
 Eindhoven University of Technology

MASTER

The design of a closed orbit correction system for the EUTERPE Ring

Bresser, J.

Award date:
1997

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6449aa64-c9eb-402b-adfb-6f3092f5fe5d


The Design of a 
Closed Orbit Correction System 

for the EUTERPE Ring 

VDF/NK 95-22 
J. Bresser 

August 1995 

Report of a graduation study under supervision of Dr. J.I.M. Botman & 
Dr.Ir.C.J.Timmermans in the group Nuclear Physics Techniques at the 
Eindhoven University of Technology 



Abstract 

For the successful operation of the electron storage ring EUTERPE a closed orbit correction 

system is required. In this graduation report the closed orbit distortion has been determined 

and a correction system has been designed. This includes the design of the magnets used for 

the correction: the sextupoles and the so-called window frame magnets. 

As a result of displacements of and field errors in the magnetic elements, the electron orbit is 

distorted. The position errors are mainly determined by the finite measurement precision during 

alignment. The position errors due to other effects, e.g. thermal expansion, are negligible. The 

distortion of the electron beam due to all errors equals xnns = 4 ± 2 mm and Ynns = 1.0 ± 0.4 mm 

in the most sensitive mode of operation, the High Brilliance Small Beam mode. These 

distortions have been calculated with the use of the computer code Methodical Accelerator 

Design (MAD). 

The closed orbit distortions have been reduced with a factor 26 in the horizontal and a factor 6 

in the vertical direction with the use of a correction system. After correction the distortion 

equals xrms = 0.14±0.02 mm in the horizontal and Ynns =0.16±0.02 mm in the vertical direction. 

The size of the distortions approximates the amplitude of the position and read errors of the 

monitors (ax = o,=O.lmm for both errors). Without the monitor errors, the distortions can be 

further reduced with a factor 2. 

The number of monitors and correctors in the correction system has been minimized to 24 

monitors and 24 correctors. This number corresponds to four monitors and correctors per 

betatron wavelength. Eight sextupoles included in the main lattice are used as corrector 

magnets in order to save lattice space. 

The sextupoles are used as corrector magnets with the generation of additional dipole fields. 

Simulations show that very uniform dipole fields can be produced in the sextupoles. Additional 

corrector magnets are required for the correction in the long straight sections of the ring. 

These corrector magnets are of the window-frame type. Uniform dipole fields can be generated 

in both directions. The measured field strengtbs in the prototype window-frame magnet are in 
perfect agreement with the calculated strengths. 
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Chapter 1. Introduetion 

Chapterl 

Introduetion 

The storage ring EUTERPE is under construction by the group Partiele Accelerators in the 

Cyclotron laboratory at the technica! University of Eindhoven. The storage ring will mainly be 

used for the storage of 400 Me V electrons. The EUTERPE-project is set up for the production 

of synchrotron radiation and for studies of charged partiele dynamics and applications of 

synchrotron radiation. 

The EUTERPE-ring has a circumference of 40 meters. Before entering the ring the electrons 
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Fig. 1.1 A schematic view ofthe EUTERPE ring. 
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Chapte r 1. Introduetion 

are pre-accelerated in a linear accelerator up to 10 Me V, then they are injected in a microtron, 

where their kinetic energy is increased to 75 Me V. These 75 Me V electrans are injected in the 

EUTERPE-ring where they can be accelerated toa maximum energy of 400 Me V. This report 

concerns the EUTERPE-ring, which is depicted in figure 1.1. 

Wh en electrans are accelerated they produce synchrotron radiation ( or Brehmstralung). The 

EUTERPE-ring contains twelve dipoles in which the electron trajectory is bent. In each dipole 

synchrotron radiation is produced. This synchrotron radiation can be coupled out by special 

ports constructed in the vacuum chamber. The radiation has some exceptional properties, 

which makes it very useful for the studies of materials: e.g. it has a low divergence, it is a 

continuous radiation souree over a wide wavelength range, from the infra-red up to soft x-rays 

and has a well-defined polarisation. 

As mentioned the EUTERPE ring is still under construction. At the beginning of this study the 

design of the EUTERPE lattice was finished [Xi 95]. The locations of all magnetic elements is 

determined. Furthermore the field strengtbs in all elements have been calculated for three 

different modes of operation. The behaviour of the particles in an ideal lattice is known. 

However due to lattice imperfections the electron orbit is distorted: the partiele trajectories will 

deviate from the designed orbit. 

The aim of this study is to design a correction system in order to reduce these distortions as 

much as possible. After the study the design of the correction system in the storage ring must 

be fully prepared. This includes the determination of the locations of all correction elements -

the beam position monitors and corrector magnets - and a method to calculate the corrector 

settings, but it also includes the design of the hardware regarding the closed orbit correction 

system. 

1.2 The EUTERPE-lattice 

The EUTERPE-lattice consists of four identical sections or superperiods. Each superperiod 

contains dipole, quadrupale and sextupole magnets separated by drift spaces. As mentioned in 
the introduction, the electron trajectory is bent in the dipoles. The quadrupales are used for the 

focusing of the beam. The sextupoles in turn are used for the correction of the chromatic 

aberrations (the so-called chromaticity) introduced by the quadrupales (the chromaticity and all 

other beam parameters used in this report are discussed in chapter 2). A schematic view of the 

EUTERPE lattice [Xi 95] is shown in fig. 1.2. The element types and sizes are given in table 

-2-
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Fig. 1.2 The basic structure ofthe EUTERPE ringfor one superperiod. 

Table 1.1: Sizes ofthe differentelementsin the ring. 

* 
** 

Name Elementtype Length (in meters) 

01 Driftspace 1.000 

02 Driftspace 0.450 

03 Driftspace 0.600 

04 Driftspace 0.100 

05 Driftspace 0.165 

B Di po les 0.516 * 
Ql,Q2,Q3 Quadrupoles 0.274 * 
andQ4 

SI and S2 Sextupoles 0.05 ** 

Tiüs is the effective length of the magnets. 

The sextupoles have been designed during this study; this the expected length of the sextupoles according 

to [Xi 9S]. 

-3-



Chapterl. Introduetion 

Apart from the normal magnetic elements each superperiod contains several corrector magnets 

and beam position monitors. The corrector magnets and position monitors are part of the 

correction system for the closed orbit distortion. These distortien are a result of lattice 

imperfections (see chapter3). The deviations of the beam are measured at the locations of the 

monitors; the electron trajectory is adjusted by introducing a magnetic induction in the 

corrector magnets. The locations of the beam position monitors and corrector magnets are 

determined in this project and are not included in figure 1.2. 

At the entrance and exit of each superperiod there is a long straight section; the totallength of 

the long straight section between two successive quadrupele doublets is two meters. As a 

result of the dipole configuration in the lattice all four straight sections are dispersion free; a 

small energy-deviation of an electron will not influence its dispersion or position in the straight 

sections. The straight sections are used for the insertion of special elements whose operations 

require the absence of dispersion. 

One of these special elements is the rf-cavity, which is placed in one of the dispersion-free 

sections in order to prevent synchro-betatron coupling. The rf-cavity is used for the 

acceleration of the electrons in order to compensate for energy-losses in the ring due to 

synchrotron radiation. Another straight section is reserved for the injection system of the 75 

Me V electrens coming from the microtron. The remaining two sections will be used in future 

for devices like undulators and wigglers. These are special devices in which multiple electron 

deflection results in intense synchrotron radiation. 

1.3 Modes of operation 

The design of the EUTERPE-lattice has a high flexibility: it allows for changing the character 

of the electron beam by adjusting the focussing strengtbs of groups of quadrupoles. So far 

three different modes of operatien have been investigated [Xi 95]: the High Brilliance Small 

Beam mode (HBSB), the High Light Flux mode (HLF) and the Small Bunch Length (SBL) 

mode. The characteristics of the different modes are summarised below. 

- In the HBSB mode the beam size in the dipoles will be very small, which results in a very 

high brilliance. A small beam size requires strong focussing which gives rise to a large 

natura! chromaticity; therefore strong sextupole magnets are required. 

- In the HLF mode the main interest is a high light flux. The beam size is of less importance. 

The comparatively weak focussing of the quadrupoles makes the mode the least error

sensitive. Therefore the HLF-mode is very useful for the first phase of the commissioning of 

the ring. 

-4-
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- The SBL mode is an optica} mode in which the bunch length is minimised. The bunch length 

is in the order of several millimetres corresponding to a pulse length of several picoseconds. 

The most important beam parameters in the three different modes have been calculated by B.Xi 

[Xi 95] and are listed in table 1.2. The parameters are explained in chapter 2. 

Table 1.2: Beam parameters of EUTERPE 

Mode 

Tune V x 

vY 

Px max 

Pzmax 
Betatron and Dispersion Dmax 

functions (m) <Px> 

<P? 
<D> 

Natura} chromaticity çx 

çy 

Emittance (nm.rad) € 

Energy spread (JE/E 

Coupling coefficient 1( 

(Jxi,(Jx3 

(Jyl' (Jy3 

Beam size (mm) * (Jx2 

(Jy2 

Oxo 

(JyO 

* At the positions represented by: 
0 - rniddle of long straight section 

1- dipole Bl, 

2 - dipole B2, 

3 - dipole B3. 

HLF 

2.57 

1.63 

10.335 

8.060 

0.854 

5.673 

4.809 

0.269 

-2.917 

-5.755 

184.5 

3.47xl04 

0.1 

0.89 

0.36 

0.38 

0.20 

1.31 

0.25 

-5-

HBSB SBL 

5.128682 3.37 

2.47 2.41 

23.835 8.241 

11.114 9.113 

0.494 1.040 

7.694 0.760 

6.636 0.584 

0.137 -0.211 

-15.859 -3.729 

-11.039 -8.376 

5.776 155.2 

3.47x104 3.47xl04 

0.1 0.1 

0.058 0.56 

0.076 0.35 

0.079 0.45 

0.063 0.11 

0.349 1.14 

0.014 0.19 
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1.4 The contents of this report 

In this report the design of a correction system for the closed orbit distartion in the EUTERPE 

ring is described. In the first part of this chapter a general description of the EUTERPE-ring, 

its lattice structure and the different modes of operation has been given. 

The partiele dynamics of the electroos in the storage ring is discussed- in chapter 2. Beam 

parameters used in this report will be explained. Furthermore a description of the closed orbit 

distartion and correction will be given. In actdition some general aspects conceming the design 

of the sextupoles and the corrector magnets are discussed. 

The sourees for the closed orbit distartion - the deviations of the electron trajectodes from 

their ideal, designed path-are weighted in chapter 3. The closedorbit distortions due to single 

and multiple errors are determined with numerical simulations. 

The design of a correction system for these closed orbit distortions is discussed in chapter 4. 

The influence of the positions of the beam position monitors and corrector magnets is 

discussed. In actdition a comparison of the closed orbit distartion before and after correction is 

made. 

The sextupoles already included in the main lattice, cao be used as corrector magnets. In 

chapter 5 the design of the sextupoles and the generation of the additional horizontal and 

vertical dipole fields for the correction are discussed. Furthermore additional corrector 

magnets are designed, which are of the so-called "window-frame" type. The frrst 

measurements of the magnetic induction in the prototype window-frame corrector are 

compared with simulations. Finally two types of beam position monitors are compared. 

Concluding remarks are given in chapter 6. 

-6-



Chapter 2. Partiele Dynamics and Control 

Chapter 2 

Partiele Dynamics and Control 

First some general concepts of partiele motion in an electron starage ring will be 

discussed. Important beam parameters such as the emittance, tune, chromaticity and 

elosed orbit distartion are treated. Finally a general description of the elosed orbit 

correction is given. 

2.1 The coordinate system 

The description of the non-linear partiele trajectory in a storage ring is in Cartesian coordinates 

rather complex. The trajectory equations are simplified by using a curvilinear coordinate 

system. The coordinate system used throughout this report is schematically shown in tigure 

2.1. The s-axis is defined to be tangent to the ideal partiele trajectory at every position. The x

axis points in the radial and the y-axis in the vertical direction. Furthermore the rotational 

directions q>, e and \jT are defined for rotations around respectively the x-, y- and s-axis. 

y 

Reference orbi t 

Fig. 2.1 The curvilinear coordinate system. 

In the new reference frame an ideal partiele with the design energy E 0 moves along the s-axis, 

whiCh is the design trajectory. The trajectory of an arbitrary partiele will differ slightly from the 

-7-



Chapter 2. Partiele Dynamics and Control 

design trajectory. The trajectory equations for such a partiele are derived in the following 

paragraphs. 

2.2 The Hill-equations 

An electron passing through an electromagnetic field will experience a Lorentz force. 

Neglecting all non-linear terros the trajectory equations in the curvilinear coordinate system 

become 

d2x + [-~--K (s)]x = _l_llp 
ds 2 p2{s) x p{s) p 

(2.la) 

and (2.lb) 

In this forroula p{s) is the local radius of curvature of the partiele trajectory; llp/p is the 

relative momenturn shift and K(s) is the focusing or defocusing strength, dependent on the 

direction. In the case of a mono-energetic beam, the two equations in forroula 2.1 are similar 

and can be expressed as 

d 2u 
- + K(s)u = 0, 
ds 2 

with u =x, y, (2.2) 

and 

All distortions from the central orbit are small; therefore only linear terros are non-negligible. 

The transfer matrix between the divergence and position at a location s2 can be expressed as 

the position and divergence at an initia! position s1, 

(2.3) 

with ( 
u(s) l 

U(s) = u '(s) . 

-8-
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R is the transfer matrix. Every magnetic element in the ring (e.g. dipoles, drift spaces etc.) 

can be easily expressed in an elementary matrix-form. A sequence of elements can be 

represented by a single transfer matrix R, which is a multiplicatio~ of the elementary 

matrices. Numerical calculations are simplified with the use of the matrix formalism. Many 

computer programs use this formalism, e.g. Methodical Accelerator Design (MAD), which is 

used throughout this report. 

2.3 Betatron oscillations 

In a circular machine K(s) is a periodic function along the circumference L; as aresult of the 

periodicity eq. 2.2 is of the Hili-type. The solution of the Hill-equation is given by Flocquet's 

theorem [Cas94] 

u(s) = {EoJP(s) cos(w(s) + <1>0). (2.4) 

In bere p(s) and llr(s), are respectively the betatron function and the betatron phase; e0 is a 

constant, which is partiele dependent Eq. 2.4 describes the oscillation of a partiele around the 

central partiele trajectory, which is called the betatron oscillation. The o.scillation amplitude, 

J e0vp, and the betatron phase are partiele dependent; as a result the electron beam has a 

certain width, which continuously changes with the betatron function p. 

The emittance, E, is a measure for the maximum amplitude of the betatron oscillations. The 

emittance is defined as the volume, which encloses all particles in the ring (with a deviation 

of 2 a) in 6 dimensional phase space. The area enclosing all particles in 2 dimensional phase 

space at a certain position s is graphically shown in figure 2.2. The shape of the emittance 

continuously changes due to the contraction and divergence of the beam in the focusing and 

defocusing elementsin the lattice. However according to Liouville's Theorem, the emittance 

remains constant if the energy of the particles remains constant. Magnetic forces are non

dissipative and therefore only change the shape of the beam, not the emittance. 

Due to the emission of synchrotron radiation the particles lose a fraction of their energy; the 

energy-loss is compensated in the rf-cavity in which the particles are accelerated. Synchrotron 

radiation is emitted in the direction tangential to the partiele's velocity; so part of the 

partiele's transversal momenturn is lost. The energy-gain in the rf-cav~ty is only in the s

direction; the partiele's transversal oscillations are damped. Similar arguments prove that the 

synchrotron oscillation - the oscillation in the longitudinal direction - is also damped due to 

the emission of synchrotron radiation. As a consequence of quanturn excitation - the 
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synchrotron radiation is emitted in quanta - the amplitude of the betatron oscillations is 
increased. The resulting amplitude is an equilibrium between the radiation damping and 

quanturn excitation. 

x' 

Fig. 2.2 The phase space in two dimensions at a certain position s. 

The parameteryin figure 2.2 is a Twiss parameter, which is not further discussed here. 

2.4 Resonances 

The betatron number or tune v is defined as the number of betatron oscillations per turn. It 
depends on the strengtbs of the focusing elements in the ring. The main contribution to the 
focusing comes from the quadrupoles; for quadrupales K( s) is equal to: 

1 ÖB 
(u=x, y). (2.5) 

Bp öu 

Small lattice imperfections will distort the beam; as aresult the amplitude and phase of the 

betatron asciilation is slightly changed. If the value of the betatron tune equals an integer 
value the excitations are resonantly amplified; the resonance will result in an unstable orbit 
and a loss of the particles. In general resonances occur when the horizontal and vertical tune 
satisfy: 

mvx + nvy = r, (2.6) 
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with m, n and r integers. It is stated that dipole errors lead to integer resonances, quadrupole 

errors to resonances at half-integer v-values and sextupole errors excite third-integer 

resonances [Cas94]. Combinations of horizontal and vertical tunes can result in resonances 

due to coupling between horizontal and vertical betatron oscillation, mainly in the sextupoles. 

Low order resonances (m,n < 3) generally result in a loss of the beam and should be avoided. 

Higher order resonances have a less severe effect on the beam. 

0 0.5 1.0 

Fig. 2.3 Resonance diagram 

Betatron tunes for the different 

modes of operation in the 

EUTERPE ring: 

HBSB: 

HLF: 

SBL: 

Vx = 5.13 Vy = 2.47, 

vx = 2.57 vY = 1.63, 

vx = ?.31 vY = 2.41. 

The working point for a storage-ring is defined by its betatron numbers vx and vY. The 

working points for the HBSB, HLF and SBL mode are depicted in the resonance diagram, see 

fig. 2.3. In the resonance diagram the tune values are reduced totheir values between 0 and 1. 

The working point in the HBSB-mode is near a semi-integer resonance in the vertical 

direction. A small tune-shift, 1:1 vY = +0.03 results in an unstable orbit. 

2.5 Dispersion and chromaticity 

So far, only mono-energetic bunches are considered. In reality not all particles will have the 

same energy ( or momentum). Particles with a larger momenturn p > p0 are bent less in the 

dipoles, as aresult their orbit is shifted. However, the focusing quadrupoles do notpermit the 

particles to deviate too much from the design orbit and bend the particles towards the centre 

of the beam. The defocusing quadrupoles in turn bend the particles away from this centre. 

The resulting orbit of the off-momentum particles differs from the reference particles. 
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The dispersion function D(s) is defined as the particular solution of the Hili equation, ll.p :1: 0, 

x (s, dp) = D(s). dp. 
P Po 

(2.7) 

With the use of the dispersion function the partiele trajectory is described with 

x(s, ll.p/p) = x(s) + D(s) ll.p/p, (2.8) 

which is a simple superposition of the homogeneous and particular solution of the Hili 

equation. The dispersion function will be largest in the focusing quadrupoles and smallest in 

the defocusing quadrupoles. Due to dipole and quadrupole configuration in the EUTERPE 

ring the long straight sections in the EUTERPE ring are dispersion free. 

Another consequence of the momenturn shift is that the tune of the off-momentum particles 

changes. In the quadrupoles the particles with a higher momenturn experience a weaker 

focusing. The chromaticity Ç is a measure for the dependenee of the tune as a function of the 

dispersion, 

ll.v 
Ç=--Y. 

y !lp/p 
(2.9) 

The chromaticity produced by all linear magnetic elements in the lattice is called the natura} 

chromaticity. 

Chromaticity must be avoided for two reasons: the tune-shift due to chromaticity can cause 

off-momentum particles to cross resonance lines; as a result their orbits become unstable. 

Secondly the chromaticity can result in head-tail instahilities [Tur91]. The wake field 

generated by the leading part of a bunch excites an oscillation in the following part. Due to 

longitudinal oscillations (synchrotron oscillations) the electrons in a bunch interchange their 

positions. As a result the oscillations can be anti-damped, which may cause a beam loss. It 

appears that the oscillations are damped for zero chromaticity. 

The natural chromaticity can be corrected with the use of sextupoles. The particles with a 

larger orbit distortion x due to a larger momenturn p are extra focused in the sextupoles 

(B-r), which results in an increase in the betatron tune. The chromaticity in a sextupole is 

given by [Cas85] 
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(2.10) 

with PCs) the betatron function, D(s) the dispersion function and ~ the sextupole strength. A 

disadvantage of the chromaticity correction is that with the use of sextupoles third-order 

resonances are excited and as a result the boundary of stabie motion - the dynamic aperture -

is decreased. 

2.6 ClosedOrbit Distortions 

The lattice of a real machine is never perfect. Small imperfections, such as misalignments and 

field errors, lead to a distortion of the beam. As a result the particles in a bunch will not 

oscillate around the designed orbit, but will perform their betatron oscillation around a new 

closed orbit. In this paragraph the physics conceming the closed orbit distortion is treated. 

