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Summary

van Riel, N.A.W.; ,Algorithms for estimation of model errors and uncertainties arising in
black box system identification'

Master's Thesis, Measurement and Control group, department of Electrical Engineering, Eindhoven University of
Technology, October 1995.

To make a system behave like one would like to, a controller is needed. To design a suitable
controller, the relevant dynamics of the system have to be known, i.e. a model has to be
identified. For more complex systems, it is often easier and faster to use so called 'Black
Box' modelling (a computer algorithm calculates a model using input-output data of the
system), than to combine all kinds of physical equations. To develop good controllers it is
useful to have a certain notion of the quality of the modeis, i.e. the model error should be
known. The Measurement & Control group of the department of Electrical Engineering of
Eindhoven University of Technology was interested in an evaluation of the algorithms which
have appeared in literature about this subject. Also attempts have been made to implement
certain useful algorithms in Matlab.
In 'Black Box' identification two areas can be distinguished. The approach which is often
referred to as 'traditional', takes a stochastic problem formulation. An algorithm is presented
which specifies the model error in frequency domain for this stochastic approach. However,
this algorithm only holds for FIR models and is approximative for ARX modeis. There are
two versions, of which one is a continuous algorithm which is difficult to implement and the
other algorithm uses optimization, for which generally convergence to the true optimal result
is not guaranteed. The algorithm has been implemented in Matlab in the way it is presented
in literature. However, in this form the algorithm is not suitable for general applications.
More recent Modern (Robust) control techniques are capable of constructing 'optimal'
controllers, if an upperbound of the model error is known. A deterministic approach of
identification can be made more in agreement with this. A problem fOfffiulation of
identification is presented which yields models together with the corresponding upperbound
for the model error. For this problem several algorithms are presented, both linear and
nonlinear, which all have a two-stage structure. However these algorithms yield models of
very high order. The theoretical background has been exarnined and this approach offers good
prospects. A start has been made with the implementation of these algorithms in Matlab.

Samenvatting
Om een systeem zich te laten gedragen zoals gewenst, is er een regelaar nodig. Om een geschikte regelaar te
kunnen ontwerpen, moet de relevante dynamica van het systeem bekend zijn, m.a.w. er moet een model
geïdentificeerd worden. Voor complexere systemen is het vaak eenvoudiger en sneller om gebruik te maken van
zogenaamde 'Black Box' modellering (een computer algoritme berekent een model aan de hand van input-output
data van het systeem), dan om allerlei fysische systeemvergelijkingen aan elkaar te koppelen. Om goede regelaars
te ontwikkelen is het nuttig om enig idee over de kwaliteit van de modellen te hebben, de modelfout zou bekend
moeten zijn. De vakgroep Meet & Regeltechniek van de faculteit Elektrotechniek van de Technische Universiteit
Eindhoven was geïnteresseerd in een evaluatie van de algoritmen die in de literatuur verschenen zijn over dit
onderwerp. Ook zijn pogingen ondernomen om bepaalde nuttige algoritmen in Matlab te implementeren.



In de 'Black Box' identificatie kunnen twee stromingen onderscheiden worden. De benadering, die vaak
'traditioneel' genoemd wordt, neemt een stochastische probleem formulering. Een algoritme wordt behandeld
dat de modelfout in frequentie domein vastlegt voor deze stochastische benadering. Het nadeel is dat dit
algoritme alleen geldt voor FIR modellen en een benadering wordt toegepast voor ARX modellen. Verder zijn
er twee versies, waarvan één een continu algoritme is dat moeilijk geïmplementeerd kan worden en het andere
algoritme maakt gebruik van optimalisering, hetgeen in het algemeen niet garandeert dat het resultaat ook
daadwerkelijk optimaal is. Het algoritme is geïmplementeerd in Matlab op de manier zoals het in de literatuur
te vinden is. In deze vorm is het algoritme echter niet geschikt voor algemene toepassing.
De recentere Moderne (Robuuste) regeltechnieken kunnen in principe 'optimale' regelaars construeren, mits de
modelfout afgebakend is. Een deterministische benadering van identificatie kan hiervoor geschikter zijn. Er wordt
een probleemformulering voor identificatie behandeld die modellen oplevert samen met de bijbehorende
bovengrens voor de modelfout. Voor dit probleem worden verschillende algoritmen behandeld, zowel lineair en
niet-lineair, welke allen een twee-stadia structuur hebben. Deze algoritmen leveren echter wel modellen van erg
grote orde op. De theoretische achtergrond is bestudeerd en deze benadering biedt goede perspectieven. Er is
een eerste aanzet gegeven aan de implementatie van deze algoritmen in Matlab.



Pre/ace

Preface

In September 1991 I have started the study Electrical Engineering at Eindhoven University
of Technology. Now I am at the point of finishing this period of my life. During the study
programme I've become interested in Measurement & Control, mainly because this part of
Electrical Engineering is not specialistic. A mathematical and abstract way of looking at all
kinds of processes is developed and this insight can be used in many technical areas.
After a nice practical training with the Measurement & Control group of the faculty of
Electrical Engineering of the TUE, I have decided to do my Master' s Thesis with the same
group. After a very practical subject for my training, I have chosen a more abstract anq
theoretic project for my Master's Thesis. This report gives an account of the work I have
done in the 9 months after the start in January 1995. I hope my research and software
implementation can contribute to the knowledge about theoretical system identification within
'our' group. I would like to thank everybody who had co-operated in any way and in
particular I would like to thank my direct coach ir. L. Ariaans who has been very supporting
and has had many clarifying ideas when I was at a dead end.
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• Introduction and problem definition

1.1 A general introduction

Since man became conscious of time and noticed he had a past and there was a future, he has
taken great pains over controlling his environment and his future. In the early ages these
attempts to influence life contained a lot of magic and later on the church played a major role.
Since the Renaissance we have put an increasing amount of faith in our ratio and in the
accompanying science. After the Industrial Revolution, when man has kept on inventing all
kinds of new machines to relieve his daily work, the importance of ways to control these
technical processes increased. First, people were the overall controllers of the processes in for
example a factory, but with the increasing complexity and increasing pays this was no longer
possible. Man started a search for technical expedient resources to ease his controlling job.
During the Mechanization period this mainly involved the development of ways to measure
things in processes. Man could use this information for better control of the process. When
the Automation started, man gave away a part of his most easy controlling tasks to technical
expedient resources, which were often electrical circuits. Nowadays processes are controlled
by electronics (read 'computers') at much higher levels and this development still goes on.
In order to develop controllers for a process some information is necessary about (the
dynamics of ) the process. In other words, the system has to be identified and has to be put
in some kind of model. The kind of model depends on the kind of controller which one wants
to implement. Another application of models is process analysis: try to predict the behaviour
of a process in certain circumstances.
One way to construct a model is to use the physical equations which belong to the
components of the process. After the equations have been determined, the system can be
represented by several interconnected boxes with equations in it. These equations describe the
transfer from an input of the box to the output. This is called 'White Box Modelling'. Of
course this model never describes the system exactly. The physical equations describe a
simplified situation and only hold under certain assumptions and conditions. For more
complex systems, this White Box Modelling is very time-consuming or even impossible.
During the last few decades a new way of system identification has been developed: 'Black
Box Identification' . The different inputs of the process are excited with some kind of (time)
signal and the outputs are measured. These data are put into a computer algorithm which
calculates a certain type of model. The resulting model has no direct relation to the physical
reality, therefore the name'Black Box Modelling'. Also these models do not completely

t~ departJïï.enf (~( Electrica/ Engineering - A1easUI'l'ment &: Contro! groLt!'
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I. Introduction mul problem dejinifioli

describe a process and have limited validity. For example the resulting models are usually
linear and of a finite (small) order although almost all processes are nonlinear and of high
order. Often a system is only identified for certain frequencies or range of frequencies and
so the model is only valid for or 'near' these working points. During measurement and
identification all kinds of noise appear which deteriorate the identification: noise in the
sensors, quantization errors in the computer algorithms etc.

Reduction in uncertainty is the primary role of system identification in control system design.
This can be done by using more accurate modelling techniques (such as non-linear modeis),
or by determination of the quality of the limited model. What are the errors with a certain
input, in which frequency ranges are these errors small and where large etc.? This information
can be used to develop controllers, especially Modern / Robust controllers. So this idea
matches the framework and assumptions underlying Modern Robust control design techniques
(Control Oriented System Identification methods). Robust controllers can, at least in principle,
achieve a better performance than more classical controllers by making explicit use of prior
information about the model error. It is useful if, besides verification of the model with the
true system, also mathematical methods for the determination of model errors and
uncertainties are available.

Two approaches of Black Box identification can be distinguished. The 'traditional' approach
is to assume that the system can be described by one single model, so the system is in the
set of models which is considered. The noise is not fixed, but is described as a stochastic
quantity. This is why this is called a stochastic approach of system identification. Ljung is
the name which is most often associated with the stochastic identification. See [Ljung 87] and
also [Stochastische Systeemtheorie].
All other identification methods, which do not use the stochastic setting are called
deterministic. The resulting models are usually non-parametric and often of high order. Most
recent developments in system identification methods concentrate on deterministic approaches
which are strongly related to Robust control in the way that these algorithms yield models
with an upperbound for the model error.

t~ deparEm,ent (~"Elf.'c!ri<:al Enginr:ering - Alr:asu!'cmr:nt & Control gruup
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J. Jntroáuction mul prohlem dtfinition

1.2 Problem definition of the Master's Thesis

Early attempts to attach a quality tag to the traditional, parametric models (see chapter 3) are
described in for example [Stochastische Systeemtheorie]. These are all validation techniques
which are based on the attempt to show that the model is invalid. These do not yield actual
error functions or bounds and are therefore not suitable for Robust controller synthesis.
From the end of the 80's articles began to appear about methods to estimate model errors and
uncertainties. This is likely to be an important development for the near future of
Measurement & Control science and so in the Measurement & Control group of the
department of Electrical Engineering of Eindhoven University of Technology an interest has
grown in these algorithms. The people in this group who deal with theoretical system
identification would like to have an overview of the literature and an evaluation of the
corresponding algorithms to know if these could be useful in practice and to compare them
with their own work. This became the problem definition of this Master' s Thesis.

The goal of this Master' s Thesis is:

To collect different algorithms for the estimation of model errors and uncertainties
from literature, to evaluate these algorithms and to implement the suitable methods
in the mathematical software package Matlab.

This report concentrates on a stochastic approach which is based on the algorithms of
Goodwin & Salgado [Goodwin 89] and Goodwin & Ninness [Goodwin 92]. Starting with the
available stochastic identification techniques, which were not developed with the idea to have
the model error available, an attempt is made to find expressions for the model error in
frequency domain. This approach will be treated in chapter 2 and 3.
Deterministic algorithms which identify a model and simultaneously determine the worst case
model error are based on the problem formulation of Helmicki, Jacobson & Nett. Algorithms
for this approach can be found in [Helmicki 90a], [Helmicki 90b], [Helmicki 91], [Gu 92],
[Mäkilä 92], [Akçay 93] and [Jacobson 93]. This type of algorithm will come up for
discussion in chapter 6 and 7.
These two different approaches are implemented in Matlab. For the algorithms of Goodwin
this appears to be quite troublesome. This implementation is discussed in chapter 4. Some
notes on the implementation of the deterministic algorithms can be found in chapter 7. In
chapter 5 the implemented algorithms of Goodwin will be tested in some examples, among
other things with a simulation of a practical process. Final1y, chapter 8 contains the
conclusions and recommendations for further research.

t~ depurtmell1 (?{Elcctrical EnginC'ering - Aleasurcmu:t & Control groltf.'
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Notation and definitions for a stochastic
• embedding

2.1 Notation

N: the number of uniformly spaeed experimental data samples in time domain (N is finite)
R., C, Z: the sets of real and complex numbers and integers respectively
Z+:= {k E Z: k > Ol. the positive integers
Co: space of n dimensional complex vectors
C_o: normed space given by Co together with the norm IlfL:= maxkIfkI
Co+: complex numbers of which the real part is bigger than some real number cr (Re(s) > cr)

An asterisk as superscript nwith a vector or matrix denotes conjugate, the superscript T (T)
denotes transposed and ·T means conjugate transposed.
g'{ .} denotes expectation.
The covariance function of a certain quantity or function X(ro) is cov{X(rol ,ro2) } :=
g'{X(rol)X(ro2)"}, a scalar function.

Pt is the derivative operator in time domain. So p~x(t) is the k-th derivative of x with respect
to 1. P'(Pt) is a vector of derivative operators Pt from the k-th derivative operator down to the
O-th order derivative operator. When this vector is transformed to the frequency space with
the Fourier transform then pkUro) is a vector of decreasing powers of jro.

2.2 The identification and control environment

2.2.1 Class of systems under consideration
The class of systems to which the unknown system will be assumed to belong is the class of
stabie, SISO (Single Input Single Output), LTI (Linear Time Invariant) and causa1 systems.
Remark: in literature often Linear Shift Invariant (LSI) is used which is said to be a little
more general than LTI, but often a good definition of LSI lacks.

tlij department ol Electrical Engincering - Mcusurel1lcnt &. Contl'Ol gl'Oup
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2. Notation mul definitions j()r a stoc!wstic I!lIlbedding

2.2.2 Transfer function
In the time domain the system is described by the convolution y =g*u, i.e.

y(k) = L g(l)u(k-l)
1=0

where y(k) is the system output, u(k) is the input and g(k) is the impulse response of the true
system.

Often the q operator is used instead of the Z-transform:
the forward shift operator q by qu(k) =u(k+1) and

the backward shift operator q-l by q.lu(k) =u(k-1).
This is done since the class of systems which is considered in literature is often 'Lsr and the
Z-transform is defined for LTI. In the embedding as presented here, there is no difference.
With this, the convolution can be rewritten as

The corresponding transfer function is

G(q) = L g(l)q-I
1=0

(1=0,1,...).

In the 'shift-operator domain' this convolution becomes a multiplication: Y(q) =G(q)U(q).
The frequency-domain equivalent of the transfer function G(q) is the frequency function and
it is obtained by replacing q by eiro

•

•

e(k)

H(q)

1---. y(k)

2.2.3 The output of the true system
It is assumed that the observed data are generated
by a system with a Finite Impulse Response (FIR)
model structure:
Yk =GT(q)Uk + H(q)ek =GT(q)Uk + vk (2.1).
The noise filter H(q) is a rational transfer function
and is assumed to be strictly stabie (no poles in
Iq I ~ 1). This also holds for the true system, but u(k) - ..... Gy(q]) I---+~
this is trivial since GT(q) can be described by a figure 2.1: The true system

FIR.
This model structure is visualised in figure 2.1.
The stochastic embedding of the system identification appears in two ways:
- the noise ek is described as a stochastic process; it is assumed that ek is Zero Mean White

tlij depal'tment of Eiectl'iuÛ Engineering - ,HeasurenU}nr &. Control groUfJ
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2. Notation mul definitions .fór (J. stoclwstic emlJedding

Noise (ZMWN), independent of input Uk and so by filtering with H the output noise Vk is
coloured;
- also the true system GT is assumed to be aspecific realisation of a stochastic process,
described by the input-output data; this is a renewal of the 'traditional' approach of
identification.
Remark: - Zero Mean means Z{ed = 0 and White means Z{ eke)T} = 0 if k ::t 1 and

Z{eke)T} =~ if k =1.

tlij deparlment of Electrical EngÜle(-ring - Meusurenu:nt &. Contml gmup
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Model errors in the stochastic approach of
• system identification

In this chapter algorithms will be derived for computation of model errors which arise in so
called parametrie identification in a stochastic approach of system identification. The
background of this stochastic parametric identification can be found in [Ljung 87] and
[Stochastische Systeemtheorie]. The identification algorithms use a prediction model: calculate
a future output of an (initial) model and compare this with the actual output. A minimization
problem has to be solved: a model structure is chosen and the parameters in the structure are
obtained by minimizing a Cost Function, which is a function of the prediction error (the
difference between the true and the estimated output). This error has to be small for a good
model (i.e. the cost function is smalI). The resulting model is a Transfer Function or a State
Space description. These model types are currently still the most widely used and give good
and fast insights in the system dynamics. The model order can be predefined, but also
algorithms are available that compute the optimal model order.
In the articles [Goodwin 89] and [Goodwin 92] Goodwin et alii plead for a stochastic prior
model for the distribution of unmodelled dynamics. They state that previous results on error
estimation in the late 80's have relied upon prior assumptions about the noise (a known
distribution or a known hard bound) and of assumed prior magnitude and smoothness bounds
on the unmodelled dynamics. This was done in the form of parameterized bounding functions.
The hard bounding approach leads to overly conservative error bounds. A stochastic approach
of undermodelling errors is consistent with the stochastic prior description of the noise.
Hereby the conservatism will be avoided. The resulting frequency-domain bounds are
confidence regions.
For example, a typical hard-bound prior assumption on the unmodelled dynamics is that the
magnitude of it's impulse response is bounded by a first-order exponential aÀk

, while a
typical stochastic prior assumption is that the variance of the unmodelled dynamics is
bounded by aÀk

• It will be shown that the parameters a and À do not need to be a priori
known. Only the structure of the undermodelling has to be chosen a priori and the parameters
can be estimated from the data, using a maximum likelihood technique. Only the structure of
a parameterized probability density function (PDF) has to be chosen for the prior assumptions
and not the values of the parameters. The requirement on prior information is thus reduced
from a quantitative one to a qualitative one. The precise form of the pdf for the
undermodelling does not appear to be essential, the undermodelling only has to be stabIe.

The errors in the estimated transfer functions have two components: the varianee error,

t~ depurtniellt {f Electrical EHgineering - Aleasurement & Control grou!,
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3..Model errors in a stochastic approach of ,~:j'stelll identijilyttion

caused by the noise in the data and the bias error. caused by undermodelling. A classical tooI
for the computation of variance errors is the eramer-Rao lower bound. In the case of exact
model structure. which means in our case that the true process can be modelled by a FIR (see
the assumptions of §2.2.3). this tooI produces the smallest possible variance error expressions.
However with the (practical) restricted complexity models the classical Cramer-Rao
expression does not apply. The bias error is, in the case of noiseless data, a trivial problem.
One can estimate as many parameters of a FIR model as there are data points N. If N is large
enough, such a high-order model can be as close as possible to the true (linear) system. So
if a low-order model is extracted for control design purpose, the exact bias can be computed.
The case of a finite set of noisy data is more difficult. (If the noise is ZMWN, uncorrelated
with the input then asymptotically the same argument applies as in the noiseless case since
the noise is averaged out.)

