <10%°C

The Hall-probe has been calibrated with a Nuclear Magnetic Resonance coil in the range of -0.25T < B <
0.25T. With a third order polynomal the induction in the Hall probe was fitted. The residue inductions
were smaller than 2G. Higher order components yield no significant reduction of the residues.
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Appendix F Poisson

With the program Poisson, the field profiles in the magnets have been calculated. In this
appendix the derivation of the Poisson equation is given, and the use of the program is
described.

F1 Derivation of the Poisson equation

For the calculation of the magnetic induction in a static situation only two Maxwell-equations are
relevant:

V.B =0

and VxH=1J H=-B. (F.1)
l‘lol'lr

In these equations B is the magnetic induction, H the magnetic field strength, J is the current-density,
1, the magnetic permeability in vacuum and p, the relative magnetive permeability.

If no currents are present in the region of interest, then J=0 and H can be described as the gradient of a

potential ¢: B=V. ¢ is called the magnetic scalar potential. Using this equality in the first part of
formula (2.16) the Poisson equation is found:

Vip = 0 (F.2)

Assuming ¢ is locally constant along the magnetic axis (e.g. in a long magnet or due to symmetries)
equation (2.17) is reduced to a two-dimensional problem. Solving this equation in cylindrical
coordinates and throwing all singular solutions away, the equation for the potential becomes

o = E (J” r® cos n® + Kn r" sin n0). (F.3)
n=1

The induction is the derivative of the potential

j k
B, =3, I pnlcos nB + —" r*lsin nﬂ]

(n—l.)! (n-lIZ! . (F4)
and B, =) -(nj—nl)! r*! sin n® + (n-nl)! r* ! cos ne]
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Appendix F  Poisson

The components j, and k, in the equation above represent the multipole coefficients. The components
with n=0 correspond to a dipole-field, the components n=1 to a quadrupole-field, etc. In general
magnets are designed for the introduction of one harmonic; in that case all other harmonic components
represent error-fields. The expression of field errors in harmonic components is called harmonic
analysis.

The components j, represent the skew components, which are equal to zero if the elements have a
normal orientation and are perfectly aligned. The orientation of the elements is defined to be normal if

the induction is perpendicular to the horizontal axis.

The cylindrical coordinates can be transformed into Cartesian coordinates [Cas94]

n-1
B, +iB =B, Y, (b, - ia,,)(—rx; * irlo) sin n6). (2.20)

In this formule, B, is the strength of the main field component at r, the coefficients b, are called the
“normal” multiple coefficients, a, are the “skew” multiple coefficients (for skewed, or rotated elements)
and r, is a normalization radius. This is the representation used in the program Poisson.

F.2 The use of the program Poisson

The most important parameters, which have been adjusted during the use of Poisson

Table Con-values used in Poisson

Program Con-value Description

Lattice con(6) Magnetic permeability in iron,
con(6)=0, permeability dependent on H
con(6)=-2, permeability equal to «

con(9) Scaling factor

con(21)-con(24) Boundary condition for respectively the left, right, top and
bottom boundary, con(21)=0 gives a Dirichlet problem
Symmetry

con(46)
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Poisson Harmonic analysis-components.
con(110) Number of coefficients to be calculated
con(111) Number of points used
con(112) radius
con(113) circle
con(114) normalisation radius

Sextupole used as a vertical corrector, I=305 A.turns through the coils around pole 1, 3, 4 and 6.

1 *%%* Definition of outer boundaries ****

&reg conv=0.1,nreg=17,dx=1.95,dy=2.,xmax=140,xmin=-140,ymin=-140,ymax=140,npoint=4,mat=2 &
&po r=140,theta=0 &

&po nt=2, r=140. ,theta=180 &

&po nt=2, r=140.,theta=270 &

&po nt=2, r=140.,theta=0. &

! ®#*%* Definition of inner boundaries ****

! #+** First quadrant ****
&reg mat=1, npoint=20 &
&po x=0.,y=0. &

&po x=120.,y=0. &

&po nt=2.,r=120.,theta=24.74 &
&po x=30.1199,y=5.843 &
&po x=27.609,y=7.280 &
&po x=25.4869,y=8.9414 &
&po x=23.773,y=10.838 &
&po x=22.3435,y=129 &
&po x=21.273,y=15.169 &
&po x=20.4869,y=17.602 &
&po x=20.109, y=20.270 &
&po x=20.1199,y=23.26 &
&po x=98.1418,y=69.052 &
&po nt=2.,r=120.,theta=84.74 &
&po x=10., y=29.006 &
&po x=17.5,y=27.55 &

&po x=5., y=26.543 &
&po x=2.5, y=26.007 &
&po x=0.,y=258 &

&po x=0.,y=0. &
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1 #x** The definiton of the Second to Fourth Quadrant are similar ****

| #*¥x* Definitions of coils and currents ****

1 #*** Coil around pole 1 ****
&reg mat=1, cur=305., npoint=5 &
&po x=30.1199,y=5.843 &

&po x=64.46,y=1.3 &

&po x=113.89316,y=29.42734 &
&po x=105.89,y=48.479 &

&po x=30.1199,y=5.843 &

&reg mat=1, cur=-305, npoint=5 &
&po x=20.1199,y=23.26 &

&po x=34.46,y=58.0902 &

&po x=83.823,y=83.853 &

&po x=96.7,y=66.8 &

&po x=20.1199,y=23.26 &

} *%%% Coil around pole 2 ****
&reg mat=1, cur=0, npoint=5 &
&po x=10., y=29.006 &

&po x=32.,y=564 &

&po x=32,,y=114 &

&po x=10.,y=114 &

&po x=10., y=29.006 &

&reg mat=1, cur=0, npoint=5 &
&po x=-10., y=29.006 &

&po x=-10.,y=114 &

&po x=-32.,y=113 &

&po x=-32., y=56.4 &

&po x=-10., y=29.006 &

! #x** Coil around pole 3 ****
&reg mat=1, cur=-305, npoint=5 &
&po x=-20.1199,y=23.26 &

&po x=-34.46,y=58.0902 &

&po x=-83.823,y=83.853 &

&po x=-96.7,y=66.8 &

&po x=-20.1199,y=23.26 &
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&reg mat=1, cur=305., npoint=5 &
&po x=-30.1199,y=5.843 &

&po x=-105.89,y=48.479 &

&po x=-113.89316,y=29.42734 &
&po x=-64.46,y=1.3 &

&po x=-30.1199,y=5.843 &

1 **** The Coils around pole 4 to 6 are not given ****

With the successive use of AUTOMESH,

LATTICE , assigning the con values: ¥60*210000*46 1,
and POISSON , with the use of the con values: *11052013601 s
the following field coefficients are calculated.

Table for field coefficients
Normalization radius = 1.00000
(Bx - iBy) = i[sum n*(An + iBn)/t * (z/1)**(n-1)]
n n(An)r nBn)/r  Abs(n(Cn)/r)
-5.9576E-03 -2.1400E+02 2.1400E+02
1.8715E-03 -1.2124E-03  2.2299E-03
-2.3717E-03  4.3609E-02 4.3674E-02
24573E-03 2.9252E-03 3.8203E-03
-1.9050E-03 3.5557E+00 3.5557E+00
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