In linear theory all perturbations can be seen as small angular kicks, originating from small 

additional dipoles. This similarity is used to calculate the closed orbit distortion. The field 

error is the difference between the real field strength ( ./1J.dl),eal and the designed field strength 

( .11J.dl);deal 

Ö(fB.dl) = (f B.dl)real - (f B.dl)ideal" (2.11) 

The field error results in an additional deflection 

Au' = öfBdl, . h 
L.l wzt u = x, y. 

(Bp) 
(2.12) 

As mentioned above a partiele in a bunch will oscillate around the design orbit. Because the 

betatron function pis dependent on the longitudinal position (s), the partiele will not oscillate 

harmonically, see eq. (2.4). However, new coordinates 11 and <J> can be chosen with which the 

Hill-equation is transformed into that of a harmonie oscillator [Cas85]. Both 11 and <I> are 

normalised with respect to p. Furthermore <J> is normalised with respect to the tune. This 

results in the new coordinates, which are defined as: 

and 
ds 

<I> = f -. 
vp 

With the use of these coordinates the Hill-equation is transformed into 
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(2.14) 

In this formula g( f/J) expresses the perturbation and is a function of F(s), which represents the 

field error introduced at position s, according to: 

with F(s) = ll.B(s). 
Bp 

(2.15) 

lf the latticeis perfect except fora small angular kick at position s1, then g(<J>) will be zero 

throughout the ring except for position s1• In that case equation (2.14) describes a harmonie 

oscillation with a small deflection at position s1• We are free to choose the origin of the 

coordinate <J>; with <I> equal to 1t at position s1 we find the closedorbit which is visualised in 

figure 2.4. Note that the figure is symmetrical in <I> = 1t. 

Fig. 2.4 Closedorbit in a perfect lattice with one imperfection 

The oscillation of the particles is in the homogeneous area can described by 

T) = Tlo cosv<J>. (2.16) 
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At the location of the imperfection, the deflection is equal to ä(dT) /d<J>) = 2 (dT)/d<J>) (see 

figure 2.4); the deflection as a function of the field error is, given in equation (2.11). 

Combining these two equations and using the definitions of the parameters 11 and <J>, results in 

the orbit equation [Cas85] 

yPCs)Pk ö(Bl) 
x = JPCs)T)0 cosv<J>(s) = [ . . --] cosv<J>(s), 

2sm1tv Bp 
(2.17) 

with Pk the betatron function at the position of the imperfection. The equation shows that the 

closed orbit is most sensitive for imperfections at locations where the betatron functions p is 

large. It also expresses the fact that the distartion becomes infinite if the tune is equal to an 

integer. 

The expression in square brackets is the maximum amplitude of the perturbation at the 

location s. lf there are more perturbations around the ring, the closed orbit distartion is the 

sum of these partial distortions. 

2. 7 Closed orbit correction 

Deviations of the electrans from the design orbit are not wanted. The distortions can cause 

part of the beam to hit the walls of the vacuum chamber, especially in special insertion 

devices such as undulators and wigglers in which the aperture is very small. The distartion of 

the electron beam can be reduced with the use of a correction system. 

The electron orbit can be measured using Beam Position Monitors (BPM's). Ifthe position of 

the beam is known the closed orbit can be adjusted by deflecting the beam with corrector 

magnets. Several methods are developed to calculate the corrector settings, which minimise 

the position errors. In this report the MICADO metbod is used. The metbod is discussed in 

this paragraph. 

2.7.1 Determining the number and position of the corrector magnets and 
monitors 

The predominant harmonie in the uncorrected orbit is close to the tune v. In order to establish 

its amplitude and phase one needs four monitors per wavelength [Cas94 ], [Kuo93] in both 

the horizontal and vertical plane. Furthermore one needs four correctors per wavelength for 

the correction. 
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Less correctors are needed if only the two harmonies nearest to the tunes are corrected; 
studies show that the closedorbit distartion is already reduced to ca 30% of it's initia! value 

with this simple harmonie correction. 

The positioning of the monitors and correctors determines largely the effectiveness of the 
closed orbit correction system. The horizontal position is most accurately measured near a F

quadrupole (a quad focusing in the horizontal direction), where Px is large and the closed 
orbit distartion will reach its maximum. The vertical position is best measured near a D

quadrupole (defocusing horizontally and focusing vertically), where PY is large. Therefore 

horizontal monitors are best placed near the F-quadrupoles and the vertical monitors near the 

D-quadrupoles. The best position of the correctors is near the sourees of the distartion or 
180° in betatron phase shifted [Cas94]. 

The monitors should not be placed equidistantly; in that case distortions with a wave-length 

twice the monitor distance are not measured. lf the monitor distance is variabie more 
harmonies of the closed orbit distartion are measured. The positioning of the monitors and 

corrector magnets is of course restricted by the free space available after the insertion of the 

other elements in the storage ring, such as di po les, quadrupoles, etc. 

2.7.2 Closedorbit correction methods 

lf the position and number of monitors is roughly determined a closed orbit correction 
metbod has to be chosen, with which the correction settings can be determined. Most 

correction methods are based on a Least Squares approximation; the square errors at the 
position of beam monitors are minimised. The number of correctors is not necessarily equal 

to the number of beam position monitors. It is customary to use the smallest set of correctors 
necessary to obtain a given orbit quality. 

There are different strategies to minimise the orbit deviations using the smallest set of 

correctors [Kou89]: 
- The brute force method. For all possible combinations of correctors the least-squares 

problem is solved, the combination with the smallest residue being the most effective 

configuration. 
- Most effective corrector. The most effective configuration of correctors is quicker found if 

iteratively the most effective corrector is added to the subset of correctors. The most 
effective corrector is selected by calculating the least squares error for the subset of 

correctors plus every possible new corrector. The iteration is repeated until the squared 

error is below a certain threshold value. 
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- MICADO. The MICADO-algorithm [Aut73] basically follows the selective approach of 

the most effective corrector. However in this algorithm the most effective corrector is not 

determined by solving a least squares problem. lnstead the response of each corrector at 

the position of each monitor is determined. The cross-correlation between this response 

and the residue distortion is calculated. The corrector with the highest cross-correlation is 

considered to be the next most effective corrector. Only for this new subset of correctors 

the least-squares problem is solved. The settings of all correctors previously selected 

remains unchanged. 

The least-squares norm is very sensitive to large measurement errors, which must somehow 

be removed beforehand. The MICADO-method is implemented in the software packet 

'Methodical Accelerator Design (MAD}', see [Mad91], which will be used throughout this 

report. 

Other norms arealso implemented in correction techniques, e.g. the lcnorm penalises errors 

independently of their magnitude and thus wrong measurements have less weight. The 11-

norm is implemented in Simplex [Kou89]. The harmonie analysis method mentioned in the 

previous paragraph is another method, which is more immune to noise. This noise can be 

caused by for example, radiation striking the position monitor. 

The differences in the quality from the different correction techniques and methods is small. 

According to [Kou89] all methods are approximately equivalent from the point of view of the 

final orbit residues. 
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Chapter 3 

The closed orbit distartion in the EUTERPE ring 

A synchrotron with a perfect lattice has an ideal reference orbit. In a real machine the 

orbit is distorted as a consequence of lattice imperfections. The reference partiele will 

deviate from the designed, ideal orbit. All particles will perfarm their betatron 

oscillations around this new closed orbit. In this chapter the closedorbit disfortions due 

to different e"or sourees are estimated. In § 3.1 the sourees of the closed orbit distartion 

are discussed; the amplitudes of the most important error sourees are estimated. The 

effects of these errors on the closed orbit disfortions are simulated in the computer 

group of codes "MAD" (Methodical Accelerator Design). The resulting closedorbit 

disfortions are discussed in § 3.2. 

3.1 Sourees of closed orbit distartion 

The trajectory of the electrons in a storage ring is mainly affected by magnetic forces. The 

distortion of the closed orbit is therefore normally aresult of local field errors. These local field 

errors are in turn a consequence of position errors of the magnets or of magnet imperfections. The 

sizes of the position errors and magnet imperfections are estimated in this paragraph. 

The position errors originate from different error sources; the contributions of these error sourees 

to the total position errors are estimated separately. In §3.1.1 to §3.1.3 respectively the 

displacement errors due to misalignments, thermal expansion and vibrations are estimated. The 

field errors are determined in §3.1.4. The total position and field errors used for the simulations 

are given in §3.1.5. 

3 .1.1 Alignment errors 

The position of the magnetic elements in the ring can only be measured with a finite precision. 

Displacements with a smaller amplitude than the measurement error can not be elirninated. A 
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special alignment lattice bas been designed [Stei94]; with this lattice the amplitude of the 

misalignments is reduced to CJx = CJY = az = 0.1 mm and a~ = a6 = a"' = 0.1 mrad; all errors having 

a Gaussian distribution. 

The magnets are aligned with the use of three reference points on top of the magnets. These 

reference points on the magnets are aligned with respect to 8 reference points located outside the 

ring. As a consequence of the overdetermination of the magnet location the position error can 

be reduced. 

I 

\ 
I 

\ 

Support table 
~-------------------------------~ 

Bellow Bellow 

I 

I I 

~--------------------------------· 

2440 

Fig. 3.1 Subsection containing a quadrupole doublet and two sextupoles. 

I 

I 

Each quadrupole doublet and set of sextupoles in a short straight section of the ring is placed on 

a large table, see figure 3.1. The position errors of the quadrupoles and sextupoles are a 

superposition of two errors: the errors in the positioning of the quadrupoles on the tables and of 

alignment errors of the tables in the ring. lt is expected that the rms-values of the position errors 

of the quadrupoles can be reduced to 0.1 mm [Tim95] in all directions. 

The sextupoles can be aligned with the same accuracy. Ho wever the closed orbit is less sensitive 

to sextupole displacements, therefore the alignment of the sextupoles is not necessarily as accurate 

as the alignment of the dipoles or quadrupoles. With less effort the sextupoles could be aligned 

with an error equal to 0.2 mm. 
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Table 3.1 Expected alignment errors in the EUTERPE ring 

Alignment error Dipole Quadrupole Sextupole 

(Jx = (JY = (Js (mm) 0.1 0.1 0.2 

a~= a6 = at (mrad) 0.1 0.1 0.2 

3 .1.2 Thermal effects 

The temperature in the hall in which the EUTERPE ring is placed is not conditioned. As a 

consequence the temperature in the hall will change during operation and in-between experiments. 

The temperature change will result in a heating or cooling of the storage ring floor. The thermal 

expansion or contraction of the storage ring floor results in a displacement of the ring elements. 

The amplitudes of the displacements are estimated in this paragraph. A differentiation has been 

made between local and global thermal expansion. 

3.1.2.1 Global thermal expansion 

The global temperature in the storage ring hall changes with the temperature outside. The 

temperature in the hall varles from about 10 oe in winter to circa 30°C in summer: a temperature

variation of 20 K. Moreover the temperature changes on a daily basis due to the heating of the 

hall by the sun. 

The temperature of the storage ring floor will change only in the surface layer of the concrete. An 

upper limit to the global expansion is found assurning the temperature in the concrete is 

homogeneously changed with 20 K (LlT=±10K). In that case the storage ring floor willexpand 

linearly 

Llx = r.e.LlT = ±0.8 mm, (3.1) 

ris the radius ofthe ring (r= 6.4 m) and e the linear expansion factor of concrete (e =1.2.10"5/K). 

The displacement of all elements is approximately equal and is for all elements in the radial 

direction. 
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Fig. 3.2 Displacements due to global heating ofthe storage ringfloor. 

In reality the concrete floor of the hall is not homogeneously heated and due to stress in the 

concrete the thermal expansion of the storage ring floor is reduced. An indication of the difference 

between the thermal expansion of a homogeneously heated floor and the real thermal expansion 

can be deduced from experiments at the Photon Factory in Japan. The thermal expansion of the 
storage ring was measured [KAT93] as a function of the temperature of the storage ring floor and 
of other parts of the storage ring hall. The main contribution to the displacements was the 
temperature change in the storage ring floor; ax = 3.2 w-6/K.. This measured thermal expansion 
is 3 to 4 times smaller than the expansion calculated with eq. 3.1, which holds fora homogeneous 

heated concrete layer. 

Basedon the experience in Japan it is expected that the thermal expansion calculated with eq. 3.1 
(ax =0.8 mm) is several times larger than the real thermal expansion. However the displacements 

due to global thermal expansion are expected to be at least of the same order as the alignment 
errors, viz. a = 0.1 mm. 

3.1.2.2 Local temperature effects. 

Not only the global, but also the local temperature in the storage ring hall will varyin-between 
and during experiments. Due to local heating and the absence of ventilation the temperature in the 
storage ring will vary locally. Local thermal expansion of the storage ring floor causes local 
displacements; the direction of the local displacements is uncorrelated. However the local 
temperature changes in the storage ring floor are small (the floor is slowly heated) and the 

-21-



Chapter 3. The closedorbit distotion in the EUTERPE ring 

domains over which the temperature changes are small. Assuming the temperature varlation is 2 

K over a length of 2 m (the length of a short straight section) an upper limit to the thermal 

expansion is calculated with eq. 3.1; ox = a, < 0.05 mm. The displacements are expected to be 

several times smaller than this upper limit. The displacements due to local thermal expansion of 

the storage ring floor are several times smaller than the alignment errors; their contribution to the 

total displacement errors are therefore negligible. 

Not only the storage ring floor is heated locally; the metal frames on which the dipoles are placed 

can be heated by sunlight. The temperature difference between the dipole-frame is possibly 11 T= 

±SK.The temperature in a frame is homogeneous due the good thermal conduction ofthe steel. 

In the case of linear expansion, which can be expected for a homogeneously heated dipole, the 

vertical displacement of the dipole is equal to 11y~ ±0.06 mm (/1 T= ±5 Kê1!1d JJ=l.20m) . 
... -. ·-·~---

Local thermal expansion does have an influence on the vertical dipole position, but the total 

amplitude of the vertical displacements is hardly increased. Furthermore local thermal expansion 

is easily prevented with shielding.The effects of global and local thermal expansion are 

summarised in table 3.2. 

Table 3.2 The effects ofthermal expansion 

Ca u se Direction /1T (K) Displacement 

Local heating of a dipole- vertical direction ±5 11y<0.06mm 

frame 

Local temperature All directions ±2 Ox, Oy, Oz 

differences <0.05mm 

Global heating of storage horizontal direction ±10 11x<0.8mm 

ring floor 

3.1.3 Vibrations and other sourees affecting the element positions. 

The position of the magnetic elements is influenced by position errors originating from other 

effects. In this paragraph the effects of VIbrations of the storage ring floor and the dipole-supports 

is estimated. Furthermore the influence of the rebuilding of the concrete bunker inside the ring 

after alignment will be estimated. 
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Vibrations in the storage ring floor can be excited due to extemal sources, such as trucks or trains 

passing by. These vibrations in the storage ring floor in turn excite the vibrations in the supports 

of the magnetic elements; as aresult the positions of these elements are continuously displaced. 

Several experiments have been done to determine the amplitudes and resonance frequencies of 

the dipole-frames. The oscillation amplitudes of the dipole-frame in 3 dimensions were measured 

as a function of the kick on the frames, see table 3.3. Furthermore the maximum displacements 

ofthe dipole-frame have been measured duringa smallinterval of time (about 1 minute). During 

these experiments the water cooling system through the dipole was switched on; also the storage 

ring floor was excited as much as possible. The maximum displacements remained smaller than 

300 nm. The experiments are described in [Bres95]. 

Table 3.3 

Parameter 

Parameters conceming the vibrations in the support of the first 

EUTERPE dipale 

x-direction y-direction s-direction 

Maximum displacement dx<300nm dy<300nm dz<30nm 

Resonance frequency f=9.5Hz f=11.5Hz f= 9.5 Hz 

Response dx= 28 ± 1 JlrniN dy= 22 ± 4 JlmiN dz <4 JlmiN 

During the alignment ofthe dipoles, part ofthe bunker inside the storage ring (see figure 1.1) may 

have to be removed; after alignment the bunker shall be rebuild again. The large mass

concentration ( 150 ton per bunker) might cause the concrete floor to bend a little between the 

piles. The size of the tilt-angle has been estimated. In the situation that all mass of the bunker 

would be concentrated in the middle of one floor segment (5 metre by 5 metre), the tilt-angle 

would still be smaller than 0.02 mrad. The effects of the rebuilding of the bunker are therefore 

negligible. 

3.1.4 Field errors due to magnet imperfections 

lmperfections in the geometry of the magnets result in field errors. These field errors are measured 

in the integrated field strengths along the electron trajectory. 

At the start of this study only one dipole was completely manufactured. The quadrupoles were 

still under construction and the sextupoles were designed during this study. The magnetic field 

in the fust dipole has been measured [Der93]. The fieldstrength along the electron trajectory (the 
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field integral) is a function of the radial position of the dipole. The field integral changes more 

than 0.05% if the dipole is 10 mm displaced in the radial direction; this corresponds to a deflection 

of the beam with 0.015 o. The dependency of the field strength on the magnet position is described 

by higher order field components. The sizes of the higher field components according to[Der93] 

are given in table 3.4. The relative difference in the field integral between different dipoles is in 

the order of 104
• The extra deflection in a dipole with a relative error ll18.dl/IB.dl =104 is ca 0.05 

mrad, which has a negligible effect on the total closed orbit distortion. 

Relative errors in the fieldstrengtbs in the quadrupoles mainly affect the betatron tunes. The 

relative quadrupole errors are expected to have an amplitude equal to Ofkl.dllfk1.dl=l.10.3, which 

result in relative tune shifts of the same order. The higher order field errors in the quadrupoles and 

sextupoles are expected to have a negligible influence on the closed orbit. 

Table 3.4 Expectedfield errors in the EUTERPE dipoles and quadrupales 

Elements Error Magnitude 

Dipoles relative field strength OJB.di/JB.dl = 1.10-4 

Di po les sextupole field strength fk2' dl ~ 2.10·1 m·3 

Quadrupoles relative field strength Ofkl.dl/fk1.dl =1.10-3 

3.1.5 Resulting displacement and field errors 

In the previous paragraphs an extensive study of the displacements and field errors of the 

magnetic elements in the EUTERPE ring has been made. Only the errors with the largest 

amplitudes will be simulated in MAD in order to get an impression of the closed orbit distortion 

in the storage ring (see next paragraph). The largest displacement errors are aresult of the finite 

measurement precision during the alignment. Apart from these alignment errors only the 

displacements due to global thermal expansion are non-negligible. The amplitudes of the 

displacement errors used for the simulations are summarised in table 3.5. 

Note that the alignment errors and the displacements due to thermal expansion are fundamentally 

different. The alignment errors are constant, while the errors due to thermal expansion vary 

continuously. These errors cause the closed orbit to change during and in-between the 

experiments. 
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The field errors in the magnetic elements are expected to have little effect on the total distortions. 

The relative field errors in the dipoles are o18.d1 /fB.dl = 1.1 o·4, which result in deflections in the 
order of .!U'=0.05mm per dipole. The relative field errors in the quadrupoles are expected to have 
a larger effect, mainly on the tunes. Only the higher order field components in the dipoles have 

been measured; their effect on the closed orbit distortions will be determined with simulations, see 

table 3.5. 

Table 3.5 Total displacements andfield errors 

Souree Displacement Elements involved 

Misalignments Ox = Oy = Oz = 0.1 mm and All dipoles and quadrupoles. 

o<l>= o6 = o"' = 0.1 mrad 

Misalignments Ox= Oy = Oz = 0.2 mm and All sextupoles 

o<l>= o6 = o"' = 0.2 mrad 

Thermal expansion due .!U:::: 1mm All elements 

to global heating 

Magnet imperfections Ik-/ dl:::: 17 m·3 Di po les 

Ofkldl/ fk1dl :::: 1.104 Quadrupoles 

3.2 Resulting closedorbit distortions 

The size of the displacement and field errors in the magnetic elements has been 

estimated in the previous paragraph. The effects of these errors on the closedorbit of the 

electrans are examined by simulating them with the program MAD. The effects of both 

the displacement of a single element in one direction as well as the effect of the 

displacements of multiple elements in all directions have been determined. 

3.2.1 Simulations in MAD 

The principle concern of this report is the closed orbit distortion. In this paragraph the closed orbit 
distortions and tune shifts are calculated for many different error configurations. The software 
packet Methodical Accelerator Design (MAD) is used for the calculations. MAD has been 
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developed at CERN as a tooi for charged partiele opties in accelerators. Many features are 

included in the program [Mad85]; among these features are the calculation of the closedorbit 

distortion and the closed orbit correction. More information about the program is given in 

appendix A. 

Many other beam parameters are calculated with MAD. During the simulations in this report the 

chromaticity ~. the dispersion D, the betatron amplitudes p, the momenturn compaction factor a, 
and the increase of the closed orbit length Às are calculated. Only the values of the parameters 

affecting the closedorbit (the tunes and closedorbit distortions) are given in the different tables. 

Each element in the EUTERPE ring will have a random displacement error with an rms-value as 

mentioned in § 3 .1.5. In MAD random displacement errors are assigned to each element using a 

Gaussian table. All displacement errors used in the simulations are defined as the relative 

dis.placements at the entrance ofthe magnetic elements1
• For one possible error-configuration the 

closedorbit distortion is determined. The statistica! error introduced by this error-assignment is 

reduced by averaging the results over 10 runs. 