3.1 Model estimation using Least Squares

It is assumed that the observed data are generated by the system with a FIR model structure
(2.1)
One of the Prediction error methods is the Least Squares method. To prevent positive and
negative prediction errors from cancelling out, the square of the errors is taken in the Cost
Function. The parameter vector for the prediction of output Yk is 8 = [So ...., Sp_I]' 8 E R.p.
so P is the number of unknown parameters. 8 0 is the vector of the nominal / true parameters
for which the model describes the system exactly. The optimal solution of the parameters éN
is estimated from the data [Uk' Yk] via the Classical Least-Squares:

N
A 1~ 2
eN = argmin - LJ €k(e) .

e Nk=l

The prediction error Ek(E» =Yk • Yk(E» is also called the residual error. The estimation with
N data samples is denoted by the hat 1\ and the subscript N. Minirnization of the square of
the errors is in fact rninirnization of the energy in the residues. This also means that in Least
Squares estimation large errors get a larger weight than small errors.
The output can be rewritten as: Yk =Yk+Ek = GN(q)Uk+ Ek with GN(e-jw.éN) the estimated
model.

The true transfer function GT( e-jW) is assumed to be a stochastic process. It can be decomposed
as:

GT is the sum of the nomina1/prior model Go and the prior residual error model Gö,o .
g'{ GT(e-jW)} =Go(e-jw•8 0), so Gö.o(e-jW) is a zero mean stochastic process.

t~ department (~f Electricai Engineering - A1easurement &: Control group
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3. Model errors ;n a stochastic approach ()f sysleJll identdïcation

After model estimation, using least squares, the true transfer function can be decomposed as:

This i~ the sum of the finall estimated model <JN and the posteriori residual error model
<JI!,N' The parameter estimation algorithm maps the a priori information G6,O into a posteriori
modelling error <JI!,N' The key feature of the procedure is the quantification of the expected
value of I<JI!,N 1

2 as a function of the properties of GI!,o'

The prior residual error model G6,O(q) is the stochastic embedding model with probability
density function (PDP) fl!(Gó,o, P) where P is a rea! vector parametrizing the PDF. The
structure of the PDP has to be specified a priori and, in the end also a value for Phas to be
substituted. Since G6,O is zero mean, the value Pof fl! affects only the second and higher
order properties of GI!,o' So specifying Pdoes not amount to estimating <JI!.N' but to the likely
class of <JI!,N' By using this class description the expected effect of the modelling error can
be evaluated without the need to specify a particular realisation of G6,O' (Remark: the PDP
does not need to be uniform.)

The stochastic embedding of the undermodelling G6,O can he imposed in two ways: by
specifying a prior probability distribution for the frequency function GI!.o(e-jOl

) or for the
impulse response sequence {Tld of GI!,o(q).
Note that within the stochastic embedding paradigm lies the class of hard bounding solutions:
specify fl!(GI!,o, P) with compact support, i.e. at a closed and bounded interval the PDP of the
stochastic embedding model fl! '# O.

It is assumed that the undermodelling transfer function G6,O(q) can be approximated
sufficiently closely by a FIR model (a linear regression model) of order L :5 N. So the
residual error becomes:

e(k) = t ~(l)u(k-l) + .(k) = [t ~(l)q-'f(k) + .(k),

where TI(k) is the finite impulse response of the undermodelling I stochastic embedding
model and eek) is ZMWN.

The transfer function is:
L

G!:J.,o(q) = L 1') (l)q -I.
1=1

Let fv(vk, y) be the PDP of the (coloured) noise which is parameterized by the rea! vector y.
The form and the parameterization of this PDP have to be specified. Por example take a

tlij dep(Jrtment (~( Electrical Engineering - A1easurement & Control grot/p
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(3.1)
unknown coloured noise uncorrelated with the input;
the regression vector with respect to the (nominal) model, a
(column) vector of length p.
a known function of the input signals, some kind of regression
vector with respect to the undermodelling.

3.."'1odel errors in a stochastic approach <?f system identijiCiltion

Gaussian distribution with expectation 0 and variance cr}: Vk - N(O, cr}).

The system equation (2.1) can be rewritten in regressionform linear in e by using Taylor's
theorem:
Yk = <PkTeO + 'JIkTT\ + Vk

with V k = H(q)ek

<Pk

WI Uo ... UN- 1

Then 'P = =

WN U1- L
... UN-L

a known Hankel matrix (the connection

yT= [YI , ,yN]

VT= [VI' ,VNJ

between inputs in the past and future outputs);
a known Nxp matrix; q,Te is the projection of y to the columns
of q,T;

the measured output;
the form of the PDF of the noise is a priori chosen, but the
parameters y are unknown;

If the model has a FIR or ARX structure then only the transfer function GT is estimated and
the minimum of the Cost Function is the place where the gradient of the Cost Function is 0
and can be found by solving a set of linear equations, the Normal Equations (see for example
[Stochastische Systeemtheorie]). The optimal solution éN becomes éN =(q,Tq,r1q,Ty =
()Y (3.2)
Q is a known function of the signals (time domain). This Least Squares solution is linear in
e and the algorithm is fast. If also the noise transfer function H is estimated (for example
ARMAX, output Error and Box-Jenkins modeis), then the Least Squares problem is no longer
linear in e and a time-consuming iterative search process is started.

In general the true parameters of a process can never be found, but there is a bias.
Substituting the system equation in regression form for y, the optimal solution can be written
as

tlij departlill.mt (~( Electrical Engineering - Aleasurement & Controf grou/,
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3. Mode! errors in a stochastic approach of system identijication

It is clear that the parameter estimate is unbiased if the second part of the right hand side is
O. In [Stochastische Systeemtheorie] the conditions for this are given, but these conditions are
never met in practical identification, because in general the system is not in the modelset. The
Least Squares Estimate exists if 1/N<I>T<I>, which is cov {<I>} for N -7 00, is invertible.

Remark: Rewrite (3.1) as Yk =<l>kTE>O+Eo. The undermodelling and noise are replaced by the
true (nominal) value of the residues.
Multiplication of the expression for the nominal residues, with Q results in:

Qeo =QY-Q<I>E>o =éN-E>O =e, because Q<I> = (<I>T<I>r1<l>T<I> =I.
So the difference between the estimated parameter vector and the nominal one can be
expressed by the product of the nominal residues and the matrix Q, which resulted from the
Least Squares. Since we are interested in this difference this is a promising notion and it will
reappear later on in paragraph 3.3.
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3.2 A prior PDF for the impulse response of the undermodelling

The algorithm which is based on a prior PDF for the impulse response 11 of the
undermodelling fits properly to the environment of paragraph 3.1. This algorithm is presented
in [Goodwin 92]. As described in paragraph 3.1, the structure of the probability density

functions of the undermodelling fiGd,o'~) and of the noise fivk;Y) have to be chosen a priori.
In §3.2.2. it will be shown that, in case of a PDF for the impulse response, the parameters ~

can be estimated from the data. With this algorithm one can also try to estimate the noise

parameters "(. This often works, but it will not always converge.

3.2.1 The structure of the model error
It has been assumed that the undermodelling error model Gd,o(q-') can be approximated by
an L-th order FIR model so the transfer function in the frequency domain is

L

G t:.,o<ejW ) = L Tl (l)e -jw/. This is in fact almost the Discrete Fourier Transform (DFT) of
1=1

11. In the DFT the unit circle in the complex plane is run through exactly one time. This is
in general not the case with this expression for Gd.O' dependent on the values of (0 and L. The
stochastic embedding model can be written as Gd,o(é Ol) =Tl(e-jOl)11,
with II(e-jOl) = re-jOl, ... , e-jOlL] something like the DFT operator, a known function of

(0

and 11T= [11" ... ,11d the finite impulse response 11k of the stochastic
embedding model.

Remark: because TI is not exactly the DFf operator, the multiplication of TI and 11 can not be
replaced by the Fourier transform of 11.
By introduction of TI tractable expressions for the second order properties of GM are obtained.

For the nominal model it is assumed that the parametrization is a mapping to rational transfer
function G(q,8) with a fixed denominator (only the numerator is parametrized by 8) and so
the transfer function is parametrized linearly in 8.
Then the nominal model can be written as Go(e-jOl, 8 0) = A(é~80
where A(e-jOl) = [A,(e-jOl), ... , Ap(e-jOl)]. A is a known function of (0.

The nominal model looks like the expression:

6
1
+6

2
q-l+... +6 q-(P-l)

G (q,e) = p
o a +a q -1 + +a q -(r-l)

1 2 ... r

tli,1 (fcpIJrmwnt (~( Electrica! Engineering - A1easufcmellt & Control group

(3.3)

15



3. ;P'1odel errors in a stochastic approach of sysrelll identificatioll

and e -ljlJ)
Al(e -jIJ))

a +a e -jIJ) + + a e -(r-llilJ)
1 2 ... r

(fOT I = O,...,p-l).

Now the problem arises how to choose or determine the coefficients ~ of the denominator.
This is the tricky part of this algorithm. In the examples of [Goodwin 92] they 'overcome'
this problem by using adenominator with fixed coefficients which are determined by
Laguerre interpolation. This Laguerre interpolation is known to give good low-order
approximations to higher-order systems, but for this they use prior knowledge about the poles
and zero's of the true system. This is a lot of extra prior knowiedge. As a more practical
solution, it will be suggested to use the standard ARX identification procedures and then use
the resulting denominators in the error algorithm. In fact then a lot of faith is put into the
quality of the denominator. (See chapter 4 on the implementation in Matlab.)

Remarks: - if 1=0 is excluded, then there is no direct feedthrough in the model;
- in this case it is clear what p means, p-1 is the order of the numerator of the
nominal model;
- here the order of the denominator (and therefore the order of the model) is
equal to r; (in the Matlab 'System Identification' tooibox polynomials in q are
used and the order of the numerator is required to be smaller or equal to the
order of the denominator so if (3.3) is implemented in Matlab in the q domain
then p ~ r).

The covariance of the difference between the estimated parameter vector and the nominal
(true) vector is cov(éN-8o) = g'{ (éN-8o)(éN-8o)T} (since 8 is real 8*T = 8 T). It is
straightforward how this can be written, by substituting the system equation in regression
form (3.1) for Y in the optimal solution of the least squares problem (3.2).

(éN-8o)(éN-8ol = Q(Y-cI>8o)(Y-cI>8o)TQT = Q(cI>8o+'P11+V-cI>8o) (8ocI>+11'P+V-cI>8olQT=
= Q('P1111T'PT + 'P11VT + V11T'PT + VVT )QT.

When taking the estimation, then g"{'P11kVd is 0 since {11k} is assumed independent of {vk}.
For the covariance the following remains: cov(éN-8o) = Q('Pg"{1111T}~+g"{VVT} )Q.
cov(éN - 8 0) = (cI>TcI>)"tcI>T('PCn'PT + Cv)cI>(cI>TcI»-t

where Cn = g"{ 1111T}, the covariance of the stochastic embedding impulse response;
Cv = g"{ VVT}, the covariance of the noise.

Prior assumptions on the likely nature of the undermodelling can thus be translated into
probable influences on éN'
The goal is to calculate the covariance of the parameter vector cov{éN} and hence the
covariance of the total error cov{GT( q) - ÓN(q,éN)}.

t~ depurtm.ent (!t' Electricai Engineerin,ii - AleasW"ement & Control graal'
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Ljung showed that for an impulse response of the undermodelling 11 = 0 under weak
conditions the parameter vector éN ~ E>. where

N

e. = argmin -.!..L ~ {ei(E»}·
e Nk=l

The estimation of the squared error is taken.

Theorem 3.1 a: The total error GT(e·jlJl) • GN(e·jlJl,éN) =
=GT(e·jlJl) - G(e'jlJl,E>.) + G(e·jlJl,E>.) - ÓN(e'jlJl,éN) =
= (TI • AQ'P)11 • AQV

consists of:
- noise / varianee error G(e·jlJl,E>.) - ÓN(e·jlJl,éN) = AQV;

- a bias / undermodelling error GT(élJl) - G(e'jlJl,E>.) = (TI - AQ'P)11.

The noise error is a random variabie (vanishes when there is no noise or when the number
of data tends to infinity). In classical identification theory the undermodelling error is a
deterministic quantity, but now, with the stochastic embedding model it becomes also a
random variabie. In this undermodelling error:

TI11 = GM , the prior estimate of the undermodelling; the true
undermodelling;

AQ'P11 is a data-induced error (and not a correction like Goodwin e.a. write)
to the prior estimate due to the shift from E>o to éN which arises in the
Least Squares procedure.

The model error is a linear combination of two independent random vectors 11 and V.

ProoI' GT(e·jlJl) = AE>o+TI11 and
ÓN(e'jlJl,éN) = AéN so

GT(e'jlJl) - ÓN(e'jlJl,éN) =A(E>o-éN) + TI11·
Using the optimal solution and substituting the system equation for Y gives

E>o-éN=E>o-QY =E>o-Q(<I>E>o+'P11+V) =-Q'P11-QV (remark: -Q<I>E>o = -E>o).
Finally substituting this in the error equation gives the theorem.

o

Theorem 3.1b: The mean square error follows by the definition of the covariance:

g'{ I GN(e·jlJl,éN) • GT(e·jlJl) 12
} = (TI • AQ'P)Cll (TI • AQ'P)T· + AQCvQTAT* =

= IICllTIT* - TICll(AQ'Pf* - AQ'PCllTIT• + AQ'PCll(AQ'Pf* + AQCvQTAT·.

All the quantities are known except for the covariances ~ and Cv which are a priori chosen
functions of the unknown parameter vectors ~ and y. If these parameters are available or can
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3. Model errors in a stochastic approach of sY,Hem identijicatiol1

be estimated from the data, then computable estimates of the mean square error of the
estimated transfer functions are obtained.
Note: 11* is something like the inverse DFf operation.

3.2.2 Estimation of the parameters of the noise and undermodelling
The residuals E perform a projection of y on the orthoplement Pof <I>. With Q from the Least
Squares algorithm the residuals can be written as:

E = y-Y=y - <I>êN = [I - <I>(<I>T<I>r 1<I>T]y = PY.
Since the total space has dimension N and the parameter vector 8 has dimension p, the
regression vector <I> has at most rank p. So the orthoplement P has at least rank N-p. The
residuals are overdetermined and so E has an (unwanted) singular distribution. To obtain a
new Jul! rank data vector W, Eis represented in a new coordinate system. This system forms
a basis for the space orthogonal to the columns of <I>. Let R be any matrix whose columns
span the subspace orthogonal to the columns of <I>. One way of constructing R is to take any
N-p independent linear combination of the columns of P.
Then W = RTE and by writing the residuals E with the expression derived above
W = RT(y_Y) = RT[I - <I>(<I>T<I>r'<I>T]y = RTy (3.4).

This is because R is orthogonal to <I>.
Writing E with the system equation in regression form W = RT(Y-Y) = RT(<I>80+'P11+Y-<I>8 0)

= RT'P11 + RTy. So W is the sum of two independent random vectors 11 and Y whose
probability functions are computable functions of the unknown parameters. W is a function
of the input signal u (RTand '11 depend on the input signal only) and the unknown covariance
parameters I; = [~, y]. W has a nonsingular distribution. W E RN-p and depends only on

11P+l, ••• ,11N' i.e. that part of the infinite impulse response that is included in the nominal model
is eliminated from the data W.
The corresponding likelihood function is denoted by CJ.(W I U, 1;),

which has to be maximized for 1;: ~ = argmaxiCJ.(WI U, ~)}.
~

Maximizing this likelihood function yields indeed the desired estimate for the unknown
parameters ~ of the stochastic embedding model, but unfortunately it is not guaranteed that
the parameters y of the noise can be estimated.
The parameters I; can then be substituted in theorem 3.1b of §3.2.1 and the estimation of the
model error results.
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3.2.3 Case of a Gaussian embedding
Assume that the impulse response 11 of the stochastic embedding model (dimension L) has

a Gaussian I Normal distribution 11 - N( IJ. ,a~):

1---e
(J11{5

_ {11-J.l)2
2

20'1

with expectation IJ. = 0 because g'fGA,o} = 0 and standard deviation all (variance a~).

Assume that the variance of the undermodelling is bounded by a flrst order exponetial, so the
covariance (LxL) matrix becomes Cll = diag {aAk} (l:5k~),

a and A are unknown. So 11-N(O, Cll(~»'

Use also a zero mean Gaussian distribution for the output noise: vk-N(O,a}) (a} is unknown).
The covariance of the noise is Cv =av21, a NxN matrix.
The input noise is independent of 11.
Without loss of generality the order L of the FIR model can be taken equal to the number of
data samples N (N=L). In this case regression vector <P contains shifted versions of the input:

eI> = and 'P =

So in this case the parameters of the PDF of the undermodelling error model are W= [a,A]
and the vector of all unknown parameters is ST =' [~, a}]. The matrix R, whose columns span
the subspace orthogonal to the columns of <P, can be constructed by the last N-p columns of

\}I: R =

u···N-p-l

and the new data vector W (with a non-singular distribution) is: W = RTy.
The Gaussian assumptions on the distributions fA and fvgive a log likelihood function for the
observed data:

Q(W I U, S) =- Y2In(det(L» - Y2WTL-1W + constant (3.5)
where L =RT\}ICll \}ITR + a}RTR.

So the unknown parameters can "be found from
ç = argmax {Q(W I U, ç)},

~
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3. Mode! errors in a stochastic approach <?f syste1ll identijicatioll

3.2.4 Cramer-Rao lower bounds
The covarianee of an unbiased estimate ç of ç is bounded below by the Cramer-Rao lower
bound: cov{ç} ~ M~-l t::. cov{ç}.
Where M~-l is the Fisher information matrix. cov is often a good guide to the covarianee of
estimators which are not actually unbiased. For the case of Gaussian assumptions, an explicit
expression for the information matrix can be computed:

where

M~

tr{CE -11i}

= 1. tr{~ -1~ -IJ(}
2

tr{~ -1~ -1L\}

tr{~ -1~ -IJ(}

tr{(~ -1K)2}

tr{~ -1Ia -1 L\}

a~

aa

tr{~-I~-IL\}

tr{~ -1Ia -1L\}

tr{(~ -1 L\ i}

= aCTI

aa and E = diag(a,2a).., ...,La)..L-l) =

See [Goodwin 92] for the proof of these expressions.
The availability of M~ and the simple form of the likelihood function ~ in the case of
Gaussian embedding is a motivation to use the Gaussian assumption.

In case of the situation as described above the unbiased estimate ç of ç has the following
asymptotic properties:

and

The maximization problem is convex. The estimate ov2, is asymptotically decoupled from the
estimates a and A.. The proof of this can be found in [Goodwin 92]. This is significant since
it shows that the varianee of the estimates decays with increasing data length and therefore
it can be expected that the estimates converge to their true values.
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3.3 A prior PDF for tbe frequency function of tbe undermodelling

Here the algorithm according to [Goodwin 89] is presented. This algorithm is in the
continuous time and frequency domain. This has the advantage that analytical solutions can
be computed for the most simple cases. Unfortunately the implementation in Matlab will be
more difficult (see chapter 4). Only the undermodelling error is regarded (no noise). Not only
the structure of the Probability Density Function of the undermodelling frequency function
is specified a priori, but also the parameters of the error function are specified prior to the
identification experiment. As aresuit, the embedding of this paragraph is a little bit different
from the description of §3.1.

figure 3.2: ARX model structure

y(k)

eek)

+

1/A(q])

B(q)/A(q)
u(k)

3.3.1 A nominal ARX model
GT(s) = Go(s) + Gis), in this case Gis) only
contains the undermodelling error.
For the nominal model an ARX structure is assumed,
of which the block scheme can be seen in figure 3.2.
However in this setting noise is left out so then
remains:
G(S, jro) = B(S, s)/A(S, s) with

B(S, s) =bmsm+ bm_1sm-1+ ... + bo;
A(S, s) = sn + ~_ISn-l + .., + aa.
ST =[bm, bm_l ' ... , bo, ~-l , ... ,aa], the parameter vector.

The residuals E, represent the undermodelling error, related to u(t) by Gr"o. A linear
regression form of the system equation is obtained by using Taylor's theorem: y(t) =<l>(t?So
+ E(t).
Now the regression vector is <l>(tl = [u(m)(t), ...,u(t), y(n-l)(t), ... , y(t)], where (m) denotes the m­
th derivative. mand n are the orders of the B and A polynomials respectively of the chosen
nominal model.
The solution is (see also (3.2)):

[

T ]-1 T T
éN = QY = 1. f<j>(t)<j>T(t)dt 1. f<j>(t)y(t)dt = p1. f<j>(t)y(t)dt

T o T o T o

with
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(Note that the factor 1!T is included in the inverse operation.)
Then the difference between the final parameter vector and the nominal estimations of the

parameters becomes:

Again 11Ct) is the impulse response of the undermodelling. This is in agreement with the
remark at the end of paragraph 3.1 because here 11(t) = E(t).
The stochastic embedding of the undermodelling model Gd is introduced by a PDP for the
frequency function of Gd in the form of a parametrized covariance function coV{Gd(C01 ,coz)}

= g'{ IGdlz}.

Theorem 3.2: The difference between the true system transfer function and the optimal/final
estimated one, satisfies:

with g'{ IGd,O IZ} =cov{Gd,OC COl ,~)}, the prior estimate of the undermodelling error

and

Proof" A real proof of theorem 3.2 will not be given here. Por the proof the reader is referred
to [Goodwin 89]. Here only a short elucidation is given.
The nominal model can be approximated by a first order Taylor approximation of the
estimated model:

If the term ÁNIAa in some way becomes equal to 1 (the estimated coefficients of A(s)
are equal to the nominal ones), then the model, which originally had an ARX
structure, becomes parametrized linearly in e.

o
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3.3.2 G~o a wide-sense stationary process and <l> a function of only exogenous variables
If a nominal FIR model without output noise is used ae(k)
(see figure 3.3), then the regression vector is only a

function of the input. In the theorem 3.2 the following u(k) ~I B(OJ) I ~+ ~)
simplifications can be used: . .

the term ANIAa is equal to unity and so the figure 3.3: FlR model structure

result is not a function of the unknown nominal
model;
the error E(t) is a linear function of the system input and of the unmodelled dynamics
and hence not a function of the unknown nominal model;

where pm(PI) has been defined in §2.1 as the

vector of derivative operators PI in decreasing order in time domain and prn(joo) is the
transformation to the frequency domain; it is a known function of frequency.

If the frequency domain process 0.6,0 is a wide-sense stationary process, then the covariance
function cov{ 0.6,0(OO1,oo2)} will depend only on the difference in frequency OOl-~' For this

cov{G~,O(<.)l' <.)2)} = coV{G~,O(<.)1-<.)2)}·

Define

(p>O)
(3.6).

The real part is an even function and the
imaginary part an odd function of the
difference doo, as can be seen in figure 3.4
for CJ0

2 =P= 10.

For the corresponding time domain impulse
response 11 of the undermodelling cov{11} =
CJ

0
2e-/iI•

So then in theorem 3.2

component.

real part ollhe covariance tunetion

0.8

0.6

0.4

0.2

-~':---'-1'::-5 ---1-:-:-0--+L-=-5-~0----':5--\1---:"1':-0-~1'::-5---='20

imaginary part of Ihe covariance function

o

-0.5L--,'--_:':----+-':-_-'-_~::::::=:::::::::;-~
-20 -15 -10 L5 0 5 I 10 15 20

-w2_max wl_ma>E!eltaw ->

figure 3.4: The rea! and imaginary part of the covariance
function
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For the numerical implementation an additional filter D(s) will be used such that the
regression vector can be computed with integration operations. The numerical algorithms for
integrations are better than those for derivatives in which the noise is amplified. (See chapter
4.) In time domain D is a function of the derivative operator Pt and is denoted as dept).

The regression vector becomes: <j)(t)

In theorem 3.2:

Now an expression for the impulse response ,,(t) of the undermodelling (the residues eet))
has to be found. The proof of this can be found in [Goodwin 89].

00

q(tl't2) = e(t l)e(t2l =_1_JM1(a)l't2)U(a)I)*e -jCJlll Id(a) I
21t -00

, the Fourier transform

00

MI (a) l' t 2) = _l_JCOv{Gt. o((a)2,(a)I)}U( (a)2)ejCJl212d(a)2
21t '

-00

which is the inverse Fourier transform of the multiplication of the prior estimate of the
undermodelling and the Fourier transform of input u.

With the same reasoning the third term of theorem 3.2 becomes:
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00

= _1_ Jcov{GA o(W
2
,W)}U((

2
)e j

(iJ2T:2dw
2

•
21t '

-00

3.3.3 Extension to regression vectors which depend on the output
In the more general case (nominal ARX model), when the regression vector depends upon the
output, exact evaluation of~ ION-Go 1

2
} is not possible due to the auto-regressive parameters.

Now the actual estimated parameters are necessary. Areasonabie approximation can be
obtained by first performing an actual process identification, using the standard procedures,
and then using these results {ép

, A~, :A~, <l>P(t)} in the error algorithm.
A filter F(s) of order n is introduced to specify the frequency region where the algorithm has
to concentrate on. In [Stochastische Systeemtheoriel it is shown that when estimating ARX
modeis, in general the fit will be better for high frequencies than for low frequencies. This
is usually unwanted because the most interesting region is in general at the low frequencies.
To improve the estimate for low frequencies, Low Pass Filters can be used (at the cost of
lower accuracy for higher frequencies).

Then for ~ ION-GO 1
2

} the following approximations can be used:
the random variabie AiAa is again replaced by unity;
the exact transfer function D(8o,jro)Gó,o(jro) linking the undermodelling error "1(t) and

the input u(t) is approximated by

(the orders of Ap and F are the same, equal to n);

the random variabie aG T
-- I is replaced by the deterministic (numerical) value

af) 8=ê

aG T
-- I ,which has been determined in the identification experiment;

af) 8=ff

8 = [bID' ..., bo, ~-1' ... , aal with length m+n+l;
the random variabie <I>(t) is replaced by the measured vector <l>P(t) when evaluating P
and é N-8o.

These approximations are reasonable since they retain the essential linear dependence of
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g'{ IÓN-GO1
2

} on GL\,o(ro) whilst eliminating higher-order effects which arise from the
difference between <PP(t) and <P(t) and between AN• Ao and A~.

With these approximations the final error g'{ IÓL\,N j2} can be evaluated as in §3.3.1 save that
the following terms are replaced:

pmGro) by aG I =

aee=ê'

=

n A n-l AS +an_1s +... +aO

Sm-l

1

- (b~ m+bm_lSm-1 + +bJSn-l

(S n+an_1Sn-l + +aO)2

- (b~ m+bm_lSm-1 + +bJSn-2

(S n+an_1Sn-l + +ao)2

A A 1 A

-(b~m+bm_lSm- +... +bo)l

(S n+an_1Sn-l +... +ao)2

(3.7)

The quotient mIe is used. This derivative is a column vector of length m+l+n.

replace D(.) by a filtered version

and u(.) by
Ap

AN (·)
uI = --u(.);

ft·)

u = A:(.) U(.)
I F(.)

t~ dcparrmen! (~( Elec!rical Engineering - Jleasuremellt &Control groul'

26



3. Mode! errors in (J stochastic approach of sysiellt identificiition

and replace <I>(t) by 4f(t)

.Jp(t)
P(p t) _N_U(t)

= dept) f(t)
y(t)

Kl020, 112=8 ond betaa2

rem part of Ihe covariance fundion

0.2

0.3

0.1

0.2

0.4

lmaglnery part of the covartanee lunction
0.3,-----,----r----'----r---,----,---.------,-----,

0.1

~.1

figure 3.5: The real and imaginary part of the non­
stationary covarianee function

(3.8).

The real and imaginary part of the non-stationary
covariance function are plotted in figure 3.5 for ~

=2, Kl =20 and K2=8.

3.3.4 Extension to non-stationary frequency domain description
There are situations where a non-stationary frequency domain description of the modelling
error would be more appropriate than the simple stationary description. The main problem
with the stationary description is that the variance of the modelling error is independent of
frequency. However, it is usually the case that at high frequencies the true system response
decays to zero and thus the absolute modelling error should also decay. Another situation
where non-uniform frequency domain variances could be used effectively is when there are
high-frequency resonant modes which are not included in the nominal model. If the frequency
bands are known in which these resonances occur, then it is possible to allocate the
undermodelling variance accordingly.
There are many different ways in which a non-stationary covariance function can be specified.
One way is to choose cov{ G6 ,O(OOI,002)} = S(OOI-~)N(OOI+OO2)' where it is required that the
stationary factor S satisfies S(oo) = S(-oo)* and the non-stationary factor N is a real even
function of 00 to ensure that the corresponding time domain functions are real.
Remark: the stationary part in the frequency domain maps into the non-stationary part in the
time domain and vice versa (see [Goodwin 89]).
The particular covariance function which satisfies
this conditions and which has been used in the 0.5

Matlab implementation is with:

Remark: the use of non-stationary covariances
allows for smoothness of both time domain impulse response and frequency domain
smoothness (see [Goodwin 89]). S describes the envelope of the impulse response and N the
smoothness of the impulse response. This is helpful in given intuitive guidance when choosing
the parameters of the covariance.
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Implementation in Matlab

4.1 The structure of the implementation of the stochastic approach

The two algorithms of Goodwin which have been treated in the last chapter are combined in
one implementation in Matlab. The main programme file is goodwin.m and this m-file can
be called in Matlab.

4.1.1 The subroutines
The following subroutines (with a short description) are used:

GENERAL FILES:

sys_and_.m Definition of the system and the signals which will be used in case of an
internal simulation.

display.m Returns the values of parameters in the Matlab figure window after the default
values of the parameters are changed by the user. This changing is done by
sliders.

modeCes.m Estimates an ARX model of predefined order and delay with the standard
methods of the 'Identification TooIbox' and performs a simulation of the
estimated model with the input currently in use.

plot....goo.m Takes care of the plotting of the signals and quantities that have been
computed.

val.m Is called in plot....good and stores the chosen figures that have to be plotted.

ALGORITHM FILES:

goodwinl.m A second part of the initialisation for the algorithm with a prior assumption on
the undermodelling frequency function (continuous domain, see §3.3).

goodwnlb.m The actual calculation of the undermodelling error.
cova.m Computation of the covariance function of the undermodelling frequency

function. In this algorithm special care is taken to bound the covariance to a
frequency interval 0 < (0 ~ 21t in order to make it usabIe in IFFT operations.

regresl.m Computes the regression vector which is used in the Least Squares algorithm.
In this calculation a filter D(s) is included to make the algorithm numerically
better, as explained in §3.3.2.
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goodwin2.m

optimiza.m

likeli.m

goodwn2b.m

DATA FILE

data.mat

Computation of the model error (both undermodelling and noise error) with
prior assumption on the impulse response of the undermodelling error (see
§3.2).
The unknown variance parameters of the undermodelling and the noise are
estimated through maximization of a likelihood function.
The log likelihood function (3.5) which has to be maximized to estimate the
covariance parameters.
The following part of goodwin2.m, after the variance parameters have been
estimated the expectation of the model error can be computed according to
theorem 3.1b. This is done in a separate routine in order to make the use
more flexible, especially during implementation. Otherwise each time the time­
consuming optimization algorithm should have to be performed.
Computes lowerbounds for the variance parameters according to Cramer-Rao
(see §3.2.4).

Contains the input and output data (two columns) which will be loaded in case
the algorithm is used with external data.

4.1.2 An internal simulation
After the user in the Matlab prompt has typed 'goodwin' (and a <enter» a figure window
appears which describes briefly the goal of the algorithm. It is indicated that there are two
approaches and a reference is given to the articles [Goodwin 89] and [Goodwin 92]. With two
push-buttons the user can choose to perform an internal simulation or to use the algorithm for
external data. After the user has made the choice, the Matlab prompt appears again and the
user is asked to push <enter> to continue.
In case of a simulation, the true system has to be defined. As default a system is available
which looks like the one of paragraph V of [Goodwin 92]. The user can choose for an other
system of which the transfer function has to be defined in the Matlab prompt. After this, the
number of data samples and the sample frequency have to be specified. This can be done with
sliders in a figure window. The number of data points N is a power of 2 because several
times Fourier- and inverse Fourier operations are performed and with N a power of 2 this can
be done by the Fast Fourier Transform (FFT) algorithm. The default value is N =64. The
default value of the sample frequency fs is 2.5 times the frequency of the fastest pole. In order
to continue a pushbutton has to be used. An input signal with 0 mean has to be defined and
there are 3 choices: a square wave, a sinusoidal and ZMWN. After the user has made the
choice by a pushbutton, the parameters of the signals have to be specified. In case of a square
wave or a sinusoidal the signal frequency and amplitude are determined, again by a slider.
For the signal frequency fa two sliders are available, one with a range from 0 to 10Hz and
one from 0 to 1 Hz which allows to specify low frequencies more accurately. Also the
variance of the output noise which will be added, has to be entered in. In case of a ZMWN
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for input, the variances of this noise and of the output noise have to specified. Next the user
chooses the type of model which had to be estimated with a push button: a FIR or an ARX
model. In the Matlab prompt the orders of the B- and A polynomials and of the delay of the
model are put in. If an ARX model is estimated, then a (Low Pass) filter 11F(s) has to be
defined to improve the estimation in the frequency region of interest. The Bode plot of the
filter is shown and the user can accept or reject the filter and define a new one. The input and
output are filtered with this filter. After this initialisation, the nominal model is computed.
The user is asked to wait. ..
In a new figure window the user can choose to use the algorithm GOODWIN1 (a PDF for the
frequency function of the undermodelling, noise is left out and deals only in a good way with
FIR modeis) or GOODWIN2 (a PDF for the impulse response of the undermodelling, noise is
included and has been designed to deal with both FIR and ARX).

GOODWIN1: a PDF for the frequency function of the undermodelling
In case of GOODWIN1 the PDF of the undermodelling has to he specified. One can choose the
stationary description (3.6) or the non-stationary covariance function (3.8). Then the
parameters of the covariance function have to he entered. The real and imaginary parts of the
covariance are shown in a plot and the user can accept this covariance or use other values for
the parameters. It is told that a filter 1/D(s) will be used in the calculation of the regression
vector and the polynomial D(s) is shown. If an ARX model has been estimated, then the
regression vector also contains versions of the output and the input is filtered with Ao(s)lF(s)
(see §3.3.3).

The model error is computed and the user is asked to wait...
When the algorithm is finished, a new figure window appears. Here the user can indicate
which plots have to be shown:
1. A plot of the input, the estimated output and, in case of a simulation, the true output.
2. The frequency responses of both the true system (in case of a simulation) and the estimated
model.
3. A plot of the frequency function of the estimation of the model error.
4. In case of GOODWIN1 the different parts of the undermodelling error are plotted separately
and in case of GOODWIN2, the undermodelling error and the noise error are plotted separately.
5. Nyquist plots of the estimated model with error bars indicating the computed estimation
of the model error and ,in case of simulation, also of the true system.

GOODWIN2: a PDF for the impulse response of the undermodelling
The parameters of the noise and undermodelling covariances are estimated through a time­
consuming optimalization technique. However, if these parameters are available in one way
or the other, the user can indicate this and then the algorithm will be much faster. The values
of the parameters can be specified in the Matlab prompt. If the covariance parameters are not
available, then the user has to specify the initial values of the parameters which will be used
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in the first step of the optirnization. This can be done by the sliders in a figure window. A
good choice of the initial parameters speeds up the optirnization. Finally the user is asked if
the Cramer-Rao bounds have to be computed (push button).
After the initialisation the same procedure follows as with GOODWIN 1.