3.3.2 The effects of single misalignments 

The effects of all possible single misalignments - a perfect lattice containing only a specified 

displacement of one element in one direction - have been calculated with MAD in order to get a 

fust impression of the sensitivity for different displacements. The displacements with the largest 

effects on the amplitudes ofthe closedorbit distortions or tunes are given in table 3.6. The effects 

of all possible misalignments are given in appendix B. The effects of single misalignments of the 

other dipoles (D2) and quadrupoles (Q2, Q3 and Q4) were comparable with the effects of the 

displacements of the fust dipoles and quadrupoles. An example of the closed orbit distortion due 

to a single displacement is given in figure 3.3. 

The closedorbit is very sensitive to displacementsof the quadrupoles in the x-direction, see table 

3.6. The displacement of the first quadrupole in the x-direction results is 34 times amplified in 

the closedorbit distortion! The sensitivity of the distortion for the quadrupole displacements are 

a consequence of comparatively large values of both the in duetion and the betatron function. 

1 This definition of the displacement errors differs from the definition of misplacements 
at the centre of each element, see appendix B. 
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The effects of single displacements on the closed orbit (D1=dipole 1, 

Q1 =quadrupole 1 ), mode HBSB 

Displacement Xmax Ymax ll. vx /l. Vy 

(mm) (mm) *104 *10-4 

dx=O.lmm 3 0 25 1 

dy=O.lmm 0.004 0.4 0.5 0.2 

d6=0.lmrad 0.5 0 4 1 

dx=O.lmm 0.2 0 0.1 2 

dy=O.lmm 0.002 0.3 0.04 0.02 

ds=O.lmm 0.7 0 0.2 8 

dljT=O.lmm 0.002 0.3 0.04 0.02 

-5.o~~~~~~~~~~~~~~~~~~ 

Fig. 3.3 

0 10 20 30 40 
s (m) 

The closedorbit distartion in the HBSB-mode due toa displacement dx=0.1mm 
of the first quadrupale ( Q1 ). 

-27-



Chapter 3. The closedorbit distotion in the EUTERPE ring 

It must be noted that in practice the displacements of an element in a eertaio direction may have 

a significant influence on the closed orbit, while a single misalignment in the specific direction 

does not affect the closed orbit. E.g. a single misalignment of a quadrupole in the s-direction 

does not distort the closed orbit, because the beam is not deflected in the quadrupole. In a real 

lattice however the closed orbit is already distorted due to other lattice errors and the closed orbit 

does not coincide with the magnet axis of the quadrupole. As a consequence the particles are 

deflected and a displacement of a quadrupole in the longitudinal direction does have an effect on 

the closed orbit. 

The effects of single misalignments have also been examined in the HLF-mode; for this mode the 

effects of single misalignments on both the closed orbit distortions and the tunes were about 10 

times smaller. This is aresult of a difference in the focusing strengthof the quadrupoles. 

3.3.2 The effects of multiple misalignments and field errors 

The consequences of misalignments in all directions of all dipoles, quadrupoles and/or sextupoles 

have been examined. The results are summarised in table 3.7 for the HBSB-mode. All results are 

averaged over 10 runs with different random displacements. The deviations of the closed orbit 

distortions areabout 50 %; the deviations of the tune-shifts are even larger. These uncertainties 

are oot a result of the limited number of simulations; the deviations are oot reduced if their value 

is averagedover more runs.The rms-value of the closedorbit distortion in the horizontal and 

vertical plane is calculated for 50 error-configurations and is equal to xrms (co) = 0. 7±0.3 mm and· 

Yrms (co)= 0.4±0.2 mm. These results differ little from the values in table 3.7. 

The displacements of the quadrupoles are the main sourees of the closed orbit distortions. The 

influence of the displacements of all dipoles is several times smaller; this is partly due to a smaller 

amount of dipoles (12 dipoles and 32 quadrupoles) but also a consequence of a bigger sensitivity 

for quadrupole-displacements. The sextupole-displacements have little effect on the distortion, 

due to their comparatively weak magnetic field. However the sextupole displacements have a 

significant effect on the betatron tunes, as a consequence of their additional focusing. 
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Table 3.7 Effects of multiple displacements ( a=O.l mm and a=O.J mrad) and field errors 

on the closedorbit distartion (mode HBSB) 

Displacement Xrms Yrms l:l vx llv, N (~ 
unstable 

(mm) (mm) *10"2 *10-2 

All dipoles 0.7 0.5 0.07 0.1 0 

±0.2 ±0.2 ±0.03 ±0.1 

All quadrupoles 4 1.1 0.4 --- (*) 8 

±2 ±0.3 ±0.3 

All sextupoles 0.007 0.006 0.02 0.2 1 

±0.004 ±0.003 ±0.01 ±0.1 

All elements 3 1.4 0.9 --- (*) 7 

±1 ±0.5 ±0.8 

All elements + 3 1.4 0.9 --- (*) 8 

field errors ±1 ±0.5 ±0.8 

The betatron oscillations in the vertical plane were unstable for several error-configurations as a consequence 

of the tune shifts caused by the lattice imperfections. For errors which resulted in a high number of unstable 

runs N UJtStabk the tune shifts in the vertical direction are not given. 

The closed orbit distortions are within a few percent a linear function of the amplitude of the 

misalignments. The distortions are proportional to the error fields. Moreover the resulting error 

fields in both the dipoles and quadrupoles are proportional to the displacement of the elements. 

The error fields due to sextupole misalignments are a quadratic function of the displacement 

errors, as a consequence of the proportionality of the sextupole field tor. However the effects 

ofthe sextupole misalignments on the total distortien are negligible. The closedorbit distortions 

due to misalignments with a different amplitude are easily calculated with the values listed in table 

3.7 as aresult of this linearity. 
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Fig. 3.4 

-2o~~~~~~~~~~~~~~~~~~=+ 

0 10 20 30 40 
s (m) 

The closedorbit due to the random displacements of all dipoles, quadrupoles and 
sextupoles for two different error-configurations. 

The closed orbit distortion due to the misalignments of all dipoles, quadrupoles and sextupoles 

gives a good impression of the real closed orbit. An example is given in figure 3.4. 

lf the maximum values of the closed orbit distortions exceed the dimensions of the vacuum 

chamber the beam is instantly lost. The maximum value of the lattice with all elements misaligned 

and with field errors in the dipoles is for ten different error-configurations equal to: 

xmnx = 18 mm, 

and Ymnx = 5 mm. 

These values are still smaller than the inner radius ofthe vacuum chamber, which is 22.5 mm. The 

distortions reach their maximum value in the long straight sections for all error-configurations. 

Due to the absence of focusing elements the betatron values and the distortions are maximum in 

these sections. The maximum closedorbit distortions are listed in appendix B. 

The closed orbit distortions are calculated in the HLF mode using the same displacement errors 

as in the HBSB mode. The distortions in the HLF mode are I 0 times smaller in the horizontal and 

2 times smaller in the vertical direction than in the HBSB mode. Moreover the tune shifts in the 

HLF mode are smaller, ll. v.t,!::,. v, < 2.10-3• As aresult the betatron oscillations in the vertical 

plane are stabie for all error configurations. -
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Finally the effects of global thermal expansion and the energy spread are calculated. The effects 
of global thermal expansion are illustrated in fig. 3.5. All elements are displaced in the radial 
direction. The closed orbit is shifted with the elements. 

_...._ 
E 
E -

0 ... 
x 

Fig. 3.5 

î.5 

1.0 

0.5 

o.o~~~~~~~~~~~~~,~~~=+ 

0 10 20 30 40 
s (m) 

The closedorbit distartion due to global heating; all elements are displaced in 
the radial direction, Llx=lmm, in the HBSB mode. 

The influence of momenturn deviations ( or energy spread) on the orbits is described by the 

dispersion function. The dispersion function for the EUTERPE ring is depicted in appendix C. 
The maximum value of the dispersion function is D = ax I a(LJp/p) = 0.5 mm in-between the 
di po les. The momenturn spread of the particles in the EUTERPE ring is given by [Xi 95] 

by the injection of the beam: 
during operationfor a 400 Me V beam 

Llp/p = 0.5% , which gives Llxmax = 2.6mm 
Llp/p = 0.04 % , which gives Llx max = 0.2mm. 

The effects of the dispersion on the total dislortion of the electroos is limited. However the 
dispersion increases the beam width significantly. According to table 1.2 the beam width is less 
than 0.1 mm in the HBSB mode. At the injection the local broadening of the beam due to the 

dispersion is several times larger than this value. During operation the momenturn spread is 

damped; as a consequence the dispersion is reduced. 
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3.3 Summary 

Due to position and field errors of the magnetic elements in the EUTERPE ring the closed orbit 

of the electrons is distorted. In this chapter the closed orbit distortion has been calculated as a 

function of the estimated position and field errors. 

A study of the error sourees resulting in the displacements of the magnetic elements showed that 

the finite measurement precision during alignment is the main souree of the position errors. The 

resulting displacements and tiltangles of the elements have a Gaussian distribution with ox=o, 

=as= 0.1 mm and oq,=Oe =o"'=0.1 mrad. The influence of other effects, such as thermal expansion, 

and vibrations, are several times smaller and therefore negligible for the total displacements. 

The closed orbit is most affected by displacements of the quadrupoles in the horizontal direction. 

The sensitivity of the closed orbit for the displacements of the different elements has been 

determined with simulations of single displacements: simulations of a perfect lattice containing 

only a displacement of a single element in one direction. A single displacement of a quadrupole 

in the horizontal direction results in a 34 times larger closed orbit distortion. The largest 

distortions are in the long straight sections, between two focusing quadrupoles. 

The closed orbit distortion due to the misalignment of all elements in all directions is equal to xrms 
= 3±1mm in the horizontal and Ynns = 1.4±0.5 mm in the vertical direction. The distortion has been 

determined with simulations in MAD; random displacement errors have been assigned to all 

elements. For statistica! reasons the results have been averaged over 10 error-configurations. The 

closed orbit distortions in the horizontal plane are more error-sensitive due to the higher tune

values in the horizontal direction. The higher order field components in the dipoles have a 

negligible influence on the total distortion. 

The displacements of the elements and the field errors resulted in shifts of the betatron tune. The 

vertical tune in the HBSB-mode is near a semi-integer resonance. The tune shift due to the 

displacements of the elements resulted for 8 out of 10 error configurations in a resonance of the 

vertical betatron oscillation, which in practise results in a loss of the beam. With a small 

adjustment of the working point, away from the semi-integer resonance line, this resonance can 

be prevented. 

All results mentioned above are calculated for the High Brilliance Small Beam mode, which is the 

mode of operation with the strongest focusing and as a result most sensitive for lattice 

imperfections. The closed orbit distortions in the High Light Flux mode, which has the weakest 
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focusing, are about ten times smaller than in the HBSB mode. Furthermore the tune shifts in the 

HLF mode are about 10 times smaller. As a result the betatron oscillations in the vertical plane 

were stabie for all simulated error-configurations. The results confrrm the stability of the HLF 

mode; this same stability is the reason why the mode will be used for the first phase of the 

commissioning of the machine. 
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Chapter4 

Design of a closed orbit correction system 

In this chapter a closed orbit correction system is described, which has been designed in 

order to reduce the closedorbit distortion. The locations available for the inserfion of the 

corrector magnets and beam position monitors are determined in §4.1. With the use ofthe 

available locations different correction lattices have been designed. In §4.2 the lattices are 

given and compared. The maximum reduction of the distartion is determined. In §4.3 the 

number of monitors and correctors required for the correction is minimised. The results 

are summarised in §4.4. 

4.1 Introduetion 

The uncorrected closed orbit distortions in the High Brilliance Small Beam mode are large in 
comparison to the inner radius of the vacuum chamber. The stability of the beam is improved if 

the distortien is reduced. Therefore a closedorbit correction system is necessary. The aim of 

the correction system for the EUTERPE ring is to reduce the distortien as much as possible, 

while using as little space as possible for the insertion of the correction elements. 

The calculations of the closed orbit distortien in the previous chapter showed that the 

horizontal closedorbit distortions in the HBSB mode are the largest. Therefore the reduction 

of the horizontal closed orbit distortien in this mode will be the main purpose here. The 

resulting distortions in the HLF mode will be checked after correction with the finallattice. 

Only a few locations are available for the insertion of the correction system, which consists of 

beam position monitors and corrector magnets. The major part of the ring is reserved for the 

'normal' lattice elements, such as the dipoles, quadrupoles and sextupoles. The available 

locations are marked in fig. 4.1. The long straight sections between the quadrupele doublets of 

two successive superperiods are reserved for special elements, such as the rf-cavity and the 

injection elements. The available locations in these sections are still unknown. 

Different correction lattices have been compared. A standard lattice is composed in §4.2.1. 
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Fig. 4.1 Available locationsfor the insertion ofthe correction elements. 
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The monitors in this lattice are placed near the focusing quadrupoles. The total number of 

monitors and correctors used in the lattice is equal to 20. Both the correctors and monitors 

function in both the horizontal and vertical direction. The positions of the elements of the 

correction systems are at the available locations mentioned above. The long straight sections 

are considered to be available for the insertion of the corrector magnets and beam position 

monitors; the effect of the displacement or removal of these correctors and monitors is 

determined later. 

The dipoles and sextupoles in the ring can be used as corrector magnets with the generation of 

additional dipole fields. With the use of the sextupoles and dipoles as corrector magnets the 

total number of monitors and correctors can be enlarged without increasing the space required 

for the correction system. In §4.1.2 both the sextupoles and dipoles are used as corrector 

magnets. Even with the use of both the sextupoles and dipoles, additional corrector magnets 

are required in the long straight sections. Extra monitors are included at the locations of the 

corrector magnets in the standard lattice; the total number of monitors is increased to 36. 

In order to reduce the number of different elements used as corrector magnets, only the 

sextupoles are used as additional corrector magnets. The distortions after correction with these 

lattices are given in §4.1.3. The influence of monitor misalignments and monitor read errors on 
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the resulting distortions are discussed. 

Finally the space occupied by the correction system will be minimised. The distortions after 

correction with the lattices with more monitors will serve as a reference. 

4.2 A comparison of different correction lattices 

The reduction of the closed orbit distortions due to the closed orbit correction is determined 

with simulations in the computer code Methodical Accelerator Design [Mad91]. First the 

uncorrected closed orbit distortions have been calculated after giving all elements (dipole, 

quadrupole and sextupole) misalignment errors, with ox=oy=05=0.lmm and 

oq,=o6=oiJI=O.lmrad. Then the distortions after correction with the different correction lattices 

are determined; the elements of the correction system are given the same misalignments. The 

monitor readings have a deviation equal to ox=oy=O.lmm. For statistica! reasons this procedure 

is repeated 10 times and the results are averaged. 

4.2.1 The standard correction lattice 

In correction lattice, A, the monitors are placed near the focusing quadrupoles. In between 

every quadrupole doublet a monitor is placed; an extra monitor is inserted in the long straight 

sections. The corrector magnets are evenly distributed at the available locations in the ring. 

The total number of monitors and correctors equals Nmon= 20 and !{0 " =20. This correction 

lattice will be used as a reference for the following correction lattices and is referred to as the 

standard lattice. 

The best correction is obtained if the monitors are included at the locations with the largest 

electron beam distortions. The maximum orbit distortions are reached at the locations with the 

largest betatron function, Px(s) and Py(s). The betatron functions are depicted in figure 4.2. Of 

course, the maximum values of the betatron functions are in the focusing quadrupoles. In the 

long straight sections between the focusing quadrupoles, the betatron function reaches a very 

high constant value. The monitors are placed at the locations with the highest horizontal 

betatron values. The standard lattice A is shown in fig. 4.3. 

Quadrupoles focusing horizontally are defocusing vertically. As a consequence the maxima and 

minima of the betatron functions Px (s) and ij (s) are reversed. A second lattice has been 

simulated in which the locations of the monitors and correctors is reversed. Because the 

monitors in this second lattice are placed at the locations with the largest values of Py(s), the 
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vertical correction is expected to improve with this lattice. The horizontal correction is 

expected to deteriorate. 
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Fig. 4.2 The betatron amplitudes in the horizontal and vertical direction ( Px and /3,) for 
one superperiod for the HBSB-mode. 

The number of monitors and correctors used in the standard lattice approximate the number of 

four correctors and monitors per betatron wavelength. This number of monitors is required for 

the full establishment of the amplitude and phase of the distortion. The highest tune-values in 

the EUTERPE-ring are vx = 5.13 and vY = 2.47, both for the HBSB-mode, which corresponds 

to 20 to 24 horizontal and 8 to 12 vertical beam position monitors required for the correction 

system.The number of both the monitors and correctors in the standard lattice are withinthese 

lirnits. 
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The closed orbit correction with the standard lattice is very successful. The rms-values of the 

closed orbit distortions are reduced with a factor 22 in the horizontal and a factor 5 in the 

vertical direction. 

The beam position errors in the monitors have been reduced to xrms = 0.01 mm and Yrms = 0.01 

mm. The resulting distortions are therefore a consequence of the limited number of monitors 

and the position and read errors of the monitors. The vertical closed orbit distortions are 

shown in appendix C. 

Table 4.1 The closedorbit disfortions after correction with the standard lattice. 

Correction lattice. xmax (mm) Xrms (mm) Ymax(mm) Yrms (mm) 

No correction 10±5 4±2 2.7±0.8 1.0 ± 0.4 

Standard lattice A 0.44±0.09 0.16±0.06 0.6±0.1 0.19±0.03 

Locations of monitors and 0.5±0.1 0.23±0.06 0.4±0.1 0.16±0.03 

correctors reversed 

With the locations of the monitors and correctors reversed, the horizontal distortion after 

correction is ±40 % larger. On the contrary the vertical distortion is ±20% extra reduced. The 
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results confirm the expectation that the monitors should be placed at the locations with the 

highest values of the betatron functions. The reduction of the distartion after correction is 

much smaller in the vertical than in the horizontal plane, which is a result of the smaller vertical 

distortions before correction. The maximum reduction is limited by the size of the monitor 

displacements and read errors (both with ox=ox=0.1 mm). 

The vertical tune shifts are reduced due to correction with about a factor 3 for most lattices. 

As a result, the number of error configurations resulting in resonance of the vertical betatron 

asciilation is reduced. The beam deflections in the correctors and the tune shifts are given in 

the table below. 

Table 4.2 The tune shifts and orbit deflectionsfor the standard correction lattice. 

Correction lattice. /lvx ll.vY Nunstable (*) /).x' nns /ly'nns 
(mrad) (mrad) 

No correction 0.01 ___ (*) 6 0 0 

±0.01 

Standard lattice (A) 0.008 0.02 3 0.5±0.1 0.42 

±0.004 ±0.01 ±0.08 

Locations of monitors and 0.005 0.01 1 0.8±0.2 0.40 

correctors reversed ±0.003 ±0.01 ±0.06 

<*l The betatron oscillations in the vertical plane were unstable for several error-configurations as a consequence of 

the tune shifts caused by the lattice imperfections. For errors which resulted in a high number of unstable runs 

N"'"'""'' the tune shifts in the vertical direction are not given. 

4.2.2 The use of the dipoles and sextupoles as additional corrector magnets 

The dipoles and sextupoles included in the main lattice of the ring can be used as corrector 

magnets with the generation of additional dipole fields. E.g. the dipoles can be used as 

horizontal corrector magnets if extra currents are injected in the coils around the poles; this 

way an additional correction field can be added to the common dipole-field. Additional dipole

fields can be generated in the sextupoles with the injection of currents in the coils around 

opposite poles (see chapter 5). 

Using this idea, a second lattice B has been designed, in which all sextupoles and dipoles in the 
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ring serve as corrector magnets. With the use of as corrector magnets the total number of 

correctors and monitors can be increased without increasing the space occupied by the 

correction system. 

The number of monitors in lattice B is increased with respect to the standard lattice, while the 

number of corrector magnets is the same. This is done, because an increase in the number of 

position monitors is expected to result in the largest reduction of the orbit_distortion. There are 

no sextupoles or dipoles included in the long straight sections, therefore an additional corrector 

magnet is used in the middle of every long straight section. The extra monitors are inserted at 

the positions, which have been occupied by the corrector magnets in the standard lattice. 

The total number of monitors in lattice B equals Mrrum = 36; the number of horizontal correctors 

is equal to Ncorr (x) = 32 and the number of vertical correctors N, (y) = 20. The number of 

horizontal and vertical correctors is different, because the dipoles can only be used as 

horizontal correctors. 

Fig. 4.4 
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Schematic view of correction lattice B, in which both sextupoles and dipales 
are used as corrector magnets. 

Simuiatiens show that the horizontal distortien after correction (see table 4.3) is not further 

decreased with the use of all dipoles and sextupoles as additional horizontal correctors. On the 

contrary, the distortien after correction is larger than the distortien after correction with the 

standard lattice. 