4.1.3 ExternaI data
In case the error algorithm has to be used with extemal data, this choice can be made in the
first figure window which appears after goodwin has been called in the Matlab prompt. The
input and corresponding output data are read automatically from a file data.mat. The length
of these vectors should be at least 4 times the number of data N for which the error algorithm
has to be performed. A few parameters for the algorithm have to be entered: the frequency
fo of the input signal (in case of ZMWN fo remains empty), the duration T of the experiment,
maximal frequency fmax for which the algorithm will be performed and the number of samples
N (preferably N is a power of 2 because then (I)FFT algorithms can be used).
After this has been done, it is asked if a model already has been estimated. If this is the case
then the transfer function has to be specified. Else the type of model (AR or ARX) has to be
chosen and the polynomial orders, the delay and the low pass filter 11F(s) have to specified.
Then the routines go on like in case of an intemal simulation.

4.1.4 Construction of the time and frequency vectors
There are several things to take into account when time and frequency vectors and related
signals are constructed in the discrete implementation. Of course Shannon's theorem
dorninates the precautions which are taken to get sensible results. If an intemal simulation is
performed in the error routines then the sample frequency is based on the highest system
frequency. If extemal data is used, it is assumed that the frequencies present, are bounded to
prevent aliasing. Signal vectors are created which are longer than the actual number of
samples N for which the error algorithm has to be performed. In calculation of the model
error only the last N samples are used to elirninate all kinds of initial conditions of systems
and filters. The sample period (time spacing tö) has to be in such a way to prevent aliasing
and the length T of the time interval has to be in such way to capture all dynamics in time
domain. The combination of these two factors determines the number of samples. However
the complexness of the algorithms and the limitation of today's pc's restricts the number of
samples for which the algorithm can be performed, in a reasonable time, to about 256. This
is often a problem in practical systems which have (very) fast and (very) slow dynamics.
Then the choice of the different parameters is a trial and error procedure. Some general
guidelines for experiment design and data conditions are given in appendix C.
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4.2 Implementation of the algorithm with a PDF for the impulse response

The Matlab implementation is of course discrete, so in the implementation the representation
of a scalar function is a vector of samples in time or frequency domain. To make a difference
between one sample and the whole vector, the vector will be underlined. The time vector!
and frequency vector CJ) are both N-dimensional row vectors, with a spacing of t~ and CJ)~

respectively.
The case of a Gaussian embedding for the algorithm with a PDF for the impulse response is
implemented (§3.2.3) because of the simple form of the log likelihood function (3.5) and the
availability of the Fisher information matrix like described in §3.2.4.
Here a few notes will be given on the implementation of the different terms of the algorithm
of paragraph 3.2.

4.2.1 Go(e·jOl, 8 0) =A(e·jOl)80

The model has to be parametrized linearly in the parameters. 0 0 only contains the parameters
of the numerator. The estimated parameters of the denominator are included in A aod so these
parameters are left out of the computation of the model error. In the implementation the
standard ARX identification procedures are used. This is a more practical solution than the
use of Laguerre polynomials such as in [Goodwin 92], but the resulting denominator is
considered to be good. In fact a lot of faith is put into the quality of the denominator. This
a disadvantage of this implementation, but it is in general a problem with this algorithm.
A is a row vector of length pand is computed for each frequency sample ~.

4.2.2 G8(e~0l) = I1(e~Ol)~

Since the frequency vector is included in a DFT operation, the frequency vector has to be in
the interval from 0 to 21t otherwise aliasing will occur.
The implementation of TI is straightforward. Mathematically TI is a row of length L, where
L is the order of the FIR model by which the undermodelling error can be approximated. In
the implementation L=N like in §3.2.3. In Matlab for each frequency sample ~ this row has
to be computed so the implemented TI is a NxN matrix.
Also the implementation of the regression vector <1>00 with shifted versions of the input is
straightforward. The regression vector with respect to the undermodelling 'P00 is constructed
as a mirrored Hankel matrix.

4.2.3 Estimation of the covariance parameters
For the maximization of the log likelihood function (3.5) the Matlab 'Optimization tooibox'
is used. A new data vector W with a non-singular distribution has to be constructed and this
cao be done according to (3.4) W = RTy, with R any N-p independent linear combination of
the columns of P, which is the orthoplement of regression vector <1>. The construction of R
and W is straightforward with the expressions of §3.2.3.
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The constant in the log likelihood function has no influence on the values of the estimated
parameters and is taken equal to O.
A good choice of the initial values of the covariance parameters l;o = [0.0, ~, ~,o] which have
to be estimated is essential for a good and fast result. This is mainly a trial and error
procedure. The optimization procedure is time-consuming and it can not be guaranteed that
the tme global maximum will be found. The algorithm can converge to a local maximum.
Furthermore, it is in general not possible to estimate the covariance parameter of the noise
'Y =~. When the parameters ç= [a, ~, cr;] are estimated then the estimation of the model
error Z1. IÓ~,N(ro) 1

2
} can be computed according to theorem 3.1band using the expressions for

the covariances of §3.2.3. In the m-file the undermodelling error is denoted with Gd! and the
noise error with Gd2.

t~ departlllcn/ of Eieetrical Enf.;ineerillg - l'ltfeasurelllent & Control group

33



4. lmplemelltation in /vTat!ab

4.3 Implementation of tbe algoritbm witb a prior PDF for tbe frequency
function

4.3.1 The routine goodwinl.m
If in the main programme file goodwin.m the error-algorithm with the PDF for the frequency
function according to [Goodwin 89] is chosen, then the m-file goodwinl.m is called. In this
m-file the notation of Goodwin is used as much as possible.
First a second part of the initialisation takes place. The process Gó is assumed to be a wide­
sense stationary process and then the PDF of the frequency function Gó is specified in the
form of a covariance function which depends only on the difference of the frequency samples.
A stationary or non-stationary description of the covariance can be chosen, as described in
chapter 3 and then the corresponding parameters have to he specified. The covariance function
is plotted as a function of LlOO =OOI-..Qh =[-OO2,max,... ,OOI,max]' OOI and..Qh are row vectors of length
N and OOI and..Qh start at a frequency of OOl) =ooma/N radJs. The frequency vectors do not start
at 0 because then 1/0 has to be computed in for example PUoo)IDUoo) and this would result
in a warning and NaN's (Not a Number) in Matlab.
In case of a nominal ARX model the parameters of the model are necessary and a filtered
input is used in the error algorithm: Ut<s) = ÁN(s)lF(s)eU(s). In case of a FIR model the
undermodelling error can be computed without the need of an estimated model.

aG T

-- I is replaced by PUoo) and no additional filter is used so Uis) =U(s).
as e=êN

Before the expectation of the model error 0Ó,N is computed, the polynomial D(s) is shown to
the user. D(s) will be used to make the computation of the regression vector more numerically
stabie, as described in §3.3.2.

In the m-files the following notation is used for the different transfer functions:
- the difference between the estimated model and the nominal model ON - Go =Gd3;
- the transfer function of the a priori modelling error G6,0 =GdO;
- the a posteriori modelling error 0 ó,N =GdN.

According to theorem 3.2, the difference between the true system transfer function and the
optimal/final estimated one, satisfies:
g'{ IOÓ,NI 2

} = g'{ IGdNI 2
} =cov{Gó,o(OO ,oo)} + g'{ ION - GOI2 } - 2Reg'{(ON - Go)G6,O*}

=cov(GdO(O» + g'{ IGd31 2
} -2Reg'{Gd3GdO*}.

So the three terms in this equation have to be computed and this is done in the m-file
goodwnlb.m.
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4.3.2 The prior estimate of the undermodelling

2
- °0cov{GdO{<..>,<..»} = coV{GdO(<..>-<..»} = -

p
, the last result only holds when the stationary

covarianee (3.6) for the undermodeUing is used. This is a de-component.

4.3.3 g'{ IGN • Go 12} = g'{ IGd312
}

The regression vector, the filter for numerical implementation inc1uded, becomes:

<lJ{k)
]

T
y.(k)

d{Pk) •

m is the order of the B polynomial (numerator) and n the order of the A polynomial
(denominator) of the model. Each element of <1> itself is a row vector of length N. The
combination of the differentiation and filter D is implemented as a filtering operation (i.e. the
derivatives are computed using a first order forward method). In the implementation the zero
mean property of the input and output signals and so of their derivatives and primitives is
used. If the mean of a signal appearing in the regression vector is not equal to zero, then this
offset is corrected. The O-th, first and second order operations go weU in practice. The results
of higher order operations deteriorate!

Define

Plek): = 4»{k)4»T{k) =

(p;UJk))2 p;uJk)uJk)

d{Pk)2 d{Pk)2

Prn
-1uft)y{k)

d{Pk)2

p;uft)Y{k)

d{Pk)2

p;y{k)uJk)

d{Pk)2

p0'{k)y®

d{Pk)2

Each entry is a row of length N so PI® is a {m+l+n)x{m+l+n)N matrix. Pis the inverse of
the matrix with integrals (summations) of each entry of the PI matrix. P is a
(m+l+n)x(m+l+n) matrix:
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p = (1 EPl(k)ÖkJ-

1

=
T k=1

Pm+l+n,1

P~,m+l+n

... Pm+l,m+l+n

This inverse operation is a risk when it's operand has a bad condition (it is almost singular).
If this occurs, the user receives a warning of this and this happens quit often in practice. (Pay
attention to the fact that also lrr is included in the inverse-operation!)

Then

IN.',,_
~ ----:-J 1 } 1 J~".:l.= - LJ coV\GdO(CJ)2-~)U(CJ)2)e

N 1=1
with CJ)~ =

21tl
(I = O, ...,N-l)

N

the Inverse Discrete Fourier Transform (IDFT) of cov{GdOC!!h-ffil)}U(Qh), where U(Qh) is the
DFT of input uQ0 for the discrete frequencies!ili . SO!!h = (0, 21t].
Remark: the superscripts denote the indices of the elements of a vector or matrix.

cov{GdO(Qh-ffil)} is a complex NxN frequency matrix of which the rows are the ffil direction
and the columns in the ~ direction. ffil will also be defined through a DFT operation (see
below) so ffil =(0, 21t]. The input frequency samples Llffi can be put into a matrix

~=

o 21t -CJ)
11

o

and for these frequencies the

covariance function is calculated.

Pay attention to the use of the DFT or FFT algorithms (and their inverses), see appendix B.
In computing Ml®l'fu) the function cov{ GdO(Qh-ffi l)} has to be limited to an interval from°to 21t over which the inverse Fourier transformation is computed. The problem is that the
covariance functions as defined in chapter 3, are not bounded. The bounding of the covariance
has been taken care of in the implementation of the covariance function in the m-file cova.m.
- By putting a window of width 21t over the covariance function and eliminating the parts of
the covariance which lie outside the window the covariance function can be bounded.
Unfortunately hereby the high frequency information is lost so the resulting IFFT is only an
approximation and this will show up in the final results.
- In the FFT algorithm of Matlab, the Fourier transform is computed for frequencies between
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oand 21t rad/s instead of between -1t and +1t, which is the usual interval for a OFf operation.
This makes no difference if the function is periodical in the frequency domain, but the
covariance function is not, so in the implementation the part of the spectrum from -1t to 0
is moved to the frequency interval [1t, 21t].
For MI the IDFf is computed for the different samples of (Ol (the rows of MI are the
frequency points and the columns are in time domain, MI is a NxN matrix). A frequency
sample of (OI(:;tO) performs a shift of c6v{GdO} over the (02-axis. So this inverse Fourier
operation for the different samples of (Ol could be regarded as moving a window of width 21t
over the covariance as function of .!!h, starting at 0 :5 ~(O :5 21t and finishing at 21t :5 ~(O :5 41t.

Remark: Theoretically / mathematically the time vectors kz and kl (kl will he defined below)
are different from each other and different from k. kz results from an IOFf operation and kl
from a OFf operation. However in the implementation the different time vectors span the
same interval as = k = kl) .

Oefine

Y(!s.)Y('s)

2-dimensional time space matrix.

P2(!s.,'s): = ~(!s.)4lT<'s) =

p;muj.!s.) uj.'s) ... p;uj.'s) uj.'s) pr"-luj.!s.)Y('s) ... p;uj.!s.)Y('s)

1 .

d(Pk)2 m
PkY(!s.) uj.'s)}'" Y(!s.)uj.'s)

and this is a (m+l+M)Nx(m+l+M)N matrix. Then finally the second term of the theorem
results:

P2QI(kI'!s) is a (m+l+n)Nx(m+l+n)N two-dimensional time matrix. After one integration a
(m+1+n)x(m+1+n)N matrix results and one time dimension has disappeared. After the second
integration a (m+1+n)x(m+1+n) matrix results. This double summation is the most time
consuming part of the algorithm GOODWINI.

For the implementation of the term aG/as expression (3.7) can be used and only the filter
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D(s) has to be added. In case of an ARX model aG/as consists of m+l+n transfer functions,
which are calculated for all frequency samples of ro. This is done with the Matlab function
'freqs' .
g'{ IGd312} is a frequency domain vector of length N.

IN. I Ir­
- 1 1 JW::2

Mi5.!l,!s):= - L cov{GdO(wz-w)}U(wz)e ~
N 1=1

the 10FT ofcov{ GdO(Qb-.m)}

@is used instead of rol like in MI) and the Fourier transform U(Qb) ofthe input u(k). M2@,,&)
is a NxN matrix in frequency and time domain (the rows are the frequency points and the
columns are in time domain).
Define

èI>1 1 1
z èI>zMz qz

qiw,!S): = èI>(!s)MiJAl,!s) = =z
èI>m+l+n èI>m+l+nM m+l+n

Z Z Z qz

Each of the m+1+n time functions / rows of <1>2 have to be multiplied by the NxN frequency­
time matrix M2 so this results in a (m+1+n)NxN matrix. From each of the m+1+n blocks
q~@,,&) with size NxN, the time integral (i.e. the integral with respect to the different rows
of each block) has to be computed:

Qi

By putting the resulting frequency samples for the different integrated blocks of q2 as rows
of Q2' this becomes a (m+l+n)xN frequency matrix.

Then the last term of the theorem is:

P is a (m+1+n)x(m+1+n) matrix so for each frequency the product of P and a column of
Qlim) is taken to form PQli!Q), a (m+1+n)xN matrix. Finally g'{ Gd3GdO*(!Q)} is a row vector
of length N.
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Now -2 times the real part of Z1Gd3GdO*} has to be taken and then the expectation of the
model error Z1IÓI1,N 1

2
} = Z1IGdN 1

2
} can be computed and plotted as a function of ro.

In case of a nominal FIR model aG/ae can be replaced by POro), a vector of decreasing
powers of s, starting with sm and ending at I =so.
In case of O-th (a constant) and I-st order AR modeIs, the expectation of the undermodelling
error can be analytically determined, as will be shown in §5.1. If the error-algorithm is used
for these models then also these analytical results will be computed and plotted as a reference.
These analytical results formed the basis of the verification of the numerical algorithms during
implementation.

4.3.5 A note on tbe use of filters wUb ARX models
The estimation of ARX models is based on a equation error criterion, which is visualised in
figure 4.1.
ÀNy - ~NU =Eo with ZMW output noise e, so the goal of the Least Square procedure is to
minimize the expectation of the energy of the equation error Eo, which comes down on
making it ZMWN.

:)(0
root 000

==> :lIAr :
: :... ~ ...

Xo

Eo
figure 4.1: The equation error algorithm

When a filter lID is added to the regression
vector, then the initial conditions Xo of the
filter also are an input of the true system, as
can be seen in figure 4.1 and these initial

y conditions will appear in the output y. The
l---r---+

initial conditions can be regarded as output
noise, which is visualised with the dotted
box and arrows in figure 4.1. This filtered
version of Xo will in general not be ZMWN.
This signal is included in the output y and
so it will also be included in the Least
Squares algorithm. When this algorithm
makes the equation error ZMWN, then

never the true system BIAT will be identified. This is a major problem when we try to make
the numerical implementation of the regression vector better by the use of a filter. However,
if the filter D is stabIe then after some time the initial conditions will have decayed. So if we
use the last N samples of a data-set which is (much) longer than N, then the effects of the
initial filter conditions will be negligible and this results in the best possibIe ARX model. This
is also the way in which it is done in the m-file regresi.m.

u
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Examples with the algorithms for model
• errors in a stochastic embedding

In this chapter the implementation of the algorithms of chapter 3 is tested in a few examples..
First the examples of the articles [Goodwin 89] and [Goodwin 92] will be used. After this,
a practical process will be regarded.

5.1 Examples of the error algorithm with FIR models

For O-th and I-st order FIR modeis, the analytical solution for the expectation of the model
error can be computed as presented in [Goodwin 89]. These results can be used as a reference
and this has been done during the implementation.

5.1.1 O-th order FIR model (m=O)
First, for a O-th order nominal model the analytical solution is derived starting from theorem
3.2.
The system consists of a simple gain together with the unmodelled dynamics, i.e. GT(jco) =
bO + G~(jco). Because the estimated model is a FIR, the undermodelling error is not a function

of the estimated parameters so ÁN = 1 and no filter F(s) is used. For the filter polynomial
Ao

in the regression vector D(s) = I is used.
With a sinusoidal input u = cos(coot) then <I>(t) = cos(coot). It is convenient that

1 aG(jCiJ) = P(jCiJ) = 1 . So then
D(jCiJ) ae

because the impulse response of the undermodelling ,,(t) is related to u(t) by the frequency
function of the undermodelling G~(jco).
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5. Examples with the algorithms for model errors in a stochastic enlbedding

So

Taking the expectation of the terms in the above equation leads to:

The stationary description (3.6) of the covarianee of the undermodelling has been substituted:

The following lemma's have been used:

5.1.2 First order FIR model (m=!)
According to [Goodwin 89] the analytical solution for a first order FIR model is:
Z{ IÓÓ•N I2} = Z{ IGó,OI 2

} + Z{ \ÓN - Go1
2

} - 2ReZ{(ÓN - Go)Gó,O*}, with

p
and
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5. EXilfnples wieh the algarft/lfns Jor model errors in a stochastic embedding

The results of the implemented algorithm will be compared with the analytical solutions of
the different terms as much as possible. The numerical versions will be denoted with a hat
1\ or with the notation which is used in the m-files and which has been introduced in
paragraph 4.3.

example 5.1 The situation like in Example 2 of [Goodwin 89] is considered:
- A first order FIR model is used and because the actual (estimated) model is not relevant,
each system can be used for the true system.
- The input is a sinusoidal signal u =cos(cook), with fo =4 Hz;
- No output noise so cr/ = 0;
- A stationary covariance function with cr0

2 = ~ = 10.
The parameters for the numerical implementation are:

- N =64;
- fs = 50 Hz;
- The final time T =N-to = 1.3 s so time vector k =[0, 1.3] s;
- The frequency vector co = [0, lO-coo] = [0, 251] rad/s.

I)

In the implementation covGdl(co) = 1, so this is right.

11) uCk) =cos(cook). Filter polynomial D(s) =s is used, which is a pure differentiator and not
strictly stabie. The regression vector <I> only contains versions of the input signal and the flrst
term

is the input itself and the second term is the primitive of the input:

tû.3 department of Electrical Engineering - Measurement & COlltrol group
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5. Examples with the algorithm5 for model errors in a stochastic embedding

COS(üJr/n

p/j;) = 4J@4J
T
(k) = -.!...sin(wokl [COS(Wokl ~oSin(W.,k)] =

üJo

~sin(üJ~)COS(üJ~)
üJo

\Sin(üJ~2
üJo

The matrix PI cao be verified, using the file pl_ana.m. Although for the primitivation and
differentiation operations only first order methods are used the 4 parts of the numerical
version of PI are in good agreement with the theoretical results as presented above.

The numerical version is not bad: A [2.3 0]
p = 0 1417.3'

Uz =cos(O)o&) =U since.k =fu aod it's Fourier transform is Uz~) =1t(O~-O)o) + O~+COo»)
where 0 denotes a Dirac pulse. .!!h =[0, 21t] = 0)1

With Maple it follows that the inverse Fourier traosform of c6v{ G.d,O~-O)I)} and Uz is
raai part of Ihe analylical solub ol MI

This function looks like the one plotted in figure 5.1 aod
cao be found in ml_ana.m.
Basically this is a eosine function in the time domain
(formed by the exponential terms in the numerators) with
an envelop in the frequency space related to the
covariance function. The rows of MI are the different
frequency points aod the columns are samples in the time
domain.

1->
o 1

<-wl

~.t
8

0.5

0.1

o 1
<-w1 1_>

inogiwy l*'oIlho anaIflicaI- oIMl

figure 5.1: Real and imaginary part of

M'C!!!I ,fu)

For the term QI the Fourier traosform of the product of
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5. Ex(unples with the algorithms for model errors in a stochastic embedding

MI@I'fu) and UI·Urol) (the Fourier transform of UI = COS(rookl» has to be computed. Since
both MI and UI· are related to a cosine function it is likely that the 2-dimensional function
QI(fu,fu) will consist of a kind of cosine function in both time dimensions.

The form of the numerical result of Matlab is in agreement with this assumption. However
the analytical amplitude of QI is 0.26 and the numerical amplitude is 1.02!
P2(fu,fu) =<l>2(fu)<l>I<kI) and consists of 4 NxN blocks in the 2 time dimensions kl and k2. The
analytical and numerical version of P2 can be viewed with p2Ql_ana.m. At first sight the
structure, period and amplitude of the numerical and analytical version of P2 are the same.
Then each block/function of P2 has to be multiplied by QI which is also a function of the 2
time dimensions:

and this remains a 2Nx2N time matrix. The m-file p2Ql_ana.m shows that each
functionlblock P2ijQlij is the product of sinusoidal functions.
Of this matrix a double integral with respect to .kl and fu has to be computed. First the
integral to .kl is taken and this results in a 2Nx2 matrix in the fu space. Finally the integral
with respect to fu of each integral-terrn/block is computed and a 2x2 matrix results. This

analytical matrix is

and the numerical version

[
.11354+.02062j .00102-.00438j]

.OO102+.00406j .OOO16-.00003j

[
0.1943+0.0787j -0.0009-0.0015J.·].

INTINTp2Ql =
0.0001 +O.OOO2j O.OOOO-O.OOOOJ

The difference between the analytical and numerical version is large.
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5. EXiunples witlt the algorithrm Jor model errors in a stochastic embedding

The second term of the theorem follows:

ZlIGtB(",) 1
2

} < (:~rP[INTlNTp2QI] p(::r<

= [1 ~][2 0] INTINTP2Qi
1

INTINTP2Qi2][2

JÜJ 0 2ÜJ~ INTINTP2Q~1 INTINTP2Q~2 0

0] 1
2 1 .

2ÜJO -.­
J$N..

ellpGd3(w). Ihe dotted Ilne ie the aNIIyticId vet8ÎOl"l g'{ IGd3@) 1
2

} is a quadratic term (dominated by the
two lijm factors). This is shown in figure 5.2. The
matrices P and INTINTp2Ql are only scalings /
coefficients and the large difference between the
analytical an numerical version of these coefficients
results in a vertical offset.

.....................................................
2"-1 ••::------------~

111) The inverse fourier transform of covGd1Q:!h-.m)
-10'---~50"---~100-W-_>I-"""-.J'-=-50----:C20~0 -----::"250 times U2C!!h) results in

figure 5.2: ~Gd312

Q2G.m) (which is not related to Ql) becomes

ÜJ~-ÜJ2+p2_2pjÜJ

1 2
-002

, this is a 2NxN

matrix.
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5. Examples with the aIgorithms for model errors in a stochastic embedding

Multiplication with P leads to:

and
(

P(jiM) JT PQ = [1 ~]PQ =
D(jiM) 2 je» 2

-2·real( expGd3xconJGdO(w) J, Ihs dotted line Is Ihs analytlcal verslonThen for .%{(ÓN-GO)G.1,o·} -2 times the real part of this
expression is taken, which in fact means that the real
part of PQ~ is taken and the imaginary part of PQ~,

multiplied by -1/ol. This function is plotted in figure 5.3.

-O.S

\-1

-,.5

-. V
-2.5

0 50

.........

100 150
W->[radll)

250

figure 5.3: Third term ofthe undermodelling
error

The resulting expectation of the model error .%{ IÓ.1,oI 2
}

is plotted in figure 5.4. Also the results for olo = 21t rad/s (with fs = 12 Hz) and olo = 1.25
rad/s (fs =3 Hz) are plotted.

In figure 5.5 the undermodelling error for a O-th order FIR model is plotted for COo = 25 rad/s
(fs =50 Hz), 000 = 21t rad/s (with fs = 12 Hz) and olo = 1.25 rad/s (fs =3 Hz) and the other
signa!, model and algorithm parameters are the same as in the rest of example 5.1.

In both cases are the numerical versions quite well in agreement with the analytical (dotted)
ones. So the algorithm with a PDF for the frequency function of the undermodelling works
for the simple cases. The undermodelling error has a minimum at the frequency of the signal
which is used for identification as could be expected. For first and higher order models the
term aG/as contains 1/joo terms and so the model error goes asymptotically to infinity if the
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frequency becomes O.

_- wQ:.25 radls

-._pi rodI8

-.-.-.- WO-1.25 ra4's

,.'
,. I. '.

,.. I.'
" t.

".'" • 1
'

•

" . ", .
_.- .. ::.. ... __._,'.' .

r5 __~

i ....l 0 ••

t'
~

~
WD.5

.. '

wtth Ihs chosen palameters ol !he covariBnce aÎgma_<Y':2=10. beta-1D

-o.5L---~,0·;;------~,0',--------..........,1O·,-----..-.J

the dohed llnes Bre the analytical versions w(rad/si

figure 5.4: The expectation of the modelling error for
a first order AR model.

o 100 101 10t
Th. dotIed line Is a. anatytical version. w (radlaJ

figure 5.5 The expectation of the modelling error for a
constant

For a square wave input signal, the results are identical as with a sinusoidal input.
When higher order FIR models are used, the error shows more 'dynamics' as could be
expected. (For example, use a second order FIR model with a sinusoidal input of 0.5Hz and
a stationary description of the covariance with cfo = 1 and ~ = 0.3.) There is still a vertical
asymptote for 0) =0 rad/s, and a minimum in the expectation of the error at (near) the input
signal frequency. With higher order modeis, the algorithm becomes time and memory
consuming and when 'Windows' starts to swap to the virtual memory on the hard disc to
'increase' the memory, the time performance is really bad.
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5.2 Examples of the algorithm with ARX models

example S.2
With ARX models the undermodelling error does depend on the (parameters of) estimated
model. The true system is the same as in example 3 of [Goodwin 89]:

G.J..s) = 15
(s+ 15)(s+1)

- The input is a sinusoidal signal u = 2cos(cook), with fo = 0.8 Hz so COo= 5 rad/s, which is
plotted in figure 5.6;
- No output noise so O'y

2 =0;
The parameters for the numerical implementation are:
- N = 128;
- fs = 37.5 Hz;
- The final time T = N-t/j = 3.4 s so time vector ~ = [0, 3.4] s;
- The frequency vector CO = [0, coo] = [0, 5] rad/s.
An ARX model is estimated, using the built in procedure of goodwin.m, with NN =[na,nb,nk]

=[1,1,0], where na' nb and nk are the orders of the A- and B-polynomials and the dead time

of the model respectively. In identification the filter F(s) =s+2 has been used. The resulting

model 1·S GA fq) -- 0.0246 d th f fu t' . I tt d' fi 57N\ an e requency nc Ion IS poe 10 19ure . .
q-0.9904

_= lhe frequency tunet""n ot the estlmated model wlth

.; ..... :.. "'i";'!';"

•...
• NU~(q)=!o·pj~l. •
• anil D~lIi(qj=i~-'Q.9868] ;

o~....'-i----"---:.-=:::::'t--=..--._''''-.?'x...... ' ;;,0.6

Input (--l, Ihe estimaled output U and the true output (-.-.l

0.8

. ," " '.

; \The true system: numT~[15J, denT=l:; i615]

: :"oo~::

: ~~.~
. : : "1-51-'; ::;.;.;.;;:- .... :....: ... :.. :..:.:.:'\i'\"\k, !.:

CJ : \:"':
-IO~ HH'; HH'i H'; H;"i';'i ';';" ·i 'i"': ":'''i':'i .:.:.. .\: :, .

_15~"""";""':"':';';;;';';''''''''';''''';''';;'';'';';';;'; ;\;I\'~i1li
-2~O'-o...-"-----'--'---'--'-''-'-I.LLo_:-'------'-----'----'---'--'-'-.....I'-::O.--'-----..i-.i.--'-'-.............IO'

-.-.= trus aystem numT0(15], denT0(116151 Frequency ("""a)

figure 5.7: The frequency function of the system and of
the model
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figure 5.6: The input and output signals
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-02

As can be seen in figure 5.7 the model matches the system exactly at a frequency of 0.4 rad/s
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5. Examples of the algorithms for model errors in a stochastic embedding

so there should be a minimum of 0 in the (undermodelling) error. In figure 5.7 it can also be
seen that at the signal frequency of 5 rad/s the gain of model is 5dB less than the true system.
This appears in the amplitude of the estimated output in figure 5.6.

For the frequency function ofthe undermodelling (GoooWIN1) a stationary covariance function
with cro

2=0.2 and ~=20 is used. The resulting error is plotted in figure 5.8.
For the (variance of the) impulse response of the undermodelling the following parameters
have been estimated &=1 and Á=0.1837 (the variance of the noise ~ is of course 0). The
resulting undermodelling error can be found in figure 5.9.

figure 5.9 The undermodelling error according to the
error algorithm with a POF for the impulse
response of the undennodelling
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figure 5.8 The undermodelling error according to the
error algorithm with a POF for the frequency
function

Th. expectaUon oI1he mod&l error. Algortthm: POF lorthelreq. hn:. wllh

As can be seen, both versions of the error are not in agreement with each other and are never
O. In both cases the minimum of the error does not coincide with the true minimum of the
error at 0.4 rad/s. In figure 5.8 and 5.9 avertical asymptote is visible for ro = 0 as could be
expected and the error is bounded (small) for higher frequencies when the gain of the true
system is small (decreases). Some of the qualitative notions about the error are visible, but
the quantitative results do not make sense.

example 5.3
An example as in §V of [Goodwin 92] is repeated.

The following continuous-time system was used: 1
G(s) = ----

10s2+11s+1

1
=

(1Os +1)(s+1)

This system was simulated with sample period tö =1 s. This is strange since the sample rate
is less than the lowest allowable sample frequency according to Shannon (ros = 27t should be
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5. Ex(unples (~( the algorithms for model errors in a stoc/lastic embedding

larger than 2romax = 41t radJs) so aliasing should occur )1.

The test input sequence {Uk} is a 0.02Hz fundamental square wave (roo = 0.13 radJs). The
output of the system is corrupted with a noise sequence {vk } distributed as vk - N(0,0.OO5).
The signals are plotted in figure 5.10.
A second order ARX model has been estimated with NN=[2, 2, 0] and filter F(s) = 0.ls2+s+1:

GA fq) -_ 0.01506q+0.09996 f hi h h f f' b ~ d' tiN' ,0 W c t e requency unctIon can e loun In 19ure
q2-0.6481q-0.237

5.11.
Input (--), the estlmate<! output L) and Ihe we output (-.-.) _= Ihe frequency functkJn of (he estimated model whh

0r--=o====::o---'-""""""=;;::;-;:-::::::::-:=:;-'!""--'-"""""""""",
- '--:"'" • ~~~(q)=[0.015Oll0.09996J :

...... DEN(q)=[1-'0.64B1~0.2:m
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figure 5.10 The input and output signals
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figure 5.11: The frequency function of the system and
of the model

As can be seen in figure 5.11 the model is (still) very good at the signal frequency of 0.13
rad/s and so the estimated output matches the true output very weU in figure 5.10.

Again the model error is computed with both methods of Goodwin. Now noise is present
which is not incorporated in the algorithm with the PDF for the frequency function of the
undermodelling. The results for this algorithm only showed an exponentiaUy decreasing
function of the frequency (the error becomes 0 when N ~oo) with avertical asymptote for ro=O
and are not printed. Estimation of the variance parameters of the impulse response of the
undermodelling resulted in &. = 0.1171 and A. = 0.9078 and the variance of the noise ~ =
0.0058. The corresponding model error is plotted in figure 5.12. This looks interesting: more
dynamics are visible, there is a minimum for the signal frequency 000 (and for 3000) and the

1 For simulation the Matlab function 'dlsim' has been used. This function computes analytical (exact) output
samples with a time spacing t6 of a system with a certain input. In the implementation, the time spacing t6 also is
the sample period of the identification and error algorithms and so t6 has to be chosen such that aliasing is avoided.
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figure 5.12 The model error according to the error
a1gorithm with a PDF for the frequency
function

plot looks like the one printed in [Goodwin
92]. However these results are obtained with
undersampling. When the system is simulated
at an appropriate frequency, then the dynamics
disappear and only the two asymptotes are
visible and the algorithm became 'useless'
again. We should conclude that the dynamics
visible in the example of Goodwin result from
aliasing! These results are not very promising
for the next paragraph where we try to use the
algorithms with a practical and so more
complicated process.
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5.3 A practical process

example 5.4
Since a long time the Measurement & Control group is especially interested in the 'balI
balancing process'. This process can serve as a good example of what measurement & control
can do.
In the group there is a construction of the 'balI balancing process' available. This process has
been identified with the stochastic identification algorithms. With a sample frequency of
100Hz, the resulting 4-th order ARX model for the balI position x as a function of the
actuator voltage has two complex conjugate poles just outside the unit circ1e and so the
system is not stabIe. In order to make it usabIe with the error algorithm the unstable poles are
slightly moved to make the system stabIe:

X -9.94670*10-6z -1 - 9.39704*1O-5z-2 - 7.96337*1O-5z -3 - 6.03207 *1O-6z -4
- -
V 1 - 3.4269z -1 + 4.2847z -2 - 2.2886z -3 + 0.4309z-4

This is (still) quit a troublesome system, as can be seen from the poles:
PI = 0.96502 + 0.01913j, P3 = 0.99999,
P2 = 0.96502 + 0.01913j, P4 = 0.43387.

These poles with their corresponding frequencies of 3.6, 1.0-10-3 and 83.5Hz specify the

frequency region of interest. (Here z = e -.st~ <=> s = -fsln(z) has been used.) This is a very

broad range of frequencies so this makes it a difficult process to identify.
Let's see what happens if we try to identify this process according to the rules for experiment
design of appendix C. The sample frequency should be something like 30 times the process
bandwidth. The bandwidth can be found from the discrete Bodediagram, whieh can be
constructed with the Matlab function 'dbode' and in this function the sample period O.Ols has
to be used. The statie gain of the system is 2100 = 66.5dB and the -3dB point is situated at
ro = 0.01 rad/s so this system has a very small bandwidth roB = 0.01 rad/s = 0.OOI6Hz. Then
the sample frequency for identification would become fsi == 0.05Hz, but this is much too slow
to capture the dynamics of the pole in 0.43387. When this pole is taken as a measure for the
sample frequency then fs,i = 3-83.5 == 250Hz (tö==O.004s). In order to capture all dynamics
of the system in the measurements, the experiment duration T should at least be 3 times the
maximum time constant of the system so T = 3-1110-3 == 3000s. With this Tand tö the
(minimal) number of samples N is determined and is not less than N = 750,000. This is not
a practical number. Note: the kind of a priori information which has been used here is usually
not available (in this form) in practical situations.
A second order ARX model is identified (NN=[2, 2 ,0]). This is done at a frequency fs,i =
6025Hz (tö = 0.16) so a (second order) anti-aliasing filter llF(s) has to be used with a cut off
frequency of about lHz: F(s) = (s+I)2 = s2+2s+1. Take N=IO,OOO samples, a ZMWN input
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5. ExampLes of the algorithms for model errors in a stochastic embedding

with ~ = 1 is used and the output is corrupted with ZMWN with ~ = 0.005. The resulting

model is GJ..q) = 0.336815q-0.443892 .

q2-1.993559q+0.993561

This transfer function is shown in figure 5.13 together with the true system. If we compare
the frequency functions of the 4-th order system and the second order model then we see that
the frequency fit is 'perfect' at two frequencies.
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Por experimental data for the error algorithm
1000 samples of a sinusoidal input signal are
used with amplitude 1 and frequency 0.03Hz.
The output is disturbed with ZMWN with
variance 0.01. This data is entered in the error
algorithm.
The maximum frequency which is considered
is 1 rad/s == 0.16Hz. N = 128 is used. The
time interval which is considered has length
Net/) == 20.5s

~0'::;--o----"---'---'--'""""""""10"~-'--"""""'''''''''''''-'-'10"'":;-'-'----'----"~'oo The expectation of the (undermodelling) error
nthel8 is a dotled llne, this is 1he anatydcal wrBion. w[racU's]

figure 5.15: The undermodelling error according to the in case of GoooWIN1 (a PDP for the
algorithm with a POF for the Frequency Prequency Punction of the undermodelling) is
Function plotted in figure 5.15 for O'~ = 1 and ~ = 1.