This is a consequence of the number of correctors, which is locally too large. Several monitors 
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in the lattice are placed directly in-between two corrector magnets (these are the monitors 

indicated in fig. 4.4 ). The readings in these monitors can always be minimised with a large 

deflection in the first corrector and a compensating large deflection in the second. Position and 

read errors of the monitors result in amplified distortions as a consequence of the large 

amplitude of the divergence, ll.x'. The horizontal deflections in the lattice, withall sextupoles 

and dipoles used for the correction, are an order of magnitude larger than the horizontal 

deflections in the standard lattice, the maximum deflections are respectively /l.x' rms = 15 mrad 

and ll.x'rms = 1.2 mrad. 

The correction system is significantly improved if the use one of the two correctors near the 

monitors is discarded. In fact the horizontal distortions after correction are 20% smaller than 

after correction with the standard lattice. The vertical distortions are nearly 40 % smaller. 

Furthermore the number of error-configurations in which the betatron oscillations were 

unstable is reduced to 1 out of 10 (for the standard lattice: 3 out of 10). 

The use of the dipoles and sextupoles as additional corrector magnets can be considered an 

improvement for the closed orbit correction. Because the closed orbit distortions after 

correction are even smaller than after correction with the standard lattice, without occupying 

more space in the ring. 

Table 4.3 The closedorbit disfortions in the HBSB mode after correction with lattice B 

Correction lattice. xmax (mm) Xrms (mm) Ymax(mm) Ynns (mm) 

Standard lattice, A 0.44±0.09 0.16±0.06 0.6±0.1 0.19±0.03 

All dipoles and sextupoles 0.8±0.3 0.23±0.06 0.4±0.1 0.13±0.01 

used as additional correctors. 

8 sextupoles and all dipoles 0.41±0.08 0.13±0.01 0.3±0.1 0.12±0.02 

used as additional correctors. 

4.2.3 A correction system containing only sextupoles as additional correctors 

Sextupoles, dipoles and additional magnets have been used as corrector magnets in the 

previous paragraph. Because a uniform correction lattice is desired, it is examined here if the 

use of the sextupoles as additional correctors is sufficient for the correction. 
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In lattice C differs all sextupoles are used as additional correctors; the only difference with the 

previous lattice B is that the dipoles are not used for the correction. The monitor locations are 

the same. 
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/" 
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i\l i M2 M4 MS M7 \·Ho) rvr9 

Fig. 4.5 The representation of correction lattice C, in which only the sextupoles are 
used as additional correctors. 

Table 4.4 The closedorbit disfortions in the HBSB mode after correction with lattice C 

Correction lattice. xmax (mm) xrm.r (mm) Ymax(mm) Yrm.r (mm) 

Standard lattice, A 0.44±0.09 0.16±0.06 0.6±0.1 0.19±0.03 

Lattice C, all sextupoles used 0.40±0.07 0.13±0.02 0.4±0.1 0.13±0.02 

as additional correctors. 

Four monitors relocated 0.4±0.2 0.15±0.02 0.5±0.1 0.15±0.05 

With the relocating of one of the monitors the dependency of the correction on the monitor 

positions is examined. The new location of the monitor is given in fig. 4.7. The monitor is 

shifted from a place between defocusing elements to a place near defocusing elements. 

Therefore it might be expected that the correction is slightly improved. 

However, due to the displacement of the monitor, the monitor near the central dipole is placed 

between two correction elements, with no strong focusing elements in between. This resulted 

in large deflections in the previous paragraph. Because the distance between the correctors is 

increased, the effects are smaller. 

The closed orbit dislortion after correction equals the distortion after correction with lattice B 
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(with the dipoles used as additional correctors) and is an improvement over the standard 

lattice. With the use of only sextupoles as additional correctors the number of correctors is 

smaller than lattice B; furtherrnore only two types of corrector magnets are used in lattice C 

(the dipoles are not used as additional horizontal correctors). Therefore the use of only the 

sextupoles as corrector magnets can be considered an improvement. 

The closed orbit distortions in the HLF mode have after correction with lattice C 

approximately the sameamplitude as the distortions in the HBSB mode: xrms = 0.13 ± 0.03 and 

Yrms = 0.12 ± 0.01. 

4.2.4 The influence of position and read errors in the monitors 

In this paragraph the contribution of the monitor errors to the orbit distortion will be 

discussed. The horizontal distortion after correction with a lattice containing only perfectly 

aligned monitors will be compared with the distortion after correction with the same lattice, 

but with monitor errors. 

Lattice C, treated in the previous paragraph, is used for the comparison. In figure 4.4 the 

closed orbit after correction is shown for a correction lattice with read errors and 

rnisalignments and the same correction lattice, but with ideal monitors, perfectly aligned. The 

closed orbit distortion is more than twice as small for the ideal correction lattice. For the lattice 

with monitor displacements and rnisalignments the rrns-value of the closed orbit distortion is 

about equal to the rrns-value of the monitor rnisalignments. 

Table 4.5 The influence of the monitor read errors and misalignments on the horizontal 

distortion, mode HBSB. 

No te :l\:onns l!vx 

(mm) 

Ideallattice 0.06 0.007 

±0.02 ±0.005 

Monitors displaced, ox=Oy =0.1 mm, 0.11 0.01 

norcaderrors ±0.02 ±0.01 

Monitors displaced, ox=Oy =0.1 mm 0.13 0.01 

+ read errors, ax=ay =0.1 mm ±0.02 ±0.01 
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The closed orbit distartion after correction approximates the amplitude of the position and 

read errors of the monitors. In order to improve the correction these errors should be reduced. 
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!deal lattice 
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Fig. 4.6 The closedorbit after correction with lattice C; comparison of a perfect 
correction lattice and a lattice with misaligned monitors and read errors. 

The closed orbit distartion after correction with an ideal lattice is equal to Xrms = 0.06±0.02 

mm, which is smaller than the beam width near the dipoles (see table 1.2). 

lf the size of the distartion after correction is compared to the distartion due to dispersion, 

another impression of the size of the distortions is obtained. The momenturn spread of the 

particles in a bunch results in a local increase in the beam width. This incréase only depends on 

the dispersion function D(s) and is not a function of the distortion. A momenturn spread of 

0.04% is expected for the normal operation of the EUTERPE ring. The closedorbits of two 

particles with different momentum, 1:1plp = + 0.04% and 1:1p/p =- 0.04%, are compared in fig. 

4.7. 

The tigure shows that the increase of the beam width is of the same order as the closed orbit 

distartion after correction. This illustrates how small the amplitude of the distartion after 
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correction is. 
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Fig. 4. 7 The closedorbits aft er correctionfora partiele with ll.p/p = + 0.04% and 
ll.p/p = -0.04% 

4.3 Reducing the number of monitors and corrector magnets 

In the previous paragraph the possible reduction of the closed orbit distortions with the use of 

a correction system has been determined. However, the correction lattice with the largest 

reduction factor contained 50% more monitors than is necessary. With four monitors per 

betatron wavelength it should be possible to obtain a similar reduction (see §2.6). In this 

paragraph the total number of monitors and correctors and so the space occupied by the 

correction system is minimised. For this purpose several new correction lattices are compared. 

With the standard lattice a reduction of the distartion with a factor 22 has been obtained. This 

lattice contains 20 monitors and 20 correctors. However, all these elements have to be added 

to main lattice of the ring. Less elements are necessary if the sextupoles are used as correctors 

without increasing the number of monitors, the occupied lattice space is reduced. 

Simulations show that if only the sextupoles and 4 additional corrector magnets in the long 
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straight sections are used for the correction, the quality of the correction system is significantly 

reduced. The resulting closed orbit distortions are xrm.t = 0.35 ± 0.07 mm and y = 
0.35±0.07mm. An example of the closed orbit after correction is shown in fig. 4.5. The 

correction is deteriorated, because the distance between the corrector in tl1e middle of the long 

straight section and the next corrector is too large. Correction lattices in which the monitor 

locations have been adjusted, but with the same corrector configuration, have been simulated 

and resulted in the same (large) distortions after correction. 

The distance between successive correctors is reduced in the second lattice with an extra 

corrector magnet in front of the first and after the third dipole of a superperiod. The number of 

corrector magnets used remains constant, while the nearest sextupoles are not used for the 

correction. The reduction of the distortions is significantly improved as is shown in table 4.6. 

Ho wever, the lattice two has to be adjusted if the monitors and correctors in the middle of the 

long straight section have to be removed for the insertion of the special devices in these 

sections. lf the monitor and corrector in the long straight section are removed and no extra 

monitors are inserted for compensation the distortion will increase. The influence of the 

removal of these monitors and correctors has been measured for the correction lattice C in the 

previous paragraph and resulted in a 40 % increase of the distortion, see appendix C. 
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The closedorbit disfortion after correction with the finallattice, containing 24 
monitors and 24 correctors. 
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Table 4.6 The closed orbit disfortions after correction with the correction systems with a 

reduced number of monitors and correctors. 

Cl 

Ml 

Correctors Xrnax Xnns Yrnax Ynns 

(mm) (mm) (mm) (mm) 

16 sextupoles + 1.3 ± 0.4 0.35 ±0.07 0.61 ±0.07 0.22 ±0.02 

4 additional correctors 

8 sextupoles + 0.4 ± 0.1 0.15 ± 0.02 0.49 ± 0.08 0.17 ± 0.03 

12 additional correctors 

8 sextupoles + 0.38 ± 0.08 0.14 ± 0.02 0.42 ± 0.08 0.16 ± 0.02 

16 additional correctors 

C2 C3 C4 CS C6 

M2 M3 M4 

I Monitor 

0 Corrector Magnet 

Fig. 4.9 The lattice ofthefinal correction system, with 24 monitors and 24 corrector 
magnets 

In the finallattice (D) two monitors and correctors are placed on both sides of the long straight 

sections, next to the quadrupoles, for compensation. This way the space available for the 
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insertion of the special devices is only slightly reduced. As a consequence of the two monitors 

on each side of the long straight sections with no focusing or defocusing elements in between, 

the distortion in these sections is extra reduced. The rms values of the distortions in the whole 

ring are reduced as well, to xrm.f = 0.14±0.02 mm and ~r = 0.16±0.02 mm. The number of 

error-configurations in which the betatron oscillations were unstable is reduced to 1 out of 10. 

These values approximate the values for the best lattice in the previous paragraph with 36 

monitors. 

So indeed a reduction of the number of elements in the correction system is possible without a 

significantlossof the correction quality. 

4.4 Summary 

A closed orbit correction system has been designed for the EUTERPE ring. Several correction 

systems have been compared. For all lattices, the closed orbit distortions and tunes after the 

correction have been determined for ten different error-configurations using the program 

MAD. The corrector settings are calculated with the MICADO method. 

First different correction systems have been compared in which the space occupied by the 

correction system is kept constant. A standard correction lattice has been composed with 

monitors in-between the quadrupoles in a doublet and an extra monitor in the long straight 

section. Furthermore 20 corrector magnets are used. With the standard lattice, the closed orbit 

distortion is already reduced with a factor 22 in the vertical and a factor 5 in the vertical 

direction (see table 4.7). 

Ho wever, the correction system is further improved if more beam position monitors are used. 

With the use of the sextupoles and dipoles as corrector magnets, the number of monitors can 

be increased without occupying more lattice space. As a result the dislortion is reduced with 

20 % in the horizontal and 40% in the vertical direction. In this lattice only 8 sextupoles are 

used for the correction. Otherwise monitors are placed directly between corrector magnets, 

which results in large beam deflections in both magnets and as a consequence in large 

distortions. 

If only the sextupoles are used as corrector magnets (plus four additional correctors in the long 

straight sections) the same correction quality can be achieved. The complexity of the 

correction system is reduced, because only two instead of three different_ type of magnets are 
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straight sections) the same correction quality can be achieved. The complexity of the 

correction system is reduced, because only two instead of three different type of magnets are 

used for the correction. 

Table 4.7 Summarised results ofthe correction systems discussed in this chapter. 

Lattice Nmon. Ncorr. Xrms (mm) Yrms (mm) Note 

A 20 20 0.16 0.19 Standard lattice 

±0.06 ±0.03 

B 36 32 0.13 0.12 Both the sextupoles (8) and dipoles 

±0.01 ±0.02 are used as additional correctors 

c 36 20 0.13 0.13 All sextupoles ( 16) are used as 

±0.02 ±0.02 additional correctors, no dipoles used. 

D 24 24 0.14 0.16 Final Lattice 

±0.02 ±0.02 Minimisation of the total number of 

elements and of the space occupied by 

the correction system. 

The number of monitors and corrector magnets has been reduced in the final correction lattice. 

This lattice contains 24 monitors and 24 corrector magnets, which corresponds to 4 monitors 

and correctors per betatron wavelength. These are required for the full establishment of the 

amplitude and phase of the distortion. 

The closed orbit after correction is limited by the displacements and read errors of the 

monitors. Without monitor misalignments and read errors the closed orbit in both the 

horizontal and vertical plane are further reduced with a factor 2. 

49 



Chapter 5 Hardware regarding the closed orbit correction system 

Chapter 5 

Hardware regarding the closed orbit correction 

system 

The closed orbit correction system contains several corrector magnets and beam 

position monitors. The design of the sextupoles, which will be used as corrector 

magnets, is discussed in §5.2, the design of the window1rame corrector magnets in 

§5.3. Furthermore a brief study of the beam position monitors is represented in §5.4 

foliowed by a summary of the results in §5.5. But first the basic principles used for 

the magnet design are discussed in §5.1. 

5.1 Introduetion 

The magnetic fields in the magnets will be induced with currents through the coils around the 

magnet-poles. The current required fora eertaio induction is found using Ampere's law: 

f H.dl =N.l. (5.1) 

In this formula N.l is the total current through all the windings in the coil and H is the 

magnetic field strength. The magnetic field is given by H = BIJ10Jlr; with ll.- the relative 

magnetic permeability. 

The effect that a magnet has on the partiele trajectory depends completely on the integrated 

field strengths. E.g. the deflection of the electron beam depends on the field integral JB.dl, 

and the chromaticity in a sextupole depends on the integrated sextupole strength fk2 dl. Based 

on the requirements on the deflection or chromaticity, the required in duetion can be 

calculated if the effective length of the magnet is known. 

The effective length of a magnet is defined as: 
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jB.dl 
L =--

eff B ' 
max 

(5.2) 

The field lines outside the magnet yoke (the fringe fields) give an extra contribution to the 

field integral. As a consequence the effective length of a magnet is larger than its mechanica! 

length. The effective lengtbs in a dipole and quadrupale are [Mut95]. 

Leff = Lyoke + k.R, with k ~ 2.4 fora dipole 

and 0.9 < k < 1.1 fora quadrupole. 

In this formula Lyoke is the length and R the aperture radius of the magnet; k is a constant 

dependent on the magnet design. The effective length for quadrupale fields is more than 

twice as small as the effective length for dipole fields. 

This decrease in effective length is a consequence of the proportionality of the induction B to 

the distance w.r.t. the magnetic axis r. Because the induction in a sextupole is proportional to 

B- r2
, its effective length will be further decreased. The size of the effective length for a 

sextupole has not been found in literature, and must therefore be measured for the prototype 

EUTERPE-sextupole. 

In order to estimate the quality of the magnetic field in the designed magnets; the magnetic 

fields in the magnets will be described as the summation over the multipole components. 

(5.3) 

with kn the harmonie components; e.g. k0 is the dipole coefficient. In an ideal dipole, no 

multipole fields are present and all values of kn with n ""0 are equal to zero. The description of 

the error fields in their harmonie components is called harmonie analysis. 

5.2 Design of the sextupoles 

The sex~upoles in the EUTERPE-ring have been designed to generate both sextupole and 

dipole corrector fields. The sextupole field is produced by sending equal currents through all 

coils; the direction of the currents through the coils around successive poles is reversed. The 
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horizontal and vertical corrector fields are generated with additional currents through the coils 

around opposite po les. 

The design of the sextupoles is discussed in this paragraph. The requirements on the sextupoles 

are determined and listed in § 5.2.1. According to these requirements a prototype sextupole 

bas been designed; the design is discussed in §5.2.2. The field profile in this sextupole bas been 

determined with simulations in the software-packet POISSON; the calculated field profiles are 

shown in § 5.2.3. 

5 .2.1 Requirements on the EUTERPE sextupoles 

The sextupoles in the EUTERPE ring have to satisfy both mechanica} conditions and 

requirements on the field profil es. These requirements are treated separately below. 

The dimensions of the sextupoles are lirnited by the size of the vacuum chamber and by the 

space available in the lattice. The aperture of the sextupoles must be several millimetres larger 

than the size of the vacuum chamber (d = 48 mm). This safety margin required for the 

positioning of the sextupoles is the equal to the margin required for the positioning of the 

quadrupoles (3mm). 

Unlike the quadrupoles the sextupoles can notpass the endsof the vacuum chamber and have 

to be assembied around the vacuum chamber. As a consequence the sextupoles must be 

divisible into two parts. 

The length of the sextupoles is limited by the space between the bellows and quadrupoles in 

between which the sextupoles are placed. The available lattice space is ca 150 mm. In order to 

avoid excessive synchrotron radiation hitting the sextupoles, the total diameter of the 

sextupoles must remain smaller than 270 mm. 

All mechanica! requirements are listed in table 5.1. 
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Table 5.1 The requirements on the geometry ofthe sextupoles 

Requirement Cause 

d>48mm This is the diameter ofthe vacuum chamber. 

l ~ 150mm <*> mech This is the space reserved for the insection of the 

sextupoles. 

d < 270 mm <**> total - To avoid blocking of the synchrotron radiation. 

The mantie must be constructed The sextupoles have to be constructed around the 

out of two parts vacuum chamber. 

<*> lmech is the total mechanicallength of the sextupole including the coils. 

<**> dltllal is the outer diameter of the sextupole 

The field profiles in the sextupoles have to satisfy certain conditions too. The most important 

parameter in the sextupoles is the sextupole strength integrated over the electron trajectory 

(5.4) 

k/ is the sextupole strength normalised with respect to Bp, which is a measure for the 

momenturn of the electrons; Bp=l.33 for the 400 Me V electronsin the EUTERPE ring. The 

normalised sextupole strength is mentioned, because it is used in MAD. The maximum value of 

the integrated sextupole strength is I~ ds = 28 Tm-1
, for S 1 in the HBSB mode. The required 

sextupole coefficient (k2) still depends on the effective length of the sextupole. 

The required field integral for the correction (fko.ds) is calculated with eq. (2.22) 

llu' = JB.ds 
Bp ' 

with u =x, y. 

The maximum deflection in the corrector magnets is L1u '= 1.5 mrad, which gives for the 

required field integral fko.ds = 2.1 o-3
• 

During the acceleration of the electrons the strengtbs of the sextupole fields have to increase 

proportional to the electron energy. The time constant of the inductance in the coils, has to be 

smaller than the time required for the acceleration of the electrons from 75 to 400 Me V, which 
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is ca 3 seconds. 

Table 5.2 The requirements on the induction in the sextupoles 

Requirement Reason 

f ~.ds :!!: 75 T/m Tbis equals the required integrated sextupole-strength 

for S1 (HBSB mode). 

fk0.ds :!!: 2.1 o-3 Tm The field integral required for a 1.5 mrad deflection of 

400 Me V electrons 

't' (inductance) < 3 seconds The sextupole strengtb is increased proportionally to 

tbe electron energy 

llk/k2 ~ 5 % for r~ 1 Omm The relative field error in the beam domain bas to be 

smaller than 5 % 

Other aspects taken into account in tbe design of the sextupoles are construction costs and tbe 

power required during operation. 

- The construction costs will be minimised by keeping the mechanica! design as simple as 

possible. E.g. a prototype sextupole bas been constructed out of solid iron instead of the 

laminated iron wbich is used for the quadrupoles and dipoles and wbicb is more difficult to 

manufacture. 

- Furtbermore tbe total size of tbe sextupole is minimised in order to reserve as mucb space in 

the EUTERPE lattice as possible. 

5.2.2 The prototype sextupole 

Based on the requirements in the previous paragraph a prototype sextupole is 

designed. The geometry of the sextupole is determined in §5.2.2.1. With the use of 

'Poisson' the field profiles in the sextupole are calculated. The generated sextupole 

field is shown in §5.2.2.3; the corrector fields in §5.2.2.3. The specifications of the 

coils are given in §5.2.2.3. Finally the field profile in a sextupole in full operation -

with additional horizontal and vertical correction-is discussed. 
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5.2.2.1 The geometry of the sextupole 

Tbe geometry of tbe sextupole depends on tbe requirements listed in table 5.1. The prototype 

sextupole is sbown in fig. 5.1. lt bas an aperture diameter of 5lmm, wbicb equals tbe aperture 

radius of tbe quadrupoles. The mecbanicallength of tbe sextupole is 75 mm. Due to tbe fringe 

fields the effective length of tbe sextupole is estimated to increased Le.tr85±10mm, which 

results in a required sextupole strengtb of~ = 880 Tm·2• The effective lengthof the sextupoles 

bas a large uncertainty, because the value bas notbeen found in literature. 