The log likelihood function which has to be
maximized in case of GOOOWIN2 (PDP for the impulse response of the undermodelling) is
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shown in figure 5.16. This is not a complicated function and so the estimates are found quite
quick.

The log Iikelihood function lor Ihe bali balencing process lor sigme..v"2=0.01 The expectation of Ihe model error. A1gorithm: POF lor Ihe impulse resp eta
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figure 5.17: The expectation of the model error

according to the algorithm with a PDF for 11

o 0<-lambda alpha ->

figure 5.16: The log likelihood function for the bali
balancing process with a sinusoidal input and
output noise varianee 0.01

The estimated covariance parameters for the undermodelling are &. = 1 and ~ =0.98. The
estimated noise variance &~ = 0 and this shows that this parameter of the noise cannot be
estimated in general. The resulting estimation of the model error (which now also only
contains the undermodelling error) is plotted in figure 5.17. It can be seen that both versions
of the undermodelling error are in agreement with each other, but again the error is not in
agreement with the expectation we have, looking at the Frequency Function. As expected,
there is an asymptote at the model error axe (for 0) =0) and one at the frequency axe (0) --700).

From all the examples it is c1ear that in case of an ARX model both algorithms result in very
coarse approximations of the estimation of the model error, which are of little use in practice.
The asymptotes seem to be so dominant that there is no place left for more subtie variations
in the model error, which could agree with the Frequency Functions.
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Notation and definitions for a deterministic
embedding

6.1 About deterministic identification

If in a method of system identification the system is considered to be deterministic and also
the noise is represented by a deterministic quantity, then this method is called deterministic.
A type of model which can easily be obtained through a deterministic approach is the
Frequency Function. The Frequency Function G(eiOl

) tells what happens with a sinusoidal
input: the output is a sine with the same frequency, the amplitude is multiplied by iG(eiOl

) I
and the phase is shifted by arg{G(ei~ }. The Frequency Function is a so called nonparametric
model representation.
A simple way of frequency response analysis is sine-wave testing: apply sine waves with
specific frequencies to the system and measure the amplitude and the phase-shift of the
resulting output. This method has several disadvantages. The transient term can not be
identified, but will have strong influence on the model if it has not died out. Since for each
frequency a sine wave has to be applied and one has to wait until the transient died out, this
method is very time-consuming. Sine-wave testing with correlation suppresses the noise as
is explained in [Stochastische Systeemtheorie].

Fourier analysis is another and faster way of frequency response analysis and the resulting
model is called the Empirical Transfer Function Estimation (ETFE, see [Ljung 87]):

CA> = 21tl flor l = 1, ....,N with YN(ro) and UN(ro) the DFT's of
1 N

the input and output. The circle above G denotes that the ETFE is a very rough estimate of
the transfer function. This can be explained from the fact that a data series of N input and N
output samples is reduced to N/2 complex numbers. The ETFE is the true frequency response
plus a bias and a (zero mean) noise term. The ETFE is of increasingly good quality, if a
periodic input is used and the number of samples increases. If the input is not periodic, the
estimate does not improve as the number of samples increases because also the number of
parameters increases. The ETFE can be improved by using a smoothing frequency window,
which averages the frequency function over a frequency interval. This works because for
every system there should be some correlation between two subsequent frequency points.
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6. Notation mul definitions for a de;erministic emhedding

Smoothing introduces or enlarges the bias and reduces the variance tenn in the ETFE. See
[Stochastische Systeemtheorie].

Since the beginning of the nineties one started to develop (deterministic) identification
methods which are strongly related to the environment of Robust / IL, control. Norms, like
H.., play an important role in this and define the largeness of signals and transfer functions.
(See appendix A for the different norms.) In Robust control techniques the plant uncertainty
is measured in the frequency domain in terms of an oo-norm balI about the nominal model and
guaranteed explicit bounds on the H..-norm of the identification error are desired. If these
bounds are available, a robust controller can, at least in principle, be found which achieves
the desired perfonnance. In a H.. sense, the goal of identification is to find algorithms which
map the experimental data into an identified model for which the worst case identification
error converges to zero in the H..-nonn as the noise goes to zero and the number of data
points goes to infinity. Now first the mathematical environment of this Robust identification
method is introduced.
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6.2 The mathematical embedding of a Hoo deterministic approach

6.2.1 Hardy space
D p: open disk of radius p (centred at the origin in the complex plane)

Dp:= {z E IC: Iz I < p}
D: open unit disk, in the cases where p = 1 the 1 is suppressed in the notation.
Tp or aDp: boundary of Dp, a circle of radius p Tp = aDp:= {z E IC: Iz I = p}

~Dp,M) = ~,p: Hardy space of bounded IF(z)1
(amplitude < M) analytic, discrete, complex
functions in the open disc DP' The arguments
of the functions lie in the grey plane of figure
6.1 and the two planes, bounded by the
striped lines, denote the amplitude bounding
of F(z).
~,p:= {f: aDp ~IC I f analytic in Dp and figure 6.1: A visualisation of the Hardy space

IIFIIM,p:= sUpz e Dp iF(z) I <
M}
where F(z) is the standard Z-transform of the function f(k) evaluated at l/z.

Often M = 00: ~Dp'oo) = X,p'

~+: the set of Hardy spaces with p > 1, a linear space which is a subset of X

~+: = U 3-foo,p C 3-foo '

p>l

A: the disk algebra A, a subset of X A:= {f E X, f is continuous on unit circle}
P: fixed subset of X containing the zero element.

C,p: a normed space of bounded sequences of positive integers Z+ in time domain

{f : Z+,o ~ IC I IlfL,p:= SUPk e z.,. If(k) Ipk < oo}
Loo,p: a normed space in discrete frequency domain

{f : aDp~ IC I fis measurable and Ilfll..,p:= supz e ëlD. IF(z) I < oo}

Ck(aDp):= {f: aDp ~ IC I fis k times continuously differentiabie on aDp } cL..
Note: any f E ~/D) is an element of COO(aD) and Ilfll.. = sUPzeD IF(z) I = supzeëlD \F(z) I

6.2.2 Operators
To: the truncation operator To: Zoo ~ l.. such that (ToOk:= fk

(ToOk:= 0
for k = 0, 1,..., n-l
for k ~ n
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6. NotatÎon mui def'inition.l' jór a determini.l'tic embedding

V n: the DFT-operator (the discrete and truncated version of the Fourier transfonn), which
transfonns the time-domain signals to the discrete frequency domain.

V n: H+ ---7 Tn t such that (VnOk:= f(e2ltjkln) for k = 0, 1,... , n-l

(VnOk:= 0 for k ~ n
BX(r): the ball of radius r for any of the nonned spaces X

BX(r):= {x EX: Ilxllx :5 r}.

Note: the symbol 11. t is used in 3 different ways

for fE ccn 11ft = maxklfkl

for f E L~ Ilfll~ = sUPzeëlD IF(z) 1 = sUPOe[O,2lt] IF(ei°) I

for f E X Ilfll~ = sUPzeD IF(z) I.
Each of these uses should be clear from the context.

6.2.3 Polynomials
Pn: collection of all polynomials in z with degree :5 n (a subset of disc algebra A).

Pn: a polynomial of the set Pn'

6.2.4 Deflnitions
Definition 6.1: Even symmetrie
A function fk,n is even symmetrie with respect to k if
(i) fkn = f kn for all k and n i.e. for a fixed n and with k=O in the origin, both sides of the

function are the same;

(ii) lirn !n.n1og(n) = 0
n-oo

Let Mn,k = fn,k - fn,k+l' the first order difference (related to the first order derivative in the
continuous domain) and ~2fn,k = Mn,k - M n,k+l' the second order difference in discrete time
domain.
Definition 6.2: Convex
A function fn,k is called convex at k if ~2fn,k ~ 0 'r;f n and is called a convex function if ~2fn,k

~ 0 for all k, so starting in a minimum of fn,k this function is increasingly rising for increasing
k.

Definition 6.3: Concave
The same for ~2fn,k :5 0 'r;f n, so loosely speaking fn,k is an increasingly falling function.
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6.3 Tbe identification and controi environment

6.3.1 Time response data
A data set of N input and output samples is collected: E~(H,v): ~+ X Q.., ~ TNQoo where
E~(H,v):= TN{(h*u)+v}.
h is the impulse response of the system and u is the input. The time data is corrupted with
noise v of which the amplitude is bounded by ~:

Vk e { v = (VI' ••. , vN) eeN: Ilvlloo ~ ~ }.

6.3.2 Frequency response data
The input-output data in time domain of the system is transfonned to Nf samples of
experimental frequency response data: E7f: 'Ji+(D) x BNtCEr) ~ ([!lf where

E7\(H,w):= H(jffik) + Wk'
He 'Ji+ and ~= 21t(k-l)/Nf for the discrete time case (k = I,2,...,Nf). The frequency response
data is corrupted with (frequency) noise Wk which is bounded in amplitude by Er:
Wk e { w = (w l , ... , WNf) e eNf: Ilwlloo ~ Er }:= BNtCEr).

6.3.3 Class of systems under consideration
The class of systems to which the unknown system will be assumed to belong is stable, SISO
(Single Input Single Output) possibly distributed, LTI (Linear Time-Invariant), causal and
discrete time.

The system transfer function is defined by H(z) = L h(k)z k

k=O

i.e. the standard Z-transform evaluated at I/z.
These are those elements of X that admit analytic continuations to a disk Dp (p > 1).
This corresponds precisely to the class of exponentially and BIBO (Bounded Input Bounded
Output) stabie linear time-invariant systems, the set 'Ji+.

The following statements, which characterize the time domain properties of this class, are
equivalent:

H(z) e 'Ji+(D);

there exists Mo < 00, Po> 1 such that Ih(k) I ~ MOPo·k (k=O, 1, ...), the amplitude of
the impulse response hek) is smaller than some decreasing exponential;

there exists Po > 1 such that
..
L Ih(k) Ip~ < 00,

k=O

From this it follows that P (or sometimes 0' is used in literature) is a lower bound on the
relative stability of transfer function H;
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P is strictly less than Po so
sup IH(z) I = sup IH(z) I <M
Izl=p ZEDp

and M is an upper bound on the worst case steady state gain over all exponentially weighted
complex sinusoidal inputs of the form u(k) = p-keiOOk

•

The parameters p (or cr) and M correspond to a priori knowledge of the unknown system.

Definition 6.4: Admissible
A subset P c A is called admissible if

1. where on is the supremum of the measured data

0n:= sup {En(H): H E P} = sup { inf{ II H-PnIL: Pn E Pn} }
2. Ms:= sup {IIHIL: HE P } < 00

Roughly speaking, admissiblity requires that the set of systems over A of space X be
bounded and be uniformly approximable by polynomials. It is assumed that P is an admissible
set so it is required that Pis totally bounded in X. A class of systems with a lowerbound on
the relative stability and an upperbound on the steady-state gain is admissible.
Note: - the collection exponentially stabie systems P:= ~Dp ,M) is admissible;

- sets having certain 'smoothness' are also admissible.

6.3.4 Problem definition
In the approach of Helmicki, Jacobson and Nett in [Helmicki 90a] and [Helmicki 91] two
related control-oriented system identification problems for stabie, linear and time-invariant
systems are solved. The first problem is identification of the plant frequency response from
a noisy, time series output of the plant and finding an expression for the worst case model
error. This problem leads naturally to the second problem, which involves identification of
the plant transfer function in Hea from a finite number of noisy samples of the plant frequency
response and again determination of an upperbound of the model error.

I) The experimental data consists of N noisy time samples and is mapped to noisy values of
the frequency response of the system at a given set of Ne different frequencies.
The problem of point frequency response identification according to Helmicki e.a.:
Assume: that the plant H, whose frequency response point sample H(eiOl

), Ol E [0,2x), has to
be identified, is an element of ~J-( and that the noise v present during identification is bounded
by ~.

Given: 1) plant a priori information in the form of the pair (p, M) E (1,00] X [0,00) for which
it is known that H E B~.p; so a known lower bound on the relative stability of
transfer function p > 1 and a known upper bound M on the worst case steady state
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where E~(H,v):= TN{ (h*u)+v} and

6. ;Votation mul dt;f'initions .Iór a <Ü:Terministic emhedding

gain;
2) time noise a priori information in the form of a bound Et E [0,00) on the level of
corruption, i.e. v E B~oo(Et); the measurements of the output are corrupted by coloured
noise v of which the amplitude is bounded by the known value Et;
3) for each data a posteriori information level N E N, the data a posteriori information
defined by the experiment operator in time domain: E~(H,v): ~+ X ~oo --7 TN~oo ,

{

a.e -jülk k ~ 0
u(k) =

o k < 0
with Cl E (0,00) a fixed constant and °S ro S 2n.
The system with transfer function H is excited by Nf different complex exponential
input signals (sinusoidals) of N time samples. The signals have Nf different

frequencies ro

Find: a plan of algorithms A~ such that for each a posteriori information level N, the
algorithm A~: TNloo maps the given experimental time data into a point frequency response
estimate A~(E~(H,v») E ce)1 in such a way that the worst case identification error

et(At; p,M, Et): = s~p jH(e jül
) -At(Et(H,v))1

HEBJ{M,p

vdj~~(E,)

converges as follows:

lirn et(At
N

; p,M, Et) = °
E,-O

M-o

and 1im et(At; p,M,Et) = 0.
E,-O

N-oo

(Any system identification algorithm should be able to identify a system exactly if the
information is complete and uncorrupted.)
In addition, derive explicit bounds on e~(A~; p, M, Et) as a function of p, M, Et and N.

II) The problem of identification in Hoo formulated by Helrnicki e.a. resembles the point
frequency response identification problem:

1 It is important to make a distinction between the algorithm A~ for identification and the resulting models
A~ffi~(H,v»). For example, the identification algorithm is independent of the input u, but the model of course depends
on the input used.
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Assume: that the 'true' unknown system H, whose transfer function has to be identified, is
stabie, linear, time invariant, discrete-time and an element of ~+ and that the frequency noise
w present during the identification process is bounded, i.e. wEt•.
Given: 1) plant a priori information in the form of the pair (p, M) E (1,00] X [0,00) for which

it is known that H E B~,p;

2) frequency noise a priori information in the form of a bound Er E [0,00) on the level
of corruption, i.e. w E B~oo(Er);

3) for each data a posteriori information level Nf (number of corrupted frequency
response estimate samples) E N, the data a posteriori information defined by the
frequency experiment operator: E~f(H,w): ~+ X l, -7 TN~oo , where
E~f(H,w):= UNfH+TNfW.

Find: a plan of algorithms A~f such that for each a posteriori information level Nf, the
algorithm A~f: TNfloo maps the given eXJlerimental frequency data into a transfer function
estimate, the identified model, :A~~ = A~!\E~f(H,w») E ~+ in such a way that the worst case
frequency identification error

e;f(A;f;p,M'€j): = s~p I~-A;1E;f(H,w»)1I..
H EB'}{M,p

WEBQ~(€p

converges as follows:

p-oo
M-Q

and

In addition, derive explicit bounds on e~f(A~f; p, M, Ef) as a function of p, M, Er and Nf.

This problem definition of system identification is in agreement with the description in §6.1.

Definition 6.5: Convergent
An algorithm A~ or A~f which results in a model which satisfies the conditions for the error
mentioned in the problem definitions above is called convergent.

Definition 6.6: Robustly convergent
If, in addition to convergence, the algorithm does not depend on the a priori information p
and M then it is robustly convergent. The algorithm converges even when the available a
priori information is incorrect.
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Definition 6.7: Intrinsic error

i.e. there is always an intrinsic level of uncertainty,

determined by the available information, which establishes fundamental limits on how much
uncertainty can be reduced through the use of a particular set of information. This
fundamental limit sets lower bounds on the achievable accuracy of any algorithm.

Definition 6.8: Optimal
A particular algorithm A is optimal if for each resulting model and for each choice of p, M,
E and N:

i.e. the (true) model error is equal to the intrinsic error.

Now this environment will be used for the introduction of a class of deterministic
identification algorithms in the next chapter.
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•
A deterministic
identification

approach of system

In this chapter a class of modelling techniques will be regarded which are based on the
principle of the Frequency Function and ETFE modeIs, but for which explicit worst case error
bounds are derived. Through these error bounds this deterministic approach of system
identiflcation is more appropriately formulated for use in Robust control. In literature this
deterministic approach is also called the worst-case approach. It is a control-oriented system
identification method.

The several algorithms resulting of the problem definition of Helmicki e.a. as described in
chapter 6 are characterized by a two-stage structure: the first stage involves transformation
of time responses to a frequency response and the second stage involves approximation of the
frequency response by some kind of interpolation and then finding the best stabIe
approximation of this first, possibly nonstabIe, approximation. Creation of the frequency
response in the flrst stage can be done with the ETFE modelling technique (see §6.1) or by
sine-wave testing (the way which is described in appendix Bof [Helmicki 90a]). Interpolation
in the second stage can be performed by taking the inverse Discrete Fourier Transform of the
frequency response and multiplication by a suitable window function. A stabIe approximation
can be found by using Nehari's theorem.
The two-stage algorithms are also non-parametric so less a priori information is required then
in a parametric case. Notions of intrinsic error, algorithm optimality etc., as specifled in
chapter 6, can be quantifled.
The set of systems to which the unknown system belongs must be admissible (see deflnition
6.4).

The structure of the two-stage algorithm will be discussed in the flrst paragraph. In the second
paragraph the different forms of the algorithm will be looked at. These algorithms all are
nonlinear. In §7.3 something will be said about linear algorithms and in §7.4 a few notes will
follow on the implementation of the algorithms in Matlab. Proofs of theorems will be omitted
fo~ size reduction of this report, references to the literature are given where the proofs can
be found.
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7.1 The two-stage structure

Remark: the notation which is used is slightly different from the notation used in [Helmicki
90a] and [Helmicki 91]: like in this whole report the number of data is 'N' and here the
number of different frequencies is 'Ne' and not 'n' like in the articles of Helmicki and co­
workers.

7.1.1 First stage: Point frequency response identifzeation
In case of sine-wave testing a complex sinusoidal test input u at a desired frequency (0 e
[O,21t] and with amplitude a. is applied to the system as described in chapter 6. The first N
values of u and output y, which are both complex signaIs, are recorded and form the
experimental time data E~(H,v). The time output noise v which is present, is bounded in
amplitude by ~.

Theorem 7.1: A lower bound on the optimal identification error for point frequency response
identification is e~(p, M, El) ~ min{M, E/a.}.

Note that this error does not depend on the algorithm A~ used. This theorem states that the
signal-to-noise ratio fundamentally limits identification of the plant frequency response. Proof
of this theorem can be found in [Helmicki 91].

Here two plans of algorithms for approximately identifying a plant frequency response will
be presented. The first plan attempts to recover the frequency response information contained
in the experimental time data E~(H,v), which should consist of complex signals, by processing
only the last data point logged:

[EtCH,v)l CN 1)
AN(ENCHv»):= .iN-I = Y -

t t' ae -jÜ)(N-I) uCN-l) The worst case error properties Ci.e. an

upperbound) for each of the elements is NIA N M) Mp -N Etet ~ t ; p, ,Et :s; --p +-
p-l a

The second plan of algorithms attempts to correlate out the frequency response information
through the use of finite length CInverse Discrete Foutier) transforms:

N-I N-I

AtN(EtCH,v»):= _1_ L [EtCH,v)] ejÜ)k = _1-LyCk)ejÜ)k. Here the worst case error is
aNk=O k aNk=O
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N( N ) Mp 1- P-N Etet At ; p,M,Et ~ +-.
(p-l)2 N ex

See [Helmicki 91] for the proofs of these expressions. As can be seen, both algorithrns are
robustly convergent for all admissible values of the parameters ex and CO and asymptotically
optimal if E/ex < M. Both algorithms operate linearly on the experimental data.

The worst case errors provide a balI in the complex plane within which the true point
frequency response sample is guaranteed to lie. Moreover, given any number of balls for the
same frequency point, corresponding to different information levels N (different data lengths)
it follows that the true point frequency response sample is guaranteed to lie in the intersection
of these balls. Hence a significant reduction in identification error can be obtained in cases
where the radius of the smallest balI containing this intersection, is significantly smaller than
the radius of any individual balI. One can try to find this balI with a recursive process

E~·m(H,v) =TN'mE~(H,v).

7.1.2 Second stage: Identification in H~

The second stage itself can be divided in two steps. In the first step the Nf noisy point
samples of the frequency response of the unknown plant are mapped into an L~

approximation of the plant. The second step maps the L~ approximation into a stabie real­
rational H~ approximation to the unknown plant.
A frequency data record of a posteriori information level Nf can be obtained by solving Nf
point frequency response identification problems as described in §7.1.1. The noise w
represents bounded perturbations to the true frequency response. The amplitude bound of this
frequency noise is Er. If the experimental response data are obtained via one of the algorithms
of §7.1.1 then Ef can be obtained using one of the worst case time identification errors Er =
e~(A~; p, M, Et).

Theorem 7.2: A lower bound on the optimal identification error for the problem of
identification in H~ is e~f(p, M, Er) ~ min{Er, M}.

A model cannot be identified with an uncertainty better than can be measured at any
frequency. Proof of this theorem can be found in [Helmicki 91].

Step 1: L~ approximation of the plant
The idea is to interpolate the Nf samples of the experimental frequency response data
E~f(H,w) with an interpolation operator n: nNf{E~f(H,w)}. The interpolating Fourier series
coefficients hk of E~f(H,w) are an L~ approximation to H. However in this discrete algorithm
only DFT coefficients fik of UNf{E~f(H,w)} can be computed. Fortunately also truncations of
the interpolating Fourier series provide an L~ approximation to H.
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Theorem 7.3

n

FNJE/f(H,w)}(ejEl):;:: L hkllNJE/f(H,w)}ejkfJ ;::
k=-n

where wn.k is a frequency window function (-n ~ k ~ n) and n is a free parameter which
specifies how many Fourier series coefficients will be used in the truncation. Let n be any
given monotone decreasing function of the number of data samples Nf such that

• 2

I
. NI
lm--;::O·

Nr"" n(NI )

From this theorem it follows that for each k E Z hk·~r{UNr{E~r}} =wn,klikUNr{E~r}.
The proof of this can be found in [Helmicki 91].

So the first step of the second stage comes down on the calculation of the discrete Fourier
transform coefficients of the frequency response estimates E~f, i.e. the N-point 10FT of the
experimental frequency data:

Nf-l -Iki 211 Nf
N 1 [N ] 'N where 0 ~ k < Nf • ft is assumed to be periodicalii f(k) == - L EI f(H,w) + e f

NI 1=0 1 1

so

And then attenuation of the DFT coefficients using a suitable window function wn•k ' The

preidentified model Îl~i becomes:
n

Îlp~(Z) ;:: L wn(k) iiNf(k) Zk.
k=-n

The L~ approximation is a good, but possibly unstable, approximation to the given frequency
response data. It is not necessarily causal as it may have nonzero negative Fourier
coefficients. The L~ approximation is only guaranteed to converge on the unit circle and an
identified model has to agree with the true unknown system over the whole unit disk, i.e. a
H~ approximation is wanted.

The window function allows the Fourier series coefficients to be calculated directly from the
frequency response estimates and controls the effects of the noise in the samples as will be
shown in §7.2. For each choice of the window function, a different identification algorithm
results. The window function determines completely the properties of the second stage of the
algorithm. The choice of the free parameter n determines the order of the preidentified model.
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7. A deterministic approach of system identification

Step 2: A stabie real-rational Ro approximation to the unknown plant
The problem is to find the best analytic approximation to the preidentified model and
Nehari's theorem can be used for this. The first step approximation is further approximated
to obtain a stabie, identified model.
The identified model ÎI~d is taken as: ÎI~iz):= argmin {1IÎ1~i - HII..: H E ~-(J.

This second stage is also treated in [Gu 92]. Pay attention to the different interpretation of
the 'two stages' of the algorithm as described in [Gu 92]. Here they caU the two steps of the
second stage of the algorithm of Helmicki the two stages on which they base the name 'two­
stage algorithm'.

7.1.2 Convergence
Lemma 7.1a: The second step and so the second stage of the two-stage algorithm is robustly
convergent if step 1 of the second stage is robustly convergent.

Lemma 7.1b: Step 1 of the second stage is robustly convergent if the identification error in

satisfies

Remember P is a fixed subset of X containing the zero element, the set P captures the prior
information on the system. Then the final identification error eNf ~ 2e~~ and the two-stage
algorithm is robustly convergent.
The two-stage algorithms only operate on the available a posteriori information so they can
be referred to as being untuned. The algorithms are totally independent of the available a
priori information. These robustly convergent plans of algorithms are guaranteed to converge
even in cases where the available a priori information is incorrect.

Theorem 7.4: Robust convergence of step 1 of stage 2 in terms of the properties of the
window function.
Suppose that the window function wn(k) is even symmetric with respect to k (see definition
6.1). Then step 1 is robustly convergent if the window function satisfies:

(i) lirn /::,.2wn(k) = 0
n- IXI

for k = 0,1,..... with /::,.2wn(k) as defined in chapter 6;

(ii)

(iii)
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7. A deterministic approach of system identijïcation

Consequently, if the above conditions hold, then the two-stage nonlinear identification
algorithm is robustly convergent. See [Gu 92] for more about this theorem. The idea of
sampling twice differentiabIe functions to arrive at a window function is quite common in
digital filtering literature.

7.1.3 Worst case approximation error
To analyze the identification error e~r in step 1 of the second stage, note that the Nf point
IDFf of the frequency data can be written as IiNf(k) = HNf(k)+WNf(k) and therefore the
preidentified model can be written as A~i = H~i+W;i'
The worst case identification error at the first step satisfies
sup {IIA~i - Hlloo: w E BNtCët), H E p} ~

sup {IIA~i - HIL: HE p} + sup {IIW;illoo: WE BNtCët)} (7.1)

The first term on the right hand side of (7.1) is the worst case undermodelling
(approximation) error:

e~~~~r(p, M) = sup {IIA~i -HL: H E P} corresponds to the noise free case.

The second term on the right hand side of (7.1) is the worst case noise / variance error:
e~~~~e(ët) = sup {IIW~dloo: w E BNtCët) } which corresponds to pure noise case (H=O).

In a theorem in [Gu 92] some bounds for the noise error are given for cases when the window
function is symmetrie and convex or concave (see definitions 6.2 and 6.3). In general it is not
possible to reduce the undermodelling error and noise error simultaneously and there is a
trade-offbetween noise reduction and system approximation. In §7.2.2 aparametrized window
is introduced which incorporates this trade-off as a design parameter.

tli3 department ~t'Electrical Engineering - Measurement & Contral group

69



7. A deterministic approach ol system identification

7.2 Specific forms of the second stage of the two-stage algorithm

The choice of the window function wn(k) is crucial and detennines completely the properties
of the second stage of the resulting identification algorithm. The system identification problem
is reduced to the optimal design of the window function.

7.2.1 Based on spline interpolation: Helmicki, Jacobson and Nett
The approach with spline interpolation is according to the articles [Helmicki 90a] and
[Helmicki 91]. Spline interpolation can be used to obtain an L.. approximation. This
approximation is an estimation of the system H for the discrete frequency samples of the
experimental frequency response data E7r(H,w).

Lemma 7.2: Spline interpolation.
Let f E 0.. and Ilfll..= 1. The linear spline SNr{ f} E L.. interpolates the first Nr components

of f at the points Zk == ej6k with ek = 21tkINr for k = O,... ,Ncl:

The spline interpolant is the value of the function f at sample k plus some displacement e-ek

= oe times the slope between the two successive samples and so this is indeed an
interpolation. The linear spline interpolant is a first order polynomial interpolant.

- The spline operator SNr is linear and the induced norm is IISN/II:== sup IISN/{j} 11 .. == 1 since
If~_=l

fk appears linearly in the expression for the spline operator and max {fk} 5,; 1 .
k= o,...,Nr1

- If f E C1(i1D) then Ilf-SNr{fs} 11.. ~ (41t1Nr) Ilf 11.., where fs is a section of the samples of the
function f and f' denotes the first derivative of f.
If in addition fE C2(i1D) then Ilf-SNr{fs}11.. :$; (1tlNrf(1If' 11..+IIf'II..).

Fact: If f E ~+, then
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7. A deterministic approach of system identification

Fast dynamics in a function f (so large norms of the slope) result in a larger upperbound of
the difference (error) between the function f and it's truncated spline interpolant SNf{f}. This
is also the case when the functional values are corrupted with high frequency noise. Since the
induced norm is smaller than 1 is the coefficient of the Er term also always smaller than I,
correponding to noise reduction. This establishes the capability of linear spline interpolants
to control the effects of noise in the interpolated data.

- Let p > 1 and M < 00. If H E ~Dp,M), then for the k-th derivative of h

IIH(k)ll.. ~ Mk!
(p -l)k

This characterizes the approximation power of linear splines in case of noise-free function
samples.

First step: The L~ approximation
The first step has been described in §7.1.
* Calculate the Discrete Fourier Transform coefficients of the experimental data E~f(H,w):

1 NI [ (j27t~-1)) ] _jk27t~-1)
-LHe I +we I
Nf m=l m

N2

* Choose the free parameter n so that lim __f_ = 0 . For example take n = N~.
Nr" n(Nf )

Attenuate the DFT-coefficients with the sinusoidal window to obtain the spline Fourier series
coefficients.
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k = 0

-n :s: k :s: n

Then the preidentified model is:

n

b;(z) = L wn(k)ckZ k = Fn{E;f(H,w)}
k=-n

which is the truncated spline Fourier series.

Lemma 7.3a: The distance between the true transfer function H(z) and the linear spline
interpolant S{E7f(H,w)} satisfies:

with p > 1, M < 00 , Er ~ 0 and H E ~Dp,M).

Note that in the error bound the terms due to the level of partialness Nf and the frequency
error due to the level of corruprtion Er are decoupled. As Nf ~ 00 the linear spline
approximation converges within a constant tolerance Er. This is a direct consequence of the
fact that the induced norm of the spline operator is independent of the number of interpolation
points Nf (see lemma 7.2). This property is not shared by other interpolation algorithms and
this is the motivation for using linear splines.

Lemma 7.3b: The distance between a complete linear spline interpolant S{E7f(H,w)} and the
preidentified model A:~i (the truncated spline interpolant) satisfies:

11

fnNi } '" nll 2(M+Ef )Nf with p > 1, M < 00, Er ~ 0 and H E ~Dp,M).Sl.Lf (H,w) - Hpi .. :s:
mt2

So by selecting a large enough value for n, an arbitrarily accurate L oo approximation can be
obtained.
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7. A deterministic approach of S}'stem identitication

The error bound for the preidentified model Ii~i is

(7.2)

Second step: AAK approximation to extract a stabie, real-rational and causal H.. function
from the L.. approximation.
In paragraph 7.1 the identified model has been defined as:

Îl~:= argmin {IIÎlp~-HII..: H E j-(..(c.)L

To get a causal model, the negative Fourier series coefficients have to be eliminated. The
final model is the preidentified model with a transfer function added which compensates for

the noncausal part:

This can be done in two ways.

n

Îl~(z):= L Cf1.k + G(z).
k=-n

A) Compensate the noncausal part of the preidentified FIR model with an ARX model with
exactly the same impulse response for n ~ k < O.

Theorem 7.5: Let M <00, P >1 and Er ~ O. For any H E ~Dp,M) define

G(z) =
n-l

zn LVk+1Z
k

k=O

where cr is the maximal eigenvalue and V =[VI V2 ..VolT and

u =[UI Uz ... UolT the right and left maximal eigenvectors respectively of the Hankel matrix
is formed by the negative Fourier series coefficients of the preidentified model:

C_1 c_
2

c_n

c_2 c_3 0
H=

c_n Co 0
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7. A deterministic approach of' svstem identification

The term zn in the denominator is a term z·n in the numerator and accomplishes a shift of the
causal ARX model to the negative/noncausal part of the time axis where it has to compensate
the preidentified FIR model.

By this AAK approximation, the error bound becomes twice as large as (7.2).

Unfortunately, this expression for G(z) involves exact cancellation of the negative terms

-1

L Cf!. k
k=-n

bloek.

and this is numerically not possible. This will be a computational stumbling

B) The transfer function G(z) of course can be written as the Z-transformation of the impulse
response g(k) of the model which is available, so then the identified model becomes

n
An ~

Bid = L..J
k=-n
-1

L
k--n

Cf!. k + L g(k+n)z k =
k=-n
n -1

Cf!. k + L Cf!. k + L g(k+n)z k + L g(k+n)z k =
bO , k~

n

Now the infinite impulse response g(k) has to be available, but a FIR approximation to the

model can be used:
n n

fii~ = L Cf!.k + Lg(k+n)zk.
k=O k=O

The resulting FIR approximation may be of extremely high order. The special FIR structure
can be exploited to obtain a reduced order model fit, truncating the states of a near balanced
realization. (See [Helmicki 90a].)
An easy solution for the implementation of the second stage of the algorithm in Matlab is to
make the first n samples of the impulse response of the preidentified model 0 (see §7.4).

The truncation causes an additional error.

Lemma 7.4: The error caused by the truncation is equal to

where Tn is the truncation operator as defined in chapter 6.

M
IIG(z)-Tn{G(z)}II.., ~ -­

pn(p -1)
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7. A deterministic approach of oH'stem identification

So the error for the identified model becomes:

eN! = sup IIH - Îl~ 11... ~
He:J-f(Dp,M)

weBNjep

2min { 4Mlt ,M1t
2
(p +I) } + _2_(M_+€-=-f)_N..;....f + 2€f + M

(p -1)Nf (p -1)2Nf n1t2 pn(p -I)

If the free parameter n is chosen as n(Nf) = N/, which satisfies the condition in §7.1.2, the
model error obeys the relation eNf = 2Ef + 0(11 Nf). For such choices of n, the algorithm is
actually asymptotically optimal to within a factor of 2.
As can be seen, the algorithm is indeed robustly convergent (untuned) and is a nonlinear
function of the frequency response information E7f. With the choice of parameter n of above,
the order of the identified model is N/ and this is in general very large.

7.2.2 Other window functions
As expressed in the previous sections, by choosing other window functions, new identification
algorithms appear. Below a few window functions are shown which are in use in literature
and which could be implemented.

Cosine window: window for second Bemstein procedure

wn(k) = cos(~)
2n+1

(-n ~ k :;; n).

Using the theorem of [Gu 92] which specifies the worst case identification error as a function
of the character of the window function, the corresponding error for the eosine window is:

eN! ~ 2MP[2P-n + (p+I)1t
2 J

p -I 2(2n+ li(p -li

+ 2(2n cos((n-I)1t) - I + Cl COS(~)lOg(n»)€f
2n+1 2n+1

With constant Cl' The identification algorithm with the cosine window is indeed robustly
convergent and the convergence rate of the worst case error is 0(1In2

).
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7. A deterministic approach of svstem identitication

Triangular window: window for Cesaro sum based identification

=: 1-~
n

(-n ~ k ~ n).