270mm 

Fig.5.1 The prototype sextupolefor the EUTERPE ring 
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The pole-width of the sextupoles is 20 mm. Due to this finite width of the poles error-fields are 

introduced. These errors depend on the aperture radius and the pole-width. The relative error 

in the EUTERPE sextupole with an aperture radius equal to 25.5 mm is less than 2% in the 

region with radius r = 10mm around the magnetic axis [Mon85]. These field-errors are several 

times smaller than the required accuracy. 

The ideal pole shape is described by a equipotential surface, due to the fact that the magnetic 

field is directed perpendicularly to the pole surface. These surfaces are found with the poisson 

equation derived in appendix F. The ideal pole shape of a sextupole satisfies 

(5.5) 

R is the distance between the pole and the magnet axis, which is equal to R=25.5 mm for the 

EUTERPE sextupole. The i deal pole-shape is approximated by a circle with a radius p= 17.2 

mm, which makes the poles easier to manufacture. The difference between the ideal pole 

surface and the circle approximation is at every position less than 0.013 mm and can be 

neglected. 

5 .2.2.2 The generation of the sextupole field 

The sextupole field is generated with currents through all coils. Using Ampere's law, and with 

B= 1/2.k2 r the total required current can be calculated 

R B k2R3 
(NI) - J dl - - 1935 A.tums. sextupole - -. - -

6
- -

0 Jlo Jlo 

The total current NI = 1935 A.turns corresponds to a prototype sextupole with an effective 

length of Leff =85 mm. 

This value is verified with simulations in the program POISSON (see appendix F). With the 

program the induction in the sextupole is determined as a function of the current through the 

coils. In Poisson the induction is calculated with the Poisson equation [Poi91]. Only field 

profiles in planes in which the magnetic induction is symmetrie can be calculated. 

The field profile in the middle of the sextupole perpendicular to the partiele trajectory is shown 

in fig. 5.2. 
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Fig. 5.2 The generated sextupole field 

Table 5.3 Harmonie components of the 

generated field shown in fig. 5.2. 

ko 1 G 

kl 0.1 G/cm 

~/(2!) 440 G/cm2 

/s/(3!) -0.1 G/cm3 

kg/(8!) 0.04G/cm8 

k 
with B = L--'!. rn. 

n! 

The required sextupole field~ = 880 T/m2 (=880 G/cm) is generated with a total current 

NI~ 2040 A. turns; this is about 5 % larger than the value calculated with Ampere's law above. 

The extra number of Ampere.turns necessary. for the generation of the sextupole field is a 

consequence of the contribution of the higher order field components to the field integral. In 

the region of interest, the relative contributions of the higher order field components to the 

induction are small with respect to the sextupole field (see harmoniecomponentsin table 5.3). 

Even the dodecapole component (k8), which is aresult of the finite pole width, is negligible. 

Within a radius of 10 mm around the magnetic axis the induction differs less than 3 % in 
comparison to the induction of an ideal sextupole. 

The field components are calculated above in the case of an ideal sextupole. Due to pole 

misalignments the field profile could be distorted. The distortion of the field profile is expected 

to be largest if the poles are displaced in the radial direction. In table 5.4 the effect on the 

harmonie components is shown of the displacement of one pole in the radial direction. 

Table 5.4 The effects of the displacement of pole 2 on the field profile. 

Displacement ko (G) k1 (G/cm) ~/(4!) kg/(8!) (fl~/ ~)max 

(G/cm2
) (G/cm8

) r:s: lOmm 

dy=0.2mm 7 -3 438 0.003 <1% 

dy=1.0mm 30 18 396 3 <3% 
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The induction in a sextupole with a pole 1 mm displaced still satisfies the condition that the 

relative error in the sextupole coefficient is less than 5 %. However the generated dipole and 

quadrupole fields are large. A field error equal toB= 30 G results in a 0.3mrad deflection, 

which is not acceptable. In principle the field errors can be corrected with additional currents 

through the coils, but this is not desirable. With with these currents the uniformity of the 

sextupoles is broken. If the displacements of the po les remain smaller than ll.y = 0.1 mm both 

the dipole and quadrupole fields are negligible. 

As a consequence of the manufacturing technique used for the production of the prototype 

sextupole all displacement errors and surface errors are reduced to less than 0.05 mm. 

5 .2.3 Generation of the dipole fields in the sextupole 

The sextupoles will he used as both horizontal and vertical correctors. For the 

correction it is necessary to induce dipole fields in the sextupoles. In this paragraph 

the generation of the dipole fields in the sextupole is discussed. 

The corrector magnets have to be able to deflect the electron with ll.u' = 1.5 mrad. The 

effective length of the sextupole used as corrector magnet becomes: 

Lef! = Lyoke + 2.4 R = 136 mm, 

with R the aperture radius (R=25.5 mm) and Lmeclumicat the pole length (75mm). Th~ field 

integral needed for the correction are equal to IkcJ.dl = 2.10·3
, as a consequence the strengthof 

the dipole field in the sextupole mustbeat least ko= 150G. 

The sextupole is used as a horizontal corrector with the generation vertical dipole-field; this 

dipole-field can be produced if currents are injected through the coils around pole 2 and 5. The 

field generated with a total current N/=340 A.tums through the coils around these poles is 

shown in tigure 5.4a. In the region of interest a dipole field is generated. The field deteriorates 

quickly if the distance to the magnet axis is increased; the maximum values of the relative field 

error (LJBjBy) and the coupling coefficient (IJ liJ) areabout 25 % within a radius of 10 mm 

around the magnetic axis, see table 5.5. The sextupole component of the generated field is the 

main component of the error field. 
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The homogeneity of the field is increased if additional currents are sent through the coils 

around pole 1, 3, 4 and 6. Simulations show that the homogeneity ofthe induction is best ifthe 

current through these coils is 50% of the current through coil 2 and 5. The maximum values of 

the coupling coefficient (B)By) and the relative field error (à~/~) are reduced to less than 2 

% within the region of interest, see table 5.5. The sextupole coefficient in the induction has 

vanished. With the insertion of additional currents through the coils around pole 1, 3, 4 and 6 

the field strength around the magnet axis is ca 50% increased to B=150G. 

The currents needed for the generation of an induction B= 150 G can be compared to the 

required currents calculated with Ampere's law for a dipole with an aperture radius R=25.5 

mm: NI =305 A.turns. The extra currents required in the sextupole are a consequence of the 

divergence of the field in the area around the magnet axis. 

Table 5.5 Harmonie components ofthe generated vertical dipolefield 

Currents (àBjB_)max (àB_/B)max ko k, ~/2! k4/4! 

r<10mm r< 10mm [G] [G/cm] [G/cm2] [G/cm4] 

I1 = 360 A.turns1 25% 25% 101 -1.10-2 26 2 

I2 = 0 2 

I 1 = 360 A.turns 0.6% 1.5% 152 -4.10-3 2.10-2 3 

I2 = 180 A.turns 

1 I 1 is the current through the coils around pole 2 and 5 

2 I2 is the current through the coils around pole 1, 3, 4 and 6. 
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Fig. 5.3 The sextupole used as a horizontal corrector; fig. a) with currents through the 

coils around pole 2 and 5 (11=500 A.turns) andfig. b) with currents through all 

coils (11 = 500 A.turns, 12 =250 A.turns). 

With the generation of a vertical dipole field the sextupole can be used as a horizontal 

corrector. The maximum required field strength is k0 = 150 G. A dipole field with this strength 

is produced if a total current /=310 A.tums is injected in each of the coils around pole 1, 3, 4 

and 5. Due to the pole symmetry the error fields are very small. The maximum values of BfBx 

and llBfBx are less than 2 % in the region of interest. A further reduction of the error fields 

with the use of additional currents through the coils around pole 2 and 5 is not necessary. 

Table 5.6 The generation of the horizontal dipale field 

Current (llBfBx)m:JX (B/Bx)m:JX ko kl ~ k4 

r< 10mm r<10mm [G] [G/cm] 
2 

[G/cm] [G/cm4
] 

I= 310 A.turns 1.6% 0.6% 150 1.10-3 3.10-2- 3 

The decapoie-component of the magnetic field is comparatively strong. However, the 

contribution of the decapoie-component to the total induction is still very small. 
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Fig. 5.4 The generated correctoifield in the horizontal direction 

5.2.4 Coil specifications 

With the currents required for the generation of the different fields known, the 

specifications of the coils around the poles can be determined. 

The total current through the coils must be sufficient for the generation of the maximum 

sextupole and corrector fields. The maximum current required for the generation of the 

correctorfieldsis N/=480 turns through coil 1, 3, 4 or 6 in the case of 1.5 mrad deflection of 

the beam in both directions. The current through coil 2 and 5 never exceeds N/=360 A.tums. 

For reasons of uniformity all coils will be equal. 

The coil around each pole will be divided in two parts: one part for the generation of the 

sextupole field (N/=2040A.turns), the other for the generation of both corrector fields 

(N/=480A.tums). In practice these two coils are set in serie, which reduces the number of 

power supplies. 

The currents through the coils around opposite poles are always equal, even if additional 

corrector fields are generated (see appendix D). The coils around opposite poles are therefore 

connected, which reduces the number of power supplies per sextupole to 3. 

The wires used for the coils have a maximum current /=7 A, which is the maximum current 

provided by the original power supplies. The conductive area in the wireis 2.5 x 1.5 mm2
• The 
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specifications of the coils are summarised in table 5.7. 

Table 5.7 Specifications ofthe coils around the poles ofthe sextupoles. 

Parameter Size 

Maximum current 117Uli = 7 A 

Conductive area per winding A= 2.5 x 1.5 mm2 

Number of turns inserted for the generation 

of the: - sextupole field Ns = 272 turns 

- corrector fields Ne = 100 turns 

Total number of turns N101 = 372 turns 

Maximum current for the generation of the 

- sextupole field (Ni.,exrupole)rruu = 1905 A.turns 

- corrector fields (Nicorr)max = 700 A.turns 

Total current ( Niror) I7Uli = 2604 A.turns. 

Total size per coil Thickness: 25mm 

Length: 85 mm (in radial direction) 

Totallength: 126 mm (along s-axis) 

Time constant for the generation of the 't = 0.1 s * 
sextupole field 

*The time constant of the inductance is calculated in appendix D. 

The total number of turns is sufficient for the generation of the fields. The division of the turns 

has to be adjusted to Ns =302 and Ne= 70. 

The coils in the sextupole are winded so that they increase the total length of the sextupoles as 

little as possible. The coils are therefore not winded in a triangular form, but the top of the 

coils is flattened. The totallength of the sextupoles becomes L101 = 126 mm (see appendix D) 

5.2.4 Field profile in a sextupole in full operation 

The field profile in a sextupole used both as a horizontal and vertical corrector with maximum 

correction settings is shown in fig. 5.6. The resulting field profile is just a superposition of the 
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elementary fields, shown in fig. 5.6b. The harmonie analysis of the field shows that the error

fields are very small. The main contribution to the error field comes from the decapole field, 

which is introduced with the generation of the correction fields. The decapole component is 

too small to have a significant effect on the closed orbit. 

~ Sextupole ~ (! field 

(f[[Y Vertical 
Dipole field 

/~, 

I \ Horizontal 
I I Dipale field 
\ I 
~ 

a) field profile in the xy-plane b) Principle harmonie fields 

Fig. 5.5 The sextupole in full operation, with maximum sextupole and horizontal and vertical 

dipale strength. The currents through the coils are according to table 5.8. 

Table 5.8 The harmonie components in the sextupole with additional hor. and vert. 

corrector fields. 

Currents Box Box kl ~ k4. ks 

[G] [G] [G/cm] 
2 

[G/cm] 
8 

[G/cm] [G/cm8
] 

11+4 = 2530 A.turns <*> 
12+5 = 1680 A.turns 152 150 0.7 440 4 0.04 

13+6 = 1910 A.turns 

The currents through the coils around opposite poles are equal. 11+4 is the current through the coils around 

pole 1 and 4; 12+5 the current through the coils around pole 2 and 5 and J.6 the current through the coils 
around pole 3 and 6. 

In order to get an impression of the field strengths, the induction is depicted as a function of 
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The induction along the x-axis in the sextupole calculated with Poisson compa
red to the superposition of anideal sextupole and dipolefield. 

the horizontal position x in fig. 5.7. The tigure shows that the approximation of the induction 

by a superposition of a dipole and a sextupole field is almost perfect. All contributions from 

higher order fields are negligible, which is expressed in the low values of the harmonie 

components in table 5.8. There is no danger of saturation of the magnetic field The maximum 

induction in air is B = 0.6 T near the pole-edge. Within the yoke the flux density is increased; 

the maximimum induction is B :::: 1.2 T, for which there is still no saturation. 

5.3 The window frame corrector magnets 

The number of sextupoles used as corrector magnets is not sufficient to correct the closed 

orbit. The closed orbit distortion is further reduced if corrector magnets are inserted between 

the superperiods. Therefore corrector magnets have been designed. In ~rder to use as little 

space as possible, the corrector has to deflect the beam in both the horizontal and vertical 

direction. 

In this paragraph the design of a prototype corrector magnet is discussed. The requirements on 

the corrector magnet are already discussed in §5.2. The design of the prototype corrector 
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magnet is given in §5.3.1. The field profiles calculated in Poisson are shown in §5.3.2. A 

prototype corrector magnet has been constructed at the central workshop of the TUE; the 

measured induction is compared with the field profiles calculated in Poisson. 

5.3.1 The design ofthe window frame corrector magnet. 

The corrector magnets are of the so called window frame type. The yoke of the magnet has the 

shape of a window-frame, see fig. 5.8. The window frame shape has the main advantage that 

perfect dipole fields can be generated in two directions, which is impossible with the 

conventional dipoles. Furthermore the construction is very simple and easy to manufacture. 

The maximum deflections of the electron beam in the window frame magnets are equal to the 

maximum deflections in the sextupoles, ll.x'max =Lly'max =1.5 rnrad. This corresponds toa field 

integral fB.dl = 2.10-3 Tm. The length of the magnets is a c?mpromise between the length of 

and the field strength in the magnet A increase in the required field strength also results in an 

increase in the coil size and the aperture diameter. The finallength of the magnet is l = 0.05m 

and the aperture diameter is d=0.08m. 

The large aperture diameter in comparison to the magnet length results in a large extension of 

the field along the magnet axis. 
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Window frame 

Coils 

80mm 

Fig. 5. 7 The window frame corrector magnet 

5.3.1.2 Field profiles calculated with Poisson 

With simulations in Poisson the induction in the window-frame magnets is determined. Firstly 

the magnetic field profile is calculated in the xy-plane in the middle of thé corrector. Secondly 

the induction in the sy-plane - the induction along the magnetic axis - is determined. 

In the horizontal and vertical direction the uniformity of the induction is almost perfect, which 

is illustratcd in fig. 5.8. 
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a) IH = 1280 A.tums b) IH = lv = 1280A.tums 

Fig. 5.8 Field profile in the windowframe corrector in the xy-plane for correction in the 

vertical direction (a) andfor correction in both vertical and horizontal direction (b). 

The fringe fields along the magnetic axis are extended many centimetres beyond the yoke as a 

consequence of the large aperture diameter (80mm) in comparison to the magnet length 

(50mm). In these fringe fields the electron beam is deflected. However the deflection of the 

beam is only deterrnined by the field integral !B.dl and is therefore not influenced by 

inhomogeneities. 

5.3.3 Field measurements in the window-frame corrector magnet 

The induction in the corrector magnet is deterrnined using a Hall-probe and a movable XY

table. The experimental set-up is described in appendix E. The hysteresis in the magnet is 

deterrnined by measuring the induction at a fixed location, while changing the current. 

The remnant induction equals Br ~ 4.5 Gauss. Compared to the rms-value of the induction 

required for the correction - (B)rms~(By)rms~so G - the remnant induction is small. With 

software the hysteresis can be corrected for; otherwise the correction lattice will adjust the 

corrector settings after feedback from the beam position measurements. 
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Fig 5.9 Hysteresis in the window frame corrector magnet. 

The induction By in the sx-plane of the corrector magnet is measured and shown in fig. 5.10. In 

the horizontal direction the induction is constant, as expected. Along the longitudinal axis the 

induction is inhomogeneous. The measured induction along this axis is compared with the 

induction calculated in Poisson, see fig. 5.11. 

The magnitude and direction of the induction in the vertical plane is within a few percent equal 

to the induction in the horizontal plane. The induction in the vertical direction is shown in 
appendix E. 
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Fig. 5.10 

Fig. 5.11 
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5.4 Beam position Monitors 

In this paragraph a brief study is presented on two types of beam position monitors: 

the striplines and the button type monitors. The basic principles of the monitors are 

given in §5.4.1. In the same paragraph the size ofthe output signals is theoretically 

derived. Some general parameters are estimatedfor the EUTERPE monitors and are 

given in §5.4.2. With these parameters, the expected output voltages and 

difference/sum signals of the monitors are calculated. The specifications of several 

monitors included in similar starage rings are given in the same paragraph. Finally 

the button monitors and striplines are compared. 

5.4.1 Theory conceming the button type and stripline beam position 
monitors 

For the successful operation of the closed orbit correction system, high resolution beam 

position monitors (BPM's) are required. Many different types of beam position monitors are 

available. The button type pickup monitor is most commonly used in electron storage rings. 
The monitor has the advantage of being easy to manufacture and has a very low impedance 

and therefore does not disturb the beam. In this paragraph the basic principles of the button 

type monitor are treated based on [Bea89]. The button type monitor is compared with the 

stripline monitor, which is treated as well. 

A capacitive piek-up monitor is a small button or plate, which is placed in the vacuum

chamber. Exposed to the electric field of the beam, a mirror current will be driven into the 

buttons. The induced voltage in the left button VL equals [Bea89] 

(5.6) 

with <1>L the azimuthal extent of the left button, l the button length, C the capacitance of the 

button, 18 the beam current, Pbc the electron velocity and Yo a constant. The output voltage of 

eq. 5.6 is just the voltage developed over a capacitance C with a current I= <PL 1.18 (t)/21tPbc. 
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Vacuum Chamber 

Electrode 

Beam 

Electrode 

a) Side view b) Cross section 

Fig. 5.12 Schematic view of a circular button type position monitor. 

If a resistor R placed in series with the button, the output signal is differentiated in time 

(5.7) 

This principle is used in button monitors. 

With the expansion of the beam current in its Fourier components the output current is found 

as a function of the frequency. 

00 

lb(t) = <lb> + 2<lb> L Am cos (mWl), (5.8) 
m=l 

with ~ the Fourier components. Combining the Fourier expansion with eq.5.7 gives 

(5.9) 
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Higher harmonies are more amplified than the components with lower frequencies. The 

Fourier components Am approach 1 as long as the bunch length is shorter than the wave 
length of the modulation signal (Aro-exp(-m2w0

2o2 /2) for a bunch with Gaussian 

distribution). 

The actual beam position is measured with two striplines on opposite sides of the beam; in the 

plane of the striplines the beam position is calculated from the ratio of the difference and sum 

signals. The difference and sum signals are deduced from eq 5.9. Considering only linear 

terms the difference/sum signal S in a circular monitor is linear to the horizontal 

displacement, x, of the beam 

S = 4sin( <f>/2) x 
<I> p' 

with p the aperture radius of the monitor [The94]. 

(5.10) 

Several other monitor techniques are known, based on the detection of the wall current, that is 

induced on the inner surface of the vacuum chamber by the electron beam, e.g. stripline 

monitors. The striplines are conductive plates isolated from the vacuum chamber. Two 

connectors conneet the stripline to coaxial transmission lines at both ends of the plate. 

The striplines serve as transmission lines for the TEM wave accompanied by the electrons. 

When the beam pulse approaches the upstream end of the electrode the TEM wave is split in 

COAX COAX 

COAX COAX 

Fig. 5.13 A schematic view of a stripline beam position monitor. 
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two (with the right choice of its characteristic impedance). Part of the wave flows to the other 

end of the stripline and part is coupled into a detection device. At the other end of the 

stripline this wave is dissipated in the resistor. When the beam accompanied by the TEM 

wave approaches the downstream, the TEM is split in two again. The part of the wave 

flowing to the upstream end is coupled out. The output signal is a superposition of TEM 

waves. Due to interferention the maximum output signals are reached if the stripline is one 

quarter of the measured wavelength l=À./4. The length of most striplines in operation equals a 

quarter wave-length of the measured harmonie, but in principle lower frequencies can be 

measured as well. 

The response of the stripline monitor is given by 

V(w) =- <lb> A(w) sm - - +- . <PZ . [ wl ( 1 1 ll 
{i1t 2c Ps Pb 

(5.11) 

with Z the impedance of the transmission line, Pb the beam velocity and Ps the wave velocity. 

The output voltage of the stripline is very similar to the output voltage of the button type 

monitors. For Z=2R, the output signals are equal in the low frequency range. This is shown in 

fig. 5.12. 

Fig. 5.14 

V out 

f 
0 3GHz 6GHz 

The output voltages of the striplines and button type monitors as a function of 
thefrequency, with Z=2R, fls=Pb=l and l=2.5cm. 
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5.4.2 Monitors for the EUTERPE ring. 

In the previous paragraph it has been shown that the expected output signals of the two types 

of monitors are of the same order. In this paragraph the size of the output signals is estimated. 

The output signals of the monitors can be calculated using the equations derived in the 

previous paragraph. Several parameters of the monitors are already known; therefore an 

estimation of the final output signals can be made. 

- The position accuracy of the monitors required for the correction system is equal to ox, oY ~ 

0.1 mm for beam currents ranging from 10 mA to 200 mA. 

- The aperture radius, p, of the monitors is determined by the inner diameter of the vacuum 

chamber, which is 45 mm (and gives p =22.5mm). 

- The monitors will be circular like the vacuum chamber in order to minimise their impedance. 

- The position accuracy of the monitors in one direction is best if the azimuthal angle is 

equal to <f>=l rad [The94]. 

With these parameters an impression of the output voltages and difference/sum signals of the 

monitors is obtained. The difference/sum signal fora displacement of x=0.1mm is equal to 

S = 4sin(<f>/2) x = 9%. 
<t> p 

(5.12) 

A relatively large value. The resolution of the surn!difference signa! in the storage ring in 

Stanford is equal to 500 ppm [Seb94]. 

For the estimation of the output voltage several characteristic parameters are used: 

- The minimum beam current in the EUTERPE ring is: <lb> =lOmA. 

- The bunch lengthso in the EUTERPE ring range from 0.08 to 3.7 cm (see table 1.2); as a 

result the Fourier component Am of the beam current approximate 1 for frequencies up to 3 

Ghz. 

- The velocity of 400 Me V electrons nearly equals the speed of light, which gives Pbc t:~c. 
The transmission of the output signals through 50 0-coax cables requires that the 

characteristic impedance is R = 500. 

- The length l and the modulation frequency of the buttons are for the moment chosen to be 

equal to l=1cm and.f=45 MHz (the basic frequency of the beam) 

With the use of the parameters estimated above the output voltage of the monitor becomes 
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(5.13) 

An output voltage, which should be high enough to be measurable. If the modulation 

frequency is increased higher harmonies can be measured, with f=3GHz the output voltage is 

ca 66 times amplified. However the signa! processing in the high frequency regime is much 

more difficult. 

The desired resolution for the beam position monitors in the EUTERPE ring (o=O.lmm) is 

comparatively low in comparison to the achieved resolutions in similar storage rings [Sco94], 

[Gil93], [Seb94], [Smi94]. The most important parameters regarding the monitors used in 

Daresbury, Stanford and Los Alomos are given in table 5.9. 

Table 5.9 BPM parameters in other storage rings 

Storage ring SPEAR (Stanford) SRS in Daresburry MIT South Hall ring 

(button type mon.) (button type mon.) (stripline monitors) 

Energy 3GeV 2GeV 

fRF (*) 358 MHz 500MHz 2865 Mhz 

fmeas 717 Mhz 500Mhz 2865 Mhz 

Current range 20-lOOmA 20-100 mA l-80mA 

Resolution lOJ.Im lOJ.Im O.lmm 

Absolute Acc. 10 J.Im ~ lOOJ.Im (rms) 

Dynamic Range 40dB lOdB unknown 

Monitor size Width 155mm notknown Aperture 60mm 

Heigth 44mm Length 24.7mm 

Length 20mm 

fRF is the frequency of the rf-cacity 
fmeas is the frrst harmonie, which is measured in the monitors. 
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5.4.3 Conclusions regarding the position monitors 

It is expected that a measurement accury of the beam position monitors required for the 

closed orbit correction can be obtained. The output voltages of the stripline and button type 

monitors are relatively large (in the order of mV for the measurement of a 45 MHz signal); 

the difference/sum signals are also large due to the relatively small aperture radius 

(R=25.5mm) of the vacuum chamber in the EUTERPE ring. Furthermore resolutions in the 

order of äx= 10 Jlffi have been obtained with monitors in simHar storage rings. 

The measurement accuracies attained with the striplines and button monitors are simHar at 

first sight. Stripline monitors are more difficult to manufacture, but have the advantage that 

there is some experience in the group with these monitors. Stripline monitors are used for the 

monitor system of the Race Track Microtron Eindhoven. However for a good comparison of 

the two monitor types a more extensive study of both techniques is required. Because both 

monitors are easily constructed, it would be very useful to manufacture test roodels of both 

monitors and test them in the 45 MHz to 3 GHz regime. 

5.5 Summary 

The design of the hardware regarding the closed orbit correction is for the major part fmished. 

The design of the sextupoles and window frame corrector magnets required for the closed 

orbit correction bas been completed. However the monitoring techniques have been only 

briefly studied. 

Sixteen sextupoles are included in the EUTERPE ring; all sextupoles will be uniform and 

therefore all sextupoles can be used for both the chromaticity and the closed orbit correction. 

Simulations show that almost perfect dipole fields can be generated in the sextupole. The 

uniformity of the generated sextupole and corrector fields is several times better than the 

tolerances. The calculated induction bas to be verified with field measurements in the prototype 

sextupole, which is still under construction. A simple and accurate measurement of the higher 

order field components is possible with a rotating coil device. 

The window frame corrector magnets have been designed and a prototype magnet bas been 

constructed at the TUE. Field measurements in the prototype corrector magnet show that the 

dipole field is very uniform and in perfect agreement with the simulations. The field integral 

fB.dl along the magnet axis is more than sufficient for a deflection of 400 Me V electrons with 
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Ax'=l.Smrad. Along the longitudinal axis the magnetic field is extended for many centimetres 

beyond the yoke. Simulations in Poisson show that the coupling fields BjBY and BfBx• for 

respectively the horizontal and vertical correction are very small. 

Studies on the beam position monitors show that position resolutions of O.lmm should be 

attainable with the use of stripline or button type monitors. 
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Chapter 6 

Conclusions and recommendations 

The electron orbits in the storage ring EUTERPE are distorted due to lattice imperfections. An 
extensive study bas been made of the position and field errors of the magnetic elements, which 

are the most important sourees of the closed orbit distortion. The position errors are mainly 

determined by the finite measurement precision during the alignment. The displacements due to 

all other error sourees - e.g. due to thermal expansion - are negligible. The field errors in the 

elements are small. 

The closed orbit distortion as a result of all possible lattice imperfections bas been determined 

with simulations in the computer code Methodical Accelerator Design (MAD). Because the 

position errors are expected to have a gaussian distribution, the closed orbit distortion bas been 

determined for multiple error-configurations. 

The closedorbit distortion in the EUTERPE ring are mainly determined by the position errors 

of the magnetic elements. From all position errors, the closed orbit distortion is most sensitive 

to the displaments of the quadrupoles. This is a result of the strong dependency of the 

magnetic induction on the position in the quadrupoles; the sensitivity is increased due to the 

high values of the betatron function. The field errors in the quadrupoles affect the tunes and 

therefore need to further examined. 

It is desired that the electron trajectory approximates the design trajectory, therefore a closed 

orbit correction system is needed. Furthermore closed orbit correction is required if e.g. 

undulators are included in the ring. The maximum distortion of the electron beam is for the 

uncorrected orbit of almost the same size as the inner radius of the vacuum chamber. Because 

the aperture of an undulator is expected to be smaller, a correction of the closed orbit 

distortion is required in order to prevent a beam loss in these devices. 

The closed orbit distortion can be reduced with a factor 28 in the horizontal and a factor 8 in 
the vertical direction with the use of a correction system containing 36 monitors and 20 

corrector magnets. The distortion can be further reduced with a factor 2 if the monitor errors 

are eliminated. The resulting distortion xrms = 0.13±0.02 mm and yrms= 0.13±0.02 mm is of 

approximately the same size as the position and read errors in the monitors. 

-78-



Chapter 6. Conclusions and recommendations 

The number of elements of the correction system has been reduced to 24 corrector magnets 

and 24 monitors, without a significant loss of the correction quality. The number of monitors 

corresponds to four monitors per betatron wavelength, which is the minimum number of 

monitors required to establish the amplitude and phase of the distortion. 

The sextupoles will be used as corrector magnets, in order to save space in the ring. Uniform 

dipole fields can be produced in the sextupoles in the horizontal as well as the vertical direction 

with the injection of extra currents through the coils. The coupling coefficients B/B, and BfB~ 

remain smaller than 2 % in the region of interest if the coils around all poles used for the 

generation of the correction field. The field profiles have been calculated with the use of the 

program 'Poisson' and show that the generated sextupole field is very uniform as well 

(6.k/k2~ 1%, with kz the sextupole strength). 

The magnetic field profiles have to be measured on the prototype sextupole, which at the 

moment is under construction. Higher order field components have to be measured, which is 

not possible with Hall plates. Therefore a new measurement device has to be constructed, e.g. 

a rotating coil device. 

The dipoles can be used as horizontal corrector magnets. However the correction is 

deteriorated, if all dipoles and sextupoles are used for the correction. This is a consequence of 

the fact that some of the monitors are placed directly in between two corrector magnets. The 

minimization of the beam position errors results in large deflections in the two adjacent 

corrector magnets and a local increase of the distortion. H one of the correctors near these 

monitors is discarded, the correction is improved. 

Additional corrector magnets have to be included in the long straight section in which no 

sextupoles are present. The simulations show that otherwise the distance between successive 

corrector magnets becomes too large. 

The additional correctors are of the so-called 'window frame' type. The window frame 

magnets have the advantage that uniform dipole fields can be generated in two directions. 

Furthermore they are very easy to manufacture. The specific shape of the window frame results 

in a dipole field of high quality; the calculated coupling coefficients B/By remain smaller than 

1% in the region of interest.The first measurements on the prototype window frame magnet 

show that the measured field profiles are in perfect agreement with the simulations. 

The field profile in the longitudinal direction is less uniform as a result of the large aperture 

radius with respect to the magnet length. Care must be taken if the correctors are inserted near 

other elements. Magnetic materials will influence the field integral of the corrector and as a 

consequence the deflection of the beam. 
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The yokes of the window frame can be made of ordinary steel. The remnant induction in the 

prototype magnet is smaller than 6 G, corresponding toa deflection equal to Llu'= 0.06 mrad 

of a 400 Me V electron beam. Due to the feedback of the beam position with the monitors, the 

corrector settings will be adjusted. 

6.2 Recommendations 

Most of the error-configurations in the most sensitive mode of operation (the HBSB mode) the 

rnisalignments resulted in resonances of the betatron oscillations in the vertical plane. This 

instability can be prevented with an adjustment of the quadrupole strengths; with less vertical 

focusing the working point is shifted away from the semi integer resonance line. 

A brief study on beam position monitors showed that a measurement precision of 0.1 mm 

should be obtainable. Two types of monitors are under consideration: button type and stripline 

monitors. Both types of monitors seem to be equally suited for the EUTERPE ring. The button 

type monitors have the advantage of being easier to manufacture; on the contrary, more 

experience in the group is present stripline monitors. Further studies have to be done to 

determine which type of monitors to use. 

In this study the closed orbit distartion is corrected globally; the distortion at all positions is 

weighted equally. However, the distartion can be further reduced with local correction. lt is 
possible that local correction is required, e.g. for the reduction of the closed orbit distortion in 
the bypass. Therefore the possibilities and the necessity of local correction have to be 

exarnined. 

An integration of the monitors and optica! elements of a subsection on a single support 

structure is recommended. This is expected to provide perfect alignment within such a straight 

section and will therefore further increase the quality of the correction system and reduce the 

distortion. 
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ApPendix A. Methodical Accelerator Design 

Appendix A Methodical Accelerator Design 

The software packet Methodical Accelerator Design (MAD) is used throughout this reportfor 

the simulations ofthe EUTERPE ring. In this appendix the algorithms used in the program 

and a short introduetion to the program are given. Examples are shown ofthe input- and 

output-files for the calculation of the closedorbit distortions before and after correction in a 

lattice with multiple misalignments 

The closed orbit distortions doe to different kind of errors are detennined with simulations in Methodical 

Accelerator Design (MAD) [MAD85]. The program was developed at CERN to design accelerator rings 

in 1985, but is nowadays a frequently used tooi for the design of storage rings, e.g. [Saj94]. 

A 1 Algorithms used in MAD 

The program represents machine elements by transfer matrices as described in §2.2 [Wu 91], [Saj85]. The 
whole ring is represented by a series of matrix multiplications. The transfer matrix R between point '0' 

and ' 1' is defined as 

Z(l) = RZ(O) 

where Z represents the partiele coordinate vector; the transpose of Z cao be written as ZT = (x, x', y, y', s, 

s'), where x, x', y, y', s and s' are the partiele coordinates. In frrst-order the matrix multiplications are 

described by 2.3. 

R=R(n)R(n-l) .... R(2)R(l) 

Where Rare the tirst-order transfer matrices. However first order matrices are oot sufficient to describe 

the machine behaviour, e.g. sextupoles cao only be represented by second-order matrices. The matrix 
multiplication for the second-order matrices is defined as: 

R(l) and R(2) are the tirst-order matrices between point '0' and '1', and '1' and '2' respectively; the T 

matrices represent the second-order matrices in these intervals. The equation truncates the matrices to 
second order. No individualT matrices elements are multiplied together, which would yield termsof 

higher order than the second. These terms cao oot be represented by second-order matrices. 

The closed orbit distortion is deduced from the eigenvector of the transfer matrix of the whole ring is 
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determined. The closed orbit distortion at a partienlar location is found as a function of the location s with 

the use of the elementary transfer matrices. The tunes can be calculated by tracking electrons with small 

deviations from the calculated closedorbit and determining the oscillation frequency. 

A2 The use of the program 

Many different element types can be inserted, from normal magnets, such as dipoles, quadrupoles, etc to 

rf-cavities, ondulators, correction elements, etc. Por the simulations in this study the EUTERPE lattice bas 
been inserted in the program. The most importent magnetic elements in the EUTERPE ring are defined; 

the input is listed in fig. A 1. 

Different kind of errors can be assigned to the elements in the lattice. All alignment errors in the 

EUTERPE ring have a gaussion distributions. Random numbers with a Gaussian distribution and unit 

standard deviation are available in the program. A partienlar sequence of gaussion numbers is selected 

with the SEED option. The misalignments are assigned to the elements with the EALIGN command (see 

fig. Al). The random errors assigned to the elements with fig. Al as input is given in fig. A2. 

Many ring parameters can be calculated with the 'MAD'. This study was mainly concentrated on the 

parameters in the Twiss-table, which are given in tigure A2. The parameters given are: the closed orbit 

distortions Xco and Yco• the tunes vx and v1 (referred to with Qx and Qy in MAD), chromaticity Çx and ÇY 

(Qx' and Qy'in MAD), the maximum betatron amplitudes Px and PY' the dispersions Dx and Dy, the 

momenturn compaction factor IX, the total ring length s and the increase of the ringlengt às and finally the 

transition energy y. 

Por the closed orbit correction the command CORRECf is used; the closed orbit correction settings in the 

corrector magnets are calculated according to the Micado-method [Aut73]. Parameters used in the 

statement are: 

Error The desired accuracy of the correction (peak to peak error of the closed orbit) 

Ncorr The number of correctors to be used. 

The description given above is certainly not complete; many other parameters can be and have been 

adjusted in the simulations. 

************************ 

option, echo, keyword=3 

assign,echo=echo.rnad 

TfiLE,HBSB 

Input file in MAD ************** ***** 
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! Test of a closed orbit correction system 

! with random displacements of all di po les, quadrupoles and sextupoles 

! Comparison of 10 runs starting with seed=123 ... 

! The correction is with lattice D with and without extra monitor/kicker in long straight section 

! Epsilon = 0.01 mm, monitors displaced, with monitor read errors 

!**************** Definition of the ring ***************** 

! **** Definition of the drift spaces **** 

xm=0.23 ! Distance between sextupoles and monitors 

xm2=0.175 ! Distance between sextupoles and the second monitors 

xq=0.08 ! Distance between the first quad and the monitor 

o1: drift, type=dr,l=l.OOO 

o1a: dr, l=xm 
olb: dr, 1=1.00-xm 

o2: dr, 1=0.450 

o2a: dr, l=xm 

o2b: dr, 1=0.45-xm 

o3: dr,l=0.600 
o3a: dr, l=xm 

o3b: dr, 1=0.60-xm 
o4: dr,l=0.100 

oS: dr,l=0.165 

oSa: dr, l=xq 

oSb: dr,l=0.165-xq 

! *** Magnet Definition (HBSB mode) *** 

b: sbend, type=di,l =0.516, angle=raddeg*30, & 

e1=raddeg*15, e2=raddeg*15, hgap=0.0125, fint=O.S 

q1: quadrupole, type=qu,l=0.274, k1= 4.396 
q2: quadrupole, type=qu, 1=0.274, k1=-4.500 

q3: quadrupole, type=qu,l=0.274, k1= 7.351 
q4: quadrupo1e, type=qu,1=0.274, k1=-1.794 

s1: sextupole, type=se,1=0.05, k2= 832.932 
s2: sextupo1e, type=se, 1=0.05, k2=-1122.946 

! **** definition of the correction e1ements, 1ength=O **** 

m: monitor, type=mon, 1=0 ! monitor in both horizontal and vertical direction 
hk: hkicker, type=ki, 1=0 ! Horizontal kicker 

k : kicker, type=ki,l=O ! kicker in both horizontal and vertical direction 

! **** Ring structure ***** 
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p 1 : line=( q 1 ,o5a,m,o5b,q2) 

p2: line=(q3,o5a,m,o5b,q4) ! vertical kicker in the middle of the quadrupole-doublet 

! cell: line=(o1,p1,o3) ! Definition of the ring without correction 
! cel2: line=(o2,s1,o4,p2,o4,s2,o2) 

! super: line=(cell,b,cel2,b,-cel2,b,-cell) 

cella: line=(o1,p1,o3a,m,o3b) 

cel2a: line=( o2,k,s 1 ,o4,p2,o4,s2,k,o2a,m,o2b) 

! ***Definition of lattice D, with additional corrector and magnet in long straight section 

super: line=( cel1 a,b,cel2a,b,-cel2a,b,-cel1 a,m,k) 

euterpe: line=(4*super) 
USE, euterpe 

! *** Calculation of the closed orbit distortions *** 

print 
Twiss ! Calculate Twiss parameters for the ideallattice 

EOPT, SEED=123456789 

y1 :=0.0001 

! start reading "random"-numbers at position 123456789 

! misalignment: 0.1mm or O.lmrad 

EALIGN, type=di,qu,se & ! *** all dipoles, quadrupales and sextupoles are misaligned 

dx= y1 *gauss(), dy= yl *gauss(), ds= yl *gauss(),& 
dphi= yl *gauss(),dtheta= yl *gauss(),dpsi= yl *gauss() 

1WISS ! Calculate Twiss-parameters for the lattice with misalignments 

EALIGN, type=mon & ! *** all monitors are misaligned *** 
dx= y1 *gauss(), dy= y1 *gauss(), ds= yl *gauss(),& 

dphi= yl *gauss(),dtheta= yl *gauss(),dpsi= yl *gauss(), & 

mrex= y1 *gauss(), mrey= yl *gauss() ! *** monitor read errors *** 

eprint, type=b,mon ! *** print misalignment errors for verification 
SELECT, OPTICS, full ! **** Create dataset for plot-file **** 

OPTICS, filename="p2m.dr", column=s,betx,x,bety ,y,dx,dy 

putorbit 
putkick, filename="kickO" 

! *** Calculate monitor-readings for the uncorrected orbit 
! *** Save zero corrector settings 

*** 

CORRECT, error=0.00001,iterate=5 ,c2list 

twiss 

! *** Calculate the corrector settings with the MICADO metbod 

! *** Calculate Twiss-parameters after correction 
getkick, filename="kickO" ! *** Reset corrector settings to zero 

! **** Second run, the same parameters are calculated for the same lattice, but with different alignment errors * 

EOPT, SEED=223456789 ! start reading "random"-numbers at position 123456789 

EALIGN, type=di,qu,se & ! *** all elements are misaligned *** 

dx= y1 *gauss(), dy= yl *gauss(), ds= y1 *gauss(),& 

! ****Run 3 to 10 
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Stop 

Fig. A. I lnputfilefor MAD; calculations ofthe closedorbit distoriion in the EUTERPE ring before 

and after correctionlor one error configuration. 

IIBSB 
17.14.43 
Linear lattice functions. 

Delta(p)/p: 
1 

0.000000 

pos. 
Dpy 
no. 
(1) 

ELEMENT SEQUENCE 
element occ. 

name no. 