The algorithm is robustly convergent and the order of the identified model is less than N. The
convergence rate of the model error can be shown to be O(1/n).

Trapezoidal window function: a possible parameterized window function with a trade-off
between the approximation error and the noise error in tenns of parameter m.

1 +
k

(m-n ~k~O)
n-m

1 (0 ~k~2m)
wn(k) =:

n+m-k
(2m ~k~n+m)

n-m

0 elsewhere

See [Gu 92]. This window is not even symmetric with respect to k and therefore does not fit
directly into the framework of the results derived in the previous section. However the shifted
window wn(k-m) is even symmetric.
The worst case identification error is

Nf (2(n+m») 2M (-(Nr l ) -(Nf-n+m-l) 2 -2m)e ~ EI + -- p +p + p
n-m p-l

with m < n < Nf • If m --7 Nf then the trapezoidal windowapproaches a one-sided rectangular
window which yields an exponential convergence rate for the approximation error. On the
other hand if m --7 0, then it approaches the triangular window whose noise error does not
exceed Ef• If m is chosen such that mln :::::: c where 0 < c < 1. Por each n the value of m is
taken to be the largest integer no greater than n-c. This window function leads to a robustly
convergent algorithm for identification and the worst case error converges at the rate of
0(1In).

Other (nonlinear) algorithms for the second stage of the two-stage algorithm can be found in
for example [Mäkilä 92], [Akçay 93] and [Jacobson 93].
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7.3. A Iinear algorithm for the second stage

7.3.1 Polynomial approximation
When the frequency response data E~f are interpolated by a polynomial with coefficients Pk'

without the use of a window function then also an identified model PNt<E~f)(Z) results. This
algorithm operates linearly on the frequency response data. However, the induced norm of an
ordinary polynomial interpolation is not bounded by 1, as was the case for spline interpolation
in lemma 7.2. The error of the polynomial interpolation diverges in the face of corrupted data.
The high frequency noise causes a lack of correlation in the frequency response data and this
leads to divergent interpolations. Since the data is generated by a physical system the samples
should be correlated and so a convergent interpolation is known to exist, but the solution does
not depend continuouslyon the data. This is an example of what is called an ill posed

problem in [Helmicki 90b]. Often correlation Ccontinuity') may be restored by bringing a
priori information into the algorithm. An observation which can be made is that the divergent
sequence of identified models does not lie in the model set defined by the a prior information
j{(Dp,M). This can be circumvented by constraining the identified model to satisfy the a priori
information. A constrained optimization problem has to be solved.
The prior information assumed here makes it natural to constrain the identified model to lie
in the Hardy space j{(Dp,M). However, in the noise free case, polynomial interpolation is very
close to being an orthogonal projection of the original function on a finite dimensional
subspace. Therefore a more tractable set to consider is the Hilbert space ~(Dp)' The model
set j{(Dp,M) is embedded in ~(Dp) and the 2-norm of the identified model is constrained.

7.3.2 Coefficient approximation
Approximation of the polynomial coefficients subject to a norm constraint.

Let Er ;;:: 0 and H E j{(Dp,M) for p > 1 and M < 00. Let {Pk}~f~ denote the

coefficients of PNt<E7f). Form the function

where the coefficients ck are defined as the solution of the constrained minimization problem

7.3.3 Approximation of functional values
Another way to restore correlation in the ill posed problem of polynomial approximation is
to attempt to duplicate the functional evaluation of the interpolating polynomial subject to a
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norm constraint.

Let Er ~ 0 and H E 1{(Dp,M) for p > 1 and M < 00. Form the function
Nr1

iI;/(Z) = Lf~k
k=O

where the coefficients fk are defined as the solution of the constrained minimization problem

7.3.4 The identification error
The algorithms are linear functions of the frequency response data and depend explicitly on
the a prior information p, Mand Er and so the linear algorithms are not robustly convergent.
In the absence of noise, both methods asymptotically tend to polynomial interpolation as the
number of data increases (Nf--7oo).

The error for coefficient approximation is
ANI

sup IIH-Hw 11 .. ~ Kea.
HE 'J{{pp,M)

WEBN}ep

where

K:= (P+I)(2M)P, ~:=
p-I

with

10~~(P+l») alld «:=

log(p)

log(2p)-log(p +1)

log(p)

The error for approximation of functional values is
A NI

sup IIH-Hw 11 .. ~ Kea.
H E'J{{Dp,M)

WEBN}9

where e:= 2M
N -1 + Ej and with the same values for K, ~ and a. as with coefficient

p I (p-I)
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approximation.
See [Helmicki 90b] for the proof of these expressions. In [Ak.çay 93] another linear algorithm
is treated. This is also not robustly convergent, but the worst case error diverges very slowly.
It is shown that there does not exist a linear robustly convergent algorithm for this specific
problem.

tû.3 department of Electrica/ Engineerin.~ - Measurement & Control group

79



7. A deterministic approach of svstem identitication

7.4 Implementation in Matlab

The given class of algorithms are weIl suited to numerical implementation. A start has been
made with the implementation of the nonlinear algorithm of Helmicki e.a. of §7.2. The point
frequency response identification can be done by using Nt times the algorithm of §7.1.1. The
implementation is straightforward. Another possibility is the use of a (smoothed) ETFE
model, as suggested in the introduction of this chapter. A procedure to determine ETFE
modeIs, which includes smoothing with a window, is available in Matlab.
For choices of Nt comrnensurate with a power of 2, step 1 of the second stage can be
implemented using a sequence of inverse FFT operations. The window functions of §7.2.2 can
be used to create different identification algorithms. Although it is doubtful whether it works,
the AAK approximation in step 2 with the exact cancellation of the negative terms has been
implemented. The FIR approximation to compensate for the noncausal part of the Loo

approximation and arrive at a Hoo approximation is more suitable for implementation and is
also faster. Also the corresponding error bounds are implemented.
The linear algorithm with polynomial approximation is implemented with both ways,
coefficient approximation and approximation of functional values, to overcome the ill posed
problem. In Matlab it is possible to solve optimization problems constrained by a norm, but
like all optimization problems, convergence to the true optimal value can never be guaranteed.
Also the worst case errors of these algorithms are available.
The implementation has not been completed and has not been tested. It is recomrnendable to
complete the implementation of these algorithms and try it out because the algorithms are a
promising approach of control oriented system identification.
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As could be expected from approaches which try to find expressions for model errors
occurring in identification algorithms, which were not designed to yield this kind of
information, the resulting algorithms are not very practical. The discrete implementation of
a continuous algorithm, such as the one with the PDP for the Prequency Punction, which
consists of a lot of (inverse) Pourier transforms and integrals could be expected to be
troublesome. Por the differentiation and primitivation operations first order methods are used.
It is likely that, if high order differentials or primitives have to be computed when the error
algorithm is used with high-order modeis, some bad initial conditions will blow up and lead
to very erroneous results. This is for example the case in the regression vector, so when the
results of the routine are unexpected, it makes sense to check (plot) this vector for
verification. The routines could be improved by more optimal high quality numerical methods,
but these algorithms are time-consuming. A very critical part is the construction of a bounded
covariance function of the undermodelling, which has to be used in IDFr's. This function
determines largely the envelope of the resulting error function. The original covariance
function is bounded with a window, but through this operation the high frequency information
is lost, so the resulting covariance is only an approximation. The remark of §4.3.5 on the
caution of the use of filters with ARX models is an interesting notion for everybody who has
to deal with this kind of problems. The number of samples which can be used and the order
of the models are limited in practice because the large matrices could give memory problems
on an ordinary pc.
In the first part of this report it has been shown that prior assumptions on the likely nature
of the undermodelling Gd,o indeed can be translated into probable influences on the optimal
estimate of the parameters éN' The undermodelling error, which is a deterministic quantity
in classical identification theory, became also a random variabie which fits in the stochastic
embedding of the identification.
The major problem with the algorithms in a stochastic embedding is that the transfer function
of the model should be parametrized linearly in the parameters e on which the error algorithm
has to operate. This is the case with FIR modeIs and for this kind of model the (implemented)
error algorithm works quite good as seen in §5.1. The algorithm has been made suitable for
ARX modeis, but in case of a PDP for the frequency function of the undermodelling the
algorithm is a (coarse) approximation. The algorithm with a PDP for the impulse response
of the undermodelling ([Goodwin 92]) is said to be applicable to ARX models (and the FIR
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models are aspecific form of the ARX modeis), but the algorithm only operates on the
parameters of the numerator and so the denominator is considered to be (exactly) good. In
the implementation the standard ARX identification procedure is used which generates also
errors in the denominator, but these are left out of the error algorithm.
Since a model which is applied to the error algorithm has to be parametrized linearly in the
parameters also most other model structures, such as the Minimal Polynomial Start Sequence
of Markov parameters (MPSSM) model, are not suitable for use with the algorithm.
The availability of Fisher information matrix M~ to compute the Cramer-Rao lowerbounds
of the model error and the simple form of the likelihood function ~ in the case of Gaussian
embedding is a motivation to use the Gaussian assumption in GOODWIN2. In case of the
Gaussian assumption, the maximization problem is in principle convex (see §3.2), but it can
never be guaranteed that the true maximum will be found. In practical situations it will
generally also be impossible to estimate a true value for the covariance of the noise, so then
a value has to be specified by the user.
As a result of all this, it takes a lot of pragmatical thinking to apply the algorithm to an
example, especially if this concerns a difficult balI balancing process.

The problem formulation for deterministic, Robust Identification algorithms of Helmicki e.a.
which has the goal to identify a model and simultaneously deterrnine the worst case model
error, seems to be suitable for control-oriented system identification. The principles of the
deterrninistic robust identification algorithms of chapter 7 offer good prospects. The
algorithms for the model and the corresponding error bounds are simple and are suitable for
straightforward implementation. The nonlinear algorithms are robustly convergent. The linear
algorithms which have been presented do not have this property. A disadvantage is the large
order of the resulting modeis, because in (robust) control, low order (1inear) models are used
by preference. From this point of view the tag of 'control-oriented system identification
algorithms' is doubtful. On the other hand, the simple algebraic expressions for the worse
case model errors of the different algorithms seem to be applicable for controller design and
the implementation of the expressions is extremely easy.
The advantage of spline interpolation and the corresponding sinusoidal window is that the
error bound due to undermodelling and the error bound due to noise are decoupled, so as N--7oo

only the noise bound remains. In general it is not possible to reduce the undermodelling error
and noise error simultaneously and there is a trade-off between noise reduction and system
approximation. The trapezoidal window function of §7.2.2 offers possibilities to incorporate
the trade-off between noise and undermodelling as a design parameter.
The implementation of these algorithms has not been completed, but it should not take a long
time to finish it, not considering the (graphical) user interface.

One of the conclusions of the literature research, which has been done on account of the
library assignment, is that there is an increasing amount of literature about the subject of
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'Robust identification' . At the moment, books on this subject have not yet been signalized,
but a lot of articles appear and several theses have been written. The report of the library
assignment ([library assignmentD contains literature which has appeared more recently, but
which has not been used for this Master's Thesis. This could be a basis for further research
on this increasingly important subject.

The general and closing conclusion of this Master's Thesis report is that the problem of
finding algorithms for model errors and for Robust Identification is an interesting and
instructive subject from the theoretical identification point of view. However with the goal
of this Master' s Thesis to only analyze and evaluate certain algorithms and implement them
in Matlab, the resulting routines for the stochastic embedding are not suitable for addition to
for example the Matlab 'Identification tooIbox' . It will take further literature research and
probably own synthesis of algorithms to get expressions and corresponding routines which
are really generally applicable. The 'new' approach of Helmicki e.a. is promising and the
algorithms in literature concentrate on this problem.
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Appendix A: Most relevant norms and normed spaces

Consider a signal x(k).
- Amplitude / 00 norm:

- Energy / 2 norm:

- 1 norm:

Ilxll.. = sup Ix(k) I
keZ

IIx l12 = L Ix(k) 1
2

k=-..

IIx ll l = L Ix(k) I
k=-..

The space of the discrete finite amplitude signals:
to = {x I IIx ILo < oo} (continuous time: Loo = {x I Ilx ILo < oo})
The space of the discrete finite energy signais:
Q2 ={x I Ilxlb < oo} (continuous time: L2 ={x I IIxlb < oo})

The HM norm for SISO systems
Consider unit energy inputs u E L2, Ilulb ~ 1 and maxirnize the energy Ilylb of output y.

IIHUII
IIHII.. = sup Ilyllz = sup 2 = maxIH(jc..» I

ue~ Ue~ I1 Uliz tol

Ilu112~1

So this is the peak gain in, for exarnple, a Bode diagram.
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Appendix B: The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) and it' s numerical implementation Fast Fourier
Transform (FFT) compute the sampled spectrum X(oo) of a signal x(k). The resulting DFT is
a periodical function with period 21t in discrete frequency domain (sidebands are introduced).
Sampling in the frequency space and then performing the backward operation (IDFT) leads
to a periodical signal x(k) in the time space (with period N). So sampling in the frequency
domain is only allowed if the signal is bounded in time and frequency. Then no aliasing
occurs and one period of x(k) is equal to the original signal x(k). (x(k) Is the summation of
replications of x(k) which are translated over N.)
In the transformation from the continuous s-plane to the discrete one, the s-plane may be
divided into a primary strip, which corresponds to the central band, between -0.5joos and
+0.5joos' and complementary strips which correspond to the sidebands.

The Z-plane
Usually the Z-transformation is defined with negative powers of z:

F(z) = Zfttk)} = LftZ -k

k=O

but in the articles and in this report, the Z-transform is defined with positive powers of z:

F(z) = LftZ k

k=O

The relation between the continuous frequency s-domain and the discrete frequency z-domain:

z = ests where ~ is the sample time. So poles or zeros s = -a ± jb map to the position

z = e(-a±jb)ts = e-atse±jbts. The magnitude (i.e. the distance to the origin) is e-ats. The angles with

the positive real axis of the z-plane, measured positive in the counterclockwise direction, are
±bt radians.
1. Stability: ~n the s-plane is the imaginary axis (a=O) the boundary of the stabIe pole region
(for stability' a > 0). This axis maps into z = e±jbts, a unit circle about the origin. So a> 0 for
stability means that all poles must lie outside the unit circle in the z-plane.
2. Time constant 't: 't = 111al, so in the z-plane the poles must lie on a circle of radius e-ats.
Moving the poles further from the origin of the z-plane increases the speed of response.
3. Sampling frequency: as the imaginary part bof the poles moves closer to the limit 00/2 of
the primary strip, the number of samples per cycle reduces to the minimum of 2. In the z­
plane, this reduction occurs as the angle e±jbts of the poles moves closer to the direction of the
negative real axis.

There are several approximations to transform transfer function in s-domain to z-domain and
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backwards. The most common is the bilinear transformation or Tustin's method:

s = ~(Z-l).
t z+ls

This is based on the trapezoidal mIe for approximation of integrators.
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Appendix C: Experiment design and data conditions

The most important results of experiment design and data processing which are treated
thoroughly in [Stochastische Systeemtheorie] and [foegepaste Systeemanalyse] are
summarised here. There are design variables that have to be chosen a priori to an experiment
and there are variables that can be chosen after the data has been collected.
The selection of input(s) and output(s) depends on the kind of model which has to be
estimated and of the possibility to excite certain inputs and measure certain outputs. In the
situations as described in this report, this is no problem since only SISO systems are
considered.

Design of the input signal
The estimated model will be closer to the true system in frequency regions where the input
spectrum is large compared to the noise spectrum. The input signal should contain enough
'information' . In this respect ZMWN is the ideal input signal, because it contains all
frequencies and the energy is divided equally over all frequencies. However, in practice it is
usually not allowed to excite a system with ZMWN. Another good signal for system
identification is a Pseudo Random Binary Sequence (PRBS), in which the energy distribution
over the frequencies can be influenced.

Choice of the sampling freguency
Two different sample frequencies can be distinguished: the sampling frequency for data
collection cos,m and the sample frequency that is used in the identification procedure cos,i' For
measurement the sample rate should be as large as possible to collect as much information
as possible. A lower bound is of course Shannon's theorem, but the maximal frequency in a
process is unknown. A suitable choice for the sampling frequency is: cos,m ;::: lOcoB, where COB

is the bandwidth of the process. The bandwidth COB of a process is defined as the maximum
frequency for which the magnitude of the frequency function reaches the level of 1/'V2 times
it's static value (-3dB). To avoid aliasing effects, an anti-aliasing (Low Pass) filter can be
added to the system. This can only be a physical, analog (continuous) filter. The smallest time
constant of the system determines the sample rate.
A too high sample frequency for identification can lead to numerical problems, since the poles
of a discrete system are pushed towards z=1 in the complex z-plane. Another consideration
is the use of one-step ahead prediction. Smaller prediction steps will emphasize the high­
frequency fit of the model. A practical choice for the sample frequency is lOroa:s; cos,i :s; 30coB•

The sample frequency for data acquisition should be higher than the sample frequency for
identification.
The sample frequency of the measured signals has to reduced to get samples which can be
used in identification. This is called decimation. Before decimation, the signals have to be
filtered again by a (digital) anti-aliasing filter.
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Length of the experiment
The duration of an experiment T should be chosen such that the largest time constant fits
several times in this time. The combination of the sample frequency and the duration
determines the number of samples N.

Data (pre)processing
Data (pre)processing concerns:

- removal of outliers, spikes, offsets and trends;
- sealing of the signals to equalize their varianee.

Choice of model structure and order and eventual choice of the prefilter
The choice of the model structure and order depends on the intended model application. In
the Matlab 'System Identification tooibox' functions are available which automatically select
the optimal model order (smallest Cost Function).
The prefilter F(s) should be designed such that the frequency region of interest is emphasized.
The dead time of a system can be estimated using correlation analysis (see [Stochastische
Systeemtheorie] and [Toegepaste Systeemanalyse]). If this prior information is incorporated
in identification then the model will be better. If the dead time is underestimated then the first
parameters of the B-polynomial will be almost o. Overestimation of the dead time is worse
and results in biased parameters because these parameters have to compensate the
incorrectness.
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