I 
dist I 

(m) I 

TWISS 

synm: p 

betax alfax 

(m) (1) 

line: EtlTERPE 

super: 1 

HORIZONTAL 
mux x(c:o) px(c:o) Dx 

(2pi) (nm) (.001) (m) 

I 
Dpx I 

(1) I 

beg in EtlTERPE 
0.000 

0.000 23.803 0.000 0.000 0.000 0.000 0.000 0.000 

end EUTERPE 
0.000 

1 40.000 23.803 0.000 5.131 0.000 0.000 0.000 0.000 

total length • 
delta(s) 
alfa 
g!UIU1Vl ( tr l 

IIBSB 
17.14.43 

40.000000 
0.000000 mm 
0.109009E-01 
9.577861 

Linear lattice functions. 'lWISS 

De1ta(p)/p: 
1 

0.000000 synm: p 

I 

Qx 
Qx' 
betax(maxl 
Dx(maxl 
Dx(r.m.s.) 
xc:o(max) 
xco(r.m.s.) 

line: EtlTERPE 

super: 1 

HORIZONTAL 

5.130718 
0. 006697 

23.844893 
0.467609 
0.261222 
0.000000 
0.000000 

I 

•HAD• Version: 8.9/0 Run: 10/08/95 

range: IS/IE 

page 

VERTICAL 
betay alfay muy y(c:ol py(co) DY 

(m) (1) (2pi) (nm) (.001) (m) 

0.475 0.000 0.000 0.000 0.000 0.000 

0.475 0.000 2.470 0.000 0.000 0.000 

Qy 
Qy' 
betay(max) 
DY(max) 
DY(r.m.s.) 
yco(maxl 
yco(r.m.s.) 

2.469618 
0.213699 

11.120178 
0.000000 
0.000000 
0.000000 
0.000000 

"HAD" Version: 8. 9/0 Run: 10/08/95 

range: IS/IE 

VERTICAL 

page 

ELEMENT SEQUENCE 
pos. element occ. 
Dpy 

dist I betax a1fax mux x(c:o) px(c:ol Dx Dpx I betay alfay muy y(col py(co) DY 

no. name 
(1) 

begin EtlTERPE 
0.013 
end EUTERPE 
0.013 

total length • 
delta(s) 
alfa 
g!UIU1Vl(tr) 

IIBSB 
17.14.43 
~erfec:tions. 

1 

no. 

Element sequence 
1. OE-3 

1 

1 

pos. 
no. 

element occ. 
name no. 

(m) I (m) (1) (2pi) (nm) (.001) (m) (1) I (m) (1) (2pi) (mm) [.0011 (m) 

0.000 27.639 -0.037 0.000 -3.435 -0.084 -0.134-0.003 0.000 0.000 0.000 -0.402 -0.733 0.001 

40.000 27.806 -0.054 5.127 -3.435 -0.084 -0.134-0.003 0.000 0.000 0.000 -0.402 -0.733 0.001 

40.000000 
-0.153988 ... 

0.107609E-01 
9.639970 

EPRINT 

synm: p 

Displac:ements in (nm) 

DX 
Re(KlL) 
Re(K5L) 

DY 
Im(KlL) 
Im(K5LI 

Qx 
Qx' 
betax(max) 
Dx(max) 
Dx(r.m.s.) 
xc:o(max) 
xc:o(r.m.s.) 

line: EtlTERPE 

super: 1 

5.127398 
0.226837 

27.806198 
0.519294 
0.266227 
6.690439 
1.937330 

Qy 
Qy' 
betay(max) 
DY(max) 
DY(r.m.s.) 
yco(max) 
yco(r.m.s.) 

•HAD• Version: 8.9/0 

range: IS/IE 

Rotatiens in (mrad) 

DS 
Re(IC2L) 
Re(K6L) 

DPHI 
Im(K2L) 
Im(K6L) 
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DTHETA 
Re(K3L) 
Re(K7L) 

DPSI 
Im(KJLI 
Im(K7L) 

0.000000 
0.000000 
0.000000 
0.175300 
0.059667 
4.329595 
1.966563 

Run: 10/08/95 

page 

Field errors in 

Re(KOLI 
Re(K4L) 
etc. 

Im(KOLI 
Im(K4LI 
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10 B 
26 B 
42 B 
63 B 
79 B 
95 B 

116 B 
132 B 
148 B 
169 B 
185 B 
201 B 

4 H 
8 M 

17 M 
24 M 
28 M 
35 H 
44H 
48 M 
52 M 
57 M 
61 M 
70 M 
77 M 
81 M 
88 M 
97 M 

101 M 
105 M 
110M 
114M 
123 M 
130 M 
134 M 
141 M 
150 M 
154 M 
158 M 
163 M 
167 M 
176 M 
183 M 
187 M 
194 M 
203 M 
207 M 
211 M 

HBSB 
17.14.43 

1 Oo64781E-01 -Oo12988E-02 
2 -Oo88420E-01 -Oo37254E-01 
3 -Oo11949 Oo10949E-01 
4 Oo52519E-01 Oo741448-01 
5 -00636748-02 -Oo10769 
6 -00778518-01 Oo535658-01 
7 -Oo257288-01 Oo357558-01 
8 -o o12230 o 0 953808-01 
9 -0016131 Oo10590 

00722868-01 
-o 0 311268-01 
-Oo20702 

Oo994038-01 
0 o 45890E-02 
Oo11800 

-Oo323368-01 
-Oo171528-01 
-Oo11427 
-Oo610758-01 
-Oo707088-01 

Oo49999E-01 
-Oo18270 

Oo10670 
Oo10885 

-Oo96416E-01 
-Oo382418-01 
-0.114718-01 
-00897438-01 
-0.423118-01 
-Oo743398-01 

-Oo253348-01 
-00303448-01 

Oo15524 
Oo32891E-01 

-0 0 469868-01 
Oo11129 
Oo271068-01 

-Oo176398-01 
-Oo670798-01 
-Oo135138-01 
-0018648 

Oo667108-01 
Oo490288-01 
Oo11976 

-Oo853078-01 
Oo754168-01 

-Oo726788-01 
-Oo160428-01 

0.840128-01 
-Oo17262 

Oo333528-01 
Oo142358-01 

10 0o52007E-01 Oo697328-02 
11 -Oo13272 -Oo61990E-01 
12 Oo178058-01 -Oo345848-01 0 o 453548-01 

Oo10701 
-0 o10438 Oo252528-01 -Oo100518-01 

1 -0.919288-01 
2 -Oo10256 
3 0.295998-01 
• -0.10595 
5 0.792288-01 
6 Oo815678-01 
7 -0.11714 
8 Oo15262 
9 Oo692358-01 

10 -o 013991 
11 -Oo19063 

0.396808-01 0.272758-01 0.935618-01 -0.14421 
0.969158-01 -0.686338-01 -0.12116 -0.831558-01 

-0.23428 -0.16187 0.630028-01 0.376688-01 
Oo15275 0.18160 0.268278-01 -0.179198-01 
0.15725 -0.555958-01 0.832418-01 -0.579718-01 
0.359568-01 -0.922678-01 0.11856 -0.12823 

-0.591568-01 0.403228-02 0.181468-01 0.489168-01 
0.10873 -0.545458-01 -0.812678-01 -0.22619 
0.615818-02 -Oo16535 Ool8279 0.768148-02 
0.673798-01 0.634808-01 0.474218-01 Oo341028-01 

-0.796528-01 -0.386498-01 -0.87540E-01 -0.11894 
12 
13 
14 
15 

0.831598-01 -0.292768-01 -0.30701E-01 0.583358-01 -Oo838818-01 
0.47300E-01 -0.167668-01 
0.11131 -0.467468-01 

-0.19590 0.36057E-01 Oo131408-01 
-0.13365 Oo163418-01 -0.867028-01 
-0.460948-01 0.15130 0. 615608-01 -0.480458-01 0.215128-01 

0.24770 
-0.955968-01 

0.17964 
0. 588688-01 
0.538858-01 
0.570578-01 
0.907468-01 
0.675648-01 
0.13968 
0.839138-01 
0.14750 

-0.24255 
-0.12365 
-0.119228-02 

Oo16035 
16 -0.519278-01 -Oo26884E-01 0.60821E-01 -0.13967 0.16097 -Oo374478-01 
17 0. 23240E-01 0. 81412E-01 0 o 827658-01 -0 o 32815E-01 0.19350 0 o 58425E-02 
18 -Oo20654 -0.29079E-01 -Oo112418-01 -0.24746 -Oo52891E-02 Oo30200E-01 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Oo29221 -0.46160!-01 -Oo70521E-01 0.12304 0.66344E-01 -0.14693 
0.36292E-01 Oo93010E-01 -0.96150!-01 -0.82926E-03 0.20641 Oo78165E-01 

-0.46725E-01 Oo93052E-01 0.10393 -Oo10907 0.18743 -0.16819E-01 
-0.13729 -0.24463E-01 0.99535E-02 Oo68478E-01 -00677858-01 Oo85359E-01 
-Oo14317 

Oo19999 
Oo10451 
0.16607 

-0. 55198E-01 0 o 495728-01 -0.15739 Oo11348E-01 Oo22580E-02 

-0.27461E-02 
-0.15883 
-Oo18861 

Oo43170E-01 
0. 65641E-01 

0.24586E-01 0.13481 
-Oo63975E-01 -0.17732 
0. 67685E-02 -0. 22459E-01 
0. 84410E-03 0 o 82356E-02 
0.21775 0.27277E-01 

-0.28432E-01 0.13081 
Oo70506E-01 0.15967 
0.84376E-01 -0.11034 

0.77058E-01 -0.82821E-01 
-0.20480E-01 0.77178E-01 

0.10696 0.40173E-01 
Oo86418E-01 -0.24673E-01 
0.22017E-01 Oo20957 

-0.12942E-01 0.54099E-01 
0.15086 -0.40722E-01 

-0.349828-01 -0.17180 
-0.16504E-01 0.621938-01 -0.98804E-01 -0.402268-01 -0.26728E-01 
0.11109E-01 0.10519 -0.18902 Oo18901E-01 -0.182708-01 
0.15715 
0.11313 

0.52809E-01 0.17128 0.33408E-01 -Oo11524 
-0.26398E-01 -Oo29406E-01 0.25479E-01 0.17850E-01 

-Oo68435E-01 -0.18432E-02 -0.25366E-01 0.45790E-01 -0.10403 

-0.29127E-03 
0. 21776E-02 

-0010381 
-0.17641 
-0.11683 
0.999638-01 

-0.18529 
0.84269E-02 

-0.18489 
-0.25872 
0.11634 

-0.12605 
-0.24333 

•MAO• Version: 8.9/0 

Corrector strengths (before correction) for beam line EUTERPE 
1 

Correctors used: 
Maximum strengths: 
R.m.s. strengths: 

HBSB 
17.14.43 

horizontal 
0 (of 20) 
0.000000 mrad at 
0.000000 mrad 

0) 

Orbit and dispersion at monitors (before correction) for beam line EUTERPE 
1 

Orbit monitors used: 
Dispersion monitors use 
Total monitors: 
Minimum dispersion: 
Maximum dispersion: 
R.m.a. dispersion: 
Minimum readings: 
Maximum readings: 
R.m.s. readings: 

HBSB 
17.14.&3 

36 
36 
36 

horizontal 

-o .133637 m at M 
0.479969 m at H 
0.232591 m 

-3.458692 mm at H 
6.657272 mm at M 

2.096277 -

Corrector strengtbs (after correction) for beam line EUTERPE 
1 

Nwnber name occur. position xcorr ycorr 
effect 

[m) [mrad) [mrad) 

-90-

36) 
33) 

36) 
18) 

betx 

[m) 

vertical 
0 (of 201 
0.000000 mrad at 
OoOOOOOO mrad 

"MAD" Version: 8.9/0 

36 
36 
36 

vertica1 

-0.171994 m at M 
0.167573 m at H 
0.063519 m 

-4.295654 mm at H 
4.338627 mm at H 
2.086537 -

"MAD" Version: 8.9/0 

bety DIUX 

[m) [2*pi) 

Run: 10/08/95 

page 

0) 

Run: 10/08/95 

161 
20) 

20) 
16) 

page 

Run: 10/08/95 

page 

muy 

[2*pi) 
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12 K 1 3.279000 -0.069611 0.866792 2.719596 3.374594 0.445290 0.234413 
22 K 2 4.292000 -0.405492 0.293309 1.410731 4.684111 0.503618 0.288091 
30 K 3 5.708000 0.266899 -0.794009 1.410731 4.684111 0.779061 0.329313 
40 K 4 6.721000 -0.265828 1.275964 2.719596 3.374594 0.837390 0.382991 
53 K 5 10.000000 -0.029059 -0.115756 23.802882 0.475078 1.282680 0.617404 
65 K 6 13.279000 -0.114163 0.194668 2.719596 3.374594 1. 727969 0.851818 
75 K 7 14.292000 0.320548 0.231220 1.410731 4.684111 1.786298 0.905496 
83 K 8 15.708000 -0.141358 -0.292890 1.410731 4.684111 2.061741 0.946718 
93 K 9 16.721000 -0.111658 0.198549 2.719596 3.374594 2.120069 1.000395 

106 K 10 20.000000 0.080543 -0.006840 23.802882 0.475078 2.565359 1.234809 
118 K 11 23.279000 -0.234284 -0.562859 2.719596 3.374594 3.010649 l. 469222 
128 K 12 24.292000 0.688095 0.748729 1.410731 4.684111 3.068978 1.522900 
136 K 13 25.708000 0.288944 -0.639231 l. 410731 4.684111 3.344420 1.564122 
146 K 14 26.721000 -0.386947 0. 570135 2.719596 3.374594 3.402749 1.617800 
159 K 15 30.000000 -0.173593 0.143218 23.802882 0.475078 3.848039 1.852213 
171 K 16 33.279000 -0.017813 -0.422239 2.719596 3.374594 4.293328 2.086627 
181 K 17 34.292000 -0.076586 0.206041 1.410731 4.684111 4.351657 2.140304 
189 K 18 35.708000 0.262124 -0.127313 1.410731 4.684111 4.627100 2.181527 
199 K 19 36.721000 0.269658 0.209196 2.719596 3.374594 4.685428 2.235204 
212 K 20 40.000000 0.213921 0.056034 23.802882 0.475078 5.130718 2.469618 

-----------------------------------------------------------------------------------------------------------------------------
horizontal vertica1 

Correctors used: 20 (of 20) 20 (of 20) 
Maximum strengths: 0.688095 mrad at K 12) 1.275964 mrad at K 4) 
R.m.s. strengths: 0.269427 mrad 0. 511925 mrad 

------------------------------------------------------------------------------------------------------------------------------
HBSB 
17.14.43 
Orbit and dispersion at monitors (after correction) for beam line EUTERPE 

1 

Orb i t monitors used: 
Dispersion monitors use 
Tot al monitors: 
Min~ dispersion: 
MaxLmum dispersion: 
R.m.s. dispersion: 
Minimum readings: 
Maximum readings: 
R..m.s. readings: 

HBSB 
17.14.43 
Linear lattice functions. 

Delta (pi /p: 
1 

ELEMENT 
pos. element 
Dpy 
no. name 
[1) 

0.000000 

SEQUENCE 
DCC. di st 

no. [m) 

36 
36 
36 

horizontal 

-0.015700 m at M 
0.439284 m at M 
0.223102 m 

-0.182139 am at M 
0.222737 nn at M 
0.086945 am 

'lWISS 

Sytllll: F 

I H 
I betax alfax 

I [m) [1) 

27) 
30) 

19) 
20) 

line: EUTERPE 

super: 1 

0 R I z ONTAL 
DlUX x(co) px(co) Dx 

[2pi) [am) [.001) [m) 

Dpx 

[1) 

36 
36 
36 

•MAD• Version: 

vertic al 

-0.048185 m at M 
0.061946 m at M 
0.026329 m 

-0.339748 IMI at M 
0. 248732 IMI at M 
0.106893 1M1 

8.9/0 

"MAO" Version: 8. 9/0 

range: IS/IE 

I V E R 
I betay alfay muy 

I (m] [1) [2pi) 

Run: 10/08/95 

20) 
16) 

28) 
29) 

page 

Run: 10/08/95 

page 

T I c A L 
y(co) py(co) Dy 

[nm) [.001) [m) 

------------------------------------------------------------------------------------------------------------------------------
begin EUTERPE 
-0.012-0.008 
end EUTERPE 
-0.012-0.008 

tota1 length • 
delta(s) 
alfa 
gamma(tr) 

1 

1 

0.000 24.457 -0.025 0.000 0.037 -0.053 0.005 0.001 

40.000 24.283 -0.015 5.136 0.037 -0.053 0.005 0.001 

40.000000 Qx 5.135804 
-0.175215 am Qx' -0.033278 
0.108364E-01 betax(max) 24.949443 
9.606323 Dx(max) 0.474810 

Dx(r.m.s.) 0.259781 
xco(max) 0.343187 
xco(r.m.a.) 0.129138 

0.423 0.033 0.000 -0.011 0.045 

0.420 0.016 2.456 -0.011 0.045 

Qy 2.456410 
Qy' -0.078892 
betay(max) 12.439237 
Dy(max) 0. 063311 
Dy(r.m.s.) 0.025022 
yco(maxl 0.492176 
yco(r.m.s.) 0.154082 

Fig. A.2 MAD Output file; calculations ofthe closedorbit distartion before and after correctionfor 

one error configuration. 
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Appendix B 

Closed orbit distortions due to misalignments 

The closedorbit distortions due to single and multiple misalignments have been determined 

with simulations in MAD. The effects of all single misalignments are given in part BI. The 

effects of multiple misalignments in the HLF mode are given in B2. The results are 

summarised in Chapter 3. 

B 1 Single misalignments 

The effects of misalignments and other errors causing closed orbit distortion have been examined by 

simulating them with the program MAD. The Closedorbit distortions and the tune shifts are given in table 

B.t to B.4. 

Table B.l The effects of single misalignments of the dipales in the HBSB mode 

Dipole Displa- Xnuu Xrms Ymax Yrms IJ. vx IJ. Vy 

cement (mm) (mm) (mm) (mm) *to-s *to-s 

1 dx 0.2 0.07 0 0 1 20 

t dy 0.002 0.0005 0.25 0.12 0.4 0.2 

1 ds 0.73 0.25 0 0 2 80 

t d<l> O.OOOOt 0 0.008 0.004 0 0 

t d8 0 0 0 0 O.t 3 

t dtJr 0.002 0.0005 0.25 O.t2 0.4 0.2 

2 dx 0.09 0.03 0 0 0 0.1 

2 dy O.OOt 0.0004 0.2t 0.1 0.4 0.1 

2 ds 0.32 O.t3 0 0 0.4 1 

2 d<J> 0 0 0.003 0.002 0 0 

2 de 0.00001 0 0 0 0.4 0 

2 d$ 0.001 0.0004 0.2t 0.1 0.4 0.2 
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ApPendix B. Closedorbit disfortion 

The closed orbit distortions reach their maximum values at the long straight sections. 

For the single displacements of the dipales it is important to know how the displacement errors are 

defined. In MAD all displacement errors are assigned at the entrance of each element. In a dipale the 

electron-orbit is bent; the comaving reference frame rotates with the orbit. As a result, displacements 

assigned at different positions describe different misalignments. 

In table B.1a the closedorbit distortions are calculated for single misalignments in the s'- and x'-directions 

(these are the s- and x-directions in the middle of the dipoles). In this new reference frame the influence of 

a single displacement in the x'-direction is nihil ( campare this with the effects of a displacement dx), the 
influence of a displacement in the s'-direction is about 3 % bigger than fora displacement in the s

direction. 

The rotational directions cf>', e· and ljl' in the middle of the dipales also differ from the rotational directions 

cf>, e and ljl. The influence of the rotation of the reference frame on the closedorbit distartion is limited (a 
few percent for dljl) and the correlation between the two reference frames complex; the single 

misalignments dcf>', d6' and dljl' havenotbeen simulated. 

Table B.Ja 

Dipale 

1 

1 

2 

2 

Table B.2 

Dipale 

1 

1 

1 

1 

1 

Single misalignments of the dipole with the displacements defined with respect to the 

middle ofthe dipole (mode HBSB) 

Displa- Xnuu Xrms Ymax Yrms ll. vx fl. Vy 

cement (mm) (mm) (mm) (mm) *10-S *10-S 

dx' 0.00007 0.00002 0 0 0 0 

ds' 0.77 0.26 0 0 2 78 

dx' 0.00003 0.00001 0 0 0 0 

ds' 0.34 0.13 0 0 0.4 1 

The effects of single misalignments of the dipoles in the HLF mode 

Displa- Xnuu Xrms Ynuu Yrms fl. Vx fl. Vy 

cement (mm) (mm) (mm) (mm) *10-S *10-S 

dx 0.02 0.008 0 0 0.4 0.2 

dy 0.0002 0.0001 0.22 0.12 0.2 0 

ds 0.06 0.03 0 0 1 1 

dcf> 0 0 0.004 0.002 0 0 

dljl 0.002 0.0005 0.23 0.12 0.2 0 
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Appendix B Closedorbit disfortions due to misalignments 

2 dy 0.00006 0.00003 0.12 0.06 0.1 0 

2 ds 0.14 0.07 0 0 0 0.1 

2 dtii 0.00007 0.00004 0.12 0.06 0.1 0 

B.l.2 Single rnisalignments of the quadrupoles 

The beam parameters are calculated for the situation in which all magnetic elements are perfectly aligned, 

with the exception of one quadrupole, which is misaligned in one direction. The EUTERPE-ring bas 4 

superperiods each containing 8 quadrupoles. Because each superperiod is symmetrie, there are only 4 

independent quadrupoles, with different strengts. 

The effects of misalignments in de x- and y-directions and rotations around the y-axis have the largest 

influence on the closed orbit. The influence of single displacements in the s-direction and rotations around 

the s-axis are nihil. In table 2 only the effects of the most important misalignments are given. 

In the HBSB-mode the effects of misalignments of the first three quadrupoles on the closed orbit 

distortion are comparible, the effects of misalignments of the fourth quadrupole are several times smaller. 

In the HLF-mode the closed orbit distortion is the least sensitive to misalignments of the second 

quadrupole. Comparing the effects of misalignments for the two different modes, we see that the closed 

orbit distortions in the HLF-mode are an order of magnitude smaller than in the HBSB-mode. 

Table B.3 The effects of single misalignments ofthe quadrupales in the HBSB mode 

Quadru- Direc- Xnuu Xrms Ymar Yrms !i vx /:i Vy 

pole ti on (mm) (mm) (mm) (mm) *10""" *104 

Q1 dx 3.4 1.2 0 0 25 1 

Q1 dy 0.004 0.001 0.38 0.18 0.1 0.1 

Q1 ds 0 0 0 0 0.1 3 

Q1 d<f> 0.00008 0.00003 0.05 00.03 0 0 

Q1 d8 0.46 0.16 0 0 4 0.1 

Q1 dljl 0 0 0 0 0 0 

Q2 dx 2.0 0.7 0 0 27 2 

Q2 dy 0.01 0.01 0.65 0.32 0.1 0.2 

Q2 d<l> 0.0002 0.0001 0.09 0.04 0 0 

02 riA 0.2~ o_oq 0 0 ~ 02 
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Q3 dx 2.6 0.9 0 0 34 6 

Q3 dy 0.007 0.002 0.48 0.24 0.1 0.2 

Q3 d<f> 0.0001 0.00005 0.07 0.03 0 0 

Q3 d6 0.36 0.12 0 0 4 0.6 

Q4 dx 0.46 0.16 0 0 3 1 

Q4 dy_ 0.0007 0.0002 0.16 0.08 0.01 0.02 

Q4 d<f> 0.00001 0 0.02 0.01 0 0 

Q4 d6 0.06 0.02 0 0 0.5 0.2 

Table B.4 The effects of single misalignments ofthe quadrupales in the HLF mode 

Quadru- Direc- Xmax Xrms Ymax Yrms !i vx fi Vy 

pole ti on (mm) (mm) (mm) (mm) *10-5 *10-5 

Q1 dx 0.17 0.08 0 0 5 2 

Q1 dy 0.00008 0.00003 0.1 0.05 0.2 1 

Q1 d6 0.02 0.01 0 0 5 2 

Q2 dx 0.05 0.02 0 0 0.4 1 

Q2 dy_ 0.00001 0 0.04 0.02 0.8 0.5 

Q2 d6 0.07 0.03 0 0 0.6 0.6 

Q3 dx 0.15 0.9 0 0 0.4 2.4 

Q3 dy 0.0001 0.00006 0.02 0.01 0.2 0.8 

Q3 d6 0.02 0.01 0 0 0.7 0 

Q_4 dx 0.38 0.18 0 0 0.6 2 

Q4 dy 0.0004 0.0001 0.3 0.15 5 0.6 

Q4 d6 0.05 0.02 0 0 0.3 3 

B.2.1 Summary of the effects of single misalignments 

The simulations show that the closed orbit is most sensitive for misalignments of the quadrupoles in the 

horizontal direction. The single misalignment of the first quadrupole fix = 0.1 mm results in a maximum 
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closed orbit distortion of Xco = 3 mm; the resulting closed orbit distortion is 30 times as large as the 

displacement The closed orbit is also very sensitive for dipole displacements along the electron trajectory 

(with respect to the rniddle of the dipole). The main contributions to the vertical distortion come from the 

displacements of the quadrupoles and the dipole in the vertical direction and rotations of the quadrupoles 

around the y-axis and the dipoles along the s-axis. 

The closed orbit in the HLF mode is sensitive for sirnilar displacements. However the resulting distortions 

are about 10 times smaller in the HLF mode due to the weaker focusing. 

B.2 The effects of multiple misalignments on the closedorbit 

The effects of multiple rnisalignments of all elements in the HLF-mode are given in table B.5. 

For all calculations with multple rnisalignments the frrst address read from the gaussian table in MAD is: 

Eopt = 123456789. All random errors are read from the table; each consequetive error read from the 

consequetive address. In chapter 3 the effects of multiple rnisalignments on the closed orbit in the HBSB 

mode are discussed. The maximum values of the closed orbit distortion averaged over 10 runs are given in 

table B.5. 

Table B.5 Effects of multiple displacements ( a=O.lmm and a=O.Jmrad) on the closedorbit 

distartion (mode HLF). 

Displacement Xmnr (mm) Ymnr (mm) 

All dipoles 2±0.5 1.3±0.6 

All quads 12± 5 2.9±0.8 

All sextupoles 0.012 0.003 

±0.004 ±0.001 

All elements 12±7 5±2 

The effects of multiple rnisalignments in the HLF mode are given in B.6. The results in table B.5 show 

that the effects of multiple alignments in the HLF mode are about 2 times smaller in the vertical and about 

10 times smaller in the horizontal direction than in the HBSB mode. 
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Table B.5 

Appendix B. Closed orbit distartion 

Effects of multiple displacements ( a=O.lmm and a=O.lmrad) on the closedorbit 
distortion (mode HLF). 

Displacement Xmax Xrm• Ymax Yrms ll. vx /:i Vy 

(mm) (mm) (mm) (mm) *10-2 *10-2 

All dipoles 0.3±0.1 0.12±0. 1.0±0.2 0.4±0.2 0.008 ± 0.01 

5 0.006 ±0.01 

All quads 1.0±0.5 0.5±0.2 1.3±0.4 0.5±0.2 0.04 0.04 

±0.03 ±0.03 

All sextupoles 0.004 0.002 0.006 0.0016 0.16 0.3 

( o=0.2mm,mrad) ±0.002 ±0.0004 ±0.003 ±0.0005 ±0.07 ±0.2 

All elements 1.2±0.6 0.6±0.3 1.5±0.5 0.65±0.2 0.05 0.2 
+00? +0 Of\ 
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Appendix C Closed orbit correction 

The closedorbit dislortion in the vertical direction is shown after correction. Furthermore the 

values of several beam parameters are compared before and after correction. 

The closed orbit distartion after correction is calculated for severallattices with different error 

configurations. The 'random' displacements assigned to the magnetic elements are again read from the 

gaussian table in MAD. The first errors in the consequetive runs were read from respectively address 

123456789, address 223456789, address 323456789, address 423456789, address 523456789, 

address 623456789, address 723456789, address 823456789, address 923456789 and address 

933456789. This way the errors assigned to the magnetic elements were equal for every correction lattice. 

C 1 The closed orbit distartion in the vertic al direction after correction 

The closed orbit distartion in the HBSB mode in the vertical direction bas been determined after 

correction with the second lattice in §4.2.1. The monitor locations in this lattice are reversed with the 

corrector locations with respect to the standard lattice. Although the vertical distartion is 'only' reduced 

with a factor 8, the difference between the distartion befare and after correction is very large, see fig. C.l. 

Fig. C.J 

6+--------L--------L-------~-------r 

4 

2 -.. 
s 
s 0 .._ 

0 

"' >._2 

-4 

Uncorrected 

Lattice A 

-6~UilliilillW~~~~UL~u=~~~~~~~ 

0 10 20 30 40 
s (m) 

The closed orbit dislortion in the vertical plane before and after correction in the 
HBSBmode. 
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C2 The effects of the closed orbit correction on other beam parameters 

Many beam parameters have been calculated with the simulations (see appendix A); the values of the 

chromaticity, the dispersion and the betatron amplitude are compared in this paragraph for the ideallattice 

and the lattice with all elements misaligned before and after correction with all sextupoles used as 

corrector magnets, lattice C described in §4.2.3. 

The chromaticity and betatron amplitude are increased as a results of the misalignments. However the 
chomaticity remains small; the momenturn spread of !ip/p::: 0.04% under normal circumstances results in 

a tune shift of less than liv<5.10-4, which is negligible on the total tune shift. The maximum beam width is 

proportional to P" 112 and is ca 10% increased due to the misalignments; 5% ofthis increase in the 

maximum beam width is eleminated after correction. 

The change in the dispersion due to the misalignments is very small. 

Table C.J The chromaticity, dispersion and betatron amplitude in the ideal, the distorted and 

corrected lattice. 

Parameter Ideallattice All elements Closed orbit correction 

misaligned with lattice D 

Chromaticity çx 0 0.4 ±0.4 0.05 ± 0.04 

çy 0 ---I 0.4 ± 0.2 

Dispersion ( Dx)nns 0.257 0.268 ± 0.008 0.259 ± 0.003 

( Dy)nns 0 0.04± 0.02 0.02 ± 0.01 

Betatron function Px max (m) 23.8 29±2 25 ± 1 
p_y max (m) 11.1 ---I 18 ±5 

Horizontal chromaticity reduced with a factor 8, Horizontal betatron amplitudes reduced with about 20 %. 

The dispersion is within 1% constant for the three lattices. 

The dispersion function after correction is shown in fig. E.2. 

1 For 6 out of 10 error configurations the vertical betatron oscillations were unstable; the vertical betatron 
amplitudes and vertical chromaticity are not known for these runs and are therefore not given. 
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Fig. C.2 The dispersion in the HBSB mode after correction. 
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AppendixD Mechanica! drawings of the designed 
sextupole and corrector magnet 

The drawings ofthe EUTERPE sextupole and window corrector magnet, which are constructed at 

the Design and Construction Facility (CTD) ofthe TUE, are given. 

D 1 The sextupole 

The mechanica/ drawings ofthe prototype sextupole magnet are depicted below. Furthermore 

the currents through the coils of the sextupoles used as horizontal and vertical corrector are 

shown. Finally the inductance in the coils is calculated. 

Scale 1:2 
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Side view sextupole 

270 ±O.S 

75 ±O.S 

126 ±2 

Note, for simplicity only the coils around pole 2 and 5 are drawn 
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Material: low carbon iron 

Scale 1:2 
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Currents through the coils Generated fields 

OlD 
~ ...... 

I \ 

I \ 
I 
\ I 

'~ 

Sextupole 
field 

Vertical 
Dipole field 

Horizontal 
Dipole field 

The fields shown on the right are generated with the assigned currents through 
the coils. 

fê'\ fV\ Currents for the generation of the sextupöle field 
~'(Ys 

® ® (!) @ Currents for the generation of the vertical dipale field 
V V V V 

(!) ® Currents for the generation of the horizontal dipale field 
H H 

The figure shows that the currents throught the coils around opposite po les are 
always equal. However the polarity of opposite pol es is reversed; if pole 1 is a 
magnetic N-pole, pole 4 is a S-pole. 
The total currents through the coils is superposition of the required currents for 
the generated fields. 
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-------, Coil 1 - - - - - - - , Coil 2 

Ne 

The electric circuit for the coils around pole 3 and 6 is similar. 

Ns = 268 turns 
Ne= 100 turns 
Ntot = 368 turns, 
Imax=7 A 

NI= 2576 A.turns (max) 
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D2 The window-frame corrector magnet 

Coils: 

182 tums 2.5x1.5 mm 
NI= 1274 A.tums (max) 
No cooling. 
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ApPendix D Mechanica[ drawings of the designed sextupole and corrector magnets 

D3 The time constant of inductance 

Due to the inductance in the coils it takes a finite time to induce the sextupole field. The time constant t of 

the inductance is given by [Mon85]: 

1: = L 
R' 

with L the inductance of the coil and R the resistance. The inductance depends on the number of tums per 
circuit N, the flux <I> and the current I through the wire according to 

l 
R = p -. 

A 

The resistance of the coil is dependent on the totallength of the wire I, the resistance of the conduction 

material p and the conductive area A 

L = N <f>. 
I 

Using these formulas the time constants of the window frame corrector magnet and the sextupole are 

calculated. The value of all parameters used in the calculation are given below. 

The time constants are equal to t=0.1 s for the sextupole and t "' 1 ms for the window frame corrector 

magnet Both time constant are negligible in comparison to the time it takes to accelerate the electrans 

from 75 Me V to 400 Me V. 

Specifications wire 

Material cupper 
Conductive area 

Maximum current 

p = 1.7.10"80m 

A= 2.5xl.5 mm2 

Imox= 7A 

Total number of tums through one circuit 

Totallength 

Maximum magnetic flux 

Total resistance per circuit 

lnductance 
Time cQnstant 
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Sextupole 

N=144 

I"' 200m 

<I> "' 1.10"3 Tm2 

R=10 

L"' 0.1 H 
't"' 0.1 s 

WindQw frame 

N= 182 
I= 70m 

<I> "' 1.104 Tm2 

Rz0.3Q 

Lz3mH 

t"' 1ms 





Appendix E Field measurements 

Appendix E Field measurements 

The magnetic induction in the prototype window frame corrector magnet is measured using a Hall-probe 

(SIEMENS, model SVB613) attached toa xy-table. A step motor is used to position the X-Y table. A 

control/interface unit is used for the reading of the Hall voltage and the steering of the X-Y table. Some 
general characteristics ofthe measurement system are listed in table E.l [Web94]. 

Table El Specifications ofthe Hall probe usedfor the measurements ofthe induction 

Size 

Absolute position accuracy 

Relative position accuracy 

Stability 
Temp. effect of Hall probe 

1 x 1 mm2 

1mm 

0.05mm 

104 

< 104 /°C 

The Hall-probe bas been calibrated with a Nuclear Magnetic Resonance coil in the range of -0.25T < B < 
0.25T. With a third order polynomal the induction in the Hall probe was fitted. The residue inductions 

were smaller than 2G. Higher order components yield no significant rednetion of the residues. 



Appendix F Poisson 

Appendix F Poisson 

With the program Poisson, thefield profiles in the magnets have been calculated. In this 

appendix the derivation ofthe Poisson equation is given, and the use ofthe program is 

described. 

Fl Denvation of the Poisson equation 

For the calculation of the magnetic induction in a static situation only two Maxwell-equations are 

relevant: 

and 

V.B = 0 

V x H = J, H= 
B (F.1) 

In these equations Bis the magnetic induction, H the magnetic field strength, J is the current-density, 

f.lo the magnetic permeability in vacuum and Jlr the relative magnetive permeability. 

lf no currents are present in the region of interest, then J=O and H can be described as the gradient of a 

potential 4>: B=V'<J>. 4> is called the magnetic scalar potential. Using this equality in the first part of 

formula (2.16) the Poisson equation is found: 

(F.2) 

Assuming 4> is locally constant along the magnetic axis (e.g. in a long magnet or due to symmetries) 

equation (2.17) is reduced to a two-dimensional problem. Solving this equation in cylindrical 

coordinates and throwing all singular solutions away, the equation for the potential becomes 

<1> = L (Jn rn cos ne + Kn rn sin n6). (F.3) 
n=l 

The induction is the derivative of the potential 

in rn-lcos ne + 
k 

r•-tsin nO) B = L 
n 

r n (n-1)! (n-1)! 

and B4> = Ln 
in rn-l sin ne + kn ,.-t cos na)' 

(n-1)! (n-1)! 

(F.4) 
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Appendix F Poisson 

The componentsin and kn in the equation above represent the multipole coefficients. The components 

with n=O correspond toa dipole-field, the components n=l toa quadrupole-field, etc. In general 

magnets are designed for the introduetion of one harmonie; in that case all other harmonie components 

represent error-fields. The expression of field errors in harmonie components is called harmonie 

analysis. 

The components j,. represent the skew components, which are equal to zero if the elements have a 

normal orientation and are perfectly aligned. The orientation of the elements is defined to be normal if 

the induction is perpendicular to the horizontal axis. 

The cylindrical coordinates can be transformed into Cartesian coordinates [Cas94] 

(2.20) 

In this formule, B0 is the strength of the main field component at r , the coefficients bn are called the 

"normal" multiple coefficients, ~are the "skew" multiple coefficients (for skewed, or rotated elements) 

and r0 is a normalization radius. This is the representation used in the program Poisson. 

F .2 The u se of the program Poisson 

The most important parameters, which have been adjusted during the use of Poisson 

Table Con-values used in Poisson 

Program Con-value Description 

Lattice con(6) Magnetic permeability in iron, 

con(6)=0, permeability dependent on H 

con(6)=-2, permeability equal to oo 

con(9) Sealing factor 

con(21 )-con(24) Boundary condition for respectively the left, right, top and 

bottorn boundary, con(21)=0 gives a Dirleblet problem 

Symmetry 

con(46) 
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Poisson Harmonie analysis-components. 

con(llO) Number of coefficients to be calculated 

con(lll) Number of points used 

con(112) radius 

con(ll3) circle 

con(114) normalisation radius 

Sextupole used as a vertical corrector, 1=305 A.turns through the coils around pole 1, 3, 4 and 6. 

! **** Definition of outer boundaries **** 

&reg conv=O.l ,nreg=17 ,dx= 1.95,dy=2.,xmax= 140,xrnin=-140,ymin=-140,ymax= 140,npoint=4,mat=2 & 

&po r=140,theta=0 & 
&po nt=2, r=140. ,theta=180 & 

&po nt=2, r=140.,theta=270 & 

&po nt=2, r=140.,theta=0. & 

! **** Definition of inner boundaries **** 

! **** First quadrant **** 
&reg mat=l, npoint=20 & 
&po x=O.,y=O. & 

&po x=120.,y=O. & 

&po nt=2.,r=120.,theta=24.74 & 

&po x=30.1199,y=5.843 & 
&po x=27.609,y=7.280 & 

&po x=25.4869,y=8.9414 & 

&po x=23.773,y=10.838 & 

&po x=22.3435,y=12.9 & 
&po x=21.273,y=l5.169 & 
&po x=20.4869,y=17.602 & 

&po x=20.109, y=20.270 & 

&po x=20.1199,y=23.26 & 
&po x=98.1418,y=69.052 & 

&po nt=2.,r=l20.,theta=84.74 & 
&po x=lO., y=29.006 & 

&po x=7.5, y=27.55 & 
&po x=5., y=26.543 & 
&po x=2.5, y=26.007 & 

&po x=O.,y=25.8 & 
&po x=O.,y=O. & 
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! **** The definiton of the Second to Fourth Quadrant are similar **** 

! **** Definitions of coils and currents **** 

! **** Coil around pole 1 **** 
&reg mat=l, cur=305., npoint=5 & 

&po x=30.1199,y=5.843 & 

&po x=64.46,y=1.3 & 

&po x=113.89316,y=29.42734 & 

&po x=105.89,y=48.479 & 

&po x=30.1199,y=5.843 & 

&reg mat=1, cur=-305, npoint=5 & 

&po x=20.1199,y=23.26 & 

&po x=34.46,y=58.0902 & 

&po x=83.823,y=83.853 & 

&po x=96.7,y=66.8 & 

&po x=20.1199,y=23.26 & 

! **** Coil around pole 2 **** 
&reg mat=1, cur=O, npoint=5 & 

&po x=10., y=29.006 & 

&po x=32., y=56.4 & 

&po x=32., y=114 & 

&po x=10., y=114 & 

&po x=10., y=29.006 & 

&reg mat=1, cur=O, npoint=5 & 

&po x=-10., y=29.006 & 

&po x=-10., y=114 & 

&po x=-32., y=113 & 

&po x=-32., y=56.4 & 

&po x=-10., y=29.006 & 

! **** Coil around pole 3 **** 
&reg mat=1, cur=-305, npoint=5 & 

&po x=-20.1199,y=23.26 & 

&po x=-34.46,y=58.0902 & 

&po x=-83.823,y=83.853 & 

&po x=-96.7,y=66.8 & 

&po x=-20.1199,y=23.26 & 
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&reg mat=l, cur=305., npoint=5 & 

&po x=-30.1199,y=5.843 & 

&po x=-105.89,y=48.479 & 

&po x=-113.89316,y=29.42734 & 

&po x=-64.46,y=l.3 & 

&po x=-30.1199,y=5.843 & 

! **** The Coils around pole 4 to 6 are not given **** 

With the successive use of AUTOMESH, 

LA TTICE , assigning the con values: *6 0 *21 0 0 0 0 *46 1 s , 

and POISSON, with the use of the con values: *110 5 20 1 360 1 s 

the following field coefficients are calculated. 

Table for field coefficients 

Normalization radius = 1.00000 

(Bx- iBy) = i[sum n*(An + iBn)/r * (z/r)**(n-1)] 

n n(An)/r n(Bn)/r Abs(n(Cn)/r) 

1 -5.9576E-03 -2.1400E+02 2.1400E+02 

2 1.8715E-03 -1.2124E-03 2.2299E-03 

3 -2.3717E-03 4.3609E-02 4.3674E-02 

4 2.4573E-03 2.9252E-03 3.8203E-03 

5 -1.9050E-03 3.5557E+00 3.5557E+OO 
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